xref: /openbmc/linux/drivers/gpu/drm/arm/display/komeda/komeda_crtc.c (revision cd1e565a5b7fa60c349ca8a16db1e61715fe8230)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 #include <linux/clk.h>
8 #include <linux/of.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spinlock.h>
11 
12 #include <drm/drm_atomic.h>
13 #include <drm/drm_atomic_helper.h>
14 #include <drm/drm_print.h>
15 #include <drm/drm_vblank.h>
16 #include <drm/drm_simple_kms_helper.h>
17 #include <drm/drm_bridge.h>
18 
19 #include "komeda_dev.h"
20 #include "komeda_kms.h"
21 
22 void komeda_crtc_get_color_config(struct drm_crtc_state *crtc_st,
23 				  u32 *color_depths, u32 *color_formats)
24 {
25 	struct drm_connector *conn;
26 	struct drm_connector_state *conn_st;
27 	u32 conn_color_formats = ~0u;
28 	int i, min_bpc = 31, conn_bpc = 0;
29 
30 	for_each_new_connector_in_state(crtc_st->state, conn, conn_st, i) {
31 		if (conn_st->crtc != crtc_st->crtc)
32 			continue;
33 
34 		conn_bpc = conn->display_info.bpc ? conn->display_info.bpc : 8;
35 		conn_color_formats &= conn->display_info.color_formats;
36 
37 		if (conn_bpc < min_bpc)
38 			min_bpc = conn_bpc;
39 	}
40 
41 	/* connector doesn't config any color_format, use RGB444 as default */
42 	if (!conn_color_formats)
43 		conn_color_formats = DRM_COLOR_FORMAT_RGB444;
44 
45 	*color_depths = GENMASK(min_bpc, 0);
46 	*color_formats = conn_color_formats;
47 }
48 
49 static void komeda_crtc_update_clock_ratio(struct komeda_crtc_state *kcrtc_st)
50 {
51 	u64 pxlclk, aclk;
52 
53 	if (!kcrtc_st->base.active) {
54 		kcrtc_st->clock_ratio = 0;
55 		return;
56 	}
57 
58 	pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000ULL;
59 	aclk = komeda_crtc_get_aclk(kcrtc_st);
60 
61 	kcrtc_st->clock_ratio = div64_u64(aclk << 32, pxlclk);
62 }
63 
64 /**
65  * komeda_crtc_atomic_check - build display output data flow
66  * @crtc: DRM crtc
67  * @state: the crtc state object
68  *
69  * crtc_atomic_check is the final check stage, so beside build a display data
70  * pipeline according to the crtc_state, but still needs to release or disable
71  * the unclaimed pipeline resources.
72  *
73  * RETURNS:
74  * Zero for success or -errno
75  */
76 static int
77 komeda_crtc_atomic_check(struct drm_crtc *crtc,
78 			 struct drm_atomic_state *state)
79 {
80 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
81 									  crtc);
82 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
83 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc_state);
84 	int err;
85 
86 	if (drm_atomic_crtc_needs_modeset(crtc_state))
87 		komeda_crtc_update_clock_ratio(kcrtc_st);
88 
89 	if (crtc_state->active) {
90 		err = komeda_build_display_data_flow(kcrtc, kcrtc_st);
91 		if (err)
92 			return err;
93 	}
94 
95 	/* release unclaimed pipeline resources */
96 	err = komeda_release_unclaimed_resources(kcrtc->slave, kcrtc_st);
97 	if (err)
98 		return err;
99 
100 	err = komeda_release_unclaimed_resources(kcrtc->master, kcrtc_st);
101 	if (err)
102 		return err;
103 
104 	return 0;
105 }
106 
107 /* For active a crtc, mainly need two parts of preparation
108  * 1. adjust display operation mode.
109  * 2. enable needed clk
110  */
111 static int
112 komeda_crtc_prepare(struct komeda_crtc *kcrtc)
113 {
114 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
115 	struct komeda_pipeline *master = kcrtc->master;
116 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(kcrtc->base.state);
117 	struct drm_display_mode *mode = &kcrtc_st->base.adjusted_mode;
118 	u32 new_mode;
119 	int err;
120 
121 	mutex_lock(&mdev->lock);
122 
123 	new_mode = mdev->dpmode | BIT(master->id);
124 	if (WARN_ON(new_mode == mdev->dpmode)) {
125 		err = 0;
126 		goto unlock;
127 	}
128 
129 	err = mdev->funcs->change_opmode(mdev, new_mode);
130 	if (err) {
131 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
132 			  mdev->dpmode, new_mode);
133 		goto unlock;
134 	}
135 
136 	mdev->dpmode = new_mode;
137 	/* Only need to enable aclk on single display mode, but no need to
138 	 * enable aclk it on dual display mode, since the dual mode always
139 	 * switch from single display mode, the aclk already enabled, no need
140 	 * to enable it again.
141 	 */
142 	if (new_mode != KOMEDA_MODE_DUAL_DISP) {
143 		err = clk_set_rate(mdev->aclk, komeda_crtc_get_aclk(kcrtc_st));
144 		if (err)
145 			DRM_ERROR("failed to set aclk.\n");
146 		err = clk_prepare_enable(mdev->aclk);
147 		if (err)
148 			DRM_ERROR("failed to enable aclk.\n");
149 	}
150 
151 	err = clk_set_rate(master->pxlclk, mode->crtc_clock * 1000);
152 	if (err)
153 		DRM_ERROR("failed to set pxlclk for pipe%d\n", master->id);
154 	err = clk_prepare_enable(master->pxlclk);
155 	if (err)
156 		DRM_ERROR("failed to enable pxl clk for pipe%d.\n", master->id);
157 
158 unlock:
159 	mutex_unlock(&mdev->lock);
160 
161 	return err;
162 }
163 
164 static int
165 komeda_crtc_unprepare(struct komeda_crtc *kcrtc)
166 {
167 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
168 	struct komeda_pipeline *master = kcrtc->master;
169 	u32 new_mode;
170 	int err;
171 
172 	mutex_lock(&mdev->lock);
173 
174 	new_mode = mdev->dpmode & (~BIT(master->id));
175 
176 	if (WARN_ON(new_mode == mdev->dpmode)) {
177 		err = 0;
178 		goto unlock;
179 	}
180 
181 	err = mdev->funcs->change_opmode(mdev, new_mode);
182 	if (err) {
183 		DRM_ERROR("failed to change opmode: 0x%x -> 0x%x.\n,",
184 			  mdev->dpmode, new_mode);
185 		goto unlock;
186 	}
187 
188 	mdev->dpmode = new_mode;
189 
190 	clk_disable_unprepare(master->pxlclk);
191 	if (new_mode == KOMEDA_MODE_INACTIVE)
192 		clk_disable_unprepare(mdev->aclk);
193 
194 unlock:
195 	mutex_unlock(&mdev->lock);
196 
197 	return err;
198 }
199 
200 void komeda_crtc_handle_event(struct komeda_crtc   *kcrtc,
201 			      struct komeda_events *evts)
202 {
203 	struct drm_crtc *crtc = &kcrtc->base;
204 	u32 events = evts->pipes[kcrtc->master->id];
205 
206 	if (events & KOMEDA_EVENT_VSYNC)
207 		drm_crtc_handle_vblank(crtc);
208 
209 	if (events & KOMEDA_EVENT_EOW) {
210 		struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
211 
212 		if (wb_conn)
213 			drm_writeback_signal_completion(&wb_conn->base, 0);
214 		else
215 			DRM_WARN("CRTC[%d]: EOW happen but no wb_connector.\n",
216 				 drm_crtc_index(&kcrtc->base));
217 	}
218 	/* will handle it together with the write back support */
219 	if (events & KOMEDA_EVENT_EOW)
220 		DRM_DEBUG("EOW.\n");
221 
222 	if (events & KOMEDA_EVENT_FLIP) {
223 		unsigned long flags;
224 		struct drm_pending_vblank_event *event;
225 
226 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
227 		if (kcrtc->disable_done) {
228 			complete_all(kcrtc->disable_done);
229 			kcrtc->disable_done = NULL;
230 		} else if (crtc->state->event) {
231 			event = crtc->state->event;
232 			/*
233 			 * Consume event before notifying drm core that flip
234 			 * happened.
235 			 */
236 			crtc->state->event = NULL;
237 			drm_crtc_send_vblank_event(crtc, event);
238 		} else {
239 			DRM_WARN("CRTC[%d]: FLIP happened but no pending commit.\n",
240 				 drm_crtc_index(&kcrtc->base));
241 		}
242 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
243 	}
244 }
245 
246 static void
247 komeda_crtc_do_flush(struct drm_crtc *crtc,
248 		     struct drm_crtc_state *old)
249 {
250 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
251 	struct komeda_crtc_state *kcrtc_st = to_kcrtc_st(crtc->state);
252 	struct komeda_dev *mdev = kcrtc->base.dev->dev_private;
253 	struct komeda_pipeline *master = kcrtc->master;
254 	struct komeda_pipeline *slave = kcrtc->slave;
255 	struct komeda_wb_connector *wb_conn = kcrtc->wb_conn;
256 	struct drm_connector_state *conn_st;
257 
258 	DRM_DEBUG_ATOMIC("CRTC%d_FLUSH: active_pipes: 0x%x, affected: 0x%x.\n",
259 			 drm_crtc_index(crtc),
260 			 kcrtc_st->active_pipes, kcrtc_st->affected_pipes);
261 
262 	/* step 1: update the pipeline/component state to HW */
263 	if (has_bit(master->id, kcrtc_st->affected_pipes))
264 		komeda_pipeline_update(master, old->state);
265 
266 	if (slave && has_bit(slave->id, kcrtc_st->affected_pipes))
267 		komeda_pipeline_update(slave, old->state);
268 
269 	conn_st = wb_conn ? wb_conn->base.base.state : NULL;
270 	if (conn_st && conn_st->writeback_job)
271 		drm_writeback_queue_job(&wb_conn->base, conn_st);
272 
273 	/* step 2: notify the HW to kickoff the update */
274 	mdev->funcs->flush(mdev, master->id, kcrtc_st->active_pipes);
275 }
276 
277 static void
278 komeda_crtc_atomic_enable(struct drm_crtc *crtc,
279 			  struct drm_atomic_state *state)
280 {
281 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
282 								   crtc);
283 	pm_runtime_get_sync(crtc->dev->dev);
284 	komeda_crtc_prepare(to_kcrtc(crtc));
285 	drm_crtc_vblank_on(crtc);
286 	WARN_ON(drm_crtc_vblank_get(crtc));
287 	komeda_crtc_do_flush(crtc, old);
288 }
289 
290 void
291 komeda_crtc_flush_and_wait_for_flip_done(struct komeda_crtc *kcrtc,
292 					 struct completion *input_flip_done)
293 {
294 	struct drm_device *drm = kcrtc->base.dev;
295 	struct komeda_dev *mdev = kcrtc->master->mdev;
296 	struct completion *flip_done;
297 	struct completion temp;
298 	int timeout;
299 
300 	/* if caller doesn't send a flip_done, use a private flip_done */
301 	if (input_flip_done) {
302 		flip_done = input_flip_done;
303 	} else {
304 		init_completion(&temp);
305 		kcrtc->disable_done = &temp;
306 		flip_done = &temp;
307 	}
308 
309 	mdev->funcs->flush(mdev, kcrtc->master->id, 0);
310 
311 	/* wait the flip take affect.*/
312 	timeout = wait_for_completion_timeout(flip_done, HZ);
313 	if (timeout == 0) {
314 		DRM_ERROR("wait pipe%d flip done timeout\n", kcrtc->master->id);
315 		if (!input_flip_done) {
316 			unsigned long flags;
317 
318 			spin_lock_irqsave(&drm->event_lock, flags);
319 			kcrtc->disable_done = NULL;
320 			spin_unlock_irqrestore(&drm->event_lock, flags);
321 		}
322 	}
323 }
324 
325 static void
326 komeda_crtc_atomic_disable(struct drm_crtc *crtc,
327 			   struct drm_atomic_state *state)
328 {
329 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
330 								   crtc);
331 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
332 	struct komeda_crtc_state *old_st = to_kcrtc_st(old);
333 	struct komeda_pipeline *master = kcrtc->master;
334 	struct komeda_pipeline *slave  = kcrtc->slave;
335 	struct completion *disable_done;
336 	bool needs_phase2 = false;
337 
338 	DRM_DEBUG_ATOMIC("CRTC%d_DISABLE: active_pipes: 0x%x, affected: 0x%x\n",
339 			 drm_crtc_index(crtc),
340 			 old_st->active_pipes, old_st->affected_pipes);
341 
342 	if (slave && has_bit(slave->id, old_st->active_pipes))
343 		komeda_pipeline_disable(slave, old->state);
344 
345 	if (has_bit(master->id, old_st->active_pipes))
346 		needs_phase2 = komeda_pipeline_disable(master, old->state);
347 
348 	/* crtc_disable has two scenarios according to the state->active switch.
349 	 * 1. active -> inactive
350 	 *    this commit is a disable commit. and the commit will be finished
351 	 *    or done after the disable operation. on this case we can directly
352 	 *    use the crtc->state->event to tracking the HW disable operation.
353 	 * 2. active -> active
354 	 *    the crtc->commit is not for disable, but a modeset operation when
355 	 *    crtc is active, such commit actually has been completed by 3
356 	 *    DRM operations:
357 	 *    crtc_disable, update_planes(crtc_flush), crtc_enable
358 	 *    so on this case the crtc->commit is for the whole process.
359 	 *    we can not use it for tracing the disable, we need a temporary
360 	 *    flip_done for tracing the disable. and crtc->state->event for
361 	 *    the crtc_enable operation.
362 	 *    That's also the reason why skip modeset commit in
363 	 *    komeda_crtc_atomic_flush()
364 	 */
365 	disable_done = (needs_phase2 || crtc->state->active) ?
366 		       NULL : &crtc->state->commit->flip_done;
367 
368 	/* wait phase 1 disable done */
369 	komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
370 
371 	/* phase 2 */
372 	if (needs_phase2) {
373 		komeda_pipeline_disable(kcrtc->master, old->state);
374 
375 		disable_done = crtc->state->active ?
376 			       NULL : &crtc->state->commit->flip_done;
377 
378 		komeda_crtc_flush_and_wait_for_flip_done(kcrtc, disable_done);
379 	}
380 
381 	drm_crtc_vblank_put(crtc);
382 	drm_crtc_vblank_off(crtc);
383 	komeda_crtc_unprepare(kcrtc);
384 	pm_runtime_put(crtc->dev->dev);
385 }
386 
387 static void
388 komeda_crtc_atomic_flush(struct drm_crtc *crtc,
389 			 struct drm_atomic_state *state)
390 {
391 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
392 									  crtc);
393 	struct drm_crtc_state *old = drm_atomic_get_old_crtc_state(state,
394 								   crtc);
395 	/* commit with modeset will be handled in enable/disable */
396 	if (drm_atomic_crtc_needs_modeset(crtc_state))
397 		return;
398 
399 	komeda_crtc_do_flush(crtc, old);
400 }
401 
402 /* Returns the minimum frequency of the aclk rate (main engine clock) in Hz */
403 static unsigned long
404 komeda_calc_min_aclk_rate(struct komeda_crtc *kcrtc,
405 			  unsigned long pxlclk)
406 {
407 	/* Once dual-link one display pipeline drives two display outputs,
408 	 * the aclk needs run on the double rate of pxlclk
409 	 */
410 	if (kcrtc->master->dual_link)
411 		return pxlclk * 2;
412 	else
413 		return pxlclk;
414 }
415 
416 /* Get current aclk rate that specified by state */
417 unsigned long komeda_crtc_get_aclk(struct komeda_crtc_state *kcrtc_st)
418 {
419 	struct drm_crtc *crtc = kcrtc_st->base.crtc;
420 	struct komeda_dev *mdev = crtc->dev->dev_private;
421 	unsigned long pxlclk = kcrtc_st->base.adjusted_mode.crtc_clock * 1000;
422 	unsigned long min_aclk;
423 
424 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), pxlclk);
425 
426 	return clk_round_rate(mdev->aclk, min_aclk);
427 }
428 
429 static enum drm_mode_status
430 komeda_crtc_mode_valid(struct drm_crtc *crtc, const struct drm_display_mode *m)
431 {
432 	struct komeda_dev *mdev = crtc->dev->dev_private;
433 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
434 	struct komeda_pipeline *master = kcrtc->master;
435 	unsigned long min_pxlclk, min_aclk;
436 
437 	if (m->flags & DRM_MODE_FLAG_INTERLACE)
438 		return MODE_NO_INTERLACE;
439 
440 	min_pxlclk = m->clock * 1000;
441 	if (master->dual_link)
442 		min_pxlclk /= 2;
443 
444 	if (min_pxlclk != clk_round_rate(master->pxlclk, min_pxlclk)) {
445 		DRM_DEBUG_ATOMIC("pxlclk doesn't support %lu Hz\n", min_pxlclk);
446 
447 		return MODE_NOCLOCK;
448 	}
449 
450 	min_aclk = komeda_calc_min_aclk_rate(to_kcrtc(crtc), min_pxlclk);
451 	if (clk_round_rate(mdev->aclk, min_aclk) < min_aclk) {
452 		DRM_DEBUG_ATOMIC("engine clk can't satisfy the requirement of %s-clk: %lu.\n",
453 				 m->name, min_pxlclk);
454 
455 		return MODE_CLOCK_HIGH;
456 	}
457 
458 	return MODE_OK;
459 }
460 
461 static bool komeda_crtc_mode_fixup(struct drm_crtc *crtc,
462 				   const struct drm_display_mode *m,
463 				   struct drm_display_mode *adjusted_mode)
464 {
465 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
466 	unsigned long clk_rate;
467 
468 	drm_mode_set_crtcinfo(adjusted_mode, 0);
469 	/* In dual link half the horizontal settings */
470 	if (kcrtc->master->dual_link) {
471 		adjusted_mode->crtc_clock /= 2;
472 		adjusted_mode->crtc_hdisplay /= 2;
473 		adjusted_mode->crtc_hsync_start /= 2;
474 		adjusted_mode->crtc_hsync_end /= 2;
475 		adjusted_mode->crtc_htotal /= 2;
476 	}
477 
478 	clk_rate = adjusted_mode->crtc_clock * 1000;
479 	/* crtc_clock will be used as the komeda output pixel clock */
480 	adjusted_mode->crtc_clock = clk_round_rate(kcrtc->master->pxlclk,
481 						   clk_rate) / 1000;
482 
483 	return true;
484 }
485 
486 static const struct drm_crtc_helper_funcs komeda_crtc_helper_funcs = {
487 	.atomic_check	= komeda_crtc_atomic_check,
488 	.atomic_flush	= komeda_crtc_atomic_flush,
489 	.atomic_enable	= komeda_crtc_atomic_enable,
490 	.atomic_disable	= komeda_crtc_atomic_disable,
491 	.mode_valid	= komeda_crtc_mode_valid,
492 	.mode_fixup	= komeda_crtc_mode_fixup,
493 };
494 
495 static void komeda_crtc_reset(struct drm_crtc *crtc)
496 {
497 	struct komeda_crtc_state *state;
498 
499 	if (crtc->state)
500 		__drm_atomic_helper_crtc_destroy_state(crtc->state);
501 
502 	kfree(to_kcrtc_st(crtc->state));
503 	crtc->state = NULL;
504 
505 	state = kzalloc(sizeof(*state), GFP_KERNEL);
506 	if (state)
507 		__drm_atomic_helper_crtc_reset(crtc, &state->base);
508 }
509 
510 static struct drm_crtc_state *
511 komeda_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
512 {
513 	struct komeda_crtc_state *old = to_kcrtc_st(crtc->state);
514 	struct komeda_crtc_state *new;
515 
516 	new = kzalloc(sizeof(*new), GFP_KERNEL);
517 	if (!new)
518 		return NULL;
519 
520 	__drm_atomic_helper_crtc_duplicate_state(crtc, &new->base);
521 
522 	new->affected_pipes = old->active_pipes;
523 	new->clock_ratio = old->clock_ratio;
524 	new->max_slave_zorder = old->max_slave_zorder;
525 
526 	return &new->base;
527 }
528 
529 static void komeda_crtc_atomic_destroy_state(struct drm_crtc *crtc,
530 					     struct drm_crtc_state *state)
531 {
532 	__drm_atomic_helper_crtc_destroy_state(state);
533 	kfree(to_kcrtc_st(state));
534 }
535 
536 static int komeda_crtc_vblank_enable(struct drm_crtc *crtc)
537 {
538 	struct komeda_dev *mdev = crtc->dev->dev_private;
539 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
540 
541 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, true);
542 	return 0;
543 }
544 
545 static void komeda_crtc_vblank_disable(struct drm_crtc *crtc)
546 {
547 	struct komeda_dev *mdev = crtc->dev->dev_private;
548 	struct komeda_crtc *kcrtc = to_kcrtc(crtc);
549 
550 	mdev->funcs->on_off_vblank(mdev, kcrtc->master->id, false);
551 }
552 
553 static const struct drm_crtc_funcs komeda_crtc_funcs = {
554 	.destroy		= drm_crtc_cleanup,
555 	.set_config		= drm_atomic_helper_set_config,
556 	.page_flip		= drm_atomic_helper_page_flip,
557 	.reset			= komeda_crtc_reset,
558 	.atomic_duplicate_state	= komeda_crtc_atomic_duplicate_state,
559 	.atomic_destroy_state	= komeda_crtc_atomic_destroy_state,
560 	.enable_vblank		= komeda_crtc_vblank_enable,
561 	.disable_vblank		= komeda_crtc_vblank_disable,
562 };
563 
564 int komeda_kms_setup_crtcs(struct komeda_kms_dev *kms,
565 			   struct komeda_dev *mdev)
566 {
567 	struct komeda_crtc *crtc;
568 	struct komeda_pipeline *master;
569 	char str[16];
570 	int i;
571 
572 	kms->n_crtcs = 0;
573 
574 	for (i = 0; i < mdev->n_pipelines; i++) {
575 		crtc = &kms->crtcs[kms->n_crtcs];
576 		master = mdev->pipelines[i];
577 
578 		crtc->master = master;
579 		crtc->slave  = komeda_pipeline_get_slave(master);
580 
581 		if (crtc->slave)
582 			sprintf(str, "pipe-%d", crtc->slave->id);
583 		else
584 			sprintf(str, "None");
585 
586 		DRM_INFO("CRTC-%d: master(pipe-%d) slave(%s).\n",
587 			 kms->n_crtcs, master->id, str);
588 
589 		kms->n_crtcs++;
590 	}
591 
592 	return 0;
593 }
594 
595 static struct drm_plane *
596 get_crtc_primary(struct komeda_kms_dev *kms, struct komeda_crtc *crtc)
597 {
598 	struct komeda_plane *kplane;
599 	struct drm_plane *plane;
600 
601 	drm_for_each_plane(plane, &kms->base) {
602 		if (plane->type != DRM_PLANE_TYPE_PRIMARY)
603 			continue;
604 
605 		kplane = to_kplane(plane);
606 		/* only master can be primary */
607 		if (kplane->layer->base.pipeline == crtc->master)
608 			return plane;
609 	}
610 
611 	return NULL;
612 }
613 
614 static int komeda_attach_bridge(struct device *dev,
615 				struct komeda_pipeline *pipe,
616 				struct drm_encoder *encoder)
617 {
618 	struct drm_bridge *bridge;
619 	int err;
620 
621 	bridge = devm_drm_of_get_bridge(dev, pipe->of_node,
622 					KOMEDA_OF_PORT_OUTPUT, 0);
623 	if (IS_ERR(bridge))
624 		return dev_err_probe(dev, PTR_ERR(bridge), "remote bridge not found for pipe: %s\n",
625 				     of_node_full_name(pipe->of_node));
626 
627 	err = drm_bridge_attach(encoder, bridge, NULL, 0);
628 	if (err)
629 		dev_err(dev, "bridge_attach() failed for pipe: %s\n",
630 			of_node_full_name(pipe->of_node));
631 
632 	return err;
633 }
634 
635 static int komeda_crtc_add(struct komeda_kms_dev *kms,
636 			   struct komeda_crtc *kcrtc)
637 {
638 	struct drm_crtc *crtc = &kcrtc->base;
639 	struct drm_device *base = &kms->base;
640 	struct komeda_pipeline *pipe = kcrtc->master;
641 	struct drm_encoder *encoder = &kcrtc->encoder;
642 	int err;
643 
644 	err = drm_crtc_init_with_planes(base, crtc,
645 					get_crtc_primary(kms, kcrtc), NULL,
646 					&komeda_crtc_funcs, NULL);
647 	if (err)
648 		return err;
649 
650 	drm_crtc_helper_add(crtc, &komeda_crtc_helper_funcs);
651 
652 	crtc->port = pipe->of_output_port;
653 
654 	/* Construct an encoder for each pipeline and attach it to the remote
655 	 * bridge
656 	 */
657 	kcrtc->encoder.possible_crtcs = drm_crtc_mask(crtc);
658 	err = drm_simple_encoder_init(base, encoder, DRM_MODE_ENCODER_TMDS);
659 	if (err)
660 		return err;
661 
662 	if (pipe->of_output_links[0]) {
663 		err = komeda_attach_bridge(base->dev, pipe, encoder);
664 		if (err)
665 			return err;
666 	}
667 
668 	drm_crtc_enable_color_mgmt(crtc, 0, true, KOMEDA_COLOR_LUT_SIZE);
669 
670 	return 0;
671 }
672 
673 int komeda_kms_add_crtcs(struct komeda_kms_dev *kms, struct komeda_dev *mdev)
674 {
675 	int i, err;
676 
677 	for (i = 0; i < kms->n_crtcs; i++) {
678 		err = komeda_crtc_add(kms, &kms->crtcs[i]);
679 		if (err)
680 			return err;
681 	}
682 
683 	return 0;
684 }
685