1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/firmware.h>
24 #include <linux/module.h>
25 #include <linux/pci.h>
26 #include <linux/reboot.h>
27 
28 #define SMU_13_0_PARTIAL_PPTABLE
29 #define SWSMU_CODE_LAYER_L3
30 
31 #include "amdgpu.h"
32 #include "amdgpu_smu.h"
33 #include "atomfirmware.h"
34 #include "amdgpu_atomfirmware.h"
35 #include "amdgpu_atombios.h"
36 #include "smu_v13_0.h"
37 #include "soc15_common.h"
38 #include "atom.h"
39 #include "amdgpu_ras.h"
40 #include "smu_cmn.h"
41 
42 #include "asic_reg/thm/thm_13_0_2_offset.h"
43 #include "asic_reg/thm/thm_13_0_2_sh_mask.h"
44 #include "asic_reg/mp/mp_13_0_2_offset.h"
45 #include "asic_reg/mp/mp_13_0_2_sh_mask.h"
46 #include "asic_reg/smuio/smuio_13_0_2_offset.h"
47 #include "asic_reg/smuio/smuio_13_0_2_sh_mask.h"
48 
49 /*
50  * DO NOT use these for err/warn/info/debug messages.
51  * Use dev_err, dev_warn, dev_info and dev_dbg instead.
52  * They are more MGPU friendly.
53  */
54 #undef pr_err
55 #undef pr_warn
56 #undef pr_info
57 #undef pr_debug
58 
59 MODULE_FIRMWARE("amdgpu/aldebaran_smc.bin");
60 
61 #define SMU13_VOLTAGE_SCALE 4
62 
63 #define LINK_WIDTH_MAX				6
64 #define LINK_SPEED_MAX				3
65 
66 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
67 #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK 0x00000070L
68 #define PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT 0x4
69 #define smnPCIE_LC_SPEED_CNTL			0x11140290
70 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK 0xC000
71 #define PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT 0xE
72 
73 static const int link_width[] = {0, 1, 2, 4, 8, 12, 16};
74 static const int link_speed[] = {25, 50, 80, 160};
75 
76 int smu_v13_0_init_microcode(struct smu_context *smu)
77 {
78 	struct amdgpu_device *adev = smu->adev;
79 	const char *chip_name;
80 	char fw_name[30];
81 	int err = 0;
82 	const struct smc_firmware_header_v1_0 *hdr;
83 	const struct common_firmware_header *header;
84 	struct amdgpu_firmware_info *ucode = NULL;
85 
86 	/* doesn't need to load smu firmware in IOV mode */
87 	if (amdgpu_sriov_vf(adev))
88 		return 0;
89 
90 	switch (adev->ip_versions[MP1_HWIP][0]) {
91 	case IP_VERSION(13, 0, 2):
92 		chip_name = "aldebaran";
93 		break;
94 	default:
95 		dev_err(adev->dev, "Unsupported IP version 0x%x\n",
96 			adev->ip_versions[MP1_HWIP][0]);
97 		return -EINVAL;
98 	}
99 
100 	snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_smc.bin", chip_name);
101 
102 	err = request_firmware(&adev->pm.fw, fw_name, adev->dev);
103 	if (err)
104 		goto out;
105 	err = amdgpu_ucode_validate(adev->pm.fw);
106 	if (err)
107 		goto out;
108 
109 	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
110 	amdgpu_ucode_print_smc_hdr(&hdr->header);
111 	adev->pm.fw_version = le32_to_cpu(hdr->header.ucode_version);
112 
113 	if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
114 		ucode = &adev->firmware.ucode[AMDGPU_UCODE_ID_SMC];
115 		ucode->ucode_id = AMDGPU_UCODE_ID_SMC;
116 		ucode->fw = adev->pm.fw;
117 		header = (const struct common_firmware_header *)ucode->fw->data;
118 		adev->firmware.fw_size +=
119 			ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
120 	}
121 
122 out:
123 	if (err) {
124 		DRM_ERROR("smu_v13_0: Failed to load firmware \"%s\"\n",
125 			  fw_name);
126 		release_firmware(adev->pm.fw);
127 		adev->pm.fw = NULL;
128 	}
129 	return err;
130 }
131 
132 void smu_v13_0_fini_microcode(struct smu_context *smu)
133 {
134 	struct amdgpu_device *adev = smu->adev;
135 
136 	release_firmware(adev->pm.fw);
137 	adev->pm.fw = NULL;
138 	adev->pm.fw_version = 0;
139 }
140 
141 int smu_v13_0_load_microcode(struct smu_context *smu)
142 {
143 #if 0
144 	struct amdgpu_device *adev = smu->adev;
145 	const uint32_t *src;
146 	const struct smc_firmware_header_v1_0 *hdr;
147 	uint32_t addr_start = MP1_SRAM;
148 	uint32_t i;
149 	uint32_t smc_fw_size;
150 	uint32_t mp1_fw_flags;
151 
152 	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
153 	src = (const uint32_t *)(adev->pm.fw->data +
154 				 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
155 	smc_fw_size = hdr->header.ucode_size_bytes;
156 
157 	for (i = 1; i < smc_fw_size/4 - 1; i++) {
158 		WREG32_PCIE(addr_start, src[i]);
159 		addr_start += 4;
160 	}
161 
162 	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
163 		    1 & MP1_SMN_PUB_CTRL__RESET_MASK);
164 	WREG32_PCIE(MP1_Public | (smnMP1_PUB_CTRL & 0xffffffff),
165 		    1 & ~MP1_SMN_PUB_CTRL__RESET_MASK);
166 
167 	for (i = 0; i < adev->usec_timeout; i++) {
168 		mp1_fw_flags = RREG32_PCIE(MP1_Public |
169 					   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
170 		if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
171 		    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
172 			break;
173 		udelay(1);
174 	}
175 
176 	if (i == adev->usec_timeout)
177 		return -ETIME;
178 #endif
179 	return 0;
180 }
181 
182 int smu_v13_0_check_fw_status(struct smu_context *smu)
183 {
184 	struct amdgpu_device *adev = smu->adev;
185 	uint32_t mp1_fw_flags;
186 
187 	mp1_fw_flags = RREG32_PCIE(MP1_Public |
188 				   (smnMP1_FIRMWARE_FLAGS & 0xffffffff));
189 
190 	if ((mp1_fw_flags & MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED_MASK) >>
191 	    MP1_FIRMWARE_FLAGS__INTERRUPTS_ENABLED__SHIFT)
192 		return 0;
193 
194 	return -EIO;
195 }
196 
197 int smu_v13_0_check_fw_version(struct smu_context *smu)
198 {
199 	struct amdgpu_device *adev = smu->adev;
200 	uint32_t if_version = 0xff, smu_version = 0xff;
201 	uint8_t smu_program, smu_major, smu_minor, smu_debug;
202 	int ret = 0;
203 
204 	ret = smu_cmn_get_smc_version(smu, &if_version, &smu_version);
205 	if (ret)
206 		return ret;
207 
208 	smu_program = (smu_version >> 24) & 0xff;
209 	smu_major = (smu_version >> 16) & 0xff;
210 	smu_minor = (smu_version >> 8) & 0xff;
211 	smu_debug = (smu_version >> 0) & 0xff;
212 	if (smu->is_apu)
213 		adev->pm.fw_version = smu_version;
214 
215 	switch (adev->ip_versions[MP1_HWIP][0]) {
216 	case IP_VERSION(13, 0, 2):
217 		smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_ALDE;
218 		break;
219 	case IP_VERSION(13, 0, 1):
220 	case IP_VERSION(13, 0, 3):
221 	case IP_VERSION(13, 0, 8):
222 		smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_YELLOW_CARP;
223 		break;
224 	case IP_VERSION(13, 0, 5):
225 		smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_SMU_V13_0_5;
226 		break;
227 	default:
228 		dev_err(adev->dev, "smu unsupported IP version: 0x%x.\n",
229 			adev->ip_versions[MP1_HWIP][0]);
230 		smu->smc_driver_if_version = SMU13_DRIVER_IF_VERSION_INV;
231 		break;
232 	}
233 
234 	/* only for dGPU w/ SMU13*/
235 	if (adev->pm.fw)
236 		dev_dbg(smu->adev->dev, "smu fw reported program %d, version = 0x%08x (%d.%d.%d)\n",
237 			 smu_program, smu_version, smu_major, smu_minor, smu_debug);
238 
239 	/*
240 	 * 1. if_version mismatch is not critical as our fw is designed
241 	 * to be backward compatible.
242 	 * 2. New fw usually brings some optimizations. But that's visible
243 	 * only on the paired driver.
244 	 * Considering above, we just leave user a warning message instead
245 	 * of halt driver loading.
246 	 */
247 	if (if_version != smu->smc_driver_if_version) {
248 		dev_info(adev->dev, "smu driver if version = 0x%08x, smu fw if version = 0x%08x, "
249 			 "smu fw program = %d, smu fw version = 0x%08x (%d.%d.%d)\n",
250 			 smu->smc_driver_if_version, if_version,
251 			 smu_program, smu_version, smu_major, smu_minor, smu_debug);
252 		dev_warn(adev->dev, "SMU driver if version not matched\n");
253 	}
254 
255 	return ret;
256 }
257 
258 static int smu_v13_0_set_pptable_v2_1(struct smu_context *smu, void **table,
259 				      uint32_t *size, uint32_t pptable_id)
260 {
261 	struct amdgpu_device *adev = smu->adev;
262 	const struct smc_firmware_header_v2_1 *v2_1;
263 	struct smc_soft_pptable_entry *entries;
264 	uint32_t pptable_count = 0;
265 	int i = 0;
266 
267 	v2_1 = (const struct smc_firmware_header_v2_1 *) adev->pm.fw->data;
268 	entries = (struct smc_soft_pptable_entry *)
269 		((uint8_t *)v2_1 + le32_to_cpu(v2_1->pptable_entry_offset));
270 	pptable_count = le32_to_cpu(v2_1->pptable_count);
271 	for (i = 0; i < pptable_count; i++) {
272 		if (le32_to_cpu(entries[i].id) == pptable_id) {
273 			*table = ((uint8_t *)v2_1 + le32_to_cpu(entries[i].ppt_offset_bytes));
274 			*size = le32_to_cpu(entries[i].ppt_size_bytes);
275 			break;
276 		}
277 	}
278 
279 	if (i == pptable_count)
280 		return -EINVAL;
281 
282 	return 0;
283 }
284 
285 static int smu_v13_0_get_pptable_from_vbios(struct smu_context *smu, void **table, uint32_t *size)
286 {
287 	struct amdgpu_device *adev = smu->adev;
288 	uint16_t atom_table_size;
289 	uint8_t frev, crev;
290 	int ret, index;
291 
292 	dev_info(adev->dev, "use vbios provided pptable\n");
293 	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
294 					    powerplayinfo);
295 
296 	ret = amdgpu_atombios_get_data_table(adev, index, &atom_table_size, &frev, &crev,
297 					     (uint8_t **)table);
298 	if (ret)
299 		return ret;
300 
301 	if (size)
302 		*size = atom_table_size;
303 
304 	return 0;
305 }
306 
307 static int smu_v13_0_get_pptable_from_firmware(struct smu_context *smu, void **table, uint32_t *size,
308 					       uint32_t pptable_id)
309 {
310 	const struct smc_firmware_header_v1_0 *hdr;
311 	struct amdgpu_device *adev = smu->adev;
312 	uint16_t version_major, version_minor;
313 	int ret;
314 
315 	hdr = (const struct smc_firmware_header_v1_0 *) adev->pm.fw->data;
316 	if (!hdr)
317 		return -EINVAL;
318 
319 	dev_info(adev->dev, "use driver provided pptable %d\n", pptable_id);
320 
321 	version_major = le16_to_cpu(hdr->header.header_version_major);
322 	version_minor = le16_to_cpu(hdr->header.header_version_minor);
323 	if (version_major != 2) {
324 		dev_err(adev->dev, "Unsupported smu firmware version %d.%d\n",
325 			version_major, version_minor);
326 		return -EINVAL;
327 	}
328 
329 	switch (version_minor) {
330 	case 1:
331 		ret = smu_v13_0_set_pptable_v2_1(smu, table, size, pptable_id);
332 		break;
333 	default:
334 		ret = -EINVAL;
335 		break;
336 	}
337 
338 	return ret;
339 }
340 
341 int smu_v13_0_setup_pptable(struct smu_context *smu)
342 {
343 	struct amdgpu_device *adev = smu->adev;
344 	uint32_t size = 0, pptable_id = 0;
345 	void *table;
346 	int ret = 0;
347 
348 	/* override pptable_id from driver parameter */
349 	if (amdgpu_smu_pptable_id >= 0) {
350 		pptable_id = amdgpu_smu_pptable_id;
351 		dev_info(adev->dev, "override pptable id %d\n", pptable_id);
352 	} else {
353 		pptable_id = smu->smu_table.boot_values.pp_table_id;
354 	}
355 
356 	/* force using vbios pptable in sriov mode */
357 	if (amdgpu_sriov_vf(adev) || !pptable_id)
358 		ret = smu_v13_0_get_pptable_from_vbios(smu, &table, &size);
359 	else
360 		ret = smu_v13_0_get_pptable_from_firmware(smu, &table, &size, pptable_id);
361 
362 	if (ret)
363 		return ret;
364 
365 	if (!smu->smu_table.power_play_table)
366 		smu->smu_table.power_play_table = table;
367 	if (!smu->smu_table.power_play_table_size)
368 		smu->smu_table.power_play_table_size = size;
369 
370 	return 0;
371 }
372 
373 int smu_v13_0_init_smc_tables(struct smu_context *smu)
374 {
375 	struct smu_table_context *smu_table = &smu->smu_table;
376 	struct smu_table *tables = smu_table->tables;
377 	int ret = 0;
378 
379 	smu_table->driver_pptable =
380 		kzalloc(tables[SMU_TABLE_PPTABLE].size, GFP_KERNEL);
381 	if (!smu_table->driver_pptable) {
382 		ret = -ENOMEM;
383 		goto err0_out;
384 	}
385 
386 	smu_table->max_sustainable_clocks =
387 		kzalloc(sizeof(struct smu_13_0_max_sustainable_clocks), GFP_KERNEL);
388 	if (!smu_table->max_sustainable_clocks) {
389 		ret = -ENOMEM;
390 		goto err1_out;
391 	}
392 
393 	/* Aldebaran does not support OVERDRIVE */
394 	if (tables[SMU_TABLE_OVERDRIVE].size) {
395 		smu_table->overdrive_table =
396 			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
397 		if (!smu_table->overdrive_table) {
398 			ret = -ENOMEM;
399 			goto err2_out;
400 		}
401 
402 		smu_table->boot_overdrive_table =
403 			kzalloc(tables[SMU_TABLE_OVERDRIVE].size, GFP_KERNEL);
404 		if (!smu_table->boot_overdrive_table) {
405 			ret = -ENOMEM;
406 			goto err3_out;
407 		}
408 	}
409 
410 	return 0;
411 
412 err3_out:
413 	kfree(smu_table->overdrive_table);
414 err2_out:
415 	kfree(smu_table->max_sustainable_clocks);
416 err1_out:
417 	kfree(smu_table->driver_pptable);
418 err0_out:
419 	return ret;
420 }
421 
422 int smu_v13_0_fini_smc_tables(struct smu_context *smu)
423 {
424 	struct smu_table_context *smu_table = &smu->smu_table;
425 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
426 
427 	kfree(smu_table->gpu_metrics_table);
428 	kfree(smu_table->boot_overdrive_table);
429 	kfree(smu_table->overdrive_table);
430 	kfree(smu_table->max_sustainable_clocks);
431 	kfree(smu_table->driver_pptable);
432 	smu_table->gpu_metrics_table = NULL;
433 	smu_table->boot_overdrive_table = NULL;
434 	smu_table->overdrive_table = NULL;
435 	smu_table->max_sustainable_clocks = NULL;
436 	smu_table->driver_pptable = NULL;
437 	kfree(smu_table->hardcode_pptable);
438 	smu_table->hardcode_pptable = NULL;
439 
440 	kfree(smu_table->ecc_table);
441 	kfree(smu_table->metrics_table);
442 	kfree(smu_table->watermarks_table);
443 	smu_table->ecc_table = NULL;
444 	smu_table->metrics_table = NULL;
445 	smu_table->watermarks_table = NULL;
446 	smu_table->metrics_time = 0;
447 
448 	kfree(smu_dpm->dpm_context);
449 	kfree(smu_dpm->golden_dpm_context);
450 	kfree(smu_dpm->dpm_current_power_state);
451 	kfree(smu_dpm->dpm_request_power_state);
452 	smu_dpm->dpm_context = NULL;
453 	smu_dpm->golden_dpm_context = NULL;
454 	smu_dpm->dpm_context_size = 0;
455 	smu_dpm->dpm_current_power_state = NULL;
456 	smu_dpm->dpm_request_power_state = NULL;
457 
458 	return 0;
459 }
460 
461 int smu_v13_0_init_power(struct smu_context *smu)
462 {
463 	struct smu_power_context *smu_power = &smu->smu_power;
464 
465 	if (smu_power->power_context || smu_power->power_context_size != 0)
466 		return -EINVAL;
467 
468 	smu_power->power_context = kzalloc(sizeof(struct smu_13_0_dpm_context),
469 					   GFP_KERNEL);
470 	if (!smu_power->power_context)
471 		return -ENOMEM;
472 	smu_power->power_context_size = sizeof(struct smu_13_0_dpm_context);
473 
474 	return 0;
475 }
476 
477 int smu_v13_0_fini_power(struct smu_context *smu)
478 {
479 	struct smu_power_context *smu_power = &smu->smu_power;
480 
481 	if (!smu_power->power_context || smu_power->power_context_size == 0)
482 		return -EINVAL;
483 
484 	kfree(smu_power->power_context);
485 	smu_power->power_context = NULL;
486 	smu_power->power_context_size = 0;
487 
488 	return 0;
489 }
490 
491 static int smu_v13_0_atom_get_smu_clockinfo(struct amdgpu_device *adev,
492 					    uint8_t clk_id,
493 					    uint8_t syspll_id,
494 					    uint32_t *clk_freq)
495 {
496 	struct atom_get_smu_clock_info_parameters_v3_1 input = {0};
497 	struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
498 	int ret, index;
499 
500 	input.clk_id = clk_id;
501 	input.syspll_id = syspll_id;
502 	input.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
503 	index = get_index_into_master_table(atom_master_list_of_command_functions_v2_1,
504 					    getsmuclockinfo);
505 
506 	ret = amdgpu_atom_execute_table(adev->mode_info.atom_context, index,
507 					(uint32_t *)&input);
508 	if (ret)
509 		return -EINVAL;
510 
511 	output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&input;
512 	*clk_freq = le32_to_cpu(output->atom_smu_outputclkfreq.smu_clock_freq_hz) / 10000;
513 
514 	return 0;
515 }
516 
517 int smu_v13_0_get_vbios_bootup_values(struct smu_context *smu)
518 {
519 	int ret, index;
520 	uint16_t size;
521 	uint8_t frev, crev;
522 	struct atom_common_table_header *header;
523 	struct atom_firmware_info_v3_4 *v_3_4;
524 	struct atom_firmware_info_v3_3 *v_3_3;
525 	struct atom_firmware_info_v3_1 *v_3_1;
526 
527 	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
528 					    firmwareinfo);
529 
530 	ret = amdgpu_atombios_get_data_table(smu->adev, index, &size, &frev, &crev,
531 					     (uint8_t **)&header);
532 	if (ret)
533 		return ret;
534 
535 	if (header->format_revision != 3) {
536 		dev_err(smu->adev->dev, "unknown atom_firmware_info version! for smu13\n");
537 		return -EINVAL;
538 	}
539 
540 	switch (header->content_revision) {
541 	case 0:
542 	case 1:
543 	case 2:
544 		v_3_1 = (struct atom_firmware_info_v3_1 *)header;
545 		smu->smu_table.boot_values.revision = v_3_1->firmware_revision;
546 		smu->smu_table.boot_values.gfxclk = v_3_1->bootup_sclk_in10khz;
547 		smu->smu_table.boot_values.uclk = v_3_1->bootup_mclk_in10khz;
548 		smu->smu_table.boot_values.socclk = 0;
549 		smu->smu_table.boot_values.dcefclk = 0;
550 		smu->smu_table.boot_values.vddc = v_3_1->bootup_vddc_mv;
551 		smu->smu_table.boot_values.vddci = v_3_1->bootup_vddci_mv;
552 		smu->smu_table.boot_values.mvddc = v_3_1->bootup_mvddc_mv;
553 		smu->smu_table.boot_values.vdd_gfx = v_3_1->bootup_vddgfx_mv;
554 		smu->smu_table.boot_values.cooling_id = v_3_1->coolingsolution_id;
555 		smu->smu_table.boot_values.pp_table_id = 0;
556 		break;
557 	case 3:
558 		v_3_3 = (struct atom_firmware_info_v3_3 *)header;
559 		smu->smu_table.boot_values.revision = v_3_3->firmware_revision;
560 		smu->smu_table.boot_values.gfxclk = v_3_3->bootup_sclk_in10khz;
561 		smu->smu_table.boot_values.uclk = v_3_3->bootup_mclk_in10khz;
562 		smu->smu_table.boot_values.socclk = 0;
563 		smu->smu_table.boot_values.dcefclk = 0;
564 		smu->smu_table.boot_values.vddc = v_3_3->bootup_vddc_mv;
565 		smu->smu_table.boot_values.vddci = v_3_3->bootup_vddci_mv;
566 		smu->smu_table.boot_values.mvddc = v_3_3->bootup_mvddc_mv;
567 		smu->smu_table.boot_values.vdd_gfx = v_3_3->bootup_vddgfx_mv;
568 		smu->smu_table.boot_values.cooling_id = v_3_3->coolingsolution_id;
569 		smu->smu_table.boot_values.pp_table_id = v_3_3->pplib_pptable_id;
570 		break;
571 	case 4:
572 	default:
573 		v_3_4 = (struct atom_firmware_info_v3_4 *)header;
574 		smu->smu_table.boot_values.revision = v_3_4->firmware_revision;
575 		smu->smu_table.boot_values.gfxclk = v_3_4->bootup_sclk_in10khz;
576 		smu->smu_table.boot_values.uclk = v_3_4->bootup_mclk_in10khz;
577 		smu->smu_table.boot_values.socclk = 0;
578 		smu->smu_table.boot_values.dcefclk = 0;
579 		smu->smu_table.boot_values.vddc = v_3_4->bootup_vddc_mv;
580 		smu->smu_table.boot_values.vddci = v_3_4->bootup_vddci_mv;
581 		smu->smu_table.boot_values.mvddc = v_3_4->bootup_mvddc_mv;
582 		smu->smu_table.boot_values.vdd_gfx = v_3_4->bootup_vddgfx_mv;
583 		smu->smu_table.boot_values.cooling_id = v_3_4->coolingsolution_id;
584 		smu->smu_table.boot_values.pp_table_id = v_3_4->pplib_pptable_id;
585 		break;
586 	}
587 
588 	smu->smu_table.boot_values.format_revision = header->format_revision;
589 	smu->smu_table.boot_values.content_revision = header->content_revision;
590 
591 	smu_v13_0_atom_get_smu_clockinfo(smu->adev,
592 					 (uint8_t)SMU11_SYSPLL0_SOCCLK_ID,
593 					 (uint8_t)0,
594 					 &smu->smu_table.boot_values.socclk);
595 
596 	smu_v13_0_atom_get_smu_clockinfo(smu->adev,
597 					 (uint8_t)SMU11_SYSPLL0_DCEFCLK_ID,
598 					 (uint8_t)0,
599 					 &smu->smu_table.boot_values.dcefclk);
600 
601 	smu_v13_0_atom_get_smu_clockinfo(smu->adev,
602 					 (uint8_t)SMU11_SYSPLL0_ECLK_ID,
603 					 (uint8_t)0,
604 					 &smu->smu_table.boot_values.eclk);
605 
606 	smu_v13_0_atom_get_smu_clockinfo(smu->adev,
607 					 (uint8_t)SMU11_SYSPLL0_VCLK_ID,
608 					 (uint8_t)0,
609 					 &smu->smu_table.boot_values.vclk);
610 
611 	smu_v13_0_atom_get_smu_clockinfo(smu->adev,
612 					 (uint8_t)SMU11_SYSPLL0_DCLK_ID,
613 					 (uint8_t)0,
614 					 &smu->smu_table.boot_values.dclk);
615 
616 	if ((smu->smu_table.boot_values.format_revision == 3) &&
617 	    (smu->smu_table.boot_values.content_revision >= 2))
618 		smu_v13_0_atom_get_smu_clockinfo(smu->adev,
619 						 (uint8_t)SMU11_SYSPLL1_0_FCLK_ID,
620 						 (uint8_t)SMU11_SYSPLL1_2_ID,
621 						 &smu->smu_table.boot_values.fclk);
622 
623 	return 0;
624 }
625 
626 
627 int smu_v13_0_notify_memory_pool_location(struct smu_context *smu)
628 {
629 	struct smu_table_context *smu_table = &smu->smu_table;
630 	struct smu_table *memory_pool = &smu_table->memory_pool;
631 	int ret = 0;
632 	uint64_t address;
633 	uint32_t address_low, address_high;
634 
635 	if (memory_pool->size == 0 || memory_pool->cpu_addr == NULL)
636 		return ret;
637 
638 	address = memory_pool->mc_address;
639 	address_high = (uint32_t)upper_32_bits(address);
640 	address_low  = (uint32_t)lower_32_bits(address);
641 
642 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrHigh,
643 					      address_high, NULL);
644 	if (ret)
645 		return ret;
646 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramAddrLow,
647 					      address_low, NULL);
648 	if (ret)
649 		return ret;
650 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DramLogSetDramSize,
651 					      (uint32_t)memory_pool->size, NULL);
652 	if (ret)
653 		return ret;
654 
655 	return ret;
656 }
657 
658 int smu_v13_0_set_min_deep_sleep_dcefclk(struct smu_context *smu, uint32_t clk)
659 {
660 	int ret;
661 
662 	ret = smu_cmn_send_smc_msg_with_param(smu,
663 					      SMU_MSG_SetMinDeepSleepDcefclk, clk, NULL);
664 	if (ret)
665 		dev_err(smu->adev->dev, "SMU13 attempt to set divider for DCEFCLK Failed!");
666 
667 	return ret;
668 }
669 
670 int smu_v13_0_set_driver_table_location(struct smu_context *smu)
671 {
672 	struct smu_table *driver_table = &smu->smu_table.driver_table;
673 	int ret = 0;
674 
675 	if (driver_table->mc_address) {
676 		ret = smu_cmn_send_smc_msg_with_param(smu,
677 						      SMU_MSG_SetDriverDramAddrHigh,
678 						      upper_32_bits(driver_table->mc_address),
679 						      NULL);
680 		if (!ret)
681 			ret = smu_cmn_send_smc_msg_with_param(smu,
682 							      SMU_MSG_SetDriverDramAddrLow,
683 							      lower_32_bits(driver_table->mc_address),
684 							      NULL);
685 	}
686 
687 	return ret;
688 }
689 
690 int smu_v13_0_set_tool_table_location(struct smu_context *smu)
691 {
692 	int ret = 0;
693 	struct smu_table *tool_table = &smu->smu_table.tables[SMU_TABLE_PMSTATUSLOG];
694 
695 	if (tool_table->mc_address) {
696 		ret = smu_cmn_send_smc_msg_with_param(smu,
697 						      SMU_MSG_SetToolsDramAddrHigh,
698 						      upper_32_bits(tool_table->mc_address),
699 						      NULL);
700 		if (!ret)
701 			ret = smu_cmn_send_smc_msg_with_param(smu,
702 							      SMU_MSG_SetToolsDramAddrLow,
703 							      lower_32_bits(tool_table->mc_address),
704 							      NULL);
705 	}
706 
707 	return ret;
708 }
709 
710 int smu_v13_0_init_display_count(struct smu_context *smu, uint32_t count)
711 {
712 	int ret = 0;
713 
714 	if (!smu->pm_enabled)
715 		return ret;
716 
717 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, count, NULL);
718 
719 	return ret;
720 }
721 
722 
723 int smu_v13_0_set_allowed_mask(struct smu_context *smu)
724 {
725 	struct smu_feature *feature = &smu->smu_feature;
726 	int ret = 0;
727 	uint32_t feature_mask[2];
728 
729 	if (bitmap_empty(feature->allowed, SMU_FEATURE_MAX) ||
730 	    feature->feature_num < 64)
731 		return -EINVAL;
732 
733 	bitmap_copy((unsigned long *)feature_mask, feature->allowed, 64);
734 
735 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetAllowedFeaturesMaskHigh,
736 					      feature_mask[1], NULL);
737 	if (ret)
738 		return ret;
739 
740 	return smu_cmn_send_smc_msg_with_param(smu,
741 					       SMU_MSG_SetAllowedFeaturesMaskLow,
742 					       feature_mask[0],
743 					       NULL);
744 }
745 
746 int smu_v13_0_gfx_off_control(struct smu_context *smu, bool enable)
747 {
748 	int ret = 0;
749 	struct amdgpu_device *adev = smu->adev;
750 
751 	switch (adev->ip_versions[MP1_HWIP][0]) {
752 	case IP_VERSION(13, 0, 1):
753 	case IP_VERSION(13, 0, 3):
754 	case IP_VERSION(13, 0, 5):
755 	case IP_VERSION(13, 0, 8):
756 		if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
757 			return 0;
758 		if (enable)
759 			ret = smu_cmn_send_smc_msg(smu, SMU_MSG_AllowGfxOff, NULL);
760 		else
761 			ret = smu_cmn_send_smc_msg(smu, SMU_MSG_DisallowGfxOff, NULL);
762 		break;
763 	default:
764 		break;
765 	}
766 
767 	return ret;
768 }
769 
770 int smu_v13_0_system_features_control(struct smu_context *smu,
771 				      bool en)
772 {
773 	return smu_cmn_send_smc_msg(smu, (en ? SMU_MSG_EnableAllSmuFeatures :
774 					  SMU_MSG_DisableAllSmuFeatures), NULL);
775 }
776 
777 int smu_v13_0_notify_display_change(struct smu_context *smu)
778 {
779 	int ret = 0;
780 
781 	if (!smu->pm_enabled)
782 		return ret;
783 
784 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
785 	    smu->adev->gmc.vram_type == AMDGPU_VRAM_TYPE_HBM)
786 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetUclkFastSwitch, 1, NULL);
787 
788 	return ret;
789 }
790 
791 	static int
792 smu_v13_0_get_max_sustainable_clock(struct smu_context *smu, uint32_t *clock,
793 				    enum smu_clk_type clock_select)
794 {
795 	int ret = 0;
796 	int clk_id;
797 
798 	if ((smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetDcModeMaxDpmFreq) < 0) ||
799 	    (smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG, SMU_MSG_GetMaxDpmFreq) < 0))
800 		return 0;
801 
802 	clk_id = smu_cmn_to_asic_specific_index(smu,
803 						CMN2ASIC_MAPPING_CLK,
804 						clock_select);
805 	if (clk_id < 0)
806 		return -EINVAL;
807 
808 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetDcModeMaxDpmFreq,
809 					      clk_id << 16, clock);
810 	if (ret) {
811 		dev_err(smu->adev->dev, "[GetMaxSustainableClock] Failed to get max DC clock from SMC!");
812 		return ret;
813 	}
814 
815 	if (*clock != 0)
816 		return 0;
817 
818 	/* if DC limit is zero, return AC limit */
819 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq,
820 					      clk_id << 16, clock);
821 	if (ret) {
822 		dev_err(smu->adev->dev, "[GetMaxSustainableClock] failed to get max AC clock from SMC!");
823 		return ret;
824 	}
825 
826 	return 0;
827 }
828 
829 int smu_v13_0_init_max_sustainable_clocks(struct smu_context *smu)
830 {
831 	struct smu_13_0_max_sustainable_clocks *max_sustainable_clocks =
832 		smu->smu_table.max_sustainable_clocks;
833 	int ret = 0;
834 
835 	max_sustainable_clocks->uclock = smu->smu_table.boot_values.uclk / 100;
836 	max_sustainable_clocks->soc_clock = smu->smu_table.boot_values.socclk / 100;
837 	max_sustainable_clocks->dcef_clock = smu->smu_table.boot_values.dcefclk / 100;
838 	max_sustainable_clocks->display_clock = 0xFFFFFFFF;
839 	max_sustainable_clocks->phy_clock = 0xFFFFFFFF;
840 	max_sustainable_clocks->pixel_clock = 0xFFFFFFFF;
841 
842 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
843 		ret = smu_v13_0_get_max_sustainable_clock(smu,
844 							  &(max_sustainable_clocks->uclock),
845 							  SMU_UCLK);
846 		if (ret) {
847 			dev_err(smu->adev->dev, "[%s] failed to get max UCLK from SMC!",
848 				__func__);
849 			return ret;
850 		}
851 	}
852 
853 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
854 		ret = smu_v13_0_get_max_sustainable_clock(smu,
855 							  &(max_sustainable_clocks->soc_clock),
856 							  SMU_SOCCLK);
857 		if (ret) {
858 			dev_err(smu->adev->dev, "[%s] failed to get max SOCCLK from SMC!",
859 				__func__);
860 			return ret;
861 		}
862 	}
863 
864 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
865 		ret = smu_v13_0_get_max_sustainable_clock(smu,
866 							  &(max_sustainable_clocks->dcef_clock),
867 							  SMU_DCEFCLK);
868 		if (ret) {
869 			dev_err(smu->adev->dev, "[%s] failed to get max DCEFCLK from SMC!",
870 				__func__);
871 			return ret;
872 		}
873 
874 		ret = smu_v13_0_get_max_sustainable_clock(smu,
875 							  &(max_sustainable_clocks->display_clock),
876 							  SMU_DISPCLK);
877 		if (ret) {
878 			dev_err(smu->adev->dev, "[%s] failed to get max DISPCLK from SMC!",
879 				__func__);
880 			return ret;
881 		}
882 		ret = smu_v13_0_get_max_sustainable_clock(smu,
883 							  &(max_sustainable_clocks->phy_clock),
884 							  SMU_PHYCLK);
885 		if (ret) {
886 			dev_err(smu->adev->dev, "[%s] failed to get max PHYCLK from SMC!",
887 				__func__);
888 			return ret;
889 		}
890 		ret = smu_v13_0_get_max_sustainable_clock(smu,
891 							  &(max_sustainable_clocks->pixel_clock),
892 							  SMU_PIXCLK);
893 		if (ret) {
894 			dev_err(smu->adev->dev, "[%s] failed to get max PIXCLK from SMC!",
895 				__func__);
896 			return ret;
897 		}
898 	}
899 
900 	if (max_sustainable_clocks->soc_clock < max_sustainable_clocks->uclock)
901 		max_sustainable_clocks->uclock = max_sustainable_clocks->soc_clock;
902 
903 	return 0;
904 }
905 
906 int smu_v13_0_get_current_power_limit(struct smu_context *smu,
907 				      uint32_t *power_limit)
908 {
909 	int power_src;
910 	int ret = 0;
911 
912 	if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
913 		return -EINVAL;
914 
915 	power_src = smu_cmn_to_asic_specific_index(smu,
916 						   CMN2ASIC_MAPPING_PWR,
917 						   smu->adev->pm.ac_power ?
918 						   SMU_POWER_SOURCE_AC :
919 						   SMU_POWER_SOURCE_DC);
920 	if (power_src < 0)
921 		return -EINVAL;
922 
923 	ret = smu_cmn_send_smc_msg_with_param(smu,
924 					      SMU_MSG_GetPptLimit,
925 					      power_src << 16,
926 					      power_limit);
927 	if (ret)
928 		dev_err(smu->adev->dev, "[%s] get PPT limit failed!", __func__);
929 
930 	return ret;
931 }
932 
933 int smu_v13_0_set_power_limit(struct smu_context *smu,
934 			      enum smu_ppt_limit_type limit_type,
935 			      uint32_t limit)
936 {
937 	int ret = 0;
938 
939 	if (limit_type != SMU_DEFAULT_PPT_LIMIT)
940 		return -EINVAL;
941 
942 	if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT)) {
943 		dev_err(smu->adev->dev, "Setting new power limit is not supported!\n");
944 		return -EOPNOTSUPP;
945 	}
946 
947 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetPptLimit, limit, NULL);
948 	if (ret) {
949 		dev_err(smu->adev->dev, "[%s] Set power limit Failed!\n", __func__);
950 		return ret;
951 	}
952 
953 	smu->current_power_limit = limit;
954 
955 	return 0;
956 }
957 
958 int smu_v13_0_enable_thermal_alert(struct smu_context *smu)
959 {
960 	if (smu->smu_table.thermal_controller_type)
961 		return amdgpu_irq_get(smu->adev, &smu->irq_source, 0);
962 
963 	return 0;
964 }
965 
966 int smu_v13_0_disable_thermal_alert(struct smu_context *smu)
967 {
968 	return amdgpu_irq_put(smu->adev, &smu->irq_source, 0);
969 }
970 
971 static uint16_t convert_to_vddc(uint8_t vid)
972 {
973 	return (uint16_t) ((6200 - (vid * 25)) / SMU13_VOLTAGE_SCALE);
974 }
975 
976 int smu_v13_0_get_gfx_vdd(struct smu_context *smu, uint32_t *value)
977 {
978 	struct amdgpu_device *adev = smu->adev;
979 	uint32_t vdd = 0, val_vid = 0;
980 
981 	if (!value)
982 		return -EINVAL;
983 	val_vid = (RREG32_SOC15(SMUIO, 0, regSMUSVI0_TEL_PLANE0) &
984 		   SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR_MASK) >>
985 		SMUSVI0_TEL_PLANE0__SVI0_PLANE0_VDDCOR__SHIFT;
986 
987 	vdd = (uint32_t)convert_to_vddc((uint8_t)val_vid);
988 
989 	*value = vdd;
990 
991 	return 0;
992 
993 }
994 
995 int
996 smu_v13_0_display_clock_voltage_request(struct smu_context *smu,
997 					struct pp_display_clock_request
998 					*clock_req)
999 {
1000 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
1001 	int ret = 0;
1002 	enum smu_clk_type clk_select = 0;
1003 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
1004 
1005 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) ||
1006 	    smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
1007 		switch (clk_type) {
1008 		case amd_pp_dcef_clock:
1009 			clk_select = SMU_DCEFCLK;
1010 			break;
1011 		case amd_pp_disp_clock:
1012 			clk_select = SMU_DISPCLK;
1013 			break;
1014 		case amd_pp_pixel_clock:
1015 			clk_select = SMU_PIXCLK;
1016 			break;
1017 		case amd_pp_phy_clock:
1018 			clk_select = SMU_PHYCLK;
1019 			break;
1020 		case amd_pp_mem_clock:
1021 			clk_select = SMU_UCLK;
1022 			break;
1023 		default:
1024 			dev_info(smu->adev->dev, "[%s] Invalid Clock Type!", __func__);
1025 			ret = -EINVAL;
1026 			break;
1027 		}
1028 
1029 		if (ret)
1030 			goto failed;
1031 
1032 		if (clk_select == SMU_UCLK && smu->disable_uclk_switch)
1033 			return 0;
1034 
1035 		ret = smu_v13_0_set_hard_freq_limited_range(smu, clk_select, clk_freq, 0);
1036 
1037 		if(clk_select == SMU_UCLK)
1038 			smu->hard_min_uclk_req_from_dal = clk_freq;
1039 	}
1040 
1041 failed:
1042 	return ret;
1043 }
1044 
1045 uint32_t smu_v13_0_get_fan_control_mode(struct smu_context *smu)
1046 {
1047 	if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1048 		return AMD_FAN_CTRL_MANUAL;
1049 	else
1050 		return AMD_FAN_CTRL_AUTO;
1051 }
1052 
1053 	static int
1054 smu_v13_0_auto_fan_control(struct smu_context *smu, bool auto_fan_control)
1055 {
1056 	int ret = 0;
1057 
1058 	if (!smu_cmn_feature_is_supported(smu, SMU_FEATURE_FAN_CONTROL_BIT))
1059 		return 0;
1060 
1061 	ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_FAN_CONTROL_BIT, auto_fan_control);
1062 	if (ret)
1063 		dev_err(smu->adev->dev, "[%s]%s smc FAN CONTROL feature failed!",
1064 			__func__, (auto_fan_control ? "Start" : "Stop"));
1065 
1066 	return ret;
1067 }
1068 
1069 	static int
1070 smu_v13_0_set_fan_static_mode(struct smu_context *smu, uint32_t mode)
1071 {
1072 	struct amdgpu_device *adev = smu->adev;
1073 
1074 	WREG32_SOC15(THM, 0, regCG_FDO_CTRL2,
1075 		     REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2),
1076 				   CG_FDO_CTRL2, TMIN, 0));
1077 	WREG32_SOC15(THM, 0, regCG_FDO_CTRL2,
1078 		     REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL2),
1079 				   CG_FDO_CTRL2, FDO_PWM_MODE, mode));
1080 
1081 	return 0;
1082 }
1083 
1084 	int
1085 smu_v13_0_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
1086 {
1087 	struct amdgpu_device *adev = smu->adev;
1088 	uint32_t duty100, duty;
1089 	uint64_t tmp64;
1090 
1091 	if (speed > 100)
1092 		speed = 100;
1093 
1094 	if (smu_v13_0_auto_fan_control(smu, 0))
1095 		return -EINVAL;
1096 
1097 	duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL1),
1098 				CG_FDO_CTRL1, FMAX_DUTY100);
1099 	if (!duty100)
1100 		return -EINVAL;
1101 
1102 	tmp64 = (uint64_t)speed * duty100;
1103 	do_div(tmp64, 100);
1104 	duty = (uint32_t)tmp64;
1105 
1106 	WREG32_SOC15(THM, 0, regCG_FDO_CTRL0,
1107 		     REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_FDO_CTRL0),
1108 				   CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));
1109 
1110 	return smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
1111 }
1112 
1113 	int
1114 smu_v13_0_set_fan_control_mode(struct smu_context *smu,
1115 			       uint32_t mode)
1116 {
1117 	int ret = 0;
1118 
1119 	switch (mode) {
1120 	case AMD_FAN_CTRL_NONE:
1121 		ret = smu_v13_0_set_fan_speed_percent(smu, 100);
1122 		break;
1123 	case AMD_FAN_CTRL_MANUAL:
1124 		ret = smu_v13_0_auto_fan_control(smu, 0);
1125 		break;
1126 	case AMD_FAN_CTRL_AUTO:
1127 		ret = smu_v13_0_auto_fan_control(smu, 1);
1128 		break;
1129 	default:
1130 		break;
1131 	}
1132 
1133 	if (ret) {
1134 		dev_err(smu->adev->dev, "[%s]Set fan control mode failed!", __func__);
1135 		return -EINVAL;
1136 	}
1137 
1138 	return ret;
1139 }
1140 
1141 int smu_v13_0_set_fan_speed_rpm(struct smu_context *smu,
1142 				uint32_t speed)
1143 {
1144 	struct amdgpu_device *adev = smu->adev;
1145 	int ret;
1146 	uint32_t tach_period, crystal_clock_freq;
1147 
1148 	if (!speed)
1149 		return -EINVAL;
1150 
1151 	ret = smu_v13_0_auto_fan_control(smu, 0);
1152 	if (ret)
1153 		return ret;
1154 
1155 	crystal_clock_freq = amdgpu_asic_get_xclk(adev);
1156 	tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
1157 	WREG32_SOC15(THM, 0, regCG_TACH_CTRL,
1158 		     REG_SET_FIELD(RREG32_SOC15(THM, 0, regCG_TACH_CTRL),
1159 				   CG_TACH_CTRL, TARGET_PERIOD,
1160 				   tach_period));
1161 
1162 	ret = smu_v13_0_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);
1163 
1164 	return ret;
1165 }
1166 
1167 int smu_v13_0_set_xgmi_pstate(struct smu_context *smu,
1168 			      uint32_t pstate)
1169 {
1170 	int ret = 0;
1171 	ret = smu_cmn_send_smc_msg_with_param(smu,
1172 					      SMU_MSG_SetXgmiMode,
1173 					      pstate ? XGMI_MODE_PSTATE_D0 : XGMI_MODE_PSTATE_D3,
1174 					      NULL);
1175 	return ret;
1176 }
1177 
1178 static int smu_v13_0_set_irq_state(struct amdgpu_device *adev,
1179 				   struct amdgpu_irq_src *source,
1180 				   unsigned tyep,
1181 				   enum amdgpu_interrupt_state state)
1182 {
1183 	struct smu_context *smu = adev->powerplay.pp_handle;
1184 	uint32_t low, high;
1185 	uint32_t val = 0;
1186 
1187 	switch (state) {
1188 	case AMDGPU_IRQ_STATE_DISABLE:
1189 		/* For THM irqs */
1190 		val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL);
1191 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 1);
1192 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 1);
1193 		WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val);
1194 
1195 		WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, 0);
1196 
1197 		/* For MP1 SW irqs */
1198 		val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL);
1199 		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 1);
1200 		WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val);
1201 
1202 		break;
1203 	case AMDGPU_IRQ_STATE_ENABLE:
1204 		/* For THM irqs */
1205 		low = max(SMU_THERMAL_MINIMUM_ALERT_TEMP,
1206 			  smu->thermal_range.min / SMU_TEMPERATURE_UNITS_PER_CENTIGRADES);
1207 		high = min(SMU_THERMAL_MAXIMUM_ALERT_TEMP,
1208 			   smu->thermal_range.software_shutdown_temp);
1209 
1210 		val = RREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL);
1211 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, MAX_IH_CREDIT, 5);
1212 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_IH_HW_ENA, 1);
1213 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTH_MASK, 0);
1214 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, THERM_INTL_MASK, 0);
1215 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTH, (high & 0xff));
1216 		val = REG_SET_FIELD(val, THM_THERMAL_INT_CTRL, DIG_THERM_INTL, (low & 0xff));
1217 		val = val & (~THM_THERMAL_INT_CTRL__THERM_TRIGGER_MASK_MASK);
1218 		WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_CTRL, val);
1219 
1220 		val = (1 << THM_THERMAL_INT_ENA__THERM_INTH_CLR__SHIFT);
1221 		val |= (1 << THM_THERMAL_INT_ENA__THERM_INTL_CLR__SHIFT);
1222 		val |= (1 << THM_THERMAL_INT_ENA__THERM_TRIGGER_CLR__SHIFT);
1223 		WREG32_SOC15(THM, 0, regTHM_THERMAL_INT_ENA, val);
1224 
1225 		/* For MP1 SW irqs */
1226 		val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT);
1227 		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, ID, 0xFE);
1228 		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT, VALID, 0);
1229 		WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT, val);
1230 
1231 		val = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL);
1232 		val = REG_SET_FIELD(val, MP1_SMN_IH_SW_INT_CTRL, INT_MASK, 0);
1233 		WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, val);
1234 
1235 		break;
1236 	default:
1237 		break;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int smu_v13_0_ack_ac_dc_interrupt(struct smu_context *smu)
1244 {
1245 	return smu_cmn_send_smc_msg(smu,
1246 				    SMU_MSG_ReenableAcDcInterrupt,
1247 				    NULL);
1248 }
1249 
1250 #define THM_11_0__SRCID__THM_DIG_THERM_L2H		0		/* ASIC_TEMP > CG_THERMAL_INT.DIG_THERM_INTH  */
1251 #define THM_11_0__SRCID__THM_DIG_THERM_H2L		1		/* ASIC_TEMP < CG_THERMAL_INT.DIG_THERM_INTL  */
1252 #define SMUIO_11_0__SRCID__SMUIO_GPIO19			83
1253 
1254 static int smu_v13_0_irq_process(struct amdgpu_device *adev,
1255 				 struct amdgpu_irq_src *source,
1256 				 struct amdgpu_iv_entry *entry)
1257 {
1258 	struct smu_context *smu = adev->powerplay.pp_handle;
1259 	uint32_t client_id = entry->client_id;
1260 	uint32_t src_id = entry->src_id;
1261 	/*
1262 	 * ctxid is used to distinguish different
1263 	 * events for SMCToHost interrupt.
1264 	 */
1265 	uint32_t ctxid = entry->src_data[0];
1266 	uint32_t data;
1267 
1268 	if (client_id == SOC15_IH_CLIENTID_THM) {
1269 		switch (src_id) {
1270 		case THM_11_0__SRCID__THM_DIG_THERM_L2H:
1271 			dev_emerg(adev->dev, "ERROR: GPU over temperature range(SW CTF) detected!\n");
1272 			/*
1273 			 * SW CTF just occurred.
1274 			 * Try to do a graceful shutdown to prevent further damage.
1275 			 */
1276 			dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU SW CTF!\n");
1277 			orderly_poweroff(true);
1278 			break;
1279 		case THM_11_0__SRCID__THM_DIG_THERM_H2L:
1280 			dev_emerg(adev->dev, "ERROR: GPU under temperature range detected\n");
1281 			break;
1282 		default:
1283 			dev_emerg(adev->dev, "ERROR: GPU under temperature range unknown src id (%d)\n",
1284 				  src_id);
1285 			break;
1286 		}
1287 	} else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO) {
1288 		dev_emerg(adev->dev, "ERROR: GPU HW Critical Temperature Fault(aka CTF) detected!\n");
1289 		/*
1290 		 * HW CTF just occurred. Shutdown to prevent further damage.
1291 		 */
1292 		dev_emerg(adev->dev, "ERROR: System is going to shutdown due to GPU HW CTF!\n");
1293 		orderly_poweroff(true);
1294 	} else if (client_id == SOC15_IH_CLIENTID_MP1) {
1295 		if (src_id == 0xfe) {
1296 			/* ACK SMUToHost interrupt */
1297 			data = RREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL);
1298 			data = REG_SET_FIELD(data, MP1_SMN_IH_SW_INT_CTRL, INT_ACK, 1);
1299 			WREG32_SOC15(MP1, 0, regMP1_SMN_IH_SW_INT_CTRL, data);
1300 
1301 			switch (ctxid) {
1302 			case 0x3:
1303 				dev_dbg(adev->dev, "Switched to AC mode!\n");
1304 				smu_v13_0_ack_ac_dc_interrupt(smu);
1305 				break;
1306 			case 0x4:
1307 				dev_dbg(adev->dev, "Switched to DC mode!\n");
1308 				smu_v13_0_ack_ac_dc_interrupt(smu);
1309 				break;
1310 			case 0x7:
1311 				/*
1312 				 * Increment the throttle interrupt counter
1313 				 */
1314 				atomic64_inc(&smu->throttle_int_counter);
1315 
1316 				if (!atomic_read(&adev->throttling_logging_enabled))
1317 					return 0;
1318 
1319 				if (__ratelimit(&adev->throttling_logging_rs))
1320 					schedule_work(&smu->throttling_logging_work);
1321 
1322 				break;
1323 			}
1324 		}
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 static const struct amdgpu_irq_src_funcs smu_v13_0_irq_funcs =
1331 {
1332 	.set = smu_v13_0_set_irq_state,
1333 	.process = smu_v13_0_irq_process,
1334 };
1335 
1336 int smu_v13_0_register_irq_handler(struct smu_context *smu)
1337 {
1338 	struct amdgpu_device *adev = smu->adev;
1339 	struct amdgpu_irq_src *irq_src = &smu->irq_source;
1340 	int ret = 0;
1341 
1342 	irq_src->num_types = 1;
1343 	irq_src->funcs = &smu_v13_0_irq_funcs;
1344 
1345 	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
1346 				THM_11_0__SRCID__THM_DIG_THERM_L2H,
1347 				irq_src);
1348 	if (ret)
1349 		return ret;
1350 
1351 	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_THM,
1352 				THM_11_0__SRCID__THM_DIG_THERM_H2L,
1353 				irq_src);
1354 	if (ret)
1355 		return ret;
1356 
1357 	/* Register CTF(GPIO_19) interrupt */
1358 	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_ROM_SMUIO,
1359 				SMUIO_11_0__SRCID__SMUIO_GPIO19,
1360 				irq_src);
1361 	if (ret)
1362 		return ret;
1363 
1364 	ret = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_MP1,
1365 				0xfe,
1366 				irq_src);
1367 	if (ret)
1368 		return ret;
1369 
1370 	return ret;
1371 }
1372 
1373 int smu_v13_0_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
1374 					       struct pp_smu_nv_clock_table *max_clocks)
1375 {
1376 	struct smu_table_context *table_context = &smu->smu_table;
1377 	struct smu_13_0_max_sustainable_clocks *sustainable_clocks = NULL;
1378 
1379 	if (!max_clocks || !table_context->max_sustainable_clocks)
1380 		return -EINVAL;
1381 
1382 	sustainable_clocks = table_context->max_sustainable_clocks;
1383 
1384 	max_clocks->dcfClockInKhz =
1385 		(unsigned int) sustainable_clocks->dcef_clock * 1000;
1386 	max_clocks->displayClockInKhz =
1387 		(unsigned int) sustainable_clocks->display_clock * 1000;
1388 	max_clocks->phyClockInKhz =
1389 		(unsigned int) sustainable_clocks->phy_clock * 1000;
1390 	max_clocks->pixelClockInKhz =
1391 		(unsigned int) sustainable_clocks->pixel_clock * 1000;
1392 	max_clocks->uClockInKhz =
1393 		(unsigned int) sustainable_clocks->uclock * 1000;
1394 	max_clocks->socClockInKhz =
1395 		(unsigned int) sustainable_clocks->soc_clock * 1000;
1396 	max_clocks->dscClockInKhz = 0;
1397 	max_clocks->dppClockInKhz = 0;
1398 	max_clocks->fabricClockInKhz = 0;
1399 
1400 	return 0;
1401 }
1402 
1403 int smu_v13_0_set_azalia_d3_pme(struct smu_context *smu)
1404 {
1405 	int ret = 0;
1406 
1407 	ret = smu_cmn_send_smc_msg(smu, SMU_MSG_BacoAudioD3PME, NULL);
1408 
1409 	return ret;
1410 }
1411 
1412 static int smu_v13_0_wait_for_reset_complete(struct smu_context *smu,
1413 					     uint64_t event_arg)
1414 {
1415 	int ret = 0;
1416 
1417 	dev_dbg(smu->adev->dev, "waiting for smu reset complete\n");
1418 	ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GfxDriverResetRecovery, NULL);
1419 
1420 	return ret;
1421 }
1422 
1423 int smu_v13_0_wait_for_event(struct smu_context *smu, enum smu_event_type event,
1424 			     uint64_t event_arg)
1425 {
1426 	int ret = -EINVAL;
1427 
1428 	switch (event) {
1429 	case SMU_EVENT_RESET_COMPLETE:
1430 		ret = smu_v13_0_wait_for_reset_complete(smu, event_arg);
1431 		break;
1432 	default:
1433 		break;
1434 	}
1435 
1436 	return ret;
1437 }
1438 
1439 int smu_v13_0_mode2_reset(struct smu_context *smu)
1440 {
1441 	int ret;
1442 
1443 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GfxDeviceDriverReset,
1444 			SMU_RESET_MODE_2, NULL);
1445 	/*TODO: mode2 reset wait time should be shorter, add ASIC specific func if required */
1446 	if (!ret)
1447 		msleep(SMU13_MODE1_RESET_WAIT_TIME_IN_MS);
1448 
1449 	return ret;
1450 }
1451 
1452 int smu_v13_0_get_dpm_ultimate_freq(struct smu_context *smu, enum smu_clk_type clk_type,
1453 				    uint32_t *min, uint32_t *max)
1454 {
1455 	int ret = 0, clk_id = 0;
1456 	uint32_t param = 0;
1457 	uint32_t clock_limit;
1458 
1459 	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type)) {
1460 		switch (clk_type) {
1461 		case SMU_MCLK:
1462 		case SMU_UCLK:
1463 			clock_limit = smu->smu_table.boot_values.uclk;
1464 			break;
1465 		case SMU_GFXCLK:
1466 		case SMU_SCLK:
1467 			clock_limit = smu->smu_table.boot_values.gfxclk;
1468 			break;
1469 		case SMU_SOCCLK:
1470 			clock_limit = smu->smu_table.boot_values.socclk;
1471 			break;
1472 		default:
1473 			clock_limit = 0;
1474 			break;
1475 		}
1476 
1477 		/* clock in Mhz unit */
1478 		if (min)
1479 			*min = clock_limit / 100;
1480 		if (max)
1481 			*max = clock_limit / 100;
1482 
1483 		return 0;
1484 	}
1485 
1486 	clk_id = smu_cmn_to_asic_specific_index(smu,
1487 						CMN2ASIC_MAPPING_CLK,
1488 						clk_type);
1489 	if (clk_id < 0) {
1490 		ret = -EINVAL;
1491 		goto failed;
1492 	}
1493 	param = (clk_id & 0xffff) << 16;
1494 
1495 	if (max) {
1496 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMaxDpmFreq, param, max);
1497 		if (ret)
1498 			goto failed;
1499 	}
1500 
1501 	if (min) {
1502 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_GetMinDpmFreq, param, min);
1503 		if (ret)
1504 			goto failed;
1505 	}
1506 
1507 failed:
1508 	return ret;
1509 }
1510 
1511 int smu_v13_0_set_soft_freq_limited_range(struct smu_context *smu,
1512 					  enum smu_clk_type clk_type,
1513 					  uint32_t min,
1514 					  uint32_t max)
1515 {
1516 	int ret = 0, clk_id = 0;
1517 	uint32_t param;
1518 
1519 	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
1520 		return 0;
1521 
1522 	clk_id = smu_cmn_to_asic_specific_index(smu,
1523 						CMN2ASIC_MAPPING_CLK,
1524 						clk_type);
1525 	if (clk_id < 0)
1526 		return clk_id;
1527 
1528 	if (max > 0) {
1529 		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
1530 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMaxByFreq,
1531 						      param, NULL);
1532 		if (ret)
1533 			goto out;
1534 	}
1535 
1536 	if (min > 0) {
1537 		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
1538 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetSoftMinByFreq,
1539 						      param, NULL);
1540 		if (ret)
1541 			goto out;
1542 	}
1543 
1544 out:
1545 	return ret;
1546 }
1547 
1548 int smu_v13_0_set_hard_freq_limited_range(struct smu_context *smu,
1549 					  enum smu_clk_type clk_type,
1550 					  uint32_t min,
1551 					  uint32_t max)
1552 {
1553 	int ret = 0, clk_id = 0;
1554 	uint32_t param;
1555 
1556 	if (min <= 0 && max <= 0)
1557 		return -EINVAL;
1558 
1559 	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
1560 		return 0;
1561 
1562 	clk_id = smu_cmn_to_asic_specific_index(smu,
1563 						CMN2ASIC_MAPPING_CLK,
1564 						clk_type);
1565 	if (clk_id < 0)
1566 		return clk_id;
1567 
1568 	if (max > 0) {
1569 		param = (uint32_t)((clk_id << 16) | (max & 0xffff));
1570 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
1571 						      param, NULL);
1572 		if (ret)
1573 			return ret;
1574 	}
1575 
1576 	if (min > 0) {
1577 		param = (uint32_t)((clk_id << 16) | (min & 0xffff));
1578 		ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
1579 						      param, NULL);
1580 		if (ret)
1581 			return ret;
1582 	}
1583 
1584 	return ret;
1585 }
1586 
1587 int smu_v13_0_set_performance_level(struct smu_context *smu,
1588 				    enum amd_dpm_forced_level level)
1589 {
1590 	struct smu_13_0_dpm_context *dpm_context =
1591 		smu->smu_dpm.dpm_context;
1592 	struct smu_13_0_dpm_table *gfx_table =
1593 		&dpm_context->dpm_tables.gfx_table;
1594 	struct smu_13_0_dpm_table *mem_table =
1595 		&dpm_context->dpm_tables.uclk_table;
1596 	struct smu_13_0_dpm_table *soc_table =
1597 		&dpm_context->dpm_tables.soc_table;
1598 	struct smu_umd_pstate_table *pstate_table =
1599 		&smu->pstate_table;
1600 	struct amdgpu_device *adev = smu->adev;
1601 	uint32_t sclk_min = 0, sclk_max = 0;
1602 	uint32_t mclk_min = 0, mclk_max = 0;
1603 	uint32_t socclk_min = 0, socclk_max = 0;
1604 	int ret = 0;
1605 
1606 	switch (level) {
1607 	case AMD_DPM_FORCED_LEVEL_HIGH:
1608 		sclk_min = sclk_max = gfx_table->max;
1609 		mclk_min = mclk_max = mem_table->max;
1610 		socclk_min = socclk_max = soc_table->max;
1611 		break;
1612 	case AMD_DPM_FORCED_LEVEL_LOW:
1613 		sclk_min = sclk_max = gfx_table->min;
1614 		mclk_min = mclk_max = mem_table->min;
1615 		socclk_min = socclk_max = soc_table->min;
1616 		break;
1617 	case AMD_DPM_FORCED_LEVEL_AUTO:
1618 		sclk_min = gfx_table->min;
1619 		sclk_max = gfx_table->max;
1620 		mclk_min = mem_table->min;
1621 		mclk_max = mem_table->max;
1622 		socclk_min = soc_table->min;
1623 		socclk_max = soc_table->max;
1624 		break;
1625 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
1626 		sclk_min = sclk_max = pstate_table->gfxclk_pstate.standard;
1627 		mclk_min = mclk_max = pstate_table->uclk_pstate.standard;
1628 		socclk_min = socclk_max = pstate_table->socclk_pstate.standard;
1629 		break;
1630 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
1631 		sclk_min = sclk_max = pstate_table->gfxclk_pstate.min;
1632 		break;
1633 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
1634 		mclk_min = mclk_max = pstate_table->uclk_pstate.min;
1635 		break;
1636 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
1637 		sclk_min = sclk_max = pstate_table->gfxclk_pstate.peak;
1638 		mclk_min = mclk_max = pstate_table->uclk_pstate.peak;
1639 		socclk_min = socclk_max = pstate_table->socclk_pstate.peak;
1640 		break;
1641 	case AMD_DPM_FORCED_LEVEL_MANUAL:
1642 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
1643 		return 0;
1644 	default:
1645 		dev_err(adev->dev, "Invalid performance level %d\n", level);
1646 		return -EINVAL;
1647 	}
1648 
1649 	mclk_min = mclk_max = 0;
1650 	socclk_min = socclk_max = 0;
1651 
1652 	if (sclk_min && sclk_max) {
1653 		ret = smu_v13_0_set_soft_freq_limited_range(smu,
1654 							    SMU_GFXCLK,
1655 							    sclk_min,
1656 							    sclk_max);
1657 		if (ret)
1658 			return ret;
1659 
1660 		pstate_table->gfxclk_pstate.curr.min = sclk_min;
1661 		pstate_table->gfxclk_pstate.curr.max = sclk_max;
1662 	}
1663 
1664 	if (mclk_min && mclk_max) {
1665 		ret = smu_v13_0_set_soft_freq_limited_range(smu,
1666 							    SMU_MCLK,
1667 							    mclk_min,
1668 							    mclk_max);
1669 		if (ret)
1670 			return ret;
1671 
1672 		pstate_table->uclk_pstate.curr.min = mclk_min;
1673 		pstate_table->uclk_pstate.curr.max = mclk_max;
1674 	}
1675 
1676 	if (socclk_min && socclk_max) {
1677 		ret = smu_v13_0_set_soft_freq_limited_range(smu,
1678 							    SMU_SOCCLK,
1679 							    socclk_min,
1680 							    socclk_max);
1681 		if (ret)
1682 			return ret;
1683 
1684 		pstate_table->socclk_pstate.curr.min = socclk_min;
1685 		pstate_table->socclk_pstate.curr.max = socclk_max;
1686 	}
1687 
1688 	return ret;
1689 }
1690 
1691 int smu_v13_0_set_power_source(struct smu_context *smu,
1692 			       enum smu_power_src_type power_src)
1693 {
1694 	int pwr_source;
1695 
1696 	pwr_source = smu_cmn_to_asic_specific_index(smu,
1697 						    CMN2ASIC_MAPPING_PWR,
1698 						    (uint32_t)power_src);
1699 	if (pwr_source < 0)
1700 		return -EINVAL;
1701 
1702 	return smu_cmn_send_smc_msg_with_param(smu,
1703 					       SMU_MSG_NotifyPowerSource,
1704 					       pwr_source,
1705 					       NULL);
1706 }
1707 
1708 int smu_v13_0_get_dpm_freq_by_index(struct smu_context *smu,
1709 				    enum smu_clk_type clk_type,
1710 				    uint16_t level,
1711 				    uint32_t *value)
1712 {
1713 	int ret = 0, clk_id = 0;
1714 	uint32_t param;
1715 
1716 	if (!value)
1717 		return -EINVAL;
1718 
1719 	if (!smu_cmn_clk_dpm_is_enabled(smu, clk_type))
1720 		return 0;
1721 
1722 	clk_id = smu_cmn_to_asic_specific_index(smu,
1723 						CMN2ASIC_MAPPING_CLK,
1724 						clk_type);
1725 	if (clk_id < 0)
1726 		return clk_id;
1727 
1728 	param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));
1729 
1730 	ret = smu_cmn_send_smc_msg_with_param(smu,
1731 					      SMU_MSG_GetDpmFreqByIndex,
1732 					      param,
1733 					      value);
1734 	if (ret)
1735 		return ret;
1736 
1737 	/*
1738 	 * BIT31:  0 - Fine grained DPM, 1 - Dicrete DPM
1739 	 * now, we un-support it
1740 	 */
1741 	*value = *value & 0x7fffffff;
1742 
1743 	return ret;
1744 }
1745 
1746 int smu_v13_0_get_dpm_level_count(struct smu_context *smu,
1747 				  enum smu_clk_type clk_type,
1748 				  uint32_t *value)
1749 {
1750 	int ret;
1751 
1752 	ret = smu_v13_0_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
1753 	/* FW returns 0 based max level, increment by one */
1754 	if (!ret && value)
1755 		++(*value);
1756 
1757 	return ret;
1758 }
1759 
1760 int smu_v13_0_set_single_dpm_table(struct smu_context *smu,
1761 				   enum smu_clk_type clk_type,
1762 				   struct smu_13_0_dpm_table *single_dpm_table)
1763 {
1764 	int ret = 0;
1765 	uint32_t clk;
1766 	int i;
1767 
1768 	ret = smu_v13_0_get_dpm_level_count(smu,
1769 					    clk_type,
1770 					    &single_dpm_table->count);
1771 	if (ret) {
1772 		dev_err(smu->adev->dev, "[%s] failed to get dpm levels!\n", __func__);
1773 		return ret;
1774 	}
1775 
1776 	for (i = 0; i < single_dpm_table->count; i++) {
1777 		ret = smu_v13_0_get_dpm_freq_by_index(smu,
1778 						      clk_type,
1779 						      i,
1780 						      &clk);
1781 		if (ret) {
1782 			dev_err(smu->adev->dev, "[%s] failed to get dpm freq by index!\n", __func__);
1783 			return ret;
1784 		}
1785 
1786 		single_dpm_table->dpm_levels[i].value = clk;
1787 		single_dpm_table->dpm_levels[i].enabled = true;
1788 
1789 		if (i == 0)
1790 			single_dpm_table->min = clk;
1791 		else if (i == single_dpm_table->count - 1)
1792 			single_dpm_table->max = clk;
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 int smu_v13_0_get_dpm_level_range(struct smu_context *smu,
1799 				  enum smu_clk_type clk_type,
1800 				  uint32_t *min_value,
1801 				  uint32_t *max_value)
1802 {
1803 	uint32_t level_count = 0;
1804 	int ret = 0;
1805 
1806 	if (!min_value && !max_value)
1807 		return -EINVAL;
1808 
1809 	if (min_value) {
1810 		/* by default, level 0 clock value as min value */
1811 		ret = smu_v13_0_get_dpm_freq_by_index(smu,
1812 						      clk_type,
1813 						      0,
1814 						      min_value);
1815 		if (ret)
1816 			return ret;
1817 	}
1818 
1819 	if (max_value) {
1820 		ret = smu_v13_0_get_dpm_level_count(smu,
1821 						    clk_type,
1822 						    &level_count);
1823 		if (ret)
1824 			return ret;
1825 
1826 		ret = smu_v13_0_get_dpm_freq_by_index(smu,
1827 						      clk_type,
1828 						      level_count - 1,
1829 						      max_value);
1830 		if (ret)
1831 			return ret;
1832 	}
1833 
1834 	return ret;
1835 }
1836 
1837 int smu_v13_0_get_current_pcie_link_width_level(struct smu_context *smu)
1838 {
1839 	struct amdgpu_device *adev = smu->adev;
1840 
1841 	return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
1842 		PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
1843 		>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
1844 }
1845 
1846 int smu_v13_0_get_current_pcie_link_width(struct smu_context *smu)
1847 {
1848 	uint32_t width_level;
1849 
1850 	width_level = smu_v13_0_get_current_pcie_link_width_level(smu);
1851 	if (width_level > LINK_WIDTH_MAX)
1852 		width_level = 0;
1853 
1854 	return link_width[width_level];
1855 }
1856 
1857 int smu_v13_0_get_current_pcie_link_speed_level(struct smu_context *smu)
1858 {
1859 	struct amdgpu_device *adev = smu->adev;
1860 
1861 	return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
1862 		PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
1863 		>> PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
1864 }
1865 
1866 int smu_v13_0_get_current_pcie_link_speed(struct smu_context *smu)
1867 {
1868 	uint32_t speed_level;
1869 
1870 	speed_level = smu_v13_0_get_current_pcie_link_speed_level(smu);
1871 	if (speed_level > LINK_SPEED_MAX)
1872 		speed_level = 0;
1873 
1874 	return link_speed[speed_level];
1875 }
1876 
1877