xref: /openbmc/linux/drivers/gpu/drm/amd/pm/swsmu/smu13/aldebaran_ppt.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #define SWSMU_CODE_LAYER_L2
25 
26 #include <linux/firmware.h>
27 #include "amdgpu.h"
28 #include "amdgpu_smu.h"
29 #include "atomfirmware.h"
30 #include "amdgpu_atomfirmware.h"
31 #include "amdgpu_atombios.h"
32 #include "smu_v13_0.h"
33 #include "smu13_driver_if_aldebaran.h"
34 #include "soc15_common.h"
35 #include "atom.h"
36 #include "power_state.h"
37 #include "aldebaran_ppt.h"
38 #include "smu_v13_0_pptable.h"
39 #include "aldebaran_ppsmc.h"
40 #include "nbio/nbio_7_4_offset.h"
41 #include "nbio/nbio_7_4_sh_mask.h"
42 #include "thm/thm_11_0_2_offset.h"
43 #include "thm/thm_11_0_2_sh_mask.h"
44 #include "amdgpu_xgmi.h"
45 #include <linux/pci.h>
46 #include "amdgpu_ras.h"
47 #include "smu_cmn.h"
48 #include "mp/mp_13_0_2_offset.h"
49 
50 /*
51  * DO NOT use these for err/warn/info/debug messages.
52  * Use dev_err, dev_warn, dev_info and dev_dbg instead.
53  * They are more MGPU friendly.
54  */
55 #undef pr_err
56 #undef pr_warn
57 #undef pr_info
58 #undef pr_debug
59 
60 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))
61 
62 #define ALDEBARAN_FEA_MAP(smu_feature, aldebaran_feature) \
63 	[smu_feature] = {1, (aldebaran_feature)}
64 
65 #define FEATURE_MASK(feature) (1ULL << feature)
66 #define SMC_DPM_FEATURE ( \
67 			  FEATURE_MASK(FEATURE_DATA_CALCULATIONS) | \
68 			  FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT)	| \
69 			  FEATURE_MASK(FEATURE_DPM_UCLK_BIT)	| \
70 			  FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT)	| \
71 			  FEATURE_MASK(FEATURE_DPM_FCLK_BIT)	| \
72 			  FEATURE_MASK(FEATURE_DPM_LCLK_BIT)	| \
73 			  FEATURE_MASK(FEATURE_DPM_XGMI_BIT)	| \
74 			  FEATURE_MASK(FEATURE_DPM_VCN_BIT))
75 
76 /* possible frequency drift (1Mhz) */
77 #define EPSILON				1
78 
79 #define smnPCIE_ESM_CTRL			0x111003D0
80 
81 static const struct smu_temperature_range smu13_thermal_policy[] =
82 {
83 	{-273150,  99000, 99000, -273150, 99000, 99000, -273150, 99000, 99000},
84 	{ 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000, 120000},
85 };
86 
87 static const struct cmn2asic_msg_mapping aldebaran_message_map[SMU_MSG_MAX_COUNT] = {
88 	MSG_MAP(TestMessage,			     PPSMC_MSG_TestMessage,			0),
89 	MSG_MAP(GetSmuVersion,			     PPSMC_MSG_GetSmuVersion,			1),
90 	MSG_MAP(GetDriverIfVersion,		     PPSMC_MSG_GetDriverIfVersion,		1),
91 	MSG_MAP(EnableAllSmuFeatures,		     PPSMC_MSG_EnableAllSmuFeatures,		0),
92 	MSG_MAP(DisableAllSmuFeatures,		     PPSMC_MSG_DisableAllSmuFeatures,		0),
93 	MSG_MAP(GetEnabledSmuFeaturesLow,	     PPSMC_MSG_GetEnabledSmuFeaturesLow,	0),
94 	MSG_MAP(GetEnabledSmuFeaturesHigh,	     PPSMC_MSG_GetEnabledSmuFeaturesHigh,	0),
95 	MSG_MAP(SetDriverDramAddrHigh,		     PPSMC_MSG_SetDriverDramAddrHigh,		1),
96 	MSG_MAP(SetDriverDramAddrLow,		     PPSMC_MSG_SetDriverDramAddrLow,		1),
97 	MSG_MAP(SetToolsDramAddrHigh,		     PPSMC_MSG_SetToolsDramAddrHigh,		0),
98 	MSG_MAP(SetToolsDramAddrLow,		     PPSMC_MSG_SetToolsDramAddrLow,		0),
99 	MSG_MAP(TransferTableSmu2Dram,		     PPSMC_MSG_TransferTableSmu2Dram,		1),
100 	MSG_MAP(TransferTableDram2Smu,		     PPSMC_MSG_TransferTableDram2Smu,		0),
101 	MSG_MAP(UseDefaultPPTable,		     PPSMC_MSG_UseDefaultPPTable,		0),
102 	MSG_MAP(SetSystemVirtualDramAddrHigh,	     PPSMC_MSG_SetSystemVirtualDramAddrHigh,	0),
103 	MSG_MAP(SetSystemVirtualDramAddrLow,	     PPSMC_MSG_SetSystemVirtualDramAddrLow,	0),
104 	MSG_MAP(SetSoftMinByFreq,		     PPSMC_MSG_SetSoftMinByFreq,		0),
105 	MSG_MAP(SetSoftMaxByFreq,		     PPSMC_MSG_SetSoftMaxByFreq,		0),
106 	MSG_MAP(SetHardMinByFreq,		     PPSMC_MSG_SetHardMinByFreq,		0),
107 	MSG_MAP(SetHardMaxByFreq,		     PPSMC_MSG_SetHardMaxByFreq,		0),
108 	MSG_MAP(GetMinDpmFreq,			     PPSMC_MSG_GetMinDpmFreq,			0),
109 	MSG_MAP(GetMaxDpmFreq,			     PPSMC_MSG_GetMaxDpmFreq,			0),
110 	MSG_MAP(GetDpmFreqByIndex,		     PPSMC_MSG_GetDpmFreqByIndex,		1),
111 	MSG_MAP(SetWorkloadMask,		     PPSMC_MSG_SetWorkloadMask,			1),
112 	MSG_MAP(GetVoltageByDpm,		     PPSMC_MSG_GetVoltageByDpm,			0),
113 	MSG_MAP(GetVoltageByDpmOverdrive,	     PPSMC_MSG_GetVoltageByDpmOverdrive,	0),
114 	MSG_MAP(SetPptLimit,			     PPSMC_MSG_SetPptLimit,			0),
115 	MSG_MAP(GetPptLimit,			     PPSMC_MSG_GetPptLimit,			1),
116 	MSG_MAP(PrepareMp1ForUnload,		     PPSMC_MSG_PrepareMp1ForUnload,		0),
117 	MSG_MAP(GfxDeviceDriverReset,		     PPSMC_MSG_GfxDriverReset,			0),
118 	MSG_MAP(RunDcBtc,			     PPSMC_MSG_RunDcBtc,			0),
119 	MSG_MAP(DramLogSetDramAddrHigh,		     PPSMC_MSG_DramLogSetDramAddrHigh,		0),
120 	MSG_MAP(DramLogSetDramAddrLow,		     PPSMC_MSG_DramLogSetDramAddrLow,		0),
121 	MSG_MAP(DramLogSetDramSize,		     PPSMC_MSG_DramLogSetDramSize,		0),
122 	MSG_MAP(GetDebugData,			     PPSMC_MSG_GetDebugData,			0),
123 	MSG_MAP(WaflTest,			     PPSMC_MSG_WaflTest,			0),
124 	MSG_MAP(SetMemoryChannelEnable,		     PPSMC_MSG_SetMemoryChannelEnable,		0),
125 	MSG_MAP(SetNumBadHbmPagesRetired,	     PPSMC_MSG_SetNumBadHbmPagesRetired,	0),
126 	MSG_MAP(DFCstateControl,		     PPSMC_MSG_DFCstateControl,			0),
127 	MSG_MAP(GetGmiPwrDnHyst,		     PPSMC_MSG_GetGmiPwrDnHyst,			0),
128 	MSG_MAP(SetGmiPwrDnHyst,		     PPSMC_MSG_SetGmiPwrDnHyst,			0),
129 	MSG_MAP(GmiPwrDnControl,		     PPSMC_MSG_GmiPwrDnControl,			0),
130 	MSG_MAP(EnterGfxoff,			     PPSMC_MSG_EnterGfxoff,			0),
131 	MSG_MAP(ExitGfxoff,			     PPSMC_MSG_ExitGfxoff,			0),
132 	MSG_MAP(SetExecuteDMATest,		     PPSMC_MSG_SetExecuteDMATest,		0),
133 	MSG_MAP(EnableDeterminism,		     PPSMC_MSG_EnableDeterminism,		0),
134 	MSG_MAP(DisableDeterminism,		     PPSMC_MSG_DisableDeterminism,		0),
135 	MSG_MAP(SetUclkDpmMode,			     PPSMC_MSG_SetUclkDpmMode,			0),
136 	MSG_MAP(GfxDriverResetRecovery,		     PPSMC_MSG_GfxDriverResetRecovery,		0),
137 };
138 
139 static const struct cmn2asic_mapping aldebaran_clk_map[SMU_CLK_COUNT] = {
140 	CLK_MAP(GFXCLK, PPCLK_GFXCLK),
141 	CLK_MAP(SCLK,	PPCLK_GFXCLK),
142 	CLK_MAP(SOCCLK, PPCLK_SOCCLK),
143 	CLK_MAP(FCLK, PPCLK_FCLK),
144 	CLK_MAP(UCLK, PPCLK_UCLK),
145 	CLK_MAP(MCLK, PPCLK_UCLK),
146 	CLK_MAP(DCLK, PPCLK_DCLK),
147 	CLK_MAP(VCLK, PPCLK_VCLK),
148 	CLK_MAP(LCLK, 	PPCLK_LCLK),
149 };
150 
151 static const struct cmn2asic_mapping aldebaran_feature_mask_map[SMU_FEATURE_COUNT] = {
152 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_PREFETCHER_BIT, 		FEATURE_DATA_CALCULATIONS),
153 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_GFXCLK_BIT, 			FEATURE_DPM_GFXCLK_BIT),
154 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_UCLK_BIT, 			FEATURE_DPM_UCLK_BIT),
155 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_SOCCLK_BIT, 			FEATURE_DPM_SOCCLK_BIT),
156 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_FCLK_BIT, 			FEATURE_DPM_FCLK_BIT),
157 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DPM_LCLK_BIT, 			FEATURE_DPM_LCLK_BIT),
158 	ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_BIT, 				FEATURE_DPM_XGMI_BIT),
159 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_GFXCLK_BIT, 			FEATURE_DS_GFXCLK_BIT),
160 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_SOCCLK_BIT, 			FEATURE_DS_SOCCLK_BIT),
161 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_LCLK_BIT, 				FEATURE_DS_LCLK_BIT),
162 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_FCLK_BIT, 				FEATURE_DS_FCLK_BIT),
163 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DS_UCLK_BIT,				FEATURE_DS_UCLK_BIT),
164 	ALDEBARAN_FEA_MAP(SMU_FEATURE_GFX_SS_BIT, 				FEATURE_GFX_SS_BIT),
165 	ALDEBARAN_FEA_MAP(SMU_FEATURE_VCN_PG_BIT, 				FEATURE_DPM_VCN_BIT),
166 	ALDEBARAN_FEA_MAP(SMU_FEATURE_RSMU_SMN_CG_BIT, 			FEATURE_RSMU_SMN_CG_BIT),
167 	ALDEBARAN_FEA_MAP(SMU_FEATURE_WAFL_CG_BIT, 				FEATURE_WAFL_CG_BIT),
168 	ALDEBARAN_FEA_MAP(SMU_FEATURE_PPT_BIT, 					FEATURE_PPT_BIT),
169 	ALDEBARAN_FEA_MAP(SMU_FEATURE_TDC_BIT, 					FEATURE_TDC_BIT),
170 	ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_PLUS_BIT, 			FEATURE_APCC_PLUS_BIT),
171 	ALDEBARAN_FEA_MAP(SMU_FEATURE_APCC_DFLL_BIT, 			FEATURE_APCC_DFLL_BIT),
172 	ALDEBARAN_FEA_MAP(SMU_FEATURE_FUSE_CG_BIT, 				FEATURE_FUSE_CG_BIT),
173 	ALDEBARAN_FEA_MAP(SMU_FEATURE_MP1_CG_BIT, 				FEATURE_MP1_CG_BIT),
174 	ALDEBARAN_FEA_MAP(SMU_FEATURE_SMUIO_CG_BIT, 			FEATURE_SMUIO_CG_BIT),
175 	ALDEBARAN_FEA_MAP(SMU_FEATURE_THM_CG_BIT, 				FEATURE_THM_CG_BIT),
176 	ALDEBARAN_FEA_MAP(SMU_FEATURE_CLK_CG_BIT, 				FEATURE_CLK_CG_BIT),
177 	ALDEBARAN_FEA_MAP(SMU_FEATURE_FW_CTF_BIT, 				FEATURE_FW_CTF_BIT),
178 	ALDEBARAN_FEA_MAP(SMU_FEATURE_THERMAL_BIT, 				FEATURE_THERMAL_BIT),
179 	ALDEBARAN_FEA_MAP(SMU_FEATURE_OUT_OF_BAND_MONITOR_BIT, 	FEATURE_OUT_OF_BAND_MONITOR_BIT),
180 	ALDEBARAN_FEA_MAP(SMU_FEATURE_XGMI_PER_LINK_PWR_DWN_BIT,FEATURE_XGMI_PER_LINK_PWR_DWN),
181 	ALDEBARAN_FEA_MAP(SMU_FEATURE_DF_CSTATE_BIT, 			FEATURE_DF_CSTATE),
182 };
183 
184 static const struct cmn2asic_mapping aldebaran_table_map[SMU_TABLE_COUNT] = {
185 	TAB_MAP(PPTABLE),
186 	TAB_MAP(AVFS_PSM_DEBUG),
187 	TAB_MAP(AVFS_FUSE_OVERRIDE),
188 	TAB_MAP(PMSTATUSLOG),
189 	TAB_MAP(SMU_METRICS),
190 	TAB_MAP(DRIVER_SMU_CONFIG),
191 	TAB_MAP(I2C_COMMANDS),
192 };
193 
194 static const uint8_t aldebaran_throttler_map[] = {
195 	[THROTTLER_PPT0_BIT]		= (SMU_THROTTLER_PPT0_BIT),
196 	[THROTTLER_PPT1_BIT]		= (SMU_THROTTLER_PPT1_BIT),
197 	[THROTTLER_TDC_GFX_BIT]		= (SMU_THROTTLER_TDC_GFX_BIT),
198 	[THROTTLER_TDC_SOC_BIT]		= (SMU_THROTTLER_TDC_SOC_BIT),
199 	[THROTTLER_TDC_HBM_BIT]		= (SMU_THROTTLER_TDC_MEM_BIT),
200 	[THROTTLER_TEMP_GPU_BIT]	= (SMU_THROTTLER_TEMP_GPU_BIT),
201 	[THROTTLER_TEMP_MEM_BIT]	= (SMU_THROTTLER_TEMP_MEM_BIT),
202 	[THROTTLER_TEMP_VR_GFX_BIT]	= (SMU_THROTTLER_TEMP_VR_GFX_BIT),
203 	[THROTTLER_TEMP_VR_SOC_BIT]	= (SMU_THROTTLER_TEMP_VR_SOC_BIT),
204 	[THROTTLER_TEMP_VR_MEM_BIT]	= (SMU_THROTTLER_TEMP_VR_MEM0_BIT),
205 	[THROTTLER_APCC_BIT]		= (SMU_THROTTLER_APCC_BIT),
206 };
207 
208 static int aldebaran_tables_init(struct smu_context *smu)
209 {
210 	struct smu_table_context *smu_table = &smu->smu_table;
211 	struct smu_table *tables = smu_table->tables;
212 
213 	SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
214 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
215 
216 	SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU13_TOOL_SIZE,
217 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
218 
219 	SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
220 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
221 
222 	SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
223 		       PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
224 
225 	smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
226 	if (!smu_table->metrics_table)
227 		return -ENOMEM;
228 	smu_table->metrics_time = 0;
229 
230 	smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3);
231 	smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
232 	if (!smu_table->gpu_metrics_table) {
233 		kfree(smu_table->metrics_table);
234 		return -ENOMEM;
235 	}
236 
237 	return 0;
238 }
239 
240 static int aldebaran_allocate_dpm_context(struct smu_context *smu)
241 {
242 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
243 
244 	smu_dpm->dpm_context = kzalloc(sizeof(struct smu_13_0_dpm_context),
245 				       GFP_KERNEL);
246 	if (!smu_dpm->dpm_context)
247 		return -ENOMEM;
248 	smu_dpm->dpm_context_size = sizeof(struct smu_13_0_dpm_context);
249 
250 	smu_dpm->dpm_current_power_state = kzalloc(sizeof(struct smu_power_state),
251 						   GFP_KERNEL);
252 	if (!smu_dpm->dpm_current_power_state)
253 		return -ENOMEM;
254 
255 	smu_dpm->dpm_request_power_state = kzalloc(sizeof(struct smu_power_state),
256 						   GFP_KERNEL);
257 	if (!smu_dpm->dpm_request_power_state)
258 		return -ENOMEM;
259 
260 	return 0;
261 }
262 
263 static int aldebaran_init_smc_tables(struct smu_context *smu)
264 {
265 	int ret = 0;
266 
267 	ret = aldebaran_tables_init(smu);
268 	if (ret)
269 		return ret;
270 
271 	ret = aldebaran_allocate_dpm_context(smu);
272 	if (ret)
273 		return ret;
274 
275 	return smu_v13_0_init_smc_tables(smu);
276 }
277 
278 static int aldebaran_get_allowed_feature_mask(struct smu_context *smu,
279 					      uint32_t *feature_mask, uint32_t num)
280 {
281 	if (num > 2)
282 		return -EINVAL;
283 
284 	/* pptable will handle the features to enable */
285 	memset(feature_mask, 0xFF, sizeof(uint32_t) * num);
286 
287 	return 0;
288 }
289 
290 static int aldebaran_set_default_dpm_table(struct smu_context *smu)
291 {
292 	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
293 	struct smu_13_0_dpm_table *dpm_table = NULL;
294 	PPTable_t *pptable = smu->smu_table.driver_pptable;
295 	int ret = 0;
296 
297 	/* socclk dpm table setup */
298 	dpm_table = &dpm_context->dpm_tables.soc_table;
299 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
300 		ret = smu_v13_0_set_single_dpm_table(smu,
301 						     SMU_SOCCLK,
302 						     dpm_table);
303 		if (ret)
304 			return ret;
305 	} else {
306 		dpm_table->count = 1;
307 		dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
308 		dpm_table->dpm_levels[0].enabled = true;
309 		dpm_table->min = dpm_table->dpm_levels[0].value;
310 		dpm_table->max = dpm_table->dpm_levels[0].value;
311 	}
312 
313 	/* gfxclk dpm table setup */
314 	dpm_table = &dpm_context->dpm_tables.gfx_table;
315 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
316 		/* in the case of gfxclk, only fine-grained dpm is honored */
317 		dpm_table->count = 2;
318 		dpm_table->dpm_levels[0].value = pptable->GfxclkFmin;
319 		dpm_table->dpm_levels[0].enabled = true;
320 		dpm_table->dpm_levels[1].value = pptable->GfxclkFmax;
321 		dpm_table->dpm_levels[1].enabled = true;
322 		dpm_table->min = dpm_table->dpm_levels[0].value;
323 		dpm_table->max = dpm_table->dpm_levels[1].value;
324 	} else {
325 		dpm_table->count = 1;
326 		dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
327 		dpm_table->dpm_levels[0].enabled = true;
328 		dpm_table->min = dpm_table->dpm_levels[0].value;
329 		dpm_table->max = dpm_table->dpm_levels[0].value;
330 	}
331 
332 	/* memclk dpm table setup */
333 	dpm_table = &dpm_context->dpm_tables.uclk_table;
334 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
335 		ret = smu_v13_0_set_single_dpm_table(smu,
336 						     SMU_UCLK,
337 						     dpm_table);
338 		if (ret)
339 			return ret;
340 	} else {
341 		dpm_table->count = 1;
342 		dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
343 		dpm_table->dpm_levels[0].enabled = true;
344 		dpm_table->min = dpm_table->dpm_levels[0].value;
345 		dpm_table->max = dpm_table->dpm_levels[0].value;
346 	}
347 
348 	/* fclk dpm table setup */
349 	dpm_table = &dpm_context->dpm_tables.fclk_table;
350 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
351 		ret = smu_v13_0_set_single_dpm_table(smu,
352 						     SMU_FCLK,
353 						     dpm_table);
354 		if (ret)
355 			return ret;
356 	} else {
357 		dpm_table->count = 1;
358 		dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
359 		dpm_table->dpm_levels[0].enabled = true;
360 		dpm_table->min = dpm_table->dpm_levels[0].value;
361 		dpm_table->max = dpm_table->dpm_levels[0].value;
362 	}
363 
364 	return 0;
365 }
366 
367 static int aldebaran_check_powerplay_table(struct smu_context *smu)
368 {
369 	struct smu_table_context *table_context = &smu->smu_table;
370 	struct smu_13_0_powerplay_table *powerplay_table =
371 		table_context->power_play_table;
372 
373 	table_context->thermal_controller_type =
374 		powerplay_table->thermal_controller_type;
375 
376 	return 0;
377 }
378 
379 static int aldebaran_store_powerplay_table(struct smu_context *smu)
380 {
381 	struct smu_table_context *table_context = &smu->smu_table;
382 	struct smu_13_0_powerplay_table *powerplay_table =
383 		table_context->power_play_table;
384 	memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
385 	       sizeof(PPTable_t));
386 
387 	return 0;
388 }
389 
390 static int aldebaran_append_powerplay_table(struct smu_context *smu)
391 {
392 	struct smu_table_context *table_context = &smu->smu_table;
393 	PPTable_t *smc_pptable = table_context->driver_pptable;
394 	struct atom_smc_dpm_info_v4_10 *smc_dpm_table;
395 	int index, ret;
396 
397 	index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
398 					   smc_dpm_info);
399 
400 	ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL,
401 				      (uint8_t **)&smc_dpm_table);
402 	if (ret)
403 		return ret;
404 
405 	dev_info(smu->adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n",
406 			smc_dpm_table->table_header.format_revision,
407 			smc_dpm_table->table_header.content_revision);
408 
409 	if ((smc_dpm_table->table_header.format_revision == 4) &&
410 	    (smc_dpm_table->table_header.content_revision == 10))
411 		memcpy(&smc_pptable->GfxMaxCurrent,
412 		       &smc_dpm_table->GfxMaxCurrent,
413 		       sizeof(*smc_dpm_table) - offsetof(struct atom_smc_dpm_info_v4_10, GfxMaxCurrent));
414 	return 0;
415 }
416 
417 static int aldebaran_setup_pptable(struct smu_context *smu)
418 {
419 	int ret = 0;
420 
421 	/* VBIOS pptable is the first choice */
422 	smu->smu_table.boot_values.pp_table_id = 0;
423 
424 	ret = smu_v13_0_setup_pptable(smu);
425 	if (ret)
426 		return ret;
427 
428 	ret = aldebaran_store_powerplay_table(smu);
429 	if (ret)
430 		return ret;
431 
432 	ret = aldebaran_append_powerplay_table(smu);
433 	if (ret)
434 		return ret;
435 
436 	ret = aldebaran_check_powerplay_table(smu);
437 	if (ret)
438 		return ret;
439 
440 	return ret;
441 }
442 
443 static int aldebaran_run_btc(struct smu_context *smu)
444 {
445 	int ret;
446 
447 	ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL);
448 	if (ret)
449 		dev_err(smu->adev->dev, "RunDcBtc failed!\n");
450 
451 	return ret;
452 }
453 
454 static int aldebaran_populate_umd_state_clk(struct smu_context *smu)
455 {
456 	struct smu_13_0_dpm_context *dpm_context =
457 		smu->smu_dpm.dpm_context;
458 	struct smu_13_0_dpm_table *gfx_table =
459 		&dpm_context->dpm_tables.gfx_table;
460 	struct smu_13_0_dpm_table *mem_table =
461 		&dpm_context->dpm_tables.uclk_table;
462 	struct smu_13_0_dpm_table *soc_table =
463 		&dpm_context->dpm_tables.soc_table;
464 	struct smu_umd_pstate_table *pstate_table =
465 		&smu->pstate_table;
466 
467 	pstate_table->gfxclk_pstate.min = gfx_table->min;
468 	pstate_table->gfxclk_pstate.peak = gfx_table->max;
469 	pstate_table->gfxclk_pstate.curr.min = gfx_table->min;
470 	pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
471 
472 	pstate_table->uclk_pstate.min = mem_table->min;
473 	pstate_table->uclk_pstate.peak = mem_table->max;
474 	pstate_table->uclk_pstate.curr.min = mem_table->min;
475 	pstate_table->uclk_pstate.curr.max = mem_table->max;
476 
477 	pstate_table->socclk_pstate.min = soc_table->min;
478 	pstate_table->socclk_pstate.peak = soc_table->max;
479 	pstate_table->socclk_pstate.curr.min = soc_table->min;
480 	pstate_table->socclk_pstate.curr.max = soc_table->max;
481 
482 	if (gfx_table->count > ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL &&
483 	    mem_table->count > ALDEBARAN_UMD_PSTATE_MCLK_LEVEL &&
484 	    soc_table->count > ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL) {
485 		pstate_table->gfxclk_pstate.standard =
486 			gfx_table->dpm_levels[ALDEBARAN_UMD_PSTATE_GFXCLK_LEVEL].value;
487 		pstate_table->uclk_pstate.standard =
488 			mem_table->dpm_levels[ALDEBARAN_UMD_PSTATE_MCLK_LEVEL].value;
489 		pstate_table->socclk_pstate.standard =
490 			soc_table->dpm_levels[ALDEBARAN_UMD_PSTATE_SOCCLK_LEVEL].value;
491 	} else {
492 		pstate_table->gfxclk_pstate.standard =
493 			pstate_table->gfxclk_pstate.min;
494 		pstate_table->uclk_pstate.standard =
495 			pstate_table->uclk_pstate.min;
496 		pstate_table->socclk_pstate.standard =
497 			pstate_table->socclk_pstate.min;
498 	}
499 
500 	return 0;
501 }
502 
503 static int aldebaran_get_clk_table(struct smu_context *smu,
504 				   struct pp_clock_levels_with_latency *clocks,
505 				   struct smu_13_0_dpm_table *dpm_table)
506 {
507 	int i, count;
508 
509 	count = (dpm_table->count > MAX_NUM_CLOCKS) ? MAX_NUM_CLOCKS : dpm_table->count;
510 	clocks->num_levels = count;
511 
512 	for (i = 0; i < count; i++) {
513 		clocks->data[i].clocks_in_khz =
514 			dpm_table->dpm_levels[i].value * 1000;
515 		clocks->data[i].latency_in_us = 0;
516 	}
517 
518 	return 0;
519 }
520 
521 static int aldebaran_freqs_in_same_level(int32_t frequency1,
522 					 int32_t frequency2)
523 {
524 	return (abs(frequency1 - frequency2) <= EPSILON);
525 }
526 
527 static bool aldebaran_is_primary(struct smu_context *smu)
528 {
529 	struct amdgpu_device *adev = smu->adev;
530 
531 	if (adev->smuio.funcs && adev->smuio.funcs->get_die_id)
532 		return adev->smuio.funcs->get_die_id(adev) == 0;
533 
534 	return true;
535 }
536 
537 static int aldebaran_get_smu_metrics_data(struct smu_context *smu,
538 					  MetricsMember_t member,
539 					  uint32_t *value)
540 {
541 	struct smu_table_context *smu_table= &smu->smu_table;
542 	SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
543 	int ret = 0;
544 
545 	mutex_lock(&smu->metrics_lock);
546 
547 	ret = smu_cmn_get_metrics_table_locked(smu,
548 					       NULL,
549 					       false);
550 	if (ret) {
551 		mutex_unlock(&smu->metrics_lock);
552 		return ret;
553 	}
554 
555 	switch (member) {
556 	case METRICS_CURR_GFXCLK:
557 		*value = metrics->CurrClock[PPCLK_GFXCLK];
558 		break;
559 	case METRICS_CURR_SOCCLK:
560 		*value = metrics->CurrClock[PPCLK_SOCCLK];
561 		break;
562 	case METRICS_CURR_UCLK:
563 		*value = metrics->CurrClock[PPCLK_UCLK];
564 		break;
565 	case METRICS_CURR_VCLK:
566 		*value = metrics->CurrClock[PPCLK_VCLK];
567 		break;
568 	case METRICS_CURR_DCLK:
569 		*value = metrics->CurrClock[PPCLK_DCLK];
570 		break;
571 	case METRICS_CURR_FCLK:
572 		*value = metrics->CurrClock[PPCLK_FCLK];
573 		break;
574 	case METRICS_AVERAGE_GFXCLK:
575 		*value = metrics->AverageGfxclkFrequency;
576 		break;
577 	case METRICS_AVERAGE_SOCCLK:
578 		*value = metrics->AverageSocclkFrequency;
579 		break;
580 	case METRICS_AVERAGE_UCLK:
581 		*value = metrics->AverageUclkFrequency;
582 		break;
583 	case METRICS_AVERAGE_GFXACTIVITY:
584 		*value = metrics->AverageGfxActivity;
585 		break;
586 	case METRICS_AVERAGE_MEMACTIVITY:
587 		*value = metrics->AverageUclkActivity;
588 		break;
589 	case METRICS_AVERAGE_SOCKETPOWER:
590 		/* Valid power data is available only from primary die */
591 		*value = aldebaran_is_primary(smu) ?
592 				 metrics->AverageSocketPower << 8 :
593 				 0;
594 		break;
595 	case METRICS_TEMPERATURE_EDGE:
596 		*value = metrics->TemperatureEdge *
597 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
598 		break;
599 	case METRICS_TEMPERATURE_HOTSPOT:
600 		*value = metrics->TemperatureHotspot *
601 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
602 		break;
603 	case METRICS_TEMPERATURE_MEM:
604 		*value = metrics->TemperatureHBM *
605 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
606 		break;
607 	case METRICS_TEMPERATURE_VRGFX:
608 		*value = metrics->TemperatureVrGfx *
609 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
610 		break;
611 	case METRICS_TEMPERATURE_VRSOC:
612 		*value = metrics->TemperatureVrSoc *
613 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
614 		break;
615 	case METRICS_TEMPERATURE_VRMEM:
616 		*value = metrics->TemperatureVrMem *
617 			SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
618 		break;
619 	case METRICS_THROTTLER_STATUS:
620 		*value = metrics->ThrottlerStatus;
621 		break;
622 	default:
623 		*value = UINT_MAX;
624 		break;
625 	}
626 
627 	mutex_unlock(&smu->metrics_lock);
628 
629 	return ret;
630 }
631 
632 static int aldebaran_get_current_clk_freq_by_table(struct smu_context *smu,
633 						   enum smu_clk_type clk_type,
634 						   uint32_t *value)
635 {
636 	MetricsMember_t member_type;
637 	int clk_id = 0;
638 
639 	if (!value)
640 		return -EINVAL;
641 
642 	clk_id = smu_cmn_to_asic_specific_index(smu,
643 						CMN2ASIC_MAPPING_CLK,
644 						clk_type);
645 	if (clk_id < 0)
646 		return -EINVAL;
647 
648 	switch (clk_id) {
649 	case PPCLK_GFXCLK:
650 		/*
651 		 * CurrClock[clk_id] can provide accurate
652 		 *   output only when the dpm feature is enabled.
653 		 * We can use Average_* for dpm disabled case.
654 		 *   But this is available for gfxclk/uclk/socclk/vclk/dclk.
655 		 */
656 		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT))
657 			member_type = METRICS_CURR_GFXCLK;
658 		else
659 			member_type = METRICS_AVERAGE_GFXCLK;
660 		break;
661 	case PPCLK_UCLK:
662 		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
663 			member_type = METRICS_CURR_UCLK;
664 		else
665 			member_type = METRICS_AVERAGE_UCLK;
666 		break;
667 	case PPCLK_SOCCLK:
668 		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT))
669 			member_type = METRICS_CURR_SOCCLK;
670 		else
671 			member_type = METRICS_AVERAGE_SOCCLK;
672 		break;
673 	case PPCLK_VCLK:
674 		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT))
675 			member_type = METRICS_CURR_VCLK;
676 		else
677 			member_type = METRICS_AVERAGE_VCLK;
678 		break;
679 	case PPCLK_DCLK:
680 		if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT))
681 			member_type = METRICS_CURR_DCLK;
682 		else
683 			member_type = METRICS_AVERAGE_DCLK;
684 		break;
685 	case PPCLK_FCLK:
686 		member_type = METRICS_CURR_FCLK;
687 		break;
688 	default:
689 		return -EINVAL;
690 	}
691 
692 	return aldebaran_get_smu_metrics_data(smu,
693 					      member_type,
694 					      value);
695 }
696 
697 static int aldebaran_print_clk_levels(struct smu_context *smu,
698 				      enum smu_clk_type type, char *buf)
699 {
700 	int i, now, size = 0;
701 	int ret = 0;
702 	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
703 	struct pp_clock_levels_with_latency clocks;
704 	struct smu_13_0_dpm_table *single_dpm_table;
705 	struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
706 	struct smu_13_0_dpm_context *dpm_context = NULL;
707 	uint32_t display_levels;
708 	uint32_t freq_values[3] = {0};
709 	uint32_t min_clk, max_clk;
710 
711 	if (amdgpu_ras_intr_triggered())
712 		return snprintf(buf, PAGE_SIZE, "unavailable\n");
713 
714 	dpm_context = smu_dpm->dpm_context;
715 
716 	switch (type) {
717 
718 	case SMU_OD_SCLK:
719 		size = sprintf(buf, "%s:\n", "GFXCLK");
720 		fallthrough;
721 	case SMU_SCLK:
722 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, &now);
723 		if (ret) {
724 			dev_err(smu->adev->dev, "Attempt to get current gfx clk Failed!");
725 			return ret;
726 		}
727 
728 		single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
729 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
730 		if (ret) {
731 			dev_err(smu->adev->dev, "Attempt to get gfx clk levels Failed!");
732 			return ret;
733 		}
734 
735 		display_levels = clocks.num_levels;
736 
737 		min_clk = pstate_table->gfxclk_pstate.curr.min;
738 		max_clk = pstate_table->gfxclk_pstate.curr.max;
739 
740 		freq_values[0] = min_clk;
741 		freq_values[1] = max_clk;
742 
743 		/* fine-grained dpm has only 2 levels */
744 		if (now > min_clk && now < max_clk) {
745 			display_levels = clocks.num_levels + 1;
746 			freq_values[2] = max_clk;
747 			freq_values[1] = now;
748 		}
749 
750 		/*
751 		 * For DPM disabled case, there will be only one clock level.
752 		 * And it's safe to assume that is always the current clock.
753 		 */
754 		if (display_levels == clocks.num_levels) {
755 			for (i = 0; i < clocks.num_levels; i++)
756 				size += sprintf(
757 					buf + size, "%d: %uMhz %s\n", i,
758 					freq_values[i],
759 					(clocks.num_levels == 1) ?
760 						"*" :
761 						(aldebaran_freqs_in_same_level(
762 							 freq_values[i], now) ?
763 							 "*" :
764 							 ""));
765 		} else {
766 			for (i = 0; i < display_levels; i++)
767 				size += sprintf(buf + size, "%d: %uMhz %s\n", i,
768 						freq_values[i], i == 1 ? "*" : "");
769 		}
770 
771 		break;
772 
773 	case SMU_OD_MCLK:
774 		size = sprintf(buf, "%s:\n", "MCLK");
775 		fallthrough;
776 	case SMU_MCLK:
777 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, &now);
778 		if (ret) {
779 			dev_err(smu->adev->dev, "Attempt to get current mclk Failed!");
780 			return ret;
781 		}
782 
783 		single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
784 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
785 		if (ret) {
786 			dev_err(smu->adev->dev, "Attempt to get memory clk levels Failed!");
787 			return ret;
788 		}
789 
790 		for (i = 0; i < clocks.num_levels; i++)
791 			size += sprintf(buf + size, "%d: %uMhz %s\n",
792 					i, clocks.data[i].clocks_in_khz / 1000,
793 					(clocks.num_levels == 1) ? "*" :
794 					(aldebaran_freqs_in_same_level(
795 								       clocks.data[i].clocks_in_khz / 1000,
796 								       now) ? "*" : ""));
797 		break;
798 
799 	case SMU_SOCCLK:
800 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_SOCCLK, &now);
801 		if (ret) {
802 			dev_err(smu->adev->dev, "Attempt to get current socclk Failed!");
803 			return ret;
804 		}
805 
806 		single_dpm_table = &(dpm_context->dpm_tables.soc_table);
807 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
808 		if (ret) {
809 			dev_err(smu->adev->dev, "Attempt to get socclk levels Failed!");
810 			return ret;
811 		}
812 
813 		for (i = 0; i < clocks.num_levels; i++)
814 			size += sprintf(buf + size, "%d: %uMhz %s\n",
815 					i, clocks.data[i].clocks_in_khz / 1000,
816 					(clocks.num_levels == 1) ? "*" :
817 					(aldebaran_freqs_in_same_level(
818 								       clocks.data[i].clocks_in_khz / 1000,
819 								       now) ? "*" : ""));
820 		break;
821 
822 	case SMU_FCLK:
823 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_FCLK, &now);
824 		if (ret) {
825 			dev_err(smu->adev->dev, "Attempt to get current fclk Failed!");
826 			return ret;
827 		}
828 
829 		single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
830 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
831 		if (ret) {
832 			dev_err(smu->adev->dev, "Attempt to get fclk levels Failed!");
833 			return ret;
834 		}
835 
836 		for (i = 0; i < single_dpm_table->count; i++)
837 			size += sprintf(buf + size, "%d: %uMhz %s\n",
838 					i, single_dpm_table->dpm_levels[i].value,
839 					(clocks.num_levels == 1) ? "*" :
840 					(aldebaran_freqs_in_same_level(
841 								       clocks.data[i].clocks_in_khz / 1000,
842 								       now) ? "*" : ""));
843 		break;
844 
845 	case SMU_VCLK:
846 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_VCLK, &now);
847 		if (ret) {
848 			dev_err(smu->adev->dev, "Attempt to get current vclk Failed!");
849 			return ret;
850 		}
851 
852 		single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
853 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
854 		if (ret) {
855 			dev_err(smu->adev->dev, "Attempt to get vclk levels Failed!");
856 			return ret;
857 		}
858 
859 		for (i = 0; i < single_dpm_table->count; i++)
860 			size += sprintf(buf + size, "%d: %uMhz %s\n",
861 					i, single_dpm_table->dpm_levels[i].value,
862 					(clocks.num_levels == 1) ? "*" :
863 					(aldebaran_freqs_in_same_level(
864 								       clocks.data[i].clocks_in_khz / 1000,
865 								       now) ? "*" : ""));
866 		break;
867 
868 	case SMU_DCLK:
869 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_DCLK, &now);
870 		if (ret) {
871 			dev_err(smu->adev->dev, "Attempt to get current dclk Failed!");
872 			return ret;
873 		}
874 
875 		single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
876 		ret = aldebaran_get_clk_table(smu, &clocks, single_dpm_table);
877 		if (ret) {
878 			dev_err(smu->adev->dev, "Attempt to get dclk levels Failed!");
879 			return ret;
880 		}
881 
882 		for (i = 0; i < single_dpm_table->count; i++)
883 			size += sprintf(buf + size, "%d: %uMhz %s\n",
884 					i, single_dpm_table->dpm_levels[i].value,
885 					(clocks.num_levels == 1) ? "*" :
886 					(aldebaran_freqs_in_same_level(
887 								       clocks.data[i].clocks_in_khz / 1000,
888 								       now) ? "*" : ""));
889 		break;
890 
891 	default:
892 		break;
893 	}
894 
895 	return size;
896 }
897 
898 static int aldebaran_upload_dpm_level(struct smu_context *smu,
899 				      bool max,
900 				      uint32_t feature_mask,
901 				      uint32_t level)
902 {
903 	struct smu_13_0_dpm_context *dpm_context =
904 		smu->smu_dpm.dpm_context;
905 	uint32_t freq;
906 	int ret = 0;
907 
908 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
909 	    (feature_mask & FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT))) {
910 		freq = dpm_context->dpm_tables.gfx_table.dpm_levels[level].value;
911 		ret = smu_cmn_send_smc_msg_with_param(smu,
912 						      (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
913 						      (PPCLK_GFXCLK << 16) | (freq & 0xffff),
914 						      NULL);
915 		if (ret) {
916 			dev_err(smu->adev->dev, "Failed to set soft %s gfxclk !\n",
917 				max ? "max" : "min");
918 			return ret;
919 		}
920 	}
921 
922 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
923 	    (feature_mask & FEATURE_MASK(FEATURE_DPM_UCLK_BIT))) {
924 		freq = dpm_context->dpm_tables.uclk_table.dpm_levels[level].value;
925 		ret = smu_cmn_send_smc_msg_with_param(smu,
926 						      (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
927 						      (PPCLK_UCLK << 16) | (freq & 0xffff),
928 						      NULL);
929 		if (ret) {
930 			dev_err(smu->adev->dev, "Failed to set soft %s memclk !\n",
931 				max ? "max" : "min");
932 			return ret;
933 		}
934 	}
935 
936 	if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
937 	    (feature_mask & FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT))) {
938 		freq = dpm_context->dpm_tables.soc_table.dpm_levels[level].value;
939 		ret = smu_cmn_send_smc_msg_with_param(smu,
940 						      (max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
941 						      (PPCLK_SOCCLK << 16) | (freq & 0xffff),
942 						      NULL);
943 		if (ret) {
944 			dev_err(smu->adev->dev, "Failed to set soft %s socclk !\n",
945 				max ? "max" : "min");
946 			return ret;
947 		}
948 	}
949 
950 	return ret;
951 }
952 
953 static int aldebaran_force_clk_levels(struct smu_context *smu,
954 				      enum smu_clk_type type, uint32_t mask)
955 {
956 	struct smu_13_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
957 	struct smu_13_0_dpm_table *single_dpm_table = NULL;
958 	uint32_t soft_min_level, soft_max_level;
959 	int ret = 0;
960 
961 	soft_min_level = mask ? (ffs(mask) - 1) : 0;
962 	soft_max_level = mask ? (fls(mask) - 1) : 0;
963 
964 	switch (type) {
965 	case SMU_SCLK:
966 		single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
967 		if (soft_max_level >= single_dpm_table->count) {
968 			dev_err(smu->adev->dev, "Clock level specified %d is over max allowed %d\n",
969 				soft_max_level, single_dpm_table->count - 1);
970 			ret = -EINVAL;
971 			break;
972 		}
973 
974 		ret = aldebaran_upload_dpm_level(smu,
975 						 false,
976 						 FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT),
977 						 soft_min_level);
978 		if (ret) {
979 			dev_err(smu->adev->dev, "Failed to upload boot level to lowest!\n");
980 			break;
981 		}
982 
983 		ret = aldebaran_upload_dpm_level(smu,
984 						 true,
985 						 FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT),
986 						 soft_max_level);
987 		if (ret)
988 			dev_err(smu->adev->dev, "Failed to upload dpm max level to highest!\n");
989 
990 		break;
991 
992 	case SMU_MCLK:
993 	case SMU_SOCCLK:
994 	case SMU_FCLK:
995 		/*
996 		 * Should not arrive here since aldebaran does not
997 		 * support mclk/socclk/fclk softmin/softmax settings
998 		 */
999 		ret = -EINVAL;
1000 		break;
1001 
1002 	default:
1003 		break;
1004 	}
1005 
1006 	return ret;
1007 }
1008 
1009 static int aldebaran_get_thermal_temperature_range(struct smu_context *smu,
1010 						   struct smu_temperature_range *range)
1011 {
1012 	struct smu_table_context *table_context = &smu->smu_table;
1013 	struct smu_13_0_powerplay_table *powerplay_table =
1014 		table_context->power_play_table;
1015 	PPTable_t *pptable = smu->smu_table.driver_pptable;
1016 
1017 	if (!range)
1018 		return -EINVAL;
1019 
1020 	memcpy(range, &smu13_thermal_policy[0], sizeof(struct smu_temperature_range));
1021 
1022 	range->hotspot_crit_max = pptable->ThotspotLimit *
1023 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1024 	range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
1025 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1026 	range->mem_crit_max = pptable->TmemLimit *
1027 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1028 	range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)*
1029 		SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
1030 	range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
1031 
1032 	return 0;
1033 }
1034 
1035 static int aldebaran_get_current_activity_percent(struct smu_context *smu,
1036 						  enum amd_pp_sensors sensor,
1037 						  uint32_t *value)
1038 {
1039 	int ret = 0;
1040 
1041 	if (!value)
1042 		return -EINVAL;
1043 
1044 	switch (sensor) {
1045 	case AMDGPU_PP_SENSOR_GPU_LOAD:
1046 		ret = aldebaran_get_smu_metrics_data(smu,
1047 						     METRICS_AVERAGE_GFXACTIVITY,
1048 						     value);
1049 		break;
1050 	case AMDGPU_PP_SENSOR_MEM_LOAD:
1051 		ret = aldebaran_get_smu_metrics_data(smu,
1052 						     METRICS_AVERAGE_MEMACTIVITY,
1053 						     value);
1054 		break;
1055 	default:
1056 		dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	return ret;
1061 }
1062 
1063 static int aldebaran_get_gpu_power(struct smu_context *smu, uint32_t *value)
1064 {
1065 	if (!value)
1066 		return -EINVAL;
1067 
1068 	return aldebaran_get_smu_metrics_data(smu,
1069 					      METRICS_AVERAGE_SOCKETPOWER,
1070 					      value);
1071 }
1072 
1073 static int aldebaran_thermal_get_temperature(struct smu_context *smu,
1074 					     enum amd_pp_sensors sensor,
1075 					     uint32_t *value)
1076 {
1077 	int ret = 0;
1078 
1079 	if (!value)
1080 		return -EINVAL;
1081 
1082 	switch (sensor) {
1083 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
1084 		ret = aldebaran_get_smu_metrics_data(smu,
1085 						     METRICS_TEMPERATURE_HOTSPOT,
1086 						     value);
1087 		break;
1088 	case AMDGPU_PP_SENSOR_EDGE_TEMP:
1089 		ret = aldebaran_get_smu_metrics_data(smu,
1090 						     METRICS_TEMPERATURE_EDGE,
1091 						     value);
1092 		break;
1093 	case AMDGPU_PP_SENSOR_MEM_TEMP:
1094 		ret = aldebaran_get_smu_metrics_data(smu,
1095 						     METRICS_TEMPERATURE_MEM,
1096 						     value);
1097 		break;
1098 	default:
1099 		dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n");
1100 		return -EINVAL;
1101 	}
1102 
1103 	return ret;
1104 }
1105 
1106 static int aldebaran_read_sensor(struct smu_context *smu,
1107 				 enum amd_pp_sensors sensor,
1108 				 void *data, uint32_t *size)
1109 {
1110 	int ret = 0;
1111 
1112 	if (amdgpu_ras_intr_triggered())
1113 		return 0;
1114 
1115 	if (!data || !size)
1116 		return -EINVAL;
1117 
1118 	mutex_lock(&smu->sensor_lock);
1119 	switch (sensor) {
1120 	case AMDGPU_PP_SENSOR_MEM_LOAD:
1121 	case AMDGPU_PP_SENSOR_GPU_LOAD:
1122 		ret = aldebaran_get_current_activity_percent(smu,
1123 							     sensor,
1124 							     (uint32_t *)data);
1125 		*size = 4;
1126 		break;
1127 	case AMDGPU_PP_SENSOR_GPU_POWER:
1128 		ret = aldebaran_get_gpu_power(smu, (uint32_t *)data);
1129 		*size = 4;
1130 		break;
1131 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
1132 	case AMDGPU_PP_SENSOR_EDGE_TEMP:
1133 	case AMDGPU_PP_SENSOR_MEM_TEMP:
1134 		ret = aldebaran_thermal_get_temperature(smu, sensor,
1135 							(uint32_t *)data);
1136 		*size = 4;
1137 		break;
1138 	case AMDGPU_PP_SENSOR_GFX_MCLK:
1139 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data);
1140 		/* the output clock frequency in 10K unit */
1141 		*(uint32_t *)data *= 100;
1142 		*size = 4;
1143 		break;
1144 	case AMDGPU_PP_SENSOR_GFX_SCLK:
1145 		ret = aldebaran_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data);
1146 		*(uint32_t *)data *= 100;
1147 		*size = 4;
1148 		break;
1149 	case AMDGPU_PP_SENSOR_VDDGFX:
1150 		ret = smu_v13_0_get_gfx_vdd(smu, (uint32_t *)data);
1151 		*size = 4;
1152 		break;
1153 	default:
1154 		ret = -EOPNOTSUPP;
1155 		break;
1156 	}
1157 	mutex_unlock(&smu->sensor_lock);
1158 
1159 	return ret;
1160 }
1161 
1162 static int aldebaran_get_power_limit(struct smu_context *smu,
1163 				     uint32_t *current_power_limit,
1164 				     uint32_t *default_power_limit,
1165 				     uint32_t *max_power_limit)
1166 {
1167 	PPTable_t *pptable = smu->smu_table.driver_pptable;
1168 	uint32_t power_limit = 0;
1169 	int ret;
1170 
1171 	if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_PPT_BIT))
1172 		return -EINVAL;
1173 
1174 	/* Valid power data is available only from primary die.
1175 	 * For secondary die show the value as 0.
1176 	 */
1177 	if (aldebaran_is_primary(smu)) {
1178 		ret = smu_cmn_send_smc_msg(smu, SMU_MSG_GetPptLimit,
1179 					   &power_limit);
1180 
1181 		if (ret) {
1182 			/* the last hope to figure out the ppt limit */
1183 			if (!pptable) {
1184 				dev_err(smu->adev->dev,
1185 					"Cannot get PPT limit due to pptable missing!");
1186 				return -EINVAL;
1187 			}
1188 			power_limit = pptable->PptLimit;
1189 		}
1190 	}
1191 
1192 	if (current_power_limit)
1193 		*current_power_limit = power_limit;
1194 	if (default_power_limit)
1195 		*default_power_limit = power_limit;
1196 
1197 	if (max_power_limit) {
1198 		if (pptable)
1199 			*max_power_limit = pptable->PptLimit;
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int aldebaran_set_power_limit(struct smu_context *smu, uint32_t n)
1206 {
1207 	/* Power limit can be set only through primary die */
1208 	if (aldebaran_is_primary(smu))
1209 		return smu_v13_0_set_power_limit(smu, n);
1210 
1211 	return -EINVAL;
1212 }
1213 
1214 static int aldebaran_system_features_control(struct  smu_context *smu, bool enable)
1215 {
1216 	int ret;
1217 
1218 	ret = smu_v13_0_system_features_control(smu, enable);
1219 	if (!ret && enable)
1220 		ret = aldebaran_run_btc(smu);
1221 
1222 	return ret;
1223 }
1224 
1225 static int aldebaran_set_performance_level(struct smu_context *smu,
1226 					   enum amd_dpm_forced_level level)
1227 {
1228 	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
1229 	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
1230 	struct smu_13_0_dpm_table *gfx_table =
1231 		&dpm_context->dpm_tables.gfx_table;
1232 	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
1233 
1234 	/* Disable determinism if switching to another mode */
1235 	if ((smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) &&
1236 	    (level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM)) {
1237 		smu_cmn_send_smc_msg(smu, SMU_MSG_DisableDeterminism, NULL);
1238 		pstate_table->gfxclk_pstate.curr.max = gfx_table->max;
1239 	}
1240 
1241 	switch (level) {
1242 
1243 	case AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM:
1244 		return 0;
1245 
1246 	case AMD_DPM_FORCED_LEVEL_HIGH:
1247 	case AMD_DPM_FORCED_LEVEL_LOW:
1248 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
1249 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
1250 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
1251 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
1252 	default:
1253 		break;
1254 	}
1255 
1256 	return smu_v13_0_set_performance_level(smu, level);
1257 }
1258 
1259 static int aldebaran_set_soft_freq_limited_range(struct smu_context *smu,
1260 					  enum smu_clk_type clk_type,
1261 					  uint32_t min,
1262 					  uint32_t max)
1263 {
1264 	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
1265 	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
1266 	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
1267 	struct amdgpu_device *adev = smu->adev;
1268 	uint32_t min_clk;
1269 	uint32_t max_clk;
1270 	int ret = 0;
1271 
1272 	if (clk_type != SMU_GFXCLK && clk_type != SMU_SCLK)
1273 		return -EINVAL;
1274 
1275 	if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1276 			&& (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
1277 		return -EINVAL;
1278 
1279 	if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_MANUAL) {
1280 		if (min >= max) {
1281 			dev_err(smu->adev->dev,
1282 				"Minimum GFX clk should be less than the maximum allowed clock\n");
1283 			return -EINVAL;
1284 		}
1285 
1286 		if ((min == pstate_table->gfxclk_pstate.curr.min) &&
1287 		    (max == pstate_table->gfxclk_pstate.curr.max))
1288 			return 0;
1289 
1290 		ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK,
1291 							    min, max);
1292 		if (!ret) {
1293 			pstate_table->gfxclk_pstate.curr.min = min;
1294 			pstate_table->gfxclk_pstate.curr.max = max;
1295 		}
1296 
1297 		return ret;
1298 	}
1299 
1300 	if (smu_dpm->dpm_level == AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM) {
1301 		if (!max || (max < dpm_context->dpm_tables.gfx_table.min) ||
1302 			(max > dpm_context->dpm_tables.gfx_table.max)) {
1303 			dev_warn(adev->dev,
1304 					"Invalid max frequency %d MHz specified for determinism\n", max);
1305 			return -EINVAL;
1306 		}
1307 
1308 		/* Restore default min/max clocks and enable determinism */
1309 		min_clk = dpm_context->dpm_tables.gfx_table.min;
1310 		max_clk = dpm_context->dpm_tables.gfx_table.max;
1311 		ret = smu_v13_0_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
1312 		if (!ret) {
1313 			usleep_range(500, 1000);
1314 			ret = smu_cmn_send_smc_msg_with_param(smu,
1315 					SMU_MSG_EnableDeterminism,
1316 					max, NULL);
1317 			if (ret) {
1318 				dev_err(adev->dev,
1319 						"Failed to enable determinism at GFX clock %d MHz\n", max);
1320 			} else {
1321 				pstate_table->gfxclk_pstate.curr.min = min_clk;
1322 				pstate_table->gfxclk_pstate.curr.max = max;
1323 			}
1324 		}
1325 	}
1326 
1327 	return ret;
1328 }
1329 
1330 static int aldebaran_usr_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type,
1331 							long input[], uint32_t size)
1332 {
1333 	struct smu_dpm_context *smu_dpm = &(smu->smu_dpm);
1334 	struct smu_13_0_dpm_context *dpm_context = smu_dpm->dpm_context;
1335 	struct smu_umd_pstate_table *pstate_table = &smu->pstate_table;
1336 	uint32_t min_clk;
1337 	uint32_t max_clk;
1338 	int ret = 0;
1339 
1340 	/* Only allowed in manual or determinism mode */
1341 	if ((smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
1342 			&& (smu_dpm->dpm_level != AMD_DPM_FORCED_LEVEL_PERF_DETERMINISM))
1343 		return -EINVAL;
1344 
1345 	switch (type) {
1346 	case PP_OD_EDIT_SCLK_VDDC_TABLE:
1347 		if (size != 2) {
1348 			dev_err(smu->adev->dev, "Input parameter number not correct\n");
1349 			return -EINVAL;
1350 		}
1351 
1352 		if (input[0] == 0) {
1353 			if (input[1] < dpm_context->dpm_tables.gfx_table.min) {
1354 				dev_warn(smu->adev->dev, "Minimum GFX clk (%ld) MHz specified is less than the minimum allowed (%d) MHz\n",
1355 					input[1], dpm_context->dpm_tables.gfx_table.min);
1356 				pstate_table->gfxclk_pstate.custom.min =
1357 					pstate_table->gfxclk_pstate.curr.min;
1358 				return -EINVAL;
1359 			}
1360 
1361 			pstate_table->gfxclk_pstate.custom.min = input[1];
1362 		} else if (input[0] == 1) {
1363 			if (input[1] > dpm_context->dpm_tables.gfx_table.max) {
1364 				dev_warn(smu->adev->dev, "Maximum GFX clk (%ld) MHz specified is greater than the maximum allowed (%d) MHz\n",
1365 					input[1], dpm_context->dpm_tables.gfx_table.max);
1366 				pstate_table->gfxclk_pstate.custom.max =
1367 					pstate_table->gfxclk_pstate.curr.max;
1368 				return -EINVAL;
1369 			}
1370 
1371 			pstate_table->gfxclk_pstate.custom.max = input[1];
1372 		} else {
1373 			return -EINVAL;
1374 		}
1375 		break;
1376 	case PP_OD_RESTORE_DEFAULT_TABLE:
1377 		if (size != 0) {
1378 			dev_err(smu->adev->dev, "Input parameter number not correct\n");
1379 			return -EINVAL;
1380 		} else {
1381 			/* Use the default frequencies for manual and determinism mode */
1382 			min_clk = dpm_context->dpm_tables.gfx_table.min;
1383 			max_clk = dpm_context->dpm_tables.gfx_table.max;
1384 
1385 			return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
1386 		}
1387 		break;
1388 	case PP_OD_COMMIT_DPM_TABLE:
1389 		if (size != 0) {
1390 			dev_err(smu->adev->dev, "Input parameter number not correct\n");
1391 			return -EINVAL;
1392 		} else {
1393 			if (!pstate_table->gfxclk_pstate.custom.min)
1394 				pstate_table->gfxclk_pstate.custom.min =
1395 					pstate_table->gfxclk_pstate.curr.min;
1396 
1397 			if (!pstate_table->gfxclk_pstate.custom.max)
1398 				pstate_table->gfxclk_pstate.custom.max =
1399 					pstate_table->gfxclk_pstate.curr.max;
1400 
1401 			min_clk = pstate_table->gfxclk_pstate.custom.min;
1402 			max_clk = pstate_table->gfxclk_pstate.custom.max;
1403 
1404 			return aldebaran_set_soft_freq_limited_range(smu, SMU_GFXCLK, min_clk, max_clk);
1405 		}
1406 		break;
1407 	default:
1408 		return -ENOSYS;
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 static bool aldebaran_is_dpm_running(struct smu_context *smu)
1415 {
1416 	int ret;
1417 	uint32_t feature_mask[2];
1418 	unsigned long feature_enabled;
1419 
1420 	ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2);
1421 	if (ret)
1422 		return false;
1423 	feature_enabled = (unsigned long)((uint64_t)feature_mask[0] |
1424 					  ((uint64_t)feature_mask[1] << 32));
1425 	return !!(feature_enabled & SMC_DPM_FEATURE);
1426 }
1427 
1428 static void aldebaran_fill_i2c_req(SwI2cRequest_t  *req, bool write,
1429 				  uint8_t address, uint32_t numbytes,
1430 				  uint8_t *data)
1431 {
1432 	int i;
1433 
1434 	req->I2CcontrollerPort = 0;
1435 	req->I2CSpeed = 2;
1436 	req->SlaveAddress = address;
1437 	req->NumCmds = numbytes;
1438 
1439 	for (i = 0; i < numbytes; i++) {
1440 		SwI2cCmd_t *cmd =  &req->SwI2cCmds[i];
1441 
1442 		/* First 2 bytes are always write for lower 2b EEPROM address */
1443 		if (i < 2)
1444 			cmd->CmdConfig = CMDCONFIG_READWRITE_MASK;
1445 		else
1446 			cmd->CmdConfig = write ? CMDCONFIG_READWRITE_MASK : 0;
1447 
1448 
1449 		/* Add RESTART for read  after address filled */
1450 		cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
1451 
1452 		/* Add STOP in the end */
1453 		cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
1454 
1455 		/* Fill with data regardless if read or write to simplify code */
1456 		cmd->ReadWriteData = data[i];
1457 	}
1458 }
1459 
1460 static int aldebaran_i2c_read_data(struct i2c_adapter *control,
1461 					       uint8_t address,
1462 					       uint8_t *data,
1463 					       uint32_t numbytes)
1464 {
1465 	uint32_t  i, ret = 0;
1466 	SwI2cRequest_t req;
1467 	struct amdgpu_device *adev = to_amdgpu_device(control);
1468 	struct smu_table_context *smu_table = &adev->smu.smu_table;
1469 	struct smu_table *table = &smu_table->driver_table;
1470 
1471 	if (numbytes > MAX_SW_I2C_COMMANDS) {
1472 		dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
1473 			numbytes, MAX_SW_I2C_COMMANDS);
1474 		return -EINVAL;
1475 	}
1476 
1477 	memset(&req, 0, sizeof(req));
1478 	aldebaran_fill_i2c_req(&req, false, address, numbytes, data);
1479 
1480 	mutex_lock(&adev->smu.mutex);
1481 	/* Now read data starting with that address */
1482 	ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
1483 					true);
1484 	mutex_unlock(&adev->smu.mutex);
1485 
1486 	if (!ret) {
1487 		SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
1488 
1489 		/* Assume SMU  fills res.SwI2cCmds[i].Data with read bytes */
1490 		for (i = 0; i < numbytes; i++)
1491 			data[i] = res->SwI2cCmds[i].ReadWriteData;
1492 
1493 		dev_dbg(adev->dev, "aldebaran_i2c_read_data, address = %x, bytes = %d, data :",
1494 				  (uint16_t)address, numbytes);
1495 
1496 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
1497 			       8, 1, data, numbytes, false);
1498 	} else
1499 		dev_err(adev->dev, "aldebaran_i2c_read_data - error occurred :%x", ret);
1500 
1501 	return ret;
1502 }
1503 
1504 static int aldebaran_i2c_write_data(struct i2c_adapter *control,
1505 						uint8_t address,
1506 						uint8_t *data,
1507 						uint32_t numbytes)
1508 {
1509 	uint32_t ret;
1510 	SwI2cRequest_t req;
1511 	struct amdgpu_device *adev = to_amdgpu_device(control);
1512 
1513 	if (numbytes > MAX_SW_I2C_COMMANDS) {
1514 		dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
1515 			numbytes, MAX_SW_I2C_COMMANDS);
1516 		return -EINVAL;
1517 	}
1518 
1519 	memset(&req, 0, sizeof(req));
1520 	aldebaran_fill_i2c_req(&req, true, address, numbytes, data);
1521 
1522 	mutex_lock(&adev->smu.mutex);
1523 	ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
1524 	mutex_unlock(&adev->smu.mutex);
1525 
1526 	if (!ret) {
1527 		dev_dbg(adev->dev, "aldebaran_i2c_write(), address = %x, bytes = %d , data: ",
1528 					 (uint16_t)address, numbytes);
1529 
1530 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
1531 			       8, 1, data, numbytes, false);
1532 		/*
1533 		 * According to EEPROM spec there is a MAX of 10 ms required for
1534 		 * EEPROM to flush internal RX buffer after STOP was issued at the
1535 		 * end of write transaction. During this time the EEPROM will not be
1536 		 * responsive to any more commands - so wait a bit more.
1537 		 */
1538 		msleep(10);
1539 
1540 	} else
1541 		dev_err(adev->dev, "aldebaran_i2c_write- error occurred :%x", ret);
1542 
1543 	return ret;
1544 }
1545 
1546 static int aldebaran_i2c_xfer(struct i2c_adapter *i2c_adap,
1547 			      struct i2c_msg *msgs, int num)
1548 {
1549 	uint32_t  i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
1550 	uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
1551 
1552 	for (i = 0; i < num; i++) {
1553 		/*
1554 		 * SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
1555 		 * once and hence the data needs to be spliced into chunks and sent each
1556 		 * chunk separately
1557 		 */
1558 		data_size = msgs[i].len - 2;
1559 		data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
1560 		next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
1561 		data_ptr = msgs[i].buf + 2;
1562 
1563 		for (j = 0; j < data_size / data_chunk_size; j++) {
1564 			/* Insert the EEPROM dest addess, bits 0-15 */
1565 			data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
1566 			data_chunk[1] = (next_eeprom_addr & 0xff);
1567 
1568 			if (msgs[i].flags & I2C_M_RD) {
1569 				ret = aldebaran_i2c_read_data(i2c_adap,
1570 							     (uint8_t)msgs[i].addr,
1571 							     data_chunk, MAX_SW_I2C_COMMANDS);
1572 
1573 				memcpy(data_ptr, data_chunk + 2, data_chunk_size);
1574 			} else {
1575 
1576 				memcpy(data_chunk + 2, data_ptr, data_chunk_size);
1577 
1578 				ret = aldebaran_i2c_write_data(i2c_adap,
1579 							      (uint8_t)msgs[i].addr,
1580 							      data_chunk, MAX_SW_I2C_COMMANDS);
1581 			}
1582 
1583 			if (ret) {
1584 				num = -EIO;
1585 				goto fail;
1586 			}
1587 
1588 			next_eeprom_addr += data_chunk_size;
1589 			data_ptr += data_chunk_size;
1590 		}
1591 
1592 		if (data_size % data_chunk_size) {
1593 			data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
1594 			data_chunk[1] = (next_eeprom_addr & 0xff);
1595 
1596 			if (msgs[i].flags & I2C_M_RD) {
1597 				ret = aldebaran_i2c_read_data(i2c_adap,
1598 							     (uint8_t)msgs[i].addr,
1599 							     data_chunk, (data_size % data_chunk_size) + 2);
1600 
1601 				memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
1602 			} else {
1603 				memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
1604 
1605 				ret = aldebaran_i2c_write_data(i2c_adap,
1606 							      (uint8_t)msgs[i].addr,
1607 							      data_chunk, (data_size % data_chunk_size) + 2);
1608 			}
1609 
1610 			if (ret) {
1611 				num = -EIO;
1612 				goto fail;
1613 			}
1614 		}
1615 	}
1616 
1617 fail:
1618 	return num;
1619 }
1620 
1621 static u32 aldebaran_i2c_func(struct i2c_adapter *adap)
1622 {
1623 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1624 }
1625 
1626 
1627 static const struct i2c_algorithm aldebaran_i2c_algo = {
1628 	.master_xfer = aldebaran_i2c_xfer,
1629 	.functionality = aldebaran_i2c_func,
1630 };
1631 
1632 static int aldebaran_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control)
1633 {
1634 	struct amdgpu_device *adev = to_amdgpu_device(control);
1635 	int res;
1636 
1637 	control->owner = THIS_MODULE;
1638 	control->class = I2C_CLASS_SPD;
1639 	control->dev.parent = &adev->pdev->dev;
1640 	control->algo = &aldebaran_i2c_algo;
1641 	snprintf(control->name, sizeof(control->name), "AMDGPU SMU");
1642 
1643 	res = i2c_add_adapter(control);
1644 	if (res)
1645 		DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
1646 
1647 	return res;
1648 }
1649 
1650 static void aldebaran_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control)
1651 {
1652 	i2c_del_adapter(control);
1653 }
1654 
1655 static void aldebaran_get_unique_id(struct smu_context *smu)
1656 {
1657 	struct amdgpu_device *adev = smu->adev;
1658 	SmuMetrics_t *metrics = smu->smu_table.metrics_table;
1659 	uint32_t upper32 = 0, lower32 = 0;
1660 	int ret;
1661 
1662 	mutex_lock(&smu->metrics_lock);
1663 	ret = smu_cmn_get_metrics_table_locked(smu, NULL, false);
1664 	if (ret)
1665 		goto out_unlock;
1666 
1667 	upper32 = metrics->PublicSerialNumUpper32;
1668 	lower32 = metrics->PublicSerialNumLower32;
1669 
1670 out_unlock:
1671 	mutex_unlock(&smu->metrics_lock);
1672 
1673 	adev->unique_id = ((uint64_t)upper32 << 32) | lower32;
1674 	sprintf(adev->serial, "%016llx", adev->unique_id);
1675 }
1676 
1677 static bool aldebaran_is_baco_supported(struct smu_context *smu)
1678 {
1679 	/* aldebaran is not support baco */
1680 
1681 	return false;
1682 }
1683 
1684 static int aldebaran_set_df_cstate(struct smu_context *smu,
1685 				   enum pp_df_cstate state)
1686 {
1687 	return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL);
1688 }
1689 
1690 static int aldebaran_allow_xgmi_power_down(struct smu_context *smu, bool en)
1691 {
1692 	return smu_cmn_send_smc_msg_with_param(smu,
1693 					       SMU_MSG_GmiPwrDnControl,
1694 					       en ? 1 : 0,
1695 					       NULL);
1696 }
1697 
1698 static const struct throttling_logging_label {
1699 	uint32_t feature_mask;
1700 	const char *label;
1701 } logging_label[] = {
1702 	{(1U << THROTTLER_TEMP_MEM_BIT), "HBM"},
1703 	{(1U << THROTTLER_TEMP_VR_GFX_BIT), "VR of GFX rail"},
1704 	{(1U << THROTTLER_TEMP_VR_MEM_BIT), "VR of HBM rail"},
1705 	{(1U << THROTTLER_TEMP_VR_SOC_BIT), "VR of SOC rail"},
1706 };
1707 static void aldebaran_log_thermal_throttling_event(struct smu_context *smu)
1708 {
1709 	int ret;
1710 	int throttler_idx, throtting_events = 0, buf_idx = 0;
1711 	struct amdgpu_device *adev = smu->adev;
1712 	uint32_t throttler_status;
1713 	char log_buf[256];
1714 
1715 	ret = aldebaran_get_smu_metrics_data(smu,
1716 					     METRICS_THROTTLER_STATUS,
1717 					     &throttler_status);
1718 	if (ret)
1719 		return;
1720 
1721 	memset(log_buf, 0, sizeof(log_buf));
1722 	for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label);
1723 	     throttler_idx++) {
1724 		if (throttler_status & logging_label[throttler_idx].feature_mask) {
1725 			throtting_events++;
1726 			buf_idx += snprintf(log_buf + buf_idx,
1727 					    sizeof(log_buf) - buf_idx,
1728 					    "%s%s",
1729 					    throtting_events > 1 ? " and " : "",
1730 					    logging_label[throttler_idx].label);
1731 			if (buf_idx >= sizeof(log_buf)) {
1732 				dev_err(adev->dev, "buffer overflow!\n");
1733 				log_buf[sizeof(log_buf) - 1] = '\0';
1734 				break;
1735 			}
1736 		}
1737 	}
1738 
1739 	dev_warn(adev->dev, "WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n",
1740 		 log_buf);
1741 	kgd2kfd_smi_event_throttle(smu->adev->kfd.dev, throttler_status);
1742 }
1743 
1744 static int aldebaran_get_current_pcie_link_speed(struct smu_context *smu)
1745 {
1746 	struct amdgpu_device *adev = smu->adev;
1747 	uint32_t esm_ctrl;
1748 
1749 	/* TODO: confirm this on real target */
1750 	esm_ctrl = RREG32_PCIE(smnPCIE_ESM_CTRL);
1751 	if ((esm_ctrl >> 15) & 0x1FFFF)
1752 		return (((esm_ctrl >> 8) & 0x3F) + 128);
1753 
1754 	return smu_v13_0_get_current_pcie_link_speed(smu);
1755 }
1756 
1757 static ssize_t aldebaran_get_gpu_metrics(struct smu_context *smu,
1758 					 void **table)
1759 {
1760 	struct smu_table_context *smu_table = &smu->smu_table;
1761 	struct gpu_metrics_v1_3 *gpu_metrics =
1762 		(struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table;
1763 	SmuMetrics_t metrics;
1764 	int i, ret = 0;
1765 
1766 	ret = smu_cmn_get_metrics_table(smu,
1767 					&metrics,
1768 					true);
1769 	if (ret)
1770 		return ret;
1771 
1772 	smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3);
1773 
1774 	gpu_metrics->temperature_edge = metrics.TemperatureEdge;
1775 	gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
1776 	gpu_metrics->temperature_mem = metrics.TemperatureHBM;
1777 	gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
1778 	gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
1779 	gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem;
1780 
1781 	gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
1782 	gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
1783 	gpu_metrics->average_mm_activity = 0;
1784 
1785 	/* Valid power data is available only from primary die */
1786 	if (aldebaran_is_primary(smu)) {
1787 		gpu_metrics->average_socket_power = metrics.AverageSocketPower;
1788 		gpu_metrics->energy_accumulator =
1789 			(uint64_t)metrics.EnergyAcc64bitHigh << 32 |
1790 			metrics.EnergyAcc64bitLow;
1791 	} else {
1792 		gpu_metrics->average_socket_power = 0;
1793 		gpu_metrics->energy_accumulator = 0;
1794 	}
1795 
1796 	gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
1797 	gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
1798 	gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency;
1799 	gpu_metrics->average_vclk0_frequency = 0;
1800 	gpu_metrics->average_dclk0_frequency = 0;
1801 
1802 	gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
1803 	gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
1804 	gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
1805 	gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK];
1806 	gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK];
1807 
1808 	gpu_metrics->throttle_status = metrics.ThrottlerStatus;
1809 	gpu_metrics->indep_throttle_status =
1810 			smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
1811 							   aldebaran_throttler_map);
1812 
1813 	gpu_metrics->current_fan_speed = 0;
1814 
1815 	gpu_metrics->pcie_link_width =
1816 		smu_v13_0_get_current_pcie_link_width(smu);
1817 	gpu_metrics->pcie_link_speed =
1818 		aldebaran_get_current_pcie_link_speed(smu);
1819 
1820 	gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
1821 
1822 	gpu_metrics->gfx_activity_acc = metrics.GfxBusyAcc;
1823 	gpu_metrics->mem_activity_acc = metrics.DramBusyAcc;
1824 
1825 	for (i = 0; i < NUM_HBM_INSTANCES; i++)
1826 		gpu_metrics->temperature_hbm[i] = metrics.TemperatureAllHBM[i];
1827 
1828 	gpu_metrics->firmware_timestamp = ((uint64_t)metrics.TimeStampHigh << 32) |
1829 					metrics.TimeStampLow;
1830 
1831 	*table = (void *)gpu_metrics;
1832 
1833 	return sizeof(struct gpu_metrics_v1_3);
1834 }
1835 
1836 static int aldebaran_mode2_reset(struct smu_context *smu)
1837 {
1838 	u32 smu_version;
1839 	int ret = 0, index;
1840 	struct amdgpu_device *adev = smu->adev;
1841 	int timeout = 10;
1842 
1843 	smu_cmn_get_smc_version(smu, NULL, &smu_version);
1844 
1845 	index = smu_cmn_to_asic_specific_index(smu, CMN2ASIC_MAPPING_MSG,
1846 						SMU_MSG_GfxDeviceDriverReset);
1847 
1848 	mutex_lock(&smu->message_lock);
1849 	if (smu_version >= 0x00441400) {
1850 		ret = smu_cmn_send_msg_without_waiting(smu, (uint16_t)index, SMU_RESET_MODE_2);
1851 		/* This is similar to FLR, wait till max FLR timeout */
1852 		msleep(100);
1853 		dev_dbg(smu->adev->dev, "restore config space...\n");
1854 		/* Restore the config space saved during init */
1855 		amdgpu_device_load_pci_state(adev->pdev);
1856 
1857 		dev_dbg(smu->adev->dev, "wait for reset ack\n");
1858 		while (ret == -ETIME && timeout)  {
1859 			ret = smu_cmn_wait_for_response(smu);
1860 			/* Wait a bit more time for getting ACK */
1861 			if (ret == -ETIME) {
1862 				--timeout;
1863 				usleep_range(500, 1000);
1864 				continue;
1865 			}
1866 
1867 			if (ret != 1) {
1868 				dev_err(adev->dev, "failed to send mode2 message \tparam: 0x%08x response %#x\n",
1869 						SMU_RESET_MODE_2, ret);
1870 				goto out;
1871 			}
1872 		}
1873 
1874 	} else {
1875 		dev_err(adev->dev, "smu fw 0x%x does not support MSG_GfxDeviceDriverReset MSG\n",
1876 				smu_version);
1877 	}
1878 
1879 	if (ret == 1)
1880 		ret = 0;
1881 out:
1882 	mutex_unlock(&smu->message_lock);
1883 
1884 	return ret;
1885 }
1886 
1887 static bool aldebaran_is_mode1_reset_supported(struct smu_context *smu)
1888 {
1889 #if 0
1890 	struct amdgpu_device *adev = smu->adev;
1891 	u32 smu_version;
1892 	uint32_t val;
1893 	/**
1894 	 * PM FW version support mode1 reset from 68.07
1895 	 */
1896 	smu_cmn_get_smc_version(smu, NULL, &smu_version);
1897 	if ((smu_version < 0x00440700))
1898 		return false;
1899 	/**
1900 	 * mode1 reset relies on PSP, so we should check if
1901 	 * PSP is alive.
1902 	 */
1903 	val = RREG32_SOC15(MP0, 0, regMP0_SMN_C2PMSG_81);
1904 
1905 	return val != 0x0;
1906 #endif
1907 	return true;
1908 }
1909 
1910 static bool aldebaran_is_mode2_reset_supported(struct smu_context *smu)
1911 {
1912 	return true;
1913 }
1914 
1915 static int aldebaran_set_mp1_state(struct smu_context *smu,
1916 				   enum pp_mp1_state mp1_state)
1917 {
1918 	switch (mp1_state) {
1919 	case PP_MP1_STATE_UNLOAD:
1920 		return smu_cmn_set_mp1_state(smu, mp1_state);
1921 	default:
1922 		return 0;
1923 	}
1924 }
1925 
1926 static int aldebaran_smu_send_hbm_bad_page_num(struct smu_context *smu,
1927 		uint32_t size)
1928 {
1929 	int ret = 0;
1930 
1931 	/* message SMU to update the bad page number on SMUBUS */
1932 	ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetNumBadHbmPagesRetired, size, NULL);
1933 	if (ret)
1934 		dev_err(smu->adev->dev, "[%s] failed to message SMU to update HBM bad pages number\n",
1935 				__func__);
1936 
1937 	return ret;
1938 }
1939 
1940 static const struct pptable_funcs aldebaran_ppt_funcs = {
1941 	/* init dpm */
1942 	.get_allowed_feature_mask = aldebaran_get_allowed_feature_mask,
1943 	/* dpm/clk tables */
1944 	.set_default_dpm_table = aldebaran_set_default_dpm_table,
1945 	.populate_umd_state_clk = aldebaran_populate_umd_state_clk,
1946 	.get_thermal_temperature_range = aldebaran_get_thermal_temperature_range,
1947 	.print_clk_levels = aldebaran_print_clk_levels,
1948 	.force_clk_levels = aldebaran_force_clk_levels,
1949 	.read_sensor = aldebaran_read_sensor,
1950 	.set_performance_level = aldebaran_set_performance_level,
1951 	.get_power_limit = aldebaran_get_power_limit,
1952 	.is_dpm_running = aldebaran_is_dpm_running,
1953 	.get_unique_id = aldebaran_get_unique_id,
1954 	.init_microcode = smu_v13_0_init_microcode,
1955 	.load_microcode = smu_v13_0_load_microcode,
1956 	.fini_microcode = smu_v13_0_fini_microcode,
1957 	.init_smc_tables = aldebaran_init_smc_tables,
1958 	.fini_smc_tables = smu_v13_0_fini_smc_tables,
1959 	.init_power = smu_v13_0_init_power,
1960 	.fini_power = smu_v13_0_fini_power,
1961 	.check_fw_status = smu_v13_0_check_fw_status,
1962 	/* pptable related */
1963 	.setup_pptable = aldebaran_setup_pptable,
1964 	.get_vbios_bootup_values = smu_v13_0_get_vbios_bootup_values,
1965 	.check_fw_version = smu_v13_0_check_fw_version,
1966 	.write_pptable = smu_cmn_write_pptable,
1967 	.set_driver_table_location = smu_v13_0_set_driver_table_location,
1968 	.set_tool_table_location = smu_v13_0_set_tool_table_location,
1969 	.notify_memory_pool_location = smu_v13_0_notify_memory_pool_location,
1970 	.system_features_control = aldebaran_system_features_control,
1971 	.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
1972 	.send_smc_msg = smu_cmn_send_smc_msg,
1973 	.get_enabled_mask = smu_cmn_get_enabled_mask,
1974 	.feature_is_enabled = smu_cmn_feature_is_enabled,
1975 	.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
1976 	.set_power_limit = aldebaran_set_power_limit,
1977 	.init_max_sustainable_clocks = smu_v13_0_init_max_sustainable_clocks,
1978 	.enable_thermal_alert = smu_v13_0_enable_thermal_alert,
1979 	.disable_thermal_alert = smu_v13_0_disable_thermal_alert,
1980 	.set_xgmi_pstate = smu_v13_0_set_xgmi_pstate,
1981 	.register_irq_handler = smu_v13_0_register_irq_handler,
1982 	.set_azalia_d3_pme = smu_v13_0_set_azalia_d3_pme,
1983 	.get_max_sustainable_clocks_by_dc = smu_v13_0_get_max_sustainable_clocks_by_dc,
1984 	.baco_is_support= aldebaran_is_baco_supported,
1985 	.get_dpm_ultimate_freq = smu_v13_0_get_dpm_ultimate_freq,
1986 	.set_soft_freq_limited_range = aldebaran_set_soft_freq_limited_range,
1987 	.od_edit_dpm_table = aldebaran_usr_edit_dpm_table,
1988 	.set_df_cstate = aldebaran_set_df_cstate,
1989 	.allow_xgmi_power_down = aldebaran_allow_xgmi_power_down,
1990 	.log_thermal_throttling_event = aldebaran_log_thermal_throttling_event,
1991 	.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
1992 	.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
1993 	.get_gpu_metrics = aldebaran_get_gpu_metrics,
1994 	.mode1_reset_is_support = aldebaran_is_mode1_reset_supported,
1995 	.mode2_reset_is_support = aldebaran_is_mode2_reset_supported,
1996 	.mode1_reset = smu_v13_0_mode1_reset,
1997 	.set_mp1_state = aldebaran_set_mp1_state,
1998 	.mode2_reset = aldebaran_mode2_reset,
1999 	.wait_for_event = smu_v13_0_wait_for_event,
2000 	.i2c_init = aldebaran_i2c_control_init,
2001 	.i2c_fini = aldebaran_i2c_control_fini,
2002 	.send_hbm_bad_pages_num = aldebaran_smu_send_hbm_bad_page_num,
2003 };
2004 
2005 void aldebaran_set_ppt_funcs(struct smu_context *smu)
2006 {
2007 	smu->ppt_funcs = &aldebaran_ppt_funcs;
2008 	smu->message_map = aldebaran_message_map;
2009 	smu->clock_map = aldebaran_clk_map;
2010 	smu->feature_map = aldebaran_feature_mask_map;
2011 	smu->table_map = aldebaran_table_map;
2012 }
2013