1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Author: Huang Rui <ray.huang@amd.com> 23 * 24 */ 25 #include "pp_debug.h" 26 #include <linux/types.h> 27 #include <linux/kernel.h> 28 #include <linux/pci.h> 29 #include <linux/slab.h> 30 #include <linux/gfp.h> 31 32 #include "smumgr.h" 33 #include "iceland_smumgr.h" 34 35 #include "ppsmc.h" 36 37 #include "cgs_common.h" 38 39 #include "smu7_dyn_defaults.h" 40 #include "smu7_hwmgr.h" 41 #include "hardwaremanager.h" 42 #include "ppatomctrl.h" 43 #include "atombios.h" 44 #include "pppcielanes.h" 45 #include "pp_endian.h" 46 #include "processpptables.h" 47 48 49 #include "smu/smu_7_1_1_d.h" 50 #include "smu/smu_7_1_1_sh_mask.h" 51 #include "smu71_discrete.h" 52 53 #include "smu_ucode_xfer_vi.h" 54 #include "gmc/gmc_8_1_d.h" 55 #include "gmc/gmc_8_1_sh_mask.h" 56 #include "bif/bif_5_0_d.h" 57 #include "bif/bif_5_0_sh_mask.h" 58 #include "dce/dce_10_0_d.h" 59 #include "dce/dce_10_0_sh_mask.h" 60 61 62 #define ICELAND_SMC_SIZE 0x20000 63 64 #define POWERTUNE_DEFAULT_SET_MAX 1 65 #define MC_CG_ARB_FREQ_F1 0x0b 66 #define VDDC_VDDCI_DELTA 200 67 68 #define DEVICE_ID_VI_ICELAND_M_6900 0x6900 69 #define DEVICE_ID_VI_ICELAND_M_6901 0x6901 70 #define DEVICE_ID_VI_ICELAND_M_6902 0x6902 71 #define DEVICE_ID_VI_ICELAND_M_6903 0x6903 72 73 static const struct iceland_pt_defaults defaults_iceland = { 74 /* 75 * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, 76 * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT 77 */ 78 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, 79 { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61 }, 80 { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } 81 }; 82 83 /* 35W - XT, XTL */ 84 static const struct iceland_pt_defaults defaults_icelandxt = { 85 /* 86 * sviLoadLIneEn, SviLoadLineVddC, 87 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, 88 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, 89 * BAPM_TEMP_GRADIENT 90 */ 91 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, 92 { 0xA7, 0x0, 0x0, 0xB5, 0x0, 0x0, 0x9F, 0x0, 0x0, 0xD6, 0x0, 0x0, 0xD7, 0x0, 0x0}, 93 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} 94 }; 95 96 /* 25W - PRO, LE */ 97 static const struct iceland_pt_defaults defaults_icelandpro = { 98 /* 99 * sviLoadLIneEn, SviLoadLineVddC, 100 * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, 101 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, 102 * BAPM_TEMP_GRADIENT 103 */ 104 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0, 105 { 0xB7, 0x0, 0x0, 0xC3, 0x0, 0x0, 0xB5, 0x0, 0x0, 0xEA, 0x0, 0x0, 0xE6, 0x0, 0x0}, 106 { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0} 107 }; 108 109 static int iceland_start_smc(struct pp_hwmgr *hwmgr) 110 { 111 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 112 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 113 114 return 0; 115 } 116 117 static void iceland_reset_smc(struct pp_hwmgr *hwmgr) 118 { 119 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 120 SMC_SYSCON_RESET_CNTL, 121 rst_reg, 1); 122 } 123 124 125 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr) 126 { 127 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 128 SMC_SYSCON_CLOCK_CNTL_0, 129 ck_disable, 1); 130 } 131 132 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr) 133 { 134 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 135 SMC_SYSCON_CLOCK_CNTL_0, 136 ck_disable, 0); 137 } 138 139 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr) 140 { 141 /* set smc instruct start point at 0x0 */ 142 smu7_program_jump_on_start(hwmgr); 143 144 /* enable smc clock */ 145 iceland_start_smc_clock(hwmgr); 146 147 /* de-assert reset */ 148 iceland_start_smc(hwmgr); 149 150 PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, 151 INTERRUPTS_ENABLED, 1); 152 153 return 0; 154 } 155 156 157 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr, 158 uint32_t length, const uint8_t *src, 159 uint32_t limit, uint32_t start_addr) 160 { 161 uint32_t byte_count = length; 162 uint32_t data; 163 164 PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL); 165 166 cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr); 167 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1); 168 169 while (byte_count >= 4) { 170 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3]; 171 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data); 172 src += 4; 173 byte_count -= 4; 174 } 175 176 PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0); 177 178 PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL); 179 180 return 0; 181 } 182 183 184 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr) 185 { 186 uint32_t val; 187 struct cgs_firmware_info info = {0}; 188 189 if (hwmgr == NULL || hwmgr->device == NULL) 190 return -EINVAL; 191 192 /* load SMC firmware */ 193 cgs_get_firmware_info(hwmgr->device, 194 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info); 195 196 if (info.image_size & 3) { 197 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n"); 198 return -EINVAL; 199 } 200 201 if (info.image_size > ICELAND_SMC_SIZE) { 202 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n"); 203 return -EINVAL; 204 } 205 hwmgr->smu_version = info.version; 206 /* wait for smc boot up */ 207 PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 208 RCU_UC_EVENTS, boot_seq_done, 0); 209 210 /* clear firmware interrupt enable flag */ 211 val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 212 ixSMC_SYSCON_MISC_CNTL); 213 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 214 ixSMC_SYSCON_MISC_CNTL, val | 1); 215 216 /* stop smc clock */ 217 iceland_stop_smc_clock(hwmgr); 218 219 /* reset smc */ 220 iceland_reset_smc(hwmgr); 221 iceland_upload_smc_firmware_data(hwmgr, info.image_size, 222 (uint8_t *)info.kptr, ICELAND_SMC_SIZE, 223 info.ucode_start_address); 224 225 return 0; 226 } 227 228 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr, 229 uint32_t firmwareType) 230 { 231 return 0; 232 } 233 234 static int iceland_start_smu(struct pp_hwmgr *hwmgr) 235 { 236 struct iceland_smumgr *priv = hwmgr->smu_backend; 237 int result; 238 239 if (!smu7_is_smc_ram_running(hwmgr)) { 240 result = iceland_smu_upload_firmware_image(hwmgr); 241 if (result) 242 return result; 243 244 iceland_smu_start_smc(hwmgr); 245 } 246 247 /* Setup SoftRegsStart here to visit the register UcodeLoadStatus 248 * to check fw loading state 249 */ 250 smu7_read_smc_sram_dword(hwmgr, 251 SMU71_FIRMWARE_HEADER_LOCATION + 252 offsetof(SMU71_Firmware_Header, SoftRegisters), 253 &(priv->smu7_data.soft_regs_start), 0x40000); 254 255 result = smu7_request_smu_load_fw(hwmgr); 256 257 return result; 258 } 259 260 static int iceland_smu_init(struct pp_hwmgr *hwmgr) 261 { 262 struct iceland_smumgr *iceland_priv = NULL; 263 264 iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL); 265 266 if (iceland_priv == NULL) 267 return -ENOMEM; 268 269 hwmgr->smu_backend = iceland_priv; 270 271 if (smu7_init(hwmgr)) { 272 kfree(iceland_priv); 273 return -EINVAL; 274 } 275 276 return 0; 277 } 278 279 280 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) 281 { 282 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 283 struct amdgpu_device *adev = hwmgr->adev; 284 uint32_t dev_id; 285 286 dev_id = adev->pdev->device; 287 288 switch (dev_id) { 289 case DEVICE_ID_VI_ICELAND_M_6900: 290 case DEVICE_ID_VI_ICELAND_M_6903: 291 smu_data->power_tune_defaults = &defaults_icelandxt; 292 break; 293 294 case DEVICE_ID_VI_ICELAND_M_6901: 295 case DEVICE_ID_VI_ICELAND_M_6902: 296 smu_data->power_tune_defaults = &defaults_icelandpro; 297 break; 298 default: 299 smu_data->power_tune_defaults = &defaults_iceland; 300 pr_warn("Unknown V.I. Device ID.\n"); 301 break; 302 } 303 return; 304 } 305 306 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr) 307 { 308 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 309 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; 310 311 smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en; 312 smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc; 313 smu_data->power_tune_table.SviLoadLineTrimVddC = 3; 314 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; 315 316 return 0; 317 } 318 319 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr) 320 { 321 uint16_t tdc_limit; 322 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 323 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; 324 325 tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256); 326 smu_data->power_tune_table.TDC_VDDC_PkgLimit = 327 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); 328 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = 329 defaults->tdc_vddc_throttle_release_limit_perc; 330 smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt; 331 332 return 0; 333 } 334 335 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 336 { 337 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 338 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; 339 uint32_t temp; 340 341 if (smu7_read_smc_sram_dword(hwmgr, 342 fuse_table_offset + 343 offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl), 344 (uint32_t *)&temp, SMC_RAM_END)) 345 PP_ASSERT_WITH_CODE(false, 346 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", 347 return -EINVAL); 348 else 349 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl; 350 351 return 0; 352 } 353 354 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr) 355 { 356 return 0; 357 } 358 359 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr) 360 { 361 int i; 362 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 363 364 /* Currently not used. Set all to zero. */ 365 for (i = 0; i < 8; i++) 366 smu_data->power_tune_table.GnbLPML[i] = 0; 367 368 return 0; 369 } 370 371 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) 372 { 373 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 374 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; 375 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; 376 struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table; 377 378 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); 379 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); 380 381 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = 382 CONVERT_FROM_HOST_TO_SMC_US(HiSidd); 383 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = 384 CONVERT_FROM_HOST_TO_SMC_US(LoSidd); 385 386 return 0; 387 } 388 389 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) 390 { 391 int i; 392 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 393 uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd; 394 uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd; 395 396 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, 397 "The CAC Leakage table does not exist!", return -EINVAL); 398 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, 399 "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); 400 PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, 401 "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); 402 403 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { 404 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { 405 lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); 406 hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); 407 } 408 } else { 409 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL); 410 } 411 412 return 0; 413 } 414 415 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr) 416 { 417 int i; 418 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 419 uint8_t *vid = smu_data->power_tune_table.VddCVid; 420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 421 422 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, 423 "There should never be more than 8 entries for VddcVid!!!", 424 return -EINVAL); 425 426 for (i = 0; i < (int)data->vddc_voltage_table.count; i++) { 427 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); 428 } 429 430 return 0; 431 } 432 433 434 435 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr) 436 { 437 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 438 uint32_t pm_fuse_table_offset; 439 440 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 441 PHM_PlatformCaps_PowerContainment)) { 442 if (smu7_read_smc_sram_dword(hwmgr, 443 SMU71_FIRMWARE_HEADER_LOCATION + 444 offsetof(SMU71_Firmware_Header, PmFuseTable), 445 &pm_fuse_table_offset, SMC_RAM_END)) 446 PP_ASSERT_WITH_CODE(false, 447 "Attempt to get pm_fuse_table_offset Failed!", 448 return -EINVAL); 449 450 /* DW0 - DW3 */ 451 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr)) 452 PP_ASSERT_WITH_CODE(false, 453 "Attempt to populate bapm vddc vid Failed!", 454 return -EINVAL); 455 456 /* DW4 - DW5 */ 457 if (iceland_populate_vddc_vid(hwmgr)) 458 PP_ASSERT_WITH_CODE(false, 459 "Attempt to populate vddc vid Failed!", 460 return -EINVAL); 461 462 /* DW6 */ 463 if (iceland_populate_svi_load_line(hwmgr)) 464 PP_ASSERT_WITH_CODE(false, 465 "Attempt to populate SviLoadLine Failed!", 466 return -EINVAL); 467 /* DW7 */ 468 if (iceland_populate_tdc_limit(hwmgr)) 469 PP_ASSERT_WITH_CODE(false, 470 "Attempt to populate TDCLimit Failed!", return -EINVAL); 471 /* DW8 */ 472 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset)) 473 PP_ASSERT_WITH_CODE(false, 474 "Attempt to populate TdcWaterfallCtl, " 475 "LPMLTemperature Min and Max Failed!", 476 return -EINVAL); 477 478 /* DW9-DW12 */ 479 if (0 != iceland_populate_temperature_scaler(hwmgr)) 480 PP_ASSERT_WITH_CODE(false, 481 "Attempt to populate LPMLTemperatureScaler Failed!", 482 return -EINVAL); 483 484 /* DW13-DW16 */ 485 if (iceland_populate_gnb_lpml(hwmgr)) 486 PP_ASSERT_WITH_CODE(false, 487 "Attempt to populate GnbLPML Failed!", 488 return -EINVAL); 489 490 /* DW18 */ 491 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr)) 492 PP_ASSERT_WITH_CODE(false, 493 "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!", 494 return -EINVAL); 495 496 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, 497 (uint8_t *)&smu_data->power_tune_table, 498 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END)) 499 PP_ASSERT_WITH_CODE(false, 500 "Attempt to download PmFuseTable Failed!", 501 return -EINVAL); 502 } 503 return 0; 504 } 505 506 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, 507 struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, 508 uint32_t clock, uint32_t *vol) 509 { 510 uint32_t i = 0; 511 512 /* clock - voltage dependency table is empty table */ 513 if (allowed_clock_voltage_table->count == 0) 514 return -EINVAL; 515 516 for (i = 0; i < allowed_clock_voltage_table->count; i++) { 517 /* find first sclk bigger than request */ 518 if (allowed_clock_voltage_table->entries[i].clk >= clock) { 519 *vol = allowed_clock_voltage_table->entries[i].v; 520 return 0; 521 } 522 } 523 524 /* sclk is bigger than max sclk in the dependence table */ 525 *vol = allowed_clock_voltage_table->entries[i - 1].v; 526 527 return 0; 528 } 529 530 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, 531 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, 532 uint16_t *lo) 533 { 534 uint16_t v_index; 535 bool vol_found = false; 536 *hi = tab->value * VOLTAGE_SCALE; 537 *lo = tab->value * VOLTAGE_SCALE; 538 539 /* SCLK/VDDC Dependency Table has to exist. */ 540 PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, 541 "The SCLK/VDDC Dependency Table does not exist.", 542 return -EINVAL); 543 544 if (NULL == hwmgr->dyn_state.cac_leakage_table) { 545 pr_warn("CAC Leakage Table does not exist, using vddc.\n"); 546 return 0; 547 } 548 549 /* 550 * Since voltage in the sclk/vddc dependency table is not 551 * necessarily in ascending order because of ELB voltage 552 * patching, loop through entire list to find exact voltage. 553 */ 554 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { 555 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { 556 vol_found = true; 557 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { 558 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; 559 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); 560 } else { 561 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); 562 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; 563 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); 564 } 565 break; 566 } 567 } 568 569 /* 570 * If voltage is not found in the first pass, loop again to 571 * find the best match, equal or higher value. 572 */ 573 if (!vol_found) { 574 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { 575 if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { 576 vol_found = true; 577 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { 578 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; 579 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; 580 } else { 581 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); 582 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; 583 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); 584 } 585 break; 586 } 587 } 588 589 if (!vol_found) 590 pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); 591 } 592 593 return 0; 594 } 595 596 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, 597 pp_atomctrl_voltage_table_entry *tab, 598 SMU71_Discrete_VoltageLevel *smc_voltage_tab) 599 { 600 int result; 601 602 result = iceland_get_std_voltage_value_sidd(hwmgr, tab, 603 &smc_voltage_tab->StdVoltageHiSidd, 604 &smc_voltage_tab->StdVoltageLoSidd); 605 if (0 != result) { 606 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; 607 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; 608 } 609 610 smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); 611 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); 612 CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); 613 614 return 0; 615 } 616 617 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, 618 SMU71_Discrete_DpmTable *table) 619 { 620 unsigned int count; 621 int result; 622 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 623 624 table->VddcLevelCount = data->vddc_voltage_table.count; 625 for (count = 0; count < table->VddcLevelCount; count++) { 626 result = iceland_populate_smc_voltage_table(hwmgr, 627 &(data->vddc_voltage_table.entries[count]), 628 &(table->VddcLevel[count])); 629 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); 630 631 /* GPIO voltage control */ 632 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) 633 table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; 634 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) 635 table->VddcLevel[count].Smio = 0; 636 } 637 638 CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); 639 640 return 0; 641 } 642 643 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, 644 SMU71_Discrete_DpmTable *table) 645 { 646 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 647 uint32_t count; 648 int result; 649 650 table->VddciLevelCount = data->vddci_voltage_table.count; 651 652 for (count = 0; count < table->VddciLevelCount; count++) { 653 result = iceland_populate_smc_voltage_table(hwmgr, 654 &(data->vddci_voltage_table.entries[count]), 655 &(table->VddciLevel[count])); 656 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL); 657 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) 658 table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; 659 else 660 table->VddciLevel[count].Smio |= 0; 661 } 662 663 CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount); 664 665 return 0; 666 } 667 668 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, 669 SMU71_Discrete_DpmTable *table) 670 { 671 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 672 uint32_t count; 673 int result; 674 675 table->MvddLevelCount = data->mvdd_voltage_table.count; 676 677 for (count = 0; count < table->VddciLevelCount; count++) { 678 result = iceland_populate_smc_voltage_table(hwmgr, 679 &(data->mvdd_voltage_table.entries[count]), 680 &table->MvddLevel[count]); 681 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL); 682 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) 683 table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; 684 else 685 table->MvddLevel[count].Smio |= 0; 686 } 687 688 CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); 689 690 return 0; 691 } 692 693 694 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, 695 SMU71_Discrete_DpmTable *table) 696 { 697 int result; 698 699 result = iceland_populate_smc_vddc_table(hwmgr, table); 700 PP_ASSERT_WITH_CODE(0 == result, 701 "can not populate VDDC voltage table to SMC", return -EINVAL); 702 703 result = iceland_populate_smc_vdd_ci_table(hwmgr, table); 704 PP_ASSERT_WITH_CODE(0 == result, 705 "can not populate VDDCI voltage table to SMC", return -EINVAL); 706 707 result = iceland_populate_smc_mvdd_table(hwmgr, table); 708 PP_ASSERT_WITH_CODE(0 == result, 709 "can not populate MVDD voltage table to SMC", return -EINVAL); 710 711 return 0; 712 } 713 714 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, 715 struct SMU71_Discrete_Ulv *state) 716 { 717 uint32_t voltage_response_time, ulv_voltage; 718 int result; 719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 720 721 state->CcPwrDynRm = 0; 722 state->CcPwrDynRm1 = 0; 723 724 result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); 725 PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); 726 727 if (ulv_voltage == 0) { 728 data->ulv_supported = false; 729 return 0; 730 } 731 732 if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) { 733 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ 734 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) 735 state->VddcOffset = 0; 736 else 737 /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ 738 state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); 739 } else { 740 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ 741 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) 742 state->VddcOffsetVid = 0; 743 else /* used in SVI2 Mode */ 744 state->VddcOffsetVid = (uint8_t)( 745 (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) 746 * VOLTAGE_VID_OFFSET_SCALE2 747 / VOLTAGE_VID_OFFSET_SCALE1); 748 } 749 state->VddcPhase = 1; 750 751 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); 752 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); 753 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); 754 755 return 0; 756 } 757 758 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, 759 SMU71_Discrete_Ulv *ulv_level) 760 { 761 return iceland_populate_ulv_level(hwmgr, ulv_level); 762 } 763 764 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) 765 { 766 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 767 struct smu7_dpm_table *dpm_table = &data->dpm_table; 768 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 769 uint32_t i; 770 771 /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ 772 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { 773 table->LinkLevel[i].PcieGenSpeed = 774 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; 775 table->LinkLevel[i].PcieLaneCount = 776 (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); 777 table->LinkLevel[i].EnabledForActivity = 778 1; 779 table->LinkLevel[i].SPC = 780 (uint8_t)(data->pcie_spc_cap & 0xff); 781 table->LinkLevel[i].DownThreshold = 782 PP_HOST_TO_SMC_UL(5); 783 table->LinkLevel[i].UpThreshold = 784 PP_HOST_TO_SMC_UL(30); 785 } 786 787 smu_data->smc_state_table.LinkLevelCount = 788 (uint8_t)dpm_table->pcie_speed_table.count; 789 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 790 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); 791 792 return 0; 793 } 794 795 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr, 796 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk) 797 { 798 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 799 pp_atomctrl_clock_dividers_vi dividers; 800 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 801 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 802 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 803 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 804 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 805 uint32_t reference_clock; 806 uint32_t reference_divider; 807 uint32_t fbdiv; 808 int result; 809 810 /* get the engine clock dividers for this clock value*/ 811 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); 812 813 PP_ASSERT_WITH_CODE(result == 0, 814 "Error retrieving Engine Clock dividers from VBIOS.", return result); 815 816 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ 817 reference_clock = atomctrl_get_reference_clock(hwmgr); 818 819 reference_divider = 1 + dividers.uc_pll_ref_div; 820 821 /* low 14 bits is fraction and high 12 bits is divider*/ 822 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; 823 824 /* SPLL_FUNC_CNTL setup*/ 825 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 826 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); 827 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 828 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); 829 830 /* SPLL_FUNC_CNTL_3 setup*/ 831 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 832 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); 833 834 /* set to use fractional accumulation*/ 835 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, 836 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); 837 838 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 839 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { 840 pp_atomctrl_internal_ss_info ss_info; 841 842 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; 843 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { 844 /* 845 * ss_info.speed_spectrum_percentage -- in unit of 0.01% 846 * ss_info.speed_spectrum_rate -- in unit of khz 847 */ 848 /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ 849 uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); 850 851 /* clkv = 2 * D * fbdiv / NS */ 852 uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); 853 854 cg_spll_spread_spectrum = 855 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); 856 cg_spll_spread_spectrum = 857 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); 858 cg_spll_spread_spectrum_2 = 859 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); 860 } 861 } 862 863 sclk->SclkFrequency = engine_clock; 864 sclk->CgSpllFuncCntl3 = spll_func_cntl_3; 865 sclk->CgSpllFuncCntl4 = spll_func_cntl_4; 866 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; 867 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; 868 sclk->SclkDid = (uint8_t)dividers.pll_post_divider; 869 870 return 0; 871 } 872 873 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, 874 const struct phm_phase_shedding_limits_table *pl, 875 uint32_t sclk, uint32_t *p_shed) 876 { 877 unsigned int i; 878 879 /* use the minimum phase shedding */ 880 *p_shed = 1; 881 882 for (i = 0; i < pl->count; i++) { 883 if (sclk < pl->entries[i].Sclk) { 884 *p_shed = i; 885 break; 886 } 887 } 888 return 0; 889 } 890 891 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr, 892 uint32_t engine_clock, 893 SMU71_Discrete_GraphicsLevel *graphic_level) 894 { 895 int result; 896 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 897 898 result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level); 899 900 /* populate graphics levels*/ 901 result = iceland_get_dependency_volt_by_clk(hwmgr, 902 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, 903 &graphic_level->MinVddc); 904 PP_ASSERT_WITH_CODE((0 == result), 905 "can not find VDDC voltage value for VDDC engine clock dependency table", return result); 906 907 /* SCLK frequency in units of 10KHz*/ 908 graphic_level->SclkFrequency = engine_clock; 909 graphic_level->MinVddcPhases = 1; 910 911 if (data->vddc_phase_shed_control) 912 iceland_populate_phase_value_based_on_sclk(hwmgr, 913 hwmgr->dyn_state.vddc_phase_shed_limits_table, 914 engine_clock, 915 &graphic_level->MinVddcPhases); 916 917 /* Indicates maximum activity level for this performance level. 50% for now*/ 918 graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity; 919 920 graphic_level->CcPwrDynRm = 0; 921 graphic_level->CcPwrDynRm1 = 0; 922 /* this level can be used if activity is high enough.*/ 923 graphic_level->EnabledForActivity = 0; 924 /* this level can be used for throttling.*/ 925 graphic_level->EnabledForThrottle = 1; 926 graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst; 927 graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst; 928 graphic_level->VoltageDownHyst = 0; 929 graphic_level->PowerThrottle = 0; 930 931 data->display_timing.min_clock_in_sr = 932 hwmgr->display_config->min_core_set_clock_in_sr; 933 934 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 935 PHM_PlatformCaps_SclkDeepSleep)) 936 graphic_level->DeepSleepDivId = 937 smu7_get_sleep_divider_id_from_clock(engine_clock, 938 data->display_timing.min_clock_in_sr); 939 940 /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ 941 graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 942 943 if (0 == result) { 944 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE); 945 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases); 946 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); 947 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); 948 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); 949 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); 950 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); 951 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); 952 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); 953 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); 954 } 955 956 return result; 957 } 958 959 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 960 { 961 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 962 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 963 struct smu7_dpm_table *dpm_table = &data->dpm_table; 964 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + 965 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel); 966 967 uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * 968 SMU71_MAX_LEVELS_GRAPHICS; 969 970 SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel; 971 972 uint32_t i; 973 uint8_t highest_pcie_level_enabled = 0; 974 uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0; 975 uint8_t count = 0; 976 int result = 0; 977 978 memset(levels, 0x00, level_array_size); 979 980 for (i = 0; i < dpm_table->sclk_table.count; i++) { 981 result = iceland_populate_single_graphic_level(hwmgr, 982 dpm_table->sclk_table.dpm_levels[i].value, 983 &(smu_data->smc_state_table.GraphicsLevel[i])); 984 if (result != 0) 985 return result; 986 987 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ 988 if (i > 1) 989 smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; 990 } 991 992 /* Only enable level 0 for now. */ 993 smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1; 994 995 /* set highest level watermark to high */ 996 if (dpm_table->sclk_table.count > 1) 997 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = 998 PPSMC_DISPLAY_WATERMARK_HIGH; 999 1000 smu_data->smc_state_table.GraphicsDpmLevelCount = 1001 (uint8_t)dpm_table->sclk_table.count; 1002 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 1003 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); 1004 1005 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1006 (1 << (highest_pcie_level_enabled + 1))) != 0) { 1007 highest_pcie_level_enabled++; 1008 } 1009 1010 while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1011 (1 << lowest_pcie_level_enabled)) == 0) { 1012 lowest_pcie_level_enabled++; 1013 } 1014 1015 while ((count < highest_pcie_level_enabled) && 1016 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1017 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) { 1018 count++; 1019 } 1020 1021 mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? 1022 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled; 1023 1024 1025 /* set pcieDpmLevel to highest_pcie_level_enabled*/ 1026 for (i = 2; i < dpm_table->sclk_table.count; i++) { 1027 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; 1028 } 1029 1030 /* set pcieDpmLevel to lowest_pcie_level_enabled*/ 1031 smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; 1032 1033 /* set pcieDpmLevel to mid_pcie_level_enabled*/ 1034 smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; 1035 1036 /* level count will send to smc once at init smc table and never change*/ 1037 result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress, 1038 (uint8_t *)levels, (uint32_t)level_array_size, 1039 SMC_RAM_END); 1040 1041 return result; 1042 } 1043 1044 static int iceland_calculate_mclk_params( 1045 struct pp_hwmgr *hwmgr, 1046 uint32_t memory_clock, 1047 SMU71_Discrete_MemoryLevel *mclk, 1048 bool strobe_mode, 1049 bool dllStateOn 1050 ) 1051 { 1052 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1053 1054 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1055 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1056 uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; 1057 uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; 1058 uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; 1059 uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; 1060 uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; 1061 uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; 1062 uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; 1063 1064 pp_atomctrl_memory_clock_param mpll_param; 1065 int result; 1066 1067 result = atomctrl_get_memory_pll_dividers_si(hwmgr, 1068 memory_clock, &mpll_param, strobe_mode); 1069 PP_ASSERT_WITH_CODE(0 == result, 1070 "Error retrieving Memory Clock Parameters from VBIOS.", return result); 1071 1072 /* MPLL_FUNC_CNTL setup*/ 1073 mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); 1074 1075 /* MPLL_FUNC_CNTL_1 setup*/ 1076 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1077 MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); 1078 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1079 MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); 1080 mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, 1081 MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); 1082 1083 /* MPLL_AD_FUNC_CNTL setup*/ 1084 mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, 1085 MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); 1086 1087 if (data->is_memory_gddr5) { 1088 /* MPLL_DQ_FUNC_CNTL setup*/ 1089 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 1090 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); 1091 mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, 1092 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); 1093 } 1094 1095 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1096 PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { 1097 /* 1098 ************************************ 1099 Fref = Reference Frequency 1100 NF = Feedback divider ratio 1101 NR = Reference divider ratio 1102 Fnom = Nominal VCO output frequency = Fref * NF / NR 1103 Fs = Spreading Rate 1104 D = Percentage down-spread / 2 1105 Fint = Reference input frequency to PFD = Fref / NR 1106 NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) 1107 CLKS = NS - 1 = ISS_STEP_NUM[11:0] 1108 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) 1109 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] 1110 ************************************* 1111 */ 1112 pp_atomctrl_internal_ss_info ss_info; 1113 uint32_t freq_nom; 1114 uint32_t tmp; 1115 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); 1116 1117 /* for GDDR5 for all modes and DDR3 */ 1118 if (1 == mpll_param.qdr) 1119 freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); 1120 else 1121 freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); 1122 1123 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ 1124 tmp = (freq_nom / reference_clock); 1125 tmp = tmp * tmp; 1126 1127 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { 1128 /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ 1129 /* ss.Info.speed_spectrum_rate -- in unit of khz */ 1130 /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ 1131 /* = reference_clock * 5 / speed_spectrum_rate */ 1132 uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; 1133 1134 /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ 1135 /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ 1136 uint32_t clkv = 1137 (uint32_t)((((131 * ss_info.speed_spectrum_percentage * 1138 ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); 1139 1140 mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); 1141 mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); 1142 } 1143 } 1144 1145 /* MCLK_PWRMGT_CNTL setup */ 1146 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1147 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); 1148 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1149 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); 1150 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1151 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); 1152 1153 1154 /* Save the result data to outpupt memory level structure */ 1155 mclk->MclkFrequency = memory_clock; 1156 mclk->MpllFuncCntl = mpll_func_cntl; 1157 mclk->MpllFuncCntl_1 = mpll_func_cntl_1; 1158 mclk->MpllFuncCntl_2 = mpll_func_cntl_2; 1159 mclk->MpllAdFuncCntl = mpll_ad_func_cntl; 1160 mclk->MpllDqFuncCntl = mpll_dq_func_cntl; 1161 mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; 1162 mclk->DllCntl = dll_cntl; 1163 mclk->MpllSs1 = mpll_ss1; 1164 mclk->MpllSs2 = mpll_ss2; 1165 1166 return 0; 1167 } 1168 1169 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock, 1170 bool strobe_mode) 1171 { 1172 uint8_t mc_para_index; 1173 1174 if (strobe_mode) { 1175 if (memory_clock < 12500) { 1176 mc_para_index = 0x00; 1177 } else if (memory_clock > 47500) { 1178 mc_para_index = 0x0f; 1179 } else { 1180 mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); 1181 } 1182 } else { 1183 if (memory_clock < 65000) { 1184 mc_para_index = 0x00; 1185 } else if (memory_clock > 135000) { 1186 mc_para_index = 0x0f; 1187 } else { 1188 mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); 1189 } 1190 } 1191 1192 return mc_para_index; 1193 } 1194 1195 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) 1196 { 1197 uint8_t mc_para_index; 1198 1199 if (memory_clock < 10000) { 1200 mc_para_index = 0; 1201 } else if (memory_clock >= 80000) { 1202 mc_para_index = 0x0f; 1203 } else { 1204 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); 1205 } 1206 1207 return mc_para_index; 1208 } 1209 1210 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, 1211 uint32_t memory_clock, uint32_t *p_shed) 1212 { 1213 unsigned int i; 1214 1215 *p_shed = 1; 1216 1217 for (i = 0; i < pl->count; i++) { 1218 if (memory_clock < pl->entries[i].Mclk) { 1219 *p_shed = i; 1220 break; 1221 } 1222 } 1223 1224 return 0; 1225 } 1226 1227 static int iceland_populate_single_memory_level( 1228 struct pp_hwmgr *hwmgr, 1229 uint32_t memory_clock, 1230 SMU71_Discrete_MemoryLevel *memory_level 1231 ) 1232 { 1233 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1234 int result = 0; 1235 bool dll_state_on; 1236 uint32_t mclk_edc_wr_enable_threshold = 40000; 1237 uint32_t mclk_edc_enable_threshold = 40000; 1238 uint32_t mclk_strobe_mode_threshold = 40000; 1239 1240 if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) { 1241 result = iceland_get_dependency_volt_by_clk(hwmgr, 1242 hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); 1243 PP_ASSERT_WITH_CODE((0 == result), 1244 "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); 1245 } 1246 1247 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) { 1248 memory_level->MinVddci = memory_level->MinVddc; 1249 } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { 1250 result = iceland_get_dependency_volt_by_clk(hwmgr, 1251 hwmgr->dyn_state.vddci_dependency_on_mclk, 1252 memory_clock, 1253 &memory_level->MinVddci); 1254 PP_ASSERT_WITH_CODE((0 == result), 1255 "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); 1256 } 1257 1258 memory_level->MinVddcPhases = 1; 1259 1260 if (data->vddc_phase_shed_control) { 1261 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, 1262 memory_clock, &memory_level->MinVddcPhases); 1263 } 1264 1265 memory_level->EnabledForThrottle = 1; 1266 memory_level->EnabledForActivity = 0; 1267 memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst; 1268 memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst; 1269 memory_level->VoltageDownHyst = 0; 1270 1271 /* Indicates maximum activity level for this performance level.*/ 1272 memory_level->ActivityLevel = data->current_profile_setting.mclk_activity; 1273 memory_level->StutterEnable = 0; 1274 memory_level->StrobeEnable = 0; 1275 memory_level->EdcReadEnable = 0; 1276 memory_level->EdcWriteEnable = 0; 1277 memory_level->RttEnable = 0; 1278 1279 /* default set to low watermark. Highest level will be set to high later.*/ 1280 memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1281 1282 data->display_timing.num_existing_displays = hwmgr->display_config->num_display; 1283 data->display_timing.vrefresh = hwmgr->display_config->vrefresh; 1284 1285 /* stutter mode not support on iceland */ 1286 1287 /* decide strobe mode*/ 1288 memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) && 1289 (memory_clock <= mclk_strobe_mode_threshold); 1290 1291 /* decide EDC mode and memory clock ratio*/ 1292 if (data->is_memory_gddr5) { 1293 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock, 1294 memory_level->StrobeEnable); 1295 1296 if ((mclk_edc_enable_threshold != 0) && 1297 (memory_clock > mclk_edc_enable_threshold)) { 1298 memory_level->EdcReadEnable = 1; 1299 } 1300 1301 if ((mclk_edc_wr_enable_threshold != 0) && 1302 (memory_clock > mclk_edc_wr_enable_threshold)) { 1303 memory_level->EdcWriteEnable = 1; 1304 } 1305 1306 if (memory_level->StrobeEnable) { 1307 if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >= 1308 ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) 1309 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1310 else 1311 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; 1312 } else 1313 dll_state_on = data->dll_default_on; 1314 } else { 1315 memory_level->StrobeRatio = 1316 iceland_get_ddr3_mclk_frequency_ratio(memory_clock); 1317 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; 1318 } 1319 1320 result = iceland_calculate_mclk_params(hwmgr, 1321 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on); 1322 1323 if (0 == result) { 1324 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); 1325 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); 1326 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); 1327 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); 1328 /* MCLK frequency in units of 10KHz*/ 1329 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); 1330 /* Indicates maximum activity level for this performance level.*/ 1331 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); 1332 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); 1333 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); 1334 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); 1335 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); 1336 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); 1337 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); 1338 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); 1339 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); 1340 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); 1341 } 1342 1343 return result; 1344 } 1345 1346 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1347 { 1348 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1349 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1350 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1351 int result; 1352 1353 /* populate MCLK dpm table to SMU7 */ 1354 uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel); 1355 uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY; 1356 SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel; 1357 uint32_t i; 1358 1359 memset(levels, 0x00, level_array_size); 1360 1361 for (i = 0; i < dpm_table->mclk_table.count; i++) { 1362 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), 1363 "can not populate memory level as memory clock is zero", return -EINVAL); 1364 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, 1365 &(smu_data->smc_state_table.MemoryLevel[i])); 1366 if (0 != result) { 1367 return result; 1368 } 1369 } 1370 1371 /* Only enable level 0 for now.*/ 1372 smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; 1373 1374 /* 1375 * in order to prevent MC activity from stutter mode to push DPM up. 1376 * the UVD change complements this by putting the MCLK in a higher state 1377 * by default such that we are not effected by up threshold or and MCLK DPM latency. 1378 */ 1379 smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; 1380 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel); 1381 1382 smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; 1383 data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); 1384 /* set highest level watermark to high*/ 1385 smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; 1386 1387 /* level count will send to smc once at init smc table and never change*/ 1388 result = smu7_copy_bytes_to_smc(hwmgr, 1389 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, 1390 SMC_RAM_END); 1391 1392 return result; 1393 } 1394 1395 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, 1396 SMU71_Discrete_VoltageLevel *voltage) 1397 { 1398 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1399 1400 uint32_t i = 0; 1401 1402 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { 1403 /* find mvdd value which clock is more than request */ 1404 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { 1405 if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { 1406 /* Always round to higher voltage. */ 1407 voltage->Voltage = data->mvdd_voltage_table.entries[i].value; 1408 break; 1409 } 1410 } 1411 1412 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, 1413 "MVDD Voltage is outside the supported range.", return -EINVAL); 1414 1415 } else { 1416 return -EINVAL; 1417 } 1418 1419 return 0; 1420 } 1421 1422 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, 1423 SMU71_Discrete_DpmTable *table) 1424 { 1425 int result = 0; 1426 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1427 struct pp_atomctrl_clock_dividers_vi dividers; 1428 uint32_t vddc_phase_shed_control = 0; 1429 1430 SMU71_Discrete_VoltageLevel voltage_level; 1431 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 1432 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; 1433 uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; 1434 uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; 1435 1436 1437 /* The ACPI state should not do DPM on DC (or ever).*/ 1438 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; 1439 1440 if (data->acpi_vddc) 1441 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); 1442 else 1443 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE); 1444 1445 table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1; 1446 /* assign zero for now*/ 1447 table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); 1448 1449 /* get the engine clock dividers for this clock value*/ 1450 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, 1451 table->ACPILevel.SclkFrequency, ÷rs); 1452 1453 PP_ASSERT_WITH_CODE(result == 0, 1454 "Error retrieving Engine Clock dividers from VBIOS.", return result); 1455 1456 /* divider ID for required SCLK*/ 1457 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; 1458 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1459 table->ACPILevel.DeepSleepDivId = 0; 1460 1461 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 1462 CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); 1463 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, 1464 CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); 1465 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, 1466 CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); 1467 1468 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; 1469 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; 1470 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 1471 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 1472 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 1473 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 1474 table->ACPILevel.CcPwrDynRm = 0; 1475 table->ACPILevel.CcPwrDynRm1 = 0; 1476 1477 1478 /* For various features to be enabled/disabled while this level is active.*/ 1479 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); 1480 /* SCLK frequency in units of 10KHz*/ 1481 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); 1482 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); 1483 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); 1484 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); 1485 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); 1486 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); 1487 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); 1488 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); 1489 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); 1490 1491 /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/ 1492 table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; 1493 table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; 1494 1495 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) 1496 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc; 1497 else { 1498 if (data->acpi_vddci != 0) 1499 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE); 1500 else 1501 table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE); 1502 } 1503 1504 if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level)) 1505 table->MemoryACPILevel.MinMvdd = 1506 PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); 1507 else 1508 table->MemoryACPILevel.MinMvdd = 0; 1509 1510 /* Force reset on DLL*/ 1511 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1512 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); 1513 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1514 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); 1515 1516 /* Disable DLL in ACPIState*/ 1517 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1518 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); 1519 mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, 1520 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); 1521 1522 /* Enable DLL bypass signal*/ 1523 dll_cntl = PHM_SET_FIELD(dll_cntl, 1524 DLL_CNTL, MRDCK0_BYPASS, 0); 1525 dll_cntl = PHM_SET_FIELD(dll_cntl, 1526 DLL_CNTL, MRDCK1_BYPASS, 0); 1527 1528 table->MemoryACPILevel.DllCntl = 1529 PP_HOST_TO_SMC_UL(dll_cntl); 1530 table->MemoryACPILevel.MclkPwrmgtCntl = 1531 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); 1532 table->MemoryACPILevel.MpllAdFuncCntl = 1533 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); 1534 table->MemoryACPILevel.MpllDqFuncCntl = 1535 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); 1536 table->MemoryACPILevel.MpllFuncCntl = 1537 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); 1538 table->MemoryACPILevel.MpllFuncCntl_1 = 1539 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); 1540 table->MemoryACPILevel.MpllFuncCntl_2 = 1541 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); 1542 table->MemoryACPILevel.MpllSs1 = 1543 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); 1544 table->MemoryACPILevel.MpllSs2 = 1545 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); 1546 1547 table->MemoryACPILevel.EnabledForThrottle = 0; 1548 table->MemoryACPILevel.EnabledForActivity = 0; 1549 table->MemoryACPILevel.UpHyst = 0; 1550 table->MemoryACPILevel.DownHyst = 100; 1551 table->MemoryACPILevel.VoltageDownHyst = 0; 1552 /* Indicates maximum activity level for this performance level.*/ 1553 table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); 1554 1555 table->MemoryACPILevel.StutterEnable = 0; 1556 table->MemoryACPILevel.StrobeEnable = 0; 1557 table->MemoryACPILevel.EdcReadEnable = 0; 1558 table->MemoryACPILevel.EdcWriteEnable = 0; 1559 table->MemoryACPILevel.RttEnable = 0; 1560 1561 return result; 1562 } 1563 1564 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, 1565 SMU71_Discrete_DpmTable *table) 1566 { 1567 return 0; 1568 } 1569 1570 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr, 1571 SMU71_Discrete_DpmTable *table) 1572 { 1573 return 0; 1574 } 1575 1576 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr, 1577 SMU71_Discrete_DpmTable *table) 1578 { 1579 return 0; 1580 } 1581 1582 static int iceland_populate_memory_timing_parameters( 1583 struct pp_hwmgr *hwmgr, 1584 uint32_t engine_clock, 1585 uint32_t memory_clock, 1586 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs 1587 ) 1588 { 1589 uint32_t dramTiming; 1590 uint32_t dramTiming2; 1591 uint32_t burstTime; 1592 int result; 1593 1594 result = atomctrl_set_engine_dram_timings_rv770(hwmgr, 1595 engine_clock, memory_clock); 1596 1597 PP_ASSERT_WITH_CODE(result == 0, 1598 "Error calling VBIOS to set DRAM_TIMING.", return result); 1599 1600 dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 1601 dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 1602 burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 1603 1604 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); 1605 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); 1606 arb_regs->McArbBurstTime = (uint8_t)burstTime; 1607 1608 return 0; 1609 } 1610 1611 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) 1612 { 1613 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1614 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1615 int result = 0; 1616 SMU71_Discrete_MCArbDramTimingTable arb_regs; 1617 uint32_t i, j; 1618 1619 memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable)); 1620 1621 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1622 for (j = 0; j < data->dpm_table.mclk_table.count; j++) { 1623 result = iceland_populate_memory_timing_parameters 1624 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, 1625 data->dpm_table.mclk_table.dpm_levels[j].value, 1626 &arb_regs.entries[i][j]); 1627 1628 if (0 != result) { 1629 break; 1630 } 1631 } 1632 } 1633 1634 if (0 == result) { 1635 result = smu7_copy_bytes_to_smc( 1636 hwmgr, 1637 smu_data->smu7_data.arb_table_start, 1638 (uint8_t *)&arb_regs, 1639 sizeof(SMU71_Discrete_MCArbDramTimingTable), 1640 SMC_RAM_END 1641 ); 1642 } 1643 1644 return result; 1645 } 1646 1647 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr, 1648 SMU71_Discrete_DpmTable *table) 1649 { 1650 int result = 0; 1651 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1652 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1653 table->GraphicsBootLevel = 0; 1654 table->MemoryBootLevel = 0; 1655 1656 /* find boot level from dpm table*/ 1657 result = phm_find_boot_level(&(data->dpm_table.sclk_table), 1658 data->vbios_boot_state.sclk_bootup_value, 1659 (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel)); 1660 1661 if (0 != result) { 1662 smu_data->smc_state_table.GraphicsBootLevel = 0; 1663 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n"); 1664 result = 0; 1665 } 1666 1667 result = phm_find_boot_level(&(data->dpm_table.mclk_table), 1668 data->vbios_boot_state.mclk_bootup_value, 1669 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel)); 1670 1671 if (0 != result) { 1672 smu_data->smc_state_table.MemoryBootLevel = 0; 1673 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n"); 1674 result = 0; 1675 } 1676 1677 table->BootVddc = data->vbios_boot_state.vddc_bootup_value; 1678 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) 1679 table->BootVddci = table->BootVddc; 1680 else 1681 table->BootVddci = data->vbios_boot_state.vddci_bootup_value; 1682 1683 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; 1684 1685 return result; 1686 } 1687 1688 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr, 1689 SMU71_Discrete_MCRegisters *mc_reg_table) 1690 { 1691 const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend; 1692 1693 uint32_t i, j; 1694 1695 for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) { 1696 if (smu_data->mc_reg_table.validflag & 1<<j) { 1697 PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE, 1698 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL); 1699 mc_reg_table->address[i].s0 = 1700 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0); 1701 mc_reg_table->address[i].s1 = 1702 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1); 1703 i++; 1704 } 1705 } 1706 1707 mc_reg_table->last = (uint8_t)i; 1708 1709 return 0; 1710 } 1711 1712 /*convert register values from driver to SMC format */ 1713 static void iceland_convert_mc_registers( 1714 const struct iceland_mc_reg_entry *entry, 1715 SMU71_Discrete_MCRegisterSet *data, 1716 uint32_t num_entries, uint32_t valid_flag) 1717 { 1718 uint32_t i, j; 1719 1720 for (i = 0, j = 0; j < num_entries; j++) { 1721 if (valid_flag & 1<<j) { 1722 data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]); 1723 i++; 1724 } 1725 } 1726 } 1727 1728 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr, 1729 const uint32_t memory_clock, 1730 SMU71_Discrete_MCRegisterSet *mc_reg_table_data 1731 ) 1732 { 1733 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1734 uint32_t i = 0; 1735 1736 for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) { 1737 if (memory_clock <= 1738 smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) { 1739 break; 1740 } 1741 } 1742 1743 if ((i == smu_data->mc_reg_table.num_entries) && (i > 0)) 1744 --i; 1745 1746 iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i], 1747 mc_reg_table_data, smu_data->mc_reg_table.last, 1748 smu_data->mc_reg_table.validflag); 1749 1750 return 0; 1751 } 1752 1753 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, 1754 SMU71_Discrete_MCRegisters *mc_regs) 1755 { 1756 int result = 0; 1757 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1758 int res; 1759 uint32_t i; 1760 1761 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 1762 res = iceland_convert_mc_reg_table_entry_to_smc( 1763 hwmgr, 1764 data->dpm_table.mclk_table.dpm_levels[i].value, 1765 &mc_regs->data[i] 1766 ); 1767 1768 if (0 != res) 1769 result = res; 1770 } 1771 1772 return result; 1773 } 1774 1775 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) 1776 { 1777 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1778 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1779 uint32_t address; 1780 int32_t result; 1781 1782 if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) 1783 return 0; 1784 1785 1786 memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters)); 1787 1788 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs)); 1789 1790 if (result != 0) 1791 return result; 1792 1793 1794 address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]); 1795 1796 return smu7_copy_bytes_to_smc(hwmgr, address, 1797 (uint8_t *)&smu_data->mc_regs.data[0], 1798 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, 1799 SMC_RAM_END); 1800 } 1801 1802 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) 1803 { 1804 int result; 1805 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1806 1807 memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters)); 1808 result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs)); 1809 PP_ASSERT_WITH_CODE(0 == result, 1810 "Failed to initialize MCRegTable for the MC register addresses!", return result;); 1811 1812 result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs); 1813 PP_ASSERT_WITH_CODE(0 == result, 1814 "Failed to initialize MCRegTable for driver state!", return result;); 1815 1816 return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start, 1817 (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END); 1818 } 1819 1820 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr) 1821 { 1822 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1823 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1824 uint8_t count, level; 1825 1826 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); 1827 1828 for (level = 0; level < count; level++) { 1829 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk 1830 >= data->vbios_boot_state.sclk_bootup_value) { 1831 smu_data->smc_state_table.GraphicsBootLevel = level; 1832 break; 1833 } 1834 } 1835 1836 count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); 1837 1838 for (level = 0; level < count; level++) { 1839 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk 1840 >= data->vbios_boot_state.mclk_bootup_value) { 1841 smu_data->smc_state_table.MemoryBootLevel = level; 1842 break; 1843 } 1844 } 1845 1846 return 0; 1847 } 1848 1849 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) 1850 { 1851 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1852 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1853 const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults; 1854 SMU71_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); 1855 struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table; 1856 struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table; 1857 const uint16_t *def1, *def2; 1858 int i, j, k; 1859 1860 1861 /* 1862 * TDP number of fraction bits are changed from 8 to 7 for Iceland 1863 * as requested by SMC team 1864 */ 1865 1866 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256)); 1867 dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256)); 1868 1869 1870 dpm_table->DTETjOffset = 0; 1871 1872 dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES); 1873 dpm_table->GpuTjHyst = 8; 1874 1875 dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base; 1876 1877 /* The following are for new Iceland Multi-input fan/thermal control */ 1878 if (NULL != ppm) { 1879 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000; 1880 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256; 1881 } else { 1882 dpm_table->PPM_PkgPwrLimit = 0; 1883 dpm_table->PPM_TemperatureLimit = 0; 1884 } 1885 1886 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit); 1887 CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit); 1888 1889 dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient); 1890 def1 = defaults->bapmti_r; 1891 def2 = defaults->bapmti_rc; 1892 1893 for (i = 0; i < SMU71_DTE_ITERATIONS; i++) { 1894 for (j = 0; j < SMU71_DTE_SOURCES; j++) { 1895 for (k = 0; k < SMU71_DTE_SINKS; k++) { 1896 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1); 1897 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2); 1898 def1++; 1899 def2++; 1900 } 1901 } 1902 } 1903 1904 return 0; 1905 } 1906 1907 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, 1908 SMU71_Discrete_DpmTable *tab) 1909 { 1910 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1911 1912 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) 1913 tab->SVI2Enable |= VDDC_ON_SVI2; 1914 1915 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) 1916 tab->SVI2Enable |= VDDCI_ON_SVI2; 1917 else 1918 tab->MergedVddci = 1; 1919 1920 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) 1921 tab->SVI2Enable |= MVDD_ON_SVI2; 1922 1923 PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) && 1924 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL); 1925 1926 return 0; 1927 } 1928 1929 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr) 1930 { 1931 int result; 1932 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1933 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 1934 SMU71_Discrete_DpmTable *table = &(smu_data->smc_state_table); 1935 1936 1937 iceland_initialize_power_tune_defaults(hwmgr); 1938 memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table)); 1939 1940 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) { 1941 iceland_populate_smc_voltage_tables(hwmgr, table); 1942 } 1943 1944 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1945 PHM_PlatformCaps_AutomaticDCTransition)) 1946 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; 1947 1948 1949 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1950 PHM_PlatformCaps_StepVddc)) 1951 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; 1952 1953 if (data->is_memory_gddr5) 1954 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; 1955 1956 1957 if (data->ulv_supported) { 1958 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting)); 1959 PP_ASSERT_WITH_CODE(0 == result, 1960 "Failed to initialize ULV state!", return result;); 1961 1962 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1963 ixCG_ULV_PARAMETER, 0x40035); 1964 } 1965 1966 result = iceland_populate_smc_link_level(hwmgr, table); 1967 PP_ASSERT_WITH_CODE(0 == result, 1968 "Failed to initialize Link Level!", return result;); 1969 1970 result = iceland_populate_all_graphic_levels(hwmgr); 1971 PP_ASSERT_WITH_CODE(0 == result, 1972 "Failed to initialize Graphics Level!", return result;); 1973 1974 result = iceland_populate_all_memory_levels(hwmgr); 1975 PP_ASSERT_WITH_CODE(0 == result, 1976 "Failed to initialize Memory Level!", return result;); 1977 1978 result = iceland_populate_smc_acpi_level(hwmgr, table); 1979 PP_ASSERT_WITH_CODE(0 == result, 1980 "Failed to initialize ACPI Level!", return result;); 1981 1982 result = iceland_populate_smc_vce_level(hwmgr, table); 1983 PP_ASSERT_WITH_CODE(0 == result, 1984 "Failed to initialize VCE Level!", return result;); 1985 1986 result = iceland_populate_smc_acp_level(hwmgr, table); 1987 PP_ASSERT_WITH_CODE(0 == result, 1988 "Failed to initialize ACP Level!", return result;); 1989 1990 /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */ 1991 /* need to populate the ARB settings for the initial state. */ 1992 result = iceland_program_memory_timing_parameters(hwmgr); 1993 PP_ASSERT_WITH_CODE(0 == result, 1994 "Failed to Write ARB settings for the initial state.", return result;); 1995 1996 result = iceland_populate_smc_uvd_level(hwmgr, table); 1997 PP_ASSERT_WITH_CODE(0 == result, 1998 "Failed to initialize UVD Level!", return result;); 1999 2000 table->GraphicsBootLevel = 0; 2001 table->MemoryBootLevel = 0; 2002 2003 result = iceland_populate_smc_boot_level(hwmgr, table); 2004 PP_ASSERT_WITH_CODE(0 == result, 2005 "Failed to initialize Boot Level!", return result;); 2006 2007 result = iceland_populate_smc_initial_state(hwmgr); 2008 PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); 2009 2010 result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr); 2011 PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); 2012 2013 table->GraphicsVoltageChangeEnable = 1; 2014 table->GraphicsThermThrottleEnable = 1; 2015 table->GraphicsInterval = 1; 2016 table->VoltageInterval = 1; 2017 table->ThermalInterval = 1; 2018 2019 table->TemperatureLimitHigh = 2020 (data->thermal_temp_setting.temperature_high * 2021 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2022 table->TemperatureLimitLow = 2023 (data->thermal_temp_setting.temperature_low * 2024 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 2025 2026 table->MemoryVoltageChangeEnable = 1; 2027 table->MemoryInterval = 1; 2028 table->VoltageResponseTime = 0; 2029 table->PhaseResponseTime = 0; 2030 table->MemoryThermThrottleEnable = 1; 2031 table->PCIeBootLinkLevel = 0; 2032 table->PCIeGenInterval = 1; 2033 2034 result = iceland_populate_smc_svi2_config(hwmgr, table); 2035 PP_ASSERT_WITH_CODE(0 == result, 2036 "Failed to populate SVI2 setting!", return result); 2037 2038 table->ThermGpio = 17; 2039 table->SclkStepSize = 0x4000; 2040 2041 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); 2042 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); 2043 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); 2044 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); 2045 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); 2046 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); 2047 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); 2048 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); 2049 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); 2050 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); 2051 2052 table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); 2053 table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); 2054 table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); 2055 2056 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ 2057 result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start + 2058 offsetof(SMU71_Discrete_DpmTable, SystemFlags), 2059 (uint8_t *)&(table->SystemFlags), 2060 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController), 2061 SMC_RAM_END); 2062 2063 PP_ASSERT_WITH_CODE(0 == result, 2064 "Failed to upload dpm data to SMC memory!", return result;); 2065 2066 /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */ 2067 result = smu7_copy_bytes_to_smc(hwmgr, 2068 smu_data->smu7_data.ulv_setting_starts, 2069 (uint8_t *)&(smu_data->ulv_setting), 2070 sizeof(SMU71_Discrete_Ulv), 2071 SMC_RAM_END); 2072 2073 2074 result = iceland_populate_initial_mc_reg_table(hwmgr); 2075 PP_ASSERT_WITH_CODE((0 == result), 2076 "Failed to populate initialize MC Reg table!", return result); 2077 2078 result = iceland_populate_pm_fuses(hwmgr); 2079 PP_ASSERT_WITH_CODE(0 == result, 2080 "Failed to populate PM fuses to SMC memory!", return result); 2081 2082 return 0; 2083 } 2084 2085 static int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) 2086 { 2087 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); 2088 SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; 2089 uint32_t duty100; 2090 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; 2091 uint16_t fdo_min, slope1, slope2; 2092 uint32_t reference_clock; 2093 int res; 2094 uint64_t tmp64; 2095 2096 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) 2097 return 0; 2098 2099 if (hwmgr->thermal_controller.fanInfo.bNoFan) { 2100 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2101 PHM_PlatformCaps_MicrocodeFanControl); 2102 return 0; 2103 } 2104 2105 if (0 == smu7_data->fan_table_start) { 2106 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); 2107 return 0; 2108 } 2109 2110 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100); 2111 2112 if (0 == duty100) { 2113 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl); 2114 return 0; 2115 } 2116 2117 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100; 2118 do_div(tmp64, 10000); 2119 fdo_min = (uint16_t)tmp64; 2120 2121 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin; 2122 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed; 2123 2124 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; 2125 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; 2126 2127 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); 2128 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); 2129 2130 fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100); 2131 fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100); 2132 fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100); 2133 2134 fan_table.Slope1 = cpu_to_be16(slope1); 2135 fan_table.Slope2 = cpu_to_be16(slope2); 2136 2137 fan_table.FdoMin = cpu_to_be16(fdo_min); 2138 2139 fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst); 2140 2141 fan_table.HystUp = cpu_to_be16(1); 2142 2143 fan_table.HystSlope = cpu_to_be16(1); 2144 2145 fan_table.TempRespLim = cpu_to_be16(5); 2146 2147 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 2148 2149 fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600); 2150 2151 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); 2152 2153 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL); 2154 2155 /* fan_table.FanControl_GL_Flag = 1; */ 2156 2157 res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END); 2158 2159 return res; 2160 } 2161 2162 2163 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) 2164 { 2165 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2166 2167 if (data->need_update_smu7_dpm_table & 2168 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK)) 2169 return iceland_program_memory_timing_parameters(hwmgr); 2170 2171 return 0; 2172 } 2173 2174 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr) 2175 { 2176 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2177 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 2178 2179 int result = 0; 2180 uint32_t low_sclk_interrupt_threshold = 0; 2181 2182 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2183 PHM_PlatformCaps_SclkThrottleLowNotification) 2184 && (data->low_sclk_interrupt_threshold != 0)) { 2185 low_sclk_interrupt_threshold = 2186 data->low_sclk_interrupt_threshold; 2187 2188 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); 2189 2190 result = smu7_copy_bytes_to_smc( 2191 hwmgr, 2192 smu_data->smu7_data.dpm_table_start + 2193 offsetof(SMU71_Discrete_DpmTable, 2194 LowSclkInterruptThreshold), 2195 (uint8_t *)&low_sclk_interrupt_threshold, 2196 sizeof(uint32_t), 2197 SMC_RAM_END); 2198 } 2199 2200 result = iceland_update_and_upload_mc_reg_table(hwmgr); 2201 2202 PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result); 2203 2204 result = iceland_program_mem_timing_parameters(hwmgr); 2205 PP_ASSERT_WITH_CODE((result == 0), 2206 "Failed to program memory timing parameters!", 2207 ); 2208 2209 return result; 2210 } 2211 2212 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member) 2213 { 2214 switch (type) { 2215 case SMU_SoftRegisters: 2216 switch (member) { 2217 case HandshakeDisables: 2218 return offsetof(SMU71_SoftRegisters, HandshakeDisables); 2219 case VoltageChangeTimeout: 2220 return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout); 2221 case AverageGraphicsActivity: 2222 return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity); 2223 case AverageMemoryActivity: 2224 return offsetof(SMU71_SoftRegisters, AverageMemoryActivity); 2225 case PreVBlankGap: 2226 return offsetof(SMU71_SoftRegisters, PreVBlankGap); 2227 case VBlankTimeout: 2228 return offsetof(SMU71_SoftRegisters, VBlankTimeout); 2229 case UcodeLoadStatus: 2230 return offsetof(SMU71_SoftRegisters, UcodeLoadStatus); 2231 case DRAM_LOG_ADDR_H: 2232 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H); 2233 case DRAM_LOG_ADDR_L: 2234 return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L); 2235 case DRAM_LOG_PHY_ADDR_H: 2236 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H); 2237 case DRAM_LOG_PHY_ADDR_L: 2238 return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L); 2239 case DRAM_LOG_BUFF_SIZE: 2240 return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE); 2241 } 2242 break; 2243 case SMU_Discrete_DpmTable: 2244 switch (member) { 2245 case LowSclkInterruptThreshold: 2246 return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold); 2247 } 2248 break; 2249 } 2250 pr_warn("can't get the offset of type %x member %x\n", type, member); 2251 return 0; 2252 } 2253 2254 static uint32_t iceland_get_mac_definition(uint32_t value) 2255 { 2256 switch (value) { 2257 case SMU_MAX_LEVELS_GRAPHICS: 2258 return SMU71_MAX_LEVELS_GRAPHICS; 2259 case SMU_MAX_LEVELS_MEMORY: 2260 return SMU71_MAX_LEVELS_MEMORY; 2261 case SMU_MAX_LEVELS_LINK: 2262 return SMU71_MAX_LEVELS_LINK; 2263 case SMU_MAX_ENTRIES_SMIO: 2264 return SMU71_MAX_ENTRIES_SMIO; 2265 case SMU_MAX_LEVELS_VDDC: 2266 return SMU71_MAX_LEVELS_VDDC; 2267 case SMU_MAX_LEVELS_VDDCI: 2268 return SMU71_MAX_LEVELS_VDDCI; 2269 case SMU_MAX_LEVELS_MVDD: 2270 return SMU71_MAX_LEVELS_MVDD; 2271 } 2272 2273 pr_warn("can't get the mac of %x\n", value); 2274 return 0; 2275 } 2276 2277 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr) 2278 { 2279 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2280 struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend); 2281 2282 uint32_t tmp; 2283 int result; 2284 bool error = false; 2285 2286 result = smu7_read_smc_sram_dword(hwmgr, 2287 SMU71_FIRMWARE_HEADER_LOCATION + 2288 offsetof(SMU71_Firmware_Header, DpmTable), 2289 &tmp, SMC_RAM_END); 2290 2291 if (0 == result) { 2292 smu7_data->dpm_table_start = tmp; 2293 } 2294 2295 error |= (0 != result); 2296 2297 result = smu7_read_smc_sram_dword(hwmgr, 2298 SMU71_FIRMWARE_HEADER_LOCATION + 2299 offsetof(SMU71_Firmware_Header, SoftRegisters), 2300 &tmp, SMC_RAM_END); 2301 2302 if (0 == result) { 2303 data->soft_regs_start = tmp; 2304 smu7_data->soft_regs_start = tmp; 2305 } 2306 2307 error |= (0 != result); 2308 2309 2310 result = smu7_read_smc_sram_dword(hwmgr, 2311 SMU71_FIRMWARE_HEADER_LOCATION + 2312 offsetof(SMU71_Firmware_Header, mcRegisterTable), 2313 &tmp, SMC_RAM_END); 2314 2315 if (0 == result) { 2316 smu7_data->mc_reg_table_start = tmp; 2317 } 2318 2319 result = smu7_read_smc_sram_dword(hwmgr, 2320 SMU71_FIRMWARE_HEADER_LOCATION + 2321 offsetof(SMU71_Firmware_Header, FanTable), 2322 &tmp, SMC_RAM_END); 2323 2324 if (0 == result) { 2325 smu7_data->fan_table_start = tmp; 2326 } 2327 2328 error |= (0 != result); 2329 2330 result = smu7_read_smc_sram_dword(hwmgr, 2331 SMU71_FIRMWARE_HEADER_LOCATION + 2332 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable), 2333 &tmp, SMC_RAM_END); 2334 2335 if (0 == result) { 2336 smu7_data->arb_table_start = tmp; 2337 } 2338 2339 error |= (0 != result); 2340 2341 2342 result = smu7_read_smc_sram_dword(hwmgr, 2343 SMU71_FIRMWARE_HEADER_LOCATION + 2344 offsetof(SMU71_Firmware_Header, Version), 2345 &tmp, SMC_RAM_END); 2346 2347 if (0 == result) { 2348 hwmgr->microcode_version_info.SMC = tmp; 2349 } 2350 2351 error |= (0 != result); 2352 2353 result = smu7_read_smc_sram_dword(hwmgr, 2354 SMU71_FIRMWARE_HEADER_LOCATION + 2355 offsetof(SMU71_Firmware_Header, UlvSettings), 2356 &tmp, SMC_RAM_END); 2357 2358 if (0 == result) { 2359 smu7_data->ulv_setting_starts = tmp; 2360 } 2361 2362 error |= (0 != result); 2363 2364 return error ? 1 : 0; 2365 } 2366 2367 /*---------------------------MC----------------------------*/ 2368 2369 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr) 2370 { 2371 return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); 2372 } 2373 2374 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg) 2375 { 2376 bool result = true; 2377 2378 switch (in_reg) { 2379 case mmMC_SEQ_RAS_TIMING: 2380 *out_reg = mmMC_SEQ_RAS_TIMING_LP; 2381 break; 2382 2383 case mmMC_SEQ_DLL_STBY: 2384 *out_reg = mmMC_SEQ_DLL_STBY_LP; 2385 break; 2386 2387 case mmMC_SEQ_G5PDX_CMD0: 2388 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP; 2389 break; 2390 2391 case mmMC_SEQ_G5PDX_CMD1: 2392 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP; 2393 break; 2394 2395 case mmMC_SEQ_G5PDX_CTRL: 2396 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP; 2397 break; 2398 2399 case mmMC_SEQ_CAS_TIMING: 2400 *out_reg = mmMC_SEQ_CAS_TIMING_LP; 2401 break; 2402 2403 case mmMC_SEQ_MISC_TIMING: 2404 *out_reg = mmMC_SEQ_MISC_TIMING_LP; 2405 break; 2406 2407 case mmMC_SEQ_MISC_TIMING2: 2408 *out_reg = mmMC_SEQ_MISC_TIMING2_LP; 2409 break; 2410 2411 case mmMC_SEQ_PMG_DVS_CMD: 2412 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP; 2413 break; 2414 2415 case mmMC_SEQ_PMG_DVS_CTL: 2416 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP; 2417 break; 2418 2419 case mmMC_SEQ_RD_CTL_D0: 2420 *out_reg = mmMC_SEQ_RD_CTL_D0_LP; 2421 break; 2422 2423 case mmMC_SEQ_RD_CTL_D1: 2424 *out_reg = mmMC_SEQ_RD_CTL_D1_LP; 2425 break; 2426 2427 case mmMC_SEQ_WR_CTL_D0: 2428 *out_reg = mmMC_SEQ_WR_CTL_D0_LP; 2429 break; 2430 2431 case mmMC_SEQ_WR_CTL_D1: 2432 *out_reg = mmMC_SEQ_WR_CTL_D1_LP; 2433 break; 2434 2435 case mmMC_PMG_CMD_EMRS: 2436 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP; 2437 break; 2438 2439 case mmMC_PMG_CMD_MRS: 2440 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP; 2441 break; 2442 2443 case mmMC_PMG_CMD_MRS1: 2444 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP; 2445 break; 2446 2447 case mmMC_SEQ_PMG_TIMING: 2448 *out_reg = mmMC_SEQ_PMG_TIMING_LP; 2449 break; 2450 2451 case mmMC_PMG_CMD_MRS2: 2452 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP; 2453 break; 2454 2455 case mmMC_SEQ_WR_CTL_2: 2456 *out_reg = mmMC_SEQ_WR_CTL_2_LP; 2457 break; 2458 2459 default: 2460 result = false; 2461 break; 2462 } 2463 2464 return result; 2465 } 2466 2467 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table) 2468 { 2469 uint32_t i; 2470 uint16_t address; 2471 2472 for (i = 0; i < table->last; i++) { 2473 table->mc_reg_address[i].s0 = 2474 iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) 2475 ? address : table->mc_reg_address[i].s1; 2476 } 2477 return 0; 2478 } 2479 2480 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, 2481 struct iceland_mc_reg_table *ni_table) 2482 { 2483 uint8_t i, j; 2484 2485 PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2486 "Invalid VramInfo table.", return -EINVAL); 2487 PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), 2488 "Invalid VramInfo table.", return -EINVAL); 2489 2490 for (i = 0; i < table->last; i++) { 2491 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; 2492 } 2493 ni_table->last = table->last; 2494 2495 for (i = 0; i < table->num_entries; i++) { 2496 ni_table->mc_reg_table_entry[i].mclk_max = 2497 table->mc_reg_table_entry[i].mclk_max; 2498 for (j = 0; j < table->last; j++) { 2499 ni_table->mc_reg_table_entry[i].mc_data[j] = 2500 table->mc_reg_table_entry[i].mc_data[j]; 2501 } 2502 } 2503 2504 ni_table->num_entries = table->num_entries; 2505 2506 return 0; 2507 } 2508 2509 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, 2510 struct iceland_mc_reg_table *table) 2511 { 2512 uint8_t i, j, k; 2513 uint32_t temp_reg; 2514 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2515 2516 for (i = 0, j = table->last; i < table->last; i++) { 2517 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2518 "Invalid VramInfo table.", return -EINVAL); 2519 2520 switch (table->mc_reg_address[i].s1) { 2521 2522 case mmMC_SEQ_MISC1: 2523 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); 2524 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; 2525 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; 2526 for (k = 0; k < table->num_entries; k++) { 2527 table->mc_reg_table_entry[k].mc_data[j] = 2528 ((temp_reg & 0xffff0000)) | 2529 ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); 2530 } 2531 j++; 2532 2533 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2534 "Invalid VramInfo table.", return -EINVAL); 2535 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); 2536 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; 2537 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; 2538 for (k = 0; k < table->num_entries; k++) { 2539 table->mc_reg_table_entry[k].mc_data[j] = 2540 (temp_reg & 0xffff0000) | 2541 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 2542 2543 if (!data->is_memory_gddr5) { 2544 table->mc_reg_table_entry[k].mc_data[j] |= 0x100; 2545 } 2546 } 2547 j++; 2548 2549 if (!data->is_memory_gddr5) { 2550 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), 2551 "Invalid VramInfo table.", return -EINVAL); 2552 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; 2553 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; 2554 for (k = 0; k < table->num_entries; k++) { 2555 table->mc_reg_table_entry[k].mc_data[j] = 2556 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; 2557 } 2558 j++; 2559 } 2560 2561 break; 2562 2563 case mmMC_SEQ_RESERVE_M: 2564 temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); 2565 table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; 2566 table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; 2567 for (k = 0; k < table->num_entries; k++) { 2568 table->mc_reg_table_entry[k].mc_data[j] = 2569 (temp_reg & 0xffff0000) | 2570 (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); 2571 } 2572 j++; 2573 break; 2574 2575 default: 2576 break; 2577 } 2578 2579 } 2580 2581 table->last = j; 2582 2583 return 0; 2584 } 2585 2586 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table) 2587 { 2588 uint8_t i, j; 2589 for (i = 0; i < table->last; i++) { 2590 for (j = 1; j < table->num_entries; j++) { 2591 if (table->mc_reg_table_entry[j-1].mc_data[i] != 2592 table->mc_reg_table_entry[j].mc_data[i]) { 2593 table->validflag |= (1<<i); 2594 break; 2595 } 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) 2603 { 2604 int result; 2605 struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend); 2606 pp_atomctrl_mc_reg_table *table; 2607 struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table; 2608 uint8_t module_index = iceland_get_memory_modile_index(hwmgr); 2609 2610 table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); 2611 2612 if (NULL == table) 2613 return -ENOMEM; 2614 2615 /* Program additional LP registers that are no longer programmed by VBIOS */ 2616 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); 2617 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); 2618 cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); 2619 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); 2620 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); 2621 cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); 2622 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); 2623 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); 2624 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); 2625 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); 2626 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); 2627 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); 2628 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); 2629 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); 2630 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); 2631 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); 2632 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); 2633 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); 2634 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); 2635 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); 2636 2637 result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); 2638 2639 if (0 == result) 2640 result = iceland_copy_vbios_smc_reg_table(table, ni_table); 2641 2642 if (0 == result) { 2643 iceland_set_s0_mc_reg_index(ni_table); 2644 result = iceland_set_mc_special_registers(hwmgr, ni_table); 2645 } 2646 2647 if (0 == result) 2648 iceland_set_valid_flag(ni_table); 2649 2650 kfree(table); 2651 2652 return result; 2653 } 2654 2655 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr) 2656 { 2657 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, 2658 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) 2659 ? true : false; 2660 } 2661 2662 const struct pp_smumgr_func iceland_smu_funcs = { 2663 .name = "iceland_smu", 2664 .smu_init = &iceland_smu_init, 2665 .smu_fini = &smu7_smu_fini, 2666 .start_smu = &iceland_start_smu, 2667 .check_fw_load_finish = &smu7_check_fw_load_finish, 2668 .request_smu_load_fw = &smu7_request_smu_load_fw, 2669 .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw, 2670 .send_msg_to_smc = &smu7_send_msg_to_smc, 2671 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, 2672 .get_argument = smu7_get_argument, 2673 .download_pptable_settings = NULL, 2674 .upload_pptable_settings = NULL, 2675 .get_offsetof = iceland_get_offsetof, 2676 .process_firmware_header = iceland_process_firmware_header, 2677 .init_smc_table = iceland_init_smc_table, 2678 .update_sclk_threshold = iceland_update_sclk_threshold, 2679 .thermal_setup_fan_table = iceland_thermal_setup_fan_table, 2680 .populate_all_graphic_levels = iceland_populate_all_graphic_levels, 2681 .populate_all_memory_levels = iceland_populate_all_memory_levels, 2682 .get_mac_definition = iceland_get_mac_definition, 2683 .initialize_mc_reg_table = iceland_initialize_mc_reg_table, 2684 .is_dpm_running = iceland_is_dpm_running, 2685 }; 2686 2687