1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
49 
50 
51 #define AVFS_EN_MSB                                        1568
52 #define AVFS_EN_LSB                                        1568
53 
54 #define FIJI_SMC_SIZE 0x20000
55 
56 #define POWERTUNE_DEFAULT_SET_MAX    1
57 #define VDDC_VDDCI_DELTA            300
58 #define MC_CG_ARB_FREQ_F1           0x0b
59 
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62  */
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 				{600, 1050, 3, 0}, {600, 1050, 6, 1} };
65 
66 /* [FF, SS] type, [] 4 voltage ranges, and
67  * [Floor Freq, Boundary Freq, VID min , VID max]
68  */
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72 
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75  */
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 				{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78 
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 		/*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 		{1,               0xF,             0xFD,
82 		/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 		0x19,        5,               45}
84 };
85 
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 		/*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
88 		/* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 		{ 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
90 		{ 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
91 		{ 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
92 		{ 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
93 		{ 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
94 		{ 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
95 		{ 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
96 		{ 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
97 };
98 
99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 {
101 	int result = 0;
102 
103 	/* Wait for smc boot up */
104 	/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 		RCU_UC_EVENTS, boot_seq_done, 0); */
106 
107 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109 
110 	result = smu7_upload_smu_firmware_image(hwmgr);
111 	if (result)
112 		return result;
113 
114 	/* Clear status */
115 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 			ixSMU_STATUS, 0);
117 
118 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120 
121 	/* De-assert reset */
122 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124 
125 	/* Wait for ROM firmware to initialize interrupt hendler */
126 	/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 			SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128 
129 	/* Set SMU Auto Start */
130 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 			SMU_INPUT_DATA, AUTO_START, 1);
132 
133 	/* Clear firmware interrupt enable flag */
134 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 			ixFIRMWARE_FLAGS, 0);
136 
137 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 			INTERRUPTS_ENABLED, 1);
139 
140 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
141 
142 	/* Wait for done bit to be set */
143 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
144 			SMU_STATUS, SMU_DONE, 0);
145 
146 	/* Check pass/failed indicator */
147 	if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
148 			SMU_STATUS, SMU_PASS) != 1) {
149 		PP_ASSERT_WITH_CODE(false,
150 				"SMU Firmware start failed!", return -1);
151 	}
152 
153 	/* Wait for firmware to initialize */
154 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
155 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156 
157 	return result;
158 }
159 
160 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 {
162 	int result = 0;
163 
164 	/* wait for smc boot up */
165 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
166 			RCU_UC_EVENTS, boot_seq_done, 0);
167 
168 	/* Clear firmware interrupt enable flag */
169 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 			ixFIRMWARE_FLAGS, 0);
171 
172 	/* Assert reset */
173 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
174 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
175 
176 	result = smu7_upload_smu_firmware_image(hwmgr);
177 	if (result)
178 		return result;
179 
180 	/* Set smc instruct start point at 0x0 */
181 	smu7_program_jump_on_start(hwmgr);
182 
183 	/* Enable clock */
184 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
186 
187 	/* De-assert reset */
188 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
189 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
190 
191 	/* Wait for firmware to initialize */
192 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
193 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
194 
195 	return result;
196 }
197 
198 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
199 {
200 	int result = 0;
201 	struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
202 
203 	if (0 != smu_data->avfs_btc_param) {
204 		if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
205 				PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
206 				NULL)) {
207 			pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
208 			result = -EINVAL;
209 		}
210 	}
211 	/* Soft-Reset to reset the engine before loading uCode */
212 	 /* halt */
213 	cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
214 	/* reset everything */
215 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
216 	/* clear reset */
217 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
218 
219 	return result;
220 }
221 
222 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
223 {
224 	int32_t vr_config;
225 	uint32_t table_start;
226 	uint32_t level_addr, vr_config_addr;
227 	uint32_t level_size = sizeof(avfs_graphics_level);
228 
229 	PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
230 			SMU7_FIRMWARE_HEADER_LOCATION +
231 			offsetof(SMU73_Firmware_Header, DpmTable),
232 			&table_start, 0x40000),
233 			"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
234 			"communicate starting address of DPM table",
235 			return -1;);
236 
237 	/* Default value for vr_config =
238 	 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
239 	vr_config = 0x01000500;   /* Real value:0x50001 */
240 
241 	vr_config_addr = table_start +
242 			offsetof(SMU73_Discrete_DpmTable, VRConfig);
243 
244 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
245 			(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
246 			"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
247 			"vr_config value over to SMC",
248 			return -1;);
249 
250 	level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
251 
252 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
253 			(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
254 			"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
255 			return -1;);
256 
257 	return 0;
258 }
259 
260 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
261 {
262 	if (!hwmgr->avfs_supported)
263 		return 0;
264 
265 	PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
266 			"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
267 			" table over to SMU",
268 			return -EINVAL);
269 	PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
270 			"[AVFS][fiji_avfs_event_mgr] Could not setup "
271 			"Pwr Virus for AVFS ",
272 			return -EINVAL);
273 	PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
274 			"[AVFS][fiji_avfs_event_mgr] Failure at "
275 			"fiji_start_avfs_btc. AVFS Disabled",
276 			return -EINVAL);
277 
278 	return 0;
279 }
280 
281 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
282 {
283 	int result = 0;
284 	struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
285 
286 	/* Only start SMC if SMC RAM is not running */
287 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
288 		/* Check if SMU is running in protected mode */
289 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
290 				CGS_IND_REG__SMC,
291 				SMU_FIRMWARE, SMU_MODE)) {
292 			result = fiji_start_smu_in_non_protection_mode(hwmgr);
293 			if (result)
294 				return result;
295 		} else {
296 			result = fiji_start_smu_in_protection_mode(hwmgr);
297 			if (result)
298 				return result;
299 		}
300 		if (fiji_avfs_event_mgr(hwmgr))
301 			hwmgr->avfs_supported = false;
302 	}
303 
304 	/* Setup SoftRegsStart here for register lookup in case
305 	 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
306 	 */
307 	smu7_read_smc_sram_dword(hwmgr,
308 			SMU7_FIRMWARE_HEADER_LOCATION +
309 			offsetof(SMU73_Firmware_Header, SoftRegisters),
310 			&(priv->smu7_data.soft_regs_start), 0x40000);
311 
312 	result = smu7_request_smu_load_fw(hwmgr);
313 
314 	return result;
315 }
316 
317 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
318 {
319 
320 	uint32_t efuse = 0;
321 
322 	if (!hwmgr->not_vf)
323 		return false;
324 
325 	if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
326 			&efuse)) {
327 		if (efuse)
328 			return true;
329 	}
330 	return false;
331 }
332 
333 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
334 {
335 	struct fiji_smumgr *fiji_priv;
336 
337 	fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
338 
339 	if (fiji_priv == NULL)
340 		return -ENOMEM;
341 
342 	hwmgr->smu_backend = fiji_priv;
343 
344 	if (smu7_init(hwmgr)) {
345 		kfree(fiji_priv);
346 		return -EINVAL;
347 	}
348 
349 	return 0;
350 }
351 
352 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
353 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
354 		uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
355 {
356 	uint32_t i;
357 	uint16_t vddci;
358 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
359 	*voltage = *mvdd = 0;
360 
361 
362 	/* clock - voltage dependency table is empty table */
363 	if (dep_table->count == 0)
364 		return -EINVAL;
365 
366 	for (i = 0; i < dep_table->count; i++) {
367 		/* find first sclk bigger than request */
368 		if (dep_table->entries[i].clk >= clock) {
369 			*voltage |= (dep_table->entries[i].vddc *
370 					VOLTAGE_SCALE) << VDDC_SHIFT;
371 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
372 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
373 						VOLTAGE_SCALE) << VDDCI_SHIFT;
374 			else if (dep_table->entries[i].vddci)
375 				*voltage |= (dep_table->entries[i].vddci *
376 						VOLTAGE_SCALE) << VDDCI_SHIFT;
377 			else {
378 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
379 						(dep_table->entries[i].vddc -
380 								VDDC_VDDCI_DELTA));
381 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
382 			}
383 
384 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
385 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
386 					VOLTAGE_SCALE;
387 			else if (dep_table->entries[i].mvdd)
388 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
389 					VOLTAGE_SCALE;
390 
391 			*voltage |= 1 << PHASES_SHIFT;
392 			return 0;
393 		}
394 	}
395 
396 	/* sclk is bigger than max sclk in the dependence table */
397 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
398 
399 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
400 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
401 				VOLTAGE_SCALE) << VDDCI_SHIFT;
402 	else if (dep_table->entries[i-1].vddci) {
403 		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
404 				(dep_table->entries[i].vddc -
405 						VDDC_VDDCI_DELTA));
406 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
407 	}
408 
409 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
410 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
411 	else if (dep_table->entries[i].mvdd)
412 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
413 
414 	return 0;
415 }
416 
417 
418 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
419 {
420 	uint32_t tmp;
421 	tmp = raw_setting * 4096 / 100;
422 	return (uint16_t)tmp;
423 }
424 
425 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
426 {
427 	switch (line) {
428 	case SMU7_I2CLineID_DDC1:
429 		*scl = SMU7_I2C_DDC1CLK;
430 		*sda = SMU7_I2C_DDC1DATA;
431 		break;
432 	case SMU7_I2CLineID_DDC2:
433 		*scl = SMU7_I2C_DDC2CLK;
434 		*sda = SMU7_I2C_DDC2DATA;
435 		break;
436 	case SMU7_I2CLineID_DDC3:
437 		*scl = SMU7_I2C_DDC3CLK;
438 		*sda = SMU7_I2C_DDC3DATA;
439 		break;
440 	case SMU7_I2CLineID_DDC4:
441 		*scl = SMU7_I2C_DDC4CLK;
442 		*sda = SMU7_I2C_DDC4DATA;
443 		break;
444 	case SMU7_I2CLineID_DDC5:
445 		*scl = SMU7_I2C_DDC5CLK;
446 		*sda = SMU7_I2C_DDC5DATA;
447 		break;
448 	case SMU7_I2CLineID_DDC6:
449 		*scl = SMU7_I2C_DDC6CLK;
450 		*sda = SMU7_I2C_DDC6DATA;
451 		break;
452 	case SMU7_I2CLineID_SCLSDA:
453 		*scl = SMU7_I2C_SCL;
454 		*sda = SMU7_I2C_SDA;
455 		break;
456 	case SMU7_I2CLineID_DDCVGA:
457 		*scl = SMU7_I2C_DDCVGACLK;
458 		*sda = SMU7_I2C_DDCVGADATA;
459 		break;
460 	default:
461 		*scl = 0;
462 		*sda = 0;
463 		break;
464 	}
465 }
466 
467 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
468 {
469 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
470 	struct phm_ppt_v1_information *table_info =
471 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
472 
473 	if (table_info &&
474 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
475 			table_info->cac_dtp_table->usPowerTuneDataSetID)
476 		smu_data->power_tune_defaults =
477 				&fiji_power_tune_data_set_array
478 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
479 	else
480 		smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
481 
482 }
483 
484 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
485 {
486 
487 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
488 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
489 
490 	SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
491 
492 	struct phm_ppt_v1_information *table_info =
493 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
494 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
495 	struct pp_advance_fan_control_parameters *fan_table =
496 			&hwmgr->thermal_controller.advanceFanControlParameters;
497 	uint8_t uc_scl, uc_sda;
498 
499 	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
500 	 * as requested by SMC team
501 	 */
502 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
503 			(uint16_t)(cac_dtp_table->usTDP * 128));
504 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
505 			(uint16_t)(cac_dtp_table->usTDP * 128));
506 
507 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
508 			"Target Operating Temp is out of Range!",
509 			);
510 
511 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
512 	dpm_table->GpuTjHyst = 8;
513 
514 	dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
515 
516 	/* The following are for new Fiji Multi-input fan/thermal control */
517 	dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
518 			cac_dtp_table->usTargetOperatingTemp * 256);
519 	dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
520 			cac_dtp_table->usTemperatureLimitHotspot * 256);
521 	dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
522 			cac_dtp_table->usTemperatureLimitLiquid1 * 256);
523 	dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
524 			cac_dtp_table->usTemperatureLimitLiquid2 * 256);
525 	dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
526 			cac_dtp_table->usTemperatureLimitVrVddc * 256);
527 	dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
528 			cac_dtp_table->usTemperatureLimitVrMvdd * 256);
529 	dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
530 			cac_dtp_table->usTemperatureLimitPlx * 256);
531 
532 	dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
533 			scale_fan_gain_settings(fan_table->usFanGainEdge));
534 	dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
535 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
536 	dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
537 			scale_fan_gain_settings(fan_table->usFanGainLiquid));
538 	dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
539 			scale_fan_gain_settings(fan_table->usFanGainVrVddc));
540 	dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
541 			scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
542 	dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
543 			scale_fan_gain_settings(fan_table->usFanGainPlx));
544 	dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
545 			scale_fan_gain_settings(fan_table->usFanGainHbm));
546 
547 	dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
548 	dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
549 	dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
550 	dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
551 
552 	get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
553 	dpm_table->Liquid_I2C_LineSCL = uc_scl;
554 	dpm_table->Liquid_I2C_LineSDA = uc_sda;
555 
556 	get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
557 	dpm_table->Vr_I2C_LineSCL = uc_scl;
558 	dpm_table->Vr_I2C_LineSDA = uc_sda;
559 
560 	get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
561 	dpm_table->Plx_I2C_LineSCL = uc_scl;
562 	dpm_table->Plx_I2C_LineSDA = uc_sda;
563 
564 	return 0;
565 }
566 
567 
568 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
569 {
570 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
571 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
572 
573 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
574 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
575 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
576 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
577 
578 	return 0;
579 }
580 
581 
582 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
583 {
584 	uint16_t tdc_limit;
585 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
586 	struct phm_ppt_v1_information *table_info =
587 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
588 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
589 
590 	/* TDC number of fraction bits are changed from 8 to 7
591 	 * for Fiji as requested by SMC team
592 	 */
593 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
594 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
595 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
596 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
597 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
598 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
599 
600 	return 0;
601 }
602 
603 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
604 {
605 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
606 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
607 	uint32_t temp;
608 
609 	if (smu7_read_smc_sram_dword(hwmgr,
610 			fuse_table_offset +
611 			offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
612 			(uint32_t *)&temp, SMC_RAM_END))
613 		PP_ASSERT_WITH_CODE(false,
614 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
615 				return -EINVAL);
616 	else {
617 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
618 		smu_data->power_tune_table.LPMLTemperatureMin =
619 				(uint8_t)((temp >> 16) & 0xff);
620 		smu_data->power_tune_table.LPMLTemperatureMax =
621 				(uint8_t)((temp >> 8) & 0xff);
622 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
623 	}
624 	return 0;
625 }
626 
627 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
628 {
629 	int i;
630 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
631 
632 	/* Currently not used. Set all to zero. */
633 	for (i = 0; i < 16; i++)
634 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
635 
636 	return 0;
637 }
638 
639 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
640 {
641 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
642 
643 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
644 			usFanOutputSensitivity & (1 << 15)) ||
645 			0 == hwmgr->thermal_controller.advanceFanControlParameters.
646 			usFanOutputSensitivity)
647 		hwmgr->thermal_controller.advanceFanControlParameters.
648 		usFanOutputSensitivity = hwmgr->thermal_controller.
649 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
650 
651 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
652 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
653 					advanceFanControlParameters.usFanOutputSensitivity);
654 	return 0;
655 }
656 
657 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
658 {
659 	int i;
660 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
661 
662 	/* Currently not used. Set all to zero. */
663 	for (i = 0; i < 16; i++)
664 		smu_data->power_tune_table.GnbLPML[i] = 0;
665 
666 	return 0;
667 }
668 
669 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
670 {
671 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
672 	struct phm_ppt_v1_information *table_info =
673 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
674 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
675 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
676 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
677 
678 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
679 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
680 
681 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
682 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
683 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
684 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
685 
686 	return 0;
687 }
688 
689 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
690 {
691 	uint32_t pm_fuse_table_offset;
692 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
693 
694 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
695 			PHM_PlatformCaps_PowerContainment)) {
696 		if (smu7_read_smc_sram_dword(hwmgr,
697 				SMU7_FIRMWARE_HEADER_LOCATION +
698 				offsetof(SMU73_Firmware_Header, PmFuseTable),
699 				&pm_fuse_table_offset, SMC_RAM_END))
700 			PP_ASSERT_WITH_CODE(false,
701 					"Attempt to get pm_fuse_table_offset Failed!",
702 					return -EINVAL);
703 
704 		/* DW6 */
705 		if (fiji_populate_svi_load_line(hwmgr))
706 			PP_ASSERT_WITH_CODE(false,
707 					"Attempt to populate SviLoadLine Failed!",
708 					return -EINVAL);
709 		/* DW7 */
710 		if (fiji_populate_tdc_limit(hwmgr))
711 			PP_ASSERT_WITH_CODE(false,
712 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
713 		/* DW8 */
714 		if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
715 			PP_ASSERT_WITH_CODE(false,
716 					"Attempt to populate TdcWaterfallCtl, "
717 					"LPMLTemperature Min and Max Failed!",
718 					return -EINVAL);
719 
720 		/* DW9-DW12 */
721 		if (0 != fiji_populate_temperature_scaler(hwmgr))
722 			PP_ASSERT_WITH_CODE(false,
723 					"Attempt to populate LPMLTemperatureScaler Failed!",
724 					return -EINVAL);
725 
726 		/* DW13-DW14 */
727 		if (fiji_populate_fuzzy_fan(hwmgr))
728 			PP_ASSERT_WITH_CODE(false,
729 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
730 					return -EINVAL);
731 
732 		/* DW15-DW18 */
733 		if (fiji_populate_gnb_lpml(hwmgr))
734 			PP_ASSERT_WITH_CODE(false,
735 					"Attempt to populate GnbLPML Failed!",
736 					return -EINVAL);
737 
738 		/* DW20 */
739 		if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
740 			PP_ASSERT_WITH_CODE(false,
741 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
742 					"Sidd Failed!", return -EINVAL);
743 
744 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
745 				(uint8_t *)&smu_data->power_tune_table,
746 				sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
747 			PP_ASSERT_WITH_CODE(false,
748 					"Attempt to download PmFuseTable Failed!",
749 					return -EINVAL);
750 	}
751 	return 0;
752 }
753 
754 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
755 		struct SMU73_Discrete_DpmTable *table)
756 {
757 	uint32_t count;
758 	uint8_t index;
759 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
760 	struct phm_ppt_v1_information *table_info =
761 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
762 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
763 			table_info->vddc_lookup_table;
764 	/* tables is already swapped, so in order to use the value from it,
765 	 * we need to swap it back.
766 	 * We are populating vddc CAC data to BapmVddc table
767 	 * in split and merged mode
768 	 */
769 
770 	for (count = 0; count < lookup_table->count; count++) {
771 		index = phm_get_voltage_index(lookup_table,
772 				data->vddc_voltage_table.entries[count].value);
773 		table->BapmVddcVidLoSidd[count] =
774 			convert_to_vid(lookup_table->entries[index].us_cac_low);
775 		table->BapmVddcVidHiSidd[count] =
776 			convert_to_vid(lookup_table->entries[index].us_cac_high);
777 	}
778 
779 	return 0;
780 }
781 
782 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
783 		struct SMU73_Discrete_DpmTable *table)
784 {
785 	int result;
786 
787 	result = fiji_populate_cac_table(hwmgr, table);
788 	PP_ASSERT_WITH_CODE(0 == result,
789 			"can not populate CAC voltage tables to SMC",
790 			return -EINVAL);
791 
792 	return 0;
793 }
794 
795 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
796 		struct SMU73_Discrete_Ulv *state)
797 {
798 	int result = 0;
799 
800 	struct phm_ppt_v1_information *table_info =
801 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
802 
803 	state->CcPwrDynRm = 0;
804 	state->CcPwrDynRm1 = 0;
805 
806 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
807 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
808 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
809 
810 	state->VddcPhase = 1;
811 
812 	if (!result) {
813 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
814 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
815 		CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
816 	}
817 	return result;
818 }
819 
820 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
821 		struct SMU73_Discrete_DpmTable *table)
822 {
823 	return fiji_populate_ulv_level(hwmgr, &table->Ulv);
824 }
825 
826 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
827 		struct SMU73_Discrete_DpmTable *table)
828 {
829 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
830 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
831 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
832 	int i;
833 
834 	/* Index (dpm_table->pcie_speed_table.count)
835 	 * is reserved for PCIE boot level. */
836 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
837 		table->LinkLevel[i].PcieGenSpeed  =
838 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
839 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
840 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
841 		table->LinkLevel[i].EnabledForActivity = 1;
842 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
843 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
844 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
845 	}
846 
847 	smu_data->smc_state_table.LinkLevelCount =
848 			(uint8_t)dpm_table->pcie_speed_table.count;
849 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
850 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
851 
852 	return 0;
853 }
854 
855 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
856 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
857 {
858 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
859 	struct pp_atomctrl_clock_dividers_vi dividers;
860 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
861 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
862 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
863 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
864 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
865 	uint32_t ref_clock;
866 	uint32_t ref_divider;
867 	uint32_t fbdiv;
868 	int result;
869 
870 	/* get the engine clock dividers for this clock value */
871 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
872 
873 	PP_ASSERT_WITH_CODE(result == 0,
874 			"Error retrieving Engine Clock dividers from VBIOS.",
875 			return result);
876 
877 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
878 	ref_clock = atomctrl_get_reference_clock(hwmgr);
879 	ref_divider = 1 + dividers.uc_pll_ref_div;
880 
881 	/* low 14 bits is fraction and high 12 bits is divider */
882 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
883 
884 	/* SPLL_FUNC_CNTL setup */
885 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
886 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
887 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
888 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
889 
890 	/* SPLL_FUNC_CNTL_3 setup*/
891 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
892 			SPLL_FB_DIV, fbdiv);
893 
894 	/* set to use fractional accumulation*/
895 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
896 			SPLL_DITHEN, 1);
897 
898 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
899 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
900 		struct pp_atomctrl_internal_ss_info ssInfo;
901 
902 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
903 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
904 				vco_freq, &ssInfo)) {
905 			/*
906 			 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
907 			 * ss_info.speed_spectrum_rate -- in unit of khz
908 			 *
909 			 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
910 			 */
911 			uint32_t clk_s = ref_clock * 5 /
912 					(ref_divider * ssInfo.speed_spectrum_rate);
913 			/* clkv = 2 * D * fbdiv / NS */
914 			uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
915 					fbdiv / (clk_s * 10000);
916 
917 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
918 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
919 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
920 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
921 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
922 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
923 		}
924 	}
925 
926 	sclk->SclkFrequency        = clock;
927 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
928 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
929 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
930 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
931 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
932 
933 	return 0;
934 }
935 
936 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
937 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
938 {
939 	int result;
940 	/* PP_Clocks minClocks; */
941 	uint32_t mvdd;
942 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
943 	struct phm_ppt_v1_information *table_info =
944 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
945 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
946 
947 	result = fiji_calculate_sclk_params(hwmgr, clock, level);
948 
949 	if (hwmgr->od_enabled)
950 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
951 	else
952 		vdd_dep_table = table_info->vdd_dep_on_sclk;
953 
954 	/* populate graphics levels */
955 	result = fiji_get_dependency_volt_by_clk(hwmgr,
956 			vdd_dep_table, clock,
957 			(uint32_t *)(&level->MinVoltage), &mvdd);
958 	PP_ASSERT_WITH_CODE((0 == result),
959 			"can not find VDDC voltage value for "
960 			"VDDC engine clock dependency table",
961 			return result);
962 
963 	level->SclkFrequency = clock;
964 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
965 	level->CcPwrDynRm = 0;
966 	level->CcPwrDynRm1 = 0;
967 	level->EnabledForActivity = 0;
968 	level->EnabledForThrottle = 1;
969 	level->UpHyst = data->current_profile_setting.sclk_up_hyst;
970 	level->DownHyst = data->current_profile_setting.sclk_down_hyst;
971 	level->VoltageDownHyst = 0;
972 	level->PowerThrottle = 0;
973 
974 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
975 
976 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
977 		level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
978 								hwmgr->display_config->min_core_set_clock_in_sr);
979 
980 
981 	/* Default to slow, highest DPM level will be
982 	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
983 	 */
984 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
985 
986 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
987 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
988 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
989 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
990 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
991 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
992 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
993 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
994 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
995 
996 	return 0;
997 }
998 
999 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1000 {
1001 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1002 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1003 
1004 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1005 	struct phm_ppt_v1_information *table_info =
1006 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1007 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1008 	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1009 	int result = 0;
1010 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1011 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1012 	uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1013 			SMU73_MAX_LEVELS_GRAPHICS;
1014 	struct SMU73_Discrete_GraphicsLevel *levels =
1015 			smu_data->smc_state_table.GraphicsLevel;
1016 	uint32_t i, max_entry;
1017 	uint8_t hightest_pcie_level_enabled = 0,
1018 			lowest_pcie_level_enabled = 0,
1019 			mid_pcie_level_enabled = 0,
1020 			count = 0;
1021 
1022 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
1023 		result = fiji_populate_single_graphic_level(hwmgr,
1024 				dpm_table->sclk_table.dpm_levels[i].value,
1025 				&levels[i]);
1026 		if (result)
1027 			return result;
1028 
1029 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1030 		if (i > 1)
1031 			levels[i].DeepSleepDivId = 0;
1032 	}
1033 
1034 	/* Only enable level 0 for now.*/
1035 	levels[0].EnabledForActivity = 1;
1036 
1037 	/* set highest level watermark to high */
1038 	levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1039 			PPSMC_DISPLAY_WATERMARK_HIGH;
1040 
1041 	smu_data->smc_state_table.GraphicsDpmLevelCount =
1042 			(uint8_t)dpm_table->sclk_table.count;
1043 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1044 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1045 
1046 	if (pcie_table != NULL) {
1047 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1048 				"There must be 1 or more PCIE levels defined in PPTable.",
1049 				return -EINVAL);
1050 		max_entry = pcie_entry_cnt - 1;
1051 		for (i = 0; i < dpm_table->sclk_table.count; i++)
1052 			levels[i].pcieDpmLevel =
1053 					(uint8_t) ((i < max_entry) ? i : max_entry);
1054 	} else {
1055 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1056 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1057 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
1058 			hightest_pcie_level_enabled++;
1059 
1060 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1061 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1062 						(1 << lowest_pcie_level_enabled)) == 0))
1063 			lowest_pcie_level_enabled++;
1064 
1065 		while ((count < hightest_pcie_level_enabled) &&
1066 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1067 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1068 			count++;
1069 
1070 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1071 				hightest_pcie_level_enabled ?
1072 						(lowest_pcie_level_enabled + 1 + count) :
1073 						hightest_pcie_level_enabled;
1074 
1075 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
1076 		for (i = 2; i < dpm_table->sclk_table.count; i++)
1077 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1078 
1079 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
1080 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1081 
1082 		/* set pcieDpmLevel to mid_pcie_level_enabled */
1083 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1084 	}
1085 	/* level count will send to smc once at init smc table and never change */
1086 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1087 			(uint32_t)array_size, SMC_RAM_END);
1088 
1089 	return result;
1090 }
1091 
1092 
1093 /*
1094  * MCLK Frequency Ratio
1095  * SEQ_CG_RESP  Bit[31:24] - 0x0
1096  * Bit[27:24] \96 DDR3 Frequency ratio
1097  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
1098  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
1099  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
1100  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
1101  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
1102  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
1103  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
1104  * 400 < 0x7 <= 450MHz,       800 < 0xF
1105  */
1106 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1107 {
1108 	if (mem_clock <= 10000)
1109 		return 0x0;
1110 	if (mem_clock <= 15000)
1111 		return 0x1;
1112 	if (mem_clock <= 20000)
1113 		return 0x2;
1114 	if (mem_clock <= 25000)
1115 		return 0x3;
1116 	if (mem_clock <= 30000)
1117 		return 0x4;
1118 	if (mem_clock <= 35000)
1119 		return 0x5;
1120 	if (mem_clock <= 40000)
1121 		return 0x6;
1122 	if (mem_clock <= 45000)
1123 		return 0x7;
1124 	if (mem_clock <= 50000)
1125 		return 0x8;
1126 	if (mem_clock <= 55000)
1127 		return 0x9;
1128 	if (mem_clock <= 60000)
1129 		return 0xa;
1130 	if (mem_clock <= 65000)
1131 		return 0xb;
1132 	if (mem_clock <= 70000)
1133 		return 0xc;
1134 	if (mem_clock <= 75000)
1135 		return 0xd;
1136 	if (mem_clock <= 80000)
1137 		return 0xe;
1138 	/* mem_clock > 800MHz */
1139 	return 0xf;
1140 }
1141 
1142 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1143     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1144 {
1145 	struct pp_atomctrl_memory_clock_param mem_param;
1146 	int result;
1147 
1148 	result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1149 	PP_ASSERT_WITH_CODE((0 == result),
1150 			"Failed to get Memory PLL Dividers.",
1151 			);
1152 
1153 	/* Save the result data to outpupt memory level structure */
1154 	mclk->MclkFrequency   = clock;
1155 	mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
1156 	mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
1157 
1158 	return result;
1159 }
1160 
1161 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1162 		uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1163 {
1164 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1165 	struct phm_ppt_v1_information *table_info =
1166 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1167 	int result = 0;
1168 	uint32_t mclk_stutter_mode_threshold = 60000;
1169 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1170 
1171 	if (hwmgr->od_enabled)
1172 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1173 	else
1174 		vdd_dep_table = table_info->vdd_dep_on_mclk;
1175 
1176 	if (vdd_dep_table) {
1177 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1178 				vdd_dep_table, clock,
1179 				(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1180 		PP_ASSERT_WITH_CODE((0 == result),
1181 				"can not find MinVddc voltage value from memory "
1182 				"VDDC voltage dependency table", return result);
1183 	}
1184 
1185 	mem_level->EnabledForThrottle = 1;
1186 	mem_level->EnabledForActivity = 0;
1187 	mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1188 	mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1189 	mem_level->VoltageDownHyst = 0;
1190 	mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1191 	mem_level->StutterEnable = false;
1192 
1193 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1194 
1195 	/* enable stutter mode if all the follow condition applied
1196 	 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1197 	 * &(data->DisplayTiming.numExistingDisplays));
1198 	 */
1199 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1200 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1201 
1202 	if (mclk_stutter_mode_threshold &&
1203 		(clock <= mclk_stutter_mode_threshold) &&
1204 		(!data->is_uvd_enabled) &&
1205 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1206 				STUTTER_ENABLE) & 0x1))
1207 		mem_level->StutterEnable = true;
1208 
1209 	result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1210 	if (!result) {
1211 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1212 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1213 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1214 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1215 	}
1216 	return result;
1217 }
1218 
1219 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1220 {
1221 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1222 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1223 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1224 	int result;
1225 	/* populate MCLK dpm table to SMU7 */
1226 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1227 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1228 	uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1229 			SMU73_MAX_LEVELS_MEMORY;
1230 	struct SMU73_Discrete_MemoryLevel *levels =
1231 			smu_data->smc_state_table.MemoryLevel;
1232 	uint32_t i;
1233 
1234 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1235 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1236 				"can not populate memory level as memory clock is zero",
1237 				return -EINVAL);
1238 		result = fiji_populate_single_memory_level(hwmgr,
1239 				dpm_table->mclk_table.dpm_levels[i].value,
1240 				&levels[i]);
1241 		if (result)
1242 			return result;
1243 	}
1244 
1245 	/* Only enable level 0 for now. */
1246 	levels[0].EnabledForActivity = 1;
1247 
1248 	/* in order to prevent MC activity from stutter mode to push DPM up.
1249 	 * the UVD change complements this by putting the MCLK in
1250 	 * a higher state by default such that we are not effected by
1251 	 * up threshold or and MCLK DPM latency.
1252 	 */
1253 	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1254 	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1255 
1256 	smu_data->smc_state_table.MemoryDpmLevelCount =
1257 			(uint8_t)dpm_table->mclk_table.count;
1258 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1259 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1260 	/* set highest level watermark to high */
1261 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1262 			PPSMC_DISPLAY_WATERMARK_HIGH;
1263 
1264 	/* level count will send to smc once at init smc table and never change */
1265 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1266 			(uint32_t)array_size, SMC_RAM_END);
1267 
1268 	return result;
1269 }
1270 
1271 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1272 		uint32_t mclk, SMIO_Pattern *smio_pat)
1273 {
1274 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1275 	struct phm_ppt_v1_information *table_info =
1276 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1277 	uint32_t i = 0;
1278 
1279 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1280 		/* find mvdd value which clock is more than request */
1281 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1282 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1283 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1284 				break;
1285 			}
1286 		}
1287 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1288 				"MVDD Voltage is outside the supported range.",
1289 				return -EINVAL);
1290 	} else
1291 		return -EINVAL;
1292 
1293 	return 0;
1294 }
1295 
1296 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1297 		SMU73_Discrete_DpmTable *table)
1298 {
1299 	int result = 0;
1300 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1301 	struct phm_ppt_v1_information *table_info =
1302 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1303 	struct pp_atomctrl_clock_dividers_vi dividers;
1304 	SMIO_Pattern vol_level;
1305 	uint32_t mvdd;
1306 	uint16_t us_mvdd;
1307 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1308 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1309 
1310 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1311 
1312 	if (!data->sclk_dpm_key_disabled) {
1313 		/* Get MinVoltage and Frequency from DPM0,
1314 		 * already converted to SMC_UL */
1315 		table->ACPILevel.SclkFrequency =
1316 				data->dpm_table.sclk_table.dpm_levels[0].value;
1317 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1318 				table_info->vdd_dep_on_sclk,
1319 				table->ACPILevel.SclkFrequency,
1320 				(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1321 		PP_ASSERT_WITH_CODE((0 == result),
1322 				"Cannot find ACPI VDDC voltage value " \
1323 				"in Clock Dependency Table",
1324 				);
1325 	} else {
1326 		table->ACPILevel.SclkFrequency =
1327 				data->vbios_boot_state.sclk_bootup_value;
1328 		table->ACPILevel.MinVoltage =
1329 				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1330 	}
1331 
1332 	/* get the engine clock dividers for this clock value */
1333 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1334 			table->ACPILevel.SclkFrequency,  &dividers);
1335 	PP_ASSERT_WITH_CODE(result == 0,
1336 			"Error retrieving Engine Clock dividers from VBIOS.",
1337 			return result);
1338 
1339 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1340 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1341 	table->ACPILevel.DeepSleepDivId = 0;
1342 
1343 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1344 			SPLL_PWRON, 0);
1345 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1346 			SPLL_RESET, 1);
1347 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1348 			SCLK_MUX_SEL, 4);
1349 
1350 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1351 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1352 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1353 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1354 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1355 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1356 	table->ACPILevel.CcPwrDynRm = 0;
1357 	table->ACPILevel.CcPwrDynRm1 = 0;
1358 
1359 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1360 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1361 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1362 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1363 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1364 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1365 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1366 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1367 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1368 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1369 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1370 
1371 	if (!data->mclk_dpm_key_disabled) {
1372 		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1373 		table->MemoryACPILevel.MclkFrequency =
1374 				data->dpm_table.mclk_table.dpm_levels[0].value;
1375 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1376 				table_info->vdd_dep_on_mclk,
1377 				table->MemoryACPILevel.MclkFrequency,
1378 			(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1379 		PP_ASSERT_WITH_CODE((0 == result),
1380 				"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1381 				);
1382 	} else {
1383 		table->MemoryACPILevel.MclkFrequency =
1384 				data->vbios_boot_state.mclk_bootup_value;
1385 		table->MemoryACPILevel.MinVoltage =
1386 				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1387 	}
1388 
1389 	us_mvdd = 0;
1390 	if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1391 			(data->mclk_dpm_key_disabled))
1392 		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1393 	else {
1394 		if (!fiji_populate_mvdd_value(hwmgr,
1395 				data->dpm_table.mclk_table.dpm_levels[0].value,
1396 				&vol_level))
1397 			us_mvdd = vol_level.Voltage;
1398 	}
1399 
1400 	table->MemoryACPILevel.MinMvdd =
1401 			PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1402 
1403 	table->MemoryACPILevel.EnabledForThrottle = 0;
1404 	table->MemoryACPILevel.EnabledForActivity = 0;
1405 	table->MemoryACPILevel.UpHyst = 0;
1406 	table->MemoryACPILevel.DownHyst = 100;
1407 	table->MemoryACPILevel.VoltageDownHyst = 0;
1408 	table->MemoryACPILevel.ActivityLevel =
1409 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1410 
1411 	table->MemoryACPILevel.StutterEnable = false;
1412 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1413 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1414 
1415 	return result;
1416 }
1417 
1418 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1419 		SMU73_Discrete_DpmTable *table)
1420 {
1421 	int result = -EINVAL;
1422 	uint8_t count;
1423 	struct pp_atomctrl_clock_dividers_vi dividers;
1424 	struct phm_ppt_v1_information *table_info =
1425 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1426 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1427 			table_info->mm_dep_table;
1428 
1429 	table->VceLevelCount = (uint8_t)(mm_table->count);
1430 	table->VceBootLevel = 0;
1431 
1432 	for (count = 0; count < table->VceLevelCount; count++) {
1433 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1434 		table->VceLevel[count].MinVoltage = 0;
1435 		table->VceLevel[count].MinVoltage |=
1436 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1437 		table->VceLevel[count].MinVoltage |=
1438 				((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1439 						VOLTAGE_SCALE) << VDDCI_SHIFT;
1440 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1441 
1442 		/*retrieve divider value for VBIOS */
1443 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1444 				table->VceLevel[count].Frequency, &dividers);
1445 		PP_ASSERT_WITH_CODE((0 == result),
1446 				"can not find divide id for VCE engine clock",
1447 				return result);
1448 
1449 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450 
1451 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1452 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1453 	}
1454 	return result;
1455 }
1456 
1457 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1458 		SMU73_Discrete_DpmTable *table)
1459 {
1460 	int result = -EINVAL;
1461 	uint8_t count;
1462 	struct pp_atomctrl_clock_dividers_vi dividers;
1463 	struct phm_ppt_v1_information *table_info =
1464 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1465 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1466 			table_info->mm_dep_table;
1467 
1468 	table->AcpLevelCount = (uint8_t)(mm_table->count);
1469 	table->AcpBootLevel = 0;
1470 
1471 	for (count = 0; count < table->AcpLevelCount; count++) {
1472 		table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1473 		table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1474 				VOLTAGE_SCALE) << VDDC_SHIFT;
1475 		table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1476 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1477 		table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1478 
1479 		/* retrieve divider value for VBIOS */
1480 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1481 				table->AcpLevel[count].Frequency, &dividers);
1482 		PP_ASSERT_WITH_CODE((0 == result),
1483 				"can not find divide id for engine clock", return result);
1484 
1485 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1486 
1487 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1488 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1489 	}
1490 	return result;
1491 }
1492 
1493 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1494 		int32_t eng_clock, int32_t mem_clock,
1495 		struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1496 {
1497 	uint32_t dram_timing;
1498 	uint32_t dram_timing2;
1499 	uint32_t burstTime;
1500 	ULONG trrds, trrdl;
1501 	int result;
1502 
1503 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1504 			eng_clock, mem_clock);
1505 	PP_ASSERT_WITH_CODE(result == 0,
1506 			"Error calling VBIOS to set DRAM_TIMING.", return result);
1507 
1508 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1509 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1510 	burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1511 
1512 	trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1513 	trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1514 
1515 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1516 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1517 	arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1518 	arb_regs->TRRDS            = (uint8_t)trrds;
1519 	arb_regs->TRRDL            = (uint8_t)trrdl;
1520 
1521 	return 0;
1522 }
1523 
1524 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1525 {
1526 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1528 	struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1529 	uint32_t i, j;
1530 	int result = 0;
1531 
1532 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1533 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1534 			result = fiji_populate_memory_timing_parameters(hwmgr,
1535 					data->dpm_table.sclk_table.dpm_levels[i].value,
1536 					data->dpm_table.mclk_table.dpm_levels[j].value,
1537 					&arb_regs.entries[i][j]);
1538 			if (result)
1539 				break;
1540 		}
1541 	}
1542 
1543 	if (!result)
1544 		result = smu7_copy_bytes_to_smc(
1545 				hwmgr,
1546 				smu_data->smu7_data.arb_table_start,
1547 				(uint8_t *)&arb_regs,
1548 				sizeof(SMU73_Discrete_MCArbDramTimingTable),
1549 				SMC_RAM_END);
1550 	return result;
1551 }
1552 
1553 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1554 		struct SMU73_Discrete_DpmTable *table)
1555 {
1556 	int result = -EINVAL;
1557 	uint8_t count;
1558 	struct pp_atomctrl_clock_dividers_vi dividers;
1559 	struct phm_ppt_v1_information *table_info =
1560 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1561 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1562 			table_info->mm_dep_table;
1563 
1564 	table->UvdLevelCount = (uint8_t)(mm_table->count);
1565 	table->UvdBootLevel = 0;
1566 
1567 	for (count = 0; count < table->UvdLevelCount; count++) {
1568 		table->UvdLevel[count].MinVoltage = 0;
1569 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1570 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1571 		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1572 				VOLTAGE_SCALE) << VDDC_SHIFT;
1573 		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1574 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1575 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1576 
1577 		/* retrieve divider value for VBIOS */
1578 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1579 				table->UvdLevel[count].VclkFrequency, &dividers);
1580 		PP_ASSERT_WITH_CODE((0 == result),
1581 				"can not find divide id for Vclk clock", return result);
1582 
1583 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1584 
1585 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1586 				table->UvdLevel[count].DclkFrequency, &dividers);
1587 		PP_ASSERT_WITH_CODE((0 == result),
1588 				"can not find divide id for Dclk clock", return result);
1589 
1590 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1591 
1592 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1593 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1594 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1595 
1596 	}
1597 	return result;
1598 }
1599 
1600 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1601 		struct SMU73_Discrete_DpmTable *table)
1602 {
1603 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1604 
1605 	table->GraphicsBootLevel = 0;
1606 	table->MemoryBootLevel = 0;
1607 
1608 	/* find boot level from dpm table */
1609 	phm_find_boot_level(&(data->dpm_table.sclk_table),
1610 			    data->vbios_boot_state.sclk_bootup_value,
1611 			    (uint32_t *)&(table->GraphicsBootLevel));
1612 
1613 	phm_find_boot_level(&(data->dpm_table.mclk_table),
1614 			    data->vbios_boot_state.mclk_bootup_value,
1615 			    (uint32_t *)&(table->MemoryBootLevel));
1616 
1617 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1618 			VOLTAGE_SCALE;
1619 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1620 			VOLTAGE_SCALE;
1621 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1622 			VOLTAGE_SCALE;
1623 
1624 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1625 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1626 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1627 
1628 	return 0;
1629 }
1630 
1631 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1632 {
1633 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1634 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1635 	struct phm_ppt_v1_information *table_info =
1636 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1637 	uint8_t count, level;
1638 
1639 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1640 	for (level = 0; level < count; level++) {
1641 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1642 				data->vbios_boot_state.sclk_bootup_value) {
1643 			smu_data->smc_state_table.GraphicsBootLevel = level;
1644 			break;
1645 		}
1646 	}
1647 
1648 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1649 	for (level = 0; level < count; level++) {
1650 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1651 				data->vbios_boot_state.mclk_bootup_value) {
1652 			smu_data->smc_state_table.MemoryBootLevel = level;
1653 			break;
1654 		}
1655 	}
1656 
1657 	return 0;
1658 }
1659 
1660 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1661 {
1662 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1663 			volt_with_cks, value;
1664 	uint16_t clock_freq_u16;
1665 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1666 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1667 			volt_offset = 0;
1668 	struct phm_ppt_v1_information *table_info =
1669 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1670 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1671 			table_info->vdd_dep_on_sclk;
1672 
1673 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1674 
1675 	/* Read SMU_Eefuse to read and calculate RO and determine
1676 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1677 	 */
1678 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1679 			ixSMU_EFUSE_0 + (146 * 4));
1680 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1681 			ixSMU_EFUSE_0 + (148 * 4));
1682 	efuse &= 0xFF000000;
1683 	efuse = efuse >> 24;
1684 	efuse2 &= 0xF;
1685 
1686 	if (efuse2 == 1)
1687 		ro = (2300 - 1350) * efuse / 255 + 1350;
1688 	else
1689 		ro = (2500 - 1000) * efuse / 255 + 1000;
1690 
1691 	if (ro >= 1660)
1692 		type = 0;
1693 	else
1694 		type = 1;
1695 
1696 	/* Populate Stretch amount */
1697 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1698 
1699 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1700 	for (i = 0; i < sclk_table->count; i++) {
1701 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1702 				sclk_table->entries[i].cks_enable << i;
1703 		volt_without_cks = (uint32_t)((14041 *
1704 			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1705 			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1706 		volt_with_cks = (uint32_t)((13946 *
1707 			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1708 			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1709 		if (volt_without_cks >= volt_with_cks)
1710 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1711 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1712 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1713 	}
1714 
1715 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1716 			STRETCH_ENABLE, 0x0);
1717 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1718 			masterReset, 0x1);
1719 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1720 			staticEnable, 0x1);
1721 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722 			masterReset, 0x0);
1723 
1724 	/* Populate CKS Lookup Table */
1725 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1726 		stretch_amount2 = 0;
1727 	else if (stretch_amount == 3 || stretch_amount == 4)
1728 		stretch_amount2 = 1;
1729 	else {
1730 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1731 				PHM_PlatformCaps_ClockStretcher);
1732 		PP_ASSERT_WITH_CODE(false,
1733 				"Stretch Amount in PPTable not supported",
1734 				return -EINVAL);
1735 	}
1736 
1737 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738 			ixPWR_CKS_CNTL);
1739 	value &= 0xFFC2FF87;
1740 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1741 			fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1742 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1743 			fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1744 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1745 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1746 			SclkFrequency) / 100);
1747 	if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1748 			clock_freq_u16 &&
1749 	    fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1750 			clock_freq_u16) {
1751 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1752 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1753 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1754 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1755 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1756 		value |= (fiji_clock_stretch_amount_conversion
1757 				[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1758 				 [stretch_amount]) << 3;
1759 	}
1760 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1761 			CKS_LOOKUPTableEntry[0].minFreq);
1762 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1763 			CKS_LOOKUPTableEntry[0].maxFreq);
1764 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1765 			fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1766 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1767 			(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1768 
1769 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1770 			ixPWR_CKS_CNTL, value);
1771 
1772 	/* Populate DDT Lookup Table */
1773 	for (i = 0; i < 4; i++) {
1774 		/* Assign the minimum and maximum VID stored
1775 		 * in the last row of Clock Stretcher Voltage Table.
1776 		 */
1777 		smu_data->smc_state_table.ClockStretcherDataTable.
1778 		ClockStretcherDataTableEntry[i].minVID =
1779 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1780 		smu_data->smc_state_table.ClockStretcherDataTable.
1781 		ClockStretcherDataTableEntry[i].maxVID =
1782 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1783 		/* Loop through each SCLK and check the frequency
1784 		 * to see if it lies within the frequency for clock stretcher.
1785 		 */
1786 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1787 			cks_setting = 0;
1788 			clock_freq = PP_SMC_TO_HOST_UL(
1789 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1790 			/* Check the allowed frequency against the sclk level[j].
1791 			 *  Sclk's endianness has already been converted,
1792 			 *  and it's in 10Khz unit,
1793 			 *  as opposed to Data table, which is in Mhz unit.
1794 			 */
1795 			if (clock_freq >=
1796 					(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1797 				cks_setting |= 0x2;
1798 				if (clock_freq <
1799 						(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1800 					cks_setting |= 0x1;
1801 			}
1802 			smu_data->smc_state_table.ClockStretcherDataTable.
1803 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1804 		}
1805 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1806 				ClockStretcherDataTable.
1807 				ClockStretcherDataTableEntry[i].setting);
1808 	}
1809 
1810 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1811 	value &= 0xFFFFFFFE;
1812 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1813 
1814 	return 0;
1815 }
1816 
1817 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1818 		struct SMU73_Discrete_DpmTable *table)
1819 {
1820 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1821 	uint16_t config;
1822 
1823 	config = VR_MERGED_WITH_VDDC;
1824 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1825 
1826 	/* Set Vddc Voltage Controller */
1827 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1828 		config = VR_SVI2_PLANE_1;
1829 		table->VRConfig |= config;
1830 	} else {
1831 		PP_ASSERT_WITH_CODE(false,
1832 				"VDDC should be on SVI2 control in merged mode!",
1833 				);
1834 	}
1835 	/* Set Vddci Voltage Controller */
1836 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1837 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1838 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1839 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1840 		config = VR_SMIO_PATTERN_1;
1841 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1842 	} else {
1843 		config = VR_STATIC_VOLTAGE;
1844 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1845 	}
1846 	/* Set Mvdd Voltage Controller */
1847 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1848 		config = VR_SVI2_PLANE_2;
1849 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1850 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1851 		config = VR_SMIO_PATTERN_2;
1852 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1853 	} else {
1854 		config = VR_STATIC_VOLTAGE;
1855 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1862 {
1863 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1864 	uint32_t tmp;
1865 	int result;
1866 
1867 	/* This is a read-modify-write on the first byte of the ARB table.
1868 	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1869 	 * is the field 'current'.
1870 	 * This solution is ugly, but we never write the whole table only
1871 	 * individual fields in it.
1872 	 * In reality this field should not be in that structure
1873 	 * but in a soft register.
1874 	 */
1875 	result = smu7_read_smc_sram_dword(hwmgr,
1876 			smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1877 
1878 	if (result)
1879 		return result;
1880 
1881 	tmp &= 0x00FFFFFF;
1882 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1883 
1884 	return smu7_write_smc_sram_dword(hwmgr,
1885 			smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1886 }
1887 
1888 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1889 {
1890 	pp_atomctrl_voltage_table param_led_dpm;
1891 	int result = 0;
1892 	u32 mask = 0;
1893 
1894 	result = atomctrl_get_voltage_table_v3(hwmgr,
1895 					       VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1896 					       &param_led_dpm);
1897 	if (result == 0) {
1898 		int i, j;
1899 		u32 tmp = param_led_dpm.mask_low;
1900 
1901 		for (i = 0, j = 0; i < 32; i++) {
1902 			if (tmp & 1) {
1903 				mask |= (i << (8 * j));
1904 				if (++j >= 3)
1905 					break;
1906 			}
1907 			tmp >>= 1;
1908 		}
1909 	}
1910 	if (mask)
1911 		smum_send_msg_to_smc_with_parameter(hwmgr,
1912 						    PPSMC_MSG_LedConfig,
1913 						    mask,
1914 						    NULL);
1915 	return 0;
1916 }
1917 
1918 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1919 {
1920 	int result;
1921 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1922 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1923 	struct phm_ppt_v1_information *table_info =
1924 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1925 	struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1926 	uint8_t i;
1927 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1928 
1929 	fiji_initialize_power_tune_defaults(hwmgr);
1930 
1931 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1932 		fiji_populate_smc_voltage_tables(hwmgr, table);
1933 
1934 	table->SystemFlags = 0;
1935 
1936 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1937 			PHM_PlatformCaps_AutomaticDCTransition))
1938 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1939 
1940 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1941 			PHM_PlatformCaps_StepVddc))
1942 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1943 
1944 	if (data->is_memory_gddr5)
1945 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1946 
1947 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1948 		result = fiji_populate_ulv_state(hwmgr, table);
1949 		PP_ASSERT_WITH_CODE(0 == result,
1950 				"Failed to initialize ULV state!", return result);
1951 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1952 				ixCG_ULV_PARAMETER, 0x40035);
1953 	}
1954 
1955 	result = fiji_populate_smc_link_level(hwmgr, table);
1956 	PP_ASSERT_WITH_CODE(0 == result,
1957 			"Failed to initialize Link Level!", return result);
1958 
1959 	result = fiji_populate_all_graphic_levels(hwmgr);
1960 	PP_ASSERT_WITH_CODE(0 == result,
1961 			"Failed to initialize Graphics Level!", return result);
1962 
1963 	result = fiji_populate_all_memory_levels(hwmgr);
1964 	PP_ASSERT_WITH_CODE(0 == result,
1965 			"Failed to initialize Memory Level!", return result);
1966 
1967 	result = fiji_populate_smc_acpi_level(hwmgr, table);
1968 	PP_ASSERT_WITH_CODE(0 == result,
1969 			"Failed to initialize ACPI Level!", return result);
1970 
1971 	result = fiji_populate_smc_vce_level(hwmgr, table);
1972 	PP_ASSERT_WITH_CODE(0 == result,
1973 			"Failed to initialize VCE Level!", return result);
1974 
1975 	result = fiji_populate_smc_acp_level(hwmgr, table);
1976 	PP_ASSERT_WITH_CODE(0 == result,
1977 			"Failed to initialize ACP Level!", return result);
1978 
1979 	/* Since only the initial state is completely set up at this point
1980 	 * (the other states are just copies of the boot state) we only
1981 	 * need to populate the  ARB settings for the initial state.
1982 	 */
1983 	result = fiji_program_memory_timing_parameters(hwmgr);
1984 	PP_ASSERT_WITH_CODE(0 == result,
1985 			"Failed to Write ARB settings for the initial state.", return result);
1986 
1987 	result = fiji_populate_smc_uvd_level(hwmgr, table);
1988 	PP_ASSERT_WITH_CODE(0 == result,
1989 			"Failed to initialize UVD Level!", return result);
1990 
1991 	result = fiji_populate_smc_boot_level(hwmgr, table);
1992 	PP_ASSERT_WITH_CODE(0 == result,
1993 			"Failed to initialize Boot Level!", return result);
1994 
1995 	result = fiji_populate_smc_initailial_state(hwmgr);
1996 	PP_ASSERT_WITH_CODE(0 == result,
1997 			"Failed to initialize Boot State!", return result);
1998 
1999 	result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2000 	PP_ASSERT_WITH_CODE(0 == result,
2001 			"Failed to populate BAPM Parameters!", return result);
2002 
2003 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2004 			PHM_PlatformCaps_ClockStretcher)) {
2005 		result = fiji_populate_clock_stretcher_data_table(hwmgr);
2006 		PP_ASSERT_WITH_CODE(0 == result,
2007 				"Failed to populate Clock Stretcher Data Table!",
2008 				return result);
2009 	}
2010 
2011 	table->GraphicsVoltageChangeEnable  = 1;
2012 	table->GraphicsThermThrottleEnable  = 1;
2013 	table->GraphicsInterval = 1;
2014 	table->VoltageInterval  = 1;
2015 	table->ThermalInterval  = 1;
2016 	table->TemperatureLimitHigh =
2017 			table_info->cac_dtp_table->usTargetOperatingTemp *
2018 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2019 	table->TemperatureLimitLow  =
2020 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2021 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2022 	table->MemoryVoltageChangeEnable = 1;
2023 	table->MemoryInterval = 1;
2024 	table->VoltageResponseTime = 0;
2025 	table->PhaseResponseTime = 0;
2026 	table->MemoryThermThrottleEnable = 1;
2027 	table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2028 	table->PCIeGenInterval = 1;
2029 	table->VRConfig = 0;
2030 
2031 	result = fiji_populate_vr_config(hwmgr, table);
2032 	PP_ASSERT_WITH_CODE(0 == result,
2033 			"Failed to populate VRConfig setting!", return result);
2034 	data->vr_config = table->VRConfig;
2035 	table->ThermGpio = 17;
2036 	table->SclkStepSize = 0x4000;
2037 
2038 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2039 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2040 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2041 				PHM_PlatformCaps_RegulatorHot);
2042 	} else {
2043 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2044 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2045 				PHM_PlatformCaps_RegulatorHot);
2046 	}
2047 
2048 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2049 			&gpio_pin)) {
2050 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2051 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2052 				PHM_PlatformCaps_AutomaticDCTransition);
2053 	} else {
2054 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2055 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2056 				PHM_PlatformCaps_AutomaticDCTransition);
2057 	}
2058 
2059 	/* Thermal Output GPIO */
2060 	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2061 			&gpio_pin)) {
2062 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2063 				PHM_PlatformCaps_ThermalOutGPIO);
2064 
2065 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2066 
2067 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2068 		 * since VBIOS will program this register to set 'inactive state',
2069 		 * driver can then determine 'active state' from this and
2070 		 * program SMU with correct polarity
2071 		 */
2072 		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2073 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2074 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2075 
2076 		/* if required, combine VRHot/PCC with thermal out GPIO */
2077 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2078 				PHM_PlatformCaps_RegulatorHot) &&
2079 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2080 					PHM_PlatformCaps_CombinePCCWithThermalSignal))
2081 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2082 	} else {
2083 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2084 				PHM_PlatformCaps_ThermalOutGPIO);
2085 		table->ThermOutGpio = 17;
2086 		table->ThermOutPolarity = 1;
2087 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2088 	}
2089 
2090 	for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2091 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2092 
2093 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2094 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2095 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2096 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2097 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2098 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2099 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2100 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2101 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2102 
2103 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2104 	result = smu7_copy_bytes_to_smc(hwmgr,
2105 			smu_data->smu7_data.dpm_table_start +
2106 			offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2107 			(uint8_t *)&(table->SystemFlags),
2108 			sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2109 			SMC_RAM_END);
2110 	PP_ASSERT_WITH_CODE(0 == result,
2111 			"Failed to upload dpm data to SMC memory!", return result);
2112 
2113 	result = fiji_init_arb_table_index(hwmgr);
2114 	PP_ASSERT_WITH_CODE(0 == result,
2115 			"Failed to upload arb data to SMC memory!", return result);
2116 
2117 	result = fiji_populate_pm_fuses(hwmgr);
2118 	PP_ASSERT_WITH_CODE(0 == result,
2119 			"Failed to  populate PM fuses to SMC memory!", return result);
2120 
2121 	result = fiji_setup_dpm_led_config(hwmgr);
2122 	PP_ASSERT_WITH_CODE(0 == result,
2123 			    "Failed to setup dpm led config", return result);
2124 
2125 	return 0;
2126 }
2127 
2128 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2129 {
2130 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2131 
2132 	SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2133 	uint32_t duty100;
2134 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2135 	uint16_t fdo_min, slope1, slope2;
2136 	uint32_t reference_clock;
2137 	int res;
2138 	uint64_t tmp64;
2139 
2140 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2141 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2142 			PHM_PlatformCaps_MicrocodeFanControl);
2143 		return 0;
2144 	}
2145 
2146 	if (smu_data->smu7_data.fan_table_start == 0) {
2147 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2148 				PHM_PlatformCaps_MicrocodeFanControl);
2149 		return 0;
2150 	}
2151 
2152 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2153 			CG_FDO_CTRL1, FMAX_DUTY100);
2154 
2155 	if (duty100 == 0) {
2156 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2157 				PHM_PlatformCaps_MicrocodeFanControl);
2158 		return 0;
2159 	}
2160 
2161 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2162 			usPWMMin * duty100;
2163 	do_div(tmp64, 10000);
2164 	fdo_min = (uint16_t)tmp64;
2165 
2166 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2167 			hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2168 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2169 			hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2170 
2171 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2172 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2173 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2174 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2175 
2176 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2177 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2178 
2179 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2180 			thermal_controller.advanceFanControlParameters.usTMin) / 100);
2181 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2182 			thermal_controller.advanceFanControlParameters.usTMed) / 100);
2183 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2184 			thermal_controller.advanceFanControlParameters.usTMax) / 100);
2185 
2186 	fan_table.Slope1 = cpu_to_be16(slope1);
2187 	fan_table.Slope2 = cpu_to_be16(slope2);
2188 
2189 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2190 
2191 	fan_table.HystDown = cpu_to_be16(hwmgr->
2192 			thermal_controller.advanceFanControlParameters.ucTHyst);
2193 
2194 	fan_table.HystUp = cpu_to_be16(1);
2195 
2196 	fan_table.HystSlope = cpu_to_be16(1);
2197 
2198 	fan_table.TempRespLim = cpu_to_be16(5);
2199 
2200 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2201 
2202 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2203 			thermal_controller.advanceFanControlParameters.ulCycleDelay *
2204 			reference_clock) / 1600);
2205 
2206 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2207 
2208 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2209 			hwmgr->device, CGS_IND_REG__SMC,
2210 			CG_MULT_THERMAL_CTRL, TEMP_SEL);
2211 
2212 	res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2213 			(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2214 			SMC_RAM_END);
2215 
2216 	if (!res && hwmgr->thermal_controller.
2217 			advanceFanControlParameters.ucMinimumPWMLimit)
2218 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2219 				PPSMC_MSG_SetFanMinPwm,
2220 				hwmgr->thermal_controller.
2221 				advanceFanControlParameters.ucMinimumPWMLimit,
2222 				NULL);
2223 
2224 	if (!res && hwmgr->thermal_controller.
2225 			advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2226 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2227 				PPSMC_MSG_SetFanSclkTarget,
2228 				hwmgr->thermal_controller.
2229 				advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
2230 				NULL);
2231 
2232 	if (res)
2233 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2234 				PHM_PlatformCaps_MicrocodeFanControl);
2235 
2236 	return 0;
2237 }
2238 
2239 
2240 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2241 {
2242 	if (!hwmgr->avfs_supported)
2243 		return 0;
2244 
2245 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2246 
2247 	return 0;
2248 }
2249 
2250 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2251 {
2252 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2253 
2254 	if (data->need_update_smu7_dpm_table &
2255 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2256 		return fiji_program_memory_timing_parameters(hwmgr);
2257 
2258 	return 0;
2259 }
2260 
2261 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2262 {
2263 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2264 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2265 
2266 	int result = 0;
2267 	uint32_t low_sclk_interrupt_threshold = 0;
2268 
2269 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2270 			PHM_PlatformCaps_SclkThrottleLowNotification)
2271 		&& (data->low_sclk_interrupt_threshold != 0)) {
2272 		low_sclk_interrupt_threshold =
2273 				data->low_sclk_interrupt_threshold;
2274 
2275 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2276 
2277 		result = smu7_copy_bytes_to_smc(
2278 				hwmgr,
2279 				smu_data->smu7_data.dpm_table_start +
2280 				offsetof(SMU73_Discrete_DpmTable,
2281 					LowSclkInterruptThreshold),
2282 				(uint8_t *)&low_sclk_interrupt_threshold,
2283 				sizeof(uint32_t),
2284 				SMC_RAM_END);
2285 	}
2286 	result = fiji_program_mem_timing_parameters(hwmgr);
2287 	PP_ASSERT_WITH_CODE((result == 0),
2288 			"Failed to program memory timing parameters!",
2289 			);
2290 	return result;
2291 }
2292 
2293 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2294 {
2295 	switch (type) {
2296 	case SMU_SoftRegisters:
2297 		switch (member) {
2298 		case HandshakeDisables:
2299 			return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2300 		case VoltageChangeTimeout:
2301 			return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2302 		case AverageGraphicsActivity:
2303 			return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2304 		case AverageMemoryActivity:
2305 			return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2306 		case PreVBlankGap:
2307 			return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2308 		case VBlankTimeout:
2309 			return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2310 		case UcodeLoadStatus:
2311 			return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2312 		case DRAM_LOG_ADDR_H:
2313 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2314 		case DRAM_LOG_ADDR_L:
2315 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2316 		case DRAM_LOG_PHY_ADDR_H:
2317 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2318 		case DRAM_LOG_PHY_ADDR_L:
2319 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2320 		case DRAM_LOG_BUFF_SIZE:
2321 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2322 		}
2323 		break;
2324 	case SMU_Discrete_DpmTable:
2325 		switch (member) {
2326 		case UvdBootLevel:
2327 			return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2328 		case VceBootLevel:
2329 			return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2330 		case LowSclkInterruptThreshold:
2331 			return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2332 		}
2333 		break;
2334 	}
2335 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2336 	return 0;
2337 }
2338 
2339 static uint32_t fiji_get_mac_definition(uint32_t value)
2340 {
2341 	switch (value) {
2342 	case SMU_MAX_LEVELS_GRAPHICS:
2343 		return SMU73_MAX_LEVELS_GRAPHICS;
2344 	case SMU_MAX_LEVELS_MEMORY:
2345 		return SMU73_MAX_LEVELS_MEMORY;
2346 	case SMU_MAX_LEVELS_LINK:
2347 		return SMU73_MAX_LEVELS_LINK;
2348 	case SMU_MAX_ENTRIES_SMIO:
2349 		return SMU73_MAX_ENTRIES_SMIO;
2350 	case SMU_MAX_LEVELS_VDDC:
2351 		return SMU73_MAX_LEVELS_VDDC;
2352 	case SMU_MAX_LEVELS_VDDGFX:
2353 		return SMU73_MAX_LEVELS_VDDGFX;
2354 	case SMU_MAX_LEVELS_VDDCI:
2355 		return SMU73_MAX_LEVELS_VDDCI;
2356 	case SMU_MAX_LEVELS_MVDD:
2357 		return SMU73_MAX_LEVELS_MVDD;
2358 	}
2359 
2360 	pr_warn("can't get the mac of %x\n", value);
2361 	return 0;
2362 }
2363 
2364 
2365 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2366 {
2367 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2368 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2369 	struct phm_ppt_v1_information *table_info =
2370 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2371 
2372 	smu_data->smc_state_table.UvdBootLevel = 0;
2373 	if (table_info->mm_dep_table->count > 0)
2374 		smu_data->smc_state_table.UvdBootLevel =
2375 				(uint8_t) (table_info->mm_dep_table->count - 1);
2376 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2377 						UvdBootLevel);
2378 	mm_boot_level_offset /= 4;
2379 	mm_boot_level_offset *= 4;
2380 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2381 			CGS_IND_REG__SMC, mm_boot_level_offset);
2382 	mm_boot_level_value &= 0x00FFFFFF;
2383 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2384 	cgs_write_ind_register(hwmgr->device,
2385 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2386 
2387 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2388 			PHM_PlatformCaps_UVDDPM) ||
2389 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2390 			PHM_PlatformCaps_StablePState))
2391 		smum_send_msg_to_smc_with_parameter(hwmgr,
2392 				PPSMC_MSG_UVDDPM_SetEnabledMask,
2393 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2394 				NULL);
2395 	return 0;
2396 }
2397 
2398 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2399 {
2400 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2401 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2402 	struct phm_ppt_v1_information *table_info =
2403 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2404 
2405 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2406 					PHM_PlatformCaps_StablePState))
2407 		smu_data->smc_state_table.VceBootLevel =
2408 			(uint8_t) (table_info->mm_dep_table->count - 1);
2409 	else
2410 		smu_data->smc_state_table.VceBootLevel = 0;
2411 
2412 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2413 					offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2414 	mm_boot_level_offset /= 4;
2415 	mm_boot_level_offset *= 4;
2416 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2417 			CGS_IND_REG__SMC, mm_boot_level_offset);
2418 	mm_boot_level_value &= 0xFF00FFFF;
2419 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2420 	cgs_write_ind_register(hwmgr->device,
2421 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2422 
2423 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2424 		smum_send_msg_to_smc_with_parameter(hwmgr,
2425 				PPSMC_MSG_VCEDPM_SetEnabledMask,
2426 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2427 				NULL);
2428 	return 0;
2429 }
2430 
2431 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2432 {
2433 	switch (type) {
2434 	case SMU_UVD_TABLE:
2435 		fiji_update_uvd_smc_table(hwmgr);
2436 		break;
2437 	case SMU_VCE_TABLE:
2438 		fiji_update_vce_smc_table(hwmgr);
2439 		break;
2440 	default:
2441 		break;
2442 	}
2443 	return 0;
2444 }
2445 
2446 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2447 {
2448 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2449 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2450 	uint32_t tmp;
2451 	int result;
2452 	bool error = false;
2453 
2454 	result = smu7_read_smc_sram_dword(hwmgr,
2455 			SMU7_FIRMWARE_HEADER_LOCATION +
2456 			offsetof(SMU73_Firmware_Header, DpmTable),
2457 			&tmp, SMC_RAM_END);
2458 
2459 	if (0 == result)
2460 		smu_data->smu7_data.dpm_table_start = tmp;
2461 
2462 	error |= (0 != result);
2463 
2464 	result = smu7_read_smc_sram_dword(hwmgr,
2465 			SMU7_FIRMWARE_HEADER_LOCATION +
2466 			offsetof(SMU73_Firmware_Header, SoftRegisters),
2467 			&tmp, SMC_RAM_END);
2468 
2469 	if (!result) {
2470 		data->soft_regs_start = tmp;
2471 		smu_data->smu7_data.soft_regs_start = tmp;
2472 	}
2473 
2474 	error |= (0 != result);
2475 
2476 	result = smu7_read_smc_sram_dword(hwmgr,
2477 			SMU7_FIRMWARE_HEADER_LOCATION +
2478 			offsetof(SMU73_Firmware_Header, mcRegisterTable),
2479 			&tmp, SMC_RAM_END);
2480 
2481 	if (!result)
2482 		smu_data->smu7_data.mc_reg_table_start = tmp;
2483 
2484 	result = smu7_read_smc_sram_dword(hwmgr,
2485 			SMU7_FIRMWARE_HEADER_LOCATION +
2486 			offsetof(SMU73_Firmware_Header, FanTable),
2487 			&tmp, SMC_RAM_END);
2488 
2489 	if (!result)
2490 		smu_data->smu7_data.fan_table_start = tmp;
2491 
2492 	error |= (0 != result);
2493 
2494 	result = smu7_read_smc_sram_dword(hwmgr,
2495 			SMU7_FIRMWARE_HEADER_LOCATION +
2496 			offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2497 			&tmp, SMC_RAM_END);
2498 
2499 	if (!result)
2500 		smu_data->smu7_data.arb_table_start = tmp;
2501 
2502 	error |= (0 != result);
2503 
2504 	result = smu7_read_smc_sram_dword(hwmgr,
2505 			SMU7_FIRMWARE_HEADER_LOCATION +
2506 			offsetof(SMU73_Firmware_Header, Version),
2507 			&tmp, SMC_RAM_END);
2508 
2509 	if (!result)
2510 		hwmgr->microcode_version_info.SMC = tmp;
2511 
2512 	error |= (0 != result);
2513 
2514 	return error ? -1 : 0;
2515 }
2516 
2517 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2518 {
2519 
2520 	/* Program additional LP registers
2521 	 * that are no longer programmed by VBIOS
2522 	 */
2523 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2524 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2525 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2526 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2527 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2528 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2529 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2530 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2531 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2532 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2533 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2534 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2535 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2536 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2537 
2538 	return 0;
2539 }
2540 
2541 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2542 {
2543 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2544 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2545 			? true : false;
2546 }
2547 
2548 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2549 				void *profile_setting)
2550 {
2551 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2552 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2553 			(hwmgr->smu_backend);
2554 	struct profile_mode_setting *setting;
2555 	struct SMU73_Discrete_GraphicsLevel *levels =
2556 			smu_data->smc_state_table.GraphicsLevel;
2557 	uint32_t array = smu_data->smu7_data.dpm_table_start +
2558 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2559 
2560 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2561 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2562 	struct SMU73_Discrete_MemoryLevel *mclk_levels =
2563 			smu_data->smc_state_table.MemoryLevel;
2564 	uint32_t i;
2565 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2566 
2567 	if (profile_setting == NULL)
2568 		return -EINVAL;
2569 
2570 	setting = (struct profile_mode_setting *)profile_setting;
2571 
2572 	if (setting->bupdate_sclk) {
2573 		if (!data->sclk_dpm_key_disabled)
2574 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2575 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2576 			if (levels[i].ActivityLevel !=
2577 				cpu_to_be16(setting->sclk_activity)) {
2578 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2579 
2580 				clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2581 						+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2582 				offset = clk_activity_offset & ~0x3;
2583 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2584 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2585 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2586 
2587 			}
2588 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
2589 				levels[i].DownHyst != setting->sclk_down_hyst) {
2590 				levels[i].UpHyst = setting->sclk_up_hyst;
2591 				levels[i].DownHyst = setting->sclk_down_hyst;
2592 				up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2593 						+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2594 				down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2595 						+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2596 				offset = up_hyst_offset & ~0x3;
2597 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2598 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2599 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2600 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2601 			}
2602 		}
2603 		if (!data->sclk_dpm_key_disabled)
2604 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2605 	}
2606 
2607 	if (setting->bupdate_mclk) {
2608 		if (!data->mclk_dpm_key_disabled)
2609 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2610 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2611 			if (mclk_levels[i].ActivityLevel !=
2612 				cpu_to_be16(setting->mclk_activity)) {
2613 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2614 
2615 				clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2616 						+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2617 				offset = clk_activity_offset & ~0x3;
2618 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2619 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2620 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2621 
2622 			}
2623 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2624 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2625 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2626 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2627 				up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2628 						+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2629 				down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2630 						+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2631 				offset = up_hyst_offset & ~0x3;
2632 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2633 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2634 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2635 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2636 			}
2637 		}
2638 		if (!data->mclk_dpm_key_disabled)
2639 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2640 	}
2641 	return 0;
2642 }
2643 
2644 const struct pp_smumgr_func fiji_smu_funcs = {
2645 	.name = "fiji_smu",
2646 	.smu_init = &fiji_smu_init,
2647 	.smu_fini = &smu7_smu_fini,
2648 	.start_smu = &fiji_start_smu,
2649 	.check_fw_load_finish = &smu7_check_fw_load_finish,
2650 	.request_smu_load_fw = &smu7_reload_firmware,
2651 	.request_smu_load_specific_fw = NULL,
2652 	.send_msg_to_smc = &smu7_send_msg_to_smc,
2653 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2654 	.get_argument = smu7_get_argument,
2655 	.download_pptable_settings = NULL,
2656 	.upload_pptable_settings = NULL,
2657 	.update_smc_table = fiji_update_smc_table,
2658 	.get_offsetof = fiji_get_offsetof,
2659 	.process_firmware_header = fiji_process_firmware_header,
2660 	.init_smc_table = fiji_init_smc_table,
2661 	.update_sclk_threshold = fiji_update_sclk_threshold,
2662 	.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2663 	.thermal_avfs_enable = fiji_thermal_avfs_enable,
2664 	.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2665 	.populate_all_memory_levels = fiji_populate_all_memory_levels,
2666 	.get_mac_definition = fiji_get_mac_definition,
2667 	.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2668 	.is_dpm_running = fiji_is_dpm_running,
2669 	.is_hw_avfs_present = fiji_is_hw_avfs_present,
2670 	.update_dpm_settings = fiji_update_dpm_settings,
2671 };
2672