1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include "pp_debug.h" 25 #include "smumgr.h" 26 #include "smu7_dyn_defaults.h" 27 #include "smu73.h" 28 #include "smu_ucode_xfer_vi.h" 29 #include "fiji_smumgr.h" 30 #include "fiji_ppsmc.h" 31 #include "smu73_discrete.h" 32 #include "ppatomctrl.h" 33 #include "smu/smu_7_1_3_d.h" 34 #include "smu/smu_7_1_3_sh_mask.h" 35 #include "gmc/gmc_8_1_d.h" 36 #include "gmc/gmc_8_1_sh_mask.h" 37 #include "oss/oss_3_0_d.h" 38 #include "gca/gfx_8_0_d.h" 39 #include "bif/bif_5_0_d.h" 40 #include "bif/bif_5_0_sh_mask.h" 41 #include "dce/dce_10_0_d.h" 42 #include "dce/dce_10_0_sh_mask.h" 43 #include "hardwaremanager.h" 44 #include "cgs_common.h" 45 #include "atombios.h" 46 #include "pppcielanes.h" 47 #include "hwmgr.h" 48 #include "smu7_hwmgr.h" 49 50 51 #define AVFS_EN_MSB 1568 52 #define AVFS_EN_LSB 1568 53 54 #define FIJI_SMC_SIZE 0x20000 55 56 #define POWERTUNE_DEFAULT_SET_MAX 1 57 #define VDDC_VDDCI_DELTA 300 58 #define MC_CG_ARB_FREQ_F1 0x0b 59 60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs 61 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] 62 */ 63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = { 64 {600, 1050, 3, 0}, {600, 1050, 6, 1} }; 65 66 /* [FF, SS] type, [] 4 voltage ranges, and 67 * [Floor Freq, Boundary Freq, VID min , VID max] 68 */ 69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = { 70 { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} }, 71 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } }; 72 73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] 74 * (coming from PWR_CKS_CNTL.stretch_amount reg spec) 75 */ 76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = { 77 {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} }; 78 79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { 80 /*sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */ 81 {1, 0xF, 0xFD, 82 /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */ 83 0x19, 5, 45} 84 }; 85 86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = { 87 /* Min Sclk pcie DeepSleep Activity CgSpll CgSpll spllSpread SpllSpread CcPwr CcPwr Sclk Display Enabled Enabled Voltage Power */ 88 /* Voltage, Frequency, DpmLevel, DivId, Level, FuncCntl3, FuncCntl4, Spectrum, Spectrum2, DynRm, DynRm1 Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */ 89 { 0x3c0fd047, 0x30750000, 0x00, 0x03, 0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 90 { 0xa00fd047, 0x409c0000, 0x01, 0x04, 0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x16, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 91 { 0x0410d047, 0x50c30000, 0x01, 0x00, 0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000, 0, 0, 0x0e, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 92 { 0x6810d047, 0x60ea0000, 0x01, 0x00, 0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 93 { 0xcc10d047, 0xe8fd0000, 0x01, 0x00, 0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 94 { 0x3011d047, 0x70110100, 0x01, 0x00, 0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 95 { 0x9411d047, 0xf8240100, 0x01, 0x00, 0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000, 0, 0, 0x0c, 0x00, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 }, 96 { 0xf811d047, 0x80380100, 0x01, 0x00, 0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000, 0, 0, 0x0c, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00 } 97 }; 98 99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) 100 { 101 int result = 0; 102 103 /* Wait for smc boot up */ 104 /* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 105 RCU_UC_EVENTS, boot_seq_done, 0); */ 106 107 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 108 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 109 110 result = smu7_upload_smu_firmware_image(hwmgr); 111 if (result) 112 return result; 113 114 /* Clear status */ 115 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 116 ixSMU_STATUS, 0); 117 118 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 119 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 120 121 /* De-assert reset */ 122 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 123 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 124 125 /* Wait for ROM firmware to initialize interrupt hendler */ 126 /*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND, 127 SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */ 128 129 /* Set SMU Auto Start */ 130 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 131 SMU_INPUT_DATA, AUTO_START, 1); 132 133 /* Clear firmware interrupt enable flag */ 134 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 135 ixFIRMWARE_FLAGS, 0); 136 137 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, 138 INTERRUPTS_ENABLED, 1); 139 140 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL); 141 142 /* Wait for done bit to be set */ 143 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 144 SMU_STATUS, SMU_DONE, 0); 145 146 /* Check pass/failed indicator */ 147 if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 148 SMU_STATUS, SMU_PASS) != 1) { 149 PP_ASSERT_WITH_CODE(false, 150 "SMU Firmware start failed!", return -1); 151 } 152 153 /* Wait for firmware to initialize */ 154 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 155 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 156 157 return result; 158 } 159 160 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) 161 { 162 int result = 0; 163 164 /* wait for smc boot up */ 165 PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, 166 RCU_UC_EVENTS, boot_seq_done, 0); 167 168 /* Clear firmware interrupt enable flag */ 169 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 170 ixFIRMWARE_FLAGS, 0); 171 172 /* Assert reset */ 173 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 174 SMC_SYSCON_RESET_CNTL, rst_reg, 1); 175 176 result = smu7_upload_smu_firmware_image(hwmgr); 177 if (result) 178 return result; 179 180 /* Set smc instruct start point at 0x0 */ 181 smu7_program_jump_on_start(hwmgr); 182 183 /* Enable clock */ 184 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 185 SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); 186 187 /* De-assert reset */ 188 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 189 SMC_SYSCON_RESET_CNTL, rst_reg, 0); 190 191 /* Wait for firmware to initialize */ 192 PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, 193 FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); 194 195 return result; 196 } 197 198 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr) 199 { 200 int result = 0; 201 struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend); 202 203 if (0 != smu_data->avfs_btc_param) { 204 if (0 != smum_send_msg_to_smc_with_parameter(hwmgr, 205 PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param, 206 NULL)) { 207 pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed"); 208 result = -EINVAL; 209 } 210 } 211 /* Soft-Reset to reset the engine before loading uCode */ 212 /* halt */ 213 cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000); 214 /* reset everything */ 215 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff); 216 /* clear reset */ 217 cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0); 218 219 return result; 220 } 221 222 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr) 223 { 224 int32_t vr_config; 225 uint32_t table_start; 226 uint32_t level_addr, vr_config_addr; 227 uint32_t level_size = sizeof(avfs_graphics_level); 228 229 PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr, 230 SMU7_FIRMWARE_HEADER_LOCATION + 231 offsetof(SMU73_Firmware_Header, DpmTable), 232 &table_start, 0x40000), 233 "[AVFS][Fiji_SetupGfxLvlStruct] SMU could not " 234 "communicate starting address of DPM table", 235 return -1;); 236 237 /* Default value for vr_config = 238 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */ 239 vr_config = 0x01000500; /* Real value:0x50001 */ 240 241 vr_config_addr = table_start + 242 offsetof(SMU73_Discrete_DpmTable, VRConfig); 243 244 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr, 245 (uint8_t *)&vr_config, sizeof(int32_t), 0x40000), 246 "[AVFS][Fiji_SetupGfxLvlStruct] Problems copying " 247 "vr_config value over to SMC", 248 return -1;); 249 250 level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); 251 252 PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr, 253 (uint8_t *)(&avfs_graphics_level), level_size, 0x40000), 254 "[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!", 255 return -1;); 256 257 return 0; 258 } 259 260 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr) 261 { 262 if (!hwmgr->avfs_supported) 263 return 0; 264 265 PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr), 266 "[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level" 267 " table over to SMU", 268 return -EINVAL); 269 PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr), 270 "[AVFS][fiji_avfs_event_mgr] Could not setup " 271 "Pwr Virus for AVFS ", 272 return -EINVAL); 273 PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr), 274 "[AVFS][fiji_avfs_event_mgr] Failure at " 275 "fiji_start_avfs_btc. AVFS Disabled", 276 return -EINVAL); 277 278 return 0; 279 } 280 281 static int fiji_start_smu(struct pp_hwmgr *hwmgr) 282 { 283 int result = 0; 284 struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend); 285 286 /* Only start SMC if SMC RAM is not running */ 287 if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { 288 /* Check if SMU is running in protected mode */ 289 if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 290 CGS_IND_REG__SMC, 291 SMU_FIRMWARE, SMU_MODE)) { 292 result = fiji_start_smu_in_non_protection_mode(hwmgr); 293 if (result) 294 return result; 295 } else { 296 result = fiji_start_smu_in_protection_mode(hwmgr); 297 if (result) 298 return result; 299 } 300 if (fiji_avfs_event_mgr(hwmgr)) 301 hwmgr->avfs_supported = false; 302 } 303 304 /* Setup SoftRegsStart here for register lookup in case 305 * DummyBackEnd is used and ProcessFirmwareHeader is not executed 306 */ 307 smu7_read_smc_sram_dword(hwmgr, 308 SMU7_FIRMWARE_HEADER_LOCATION + 309 offsetof(SMU73_Firmware_Header, SoftRegisters), 310 &(priv->smu7_data.soft_regs_start), 0x40000); 311 312 result = smu7_request_smu_load_fw(hwmgr); 313 314 return result; 315 } 316 317 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr) 318 { 319 320 uint32_t efuse = 0; 321 322 if (!hwmgr->not_vf) 323 return false; 324 325 if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB, 326 &efuse)) { 327 if (efuse) 328 return true; 329 } 330 return false; 331 } 332 333 static int fiji_smu_init(struct pp_hwmgr *hwmgr) 334 { 335 struct fiji_smumgr *fiji_priv; 336 337 fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL); 338 339 if (fiji_priv == NULL) 340 return -ENOMEM; 341 342 hwmgr->smu_backend = fiji_priv; 343 344 if (smu7_init(hwmgr)) { 345 kfree(fiji_priv); 346 return -EINVAL; 347 } 348 349 return 0; 350 } 351 352 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, 353 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, 354 uint32_t clock, uint32_t *voltage, uint32_t *mvdd) 355 { 356 uint32_t i; 357 uint16_t vddci; 358 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 359 *voltage = *mvdd = 0; 360 361 362 /* clock - voltage dependency table is empty table */ 363 if (dep_table->count == 0) 364 return -EINVAL; 365 366 for (i = 0; i < dep_table->count; i++) { 367 /* find first sclk bigger than request */ 368 if (dep_table->entries[i].clk >= clock) { 369 *voltage |= (dep_table->entries[i].vddc * 370 VOLTAGE_SCALE) << VDDC_SHIFT; 371 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) 372 *voltage |= (data->vbios_boot_state.vddci_bootup_value * 373 VOLTAGE_SCALE) << VDDCI_SHIFT; 374 else if (dep_table->entries[i].vddci) 375 *voltage |= (dep_table->entries[i].vddci * 376 VOLTAGE_SCALE) << VDDCI_SHIFT; 377 else { 378 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), 379 (dep_table->entries[i].vddc - 380 VDDC_VDDCI_DELTA)); 381 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; 382 } 383 384 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) 385 *mvdd = data->vbios_boot_state.mvdd_bootup_value * 386 VOLTAGE_SCALE; 387 else if (dep_table->entries[i].mvdd) 388 *mvdd = (uint32_t) dep_table->entries[i].mvdd * 389 VOLTAGE_SCALE; 390 391 *voltage |= 1 << PHASES_SHIFT; 392 return 0; 393 } 394 } 395 396 /* sclk is bigger than max sclk in the dependence table */ 397 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; 398 399 if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) 400 *voltage |= (data->vbios_boot_state.vddci_bootup_value * 401 VOLTAGE_SCALE) << VDDCI_SHIFT; 402 else if (dep_table->entries[i-1].vddci) { 403 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), 404 (dep_table->entries[i].vddc - 405 VDDC_VDDCI_DELTA)); 406 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; 407 } 408 409 if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) 410 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; 411 else if (dep_table->entries[i].mvdd) 412 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; 413 414 return 0; 415 } 416 417 418 static uint16_t scale_fan_gain_settings(uint16_t raw_setting) 419 { 420 uint32_t tmp; 421 tmp = raw_setting * 4096 / 100; 422 return (uint16_t)tmp; 423 } 424 425 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda) 426 { 427 switch (line) { 428 case SMU7_I2CLineID_DDC1: 429 *scl = SMU7_I2C_DDC1CLK; 430 *sda = SMU7_I2C_DDC1DATA; 431 break; 432 case SMU7_I2CLineID_DDC2: 433 *scl = SMU7_I2C_DDC2CLK; 434 *sda = SMU7_I2C_DDC2DATA; 435 break; 436 case SMU7_I2CLineID_DDC3: 437 *scl = SMU7_I2C_DDC3CLK; 438 *sda = SMU7_I2C_DDC3DATA; 439 break; 440 case SMU7_I2CLineID_DDC4: 441 *scl = SMU7_I2C_DDC4CLK; 442 *sda = SMU7_I2C_DDC4DATA; 443 break; 444 case SMU7_I2CLineID_DDC5: 445 *scl = SMU7_I2C_DDC5CLK; 446 *sda = SMU7_I2C_DDC5DATA; 447 break; 448 case SMU7_I2CLineID_DDC6: 449 *scl = SMU7_I2C_DDC6CLK; 450 *sda = SMU7_I2C_DDC6DATA; 451 break; 452 case SMU7_I2CLineID_SCLSDA: 453 *scl = SMU7_I2C_SCL; 454 *sda = SMU7_I2C_SDA; 455 break; 456 case SMU7_I2CLineID_DDCVGA: 457 *scl = SMU7_I2C_DDCVGACLK; 458 *sda = SMU7_I2C_DDCVGADATA; 459 break; 460 default: 461 *scl = 0; 462 *sda = 0; 463 break; 464 } 465 } 466 467 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) 468 { 469 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 470 struct phm_ppt_v1_information *table_info = 471 (struct phm_ppt_v1_information *)(hwmgr->pptable); 472 473 if (table_info && 474 table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && 475 table_info->cac_dtp_table->usPowerTuneDataSetID) 476 smu_data->power_tune_defaults = 477 &fiji_power_tune_data_set_array 478 [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; 479 else 480 smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0]; 481 482 } 483 484 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) 485 { 486 487 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 488 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; 489 490 SMU73_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table); 491 492 struct phm_ppt_v1_information *table_info = 493 (struct phm_ppt_v1_information *)(hwmgr->pptable); 494 struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; 495 struct pp_advance_fan_control_parameters *fan_table = 496 &hwmgr->thermal_controller.advanceFanControlParameters; 497 uint8_t uc_scl, uc_sda; 498 499 /* TDP number of fraction bits are changed from 8 to 7 for Fiji 500 * as requested by SMC team 501 */ 502 dpm_table->DefaultTdp = PP_HOST_TO_SMC_US( 503 (uint16_t)(cac_dtp_table->usTDP * 128)); 504 dpm_table->TargetTdp = PP_HOST_TO_SMC_US( 505 (uint16_t)(cac_dtp_table->usTDP * 128)); 506 507 PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, 508 "Target Operating Temp is out of Range!", 509 ); 510 511 dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp); 512 dpm_table->GpuTjHyst = 8; 513 514 dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase; 515 516 /* The following are for new Fiji Multi-input fan/thermal control */ 517 dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( 518 cac_dtp_table->usTargetOperatingTemp * 256); 519 dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( 520 cac_dtp_table->usTemperatureLimitHotspot * 256); 521 dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US( 522 cac_dtp_table->usTemperatureLimitLiquid1 * 256); 523 dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US( 524 cac_dtp_table->usTemperatureLimitLiquid2 * 256); 525 dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US( 526 cac_dtp_table->usTemperatureLimitVrVddc * 256); 527 dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US( 528 cac_dtp_table->usTemperatureLimitVrMvdd * 256); 529 dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US( 530 cac_dtp_table->usTemperatureLimitPlx * 256); 531 532 dpm_table->FanGainEdge = PP_HOST_TO_SMC_US( 533 scale_fan_gain_settings(fan_table->usFanGainEdge)); 534 dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US( 535 scale_fan_gain_settings(fan_table->usFanGainHotspot)); 536 dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US( 537 scale_fan_gain_settings(fan_table->usFanGainLiquid)); 538 dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US( 539 scale_fan_gain_settings(fan_table->usFanGainVrVddc)); 540 dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US( 541 scale_fan_gain_settings(fan_table->usFanGainVrMvdd)); 542 dpm_table->FanGainPlx = PP_HOST_TO_SMC_US( 543 scale_fan_gain_settings(fan_table->usFanGainPlx)); 544 dpm_table->FanGainHbm = PP_HOST_TO_SMC_US( 545 scale_fan_gain_settings(fan_table->usFanGainHbm)); 546 547 dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address; 548 dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address; 549 dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address; 550 dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address; 551 552 get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda); 553 dpm_table->Liquid_I2C_LineSCL = uc_scl; 554 dpm_table->Liquid_I2C_LineSDA = uc_sda; 555 556 get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda); 557 dpm_table->Vr_I2C_LineSCL = uc_scl; 558 dpm_table->Vr_I2C_LineSDA = uc_sda; 559 560 get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda); 561 dpm_table->Plx_I2C_LineSCL = uc_scl; 562 dpm_table->Plx_I2C_LineSDA = uc_sda; 563 564 return 0; 565 } 566 567 568 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr) 569 { 570 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 571 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; 572 573 smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; 574 smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; 575 smu_data->power_tune_table.SviLoadLineTrimVddC = 3; 576 smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; 577 578 return 0; 579 } 580 581 582 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr) 583 { 584 uint16_t tdc_limit; 585 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 586 struct phm_ppt_v1_information *table_info = 587 (struct phm_ppt_v1_information *)(hwmgr->pptable); 588 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; 589 590 /* TDC number of fraction bits are changed from 8 to 7 591 * for Fiji as requested by SMC team 592 */ 593 tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); 594 smu_data->power_tune_table.TDC_VDDC_PkgLimit = 595 CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); 596 smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = 597 defaults->TDC_VDDC_ThrottleReleaseLimitPerc; 598 smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; 599 600 return 0; 601 } 602 603 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) 604 { 605 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 606 const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults; 607 uint32_t temp; 608 609 if (smu7_read_smc_sram_dword(hwmgr, 610 fuse_table_offset + 611 offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl), 612 (uint32_t *)&temp, SMC_RAM_END)) 613 PP_ASSERT_WITH_CODE(false, 614 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", 615 return -EINVAL); 616 else { 617 smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; 618 smu_data->power_tune_table.LPMLTemperatureMin = 619 (uint8_t)((temp >> 16) & 0xff); 620 smu_data->power_tune_table.LPMLTemperatureMax = 621 (uint8_t)((temp >> 8) & 0xff); 622 smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); 623 } 624 return 0; 625 } 626 627 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr) 628 { 629 int i; 630 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 631 632 /* Currently not used. Set all to zero. */ 633 for (i = 0; i < 16; i++) 634 smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; 635 636 return 0; 637 } 638 639 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) 640 { 641 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 642 643 if ((hwmgr->thermal_controller.advanceFanControlParameters. 644 usFanOutputSensitivity & (1 << 15)) || 645 0 == hwmgr->thermal_controller.advanceFanControlParameters. 646 usFanOutputSensitivity) 647 hwmgr->thermal_controller.advanceFanControlParameters. 648 usFanOutputSensitivity = hwmgr->thermal_controller. 649 advanceFanControlParameters.usDefaultFanOutputSensitivity; 650 651 smu_data->power_tune_table.FuzzyFan_PwmSetDelta = 652 PP_HOST_TO_SMC_US(hwmgr->thermal_controller. 653 advanceFanControlParameters.usFanOutputSensitivity); 654 return 0; 655 } 656 657 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr) 658 { 659 int i; 660 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 661 662 /* Currently not used. Set all to zero. */ 663 for (i = 0; i < 16; i++) 664 smu_data->power_tune_table.GnbLPML[i] = 0; 665 666 return 0; 667 } 668 669 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) 670 { 671 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 672 struct phm_ppt_v1_information *table_info = 673 (struct phm_ppt_v1_information *)(hwmgr->pptable); 674 uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; 675 uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; 676 struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; 677 678 HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); 679 LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); 680 681 smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = 682 CONVERT_FROM_HOST_TO_SMC_US(HiSidd); 683 smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = 684 CONVERT_FROM_HOST_TO_SMC_US(LoSidd); 685 686 return 0; 687 } 688 689 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr) 690 { 691 uint32_t pm_fuse_table_offset; 692 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 693 694 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 695 PHM_PlatformCaps_PowerContainment)) { 696 if (smu7_read_smc_sram_dword(hwmgr, 697 SMU7_FIRMWARE_HEADER_LOCATION + 698 offsetof(SMU73_Firmware_Header, PmFuseTable), 699 &pm_fuse_table_offset, SMC_RAM_END)) 700 PP_ASSERT_WITH_CODE(false, 701 "Attempt to get pm_fuse_table_offset Failed!", 702 return -EINVAL); 703 704 /* DW6 */ 705 if (fiji_populate_svi_load_line(hwmgr)) 706 PP_ASSERT_WITH_CODE(false, 707 "Attempt to populate SviLoadLine Failed!", 708 return -EINVAL); 709 /* DW7 */ 710 if (fiji_populate_tdc_limit(hwmgr)) 711 PP_ASSERT_WITH_CODE(false, 712 "Attempt to populate TDCLimit Failed!", return -EINVAL); 713 /* DW8 */ 714 if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset)) 715 PP_ASSERT_WITH_CODE(false, 716 "Attempt to populate TdcWaterfallCtl, " 717 "LPMLTemperature Min and Max Failed!", 718 return -EINVAL); 719 720 /* DW9-DW12 */ 721 if (0 != fiji_populate_temperature_scaler(hwmgr)) 722 PP_ASSERT_WITH_CODE(false, 723 "Attempt to populate LPMLTemperatureScaler Failed!", 724 return -EINVAL); 725 726 /* DW13-DW14 */ 727 if (fiji_populate_fuzzy_fan(hwmgr)) 728 PP_ASSERT_WITH_CODE(false, 729 "Attempt to populate Fuzzy Fan Control parameters Failed!", 730 return -EINVAL); 731 732 /* DW15-DW18 */ 733 if (fiji_populate_gnb_lpml(hwmgr)) 734 PP_ASSERT_WITH_CODE(false, 735 "Attempt to populate GnbLPML Failed!", 736 return -EINVAL); 737 738 /* DW20 */ 739 if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr)) 740 PP_ASSERT_WITH_CODE(false, 741 "Attempt to populate BapmVddCBaseLeakage Hi and Lo " 742 "Sidd Failed!", return -EINVAL); 743 744 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, 745 (uint8_t *)&smu_data->power_tune_table, 746 sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END)) 747 PP_ASSERT_WITH_CODE(false, 748 "Attempt to download PmFuseTable Failed!", 749 return -EINVAL); 750 } 751 return 0; 752 } 753 754 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr, 755 struct SMU73_Discrete_DpmTable *table) 756 { 757 uint32_t count; 758 uint8_t index; 759 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 760 struct phm_ppt_v1_information *table_info = 761 (struct phm_ppt_v1_information *)(hwmgr->pptable); 762 struct phm_ppt_v1_voltage_lookup_table *lookup_table = 763 table_info->vddc_lookup_table; 764 /* tables is already swapped, so in order to use the value from it, 765 * we need to swap it back. 766 * We are populating vddc CAC data to BapmVddc table 767 * in split and merged mode 768 */ 769 770 for (count = 0; count < lookup_table->count; count++) { 771 index = phm_get_voltage_index(lookup_table, 772 data->vddc_voltage_table.entries[count].value); 773 table->BapmVddcVidLoSidd[count] = 774 convert_to_vid(lookup_table->entries[index].us_cac_low); 775 table->BapmVddcVidHiSidd[count] = 776 convert_to_vid(lookup_table->entries[index].us_cac_high); 777 } 778 779 return 0; 780 } 781 782 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, 783 struct SMU73_Discrete_DpmTable *table) 784 { 785 int result; 786 787 result = fiji_populate_cac_table(hwmgr, table); 788 PP_ASSERT_WITH_CODE(0 == result, 789 "can not populate CAC voltage tables to SMC", 790 return -EINVAL); 791 792 return 0; 793 } 794 795 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr, 796 struct SMU73_Discrete_Ulv *state) 797 { 798 int result = 0; 799 800 struct phm_ppt_v1_information *table_info = 801 (struct phm_ppt_v1_information *)(hwmgr->pptable); 802 803 state->CcPwrDynRm = 0; 804 state->CcPwrDynRm1 = 0; 805 806 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; 807 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * 808 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 809 810 state->VddcPhase = 1; 811 812 if (!result) { 813 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); 814 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); 815 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); 816 } 817 return result; 818 } 819 820 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr, 821 struct SMU73_Discrete_DpmTable *table) 822 { 823 return fiji_populate_ulv_level(hwmgr, &table->Ulv); 824 } 825 826 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr, 827 struct SMU73_Discrete_DpmTable *table) 828 { 829 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 830 struct smu7_dpm_table *dpm_table = &data->dpm_table; 831 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 832 int i; 833 834 /* Index (dpm_table->pcie_speed_table.count) 835 * is reserved for PCIE boot level. */ 836 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { 837 table->LinkLevel[i].PcieGenSpeed = 838 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; 839 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( 840 dpm_table->pcie_speed_table.dpm_levels[i].param1); 841 table->LinkLevel[i].EnabledForActivity = 1; 842 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); 843 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); 844 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); 845 } 846 847 smu_data->smc_state_table.LinkLevelCount = 848 (uint8_t)dpm_table->pcie_speed_table.count; 849 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 850 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); 851 852 return 0; 853 } 854 855 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr, 856 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk) 857 { 858 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 859 struct pp_atomctrl_clock_dividers_vi dividers; 860 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 861 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 862 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 863 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 864 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 865 uint32_t ref_clock; 866 uint32_t ref_divider; 867 uint32_t fbdiv; 868 int result; 869 870 /* get the engine clock dividers for this clock value */ 871 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, ÷rs); 872 873 PP_ASSERT_WITH_CODE(result == 0, 874 "Error retrieving Engine Clock dividers from VBIOS.", 875 return result); 876 877 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */ 878 ref_clock = atomctrl_get_reference_clock(hwmgr); 879 ref_divider = 1 + dividers.uc_pll_ref_div; 880 881 /* low 14 bits is fraction and high 12 bits is divider */ 882 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; 883 884 /* SPLL_FUNC_CNTL setup */ 885 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 886 SPLL_REF_DIV, dividers.uc_pll_ref_div); 887 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 888 SPLL_PDIV_A, dividers.uc_pll_post_div); 889 890 /* SPLL_FUNC_CNTL_3 setup*/ 891 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, 892 SPLL_FB_DIV, fbdiv); 893 894 /* set to use fractional accumulation*/ 895 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, 896 SPLL_DITHEN, 1); 897 898 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 899 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { 900 struct pp_atomctrl_internal_ss_info ssInfo; 901 902 uint32_t vco_freq = clock * dividers.uc_pll_post_div; 903 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr, 904 vco_freq, &ssInfo)) { 905 /* 906 * ss_info.speed_spectrum_percentage -- in unit of 0.01% 907 * ss_info.speed_spectrum_rate -- in unit of khz 908 * 909 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 910 */ 911 uint32_t clk_s = ref_clock * 5 / 912 (ref_divider * ssInfo.speed_spectrum_rate); 913 /* clkv = 2 * D * fbdiv / NS */ 914 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage * 915 fbdiv / (clk_s * 10000); 916 917 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, 918 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s); 919 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, 920 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); 921 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, 922 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v); 923 } 924 } 925 926 sclk->SclkFrequency = clock; 927 sclk->CgSpllFuncCntl3 = spll_func_cntl_3; 928 sclk->CgSpllFuncCntl4 = spll_func_cntl_4; 929 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; 930 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; 931 sclk->SclkDid = (uint8_t)dividers.pll_post_divider; 932 933 return 0; 934 } 935 936 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr, 937 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level) 938 { 939 int result; 940 /* PP_Clocks minClocks; */ 941 uint32_t mvdd; 942 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 943 struct phm_ppt_v1_information *table_info = 944 (struct phm_ppt_v1_information *)(hwmgr->pptable); 945 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 946 947 result = fiji_calculate_sclk_params(hwmgr, clock, level); 948 949 if (hwmgr->od_enabled) 950 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk; 951 else 952 vdd_dep_table = table_info->vdd_dep_on_sclk; 953 954 /* populate graphics levels */ 955 result = fiji_get_dependency_volt_by_clk(hwmgr, 956 vdd_dep_table, clock, 957 (uint32_t *)(&level->MinVoltage), &mvdd); 958 PP_ASSERT_WITH_CODE((0 == result), 959 "can not find VDDC voltage value for " 960 "VDDC engine clock dependency table", 961 return result); 962 963 level->SclkFrequency = clock; 964 level->ActivityLevel = data->current_profile_setting.sclk_activity; 965 level->CcPwrDynRm = 0; 966 level->CcPwrDynRm1 = 0; 967 level->EnabledForActivity = 0; 968 level->EnabledForThrottle = 1; 969 level->UpHyst = data->current_profile_setting.sclk_up_hyst; 970 level->DownHyst = data->current_profile_setting.sclk_down_hyst; 971 level->VoltageDownHyst = 0; 972 level->PowerThrottle = 0; 973 974 data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; 975 976 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) 977 level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock, 978 hwmgr->display_config->min_core_set_clock_in_sr); 979 980 981 /* Default to slow, highest DPM level will be 982 * set to PPSMC_DISPLAY_WATERMARK_LOW later. 983 */ 984 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 985 986 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); 987 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency); 988 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); 989 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3); 990 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4); 991 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum); 992 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2); 993 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); 994 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); 995 996 return 0; 997 } 998 999 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 1000 { 1001 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1002 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1003 1004 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1005 struct phm_ppt_v1_information *table_info = 1006 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1007 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; 1008 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count; 1009 int result = 0; 1010 uint32_t array = smu_data->smu7_data.dpm_table_start + 1011 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); 1012 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) * 1013 SMU73_MAX_LEVELS_GRAPHICS; 1014 struct SMU73_Discrete_GraphicsLevel *levels = 1015 smu_data->smc_state_table.GraphicsLevel; 1016 uint32_t i, max_entry; 1017 uint8_t hightest_pcie_level_enabled = 0, 1018 lowest_pcie_level_enabled = 0, 1019 mid_pcie_level_enabled = 0, 1020 count = 0; 1021 1022 for (i = 0; i < dpm_table->sclk_table.count; i++) { 1023 result = fiji_populate_single_graphic_level(hwmgr, 1024 dpm_table->sclk_table.dpm_levels[i].value, 1025 &levels[i]); 1026 if (result) 1027 return result; 1028 1029 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ 1030 if (i > 1) 1031 levels[i].DeepSleepDivId = 0; 1032 } 1033 1034 /* Only enable level 0 for now.*/ 1035 levels[0].EnabledForActivity = 1; 1036 1037 /* set highest level watermark to high */ 1038 levels[dpm_table->sclk_table.count - 1].DisplayWatermark = 1039 PPSMC_DISPLAY_WATERMARK_HIGH; 1040 1041 smu_data->smc_state_table.GraphicsDpmLevelCount = 1042 (uint8_t)dpm_table->sclk_table.count; 1043 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 1044 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); 1045 1046 if (pcie_table != NULL) { 1047 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), 1048 "There must be 1 or more PCIE levels defined in PPTable.", 1049 return -EINVAL); 1050 max_entry = pcie_entry_cnt - 1; 1051 for (i = 0; i < dpm_table->sclk_table.count; i++) 1052 levels[i].pcieDpmLevel = 1053 (uint8_t) ((i < max_entry) ? i : max_entry); 1054 } else { 1055 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 1056 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1057 (1 << (hightest_pcie_level_enabled + 1))) != 0)) 1058 hightest_pcie_level_enabled++; 1059 1060 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask && 1061 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1062 (1 << lowest_pcie_level_enabled)) == 0)) 1063 lowest_pcie_level_enabled++; 1064 1065 while ((count < hightest_pcie_level_enabled) && 1066 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & 1067 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) 1068 count++; 1069 1070 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < 1071 hightest_pcie_level_enabled ? 1072 (lowest_pcie_level_enabled + 1 + count) : 1073 hightest_pcie_level_enabled; 1074 1075 /* set pcieDpmLevel to hightest_pcie_level_enabled */ 1076 for (i = 2; i < dpm_table->sclk_table.count; i++) 1077 levels[i].pcieDpmLevel = hightest_pcie_level_enabled; 1078 1079 /* set pcieDpmLevel to lowest_pcie_level_enabled */ 1080 levels[0].pcieDpmLevel = lowest_pcie_level_enabled; 1081 1082 /* set pcieDpmLevel to mid_pcie_level_enabled */ 1083 levels[1].pcieDpmLevel = mid_pcie_level_enabled; 1084 } 1085 /* level count will send to smc once at init smc table and never change */ 1086 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, 1087 (uint32_t)array_size, SMC_RAM_END); 1088 1089 return result; 1090 } 1091 1092 1093 /* 1094 * MCLK Frequency Ratio 1095 * SEQ_CG_RESP Bit[31:24] - 0x0 1096 * Bit[27:24] \96 DDR3 Frequency ratio 1097 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz 1098 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz 1099 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz 1100 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz 1101 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz 1102 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz 1103 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz 1104 * 400 < 0x7 <= 450MHz, 800 < 0xF 1105 */ 1106 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock) 1107 { 1108 if (mem_clock <= 10000) 1109 return 0x0; 1110 if (mem_clock <= 15000) 1111 return 0x1; 1112 if (mem_clock <= 20000) 1113 return 0x2; 1114 if (mem_clock <= 25000) 1115 return 0x3; 1116 if (mem_clock <= 30000) 1117 return 0x4; 1118 if (mem_clock <= 35000) 1119 return 0x5; 1120 if (mem_clock <= 40000) 1121 return 0x6; 1122 if (mem_clock <= 45000) 1123 return 0x7; 1124 if (mem_clock <= 50000) 1125 return 0x8; 1126 if (mem_clock <= 55000) 1127 return 0x9; 1128 if (mem_clock <= 60000) 1129 return 0xa; 1130 if (mem_clock <= 65000) 1131 return 0xb; 1132 if (mem_clock <= 70000) 1133 return 0xc; 1134 if (mem_clock <= 75000) 1135 return 0xd; 1136 if (mem_clock <= 80000) 1137 return 0xe; 1138 /* mem_clock > 800MHz */ 1139 return 0xf; 1140 } 1141 1142 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr, 1143 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk) 1144 { 1145 struct pp_atomctrl_memory_clock_param mem_param; 1146 int result; 1147 1148 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param); 1149 PP_ASSERT_WITH_CODE((0 == result), 1150 "Failed to get Memory PLL Dividers.", 1151 ); 1152 1153 /* Save the result data to outpupt memory level structure */ 1154 mclk->MclkFrequency = clock; 1155 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider; 1156 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock); 1157 1158 return result; 1159 } 1160 1161 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr, 1162 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level) 1163 { 1164 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1165 struct phm_ppt_v1_information *table_info = 1166 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1167 int result = 0; 1168 uint32_t mclk_stutter_mode_threshold = 60000; 1169 phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL; 1170 1171 if (hwmgr->od_enabled) 1172 vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk; 1173 else 1174 vdd_dep_table = table_info->vdd_dep_on_mclk; 1175 1176 if (vdd_dep_table) { 1177 result = fiji_get_dependency_volt_by_clk(hwmgr, 1178 vdd_dep_table, clock, 1179 (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd); 1180 PP_ASSERT_WITH_CODE((0 == result), 1181 "can not find MinVddc voltage value from memory " 1182 "VDDC voltage dependency table", return result); 1183 } 1184 1185 mem_level->EnabledForThrottle = 1; 1186 mem_level->EnabledForActivity = 0; 1187 mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst; 1188 mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst; 1189 mem_level->VoltageDownHyst = 0; 1190 mem_level->ActivityLevel = data->current_profile_setting.mclk_activity; 1191 mem_level->StutterEnable = false; 1192 1193 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1194 1195 /* enable stutter mode if all the follow condition applied 1196 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI, 1197 * &(data->DisplayTiming.numExistingDisplays)); 1198 */ 1199 data->display_timing.num_existing_displays = hwmgr->display_config->num_display; 1200 data->display_timing.vrefresh = hwmgr->display_config->vrefresh; 1201 1202 if (mclk_stutter_mode_threshold && 1203 (clock <= mclk_stutter_mode_threshold) && 1204 (!data->is_uvd_enabled) && 1205 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, 1206 STUTTER_ENABLE) & 0x1)) 1207 mem_level->StutterEnable = true; 1208 1209 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level); 1210 if (!result) { 1211 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); 1212 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); 1213 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); 1214 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); 1215 } 1216 return result; 1217 } 1218 1219 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1220 { 1221 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1222 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1223 struct smu7_dpm_table *dpm_table = &data->dpm_table; 1224 int result; 1225 /* populate MCLK dpm table to SMU7 */ 1226 uint32_t array = smu_data->smu7_data.dpm_table_start + 1227 offsetof(SMU73_Discrete_DpmTable, MemoryLevel); 1228 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) * 1229 SMU73_MAX_LEVELS_MEMORY; 1230 struct SMU73_Discrete_MemoryLevel *levels = 1231 smu_data->smc_state_table.MemoryLevel; 1232 uint32_t i; 1233 1234 for (i = 0; i < dpm_table->mclk_table.count; i++) { 1235 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), 1236 "can not populate memory level as memory clock is zero", 1237 return -EINVAL); 1238 result = fiji_populate_single_memory_level(hwmgr, 1239 dpm_table->mclk_table.dpm_levels[i].value, 1240 &levels[i]); 1241 if (result) 1242 return result; 1243 } 1244 1245 /* Only enable level 0 for now. */ 1246 levels[0].EnabledForActivity = 1; 1247 1248 /* in order to prevent MC activity from stutter mode to push DPM up. 1249 * the UVD change complements this by putting the MCLK in 1250 * a higher state by default such that we are not effected by 1251 * up threshold or and MCLK DPM latency. 1252 */ 1253 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target; 1254 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel); 1255 1256 smu_data->smc_state_table.MemoryDpmLevelCount = 1257 (uint8_t)dpm_table->mclk_table.count; 1258 data->dpm_level_enable_mask.mclk_dpm_enable_mask = 1259 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); 1260 /* set highest level watermark to high */ 1261 levels[dpm_table->mclk_table.count - 1].DisplayWatermark = 1262 PPSMC_DISPLAY_WATERMARK_HIGH; 1263 1264 /* level count will send to smc once at init smc table and never change */ 1265 result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, 1266 (uint32_t)array_size, SMC_RAM_END); 1267 1268 return result; 1269 } 1270 1271 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr, 1272 uint32_t mclk, SMIO_Pattern *smio_pat) 1273 { 1274 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1275 struct phm_ppt_v1_information *table_info = 1276 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1277 uint32_t i = 0; 1278 1279 if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { 1280 /* find mvdd value which clock is more than request */ 1281 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { 1282 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { 1283 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; 1284 break; 1285 } 1286 } 1287 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, 1288 "MVDD Voltage is outside the supported range.", 1289 return -EINVAL); 1290 } else 1291 return -EINVAL; 1292 1293 return 0; 1294 } 1295 1296 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, 1297 SMU73_Discrete_DpmTable *table) 1298 { 1299 int result = 0; 1300 const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1301 struct phm_ppt_v1_information *table_info = 1302 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1303 struct pp_atomctrl_clock_dividers_vi dividers; 1304 SMIO_Pattern vol_level; 1305 uint32_t mvdd; 1306 uint16_t us_mvdd; 1307 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; 1308 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; 1309 1310 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; 1311 1312 if (!data->sclk_dpm_key_disabled) { 1313 /* Get MinVoltage and Frequency from DPM0, 1314 * already converted to SMC_UL */ 1315 table->ACPILevel.SclkFrequency = 1316 data->dpm_table.sclk_table.dpm_levels[0].value; 1317 result = fiji_get_dependency_volt_by_clk(hwmgr, 1318 table_info->vdd_dep_on_sclk, 1319 table->ACPILevel.SclkFrequency, 1320 (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd); 1321 PP_ASSERT_WITH_CODE((0 == result), 1322 "Cannot find ACPI VDDC voltage value " \ 1323 "in Clock Dependency Table", 1324 ); 1325 } else { 1326 table->ACPILevel.SclkFrequency = 1327 data->vbios_boot_state.sclk_bootup_value; 1328 table->ACPILevel.MinVoltage = 1329 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE; 1330 } 1331 1332 /* get the engine clock dividers for this clock value */ 1333 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, 1334 table->ACPILevel.SclkFrequency, ÷rs); 1335 PP_ASSERT_WITH_CODE(result == 0, 1336 "Error retrieving Engine Clock dividers from VBIOS.", 1337 return result); 1338 1339 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; 1340 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; 1341 table->ACPILevel.DeepSleepDivId = 0; 1342 1343 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1344 SPLL_PWRON, 0); 1345 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, 1346 SPLL_RESET, 1); 1347 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, 1348 SCLK_MUX_SEL, 4); 1349 1350 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; 1351 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; 1352 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; 1353 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; 1354 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; 1355 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; 1356 table->ACPILevel.CcPwrDynRm = 0; 1357 table->ACPILevel.CcPwrDynRm1 = 0; 1358 1359 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); 1360 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); 1361 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); 1362 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); 1363 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); 1364 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); 1365 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); 1366 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); 1367 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); 1368 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); 1369 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); 1370 1371 if (!data->mclk_dpm_key_disabled) { 1372 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ 1373 table->MemoryACPILevel.MclkFrequency = 1374 data->dpm_table.mclk_table.dpm_levels[0].value; 1375 result = fiji_get_dependency_volt_by_clk(hwmgr, 1376 table_info->vdd_dep_on_mclk, 1377 table->MemoryACPILevel.MclkFrequency, 1378 (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd); 1379 PP_ASSERT_WITH_CODE((0 == result), 1380 "Cannot find ACPI VDDCI voltage value in Clock Dependency Table", 1381 ); 1382 } else { 1383 table->MemoryACPILevel.MclkFrequency = 1384 data->vbios_boot_state.mclk_bootup_value; 1385 table->MemoryACPILevel.MinVoltage = 1386 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE; 1387 } 1388 1389 us_mvdd = 0; 1390 if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || 1391 (data->mclk_dpm_key_disabled)) 1392 us_mvdd = data->vbios_boot_state.mvdd_bootup_value; 1393 else { 1394 if (!fiji_populate_mvdd_value(hwmgr, 1395 data->dpm_table.mclk_table.dpm_levels[0].value, 1396 &vol_level)) 1397 us_mvdd = vol_level.Voltage; 1398 } 1399 1400 table->MemoryACPILevel.MinMvdd = 1401 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE); 1402 1403 table->MemoryACPILevel.EnabledForThrottle = 0; 1404 table->MemoryACPILevel.EnabledForActivity = 0; 1405 table->MemoryACPILevel.UpHyst = 0; 1406 table->MemoryACPILevel.DownHyst = 100; 1407 table->MemoryACPILevel.VoltageDownHyst = 0; 1408 table->MemoryACPILevel.ActivityLevel = 1409 PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); 1410 1411 table->MemoryACPILevel.StutterEnable = false; 1412 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); 1413 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); 1414 1415 return result; 1416 } 1417 1418 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr, 1419 SMU73_Discrete_DpmTable *table) 1420 { 1421 int result = -EINVAL; 1422 uint8_t count; 1423 struct pp_atomctrl_clock_dividers_vi dividers; 1424 struct phm_ppt_v1_information *table_info = 1425 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1426 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1427 table_info->mm_dep_table; 1428 1429 table->VceLevelCount = (uint8_t)(mm_table->count); 1430 table->VceBootLevel = 0; 1431 1432 for (count = 0; count < table->VceLevelCount; count++) { 1433 table->VceLevel[count].Frequency = mm_table->entries[count].eclk; 1434 table->VceLevel[count].MinVoltage = 0; 1435 table->VceLevel[count].MinVoltage |= 1436 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; 1437 table->VceLevel[count].MinVoltage |= 1438 ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) * 1439 VOLTAGE_SCALE) << VDDCI_SHIFT; 1440 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; 1441 1442 /*retrieve divider value for VBIOS */ 1443 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1444 table->VceLevel[count].Frequency, ÷rs); 1445 PP_ASSERT_WITH_CODE((0 == result), 1446 "can not find divide id for VCE engine clock", 1447 return result); 1448 1449 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1450 1451 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); 1452 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); 1453 } 1454 return result; 1455 } 1456 1457 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr, 1458 SMU73_Discrete_DpmTable *table) 1459 { 1460 int result = -EINVAL; 1461 uint8_t count; 1462 struct pp_atomctrl_clock_dividers_vi dividers; 1463 struct phm_ppt_v1_information *table_info = 1464 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1465 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1466 table_info->mm_dep_table; 1467 1468 table->AcpLevelCount = (uint8_t)(mm_table->count); 1469 table->AcpBootLevel = 0; 1470 1471 for (count = 0; count < table->AcpLevelCount; count++) { 1472 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk; 1473 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc * 1474 VOLTAGE_SCALE) << VDDC_SHIFT; 1475 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - 1476 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; 1477 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT; 1478 1479 /* retrieve divider value for VBIOS */ 1480 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1481 table->AcpLevel[count].Frequency, ÷rs); 1482 PP_ASSERT_WITH_CODE((0 == result), 1483 "can not find divide id for engine clock", return result); 1484 1485 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider; 1486 1487 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency); 1488 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage); 1489 } 1490 return result; 1491 } 1492 1493 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, 1494 int32_t eng_clock, int32_t mem_clock, 1495 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs) 1496 { 1497 uint32_t dram_timing; 1498 uint32_t dram_timing2; 1499 uint32_t burstTime; 1500 ULONG trrds, trrdl; 1501 int result; 1502 1503 result = atomctrl_set_engine_dram_timings_rv770(hwmgr, 1504 eng_clock, mem_clock); 1505 PP_ASSERT_WITH_CODE(result == 0, 1506 "Error calling VBIOS to set DRAM_TIMING.", return result); 1507 1508 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 1509 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 1510 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); 1511 1512 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0); 1513 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0); 1514 1515 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); 1516 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); 1517 arb_regs->McArbBurstTime = (uint8_t)burstTime; 1518 arb_regs->TRRDS = (uint8_t)trrds; 1519 arb_regs->TRRDL = (uint8_t)trrdl; 1520 1521 return 0; 1522 } 1523 1524 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) 1525 { 1526 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1527 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1528 struct SMU73_Discrete_MCArbDramTimingTable arb_regs; 1529 uint32_t i, j; 1530 int result = 0; 1531 1532 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1533 for (j = 0; j < data->dpm_table.mclk_table.count; j++) { 1534 result = fiji_populate_memory_timing_parameters(hwmgr, 1535 data->dpm_table.sclk_table.dpm_levels[i].value, 1536 data->dpm_table.mclk_table.dpm_levels[j].value, 1537 &arb_regs.entries[i][j]); 1538 if (result) 1539 break; 1540 } 1541 } 1542 1543 if (!result) 1544 result = smu7_copy_bytes_to_smc( 1545 hwmgr, 1546 smu_data->smu7_data.arb_table_start, 1547 (uint8_t *)&arb_regs, 1548 sizeof(SMU73_Discrete_MCArbDramTimingTable), 1549 SMC_RAM_END); 1550 return result; 1551 } 1552 1553 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, 1554 struct SMU73_Discrete_DpmTable *table) 1555 { 1556 int result = -EINVAL; 1557 uint8_t count; 1558 struct pp_atomctrl_clock_dividers_vi dividers; 1559 struct phm_ppt_v1_information *table_info = 1560 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1561 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 1562 table_info->mm_dep_table; 1563 1564 table->UvdLevelCount = (uint8_t)(mm_table->count); 1565 table->UvdBootLevel = 0; 1566 1567 for (count = 0; count < table->UvdLevelCount; count++) { 1568 table->UvdLevel[count].MinVoltage = 0; 1569 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; 1570 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; 1571 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc * 1572 VOLTAGE_SCALE) << VDDC_SHIFT; 1573 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc - 1574 VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT; 1575 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; 1576 1577 /* retrieve divider value for VBIOS */ 1578 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1579 table->UvdLevel[count].VclkFrequency, ÷rs); 1580 PP_ASSERT_WITH_CODE((0 == result), 1581 "can not find divide id for Vclk clock", return result); 1582 1583 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; 1584 1585 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, 1586 table->UvdLevel[count].DclkFrequency, ÷rs); 1587 PP_ASSERT_WITH_CODE((0 == result), 1588 "can not find divide id for Dclk clock", return result); 1589 1590 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; 1591 1592 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); 1593 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); 1594 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); 1595 1596 } 1597 return result; 1598 } 1599 1600 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr, 1601 struct SMU73_Discrete_DpmTable *table) 1602 { 1603 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1604 1605 table->GraphicsBootLevel = 0; 1606 table->MemoryBootLevel = 0; 1607 1608 /* find boot level from dpm table */ 1609 phm_find_boot_level(&(data->dpm_table.sclk_table), 1610 data->vbios_boot_state.sclk_bootup_value, 1611 (uint32_t *)&(table->GraphicsBootLevel)); 1612 1613 phm_find_boot_level(&(data->dpm_table.mclk_table), 1614 data->vbios_boot_state.mclk_bootup_value, 1615 (uint32_t *)&(table->MemoryBootLevel)); 1616 1617 table->BootVddc = data->vbios_boot_state.vddc_bootup_value * 1618 VOLTAGE_SCALE; 1619 table->BootVddci = data->vbios_boot_state.vddci_bootup_value * 1620 VOLTAGE_SCALE; 1621 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * 1622 VOLTAGE_SCALE; 1623 1624 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); 1625 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); 1626 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); 1627 1628 return 0; 1629 } 1630 1631 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr) 1632 { 1633 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1634 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1635 struct phm_ppt_v1_information *table_info = 1636 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1637 uint8_t count, level; 1638 1639 count = (uint8_t)(table_info->vdd_dep_on_sclk->count); 1640 for (level = 0; level < count; level++) { 1641 if (table_info->vdd_dep_on_sclk->entries[level].clk >= 1642 data->vbios_boot_state.sclk_bootup_value) { 1643 smu_data->smc_state_table.GraphicsBootLevel = level; 1644 break; 1645 } 1646 } 1647 1648 count = (uint8_t)(table_info->vdd_dep_on_mclk->count); 1649 for (level = 0; level < count; level++) { 1650 if (table_info->vdd_dep_on_mclk->entries[level].clk >= 1651 data->vbios_boot_state.mclk_bootup_value) { 1652 smu_data->smc_state_table.MemoryBootLevel = level; 1653 break; 1654 } 1655 } 1656 1657 return 0; 1658 } 1659 1660 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) 1661 { 1662 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks, 1663 volt_with_cks, value; 1664 uint16_t clock_freq_u16; 1665 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1666 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2, 1667 volt_offset = 0; 1668 struct phm_ppt_v1_information *table_info = 1669 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1670 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 1671 table_info->vdd_dep_on_sclk; 1672 1673 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; 1674 1675 /* Read SMU_Eefuse to read and calculate RO and determine 1676 * if the part is SS or FF. if RO >= 1660MHz, part is FF. 1677 */ 1678 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1679 ixSMU_EFUSE_0 + (146 * 4)); 1680 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1681 ixSMU_EFUSE_0 + (148 * 4)); 1682 efuse &= 0xFF000000; 1683 efuse = efuse >> 24; 1684 efuse2 &= 0xF; 1685 1686 if (efuse2 == 1) 1687 ro = (2300 - 1350) * efuse / 255 + 1350; 1688 else 1689 ro = (2500 - 1000) * efuse / 255 + 1000; 1690 1691 if (ro >= 1660) 1692 type = 0; 1693 else 1694 type = 1; 1695 1696 /* Populate Stretch amount */ 1697 smu_data->smc_state_table.ClockStretcherAmount = stretch_amount; 1698 1699 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ 1700 for (i = 0; i < sclk_table->count; i++) { 1701 smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= 1702 sclk_table->entries[i].cks_enable << i; 1703 volt_without_cks = (uint32_t)((14041 * 1704 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 / 1705 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000))); 1706 volt_with_cks = (uint32_t)((13946 * 1707 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 / 1708 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000))); 1709 if (volt_without_cks >= volt_with_cks) 1710 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + 1711 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1); 1712 smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; 1713 } 1714 1715 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1716 STRETCH_ENABLE, 0x0); 1717 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1718 masterReset, 0x1); 1719 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1720 staticEnable, 0x1); 1721 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, 1722 masterReset, 0x0); 1723 1724 /* Populate CKS Lookup Table */ 1725 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) 1726 stretch_amount2 = 0; 1727 else if (stretch_amount == 3 || stretch_amount == 4) 1728 stretch_amount2 = 1; 1729 else { 1730 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1731 PHM_PlatformCaps_ClockStretcher); 1732 PP_ASSERT_WITH_CODE(false, 1733 "Stretch Amount in PPTable not supported", 1734 return -EINVAL); 1735 } 1736 1737 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1738 ixPWR_CKS_CNTL); 1739 value &= 0xFFC2FF87; 1740 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq = 1741 fiji_clock_stretcher_lookup_table[stretch_amount2][0]; 1742 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq = 1743 fiji_clock_stretcher_lookup_table[stretch_amount2][1]; 1744 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table. 1745 GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1]. 1746 SclkFrequency) / 100); 1747 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] < 1748 clock_freq_u16 && 1749 fiji_clock_stretcher_lookup_table[stretch_amount2][1] > 1750 clock_freq_u16) { 1751 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */ 1752 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16; 1753 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */ 1754 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18; 1755 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */ 1756 value |= (fiji_clock_stretch_amount_conversion 1757 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]] 1758 [stretch_amount]) << 3; 1759 } 1760 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1761 CKS_LOOKUPTableEntry[0].minFreq); 1762 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable. 1763 CKS_LOOKUPTableEntry[0].maxFreq); 1764 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting = 1765 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F; 1766 smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |= 1767 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7; 1768 1769 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1770 ixPWR_CKS_CNTL, value); 1771 1772 /* Populate DDT Lookup Table */ 1773 for (i = 0; i < 4; i++) { 1774 /* Assign the minimum and maximum VID stored 1775 * in the last row of Clock Stretcher Voltage Table. 1776 */ 1777 smu_data->smc_state_table.ClockStretcherDataTable. 1778 ClockStretcherDataTableEntry[i].minVID = 1779 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2]; 1780 smu_data->smc_state_table.ClockStretcherDataTable. 1781 ClockStretcherDataTableEntry[i].maxVID = 1782 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3]; 1783 /* Loop through each SCLK and check the frequency 1784 * to see if it lies within the frequency for clock stretcher. 1785 */ 1786 for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) { 1787 cks_setting = 0; 1788 clock_freq = PP_SMC_TO_HOST_UL( 1789 smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency); 1790 /* Check the allowed frequency against the sclk level[j]. 1791 * Sclk's endianness has already been converted, 1792 * and it's in 10Khz unit, 1793 * as opposed to Data table, which is in Mhz unit. 1794 */ 1795 if (clock_freq >= 1796 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) { 1797 cks_setting |= 0x2; 1798 if (clock_freq < 1799 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100) 1800 cks_setting |= 0x1; 1801 } 1802 smu_data->smc_state_table.ClockStretcherDataTable. 1803 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2); 1804 } 1805 CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table. 1806 ClockStretcherDataTable. 1807 ClockStretcherDataTableEntry[i].setting); 1808 } 1809 1810 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); 1811 value &= 0xFFFFFFFE; 1812 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); 1813 1814 return 0; 1815 } 1816 1817 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr, 1818 struct SMU73_Discrete_DpmTable *table) 1819 { 1820 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1821 uint16_t config; 1822 1823 config = VR_MERGED_WITH_VDDC; 1824 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); 1825 1826 /* Set Vddc Voltage Controller */ 1827 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 1828 config = VR_SVI2_PLANE_1; 1829 table->VRConfig |= config; 1830 } else { 1831 PP_ASSERT_WITH_CODE(false, 1832 "VDDC should be on SVI2 control in merged mode!", 1833 ); 1834 } 1835 /* Set Vddci Voltage Controller */ 1836 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 1837 config = VR_SVI2_PLANE_2; /* only in merged mode */ 1838 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); 1839 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 1840 config = VR_SMIO_PATTERN_1; 1841 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); 1842 } else { 1843 config = VR_STATIC_VOLTAGE; 1844 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); 1845 } 1846 /* Set Mvdd Voltage Controller */ 1847 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { 1848 config = VR_SVI2_PLANE_2; 1849 table->VRConfig |= (config << VRCONF_MVDD_SHIFT); 1850 } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 1851 config = VR_SMIO_PATTERN_2; 1852 table->VRConfig |= (config << VRCONF_MVDD_SHIFT); 1853 } else { 1854 config = VR_STATIC_VOLTAGE; 1855 table->VRConfig |= (config << VRCONF_MVDD_SHIFT); 1856 } 1857 1858 return 0; 1859 } 1860 1861 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr) 1862 { 1863 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1864 uint32_t tmp; 1865 int result; 1866 1867 /* This is a read-modify-write on the first byte of the ARB table. 1868 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure 1869 * is the field 'current'. 1870 * This solution is ugly, but we never write the whole table only 1871 * individual fields in it. 1872 * In reality this field should not be in that structure 1873 * but in a soft register. 1874 */ 1875 result = smu7_read_smc_sram_dword(hwmgr, 1876 smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END); 1877 1878 if (result) 1879 return result; 1880 1881 tmp &= 0x00FFFFFF; 1882 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24; 1883 1884 return smu7_write_smc_sram_dword(hwmgr, 1885 smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END); 1886 } 1887 1888 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr) 1889 { 1890 pp_atomctrl_voltage_table param_led_dpm; 1891 int result = 0; 1892 u32 mask = 0; 1893 1894 result = atomctrl_get_voltage_table_v3(hwmgr, 1895 VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT, 1896 ¶m_led_dpm); 1897 if (result == 0) { 1898 int i, j; 1899 u32 tmp = param_led_dpm.mask_low; 1900 1901 for (i = 0, j = 0; i < 32; i++) { 1902 if (tmp & 1) { 1903 mask |= (i << (8 * j)); 1904 if (++j >= 3) 1905 break; 1906 } 1907 tmp >>= 1; 1908 } 1909 } 1910 if (mask) 1911 smum_send_msg_to_smc_with_parameter(hwmgr, 1912 PPSMC_MSG_LedConfig, 1913 mask, 1914 NULL); 1915 return 0; 1916 } 1917 1918 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr) 1919 { 1920 int result; 1921 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1922 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 1923 struct phm_ppt_v1_information *table_info = 1924 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1925 struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table); 1926 uint8_t i; 1927 struct pp_atomctrl_gpio_pin_assignment gpio_pin; 1928 1929 fiji_initialize_power_tune_defaults(hwmgr); 1930 1931 if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) 1932 fiji_populate_smc_voltage_tables(hwmgr, table); 1933 1934 table->SystemFlags = 0; 1935 1936 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1937 PHM_PlatformCaps_AutomaticDCTransition)) 1938 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; 1939 1940 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1941 PHM_PlatformCaps_StepVddc)) 1942 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; 1943 1944 if (data->is_memory_gddr5) 1945 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; 1946 1947 if (data->ulv_supported && table_info->us_ulv_voltage_offset) { 1948 result = fiji_populate_ulv_state(hwmgr, table); 1949 PP_ASSERT_WITH_CODE(0 == result, 1950 "Failed to initialize ULV state!", return result); 1951 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1952 ixCG_ULV_PARAMETER, 0x40035); 1953 } 1954 1955 result = fiji_populate_smc_link_level(hwmgr, table); 1956 PP_ASSERT_WITH_CODE(0 == result, 1957 "Failed to initialize Link Level!", return result); 1958 1959 result = fiji_populate_all_graphic_levels(hwmgr); 1960 PP_ASSERT_WITH_CODE(0 == result, 1961 "Failed to initialize Graphics Level!", return result); 1962 1963 result = fiji_populate_all_memory_levels(hwmgr); 1964 PP_ASSERT_WITH_CODE(0 == result, 1965 "Failed to initialize Memory Level!", return result); 1966 1967 result = fiji_populate_smc_acpi_level(hwmgr, table); 1968 PP_ASSERT_WITH_CODE(0 == result, 1969 "Failed to initialize ACPI Level!", return result); 1970 1971 result = fiji_populate_smc_vce_level(hwmgr, table); 1972 PP_ASSERT_WITH_CODE(0 == result, 1973 "Failed to initialize VCE Level!", return result); 1974 1975 result = fiji_populate_smc_acp_level(hwmgr, table); 1976 PP_ASSERT_WITH_CODE(0 == result, 1977 "Failed to initialize ACP Level!", return result); 1978 1979 /* Since only the initial state is completely set up at this point 1980 * (the other states are just copies of the boot state) we only 1981 * need to populate the ARB settings for the initial state. 1982 */ 1983 result = fiji_program_memory_timing_parameters(hwmgr); 1984 PP_ASSERT_WITH_CODE(0 == result, 1985 "Failed to Write ARB settings for the initial state.", return result); 1986 1987 result = fiji_populate_smc_uvd_level(hwmgr, table); 1988 PP_ASSERT_WITH_CODE(0 == result, 1989 "Failed to initialize UVD Level!", return result); 1990 1991 result = fiji_populate_smc_boot_level(hwmgr, table); 1992 PP_ASSERT_WITH_CODE(0 == result, 1993 "Failed to initialize Boot Level!", return result); 1994 1995 result = fiji_populate_smc_initailial_state(hwmgr); 1996 PP_ASSERT_WITH_CODE(0 == result, 1997 "Failed to initialize Boot State!", return result); 1998 1999 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr); 2000 PP_ASSERT_WITH_CODE(0 == result, 2001 "Failed to populate BAPM Parameters!", return result); 2002 2003 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2004 PHM_PlatformCaps_ClockStretcher)) { 2005 result = fiji_populate_clock_stretcher_data_table(hwmgr); 2006 PP_ASSERT_WITH_CODE(0 == result, 2007 "Failed to populate Clock Stretcher Data Table!", 2008 return result); 2009 } 2010 2011 table->GraphicsVoltageChangeEnable = 1; 2012 table->GraphicsThermThrottleEnable = 1; 2013 table->GraphicsInterval = 1; 2014 table->VoltageInterval = 1; 2015 table->ThermalInterval = 1; 2016 table->TemperatureLimitHigh = 2017 table_info->cac_dtp_table->usTargetOperatingTemp * 2018 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2019 table->TemperatureLimitLow = 2020 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * 2021 SMU7_Q88_FORMAT_CONVERSION_UNIT; 2022 table->MemoryVoltageChangeEnable = 1; 2023 table->MemoryInterval = 1; 2024 table->VoltageResponseTime = 0; 2025 table->PhaseResponseTime = 0; 2026 table->MemoryThermThrottleEnable = 1; 2027 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/ 2028 table->PCIeGenInterval = 1; 2029 table->VRConfig = 0; 2030 2031 result = fiji_populate_vr_config(hwmgr, table); 2032 PP_ASSERT_WITH_CODE(0 == result, 2033 "Failed to populate VRConfig setting!", return result); 2034 data->vr_config = table->VRConfig; 2035 table->ThermGpio = 17; 2036 table->SclkStepSize = 0x4000; 2037 2038 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { 2039 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; 2040 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2041 PHM_PlatformCaps_RegulatorHot); 2042 } else { 2043 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; 2044 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2045 PHM_PlatformCaps_RegulatorHot); 2046 } 2047 2048 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, 2049 &gpio_pin)) { 2050 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; 2051 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2052 PHM_PlatformCaps_AutomaticDCTransition); 2053 } else { 2054 table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; 2055 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2056 PHM_PlatformCaps_AutomaticDCTransition); 2057 } 2058 2059 /* Thermal Output GPIO */ 2060 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID, 2061 &gpio_pin)) { 2062 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2063 PHM_PlatformCaps_ThermalOutGPIO); 2064 2065 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; 2066 2067 /* For porlarity read GPIOPAD_A with assigned Gpio pin 2068 * since VBIOS will program this register to set 'inactive state', 2069 * driver can then determine 'active state' from this and 2070 * program SMU with correct polarity 2071 */ 2072 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & 2073 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; 2074 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; 2075 2076 /* if required, combine VRHot/PCC with thermal out GPIO */ 2077 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2078 PHM_PlatformCaps_RegulatorHot) && 2079 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2080 PHM_PlatformCaps_CombinePCCWithThermalSignal)) 2081 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; 2082 } else { 2083 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2084 PHM_PlatformCaps_ThermalOutGPIO); 2085 table->ThermOutGpio = 17; 2086 table->ThermOutPolarity = 1; 2087 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; 2088 } 2089 2090 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++) 2091 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); 2092 2093 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); 2094 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); 2095 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); 2096 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); 2097 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); 2098 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); 2099 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); 2100 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); 2101 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); 2102 2103 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ 2104 result = smu7_copy_bytes_to_smc(hwmgr, 2105 smu_data->smu7_data.dpm_table_start + 2106 offsetof(SMU73_Discrete_DpmTable, SystemFlags), 2107 (uint8_t *)&(table->SystemFlags), 2108 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController), 2109 SMC_RAM_END); 2110 PP_ASSERT_WITH_CODE(0 == result, 2111 "Failed to upload dpm data to SMC memory!", return result); 2112 2113 result = fiji_init_arb_table_index(hwmgr); 2114 PP_ASSERT_WITH_CODE(0 == result, 2115 "Failed to upload arb data to SMC memory!", return result); 2116 2117 result = fiji_populate_pm_fuses(hwmgr); 2118 PP_ASSERT_WITH_CODE(0 == result, 2119 "Failed to populate PM fuses to SMC memory!", return result); 2120 2121 result = fiji_setup_dpm_led_config(hwmgr); 2122 PP_ASSERT_WITH_CODE(0 == result, 2123 "Failed to setup dpm led config", return result); 2124 2125 return 0; 2126 } 2127 2128 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) 2129 { 2130 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 2131 2132 SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE }; 2133 uint32_t duty100; 2134 uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2; 2135 uint16_t fdo_min, slope1, slope2; 2136 uint32_t reference_clock; 2137 int res; 2138 uint64_t tmp64; 2139 2140 if (hwmgr->thermal_controller.fanInfo.bNoFan) { 2141 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2142 PHM_PlatformCaps_MicrocodeFanControl); 2143 return 0; 2144 } 2145 2146 if (smu_data->smu7_data.fan_table_start == 0) { 2147 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2148 PHM_PlatformCaps_MicrocodeFanControl); 2149 return 0; 2150 } 2151 2152 duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 2153 CG_FDO_CTRL1, FMAX_DUTY100); 2154 2155 if (duty100 == 0) { 2156 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2157 PHM_PlatformCaps_MicrocodeFanControl); 2158 return 0; 2159 } 2160 2161 tmp64 = hwmgr->thermal_controller.advanceFanControlParameters. 2162 usPWMMin * duty100; 2163 do_div(tmp64, 10000); 2164 fdo_min = (uint16_t)tmp64; 2165 2166 t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - 2167 hwmgr->thermal_controller.advanceFanControlParameters.usTMin; 2168 t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - 2169 hwmgr->thermal_controller.advanceFanControlParameters.usTMed; 2170 2171 pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - 2172 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin; 2173 pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - 2174 hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed; 2175 2176 slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100); 2177 slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100); 2178 2179 fan_table.TempMin = cpu_to_be16((50 + hwmgr-> 2180 thermal_controller.advanceFanControlParameters.usTMin) / 100); 2181 fan_table.TempMed = cpu_to_be16((50 + hwmgr-> 2182 thermal_controller.advanceFanControlParameters.usTMed) / 100); 2183 fan_table.TempMax = cpu_to_be16((50 + hwmgr-> 2184 thermal_controller.advanceFanControlParameters.usTMax) / 100); 2185 2186 fan_table.Slope1 = cpu_to_be16(slope1); 2187 fan_table.Slope2 = cpu_to_be16(slope2); 2188 2189 fan_table.FdoMin = cpu_to_be16(fdo_min); 2190 2191 fan_table.HystDown = cpu_to_be16(hwmgr-> 2192 thermal_controller.advanceFanControlParameters.ucTHyst); 2193 2194 fan_table.HystUp = cpu_to_be16(1); 2195 2196 fan_table.HystSlope = cpu_to_be16(1); 2197 2198 fan_table.TempRespLim = cpu_to_be16(5); 2199 2200 reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 2201 2202 fan_table.RefreshPeriod = cpu_to_be32((hwmgr-> 2203 thermal_controller.advanceFanControlParameters.ulCycleDelay * 2204 reference_clock) / 1600); 2205 2206 fan_table.FdoMax = cpu_to_be16((uint16_t)duty100); 2207 2208 fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD( 2209 hwmgr->device, CGS_IND_REG__SMC, 2210 CG_MULT_THERMAL_CTRL, TEMP_SEL); 2211 2212 res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start, 2213 (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), 2214 SMC_RAM_END); 2215 2216 if (!res && hwmgr->thermal_controller. 2217 advanceFanControlParameters.ucMinimumPWMLimit) 2218 res = smum_send_msg_to_smc_with_parameter(hwmgr, 2219 PPSMC_MSG_SetFanMinPwm, 2220 hwmgr->thermal_controller. 2221 advanceFanControlParameters.ucMinimumPWMLimit, 2222 NULL); 2223 2224 if (!res && hwmgr->thermal_controller. 2225 advanceFanControlParameters.ulMinFanSCLKAcousticLimit) 2226 res = smum_send_msg_to_smc_with_parameter(hwmgr, 2227 PPSMC_MSG_SetFanSclkTarget, 2228 hwmgr->thermal_controller. 2229 advanceFanControlParameters.ulMinFanSCLKAcousticLimit, 2230 NULL); 2231 2232 if (res) 2233 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 2234 PHM_PlatformCaps_MicrocodeFanControl); 2235 2236 return 0; 2237 } 2238 2239 2240 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr) 2241 { 2242 if (!hwmgr->avfs_supported) 2243 return 0; 2244 2245 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL); 2246 2247 return 0; 2248 } 2249 2250 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) 2251 { 2252 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2253 2254 if (data->need_update_smu7_dpm_table & 2255 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) 2256 return fiji_program_memory_timing_parameters(hwmgr); 2257 2258 return 0; 2259 } 2260 2261 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr) 2262 { 2263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2264 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 2265 2266 int result = 0; 2267 uint32_t low_sclk_interrupt_threshold = 0; 2268 2269 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2270 PHM_PlatformCaps_SclkThrottleLowNotification) 2271 && (data->low_sclk_interrupt_threshold != 0)) { 2272 low_sclk_interrupt_threshold = 2273 data->low_sclk_interrupt_threshold; 2274 2275 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); 2276 2277 result = smu7_copy_bytes_to_smc( 2278 hwmgr, 2279 smu_data->smu7_data.dpm_table_start + 2280 offsetof(SMU73_Discrete_DpmTable, 2281 LowSclkInterruptThreshold), 2282 (uint8_t *)&low_sclk_interrupt_threshold, 2283 sizeof(uint32_t), 2284 SMC_RAM_END); 2285 } 2286 result = fiji_program_mem_timing_parameters(hwmgr); 2287 PP_ASSERT_WITH_CODE((result == 0), 2288 "Failed to program memory timing parameters!", 2289 ); 2290 return result; 2291 } 2292 2293 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member) 2294 { 2295 switch (type) { 2296 case SMU_SoftRegisters: 2297 switch (member) { 2298 case HandshakeDisables: 2299 return offsetof(SMU73_SoftRegisters, HandshakeDisables); 2300 case VoltageChangeTimeout: 2301 return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout); 2302 case AverageGraphicsActivity: 2303 return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity); 2304 case AverageMemoryActivity: 2305 return offsetof(SMU73_SoftRegisters, AverageMemoryActivity); 2306 case PreVBlankGap: 2307 return offsetof(SMU73_SoftRegisters, PreVBlankGap); 2308 case VBlankTimeout: 2309 return offsetof(SMU73_SoftRegisters, VBlankTimeout); 2310 case UcodeLoadStatus: 2311 return offsetof(SMU73_SoftRegisters, UcodeLoadStatus); 2312 case DRAM_LOG_ADDR_H: 2313 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H); 2314 case DRAM_LOG_ADDR_L: 2315 return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L); 2316 case DRAM_LOG_PHY_ADDR_H: 2317 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H); 2318 case DRAM_LOG_PHY_ADDR_L: 2319 return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L); 2320 case DRAM_LOG_BUFF_SIZE: 2321 return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE); 2322 } 2323 break; 2324 case SMU_Discrete_DpmTable: 2325 switch (member) { 2326 case UvdBootLevel: 2327 return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel); 2328 case VceBootLevel: 2329 return offsetof(SMU73_Discrete_DpmTable, VceBootLevel); 2330 case LowSclkInterruptThreshold: 2331 return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold); 2332 } 2333 break; 2334 } 2335 pr_warn("can't get the offset of type %x member %x\n", type, member); 2336 return 0; 2337 } 2338 2339 static uint32_t fiji_get_mac_definition(uint32_t value) 2340 { 2341 switch (value) { 2342 case SMU_MAX_LEVELS_GRAPHICS: 2343 return SMU73_MAX_LEVELS_GRAPHICS; 2344 case SMU_MAX_LEVELS_MEMORY: 2345 return SMU73_MAX_LEVELS_MEMORY; 2346 case SMU_MAX_LEVELS_LINK: 2347 return SMU73_MAX_LEVELS_LINK; 2348 case SMU_MAX_ENTRIES_SMIO: 2349 return SMU73_MAX_ENTRIES_SMIO; 2350 case SMU_MAX_LEVELS_VDDC: 2351 return SMU73_MAX_LEVELS_VDDC; 2352 case SMU_MAX_LEVELS_VDDGFX: 2353 return SMU73_MAX_LEVELS_VDDGFX; 2354 case SMU_MAX_LEVELS_VDDCI: 2355 return SMU73_MAX_LEVELS_VDDCI; 2356 case SMU_MAX_LEVELS_MVDD: 2357 return SMU73_MAX_LEVELS_MVDD; 2358 } 2359 2360 pr_warn("can't get the mac of %x\n", value); 2361 return 0; 2362 } 2363 2364 2365 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr) 2366 { 2367 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 2368 uint32_t mm_boot_level_offset, mm_boot_level_value; 2369 struct phm_ppt_v1_information *table_info = 2370 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2371 2372 smu_data->smc_state_table.UvdBootLevel = 0; 2373 if (table_info->mm_dep_table->count > 0) 2374 smu_data->smc_state_table.UvdBootLevel = 2375 (uint8_t) (table_info->mm_dep_table->count - 1); 2376 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable, 2377 UvdBootLevel); 2378 mm_boot_level_offset /= 4; 2379 mm_boot_level_offset *= 4; 2380 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2381 CGS_IND_REG__SMC, mm_boot_level_offset); 2382 mm_boot_level_value &= 0x00FFFFFF; 2383 mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; 2384 cgs_write_ind_register(hwmgr->device, 2385 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); 2386 2387 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2388 PHM_PlatformCaps_UVDDPM) || 2389 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2390 PHM_PlatformCaps_StablePState)) 2391 smum_send_msg_to_smc_with_parameter(hwmgr, 2392 PPSMC_MSG_UVDDPM_SetEnabledMask, 2393 (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel), 2394 NULL); 2395 return 0; 2396 } 2397 2398 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr) 2399 { 2400 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 2401 uint32_t mm_boot_level_offset, mm_boot_level_value; 2402 struct phm_ppt_v1_information *table_info = 2403 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2404 2405 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2406 PHM_PlatformCaps_StablePState)) 2407 smu_data->smc_state_table.VceBootLevel = 2408 (uint8_t) (table_info->mm_dep_table->count - 1); 2409 else 2410 smu_data->smc_state_table.VceBootLevel = 0; 2411 2412 mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + 2413 offsetof(SMU73_Discrete_DpmTable, VceBootLevel); 2414 mm_boot_level_offset /= 4; 2415 mm_boot_level_offset *= 4; 2416 mm_boot_level_value = cgs_read_ind_register(hwmgr->device, 2417 CGS_IND_REG__SMC, mm_boot_level_offset); 2418 mm_boot_level_value &= 0xFF00FFFF; 2419 mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; 2420 cgs_write_ind_register(hwmgr->device, 2421 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); 2422 2423 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) 2424 smum_send_msg_to_smc_with_parameter(hwmgr, 2425 PPSMC_MSG_VCEDPM_SetEnabledMask, 2426 (uint32_t)1 << smu_data->smc_state_table.VceBootLevel, 2427 NULL); 2428 return 0; 2429 } 2430 2431 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) 2432 { 2433 switch (type) { 2434 case SMU_UVD_TABLE: 2435 fiji_update_uvd_smc_table(hwmgr); 2436 break; 2437 case SMU_VCE_TABLE: 2438 fiji_update_vce_smc_table(hwmgr); 2439 break; 2440 default: 2441 break; 2442 } 2443 return 0; 2444 } 2445 2446 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr) 2447 { 2448 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2449 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend); 2450 uint32_t tmp; 2451 int result; 2452 bool error = false; 2453 2454 result = smu7_read_smc_sram_dword(hwmgr, 2455 SMU7_FIRMWARE_HEADER_LOCATION + 2456 offsetof(SMU73_Firmware_Header, DpmTable), 2457 &tmp, SMC_RAM_END); 2458 2459 if (0 == result) 2460 smu_data->smu7_data.dpm_table_start = tmp; 2461 2462 error |= (0 != result); 2463 2464 result = smu7_read_smc_sram_dword(hwmgr, 2465 SMU7_FIRMWARE_HEADER_LOCATION + 2466 offsetof(SMU73_Firmware_Header, SoftRegisters), 2467 &tmp, SMC_RAM_END); 2468 2469 if (!result) { 2470 data->soft_regs_start = tmp; 2471 smu_data->smu7_data.soft_regs_start = tmp; 2472 } 2473 2474 error |= (0 != result); 2475 2476 result = smu7_read_smc_sram_dword(hwmgr, 2477 SMU7_FIRMWARE_HEADER_LOCATION + 2478 offsetof(SMU73_Firmware_Header, mcRegisterTable), 2479 &tmp, SMC_RAM_END); 2480 2481 if (!result) 2482 smu_data->smu7_data.mc_reg_table_start = tmp; 2483 2484 result = smu7_read_smc_sram_dword(hwmgr, 2485 SMU7_FIRMWARE_HEADER_LOCATION + 2486 offsetof(SMU73_Firmware_Header, FanTable), 2487 &tmp, SMC_RAM_END); 2488 2489 if (!result) 2490 smu_data->smu7_data.fan_table_start = tmp; 2491 2492 error |= (0 != result); 2493 2494 result = smu7_read_smc_sram_dword(hwmgr, 2495 SMU7_FIRMWARE_HEADER_LOCATION + 2496 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable), 2497 &tmp, SMC_RAM_END); 2498 2499 if (!result) 2500 smu_data->smu7_data.arb_table_start = tmp; 2501 2502 error |= (0 != result); 2503 2504 result = smu7_read_smc_sram_dword(hwmgr, 2505 SMU7_FIRMWARE_HEADER_LOCATION + 2506 offsetof(SMU73_Firmware_Header, Version), 2507 &tmp, SMC_RAM_END); 2508 2509 if (!result) 2510 hwmgr->microcode_version_info.SMC = tmp; 2511 2512 error |= (0 != result); 2513 2514 return error ? -1 : 0; 2515 } 2516 2517 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr) 2518 { 2519 2520 /* Program additional LP registers 2521 * that are no longer programmed by VBIOS 2522 */ 2523 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, 2524 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); 2525 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, 2526 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); 2527 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, 2528 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); 2529 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, 2530 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); 2531 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, 2532 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); 2533 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, 2534 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); 2535 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, 2536 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); 2537 2538 return 0; 2539 } 2540 2541 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr) 2542 { 2543 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, 2544 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) 2545 ? true : false; 2546 } 2547 2548 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr, 2549 void *profile_setting) 2550 { 2551 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2552 struct fiji_smumgr *smu_data = (struct fiji_smumgr *) 2553 (hwmgr->smu_backend); 2554 struct profile_mode_setting *setting; 2555 struct SMU73_Discrete_GraphicsLevel *levels = 2556 smu_data->smc_state_table.GraphicsLevel; 2557 uint32_t array = smu_data->smu7_data.dpm_table_start + 2558 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel); 2559 2560 uint32_t mclk_array = smu_data->smu7_data.dpm_table_start + 2561 offsetof(SMU73_Discrete_DpmTable, MemoryLevel); 2562 struct SMU73_Discrete_MemoryLevel *mclk_levels = 2563 smu_data->smc_state_table.MemoryLevel; 2564 uint32_t i; 2565 uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp; 2566 2567 if (profile_setting == NULL) 2568 return -EINVAL; 2569 2570 setting = (struct profile_mode_setting *)profile_setting; 2571 2572 if (setting->bupdate_sclk) { 2573 if (!data->sclk_dpm_key_disabled) 2574 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL); 2575 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) { 2576 if (levels[i].ActivityLevel != 2577 cpu_to_be16(setting->sclk_activity)) { 2578 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity); 2579 2580 clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) 2581 + offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel); 2582 offset = clk_activity_offset & ~0x3; 2583 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2584 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t)); 2585 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2586 2587 } 2588 if (levels[i].UpHyst != setting->sclk_up_hyst || 2589 levels[i].DownHyst != setting->sclk_down_hyst) { 2590 levels[i].UpHyst = setting->sclk_up_hyst; 2591 levels[i].DownHyst = setting->sclk_down_hyst; 2592 up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) 2593 + offsetof(SMU73_Discrete_GraphicsLevel, UpHyst); 2594 down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i) 2595 + offsetof(SMU73_Discrete_GraphicsLevel, DownHyst); 2596 offset = up_hyst_offset & ~0x3; 2597 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2598 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t)); 2599 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t)); 2600 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2601 } 2602 } 2603 if (!data->sclk_dpm_key_disabled) 2604 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL); 2605 } 2606 2607 if (setting->bupdate_mclk) { 2608 if (!data->mclk_dpm_key_disabled) 2609 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL); 2610 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) { 2611 if (mclk_levels[i].ActivityLevel != 2612 cpu_to_be16(setting->mclk_activity)) { 2613 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity); 2614 2615 clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) 2616 + offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel); 2617 offset = clk_activity_offset & ~0x3; 2618 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2619 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t)); 2620 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2621 2622 } 2623 if (mclk_levels[i].UpHyst != setting->mclk_up_hyst || 2624 mclk_levels[i].DownHyst != setting->mclk_down_hyst) { 2625 mclk_levels[i].UpHyst = setting->mclk_up_hyst; 2626 mclk_levels[i].DownHyst = setting->mclk_down_hyst; 2627 up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) 2628 + offsetof(SMU73_Discrete_MemoryLevel, UpHyst); 2629 down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i) 2630 + offsetof(SMU73_Discrete_MemoryLevel, DownHyst); 2631 offset = up_hyst_offset & ~0x3; 2632 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset)); 2633 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t)); 2634 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t)); 2635 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp)); 2636 } 2637 } 2638 if (!data->mclk_dpm_key_disabled) 2639 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL); 2640 } 2641 return 0; 2642 } 2643 2644 const struct pp_smumgr_func fiji_smu_funcs = { 2645 .name = "fiji_smu", 2646 .smu_init = &fiji_smu_init, 2647 .smu_fini = &smu7_smu_fini, 2648 .start_smu = &fiji_start_smu, 2649 .check_fw_load_finish = &smu7_check_fw_load_finish, 2650 .request_smu_load_fw = &smu7_reload_firmware, 2651 .request_smu_load_specific_fw = NULL, 2652 .send_msg_to_smc = &smu7_send_msg_to_smc, 2653 .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter, 2654 .get_argument = smu7_get_argument, 2655 .download_pptable_settings = NULL, 2656 .upload_pptable_settings = NULL, 2657 .update_smc_table = fiji_update_smc_table, 2658 .get_offsetof = fiji_get_offsetof, 2659 .process_firmware_header = fiji_process_firmware_header, 2660 .init_smc_table = fiji_init_smc_table, 2661 .update_sclk_threshold = fiji_update_sclk_threshold, 2662 .thermal_setup_fan_table = fiji_thermal_setup_fan_table, 2663 .thermal_avfs_enable = fiji_thermal_avfs_enable, 2664 .populate_all_graphic_levels = fiji_populate_all_graphic_levels, 2665 .populate_all_memory_levels = fiji_populate_all_memory_levels, 2666 .get_mac_definition = fiji_get_mac_definition, 2667 .initialize_mc_reg_table = fiji_initialize_mc_reg_table, 2668 .is_dpm_running = fiji_is_dpm_running, 2669 .is_hw_avfs_present = fiji_is_hw_avfs_present, 2670 .update_dpm_settings = fiji_update_dpm_settings, 2671 }; 2672