1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include "pp_debug.h"
25 #include "smumgr.h"
26 #include "smu7_dyn_defaults.h"
27 #include "smu73.h"
28 #include "smu_ucode_xfer_vi.h"
29 #include "fiji_smumgr.h"
30 #include "fiji_ppsmc.h"
31 #include "smu73_discrete.h"
32 #include "ppatomctrl.h"
33 #include "smu/smu_7_1_3_d.h"
34 #include "smu/smu_7_1_3_sh_mask.h"
35 #include "gmc/gmc_8_1_d.h"
36 #include "gmc/gmc_8_1_sh_mask.h"
37 #include "oss/oss_3_0_d.h"
38 #include "gca/gfx_8_0_d.h"
39 #include "bif/bif_5_0_d.h"
40 #include "bif/bif_5_0_sh_mask.h"
41 #include "dce/dce_10_0_d.h"
42 #include "dce/dce_10_0_sh_mask.h"
43 #include "hardwaremanager.h"
44 #include "cgs_common.h"
45 #include "atombios.h"
46 #include "pppcielanes.h"
47 #include "hwmgr.h"
48 #include "smu7_hwmgr.h"
49 
50 
51 #define AVFS_EN_MSB                                        1568
52 #define AVFS_EN_LSB                                        1568
53 
54 #define FIJI_SMC_SIZE 0x20000
55 
56 #define POWERTUNE_DEFAULT_SET_MAX    1
57 #define VDDC_VDDCI_DELTA            300
58 #define MC_CG_ARB_FREQ_F1           0x0b
59 
60 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
61  * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
62  */
63 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
64 				{600, 1050, 3, 0}, {600, 1050, 6, 1} };
65 
66 /* [FF, SS] type, [] 4 voltage ranges, and
67  * [Floor Freq, Boundary Freq, VID min , VID max]
68  */
69 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
70 	{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
71 	{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
72 
73 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
74  * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
75  */
76 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
77 				{0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
78 
79 static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
80 		/*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
81 		{1,               0xF,             0xFD,
82 		/* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
83 		0x19,        5,               45}
84 };
85 
86 static const struct SMU73_Discrete_GraphicsLevel avfs_graphics_level[8] = {
87 		/*  Min        Sclk       pcie     DeepSleep Activity  CgSpll      CgSpll    spllSpread  SpllSpread   CcPwr  CcPwr  Sclk   Display     Enabled     Enabled                       Voltage    Power */
88 		/* Voltage,  Frequency,  DpmLevel,  DivId,    Level,  FuncCntl3,  FuncCntl4,  Spectrum,   Spectrum2,  DynRm, DynRm1  Did, Watermark, ForActivity, ForThrottle, UpHyst, DownHyst, DownHyst, Throttle */
89 		{ 0x3c0fd047, 0x30750000,   0x00,     0x03,   0x1e00, 0x00200410, 0x87020000, 0x21680000, 0x0c000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
90 		{ 0xa00fd047, 0x409c0000,   0x01,     0x04,   0x1e00, 0x00800510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x16,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
91 		{ 0x0410d047, 0x50c30000,   0x01,     0x00,   0x1e00, 0x00600410, 0x87020000, 0x21680000, 0x0d000000,   0,      0,   0x0e,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
92 		{ 0x6810d047, 0x60ea0000,   0x01,     0x00,   0x1e00, 0x00800410, 0x87020000, 0x21680000, 0x0e000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
93 		{ 0xcc10d047, 0xe8fd0000,   0x01,     0x00,   0x1e00, 0x00e00410, 0x87020000, 0x21680000, 0x0f000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
94 		{ 0x3011d047, 0x70110100,   0x01,     0x00,   0x1e00, 0x00400510, 0x87020000, 0x21680000, 0x10000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
95 		{ 0x9411d047, 0xf8240100,   0x01,     0x00,   0x1e00, 0x00a00510, 0x87020000, 0x21680000, 0x11000000,   0,      0,   0x0c,   0x00,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 },
96 		{ 0xf811d047, 0x80380100,   0x01,     0x00,   0x1e00, 0x00000610, 0x87020000, 0x21680000, 0x12000000,   0,      0,   0x0c,   0x01,       0x01,        0x01,      0x00,   0x00,      0x00,     0x00 }
97 };
98 
99 static int fiji_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
100 {
101 	int result = 0;
102 
103 	/* Wait for smc boot up */
104 	/* PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
105 		RCU_UC_EVENTS, boot_seq_done, 0); */
106 
107 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
108 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
109 
110 	result = smu7_upload_smu_firmware_image(hwmgr);
111 	if (result)
112 		return result;
113 
114 	/* Clear status */
115 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
116 			ixSMU_STATUS, 0);
117 
118 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
120 
121 	/* De-assert reset */
122 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
123 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
124 
125 	/* Wait for ROM firmware to initialize interrupt hendler */
126 	/*SMUM_WAIT_VFPF_INDIRECT_REGISTER(hwmgr, SMC_IND,
127 			SMC_INTR_CNTL_MASK_0, 0x10040, 0xFFFFFFFF); */
128 
129 	/* Set SMU Auto Start */
130 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
131 			SMU_INPUT_DATA, AUTO_START, 1);
132 
133 	/* Clear firmware interrupt enable flag */
134 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
135 			ixFIRMWARE_FLAGS, 0);
136 
137 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
138 			INTERRUPTS_ENABLED, 1);
139 
140 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_Test, 0x20000, NULL);
141 
142 	/* Wait for done bit to be set */
143 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
144 			SMU_STATUS, SMU_DONE, 0);
145 
146 	/* Check pass/failed indicator */
147 	if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
148 			SMU_STATUS, SMU_PASS) != 1) {
149 		PP_ASSERT_WITH_CODE(false,
150 				"SMU Firmware start failed!", return -1);
151 	}
152 
153 	/* Wait for firmware to initialize */
154 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
155 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
156 
157 	return result;
158 }
159 
160 static int fiji_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
161 {
162 	int result = 0;
163 
164 	/* wait for smc boot up */
165 	PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
166 			RCU_UC_EVENTS, boot_seq_done, 0);
167 
168 	/* Clear firmware interrupt enable flag */
169 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
170 			ixFIRMWARE_FLAGS, 0);
171 
172 	/* Assert reset */
173 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
174 			SMC_SYSCON_RESET_CNTL, rst_reg, 1);
175 
176 	result = smu7_upload_smu_firmware_image(hwmgr);
177 	if (result)
178 		return result;
179 
180 	/* Set smc instruct start point at 0x0 */
181 	smu7_program_jump_on_start(hwmgr);
182 
183 	/* Enable clock */
184 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
185 			SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
186 
187 	/* De-assert reset */
188 	PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
189 			SMC_SYSCON_RESET_CNTL, rst_reg, 0);
190 
191 	/* Wait for firmware to initialize */
192 	PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
193 			FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
194 
195 	return result;
196 }
197 
198 static int fiji_start_avfs_btc(struct pp_hwmgr *hwmgr)
199 {
200 	int result = 0;
201 	struct smu7_smumgr *smu_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
202 
203 	if (0 != smu_data->avfs_btc_param) {
204 		if (0 != smum_send_msg_to_smc_with_parameter(hwmgr,
205 				PPSMC_MSG_PerformBtc, smu_data->avfs_btc_param,
206 				NULL)) {
207 			pr_info("[AVFS][Fiji_PerformBtc] PerformBTC SMU msg failed");
208 			result = -EINVAL;
209 		}
210 	}
211 	/* Soft-Reset to reset the engine before loading uCode */
212 	 /* halt */
213 	cgs_write_register(hwmgr->device, mmCP_MEC_CNTL, 0x50000000);
214 	/* reset everything */
215 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0xffffffff);
216 	/* clear reset */
217 	cgs_write_register(hwmgr->device, mmGRBM_SOFT_RESET, 0);
218 
219 	return result;
220 }
221 
222 static int fiji_setup_graphics_level_structure(struct pp_hwmgr *hwmgr)
223 {
224 	int32_t vr_config;
225 	uint32_t table_start;
226 	uint32_t level_addr, vr_config_addr;
227 	uint32_t level_size = sizeof(avfs_graphics_level);
228 
229 	PP_ASSERT_WITH_CODE(0 == smu7_read_smc_sram_dword(hwmgr,
230 			SMU7_FIRMWARE_HEADER_LOCATION +
231 			offsetof(SMU73_Firmware_Header, DpmTable),
232 			&table_start, 0x40000),
233 			"[AVFS][Fiji_SetupGfxLvlStruct] SMU could not "
234 			"communicate starting address of DPM table",
235 			return -1;);
236 
237 	/* Default value for vr_config =
238 	 * VR_MERGED_WITH_VDDC + VR_STATIC_VOLTAGE(VDDCI) */
239 	vr_config = 0x01000500;   /* Real value:0x50001 */
240 
241 	vr_config_addr = table_start +
242 			offsetof(SMU73_Discrete_DpmTable, VRConfig);
243 
244 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, vr_config_addr,
245 			(uint8_t *)&vr_config, sizeof(int32_t), 0x40000),
246 			"[AVFS][Fiji_SetupGfxLvlStruct] Problems copying "
247 			"vr_config value over to SMC",
248 			return -1;);
249 
250 	level_addr = table_start + offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
251 
252 	PP_ASSERT_WITH_CODE(0 == smu7_copy_bytes_to_smc(hwmgr, level_addr,
253 			(uint8_t *)(&avfs_graphics_level), level_size, 0x40000),
254 			"[AVFS][Fiji_SetupGfxLvlStruct] Copying of DPM table failed!",
255 			return -1;);
256 
257 	return 0;
258 }
259 
260 static int fiji_avfs_event_mgr(struct pp_hwmgr *hwmgr)
261 {
262 	if (!hwmgr->avfs_supported)
263 		return 0;
264 
265 	PP_ASSERT_WITH_CODE(0 == fiji_setup_graphics_level_structure(hwmgr),
266 			"[AVFS][fiji_avfs_event_mgr] Could not Copy Graphics Level"
267 			" table over to SMU",
268 			return -EINVAL);
269 	PP_ASSERT_WITH_CODE(0 == smu7_setup_pwr_virus(hwmgr),
270 			"[AVFS][fiji_avfs_event_mgr] Could not setup "
271 			"Pwr Virus for AVFS ",
272 			return -EINVAL);
273 	PP_ASSERT_WITH_CODE(0 == fiji_start_avfs_btc(hwmgr),
274 			"[AVFS][fiji_avfs_event_mgr] Failure at "
275 			"fiji_start_avfs_btc. AVFS Disabled",
276 			return -EINVAL);
277 
278 	return 0;
279 }
280 
281 static int fiji_start_smu(struct pp_hwmgr *hwmgr)
282 {
283 	int result = 0;
284 	struct fiji_smumgr *priv = (struct fiji_smumgr *)(hwmgr->smu_backend);
285 
286 	/* Only start SMC if SMC RAM is not running */
287 	if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
288 		/* Check if SMU is running in protected mode */
289 		if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
290 				CGS_IND_REG__SMC,
291 				SMU_FIRMWARE, SMU_MODE)) {
292 			result = fiji_start_smu_in_non_protection_mode(hwmgr);
293 			if (result)
294 				return result;
295 		} else {
296 			result = fiji_start_smu_in_protection_mode(hwmgr);
297 			if (result)
298 				return result;
299 		}
300 		if (fiji_avfs_event_mgr(hwmgr))
301 			hwmgr->avfs_supported = false;
302 	}
303 
304 	/* Setup SoftRegsStart here for register lookup in case
305 	 * DummyBackEnd is used and ProcessFirmwareHeader is not executed
306 	 */
307 	smu7_read_smc_sram_dword(hwmgr,
308 			SMU7_FIRMWARE_HEADER_LOCATION +
309 			offsetof(SMU73_Firmware_Header, SoftRegisters),
310 			&(priv->smu7_data.soft_regs_start), 0x40000);
311 
312 	result = smu7_request_smu_load_fw(hwmgr);
313 
314 	return result;
315 }
316 
317 static bool fiji_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
318 {
319 
320 	uint32_t efuse = 0;
321 	uint32_t mask = (1 << ((AVFS_EN_MSB - AVFS_EN_LSB) + 1)) - 1;
322 
323 	if (!hwmgr->not_vf)
324 		return false;
325 
326 	if (!atomctrl_read_efuse(hwmgr, AVFS_EN_LSB, AVFS_EN_MSB,
327 			mask, &efuse)) {
328 		if (efuse)
329 			return true;
330 	}
331 	return false;
332 }
333 
334 static int fiji_smu_init(struct pp_hwmgr *hwmgr)
335 {
336 	struct fiji_smumgr *fiji_priv = NULL;
337 
338 	fiji_priv = kzalloc(sizeof(struct fiji_smumgr), GFP_KERNEL);
339 
340 	if (fiji_priv == NULL)
341 		return -ENOMEM;
342 
343 	hwmgr->smu_backend = fiji_priv;
344 
345 	if (smu7_init(hwmgr)) {
346 		kfree(fiji_priv);
347 		return -EINVAL;
348 	}
349 
350 	return 0;
351 }
352 
353 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
354 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
355 		uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
356 {
357 	uint32_t i;
358 	uint16_t vddci;
359 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
360 	*voltage = *mvdd = 0;
361 
362 
363 	/* clock - voltage dependency table is empty table */
364 	if (dep_table->count == 0)
365 		return -EINVAL;
366 
367 	for (i = 0; i < dep_table->count; i++) {
368 		/* find first sclk bigger than request */
369 		if (dep_table->entries[i].clk >= clock) {
370 			*voltage |= (dep_table->entries[i].vddc *
371 					VOLTAGE_SCALE) << VDDC_SHIFT;
372 			if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
373 				*voltage |= (data->vbios_boot_state.vddci_bootup_value *
374 						VOLTAGE_SCALE) << VDDCI_SHIFT;
375 			else if (dep_table->entries[i].vddci)
376 				*voltage |= (dep_table->entries[i].vddci *
377 						VOLTAGE_SCALE) << VDDCI_SHIFT;
378 			else {
379 				vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
380 						(dep_table->entries[i].vddc -
381 								VDDC_VDDCI_DELTA));
382 				*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
383 			}
384 
385 			if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
386 				*mvdd = data->vbios_boot_state.mvdd_bootup_value *
387 					VOLTAGE_SCALE;
388 			else if (dep_table->entries[i].mvdd)
389 				*mvdd = (uint32_t) dep_table->entries[i].mvdd *
390 					VOLTAGE_SCALE;
391 
392 			*voltage |= 1 << PHASES_SHIFT;
393 			return 0;
394 		}
395 	}
396 
397 	/* sclk is bigger than max sclk in the dependence table */
398 	*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
399 
400 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
401 		*voltage |= (data->vbios_boot_state.vddci_bootup_value *
402 				VOLTAGE_SCALE) << VDDCI_SHIFT;
403 	else if (dep_table->entries[i-1].vddci) {
404 		vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
405 				(dep_table->entries[i].vddc -
406 						VDDC_VDDCI_DELTA));
407 		*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
408 	}
409 
410 	if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
411 		*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
412 	else if (dep_table->entries[i].mvdd)
413 		*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
414 
415 	return 0;
416 }
417 
418 
419 static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
420 {
421 	uint32_t tmp;
422 	tmp = raw_setting * 4096 / 100;
423 	return (uint16_t)tmp;
424 }
425 
426 static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
427 {
428 	switch (line) {
429 	case SMU7_I2CLineID_DDC1:
430 		*scl = SMU7_I2C_DDC1CLK;
431 		*sda = SMU7_I2C_DDC1DATA;
432 		break;
433 	case SMU7_I2CLineID_DDC2:
434 		*scl = SMU7_I2C_DDC2CLK;
435 		*sda = SMU7_I2C_DDC2DATA;
436 		break;
437 	case SMU7_I2CLineID_DDC3:
438 		*scl = SMU7_I2C_DDC3CLK;
439 		*sda = SMU7_I2C_DDC3DATA;
440 		break;
441 	case SMU7_I2CLineID_DDC4:
442 		*scl = SMU7_I2C_DDC4CLK;
443 		*sda = SMU7_I2C_DDC4DATA;
444 		break;
445 	case SMU7_I2CLineID_DDC5:
446 		*scl = SMU7_I2C_DDC5CLK;
447 		*sda = SMU7_I2C_DDC5DATA;
448 		break;
449 	case SMU7_I2CLineID_DDC6:
450 		*scl = SMU7_I2C_DDC6CLK;
451 		*sda = SMU7_I2C_DDC6DATA;
452 		break;
453 	case SMU7_I2CLineID_SCLSDA:
454 		*scl = SMU7_I2C_SCL;
455 		*sda = SMU7_I2C_SDA;
456 		break;
457 	case SMU7_I2CLineID_DDCVGA:
458 		*scl = SMU7_I2C_DDCVGACLK;
459 		*sda = SMU7_I2C_DDCVGADATA;
460 		break;
461 	default:
462 		*scl = 0;
463 		*sda = 0;
464 		break;
465 	}
466 }
467 
468 static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
469 {
470 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
471 	struct phm_ppt_v1_information *table_info =
472 			(struct  phm_ppt_v1_information *)(hwmgr->pptable);
473 
474 	if (table_info &&
475 			table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
476 			table_info->cac_dtp_table->usPowerTuneDataSetID)
477 		smu_data->power_tune_defaults =
478 				&fiji_power_tune_data_set_array
479 				[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
480 	else
481 		smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
482 
483 }
484 
485 static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
486 {
487 
488 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
489 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
490 
491 	SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
492 
493 	struct phm_ppt_v1_information *table_info =
494 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
495 	struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
496 	struct pp_advance_fan_control_parameters *fan_table =
497 			&hwmgr->thermal_controller.advanceFanControlParameters;
498 	uint8_t uc_scl, uc_sda;
499 
500 	/* TDP number of fraction bits are changed from 8 to 7 for Fiji
501 	 * as requested by SMC team
502 	 */
503 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
504 			(uint16_t)(cac_dtp_table->usTDP * 128));
505 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
506 			(uint16_t)(cac_dtp_table->usTDP * 128));
507 
508 	PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
509 			"Target Operating Temp is out of Range!",
510 			);
511 
512 	dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
513 	dpm_table->GpuTjHyst = 8;
514 
515 	dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
516 
517 	/* The following are for new Fiji Multi-input fan/thermal control */
518 	dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
519 			cac_dtp_table->usTargetOperatingTemp * 256);
520 	dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
521 			cac_dtp_table->usTemperatureLimitHotspot * 256);
522 	dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
523 			cac_dtp_table->usTemperatureLimitLiquid1 * 256);
524 	dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
525 			cac_dtp_table->usTemperatureLimitLiquid2 * 256);
526 	dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
527 			cac_dtp_table->usTemperatureLimitVrVddc * 256);
528 	dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
529 			cac_dtp_table->usTemperatureLimitVrMvdd * 256);
530 	dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
531 			cac_dtp_table->usTemperatureLimitPlx * 256);
532 
533 	dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
534 			scale_fan_gain_settings(fan_table->usFanGainEdge));
535 	dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
536 			scale_fan_gain_settings(fan_table->usFanGainHotspot));
537 	dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
538 			scale_fan_gain_settings(fan_table->usFanGainLiquid));
539 	dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
540 			scale_fan_gain_settings(fan_table->usFanGainVrVddc));
541 	dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
542 			scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
543 	dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
544 			scale_fan_gain_settings(fan_table->usFanGainPlx));
545 	dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
546 			scale_fan_gain_settings(fan_table->usFanGainHbm));
547 
548 	dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
549 	dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
550 	dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
551 	dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
552 
553 	get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
554 	dpm_table->Liquid_I2C_LineSCL = uc_scl;
555 	dpm_table->Liquid_I2C_LineSDA = uc_sda;
556 
557 	get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
558 	dpm_table->Vr_I2C_LineSCL = uc_scl;
559 	dpm_table->Vr_I2C_LineSDA = uc_sda;
560 
561 	get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
562 	dpm_table->Plx_I2C_LineSCL = uc_scl;
563 	dpm_table->Plx_I2C_LineSDA = uc_sda;
564 
565 	return 0;
566 }
567 
568 
569 static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
570 {
571 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
572 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
573 
574 	smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
575 	smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
576 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
577 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
578 
579 	return 0;
580 }
581 
582 
583 static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
584 {
585 	uint16_t tdc_limit;
586 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
587 	struct phm_ppt_v1_information *table_info =
588 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
589 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
590 
591 	/* TDC number of fraction bits are changed from 8 to 7
592 	 * for Fiji as requested by SMC team
593 	 */
594 	tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
595 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
596 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
597 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
598 			defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
599 	smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
600 
601 	return 0;
602 }
603 
604 static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
605 {
606 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
607 	const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
608 	uint32_t temp;
609 
610 	if (smu7_read_smc_sram_dword(hwmgr,
611 			fuse_table_offset +
612 			offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
613 			(uint32_t *)&temp, SMC_RAM_END))
614 		PP_ASSERT_WITH_CODE(false,
615 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
616 				return -EINVAL);
617 	else {
618 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
619 		smu_data->power_tune_table.LPMLTemperatureMin =
620 				(uint8_t)((temp >> 16) & 0xff);
621 		smu_data->power_tune_table.LPMLTemperatureMax =
622 				(uint8_t)((temp >> 8) & 0xff);
623 		smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
624 	}
625 	return 0;
626 }
627 
628 static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
629 {
630 	int i;
631 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
632 
633 	/* Currently not used. Set all to zero. */
634 	for (i = 0; i < 16; i++)
635 		smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
636 
637 	return 0;
638 }
639 
640 static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
641 {
642 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
643 
644 	if ((hwmgr->thermal_controller.advanceFanControlParameters.
645 			usFanOutputSensitivity & (1 << 15)) ||
646 			0 == hwmgr->thermal_controller.advanceFanControlParameters.
647 			usFanOutputSensitivity)
648 		hwmgr->thermal_controller.advanceFanControlParameters.
649 		usFanOutputSensitivity = hwmgr->thermal_controller.
650 			advanceFanControlParameters.usDefaultFanOutputSensitivity;
651 
652 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
653 			PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
654 					advanceFanControlParameters.usFanOutputSensitivity);
655 	return 0;
656 }
657 
658 static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
659 {
660 	int i;
661 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
662 
663 	/* Currently not used. Set all to zero. */
664 	for (i = 0; i < 16; i++)
665 		smu_data->power_tune_table.GnbLPML[i] = 0;
666 
667 	return 0;
668 }
669 
670 static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
671 {
672 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
673 	struct phm_ppt_v1_information *table_info =
674 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
675 	uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
676 	uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
677 	struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
678 
679 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
680 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
681 
682 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
683 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
684 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
685 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
686 
687 	return 0;
688 }
689 
690 static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
691 {
692 	uint32_t pm_fuse_table_offset;
693 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
694 
695 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
696 			PHM_PlatformCaps_PowerContainment)) {
697 		if (smu7_read_smc_sram_dword(hwmgr,
698 				SMU7_FIRMWARE_HEADER_LOCATION +
699 				offsetof(SMU73_Firmware_Header, PmFuseTable),
700 				&pm_fuse_table_offset, SMC_RAM_END))
701 			PP_ASSERT_WITH_CODE(false,
702 					"Attempt to get pm_fuse_table_offset Failed!",
703 					return -EINVAL);
704 
705 		/* DW6 */
706 		if (fiji_populate_svi_load_line(hwmgr))
707 			PP_ASSERT_WITH_CODE(false,
708 					"Attempt to populate SviLoadLine Failed!",
709 					return -EINVAL);
710 		/* DW7 */
711 		if (fiji_populate_tdc_limit(hwmgr))
712 			PP_ASSERT_WITH_CODE(false,
713 					"Attempt to populate TDCLimit Failed!", return -EINVAL);
714 		/* DW8 */
715 		if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
716 			PP_ASSERT_WITH_CODE(false,
717 					"Attempt to populate TdcWaterfallCtl, "
718 					"LPMLTemperature Min and Max Failed!",
719 					return -EINVAL);
720 
721 		/* DW9-DW12 */
722 		if (0 != fiji_populate_temperature_scaler(hwmgr))
723 			PP_ASSERT_WITH_CODE(false,
724 					"Attempt to populate LPMLTemperatureScaler Failed!",
725 					return -EINVAL);
726 
727 		/* DW13-DW14 */
728 		if (fiji_populate_fuzzy_fan(hwmgr))
729 			PP_ASSERT_WITH_CODE(false,
730 					"Attempt to populate Fuzzy Fan Control parameters Failed!",
731 					return -EINVAL);
732 
733 		/* DW15-DW18 */
734 		if (fiji_populate_gnb_lpml(hwmgr))
735 			PP_ASSERT_WITH_CODE(false,
736 					"Attempt to populate GnbLPML Failed!",
737 					return -EINVAL);
738 
739 		/* DW20 */
740 		if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
741 			PP_ASSERT_WITH_CODE(false,
742 					"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
743 					"Sidd Failed!", return -EINVAL);
744 
745 		if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
746 				(uint8_t *)&smu_data->power_tune_table,
747 				sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
748 			PP_ASSERT_WITH_CODE(false,
749 					"Attempt to download PmFuseTable Failed!",
750 					return -EINVAL);
751 	}
752 	return 0;
753 }
754 
755 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
756 		struct SMU73_Discrete_DpmTable *table)
757 {
758 	uint32_t count;
759 	uint8_t index;
760 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
761 	struct phm_ppt_v1_information *table_info =
762 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
763 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
764 			table_info->vddc_lookup_table;
765 	/* tables is already swapped, so in order to use the value from it,
766 	 * we need to swap it back.
767 	 * We are populating vddc CAC data to BapmVddc table
768 	 * in split and merged mode
769 	 */
770 
771 	for (count = 0; count < lookup_table->count; count++) {
772 		index = phm_get_voltage_index(lookup_table,
773 				data->vddc_voltage_table.entries[count].value);
774 		table->BapmVddcVidLoSidd[count] =
775 			convert_to_vid(lookup_table->entries[index].us_cac_low);
776 		table->BapmVddcVidHiSidd[count] =
777 			convert_to_vid(lookup_table->entries[index].us_cac_high);
778 	}
779 
780 	return 0;
781 }
782 
783 static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
784 		struct SMU73_Discrete_DpmTable *table)
785 {
786 	int result;
787 
788 	result = fiji_populate_cac_table(hwmgr, table);
789 	PP_ASSERT_WITH_CODE(0 == result,
790 			"can not populate CAC voltage tables to SMC",
791 			return -EINVAL);
792 
793 	return 0;
794 }
795 
796 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
797 		struct SMU73_Discrete_Ulv *state)
798 {
799 	int result = 0;
800 
801 	struct phm_ppt_v1_information *table_info =
802 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
803 
804 	state->CcPwrDynRm = 0;
805 	state->CcPwrDynRm1 = 0;
806 
807 	state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
808 	state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
809 			VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
810 
811 	state->VddcPhase = 1;
812 
813 	if (!result) {
814 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
815 		CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
816 		CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
817 	}
818 	return result;
819 }
820 
821 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
822 		struct SMU73_Discrete_DpmTable *table)
823 {
824 	return fiji_populate_ulv_level(hwmgr, &table->Ulv);
825 }
826 
827 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
828 		struct SMU73_Discrete_DpmTable *table)
829 {
830 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
831 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
832 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
833 	int i;
834 
835 	/* Index (dpm_table->pcie_speed_table.count)
836 	 * is reserved for PCIE boot level. */
837 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
838 		table->LinkLevel[i].PcieGenSpeed  =
839 				(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
840 		table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
841 				dpm_table->pcie_speed_table.dpm_levels[i].param1);
842 		table->LinkLevel[i].EnabledForActivity = 1;
843 		table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
844 		table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
845 		table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
846 	}
847 
848 	smu_data->smc_state_table.LinkLevelCount =
849 			(uint8_t)dpm_table->pcie_speed_table.count;
850 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
851 			phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
852 
853 	return 0;
854 }
855 
856 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
857 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
858 {
859 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
860 	struct pp_atomctrl_clock_dividers_vi dividers;
861 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
862 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
863 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
864 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
865 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
866 	uint32_t ref_clock;
867 	uint32_t ref_divider;
868 	uint32_t fbdiv;
869 	int result;
870 
871 	/* get the engine clock dividers for this clock value */
872 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
873 
874 	PP_ASSERT_WITH_CODE(result == 0,
875 			"Error retrieving Engine Clock dividers from VBIOS.",
876 			return result);
877 
878 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
879 	ref_clock = atomctrl_get_reference_clock(hwmgr);
880 	ref_divider = 1 + dividers.uc_pll_ref_div;
881 
882 	/* low 14 bits is fraction and high 12 bits is divider */
883 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
884 
885 	/* SPLL_FUNC_CNTL setup */
886 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
887 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
888 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
889 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
890 
891 	/* SPLL_FUNC_CNTL_3 setup*/
892 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
893 			SPLL_FB_DIV, fbdiv);
894 
895 	/* set to use fractional accumulation*/
896 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
897 			SPLL_DITHEN, 1);
898 
899 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
900 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
901 		struct pp_atomctrl_internal_ss_info ssInfo;
902 
903 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
904 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
905 				vco_freq, &ssInfo)) {
906 			/*
907 			 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
908 			 * ss_info.speed_spectrum_rate -- in unit of khz
909 			 *
910 			 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
911 			 */
912 			uint32_t clk_s = ref_clock * 5 /
913 					(ref_divider * ssInfo.speed_spectrum_rate);
914 			/* clkv = 2 * D * fbdiv / NS */
915 			uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
916 					fbdiv / (clk_s * 10000);
917 
918 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
919 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
920 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
921 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
922 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
923 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
924 		}
925 	}
926 
927 	sclk->SclkFrequency        = clock;
928 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
929 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
930 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
931 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
932 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
933 
934 	return 0;
935 }
936 
937 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
938 		uint32_t clock, struct SMU73_Discrete_GraphicsLevel *level)
939 {
940 	int result;
941 	/* PP_Clocks minClocks; */
942 	uint32_t mvdd;
943 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
944 	struct phm_ppt_v1_information *table_info =
945 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
946 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
947 
948 	result = fiji_calculate_sclk_params(hwmgr, clock, level);
949 
950 	if (hwmgr->od_enabled)
951 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
952 	else
953 		vdd_dep_table = table_info->vdd_dep_on_sclk;
954 
955 	/* populate graphics levels */
956 	result = fiji_get_dependency_volt_by_clk(hwmgr,
957 			vdd_dep_table, clock,
958 			(uint32_t *)(&level->MinVoltage), &mvdd);
959 	PP_ASSERT_WITH_CODE((0 == result),
960 			"can not find VDDC voltage value for "
961 			"VDDC engine clock dependency table",
962 			return result);
963 
964 	level->SclkFrequency = clock;
965 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
966 	level->CcPwrDynRm = 0;
967 	level->CcPwrDynRm1 = 0;
968 	level->EnabledForActivity = 0;
969 	level->EnabledForThrottle = 1;
970 	level->UpHyst = data->current_profile_setting.sclk_up_hyst;
971 	level->DownHyst = data->current_profile_setting.sclk_down_hyst;
972 	level->VoltageDownHyst = 0;
973 	level->PowerThrottle = 0;
974 
975 	data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
976 
977 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
978 		level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
979 								hwmgr->display_config->min_core_set_clock_in_sr);
980 
981 
982 	/* Default to slow, highest DPM level will be
983 	 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
984 	 */
985 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
986 
987 	CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
988 	CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
989 	CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
990 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
991 	CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
992 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
993 	CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
994 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
995 	CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
996 
997 	return 0;
998 }
999 
1000 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1001 {
1002 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1004 
1005 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1006 	struct phm_ppt_v1_information *table_info =
1007 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1008 	struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1009 	uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1010 	int result = 0;
1011 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1012 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
1013 	uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
1014 			SMU73_MAX_LEVELS_GRAPHICS;
1015 	struct SMU73_Discrete_GraphicsLevel *levels =
1016 			smu_data->smc_state_table.GraphicsLevel;
1017 	uint32_t i, max_entry;
1018 	uint8_t hightest_pcie_level_enabled = 0,
1019 			lowest_pcie_level_enabled = 0,
1020 			mid_pcie_level_enabled = 0,
1021 			count = 0;
1022 
1023 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
1024 		result = fiji_populate_single_graphic_level(hwmgr,
1025 				dpm_table->sclk_table.dpm_levels[i].value,
1026 				&levels[i]);
1027 		if (result)
1028 			return result;
1029 
1030 		/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1031 		if (i > 1)
1032 			levels[i].DeepSleepDivId = 0;
1033 	}
1034 
1035 	/* Only enable level 0 for now.*/
1036 	levels[0].EnabledForActivity = 1;
1037 
1038 	/* set highest level watermark to high */
1039 	levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
1040 			PPSMC_DISPLAY_WATERMARK_HIGH;
1041 
1042 	smu_data->smc_state_table.GraphicsDpmLevelCount =
1043 			(uint8_t)dpm_table->sclk_table.count;
1044 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1045 			phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1046 
1047 	if (pcie_table != NULL) {
1048 		PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1049 				"There must be 1 or more PCIE levels defined in PPTable.",
1050 				return -EINVAL);
1051 		max_entry = pcie_entry_cnt - 1;
1052 		for (i = 0; i < dpm_table->sclk_table.count; i++)
1053 			levels[i].pcieDpmLevel =
1054 					(uint8_t) ((i < max_entry) ? i : max_entry);
1055 	} else {
1056 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1057 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1058 						(1 << (hightest_pcie_level_enabled + 1))) != 0))
1059 			hightest_pcie_level_enabled++;
1060 
1061 		while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1062 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1063 						(1 << lowest_pcie_level_enabled)) == 0))
1064 			lowest_pcie_level_enabled++;
1065 
1066 		while ((count < hightest_pcie_level_enabled) &&
1067 				((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1068 						(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1069 			count++;
1070 
1071 		mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1072 				hightest_pcie_level_enabled ?
1073 						(lowest_pcie_level_enabled + 1 + count) :
1074 						hightest_pcie_level_enabled;
1075 
1076 		/* set pcieDpmLevel to hightest_pcie_level_enabled */
1077 		for (i = 2; i < dpm_table->sclk_table.count; i++)
1078 			levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1079 
1080 		/* set pcieDpmLevel to lowest_pcie_level_enabled */
1081 		levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1082 
1083 		/* set pcieDpmLevel to mid_pcie_level_enabled */
1084 		levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1085 	}
1086 	/* level count will send to smc once at init smc table and never change */
1087 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1088 			(uint32_t)array_size, SMC_RAM_END);
1089 
1090 	return result;
1091 }
1092 
1093 
1094 /**
1095  * MCLK Frequency Ratio
1096  * SEQ_CG_RESP  Bit[31:24] - 0x0
1097  * Bit[27:24] \96 DDR3 Frequency ratio
1098  * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
1099  * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
1100  * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
1101  * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
1102  * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
1103  * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
1104  * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
1105  * 400 < 0x7 <= 450MHz,       800 < 0xF
1106  */
1107 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
1108 {
1109 	if (mem_clock <= 10000)
1110 		return 0x0;
1111 	if (mem_clock <= 15000)
1112 		return 0x1;
1113 	if (mem_clock <= 20000)
1114 		return 0x2;
1115 	if (mem_clock <= 25000)
1116 		return 0x3;
1117 	if (mem_clock <= 30000)
1118 		return 0x4;
1119 	if (mem_clock <= 35000)
1120 		return 0x5;
1121 	if (mem_clock <= 40000)
1122 		return 0x6;
1123 	if (mem_clock <= 45000)
1124 		return 0x7;
1125 	if (mem_clock <= 50000)
1126 		return 0x8;
1127 	if (mem_clock <= 55000)
1128 		return 0x9;
1129 	if (mem_clock <= 60000)
1130 		return 0xa;
1131 	if (mem_clock <= 65000)
1132 		return 0xb;
1133 	if (mem_clock <= 70000)
1134 		return 0xc;
1135 	if (mem_clock <= 75000)
1136 		return 0xd;
1137 	if (mem_clock <= 80000)
1138 		return 0xe;
1139 	/* mem_clock > 800MHz */
1140 	return 0xf;
1141 }
1142 
1143 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
1144     uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
1145 {
1146 	struct pp_atomctrl_memory_clock_param mem_param;
1147 	int result;
1148 
1149 	result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
1150 	PP_ASSERT_WITH_CODE((0 == result),
1151 			"Failed to get Memory PLL Dividers.",
1152 			);
1153 
1154 	/* Save the result data to outpupt memory level structure */
1155 	mclk->MclkFrequency   = clock;
1156 	mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
1157 	mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
1158 
1159 	return result;
1160 }
1161 
1162 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1163 		uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
1164 {
1165 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1166 	struct phm_ppt_v1_information *table_info =
1167 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1168 	int result = 0;
1169 	uint32_t mclk_stutter_mode_threshold = 60000;
1170 	phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
1171 
1172 	if (hwmgr->od_enabled)
1173 		vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
1174 	else
1175 		vdd_dep_table = table_info->vdd_dep_on_mclk;
1176 
1177 	if (vdd_dep_table) {
1178 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1179 				vdd_dep_table, clock,
1180 				(uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
1181 		PP_ASSERT_WITH_CODE((0 == result),
1182 				"can not find MinVddc voltage value from memory "
1183 				"VDDC voltage dependency table", return result);
1184 	}
1185 
1186 	mem_level->EnabledForThrottle = 1;
1187 	mem_level->EnabledForActivity = 0;
1188 	mem_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1189 	mem_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1190 	mem_level->VoltageDownHyst = 0;
1191 	mem_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1192 	mem_level->StutterEnable = false;
1193 
1194 	mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1195 
1196 	/* enable stutter mode if all the follow condition applied
1197 	 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
1198 	 * &(data->DisplayTiming.numExistingDisplays));
1199 	 */
1200 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1201 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1202 
1203 	if (mclk_stutter_mode_threshold &&
1204 		(clock <= mclk_stutter_mode_threshold) &&
1205 		(!data->is_uvd_enabled) &&
1206 		(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1207 				STUTTER_ENABLE) & 0x1))
1208 		mem_level->StutterEnable = true;
1209 
1210 	result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
1211 	if (!result) {
1212 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1213 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1214 		CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1215 		CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1216 	}
1217 	return result;
1218 }
1219 
1220 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1221 {
1222 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1223 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1224 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1225 	int result;
1226 	/* populate MCLK dpm table to SMU7 */
1227 	uint32_t array = smu_data->smu7_data.dpm_table_start +
1228 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1229 	uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1230 			SMU73_MAX_LEVELS_MEMORY;
1231 	struct SMU73_Discrete_MemoryLevel *levels =
1232 			smu_data->smc_state_table.MemoryLevel;
1233 	uint32_t i;
1234 
1235 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1236 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1237 				"can not populate memory level as memory clock is zero",
1238 				return -EINVAL);
1239 		result = fiji_populate_single_memory_level(hwmgr,
1240 				dpm_table->mclk_table.dpm_levels[i].value,
1241 				&levels[i]);
1242 		if (result)
1243 			return result;
1244 	}
1245 
1246 	/* Only enable level 0 for now. */
1247 	levels[0].EnabledForActivity = 1;
1248 
1249 	/* in order to prevent MC activity from stutter mode to push DPM up.
1250 	 * the UVD change complements this by putting the MCLK in
1251 	 * a higher state by default such that we are not effected by
1252 	 * up threshold or and MCLK DPM latency.
1253 	 */
1254 	levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1255 	CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1256 
1257 	smu_data->smc_state_table.MemoryDpmLevelCount =
1258 			(uint8_t)dpm_table->mclk_table.count;
1259 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1260 			phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1261 	/* set highest level watermark to high */
1262 	levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1263 			PPSMC_DISPLAY_WATERMARK_HIGH;
1264 
1265 	/* level count will send to smc once at init smc table and never change */
1266 	result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
1267 			(uint32_t)array_size, SMC_RAM_END);
1268 
1269 	return result;
1270 }
1271 
1272 static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1273 		uint32_t mclk, SMIO_Pattern *smio_pat)
1274 {
1275 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1276 	struct phm_ppt_v1_information *table_info =
1277 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1278 	uint32_t i = 0;
1279 
1280 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1281 		/* find mvdd value which clock is more than request */
1282 		for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1283 			if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1284 				smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1285 				break;
1286 			}
1287 		}
1288 		PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1289 				"MVDD Voltage is outside the supported range.",
1290 				return -EINVAL);
1291 	} else
1292 		return -EINVAL;
1293 
1294 	return 0;
1295 }
1296 
1297 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1298 		SMU73_Discrete_DpmTable *table)
1299 {
1300 	int result = 0;
1301 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1302 	struct phm_ppt_v1_information *table_info =
1303 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1304 	struct pp_atomctrl_clock_dividers_vi dividers;
1305 	SMIO_Pattern vol_level;
1306 	uint32_t mvdd;
1307 	uint16_t us_mvdd;
1308 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1309 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1310 
1311 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1312 
1313 	if (!data->sclk_dpm_key_disabled) {
1314 		/* Get MinVoltage and Frequency from DPM0,
1315 		 * already converted to SMC_UL */
1316 		table->ACPILevel.SclkFrequency =
1317 				data->dpm_table.sclk_table.dpm_levels[0].value;
1318 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1319 				table_info->vdd_dep_on_sclk,
1320 				table->ACPILevel.SclkFrequency,
1321 				(uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1322 		PP_ASSERT_WITH_CODE((0 == result),
1323 				"Cannot find ACPI VDDC voltage value " \
1324 				"in Clock Dependency Table",
1325 				);
1326 	} else {
1327 		table->ACPILevel.SclkFrequency =
1328 				data->vbios_boot_state.sclk_bootup_value;
1329 		table->ACPILevel.MinVoltage =
1330 				data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1331 	}
1332 
1333 	/* get the engine clock dividers for this clock value */
1334 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1335 			table->ACPILevel.SclkFrequency,  &dividers);
1336 	PP_ASSERT_WITH_CODE(result == 0,
1337 			"Error retrieving Engine Clock dividers from VBIOS.",
1338 			return result);
1339 
1340 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1341 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1342 	table->ACPILevel.DeepSleepDivId = 0;
1343 
1344 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1345 			SPLL_PWRON, 0);
1346 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1347 			SPLL_RESET, 1);
1348 	spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1349 			SCLK_MUX_SEL, 4);
1350 
1351 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1352 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1353 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1354 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1355 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1356 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1357 	table->ACPILevel.CcPwrDynRm = 0;
1358 	table->ACPILevel.CcPwrDynRm1 = 0;
1359 
1360 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1361 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1362 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1363 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1364 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1365 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1366 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1367 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1368 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1369 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1370 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1371 
1372 	if (!data->mclk_dpm_key_disabled) {
1373 		/* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1374 		table->MemoryACPILevel.MclkFrequency =
1375 				data->dpm_table.mclk_table.dpm_levels[0].value;
1376 		result = fiji_get_dependency_volt_by_clk(hwmgr,
1377 				table_info->vdd_dep_on_mclk,
1378 				table->MemoryACPILevel.MclkFrequency,
1379 			(uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1380 		PP_ASSERT_WITH_CODE((0 == result),
1381 				"Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1382 				);
1383 	} else {
1384 		table->MemoryACPILevel.MclkFrequency =
1385 				data->vbios_boot_state.mclk_bootup_value;
1386 		table->MemoryACPILevel.MinVoltage =
1387 				data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1388 	}
1389 
1390 	us_mvdd = 0;
1391 	if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1392 			(data->mclk_dpm_key_disabled))
1393 		us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1394 	else {
1395 		if (!fiji_populate_mvdd_value(hwmgr,
1396 				data->dpm_table.mclk_table.dpm_levels[0].value,
1397 				&vol_level))
1398 			us_mvdd = vol_level.Voltage;
1399 	}
1400 
1401 	table->MemoryACPILevel.MinMvdd =
1402 			PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1403 
1404 	table->MemoryACPILevel.EnabledForThrottle = 0;
1405 	table->MemoryACPILevel.EnabledForActivity = 0;
1406 	table->MemoryACPILevel.UpHyst = 0;
1407 	table->MemoryACPILevel.DownHyst = 100;
1408 	table->MemoryACPILevel.VoltageDownHyst = 0;
1409 	table->MemoryACPILevel.ActivityLevel =
1410 			PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1411 
1412 	table->MemoryACPILevel.StutterEnable = false;
1413 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1414 	CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1415 
1416 	return result;
1417 }
1418 
1419 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1420 		SMU73_Discrete_DpmTable *table)
1421 {
1422 	int result = -EINVAL;
1423 	uint8_t count;
1424 	struct pp_atomctrl_clock_dividers_vi dividers;
1425 	struct phm_ppt_v1_information *table_info =
1426 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1427 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1428 			table_info->mm_dep_table;
1429 
1430 	table->VceLevelCount = (uint8_t)(mm_table->count);
1431 	table->VceBootLevel = 0;
1432 
1433 	for (count = 0; count < table->VceLevelCount; count++) {
1434 		table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1435 		table->VceLevel[count].MinVoltage = 0;
1436 		table->VceLevel[count].MinVoltage |=
1437 				(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1438 		table->VceLevel[count].MinVoltage |=
1439 				((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1440 						VOLTAGE_SCALE) << VDDCI_SHIFT;
1441 		table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1442 
1443 		/*retrieve divider value for VBIOS */
1444 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1445 				table->VceLevel[count].Frequency, &dividers);
1446 		PP_ASSERT_WITH_CODE((0 == result),
1447 				"can not find divide id for VCE engine clock",
1448 				return result);
1449 
1450 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1451 
1452 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1453 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1454 	}
1455 	return result;
1456 }
1457 
1458 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1459 		SMU73_Discrete_DpmTable *table)
1460 {
1461 	int result = -EINVAL;
1462 	uint8_t count;
1463 	struct pp_atomctrl_clock_dividers_vi dividers;
1464 	struct phm_ppt_v1_information *table_info =
1465 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1466 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1467 			table_info->mm_dep_table;
1468 
1469 	table->AcpLevelCount = (uint8_t)(mm_table->count);
1470 	table->AcpBootLevel = 0;
1471 
1472 	for (count = 0; count < table->AcpLevelCount; count++) {
1473 		table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1474 		table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1475 				VOLTAGE_SCALE) << VDDC_SHIFT;
1476 		table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1477 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1478 		table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1479 
1480 		/* retrieve divider value for VBIOS */
1481 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1482 				table->AcpLevel[count].Frequency, &dividers);
1483 		PP_ASSERT_WITH_CODE((0 == result),
1484 				"can not find divide id for engine clock", return result);
1485 
1486 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1487 
1488 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1489 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1490 	}
1491 	return result;
1492 }
1493 
1494 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1495 		int32_t eng_clock, int32_t mem_clock,
1496 		struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1497 {
1498 	uint32_t dram_timing;
1499 	uint32_t dram_timing2;
1500 	uint32_t burstTime;
1501 	ULONG trrds, trrdl;
1502 	int result;
1503 
1504 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1505 			eng_clock, mem_clock);
1506 	PP_ASSERT_WITH_CODE(result == 0,
1507 			"Error calling VBIOS to set DRAM_TIMING.", return result);
1508 
1509 	dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1510 	dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1511 	burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1512 
1513 	trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1514 	trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1515 
1516 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1517 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1518 	arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1519 	arb_regs->TRRDS            = (uint8_t)trrds;
1520 	arb_regs->TRRDL            = (uint8_t)trrdl;
1521 
1522 	return 0;
1523 }
1524 
1525 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1526 {
1527 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1528 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1529 	struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1530 	uint32_t i, j;
1531 	int result = 0;
1532 
1533 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1534 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1535 			result = fiji_populate_memory_timing_parameters(hwmgr,
1536 					data->dpm_table.sclk_table.dpm_levels[i].value,
1537 					data->dpm_table.mclk_table.dpm_levels[j].value,
1538 					&arb_regs.entries[i][j]);
1539 			if (result)
1540 				break;
1541 		}
1542 	}
1543 
1544 	if (!result)
1545 		result = smu7_copy_bytes_to_smc(
1546 				hwmgr,
1547 				smu_data->smu7_data.arb_table_start,
1548 				(uint8_t *)&arb_regs,
1549 				sizeof(SMU73_Discrete_MCArbDramTimingTable),
1550 				SMC_RAM_END);
1551 	return result;
1552 }
1553 
1554 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1555 		struct SMU73_Discrete_DpmTable *table)
1556 {
1557 	int result = -EINVAL;
1558 	uint8_t count;
1559 	struct pp_atomctrl_clock_dividers_vi dividers;
1560 	struct phm_ppt_v1_information *table_info =
1561 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1562 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1563 			table_info->mm_dep_table;
1564 
1565 	table->UvdLevelCount = (uint8_t)(mm_table->count);
1566 	table->UvdBootLevel = 0;
1567 
1568 	for (count = 0; count < table->UvdLevelCount; count++) {
1569 		table->UvdLevel[count].MinVoltage = 0;
1570 		table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1571 		table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1572 		table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1573 				VOLTAGE_SCALE) << VDDC_SHIFT;
1574 		table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1575 				VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1576 		table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1577 
1578 		/* retrieve divider value for VBIOS */
1579 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1580 				table->UvdLevel[count].VclkFrequency, &dividers);
1581 		PP_ASSERT_WITH_CODE((0 == result),
1582 				"can not find divide id for Vclk clock", return result);
1583 
1584 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1585 
1586 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1587 				table->UvdLevel[count].DclkFrequency, &dividers);
1588 		PP_ASSERT_WITH_CODE((0 == result),
1589 				"can not find divide id for Dclk clock", return result);
1590 
1591 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1592 
1593 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1594 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1595 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1596 
1597 	}
1598 	return result;
1599 }
1600 
1601 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1602 		struct SMU73_Discrete_DpmTable *table)
1603 {
1604 	int result = 0;
1605 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1606 
1607 	table->GraphicsBootLevel = 0;
1608 	table->MemoryBootLevel = 0;
1609 
1610 	/* find boot level from dpm table */
1611 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1612 			data->vbios_boot_state.sclk_bootup_value,
1613 			(uint32_t *)&(table->GraphicsBootLevel));
1614 
1615 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1616 			data->vbios_boot_state.mclk_bootup_value,
1617 			(uint32_t *)&(table->MemoryBootLevel));
1618 
1619 	table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1620 			VOLTAGE_SCALE;
1621 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1622 			VOLTAGE_SCALE;
1623 	table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1624 			VOLTAGE_SCALE;
1625 
1626 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1627 	CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1628 	CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1629 
1630 	return 0;
1631 }
1632 
1633 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1634 {
1635 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1636 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1637 	struct phm_ppt_v1_information *table_info =
1638 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1639 	uint8_t count, level;
1640 
1641 	count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1642 	for (level = 0; level < count; level++) {
1643 		if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1644 				data->vbios_boot_state.sclk_bootup_value) {
1645 			smu_data->smc_state_table.GraphicsBootLevel = level;
1646 			break;
1647 		}
1648 	}
1649 
1650 	count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1651 	for (level = 0; level < count; level++) {
1652 		if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1653 				data->vbios_boot_state.mclk_bootup_value) {
1654 			smu_data->smc_state_table.MemoryBootLevel = level;
1655 			break;
1656 		}
1657 	}
1658 
1659 	return 0;
1660 }
1661 
1662 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1663 {
1664 	uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1665 			volt_with_cks, value;
1666 	uint16_t clock_freq_u16;
1667 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1668 	uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1669 			volt_offset = 0;
1670 	struct phm_ppt_v1_information *table_info =
1671 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1672 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1673 			table_info->vdd_dep_on_sclk;
1674 
1675 	stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1676 
1677 	/* Read SMU_Eefuse to read and calculate RO and determine
1678 	 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1679 	 */
1680 	efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1681 			ixSMU_EFUSE_0 + (146 * 4));
1682 	efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1683 			ixSMU_EFUSE_0 + (148 * 4));
1684 	efuse &= 0xFF000000;
1685 	efuse = efuse >> 24;
1686 	efuse2 &= 0xF;
1687 
1688 	if (efuse2 == 1)
1689 		ro = (2300 - 1350) * efuse / 255 + 1350;
1690 	else
1691 		ro = (2500 - 1000) * efuse / 255 + 1000;
1692 
1693 	if (ro >= 1660)
1694 		type = 0;
1695 	else
1696 		type = 1;
1697 
1698 	/* Populate Stretch amount */
1699 	smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1700 
1701 	/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1702 	for (i = 0; i < sclk_table->count; i++) {
1703 		smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1704 				sclk_table->entries[i].cks_enable << i;
1705 		volt_without_cks = (uint32_t)((14041 *
1706 			(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1707 			(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1708 		volt_with_cks = (uint32_t)((13946 *
1709 			(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1710 			(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1711 		if (volt_without_cks >= volt_with_cks)
1712 			volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1713 					sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1714 		smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1715 	}
1716 
1717 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1718 			STRETCH_ENABLE, 0x0);
1719 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1720 			masterReset, 0x1);
1721 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1722 			staticEnable, 0x1);
1723 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1724 			masterReset, 0x0);
1725 
1726 	/* Populate CKS Lookup Table */
1727 	if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1728 		stretch_amount2 = 0;
1729 	else if (stretch_amount == 3 || stretch_amount == 4)
1730 		stretch_amount2 = 1;
1731 	else {
1732 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1733 				PHM_PlatformCaps_ClockStretcher);
1734 		PP_ASSERT_WITH_CODE(false,
1735 				"Stretch Amount in PPTable not supported",
1736 				return -EINVAL);
1737 	}
1738 
1739 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1740 			ixPWR_CKS_CNTL);
1741 	value &= 0xFFC2FF87;
1742 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1743 			fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1744 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1745 			fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1746 	clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1747 			GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1748 			SclkFrequency) / 100);
1749 	if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1750 			clock_freq_u16 &&
1751 	    fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1752 			clock_freq_u16) {
1753 		/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1754 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1755 		/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1756 		value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1757 		/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1758 		value |= (fiji_clock_stretch_amount_conversion
1759 				[fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1760 				 [stretch_amount]) << 3;
1761 	}
1762 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1763 			CKS_LOOKUPTableEntry[0].minFreq);
1764 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1765 			CKS_LOOKUPTableEntry[0].maxFreq);
1766 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1767 			fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1768 	smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1769 			(fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1770 
1771 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1772 			ixPWR_CKS_CNTL, value);
1773 
1774 	/* Populate DDT Lookup Table */
1775 	for (i = 0; i < 4; i++) {
1776 		/* Assign the minimum and maximum VID stored
1777 		 * in the last row of Clock Stretcher Voltage Table.
1778 		 */
1779 		smu_data->smc_state_table.ClockStretcherDataTable.
1780 		ClockStretcherDataTableEntry[i].minVID =
1781 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1782 		smu_data->smc_state_table.ClockStretcherDataTable.
1783 		ClockStretcherDataTableEntry[i].maxVID =
1784 				(uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1785 		/* Loop through each SCLK and check the frequency
1786 		 * to see if it lies within the frequency for clock stretcher.
1787 		 */
1788 		for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1789 			cks_setting = 0;
1790 			clock_freq = PP_SMC_TO_HOST_UL(
1791 					smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1792 			/* Check the allowed frequency against the sclk level[j].
1793 			 *  Sclk's endianness has already been converted,
1794 			 *  and it's in 10Khz unit,
1795 			 *  as opposed to Data table, which is in Mhz unit.
1796 			 */
1797 			if (clock_freq >=
1798 					(fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1799 				cks_setting |= 0x2;
1800 				if (clock_freq <
1801 						(fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1802 					cks_setting |= 0x1;
1803 			}
1804 			smu_data->smc_state_table.ClockStretcherDataTable.
1805 			ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1806 		}
1807 		CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1808 				ClockStretcherDataTable.
1809 				ClockStretcherDataTableEntry[i].setting);
1810 	}
1811 
1812 	value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1813 	value &= 0xFFFFFFFE;
1814 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1815 
1816 	return 0;
1817 }
1818 
1819 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1820 		struct SMU73_Discrete_DpmTable *table)
1821 {
1822 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1823 	uint16_t config;
1824 
1825 	config = VR_MERGED_WITH_VDDC;
1826 	table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1827 
1828 	/* Set Vddc Voltage Controller */
1829 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1830 		config = VR_SVI2_PLANE_1;
1831 		table->VRConfig |= config;
1832 	} else {
1833 		PP_ASSERT_WITH_CODE(false,
1834 				"VDDC should be on SVI2 control in merged mode!",
1835 				);
1836 	}
1837 	/* Set Vddci Voltage Controller */
1838 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1839 		config = VR_SVI2_PLANE_2;  /* only in merged mode */
1840 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1841 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1842 		config = VR_SMIO_PATTERN_1;
1843 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1844 	} else {
1845 		config = VR_STATIC_VOLTAGE;
1846 		table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1847 	}
1848 	/* Set Mvdd Voltage Controller */
1849 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1850 		config = VR_SVI2_PLANE_2;
1851 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1852 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1853 		config = VR_SMIO_PATTERN_2;
1854 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1855 	} else {
1856 		config = VR_STATIC_VOLTAGE;
1857 		table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
1864 {
1865 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1866 	uint32_t tmp;
1867 	int result;
1868 
1869 	/* This is a read-modify-write on the first byte of the ARB table.
1870 	 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1871 	 * is the field 'current'.
1872 	 * This solution is ugly, but we never write the whole table only
1873 	 * individual fields in it.
1874 	 * In reality this field should not be in that structure
1875 	 * but in a soft register.
1876 	 */
1877 	result = smu7_read_smc_sram_dword(hwmgr,
1878 			smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1879 
1880 	if (result)
1881 		return result;
1882 
1883 	tmp &= 0x00FFFFFF;
1884 	tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1885 
1886 	return smu7_write_smc_sram_dword(hwmgr,
1887 			smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1888 }
1889 
1890 static int fiji_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
1891 {
1892 	pp_atomctrl_voltage_table param_led_dpm;
1893 	int result = 0;
1894 	u32 mask = 0;
1895 
1896 	result = atomctrl_get_voltage_table_v3(hwmgr,
1897 					       VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT,
1898 					       &param_led_dpm);
1899 	if (result == 0) {
1900 		int i, j;
1901 		u32 tmp = param_led_dpm.mask_low;
1902 
1903 		for (i = 0, j = 0; i < 32; i++) {
1904 			if (tmp & 1) {
1905 				mask |= (i << (8 * j));
1906 				if (++j >= 3)
1907 					break;
1908 			}
1909 			tmp >>= 1;
1910 		}
1911 	}
1912 	if (mask)
1913 		smum_send_msg_to_smc_with_parameter(hwmgr,
1914 						    PPSMC_MSG_LedConfig,
1915 						    mask,
1916 						    NULL);
1917 	return 0;
1918 }
1919 
1920 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1921 {
1922 	int result;
1923 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1924 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
1925 	struct phm_ppt_v1_information *table_info =
1926 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1927 	struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1928 	uint8_t i;
1929 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1930 
1931 	fiji_initialize_power_tune_defaults(hwmgr);
1932 
1933 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1934 		fiji_populate_smc_voltage_tables(hwmgr, table);
1935 
1936 	table->SystemFlags = 0;
1937 
1938 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1939 			PHM_PlatformCaps_AutomaticDCTransition))
1940 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1941 
1942 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1943 			PHM_PlatformCaps_StepVddc))
1944 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1945 
1946 	if (data->is_memory_gddr5)
1947 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1948 
1949 	if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1950 		result = fiji_populate_ulv_state(hwmgr, table);
1951 		PP_ASSERT_WITH_CODE(0 == result,
1952 				"Failed to initialize ULV state!", return result);
1953 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1954 				ixCG_ULV_PARAMETER, 0x40035);
1955 	}
1956 
1957 	result = fiji_populate_smc_link_level(hwmgr, table);
1958 	PP_ASSERT_WITH_CODE(0 == result,
1959 			"Failed to initialize Link Level!", return result);
1960 
1961 	result = fiji_populate_all_graphic_levels(hwmgr);
1962 	PP_ASSERT_WITH_CODE(0 == result,
1963 			"Failed to initialize Graphics Level!", return result);
1964 
1965 	result = fiji_populate_all_memory_levels(hwmgr);
1966 	PP_ASSERT_WITH_CODE(0 == result,
1967 			"Failed to initialize Memory Level!", return result);
1968 
1969 	result = fiji_populate_smc_acpi_level(hwmgr, table);
1970 	PP_ASSERT_WITH_CODE(0 == result,
1971 			"Failed to initialize ACPI Level!", return result);
1972 
1973 	result = fiji_populate_smc_vce_level(hwmgr, table);
1974 	PP_ASSERT_WITH_CODE(0 == result,
1975 			"Failed to initialize VCE Level!", return result);
1976 
1977 	result = fiji_populate_smc_acp_level(hwmgr, table);
1978 	PP_ASSERT_WITH_CODE(0 == result,
1979 			"Failed to initialize ACP Level!", return result);
1980 
1981 	/* Since only the initial state is completely set up at this point
1982 	 * (the other states are just copies of the boot state) we only
1983 	 * need to populate the  ARB settings for the initial state.
1984 	 */
1985 	result = fiji_program_memory_timing_parameters(hwmgr);
1986 	PP_ASSERT_WITH_CODE(0 == result,
1987 			"Failed to Write ARB settings for the initial state.", return result);
1988 
1989 	result = fiji_populate_smc_uvd_level(hwmgr, table);
1990 	PP_ASSERT_WITH_CODE(0 == result,
1991 			"Failed to initialize UVD Level!", return result);
1992 
1993 	result = fiji_populate_smc_boot_level(hwmgr, table);
1994 	PP_ASSERT_WITH_CODE(0 == result,
1995 			"Failed to initialize Boot Level!", return result);
1996 
1997 	result = fiji_populate_smc_initailial_state(hwmgr);
1998 	PP_ASSERT_WITH_CODE(0 == result,
1999 			"Failed to initialize Boot State!", return result);
2000 
2001 	result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
2002 	PP_ASSERT_WITH_CODE(0 == result,
2003 			"Failed to populate BAPM Parameters!", return result);
2004 
2005 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2006 			PHM_PlatformCaps_ClockStretcher)) {
2007 		result = fiji_populate_clock_stretcher_data_table(hwmgr);
2008 		PP_ASSERT_WITH_CODE(0 == result,
2009 				"Failed to populate Clock Stretcher Data Table!",
2010 				return result);
2011 	}
2012 
2013 	table->GraphicsVoltageChangeEnable  = 1;
2014 	table->GraphicsThermThrottleEnable  = 1;
2015 	table->GraphicsInterval = 1;
2016 	table->VoltageInterval  = 1;
2017 	table->ThermalInterval  = 1;
2018 	table->TemperatureLimitHigh =
2019 			table_info->cac_dtp_table->usTargetOperatingTemp *
2020 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2021 	table->TemperatureLimitLow  =
2022 			(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2023 			SMU7_Q88_FORMAT_CONVERSION_UNIT;
2024 	table->MemoryVoltageChangeEnable = 1;
2025 	table->MemoryInterval = 1;
2026 	table->VoltageResponseTime = 0;
2027 	table->PhaseResponseTime = 0;
2028 	table->MemoryThermThrottleEnable = 1;
2029 	table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
2030 	table->PCIeGenInterval = 1;
2031 	table->VRConfig = 0;
2032 
2033 	result = fiji_populate_vr_config(hwmgr, table);
2034 	PP_ASSERT_WITH_CODE(0 == result,
2035 			"Failed to populate VRConfig setting!", return result);
2036 	data->vr_config = table->VRConfig;
2037 	table->ThermGpio = 17;
2038 	table->SclkStepSize = 0x4000;
2039 
2040 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2041 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2042 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2043 				PHM_PlatformCaps_RegulatorHot);
2044 	} else {
2045 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2046 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2047 				PHM_PlatformCaps_RegulatorHot);
2048 	}
2049 
2050 	if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2051 			&gpio_pin)) {
2052 		table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2053 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2054 				PHM_PlatformCaps_AutomaticDCTransition);
2055 	} else {
2056 		table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2057 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2058 				PHM_PlatformCaps_AutomaticDCTransition);
2059 	}
2060 
2061 	/* Thermal Output GPIO */
2062 	if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2063 			&gpio_pin)) {
2064 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2065 				PHM_PlatformCaps_ThermalOutGPIO);
2066 
2067 		table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2068 
2069 		/* For porlarity read GPIOPAD_A with assigned Gpio pin
2070 		 * since VBIOS will program this register to set 'inactive state',
2071 		 * driver can then determine 'active state' from this and
2072 		 * program SMU with correct polarity
2073 		 */
2074 		table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2075 				(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2076 		table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2077 
2078 		/* if required, combine VRHot/PCC with thermal out GPIO */
2079 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2080 				PHM_PlatformCaps_RegulatorHot) &&
2081 			phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2082 					PHM_PlatformCaps_CombinePCCWithThermalSignal))
2083 			table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2084 	} else {
2085 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2086 				PHM_PlatformCaps_ThermalOutGPIO);
2087 		table->ThermOutGpio = 17;
2088 		table->ThermOutPolarity = 1;
2089 		table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2090 	}
2091 
2092 	for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
2093 		table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2094 
2095 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2096 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2097 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2098 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2099 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2100 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2101 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2102 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2103 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2104 
2105 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2106 	result = smu7_copy_bytes_to_smc(hwmgr,
2107 			smu_data->smu7_data.dpm_table_start +
2108 			offsetof(SMU73_Discrete_DpmTable, SystemFlags),
2109 			(uint8_t *)&(table->SystemFlags),
2110 			sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
2111 			SMC_RAM_END);
2112 	PP_ASSERT_WITH_CODE(0 == result,
2113 			"Failed to upload dpm data to SMC memory!", return result);
2114 
2115 	result = fiji_init_arb_table_index(hwmgr);
2116 	PP_ASSERT_WITH_CODE(0 == result,
2117 			"Failed to upload arb data to SMC memory!", return result);
2118 
2119 	result = fiji_populate_pm_fuses(hwmgr);
2120 	PP_ASSERT_WITH_CODE(0 == result,
2121 			"Failed to  populate PM fuses to SMC memory!", return result);
2122 
2123 	result = fiji_setup_dpm_led_config(hwmgr);
2124 	PP_ASSERT_WITH_CODE(0 == result,
2125 			    "Failed to setup dpm led config", return result);
2126 
2127 	return 0;
2128 }
2129 
2130 static int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2131 {
2132 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2133 
2134 	SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2135 	uint32_t duty100;
2136 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2137 	uint16_t fdo_min, slope1, slope2;
2138 	uint32_t reference_clock;
2139 	int res;
2140 	uint64_t tmp64;
2141 
2142 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2143 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2144 			PHM_PlatformCaps_MicrocodeFanControl);
2145 		return 0;
2146 	}
2147 
2148 	if (smu_data->smu7_data.fan_table_start == 0) {
2149 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2150 				PHM_PlatformCaps_MicrocodeFanControl);
2151 		return 0;
2152 	}
2153 
2154 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2155 			CG_FDO_CTRL1, FMAX_DUTY100);
2156 
2157 	if (duty100 == 0) {
2158 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2159 				PHM_PlatformCaps_MicrocodeFanControl);
2160 		return 0;
2161 	}
2162 
2163 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
2164 			usPWMMin * duty100;
2165 	do_div(tmp64, 10000);
2166 	fdo_min = (uint16_t)tmp64;
2167 
2168 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2169 			hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2170 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2171 			hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2172 
2173 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2174 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2175 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2176 			hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2177 
2178 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2179 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2180 
2181 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2182 			thermal_controller.advanceFanControlParameters.usTMin) / 100);
2183 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2184 			thermal_controller.advanceFanControlParameters.usTMed) / 100);
2185 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2186 			thermal_controller.advanceFanControlParameters.usTMax) / 100);
2187 
2188 	fan_table.Slope1 = cpu_to_be16(slope1);
2189 	fan_table.Slope2 = cpu_to_be16(slope2);
2190 
2191 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2192 
2193 	fan_table.HystDown = cpu_to_be16(hwmgr->
2194 			thermal_controller.advanceFanControlParameters.ucTHyst);
2195 
2196 	fan_table.HystUp = cpu_to_be16(1);
2197 
2198 	fan_table.HystSlope = cpu_to_be16(1);
2199 
2200 	fan_table.TempRespLim = cpu_to_be16(5);
2201 
2202 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2203 
2204 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2205 			thermal_controller.advanceFanControlParameters.ulCycleDelay *
2206 			reference_clock) / 1600);
2207 
2208 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2209 
2210 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2211 			hwmgr->device, CGS_IND_REG__SMC,
2212 			CG_MULT_THERMAL_CTRL, TEMP_SEL);
2213 
2214 	res = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.fan_table_start,
2215 			(uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2216 			SMC_RAM_END);
2217 
2218 	if (!res && hwmgr->thermal_controller.
2219 			advanceFanControlParameters.ucMinimumPWMLimit)
2220 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2221 				PPSMC_MSG_SetFanMinPwm,
2222 				hwmgr->thermal_controller.
2223 				advanceFanControlParameters.ucMinimumPWMLimit,
2224 				NULL);
2225 
2226 	if (!res && hwmgr->thermal_controller.
2227 			advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2228 		res = smum_send_msg_to_smc_with_parameter(hwmgr,
2229 				PPSMC_MSG_SetFanSclkTarget,
2230 				hwmgr->thermal_controller.
2231 				advanceFanControlParameters.ulMinFanSCLKAcousticLimit,
2232 				NULL);
2233 
2234 	if (res)
2235 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2236 				PHM_PlatformCaps_MicrocodeFanControl);
2237 
2238 	return 0;
2239 }
2240 
2241 
2242 static int fiji_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
2243 {
2244 	if (!hwmgr->avfs_supported)
2245 		return 0;
2246 
2247 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
2248 
2249 	return 0;
2250 }
2251 
2252 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2253 {
2254 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2255 
2256 	if (data->need_update_smu7_dpm_table &
2257 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2258 		return fiji_program_memory_timing_parameters(hwmgr);
2259 
2260 	return 0;
2261 }
2262 
2263 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2264 {
2265 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2266 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2267 
2268 	int result = 0;
2269 	uint32_t low_sclk_interrupt_threshold = 0;
2270 
2271 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2272 			PHM_PlatformCaps_SclkThrottleLowNotification)
2273 		&& (data->low_sclk_interrupt_threshold != 0)) {
2274 		low_sclk_interrupt_threshold =
2275 				data->low_sclk_interrupt_threshold;
2276 
2277 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2278 
2279 		result = smu7_copy_bytes_to_smc(
2280 				hwmgr,
2281 				smu_data->smu7_data.dpm_table_start +
2282 				offsetof(SMU73_Discrete_DpmTable,
2283 					LowSclkInterruptThreshold),
2284 				(uint8_t *)&low_sclk_interrupt_threshold,
2285 				sizeof(uint32_t),
2286 				SMC_RAM_END);
2287 	}
2288 	result = fiji_program_mem_timing_parameters(hwmgr);
2289 	PP_ASSERT_WITH_CODE((result == 0),
2290 			"Failed to program memory timing parameters!",
2291 			);
2292 	return result;
2293 }
2294 
2295 static uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2296 {
2297 	switch (type) {
2298 	case SMU_SoftRegisters:
2299 		switch (member) {
2300 		case HandshakeDisables:
2301 			return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2302 		case VoltageChangeTimeout:
2303 			return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2304 		case AverageGraphicsActivity:
2305 			return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2306 		case AverageMemoryActivity:
2307 			return offsetof(SMU73_SoftRegisters, AverageMemoryActivity);
2308 		case PreVBlankGap:
2309 			return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2310 		case VBlankTimeout:
2311 			return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2312 		case UcodeLoadStatus:
2313 			return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2314 		case DRAM_LOG_ADDR_H:
2315 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_H);
2316 		case DRAM_LOG_ADDR_L:
2317 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_ADDR_L);
2318 		case DRAM_LOG_PHY_ADDR_H:
2319 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2320 		case DRAM_LOG_PHY_ADDR_L:
2321 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2322 		case DRAM_LOG_BUFF_SIZE:
2323 			return offsetof(SMU73_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2324 		}
2325 		break;
2326 	case SMU_Discrete_DpmTable:
2327 		switch (member) {
2328 		case UvdBootLevel:
2329 			return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2330 		case VceBootLevel:
2331 			return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2332 		case LowSclkInterruptThreshold:
2333 			return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2334 		}
2335 		break;
2336 	}
2337 	pr_warn("can't get the offset of type %x member %x\n", type, member);
2338 	return 0;
2339 }
2340 
2341 static uint32_t fiji_get_mac_definition(uint32_t value)
2342 {
2343 	switch (value) {
2344 	case SMU_MAX_LEVELS_GRAPHICS:
2345 		return SMU73_MAX_LEVELS_GRAPHICS;
2346 	case SMU_MAX_LEVELS_MEMORY:
2347 		return SMU73_MAX_LEVELS_MEMORY;
2348 	case SMU_MAX_LEVELS_LINK:
2349 		return SMU73_MAX_LEVELS_LINK;
2350 	case SMU_MAX_ENTRIES_SMIO:
2351 		return SMU73_MAX_ENTRIES_SMIO;
2352 	case SMU_MAX_LEVELS_VDDC:
2353 		return SMU73_MAX_LEVELS_VDDC;
2354 	case SMU_MAX_LEVELS_VDDGFX:
2355 		return SMU73_MAX_LEVELS_VDDGFX;
2356 	case SMU_MAX_LEVELS_VDDCI:
2357 		return SMU73_MAX_LEVELS_VDDCI;
2358 	case SMU_MAX_LEVELS_MVDD:
2359 		return SMU73_MAX_LEVELS_MVDD;
2360 	}
2361 
2362 	pr_warn("can't get the mac of %x\n", value);
2363 	return 0;
2364 }
2365 
2366 
2367 static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2368 {
2369 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2370 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2371 	struct phm_ppt_v1_information *table_info =
2372 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2373 
2374 	smu_data->smc_state_table.UvdBootLevel = 0;
2375 	if (table_info->mm_dep_table->count > 0)
2376 		smu_data->smc_state_table.UvdBootLevel =
2377 				(uint8_t) (table_info->mm_dep_table->count - 1);
2378 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2379 						UvdBootLevel);
2380 	mm_boot_level_offset /= 4;
2381 	mm_boot_level_offset *= 4;
2382 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2383 			CGS_IND_REG__SMC, mm_boot_level_offset);
2384 	mm_boot_level_value &= 0x00FFFFFF;
2385 	mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2386 	cgs_write_ind_register(hwmgr->device,
2387 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2388 
2389 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2390 			PHM_PlatformCaps_UVDDPM) ||
2391 		phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2392 			PHM_PlatformCaps_StablePState))
2393 		smum_send_msg_to_smc_with_parameter(hwmgr,
2394 				PPSMC_MSG_UVDDPM_SetEnabledMask,
2395 				(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2396 				NULL);
2397 	return 0;
2398 }
2399 
2400 static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2401 {
2402 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2403 	uint32_t mm_boot_level_offset, mm_boot_level_value;
2404 	struct phm_ppt_v1_information *table_info =
2405 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2406 
2407 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408 					PHM_PlatformCaps_StablePState))
2409 		smu_data->smc_state_table.VceBootLevel =
2410 			(uint8_t) (table_info->mm_dep_table->count - 1);
2411 	else
2412 		smu_data->smc_state_table.VceBootLevel = 0;
2413 
2414 	mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2415 					offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2416 	mm_boot_level_offset /= 4;
2417 	mm_boot_level_offset *= 4;
2418 	mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2419 			CGS_IND_REG__SMC, mm_boot_level_offset);
2420 	mm_boot_level_value &= 0xFF00FFFF;
2421 	mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2422 	cgs_write_ind_register(hwmgr->device,
2423 			CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2424 
2425 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2426 		smum_send_msg_to_smc_with_parameter(hwmgr,
2427 				PPSMC_MSG_VCEDPM_SetEnabledMask,
2428 				(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2429 				NULL);
2430 	return 0;
2431 }
2432 
2433 static int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2434 {
2435 	switch (type) {
2436 	case SMU_UVD_TABLE:
2437 		fiji_update_uvd_smc_table(hwmgr);
2438 		break;
2439 	case SMU_VCE_TABLE:
2440 		fiji_update_vce_smc_table(hwmgr);
2441 		break;
2442 	default:
2443 		break;
2444 	}
2445 	return 0;
2446 }
2447 
2448 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2449 {
2450 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2451 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smu_backend);
2452 	uint32_t tmp;
2453 	int result;
2454 	bool error = false;
2455 
2456 	result = smu7_read_smc_sram_dword(hwmgr,
2457 			SMU7_FIRMWARE_HEADER_LOCATION +
2458 			offsetof(SMU73_Firmware_Header, DpmTable),
2459 			&tmp, SMC_RAM_END);
2460 
2461 	if (0 == result)
2462 		smu_data->smu7_data.dpm_table_start = tmp;
2463 
2464 	error |= (0 != result);
2465 
2466 	result = smu7_read_smc_sram_dword(hwmgr,
2467 			SMU7_FIRMWARE_HEADER_LOCATION +
2468 			offsetof(SMU73_Firmware_Header, SoftRegisters),
2469 			&tmp, SMC_RAM_END);
2470 
2471 	if (!result) {
2472 		data->soft_regs_start = tmp;
2473 		smu_data->smu7_data.soft_regs_start = tmp;
2474 	}
2475 
2476 	error |= (0 != result);
2477 
2478 	result = smu7_read_smc_sram_dword(hwmgr,
2479 			SMU7_FIRMWARE_HEADER_LOCATION +
2480 			offsetof(SMU73_Firmware_Header, mcRegisterTable),
2481 			&tmp, SMC_RAM_END);
2482 
2483 	if (!result)
2484 		smu_data->smu7_data.mc_reg_table_start = tmp;
2485 
2486 	result = smu7_read_smc_sram_dword(hwmgr,
2487 			SMU7_FIRMWARE_HEADER_LOCATION +
2488 			offsetof(SMU73_Firmware_Header, FanTable),
2489 			&tmp, SMC_RAM_END);
2490 
2491 	if (!result)
2492 		smu_data->smu7_data.fan_table_start = tmp;
2493 
2494 	error |= (0 != result);
2495 
2496 	result = smu7_read_smc_sram_dword(hwmgr,
2497 			SMU7_FIRMWARE_HEADER_LOCATION +
2498 			offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2499 			&tmp, SMC_RAM_END);
2500 
2501 	if (!result)
2502 		smu_data->smu7_data.arb_table_start = tmp;
2503 
2504 	error |= (0 != result);
2505 
2506 	result = smu7_read_smc_sram_dword(hwmgr,
2507 			SMU7_FIRMWARE_HEADER_LOCATION +
2508 			offsetof(SMU73_Firmware_Header, Version),
2509 			&tmp, SMC_RAM_END);
2510 
2511 	if (!result)
2512 		hwmgr->microcode_version_info.SMC = tmp;
2513 
2514 	error |= (0 != result);
2515 
2516 	return error ? -1 : 0;
2517 }
2518 
2519 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2520 {
2521 
2522 	/* Program additional LP registers
2523 	 * that are no longer programmed by VBIOS
2524 	 */
2525 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2526 			cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2527 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2528 			cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2529 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2530 			cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2531 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2532 			cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2533 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2534 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2535 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2536 			cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2537 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2538 			cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2539 
2540 	return 0;
2541 }
2542 
2543 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2544 {
2545 	return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2546 			CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2547 			? true : false;
2548 }
2549 
2550 static int fiji_update_dpm_settings(struct pp_hwmgr *hwmgr,
2551 				void *profile_setting)
2552 {
2553 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2554 	struct fiji_smumgr *smu_data = (struct fiji_smumgr *)
2555 			(hwmgr->smu_backend);
2556 	struct profile_mode_setting *setting;
2557 	struct SMU73_Discrete_GraphicsLevel *levels =
2558 			smu_data->smc_state_table.GraphicsLevel;
2559 	uint32_t array = smu_data->smu7_data.dpm_table_start +
2560 			offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2561 
2562 	uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
2563 			offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2564 	struct SMU73_Discrete_MemoryLevel *mclk_levels =
2565 			smu_data->smc_state_table.MemoryLevel;
2566 	uint32_t i;
2567 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2568 
2569 	if (profile_setting == NULL)
2570 		return -EINVAL;
2571 
2572 	setting = (struct profile_mode_setting *)profile_setting;
2573 
2574 	if (setting->bupdate_sclk) {
2575 		if (!data->sclk_dpm_key_disabled)
2576 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2577 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2578 			if (levels[i].ActivityLevel !=
2579 				cpu_to_be16(setting->sclk_activity)) {
2580 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2581 
2582 				clk_activity_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2583 						+ offsetof(SMU73_Discrete_GraphicsLevel, ActivityLevel);
2584 				offset = clk_activity_offset & ~0x3;
2585 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2586 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2587 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2588 
2589 			}
2590 			if (levels[i].UpHyst != setting->sclk_up_hyst ||
2591 				levels[i].DownHyst != setting->sclk_down_hyst) {
2592 				levels[i].UpHyst = setting->sclk_up_hyst;
2593 				levels[i].DownHyst = setting->sclk_down_hyst;
2594 				up_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2595 						+ offsetof(SMU73_Discrete_GraphicsLevel, UpHyst);
2596 				down_hyst_offset = array + (sizeof(SMU73_Discrete_GraphicsLevel) * i)
2597 						+ offsetof(SMU73_Discrete_GraphicsLevel, DownHyst);
2598 				offset = up_hyst_offset & ~0x3;
2599 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2600 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
2601 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
2602 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2603 			}
2604 		}
2605 		if (!data->sclk_dpm_key_disabled)
2606 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2607 	}
2608 
2609 	if (setting->bupdate_mclk) {
2610 		if (!data->mclk_dpm_key_disabled)
2611 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2612 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2613 			if (mclk_levels[i].ActivityLevel !=
2614 				cpu_to_be16(setting->mclk_activity)) {
2615 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2616 
2617 				clk_activity_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2618 						+ offsetof(SMU73_Discrete_MemoryLevel, ActivityLevel);
2619 				offset = clk_activity_offset & ~0x3;
2620 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2621 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2622 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2623 
2624 			}
2625 			if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
2626 				mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
2627 				mclk_levels[i].UpHyst = setting->mclk_up_hyst;
2628 				mclk_levels[i].DownHyst = setting->mclk_down_hyst;
2629 				up_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2630 						+ offsetof(SMU73_Discrete_MemoryLevel, UpHyst);
2631 				down_hyst_offset = mclk_array + (sizeof(SMU73_Discrete_MemoryLevel) * i)
2632 						+ offsetof(SMU73_Discrete_MemoryLevel, DownHyst);
2633 				offset = up_hyst_offset & ~0x3;
2634 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2635 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
2636 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
2637 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2638 			}
2639 		}
2640 		if (!data->mclk_dpm_key_disabled)
2641 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2642 	}
2643 	return 0;
2644 }
2645 
2646 const struct pp_smumgr_func fiji_smu_funcs = {
2647 	.name = "fiji_smu",
2648 	.smu_init = &fiji_smu_init,
2649 	.smu_fini = &smu7_smu_fini,
2650 	.start_smu = &fiji_start_smu,
2651 	.check_fw_load_finish = &smu7_check_fw_load_finish,
2652 	.request_smu_load_fw = &smu7_reload_firmware,
2653 	.request_smu_load_specific_fw = NULL,
2654 	.send_msg_to_smc = &smu7_send_msg_to_smc,
2655 	.send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2656 	.get_argument = smu7_get_argument,
2657 	.download_pptable_settings = NULL,
2658 	.upload_pptable_settings = NULL,
2659 	.update_smc_table = fiji_update_smc_table,
2660 	.get_offsetof = fiji_get_offsetof,
2661 	.process_firmware_header = fiji_process_firmware_header,
2662 	.init_smc_table = fiji_init_smc_table,
2663 	.update_sclk_threshold = fiji_update_sclk_threshold,
2664 	.thermal_setup_fan_table = fiji_thermal_setup_fan_table,
2665 	.thermal_avfs_enable = fiji_thermal_avfs_enable,
2666 	.populate_all_graphic_levels = fiji_populate_all_graphic_levels,
2667 	.populate_all_memory_levels = fiji_populate_all_memory_levels,
2668 	.get_mac_definition = fiji_get_mac_definition,
2669 	.initialize_mc_reg_table = fiji_initialize_mc_reg_table,
2670 	.is_dpm_running = fiji_is_dpm_running,
2671 	.is_hw_avfs_present = fiji_is_hw_avfs_present,
2672 	.update_dpm_settings = fiji_update_dpm_settings,
2673 };
2674