xref: /openbmc/linux/drivers/gpu/drm/amd/pm/powerplay/smumgr/ci_smumgr.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
29 
30 #include "smumgr.h"
31 #include "pp_debug.h"
32 #include "ci_smumgr.h"
33 #include "ppsmc.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
38 #include "atombios.h"
39 #include "pppcielanes.h"
40 #include "smu7_smumgr.h"
41 
42 #include "smu/smu_7_0_1_d.h"
43 #include "smu/smu_7_0_1_sh_mask.h"
44 
45 #include "dce/dce_8_0_d.h"
46 #include "dce/dce_8_0_sh_mask.h"
47 
48 #include "bif/bif_4_1_d.h"
49 #include "bif/bif_4_1_sh_mask.h"
50 
51 #include "gca/gfx_7_2_d.h"
52 #include "gca/gfx_7_2_sh_mask.h"
53 
54 #include "gmc/gmc_7_1_d.h"
55 #include "gmc/gmc_7_1_sh_mask.h"
56 
57 #include "processpptables.h"
58 
59 #define MC_CG_ARB_FREQ_F0           0x0a
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 #define MC_CG_ARB_FREQ_F2           0x0c
62 #define MC_CG_ARB_FREQ_F3           0x0d
63 
64 #define SMC_RAM_END 0x40000
65 
66 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
67 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
68 
69 static const struct ci_pt_defaults defaults_hawaii_xt = {
70 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
71 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
72 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
73 };
74 
75 static const struct ci_pt_defaults defaults_hawaii_pro = {
76 	1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
77 	{ 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
78 	{ 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
79 };
80 
81 static const struct ci_pt_defaults defaults_bonaire_xt = {
82 	1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
83 	{ 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
84 	{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
85 };
86 
87 
88 static const struct ci_pt_defaults defaults_saturn_xt = {
89 	1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
90 	{ 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
91 	{ 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
92 };
93 
94 
95 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
96 					uint32_t smc_addr, uint32_t limit)
97 {
98 	if ((0 != (3 & smc_addr))
99 		|| ((smc_addr + 3) >= limit)) {
100 		pr_err("smc_addr invalid \n");
101 		return -EINVAL;
102 	}
103 
104 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
105 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
106 	return 0;
107 }
108 
109 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
110 				const uint8_t *src, uint32_t byte_count, uint32_t limit)
111 {
112 	int result;
113 	uint32_t data = 0;
114 	uint32_t original_data;
115 	uint32_t addr = 0;
116 	uint32_t extra_shift;
117 
118 	if ((3 & smc_start_address)
119 		|| ((smc_start_address + byte_count) >= limit)) {
120 		pr_err("smc_start_address invalid \n");
121 		return -EINVAL;
122 	}
123 
124 	addr = smc_start_address;
125 
126 	while (byte_count >= 4) {
127 	/* Bytes are written into the SMC address space with the MSB first. */
128 		data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
129 
130 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
131 
132 		if (0 != result)
133 			return result;
134 
135 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
136 
137 		src += 4;
138 		byte_count -= 4;
139 		addr += 4;
140 	}
141 
142 	if (0 != byte_count) {
143 
144 		data = 0;
145 
146 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
147 
148 		if (0 != result)
149 			return result;
150 
151 
152 		original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
153 
154 		extra_shift = 8 * (4 - byte_count);
155 
156 		while (byte_count > 0) {
157 			/* Bytes are written into the SMC addres space with the MSB first. */
158 			data = (0x100 * data) + *src++;
159 			byte_count--;
160 		}
161 
162 		data <<= extra_shift;
163 
164 		data |= (original_data & ~((~0UL) << extra_shift));
165 
166 		result = ci_set_smc_sram_address(hwmgr, addr, limit);
167 
168 		if (0 != result)
169 			return result;
170 
171 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
172 	}
173 
174 	return 0;
175 }
176 
177 
178 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
179 {
180 	static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
181 
182 	ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
183 
184 	return 0;
185 }
186 
187 static bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
188 {
189 	return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
190 			CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
191 	&& (0x20100 <= cgs_read_ind_register(hwmgr->device,
192 			CGS_IND_REG__SMC, ixSMC_PC_C)));
193 }
194 
195 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
196 				uint32_t *value, uint32_t limit)
197 {
198 	int result;
199 
200 	result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
201 
202 	if (result)
203 		return result;
204 
205 	*value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
206 	return 0;
207 }
208 
209 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
210 {
211 	int ret;
212 
213 	cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
214 	cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
215 
216 	PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
217 
218 	ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
219 
220 	if (ret != 1)
221 		pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
222 
223 	return 0;
224 }
225 
226 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
227 					uint16_t msg, uint32_t parameter)
228 {
229 	cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
230 	return ci_send_msg_to_smc(hwmgr, msg);
231 }
232 
233 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
234 {
235 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
236 	struct amdgpu_device *adev = hwmgr->adev;
237 	uint32_t dev_id;
238 
239 	dev_id = adev->pdev->device;
240 
241 	switch (dev_id) {
242 	case 0x67BA:
243 	case 0x67B1:
244 		smu_data->power_tune_defaults = &defaults_hawaii_pro;
245 		break;
246 	case 0x67B8:
247 	case 0x66B0:
248 		smu_data->power_tune_defaults = &defaults_hawaii_xt;
249 		break;
250 	case 0x6640:
251 	case 0x6641:
252 	case 0x6646:
253 	case 0x6647:
254 		smu_data->power_tune_defaults = &defaults_saturn_xt;
255 		break;
256 	case 0x6649:
257 	case 0x6650:
258 	case 0x6651:
259 	case 0x6658:
260 	case 0x665C:
261 	case 0x665D:
262 	case 0x67A0:
263 	case 0x67A1:
264 	case 0x67A2:
265 	case 0x67A8:
266 	case 0x67A9:
267 	case 0x67AA:
268 	case 0x67B9:
269 	case 0x67BE:
270 	default:
271 		smu_data->power_tune_defaults = &defaults_bonaire_xt;
272 		break;
273 	}
274 }
275 
276 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
277 	struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
278 	uint32_t clock, uint32_t *vol)
279 {
280 	uint32_t i = 0;
281 
282 	if (allowed_clock_voltage_table->count == 0)
283 		return -EINVAL;
284 
285 	for (i = 0; i < allowed_clock_voltage_table->count; i++) {
286 		if (allowed_clock_voltage_table->entries[i].clk >= clock) {
287 			*vol = allowed_clock_voltage_table->entries[i].v;
288 			return 0;
289 		}
290 	}
291 
292 	*vol = allowed_clock_voltage_table->entries[i - 1].v;
293 	return 0;
294 }
295 
296 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
297 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
298 {
299 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
300 	struct pp_atomctrl_clock_dividers_vi dividers;
301 	uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
302 	uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
303 	uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
304 	uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
305 	uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
306 	uint32_t ref_clock;
307 	uint32_t ref_divider;
308 	uint32_t fbdiv;
309 	int result;
310 
311 	/* get the engine clock dividers for this clock value */
312 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
313 
314 	PP_ASSERT_WITH_CODE(result == 0,
315 			"Error retrieving Engine Clock dividers from VBIOS.",
316 			return result);
317 
318 	/* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
319 	ref_clock = atomctrl_get_reference_clock(hwmgr);
320 	ref_divider = 1 + dividers.uc_pll_ref_div;
321 
322 	/* low 14 bits is fraction and high 12 bits is divider */
323 	fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
324 
325 	/* SPLL_FUNC_CNTL setup */
326 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
327 			SPLL_REF_DIV, dividers.uc_pll_ref_div);
328 	spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
329 			SPLL_PDIV_A,  dividers.uc_pll_post_div);
330 
331 	/* SPLL_FUNC_CNTL_3 setup*/
332 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
333 			SPLL_FB_DIV, fbdiv);
334 
335 	/* set to use fractional accumulation*/
336 	spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
337 			SPLL_DITHEN, 1);
338 
339 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
340 				PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
341 		struct pp_atomctrl_internal_ss_info ss_info;
342 		uint32_t vco_freq = clock * dividers.uc_pll_post_div;
343 
344 		if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
345 				vco_freq, &ss_info)) {
346 			uint32_t clk_s = ref_clock * 5 /
347 					(ref_divider * ss_info.speed_spectrum_rate);
348 			uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
349 					fbdiv / (clk_s * 10000);
350 
351 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
352 					CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
353 			cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
354 					CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
355 			cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
356 					CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
357 		}
358 	}
359 
360 	sclk->SclkFrequency        = clock;
361 	sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
362 	sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
363 	sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
364 	sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
365 	sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
366 
367 	return 0;
368 }
369 
370 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
371 				const struct phm_phase_shedding_limits_table *pl,
372 					uint32_t sclk, uint32_t *p_shed)
373 {
374 	unsigned int i;
375 
376 	/* use the minimum phase shedding */
377 	*p_shed = 1;
378 
379 	for (i = 0; i < pl->count; i++) {
380 		if (sclk < pl->entries[i].Sclk) {
381 			*p_shed = i;
382 			break;
383 		}
384 	}
385 }
386 
387 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
388 			uint32_t clock_insr)
389 {
390 	uint8_t i;
391 	uint32_t temp;
392 	uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
393 
394 	if (clock < min) {
395 		pr_info("Engine clock can't satisfy stutter requirement!\n");
396 		return 0;
397 	}
398 	for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
399 		temp = clock >> i;
400 
401 		if (temp >= min || i == 0)
402 			break;
403 	}
404 	return i;
405 }
406 
407 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
408 		uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
409 {
410 	int result;
411 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
412 
413 
414 	result = ci_calculate_sclk_params(hwmgr, clock, level);
415 
416 	/* populate graphics levels */
417 	result = ci_get_dependency_volt_by_clk(hwmgr,
418 			hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
419 			(uint32_t *)(&level->MinVddc));
420 	if (result) {
421 		pr_err("vdd_dep_on_sclk table is NULL\n");
422 		return result;
423 	}
424 
425 	level->SclkFrequency = clock;
426 	level->MinVddcPhases = 1;
427 
428 	if (data->vddc_phase_shed_control)
429 		ci_populate_phase_value_based_on_sclk(hwmgr,
430 				hwmgr->dyn_state.vddc_phase_shed_limits_table,
431 				clock,
432 				&level->MinVddcPhases);
433 
434 	level->ActivityLevel = data->current_profile_setting.sclk_activity;
435 	level->CcPwrDynRm = 0;
436 	level->CcPwrDynRm1 = 0;
437 	level->EnabledForActivity = 0;
438 	/* this level can be used for throttling.*/
439 	level->EnabledForThrottle = 1;
440 	level->UpH = data->current_profile_setting.sclk_up_hyst;
441 	level->DownH = data->current_profile_setting.sclk_down_hyst;
442 	level->VoltageDownH = 0;
443 	level->PowerThrottle = 0;
444 
445 
446 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
447 			PHM_PlatformCaps_SclkDeepSleep))
448 		level->DeepSleepDivId =
449 				ci_get_sleep_divider_id_from_clock(clock,
450 						CISLAND_MINIMUM_ENGINE_CLOCK);
451 
452 	/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
453 	level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
454 
455 	if (0 == result) {
456 		level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
457 		CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
458 		CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
459 		CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
460 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
461 		CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
462 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
463 		CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
464 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
465 		CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
466 	}
467 
468 	return result;
469 }
470 
471 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
472 {
473 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
474 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
475 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
476 	int result = 0;
477 	uint32_t array = smu_data->dpm_table_start +
478 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
479 	uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
480 			SMU7_MAX_LEVELS_GRAPHICS;
481 	struct SMU7_Discrete_GraphicsLevel *levels =
482 			smu_data->smc_state_table.GraphicsLevel;
483 	uint32_t i;
484 
485 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
486 		result = ci_populate_single_graphic_level(hwmgr,
487 				dpm_table->sclk_table.dpm_levels[i].value,
488 				&levels[i]);
489 		if (result)
490 			return result;
491 		if (i > 1)
492 			smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
493 		if (i == (dpm_table->sclk_table.count - 1))
494 			smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
495 				PPSMC_DISPLAY_WATERMARK_HIGH;
496 	}
497 
498 	smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
499 
500 	smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
501 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
502 		phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
503 
504 	result = ci_copy_bytes_to_smc(hwmgr, array,
505 				   (u8 *)levels, array_size,
506 				   SMC_RAM_END);
507 
508 	return result;
509 
510 }
511 
512 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
513 {
514 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
515 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
516 
517 	smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
518 	smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
519 	smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
520 	smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
521 
522 	return 0;
523 }
524 
525 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
526 {
527 	uint16_t tdc_limit;
528 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
529 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
530 
531 	tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
532 	smu_data->power_tune_table.TDC_VDDC_PkgLimit =
533 			CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
534 	smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
535 			defaults->tdc_vddc_throttle_release_limit_perc;
536 	smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
537 
538 	return 0;
539 }
540 
541 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
542 {
543 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
544 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
545 	uint32_t temp;
546 
547 	if (ci_read_smc_sram_dword(hwmgr,
548 			fuse_table_offset +
549 			offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
550 			(uint32_t *)&temp, SMC_RAM_END))
551 		PP_ASSERT_WITH_CODE(false,
552 				"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
553 				return -EINVAL);
554 	else
555 		smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
556 
557 	return 0;
558 }
559 
560 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
561 {
562 	uint16_t tmp;
563 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
564 
565 	if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
566 		|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
567 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
568 	else
569 		tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
570 
571 	smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
572 
573 	return 0;
574 }
575 
576 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
577 {
578 	int i;
579 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
580 	uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
581 	uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
582 	uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
583 
584 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
585 			    "The CAC Leakage table does not exist!", return -EINVAL);
586 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
587 			    "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
588 	PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
589 			    "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
590 
591 	for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
592 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
593 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
594 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
595 			hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
596 		} else {
597 			lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
598 			hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
599 		}
600 	}
601 
602 	return 0;
603 }
604 
605 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
606 {
607 	int i;
608 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
609 	uint8_t *vid = smu_data->power_tune_table.VddCVid;
610 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
611 
612 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
613 		"There should never be more than 8 entries for VddcVid!!!",
614 		return -EINVAL);
615 
616 	for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
617 		vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
618 
619 	return 0;
620 }
621 
622 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
623 {
624 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
625 	u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
626 	u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
627 	int i, min, max;
628 
629 	min = max = hi_vid[0];
630 	for (i = 0; i < 8; i++) {
631 		if (0 != hi_vid[i]) {
632 			if (min > hi_vid[i])
633 				min = hi_vid[i];
634 			if (max < hi_vid[i])
635 				max = hi_vid[i];
636 		}
637 
638 		if (0 != lo_vid[i]) {
639 			if (min > lo_vid[i])
640 				min = lo_vid[i];
641 			if (max < lo_vid[i])
642 				max = lo_vid[i];
643 		}
644 	}
645 
646 	if ((min == 0) || (max == 0))
647 		return -EINVAL;
648 	smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
649 	smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
650 
651 	return 0;
652 }
653 
654 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
655 {
656 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
657 	uint16_t HiSidd;
658 	uint16_t LoSidd;
659 	struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
660 
661 	HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
662 	LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
663 
664 	smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
665 			CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
666 	smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
667 			CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
668 
669 	return 0;
670 }
671 
672 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
673 {
674 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
675 	uint32_t pm_fuse_table_offset;
676 	int ret = 0;
677 
678 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
679 			PHM_PlatformCaps_PowerContainment)) {
680 		if (ci_read_smc_sram_dword(hwmgr,
681 				SMU7_FIRMWARE_HEADER_LOCATION +
682 				offsetof(SMU7_Firmware_Header, PmFuseTable),
683 				&pm_fuse_table_offset, SMC_RAM_END)) {
684 			pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
685 			return -EINVAL;
686 		}
687 
688 		/* DW0 - DW3 */
689 		ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
690 		/* DW4 - DW5 */
691 		ret |= ci_populate_vddc_vid(hwmgr);
692 		/* DW6 */
693 		ret |= ci_populate_svi_load_line(hwmgr);
694 		/* DW7 */
695 		ret |= ci_populate_tdc_limit(hwmgr);
696 		/* DW8 */
697 		ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
698 
699 		ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
700 
701 		ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
702 
703 		ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
704 		if (ret)
705 			return ret;
706 
707 		ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
708 				(uint8_t *)&smu_data->power_tune_table,
709 				sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
710 	}
711 	return ret;
712 }
713 
714 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
715 {
716 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
717 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
718 	const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
719 	SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
720 	struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
721 	struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
722 	const uint16_t *def1, *def2;
723 	int i, j, k;
724 
725 	dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
726 	dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
727 
728 	dpm_table->DTETjOffset = 0;
729 	dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
730 	dpm_table->GpuTjHyst = 8;
731 
732 	dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
733 
734 	if (ppm) {
735 		dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
736 		dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
737 	} else {
738 		dpm_table->PPM_PkgPwrLimit = 0;
739 		dpm_table->PPM_TemperatureLimit = 0;
740 	}
741 
742 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
743 	CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
744 
745 	dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
746 	def1 = defaults->bapmti_r;
747 	def2 = defaults->bapmti_rc;
748 
749 	for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
750 		for (j = 0; j < SMU7_DTE_SOURCES; j++) {
751 			for (k = 0; k < SMU7_DTE_SINKS; k++) {
752 				dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
753 				dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
754 				def1++;
755 				def2++;
756 			}
757 		}
758 	}
759 
760 	return 0;
761 }
762 
763 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
764 		pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
765 		uint16_t *lo)
766 {
767 	uint16_t v_index;
768 	bool vol_found = false;
769 	*hi = tab->value * VOLTAGE_SCALE;
770 	*lo = tab->value * VOLTAGE_SCALE;
771 
772 	PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
773 			"The SCLK/VDDC Dependency Table does not exist.\n",
774 			return -EINVAL);
775 
776 	if (NULL == hwmgr->dyn_state.cac_leakage_table) {
777 		pr_warn("CAC Leakage Table does not exist, using vddc.\n");
778 		return 0;
779 	}
780 
781 	for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
782 		if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
783 			vol_found = true;
784 			if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
785 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
786 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
787 			} else {
788 				pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
789 				*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
790 				*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
791 			}
792 			break;
793 		}
794 	}
795 
796 	if (!vol_found) {
797 		for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
798 			if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
799 				vol_found = true;
800 				if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
801 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
802 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
803 				} else {
804 					pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
805 					*lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
806 					*hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
807 				}
808 				break;
809 			}
810 		}
811 
812 		if (!vol_found)
813 			pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
814 	}
815 
816 	return 0;
817 }
818 
819 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
820 		pp_atomctrl_voltage_table_entry *tab,
821 		SMU7_Discrete_VoltageLevel *smc_voltage_tab)
822 {
823 	int result;
824 
825 	result = ci_get_std_voltage_value_sidd(hwmgr, tab,
826 			&smc_voltage_tab->StdVoltageHiSidd,
827 			&smc_voltage_tab->StdVoltageLoSidd);
828 	if (result) {
829 		smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
830 		smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
831 	}
832 
833 	smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
834 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
835 	CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
836 
837 	return 0;
838 }
839 
840 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
841 			SMU7_Discrete_DpmTable *table)
842 {
843 	unsigned int count;
844 	int result;
845 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
846 
847 	table->VddcLevelCount = data->vddc_voltage_table.count;
848 	for (count = 0; count < table->VddcLevelCount; count++) {
849 		result = ci_populate_smc_voltage_table(hwmgr,
850 				&(data->vddc_voltage_table.entries[count]),
851 				&(table->VddcLevel[count]));
852 		PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
853 
854 		/* GPIO voltage control */
855 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
856 			table->VddcLevel[count].Smio = (uint8_t) count;
857 			table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
858 			table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
859 		} else {
860 			table->VddcLevel[count].Smio = 0;
861 		}
862 	}
863 
864 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
865 
866 	return 0;
867 }
868 
869 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
870 			SMU7_Discrete_DpmTable *table)
871 {
872 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
873 	uint32_t count;
874 	int result;
875 
876 	table->VddciLevelCount = data->vddci_voltage_table.count;
877 
878 	for (count = 0; count < table->VddciLevelCount; count++) {
879 		result = ci_populate_smc_voltage_table(hwmgr,
880 				&(data->vddci_voltage_table.entries[count]),
881 				&(table->VddciLevel[count]));
882 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
883 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
884 			table->VddciLevel[count].Smio = (uint8_t) count;
885 			table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
886 			table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
887 		} else {
888 			table->VddciLevel[count].Smio = 0;
889 		}
890 	}
891 
892 	CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
893 
894 	return 0;
895 }
896 
897 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
898 			SMU7_Discrete_DpmTable *table)
899 {
900 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
901 	uint32_t count;
902 	int result;
903 
904 	table->MvddLevelCount = data->mvdd_voltage_table.count;
905 
906 	for (count = 0; count < table->MvddLevelCount; count++) {
907 		result = ci_populate_smc_voltage_table(hwmgr,
908 				&(data->mvdd_voltage_table.entries[count]),
909 				&table->MvddLevel[count]);
910 		PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
911 		if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
912 			table->MvddLevel[count].Smio = (uint8_t) count;
913 			table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
914 			table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
915 		} else {
916 			table->MvddLevel[count].Smio = 0;
917 		}
918 	}
919 
920 	CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
921 
922 	return 0;
923 }
924 
925 
926 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
927 	SMU7_Discrete_DpmTable *table)
928 {
929 	int result;
930 
931 	result = ci_populate_smc_vddc_table(hwmgr, table);
932 	PP_ASSERT_WITH_CODE(0 == result,
933 			"can not populate VDDC voltage table to SMC", return -EINVAL);
934 
935 	result = ci_populate_smc_vdd_ci_table(hwmgr, table);
936 	PP_ASSERT_WITH_CODE(0 == result,
937 			"can not populate VDDCI voltage table to SMC", return -EINVAL);
938 
939 	result = ci_populate_smc_mvdd_table(hwmgr, table);
940 	PP_ASSERT_WITH_CODE(0 == result,
941 			"can not populate MVDD voltage table to SMC", return -EINVAL);
942 
943 	return 0;
944 }
945 
946 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
947 		struct SMU7_Discrete_Ulv *state)
948 {
949 	uint32_t voltage_response_time, ulv_voltage;
950 	int result;
951 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
952 
953 	state->CcPwrDynRm = 0;
954 	state->CcPwrDynRm1 = 0;
955 
956 	result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
957 	PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
958 
959 	if (ulv_voltage == 0) {
960 		data->ulv_supported = false;
961 		return 0;
962 	}
963 
964 	if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
965 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
966 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
967 			state->VddcOffset = 0;
968 		else
969 			/* used in SMIO Mode. not implemented for now. this is backup only for CI. */
970 			state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
971 	} else {
972 		/* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
973 		if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
974 			state->VddcOffsetVid = 0;
975 		else  /* used in SVI2 Mode */
976 			state->VddcOffsetVid = (uint8_t)(
977 					(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
978 						* VOLTAGE_VID_OFFSET_SCALE2
979 						/ VOLTAGE_VID_OFFSET_SCALE1);
980 	}
981 	state->VddcPhase = 1;
982 
983 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
984 	CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
985 	CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
986 
987 	return 0;
988 }
989 
990 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
991 		 SMU7_Discrete_Ulv *ulv_level)
992 {
993 	return ci_populate_ulv_level(hwmgr, ulv_level);
994 }
995 
996 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
997 {
998 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
999 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1000 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1001 	uint32_t i;
1002 
1003 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1004 	for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1005 		table->LinkLevel[i].PcieGenSpeed  =
1006 			(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1007 		table->LinkLevel[i].PcieLaneCount =
1008 			(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1009 		table->LinkLevel[i].EnabledForActivity = 1;
1010 		table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1011 		table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1012 	}
1013 
1014 	smu_data->smc_state_table.LinkLevelCount =
1015 		(uint8_t)dpm_table->pcie_speed_table.count;
1016 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1017 		phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1018 
1019 	return 0;
1020 }
1021 
1022 static int ci_calculate_mclk_params(
1023 		struct pp_hwmgr *hwmgr,
1024 		uint32_t memory_clock,
1025 		SMU7_Discrete_MemoryLevel *mclk,
1026 		bool strobe_mode,
1027 		bool dllStateOn
1028 		)
1029 {
1030 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1031 	uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1032 	uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1033 	uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1034 	uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1035 	uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1036 	uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1037 	uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1038 	uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1039 	uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1040 
1041 	pp_atomctrl_memory_clock_param mpll_param;
1042 	int result;
1043 
1044 	result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1045 				memory_clock, &mpll_param, strobe_mode);
1046 	PP_ASSERT_WITH_CODE(0 == result,
1047 		"Error retrieving Memory Clock Parameters from VBIOS.", return result);
1048 
1049 	mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1050 
1051 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1052 							MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1053 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1054 							MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1055 	mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1056 							MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1057 
1058 	mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1059 							MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1060 
1061 	if (data->is_memory_gddr5) {
1062 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1063 								MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1064 		mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1065 								MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1066 	}
1067 
1068 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1069 			PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1070 		pp_atomctrl_internal_ss_info ss_info;
1071 		uint32_t freq_nom;
1072 		uint32_t tmp;
1073 		uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1074 
1075 		/* for GDDR5 for all modes and DDR3 */
1076 		if (1 == mpll_param.qdr)
1077 			freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1078 		else
1079 			freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1080 
1081 		/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1082 		tmp = (freq_nom / reference_clock);
1083 		tmp = tmp * tmp;
1084 
1085 		if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1086 			uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1087 			uint32_t clkv =
1088 				(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1089 							ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1090 
1091 			mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1092 			mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1093 		}
1094 	}
1095 
1096 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1097 		MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1098 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1099 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1100 	mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1101 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1102 
1103 
1104 	mclk->MclkFrequency   = memory_clock;
1105 	mclk->MpllFuncCntl    = mpll_func_cntl;
1106 	mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1107 	mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1108 	mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1109 	mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1110 	mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1111 	mclk->DllCntl         = dll_cntl;
1112 	mclk->MpllSs1         = mpll_ss1;
1113 	mclk->MpllSs2         = mpll_ss2;
1114 
1115 	return 0;
1116 }
1117 
1118 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1119 		bool strobe_mode)
1120 {
1121 	uint8_t mc_para_index;
1122 
1123 	if (strobe_mode) {
1124 		if (memory_clock < 12500)
1125 			mc_para_index = 0x00;
1126 		else if (memory_clock > 47500)
1127 			mc_para_index = 0x0f;
1128 		else
1129 			mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1130 	} else {
1131 		if (memory_clock < 65000)
1132 			mc_para_index = 0x00;
1133 		else if (memory_clock > 135000)
1134 			mc_para_index = 0x0f;
1135 		else
1136 			mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1137 	}
1138 
1139 	return mc_para_index;
1140 }
1141 
1142 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1143 {
1144 	uint8_t mc_para_index;
1145 
1146 	if (memory_clock < 10000)
1147 		mc_para_index = 0;
1148 	else if (memory_clock >= 80000)
1149 		mc_para_index = 0x0f;
1150 	else
1151 		mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1152 
1153 	return mc_para_index;
1154 }
1155 
1156 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1157 					uint32_t memory_clock, uint32_t *p_shed)
1158 {
1159 	unsigned int i;
1160 
1161 	*p_shed = 1;
1162 
1163 	for (i = 0; i < pl->count; i++) {
1164 		if (memory_clock < pl->entries[i].Mclk) {
1165 			*p_shed = i;
1166 			break;
1167 		}
1168 	}
1169 
1170 	return 0;
1171 }
1172 
1173 static int ci_populate_single_memory_level(
1174 		struct pp_hwmgr *hwmgr,
1175 		uint32_t memory_clock,
1176 		SMU7_Discrete_MemoryLevel *memory_level
1177 		)
1178 {
1179 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1180 	int result = 0;
1181 	bool dll_state_on;
1182 	uint32_t mclk_edc_wr_enable_threshold = 40000;
1183 	uint32_t mclk_edc_enable_threshold = 40000;
1184 	uint32_t mclk_strobe_mode_threshold = 40000;
1185 
1186 	if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1187 		result = ci_get_dependency_volt_by_clk(hwmgr,
1188 			hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1189 		PP_ASSERT_WITH_CODE((0 == result),
1190 			"can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1191 	}
1192 
1193 	if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1194 		result = ci_get_dependency_volt_by_clk(hwmgr,
1195 				hwmgr->dyn_state.vddci_dependency_on_mclk,
1196 				memory_clock,
1197 				&memory_level->MinVddci);
1198 		PP_ASSERT_WITH_CODE((0 == result),
1199 			"can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1200 	}
1201 
1202 	if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1203 		result = ci_get_dependency_volt_by_clk(hwmgr,
1204 				hwmgr->dyn_state.mvdd_dependency_on_mclk,
1205 				memory_clock,
1206 				&memory_level->MinMvdd);
1207 		PP_ASSERT_WITH_CODE((0 == result),
1208 			"can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1209 	}
1210 
1211 	memory_level->MinVddcPhases = 1;
1212 
1213 	if (data->vddc_phase_shed_control) {
1214 		ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1215 				memory_clock, &memory_level->MinVddcPhases);
1216 	}
1217 
1218 	memory_level->EnabledForThrottle = 1;
1219 	memory_level->EnabledForActivity = 1;
1220 	memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1221 	memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1222 	memory_level->VoltageDownH = 0;
1223 
1224 	/* Indicates maximum activity level for this performance level.*/
1225 	memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1226 	memory_level->StutterEnable = 0;
1227 	memory_level->StrobeEnable = 0;
1228 	memory_level->EdcReadEnable = 0;
1229 	memory_level->EdcWriteEnable = 0;
1230 	memory_level->RttEnable = 0;
1231 
1232 	/* default set to low watermark. Highest level will be set to high later.*/
1233 	memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1234 
1235 	data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1236 	data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1237 
1238 	/* stutter mode not support on ci */
1239 
1240 	/* decide strobe mode*/
1241 	memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1242 		(memory_clock <= mclk_strobe_mode_threshold);
1243 
1244 	/* decide EDC mode and memory clock ratio*/
1245 	if (data->is_memory_gddr5) {
1246 		memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1247 					memory_level->StrobeEnable);
1248 
1249 		if ((mclk_edc_enable_threshold != 0) &&
1250 				(memory_clock > mclk_edc_enable_threshold)) {
1251 			memory_level->EdcReadEnable = 1;
1252 		}
1253 
1254 		if ((mclk_edc_wr_enable_threshold != 0) &&
1255 				(memory_clock > mclk_edc_wr_enable_threshold)) {
1256 			memory_level->EdcWriteEnable = 1;
1257 		}
1258 
1259 		if (memory_level->StrobeEnable) {
1260 			if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1261 					((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1262 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1263 			else
1264 				dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1265 		} else
1266 			dll_state_on = data->dll_default_on;
1267 	} else {
1268 		memory_level->StrobeRatio =
1269 			ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1270 		dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1271 	}
1272 
1273 	result = ci_calculate_mclk_params(hwmgr,
1274 		memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1275 
1276 	if (0 == result) {
1277 		memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1278 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1279 		memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1280 		memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1281 		/* MCLK frequency in units of 10KHz*/
1282 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1283 		/* Indicates maximum activity level for this performance level.*/
1284 		CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1285 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1286 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1287 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1288 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1289 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1290 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1291 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1292 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1293 		CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1294 	}
1295 
1296 	return result;
1297 }
1298 
1299 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1300 {
1301 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1302 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1303 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
1304 	int result;
1305 	struct amdgpu_device *adev = hwmgr->adev;
1306 	uint32_t dev_id;
1307 
1308 	uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1309 	uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1310 	SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1311 	uint32_t i;
1312 
1313 	memset(levels, 0x00, level_array_size);
1314 
1315 	for (i = 0; i < dpm_table->mclk_table.count; i++) {
1316 		PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1317 			"can not populate memory level as memory clock is zero", return -EINVAL);
1318 		result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1319 			&(smu_data->smc_state_table.MemoryLevel[i]));
1320 		if (0 != result)
1321 			return result;
1322 	}
1323 
1324 	smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1325 
1326 	dev_id = adev->pdev->device;
1327 
1328 	if ((dpm_table->mclk_table.count >= 2)
1329 		&& ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1330 		smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1331 				smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1332 		smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1333 				smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1334 	}
1335 	smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1336 	CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1337 
1338 	smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1339 	data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1340 	smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1341 
1342 	result = ci_copy_bytes_to_smc(hwmgr,
1343 		level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1344 		SMC_RAM_END);
1345 
1346 	return result;
1347 }
1348 
1349 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1350 					SMU7_Discrete_VoltageLevel *voltage)
1351 {
1352 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1353 
1354 	uint32_t i = 0;
1355 
1356 	if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1357 		/* find mvdd value which clock is more than request */
1358 		for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1359 			if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1360 				/* Always round to higher voltage. */
1361 				voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1362 				break;
1363 			}
1364 		}
1365 
1366 		PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1367 			"MVDD Voltage is outside the supported range.", return -EINVAL);
1368 
1369 	} else {
1370 		return -EINVAL;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1377 	SMU7_Discrete_DpmTable *table)
1378 {
1379 	int result = 0;
1380 	const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1381 	struct pp_atomctrl_clock_dividers_vi dividers;
1382 
1383 	SMU7_Discrete_VoltageLevel voltage_level;
1384 	uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1385 	uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1386 	uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1387 	uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1388 
1389 
1390 	/* The ACPI state should not do DPM on DC (or ever).*/
1391 	table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1392 
1393 	if (data->acpi_vddc)
1394 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1395 	else
1396 		table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1397 
1398 	table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1399 	/* assign zero for now*/
1400 	table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1401 
1402 	/* get the engine clock dividers for this clock value*/
1403 	result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1404 		table->ACPILevel.SclkFrequency,  &dividers);
1405 
1406 	PP_ASSERT_WITH_CODE(result == 0,
1407 		"Error retrieving Engine Clock dividers from VBIOS.", return result);
1408 
1409 	/* divider ID for required SCLK*/
1410 	table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1411 	table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1412 	table->ACPILevel.DeepSleepDivId = 0;
1413 
1414 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1415 							CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1416 	spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1417 							CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1418 	spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1419 							CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1420 
1421 	table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1422 	table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1423 	table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1424 	table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1425 	table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1426 	table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1427 	table->ACPILevel.CcPwrDynRm = 0;
1428 	table->ACPILevel.CcPwrDynRm1 = 0;
1429 
1430 	/* For various features to be enabled/disabled while this level is active.*/
1431 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1432 	/* SCLK frequency in units of 10KHz*/
1433 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1434 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1435 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1436 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1437 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1438 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1439 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1440 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1441 	CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1442 
1443 
1444 	/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1445 	table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1446 	table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1447 
1448 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1449 		table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1450 	else {
1451 		if (data->acpi_vddci != 0)
1452 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1453 		else
1454 			table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1455 	}
1456 
1457 	if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1458 		table->MemoryACPILevel.MinMvdd =
1459 			PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1460 	else
1461 		table->MemoryACPILevel.MinMvdd = 0;
1462 
1463 	/* Force reset on DLL*/
1464 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1465 		MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1466 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1467 		MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1468 
1469 	/* Disable DLL in ACPIState*/
1470 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1471 		MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1472 	mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1473 		MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1474 
1475 	/* Enable DLL bypass signal*/
1476 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1477 		DLL_CNTL, MRDCK0_BYPASS, 0);
1478 	dll_cntl            = PHM_SET_FIELD(dll_cntl,
1479 		DLL_CNTL, MRDCK1_BYPASS, 0);
1480 
1481 	table->MemoryACPILevel.DllCntl            =
1482 		PP_HOST_TO_SMC_UL(dll_cntl);
1483 	table->MemoryACPILevel.MclkPwrmgtCntl     =
1484 		PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1485 	table->MemoryACPILevel.MpllAdFuncCntl     =
1486 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1487 	table->MemoryACPILevel.MpllDqFuncCntl     =
1488 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1489 	table->MemoryACPILevel.MpllFuncCntl       =
1490 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1491 	table->MemoryACPILevel.MpllFuncCntl_1     =
1492 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1493 	table->MemoryACPILevel.MpllFuncCntl_2     =
1494 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1495 	table->MemoryACPILevel.MpllSs1            =
1496 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1497 	table->MemoryACPILevel.MpllSs2            =
1498 		PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1499 
1500 	table->MemoryACPILevel.EnabledForThrottle = 0;
1501 	table->MemoryACPILevel.EnabledForActivity = 0;
1502 	table->MemoryACPILevel.UpH = 0;
1503 	table->MemoryACPILevel.DownH = 100;
1504 	table->MemoryACPILevel.VoltageDownH = 0;
1505 	/* Indicates maximum activity level for this performance level.*/
1506 	table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1507 
1508 	table->MemoryACPILevel.StutterEnable = 0;
1509 	table->MemoryACPILevel.StrobeEnable = 0;
1510 	table->MemoryACPILevel.EdcReadEnable = 0;
1511 	table->MemoryACPILevel.EdcWriteEnable = 0;
1512 	table->MemoryACPILevel.RttEnable = 0;
1513 
1514 	return result;
1515 }
1516 
1517 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1518 					SMU7_Discrete_DpmTable *table)
1519 {
1520 	int result = 0;
1521 	uint8_t count;
1522 	struct pp_atomctrl_clock_dividers_vi dividers;
1523 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1524 		hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1525 
1526 	table->UvdLevelCount = (uint8_t)(uvd_table->count);
1527 
1528 	for (count = 0; count < table->UvdLevelCount; count++) {
1529 		table->UvdLevel[count].VclkFrequency =
1530 					uvd_table->entries[count].vclk;
1531 		table->UvdLevel[count].DclkFrequency =
1532 					uvd_table->entries[count].dclk;
1533 		table->UvdLevel[count].MinVddc =
1534 					uvd_table->entries[count].v * VOLTAGE_SCALE;
1535 		table->UvdLevel[count].MinVddcPhases = 1;
1536 
1537 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1538 				table->UvdLevel[count].VclkFrequency, &dividers);
1539 		PP_ASSERT_WITH_CODE((0 == result),
1540 				"can not find divide id for Vclk clock", return result);
1541 
1542 		table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1543 
1544 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1545 				table->UvdLevel[count].DclkFrequency, &dividers);
1546 		PP_ASSERT_WITH_CODE((0 == result),
1547 				"can not find divide id for Dclk clock", return result);
1548 
1549 		table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1550 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1551 		CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1552 		CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1553 	}
1554 
1555 	return result;
1556 }
1557 
1558 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1559 		SMU7_Discrete_DpmTable *table)
1560 {
1561 	int result = -EINVAL;
1562 	uint8_t count;
1563 	struct pp_atomctrl_clock_dividers_vi dividers;
1564 	struct phm_vce_clock_voltage_dependency_table *vce_table =
1565 				hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1566 
1567 	table->VceLevelCount = (uint8_t)(vce_table->count);
1568 	table->VceBootLevel = 0;
1569 
1570 	for (count = 0; count < table->VceLevelCount; count++) {
1571 		table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1572 		table->VceLevel[count].MinVoltage =
1573 				vce_table->entries[count].v * VOLTAGE_SCALE;
1574 		table->VceLevel[count].MinPhases = 1;
1575 
1576 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1577 				table->VceLevel[count].Frequency, &dividers);
1578 		PP_ASSERT_WITH_CODE((0 == result),
1579 				"can not find divide id for VCE engine clock",
1580 				return result);
1581 
1582 		table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1583 
1584 		CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1585 		CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1586 	}
1587 	return result;
1588 }
1589 
1590 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1591 					SMU7_Discrete_DpmTable *table)
1592 {
1593 	int result = -EINVAL;
1594 	uint8_t count;
1595 	struct pp_atomctrl_clock_dividers_vi dividers;
1596 	struct phm_acp_clock_voltage_dependency_table *acp_table =
1597 				hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1598 
1599 	table->AcpLevelCount = (uint8_t)(acp_table->count);
1600 	table->AcpBootLevel = 0;
1601 
1602 	for (count = 0; count < table->AcpLevelCount; count++) {
1603 		table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1604 		table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1605 		table->AcpLevel[count].MinPhases = 1;
1606 
1607 		result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1608 				table->AcpLevel[count].Frequency, &dividers);
1609 		PP_ASSERT_WITH_CODE((0 == result),
1610 				"can not find divide id for engine clock", return result);
1611 
1612 		table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1613 
1614 		CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1615 		CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1616 	}
1617 	return result;
1618 }
1619 
1620 static int ci_populate_memory_timing_parameters(
1621 		struct pp_hwmgr *hwmgr,
1622 		uint32_t engine_clock,
1623 		uint32_t memory_clock,
1624 		struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1625 		)
1626 {
1627 	uint32_t dramTiming;
1628 	uint32_t dramTiming2;
1629 	uint32_t burstTime;
1630 	int result;
1631 
1632 	result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1633 				engine_clock, memory_clock);
1634 
1635 	PP_ASSERT_WITH_CODE(result == 0,
1636 		"Error calling VBIOS to set DRAM_TIMING.", return result);
1637 
1638 	dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1639 	dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1640 	burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1641 
1642 	arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1643 	arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1644 	arb_regs->McArbBurstTime = (uint8_t)burstTime;
1645 
1646 	return 0;
1647 }
1648 
1649 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1650 {
1651 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1652 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1653 	int result = 0;
1654 	SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1655 	uint32_t i, j;
1656 
1657 	memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1658 
1659 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1660 		for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1661 			result = ci_populate_memory_timing_parameters
1662 				(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1663 				 data->dpm_table.mclk_table.dpm_levels[j].value,
1664 				 &arb_regs.entries[i][j]);
1665 
1666 			if (0 != result)
1667 				break;
1668 		}
1669 	}
1670 
1671 	if (0 == result) {
1672 		result = ci_copy_bytes_to_smc(
1673 				hwmgr,
1674 				smu_data->arb_table_start,
1675 				(uint8_t *)&arb_regs,
1676 				sizeof(SMU7_Discrete_MCArbDramTimingTable),
1677 				SMC_RAM_END
1678 				);
1679 	}
1680 
1681 	return result;
1682 }
1683 
1684 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1685 			SMU7_Discrete_DpmTable *table)
1686 {
1687 	int result = 0;
1688 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1689 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1690 
1691 	table->GraphicsBootLevel = 0;
1692 	table->MemoryBootLevel = 0;
1693 
1694 	/* find boot level from dpm table*/
1695 	result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1696 			data->vbios_boot_state.sclk_bootup_value,
1697 			(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1698 
1699 	if (0 != result) {
1700 		smu_data->smc_state_table.GraphicsBootLevel = 0;
1701 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1702 		result = 0;
1703 	}
1704 
1705 	result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1706 		data->vbios_boot_state.mclk_bootup_value,
1707 		(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1708 
1709 	if (0 != result) {
1710 		smu_data->smc_state_table.MemoryBootLevel = 0;
1711 		pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1712 		result = 0;
1713 	}
1714 
1715 	table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1716 	table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1717 	table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1718 
1719 	return result;
1720 }
1721 
1722 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1723 				 SMU7_Discrete_MCRegisters *mc_reg_table)
1724 {
1725 	const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1726 
1727 	uint32_t i, j;
1728 
1729 	for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1730 		if (smu_data->mc_reg_table.validflag & 1<<j) {
1731 			PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1732 				"Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1733 			mc_reg_table->address[i].s0 =
1734 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1735 			mc_reg_table->address[i].s1 =
1736 				PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1737 			i++;
1738 		}
1739 	}
1740 
1741 	mc_reg_table->last = (uint8_t)i;
1742 
1743 	return 0;
1744 }
1745 
1746 static void ci_convert_mc_registers(
1747 	const struct ci_mc_reg_entry *entry,
1748 	SMU7_Discrete_MCRegisterSet *data,
1749 	uint32_t num_entries, uint32_t valid_flag)
1750 {
1751 	uint32_t i, j;
1752 
1753 	for (i = 0, j = 0; j < num_entries; j++) {
1754 		if (valid_flag & 1<<j) {
1755 			data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1756 			i++;
1757 		}
1758 	}
1759 }
1760 
1761 static int ci_convert_mc_reg_table_entry_to_smc(
1762 		struct pp_hwmgr *hwmgr,
1763 		const uint32_t memory_clock,
1764 		SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1765 		)
1766 {
1767 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1768 	uint32_t i = 0;
1769 
1770 	for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1771 		if (memory_clock <=
1772 			smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1773 			break;
1774 		}
1775 	}
1776 
1777 	if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1778 		--i;
1779 
1780 	ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1781 				mc_reg_table_data, smu_data->mc_reg_table.last,
1782 				smu_data->mc_reg_table.validflag);
1783 
1784 	return 0;
1785 }
1786 
1787 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1788 		SMU7_Discrete_MCRegisters *mc_regs)
1789 {
1790 	int result = 0;
1791 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1792 	int res;
1793 	uint32_t i;
1794 
1795 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1796 		res = ci_convert_mc_reg_table_entry_to_smc(
1797 				hwmgr,
1798 				data->dpm_table.mclk_table.dpm_levels[i].value,
1799 				&mc_regs->data[i]
1800 				);
1801 
1802 		if (0 != res)
1803 			result = res;
1804 	}
1805 
1806 	return result;
1807 }
1808 
1809 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1810 {
1811 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1812 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1813 	uint32_t address;
1814 	int32_t result;
1815 
1816 	if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1817 		return 0;
1818 
1819 
1820 	memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1821 
1822 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1823 
1824 	if (result != 0)
1825 		return result;
1826 
1827 	address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1828 
1829 	return  ci_copy_bytes_to_smc(hwmgr, address,
1830 				 (uint8_t *)&smu_data->mc_regs.data[0],
1831 				sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1832 				SMC_RAM_END);
1833 }
1834 
1835 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1836 {
1837 	int result;
1838 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1839 
1840 	memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1841 	result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1842 	PP_ASSERT_WITH_CODE(0 == result,
1843 		"Failed to initialize MCRegTable for the MC register addresses!", return result;);
1844 
1845 	result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1846 	PP_ASSERT_WITH_CODE(0 == result,
1847 		"Failed to initialize MCRegTable for driver state!", return result;);
1848 
1849 	return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1850 			(uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1851 }
1852 
1853 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1854 {
1855 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1856 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1857 	uint8_t count, level;
1858 
1859 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1860 
1861 	for (level = 0; level < count; level++) {
1862 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1863 			 >= data->vbios_boot_state.sclk_bootup_value) {
1864 			smu_data->smc_state_table.GraphicsBootLevel = level;
1865 			break;
1866 		}
1867 	}
1868 
1869 	count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1870 
1871 	for (level = 0; level < count; level++) {
1872 		if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1873 			>= data->vbios_boot_state.mclk_bootup_value) {
1874 			smu_data->smc_state_table.MemoryBootLevel = level;
1875 			break;
1876 		}
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1883 					    SMU7_Discrete_DpmTable *table)
1884 {
1885 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1886 
1887 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1888 		table->SVI2Enable = 1;
1889 	else
1890 		table->SVI2Enable = 0;
1891 	return 0;
1892 }
1893 
1894 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1895 {
1896 	/* set smc instruct start point at 0x0 */
1897 	ci_program_jump_on_start(hwmgr);
1898 
1899 	/* enable smc clock */
1900 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1901 
1902 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1903 
1904 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1905 				 INTERRUPTS_ENABLED, 1);
1906 
1907 	return 0;
1908 }
1909 
1910 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1911 {
1912 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1913 	uint16_t config;
1914 
1915 	config = VR_SVI2_PLANE_1;
1916 	table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1917 
1918 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1919 		config = VR_SVI2_PLANE_2;
1920 		table->VRConfig |= config;
1921 	} else {
1922 		pr_info("VDDCshould be on SVI2 controller!");
1923 	}
1924 
1925 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1926 		config = VR_SVI2_PLANE_2;
1927 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1928 	} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1929 		config = VR_SMIO_PATTERN_1;
1930 		table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1931 	}
1932 
1933 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1934 		config = VR_SMIO_PATTERN_2;
1935 		table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1942 {
1943 	int result;
1944 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1945 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1946 	SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1947 	struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1948 	u32 i;
1949 
1950 	ci_initialize_power_tune_defaults(hwmgr);
1951 	memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1952 
1953 	if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1954 		ci_populate_smc_voltage_tables(hwmgr, table);
1955 
1956 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1957 			PHM_PlatformCaps_AutomaticDCTransition))
1958 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1959 
1960 
1961 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1962 			PHM_PlatformCaps_StepVddc))
1963 		table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1964 
1965 	if (data->is_memory_gddr5)
1966 		table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1967 
1968 	if (data->ulv_supported) {
1969 		result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1970 		PP_ASSERT_WITH_CODE(0 == result,
1971 			"Failed to initialize ULV state!", return result);
1972 
1973 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1974 			ixCG_ULV_PARAMETER, 0x40035);
1975 	}
1976 
1977 	result = ci_populate_all_graphic_levels(hwmgr);
1978 	PP_ASSERT_WITH_CODE(0 == result,
1979 		"Failed to initialize Graphics Level!", return result);
1980 
1981 	result = ci_populate_all_memory_levels(hwmgr);
1982 	PP_ASSERT_WITH_CODE(0 == result,
1983 		"Failed to initialize Memory Level!", return result);
1984 
1985 	result = ci_populate_smc_link_level(hwmgr, table);
1986 	PP_ASSERT_WITH_CODE(0 == result,
1987 		"Failed to initialize Link Level!", return result);
1988 
1989 	result = ci_populate_smc_acpi_level(hwmgr, table);
1990 	PP_ASSERT_WITH_CODE(0 == result,
1991 		"Failed to initialize ACPI Level!", return result);
1992 
1993 	result = ci_populate_smc_vce_level(hwmgr, table);
1994 	PP_ASSERT_WITH_CODE(0 == result,
1995 		"Failed to initialize VCE Level!", return result);
1996 
1997 	result = ci_populate_smc_acp_level(hwmgr, table);
1998 	PP_ASSERT_WITH_CODE(0 == result,
1999 		"Failed to initialize ACP Level!", return result);
2000 
2001 	/* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2002 	/* need to populate the  ARB settings for the initial state. */
2003 	result = ci_program_memory_timing_parameters(hwmgr);
2004 	PP_ASSERT_WITH_CODE(0 == result,
2005 		"Failed to Write ARB settings for the initial state.", return result);
2006 
2007 	result = ci_populate_smc_uvd_level(hwmgr, table);
2008 	PP_ASSERT_WITH_CODE(0 == result,
2009 		"Failed to initialize UVD Level!", return result);
2010 
2011 	table->UvdBootLevel  = 0;
2012 	table->VceBootLevel  = 0;
2013 	table->AcpBootLevel  = 0;
2014 	table->SamuBootLevel  = 0;
2015 
2016 	table->GraphicsBootLevel = 0;
2017 	table->MemoryBootLevel = 0;
2018 
2019 	result = ci_populate_smc_boot_level(hwmgr, table);
2020 	PP_ASSERT_WITH_CODE(0 == result,
2021 		"Failed to initialize Boot Level!", return result);
2022 
2023 	result = ci_populate_smc_initial_state(hwmgr);
2024 	PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2025 
2026 	result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2027 	PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2028 
2029 	table->UVDInterval = 1;
2030 	table->VCEInterval = 1;
2031 	table->ACPInterval = 1;
2032 	table->SAMUInterval = 1;
2033 	table->GraphicsVoltageChangeEnable  = 1;
2034 	table->GraphicsThermThrottleEnable  = 1;
2035 	table->GraphicsInterval = 1;
2036 	table->VoltageInterval  = 1;
2037 	table->ThermalInterval  = 1;
2038 
2039 	table->TemperatureLimitHigh =
2040 		(data->thermal_temp_setting.temperature_high *
2041 		 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2042 	table->TemperatureLimitLow =
2043 		(data->thermal_temp_setting.temperature_low *
2044 		SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2045 
2046 	table->MemoryVoltageChangeEnable  = 1;
2047 	table->MemoryInterval  = 1;
2048 	table->VoltageResponseTime  = 0;
2049 	table->VddcVddciDelta = 4000;
2050 	table->PhaseResponseTime  = 0;
2051 	table->MemoryThermThrottleEnable  = 1;
2052 
2053 	PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2054 			"There must be 1 or more PCIE levels defined in PPTable.",
2055 			return -EINVAL);
2056 
2057 	table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2058 	table->PCIeGenInterval = 1;
2059 
2060 	result = ci_populate_vr_config(hwmgr, table);
2061 	PP_ASSERT_WITH_CODE(0 == result,
2062 			"Failed to populate VRConfig setting!", return result);
2063 	data->vr_config = table->VRConfig;
2064 
2065 	ci_populate_smc_svi2_config(hwmgr, table);
2066 
2067 	for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2068 		CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2069 
2070 	table->ThermGpio  = 17;
2071 	table->SclkStepSize = 0x4000;
2072 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2073 		table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2074 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2075 				PHM_PlatformCaps_RegulatorHot);
2076 	} else {
2077 		table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2078 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2079 				PHM_PlatformCaps_RegulatorHot);
2080 	}
2081 
2082 	table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2083 
2084 	CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2085 	CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2086 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2087 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2088 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2089 	CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2090 	CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2091 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2092 	CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2093 	table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2094 	CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2095 	CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2096 
2097 	table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2098 	table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2099 	table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2100 
2101 	/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2102 	result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2103 					offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2104 					(uint8_t *)&(table->SystemFlags),
2105 					sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2106 					SMC_RAM_END);
2107 
2108 	PP_ASSERT_WITH_CODE(0 == result,
2109 		"Failed to upload dpm data to SMC memory!", return result;);
2110 
2111 	result = ci_populate_initial_mc_reg_table(hwmgr);
2112 	PP_ASSERT_WITH_CODE((0 == result),
2113 		"Failed to populate initialize MC Reg table!", return result);
2114 
2115 	result = ci_populate_pm_fuses(hwmgr);
2116 	PP_ASSERT_WITH_CODE(0 == result,
2117 			"Failed to  populate PM fuses to SMC memory!", return result);
2118 
2119 	ci_start_smc(hwmgr);
2120 
2121 	return 0;
2122 }
2123 
2124 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2125 {
2126 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2127 	SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2128 	uint32_t duty100;
2129 	uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2130 	uint16_t fdo_min, slope1, slope2;
2131 	uint32_t reference_clock;
2132 	int res;
2133 	uint64_t tmp64;
2134 
2135 	if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2136 		return 0;
2137 
2138 	if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2139 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2140 			PHM_PlatformCaps_MicrocodeFanControl);
2141 		return 0;
2142 	}
2143 
2144 	if (0 == ci_data->fan_table_start) {
2145 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2146 		return 0;
2147 	}
2148 
2149 	duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2150 
2151 	if (0 == duty100) {
2152 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2153 		return 0;
2154 	}
2155 
2156 	tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2157 	do_div(tmp64, 10000);
2158 	fdo_min = (uint16_t)tmp64;
2159 
2160 	t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2161 	t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2162 
2163 	pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2164 	pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2165 
2166 	slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2167 	slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2168 
2169 	fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2170 	fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2171 	fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2172 
2173 	fan_table.Slope1 = cpu_to_be16(slope1);
2174 	fan_table.Slope2 = cpu_to_be16(slope2);
2175 
2176 	fan_table.FdoMin = cpu_to_be16(fdo_min);
2177 
2178 	fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2179 
2180 	fan_table.HystUp = cpu_to_be16(1);
2181 
2182 	fan_table.HystSlope = cpu_to_be16(1);
2183 
2184 	fan_table.TempRespLim = cpu_to_be16(5);
2185 
2186 	reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2187 
2188 	fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2189 
2190 	fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2191 
2192 	fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2193 
2194 	res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2195 
2196 	return res;
2197 }
2198 
2199 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2200 {
2201 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2202 
2203 	if (data->need_update_smu7_dpm_table &
2204 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2205 		return ci_program_memory_timing_parameters(hwmgr);
2206 
2207 	return 0;
2208 }
2209 
2210 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2211 {
2212 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2213 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2214 
2215 	int result = 0;
2216 	uint32_t low_sclk_interrupt_threshold = 0;
2217 
2218 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2219 			PHM_PlatformCaps_SclkThrottleLowNotification)
2220 		&& (data->low_sclk_interrupt_threshold != 0)) {
2221 		low_sclk_interrupt_threshold =
2222 				data->low_sclk_interrupt_threshold;
2223 
2224 		CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2225 
2226 		result = ci_copy_bytes_to_smc(
2227 				hwmgr,
2228 				smu_data->dpm_table_start +
2229 				offsetof(SMU7_Discrete_DpmTable,
2230 					LowSclkInterruptT),
2231 				(uint8_t *)&low_sclk_interrupt_threshold,
2232 				sizeof(uint32_t),
2233 				SMC_RAM_END);
2234 	}
2235 
2236 	result = ci_update_and_upload_mc_reg_table(hwmgr);
2237 
2238 	PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2239 
2240 	result = ci_program_mem_timing_parameters(hwmgr);
2241 	PP_ASSERT_WITH_CODE((result == 0),
2242 			"Failed to program memory timing parameters!",
2243 			);
2244 
2245 	return result;
2246 }
2247 
2248 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2249 {
2250 	switch (type) {
2251 	case SMU_SoftRegisters:
2252 		switch (member) {
2253 		case HandshakeDisables:
2254 			return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2255 		case VoltageChangeTimeout:
2256 			return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2257 		case AverageGraphicsActivity:
2258 			return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2259 		case AverageMemoryActivity:
2260 			return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2261 		case PreVBlankGap:
2262 			return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2263 		case VBlankTimeout:
2264 			return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2265 		case DRAM_LOG_ADDR_H:
2266 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2267 		case DRAM_LOG_ADDR_L:
2268 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2269 		case DRAM_LOG_PHY_ADDR_H:
2270 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2271 		case DRAM_LOG_PHY_ADDR_L:
2272 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2273 		case DRAM_LOG_BUFF_SIZE:
2274 			return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2275 		}
2276 		break;
2277 	case SMU_Discrete_DpmTable:
2278 		switch (member) {
2279 		case LowSclkInterruptThreshold:
2280 			return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2281 		}
2282 		break;
2283 	}
2284 	pr_debug("can't get the offset of type %x member %x\n", type, member);
2285 	return 0;
2286 }
2287 
2288 static uint32_t ci_get_mac_definition(uint32_t value)
2289 {
2290 	switch (value) {
2291 	case SMU_MAX_LEVELS_GRAPHICS:
2292 		return SMU7_MAX_LEVELS_GRAPHICS;
2293 	case SMU_MAX_LEVELS_MEMORY:
2294 		return SMU7_MAX_LEVELS_MEMORY;
2295 	case SMU_MAX_LEVELS_LINK:
2296 		return SMU7_MAX_LEVELS_LINK;
2297 	case SMU_MAX_ENTRIES_SMIO:
2298 		return SMU7_MAX_ENTRIES_SMIO;
2299 	case SMU_MAX_LEVELS_VDDC:
2300 		return SMU7_MAX_LEVELS_VDDC;
2301 	case SMU_MAX_LEVELS_VDDCI:
2302 		return SMU7_MAX_LEVELS_VDDCI;
2303 	case SMU_MAX_LEVELS_MVDD:
2304 		return SMU7_MAX_LEVELS_MVDD;
2305 	}
2306 
2307 	pr_debug("can't get the mac of %x\n", value);
2308 	return 0;
2309 }
2310 
2311 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2312 {
2313 	uint32_t byte_count, start_addr;
2314 	uint8_t *src;
2315 	uint32_t data;
2316 
2317 	struct cgs_firmware_info info = {0};
2318 
2319 	cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2320 
2321 	hwmgr->is_kicker = info.is_kicker;
2322 	hwmgr->smu_version = info.version;
2323 	byte_count = info.image_size;
2324 	src = (uint8_t *)info.kptr;
2325 	start_addr = info.ucode_start_address;
2326 
2327 	if  (byte_count > SMC_RAM_END) {
2328 		pr_err("SMC address is beyond the SMC RAM area.\n");
2329 		return -EINVAL;
2330 	}
2331 
2332 	cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2333 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2334 
2335 	for (; byte_count >= 4; byte_count -= 4) {
2336 		data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2337 		cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2338 		src += 4;
2339 	}
2340 	PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2341 
2342 	if (0 != byte_count) {
2343 		pr_err("SMC size must be divisible by 4\n");
2344 		return -EINVAL;
2345 	}
2346 
2347 	return 0;
2348 }
2349 
2350 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2351 {
2352 	if (ci_is_smc_ram_running(hwmgr)) {
2353 		pr_info("smc is running, no need to load smc firmware\n");
2354 		return 0;
2355 	}
2356 	PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2357 			boot_seq_done, 1);
2358 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2359 			pre_fetcher_en, 1);
2360 
2361 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2362 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2363 	return ci_load_smc_ucode(hwmgr);
2364 }
2365 
2366 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2367 {
2368 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2369 	struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2370 
2371 	uint32_t tmp = 0;
2372 	int result;
2373 	bool error = false;
2374 
2375 	if (ci_upload_firmware(hwmgr))
2376 		return -EINVAL;
2377 
2378 	result = ci_read_smc_sram_dword(hwmgr,
2379 				SMU7_FIRMWARE_HEADER_LOCATION +
2380 				offsetof(SMU7_Firmware_Header, DpmTable),
2381 				&tmp, SMC_RAM_END);
2382 
2383 	if (0 == result)
2384 		ci_data->dpm_table_start = tmp;
2385 
2386 	error |= (0 != result);
2387 
2388 	result = ci_read_smc_sram_dword(hwmgr,
2389 				SMU7_FIRMWARE_HEADER_LOCATION +
2390 				offsetof(SMU7_Firmware_Header, SoftRegisters),
2391 				&tmp, SMC_RAM_END);
2392 
2393 	if (0 == result) {
2394 		data->soft_regs_start = tmp;
2395 		ci_data->soft_regs_start = tmp;
2396 	}
2397 
2398 	error |= (0 != result);
2399 
2400 	result = ci_read_smc_sram_dword(hwmgr,
2401 				SMU7_FIRMWARE_HEADER_LOCATION +
2402 				offsetof(SMU7_Firmware_Header, mcRegisterTable),
2403 				&tmp, SMC_RAM_END);
2404 
2405 	if (0 == result)
2406 		ci_data->mc_reg_table_start = tmp;
2407 
2408 	result = ci_read_smc_sram_dword(hwmgr,
2409 				SMU7_FIRMWARE_HEADER_LOCATION +
2410 				offsetof(SMU7_Firmware_Header, FanTable),
2411 				&tmp, SMC_RAM_END);
2412 
2413 	if (0 == result)
2414 		ci_data->fan_table_start = tmp;
2415 
2416 	error |= (0 != result);
2417 
2418 	result = ci_read_smc_sram_dword(hwmgr,
2419 				SMU7_FIRMWARE_HEADER_LOCATION +
2420 				offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2421 				&tmp, SMC_RAM_END);
2422 
2423 	if (0 == result)
2424 		ci_data->arb_table_start = tmp;
2425 
2426 	error |= (0 != result);
2427 
2428 	result = ci_read_smc_sram_dword(hwmgr,
2429 				SMU7_FIRMWARE_HEADER_LOCATION +
2430 				offsetof(SMU7_Firmware_Header, Version),
2431 				&tmp, SMC_RAM_END);
2432 
2433 	if (0 == result)
2434 		hwmgr->microcode_version_info.SMC = tmp;
2435 
2436 	error |= (0 != result);
2437 
2438 	return error ? 1 : 0;
2439 }
2440 
2441 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2442 {
2443 	return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2444 }
2445 
2446 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2447 {
2448 	bool result = true;
2449 
2450 	switch (in_reg) {
2451 	case  mmMC_SEQ_RAS_TIMING:
2452 		*out_reg = mmMC_SEQ_RAS_TIMING_LP;
2453 		break;
2454 
2455 	case  mmMC_SEQ_DLL_STBY:
2456 		*out_reg = mmMC_SEQ_DLL_STBY_LP;
2457 		break;
2458 
2459 	case  mmMC_SEQ_G5PDX_CMD0:
2460 		*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2461 		break;
2462 
2463 	case  mmMC_SEQ_G5PDX_CMD1:
2464 		*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2465 		break;
2466 
2467 	case  mmMC_SEQ_G5PDX_CTRL:
2468 		*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2469 		break;
2470 
2471 	case mmMC_SEQ_CAS_TIMING:
2472 		*out_reg = mmMC_SEQ_CAS_TIMING_LP;
2473 		break;
2474 
2475 	case mmMC_SEQ_MISC_TIMING:
2476 		*out_reg = mmMC_SEQ_MISC_TIMING_LP;
2477 		break;
2478 
2479 	case mmMC_SEQ_MISC_TIMING2:
2480 		*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2481 		break;
2482 
2483 	case mmMC_SEQ_PMG_DVS_CMD:
2484 		*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2485 		break;
2486 
2487 	case mmMC_SEQ_PMG_DVS_CTL:
2488 		*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2489 		break;
2490 
2491 	case mmMC_SEQ_RD_CTL_D0:
2492 		*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2493 		break;
2494 
2495 	case mmMC_SEQ_RD_CTL_D1:
2496 		*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2497 		break;
2498 
2499 	case mmMC_SEQ_WR_CTL_D0:
2500 		*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2501 		break;
2502 
2503 	case mmMC_SEQ_WR_CTL_D1:
2504 		*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2505 		break;
2506 
2507 	case mmMC_PMG_CMD_EMRS:
2508 		*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2509 		break;
2510 
2511 	case mmMC_PMG_CMD_MRS:
2512 		*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2513 		break;
2514 
2515 	case mmMC_PMG_CMD_MRS1:
2516 		*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2517 		break;
2518 
2519 	case mmMC_SEQ_PMG_TIMING:
2520 		*out_reg = mmMC_SEQ_PMG_TIMING_LP;
2521 		break;
2522 
2523 	case mmMC_PMG_CMD_MRS2:
2524 		*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2525 		break;
2526 
2527 	case mmMC_SEQ_WR_CTL_2:
2528 		*out_reg = mmMC_SEQ_WR_CTL_2_LP;
2529 		break;
2530 
2531 	default:
2532 		result = false;
2533 		break;
2534 	}
2535 
2536 	return result;
2537 }
2538 
2539 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2540 {
2541 	uint32_t i;
2542 	uint16_t address;
2543 
2544 	for (i = 0; i < table->last; i++) {
2545 		table->mc_reg_address[i].s0 =
2546 			ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2547 			? address : table->mc_reg_address[i].s1;
2548 	}
2549 	return 0;
2550 }
2551 
2552 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2553 					struct ci_mc_reg_table *ni_table)
2554 {
2555 	uint8_t i, j;
2556 
2557 	PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2558 		"Invalid VramInfo table.", return -EINVAL);
2559 	PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2560 		"Invalid VramInfo table.", return -EINVAL);
2561 
2562 	for (i = 0; i < table->last; i++)
2563 		ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2564 
2565 	ni_table->last = table->last;
2566 
2567 	for (i = 0; i < table->num_entries; i++) {
2568 		ni_table->mc_reg_table_entry[i].mclk_max =
2569 			table->mc_reg_table_entry[i].mclk_max;
2570 		for (j = 0; j < table->last; j++) {
2571 			ni_table->mc_reg_table_entry[i].mc_data[j] =
2572 				table->mc_reg_table_entry[i].mc_data[j];
2573 		}
2574 	}
2575 
2576 	ni_table->num_entries = table->num_entries;
2577 
2578 	return 0;
2579 }
2580 
2581 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2582 					struct ci_mc_reg_table *table)
2583 {
2584 	uint8_t i, j, k;
2585 	uint32_t temp_reg;
2586 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2587 
2588 	for (i = 0, j = table->last; i < table->last; i++) {
2589 		PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2590 			"Invalid VramInfo table.", return -EINVAL);
2591 
2592 		switch (table->mc_reg_address[i].s1) {
2593 
2594 		case mmMC_SEQ_MISC1:
2595 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2596 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2597 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2598 			for (k = 0; k < table->num_entries; k++) {
2599 				table->mc_reg_table_entry[k].mc_data[j] =
2600 					((temp_reg & 0xffff0000)) |
2601 					((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2602 			}
2603 			j++;
2604 
2605 			PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2606 				"Invalid VramInfo table.", return -EINVAL);
2607 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2608 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2609 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2610 			for (k = 0; k < table->num_entries; k++) {
2611 				table->mc_reg_table_entry[k].mc_data[j] =
2612 					(temp_reg & 0xffff0000) |
2613 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2614 
2615 				if (!data->is_memory_gddr5)
2616 					table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2617 			}
2618 			j++;
2619 
2620 			if (!data->is_memory_gddr5) {
2621 				PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2622 					"Invalid VramInfo table.", return -EINVAL);
2623 				table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2624 				table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2625 				for (k = 0; k < table->num_entries; k++) {
2626 					table->mc_reg_table_entry[k].mc_data[j] =
2627 						(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2628 				}
2629 				j++;
2630 			}
2631 
2632 			break;
2633 
2634 		case mmMC_SEQ_RESERVE_M:
2635 			temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2636 			table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2637 			table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2638 			for (k = 0; k < table->num_entries; k++) {
2639 				table->mc_reg_table_entry[k].mc_data[j] =
2640 					(temp_reg & 0xffff0000) |
2641 					(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2642 			}
2643 			j++;
2644 			break;
2645 
2646 		default:
2647 			break;
2648 		}
2649 
2650 	}
2651 
2652 	table->last = j;
2653 
2654 	return 0;
2655 }
2656 
2657 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2658 {
2659 	uint8_t i, j;
2660 
2661 	for (i = 0; i < table->last; i++) {
2662 		for (j = 1; j < table->num_entries; j++) {
2663 			if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2664 				table->mc_reg_table_entry[j].mc_data[i]) {
2665 				table->validflag |= (1 << i);
2666 				break;
2667 			}
2668 		}
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2675 {
2676 	int result;
2677 	struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2678 	pp_atomctrl_mc_reg_table *table;
2679 	struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2680 	uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2681 
2682 	table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2683 
2684 	if (NULL == table)
2685 		return -ENOMEM;
2686 
2687 	/* Program additional LP registers that are no longer programmed by VBIOS */
2688 	cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2689 	cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2690 	cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2691 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2692 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2693 	cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2694 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2695 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2696 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2697 	cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2698 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2699 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2700 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2701 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2702 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2703 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2704 	cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2705 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2706 	cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2707 	cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2708 
2709 	result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2710 
2711 	if (0 == result)
2712 		result = ci_copy_vbios_smc_reg_table(table, ni_table);
2713 
2714 	if (0 == result) {
2715 		ci_set_s0_mc_reg_index(ni_table);
2716 		result = ci_set_mc_special_registers(hwmgr, ni_table);
2717 	}
2718 
2719 	if (0 == result)
2720 		ci_set_valid_flag(ni_table);
2721 
2722 	kfree(table);
2723 
2724 	return result;
2725 }
2726 
2727 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2728 {
2729 	return ci_is_smc_ram_running(hwmgr);
2730 }
2731 
2732 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2733 {
2734 	struct ci_smumgr *ci_priv = NULL;
2735 
2736 	ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2737 
2738 	if (ci_priv == NULL)
2739 		return -ENOMEM;
2740 
2741 	hwmgr->smu_backend = ci_priv;
2742 
2743 	return 0;
2744 }
2745 
2746 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2747 {
2748 	kfree(hwmgr->smu_backend);
2749 	hwmgr->smu_backend = NULL;
2750 	return 0;
2751 }
2752 
2753 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2754 {
2755 	return 0;
2756 }
2757 
2758 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2759 				void *profile_setting)
2760 {
2761 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2762 	struct ci_smumgr *smu_data = (struct ci_smumgr *)
2763 			(hwmgr->smu_backend);
2764 	struct profile_mode_setting *setting;
2765 	struct SMU7_Discrete_GraphicsLevel *levels =
2766 			smu_data->smc_state_table.GraphicsLevel;
2767 	uint32_t array = smu_data->dpm_table_start +
2768 			offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2769 
2770 	uint32_t mclk_array = smu_data->dpm_table_start +
2771 			offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2772 	struct SMU7_Discrete_MemoryLevel *mclk_levels =
2773 			smu_data->smc_state_table.MemoryLevel;
2774 	uint32_t i;
2775 	uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2776 
2777 	if (profile_setting == NULL)
2778 		return -EINVAL;
2779 
2780 	setting = (struct profile_mode_setting *)profile_setting;
2781 
2782 	if (setting->bupdate_sclk) {
2783 		if (!data->sclk_dpm_key_disabled)
2784 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
2785 		for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2786 			if (levels[i].ActivityLevel !=
2787 				cpu_to_be16(setting->sclk_activity)) {
2788 				levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2789 
2790 				clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2791 						+ offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2792 				offset = clk_activity_offset & ~0x3;
2793 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2794 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2795 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2796 
2797 			}
2798 			if (levels[i].UpH != setting->sclk_up_hyst ||
2799 				levels[i].DownH != setting->sclk_down_hyst) {
2800 				levels[i].UpH = setting->sclk_up_hyst;
2801 				levels[i].DownH = setting->sclk_down_hyst;
2802 				up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2803 						+ offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2804 				down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2805 						+ offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2806 				offset = up_hyst_offset & ~0x3;
2807 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2808 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2809 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2810 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2811 			}
2812 		}
2813 		if (!data->sclk_dpm_key_disabled)
2814 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
2815 	}
2816 
2817 	if (setting->bupdate_mclk) {
2818 		if (!data->mclk_dpm_key_disabled)
2819 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
2820 		for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2821 			if (mclk_levels[i].ActivityLevel !=
2822 				cpu_to_be16(setting->mclk_activity)) {
2823 				mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2824 
2825 				clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2826 						+ offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2827 				offset = clk_activity_offset & ~0x3;
2828 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2829 				tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2830 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2831 
2832 			}
2833 			if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2834 				mclk_levels[i].DownH != setting->mclk_down_hyst) {
2835 				mclk_levels[i].UpH = setting->mclk_up_hyst;
2836 				mclk_levels[i].DownH = setting->mclk_down_hyst;
2837 				up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2838 						+ offsetof(SMU7_Discrete_MemoryLevel, UpH);
2839 				down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2840 						+ offsetof(SMU7_Discrete_MemoryLevel, DownH);
2841 				offset = up_hyst_offset & ~0x3;
2842 				tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2843 				tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2844 				tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2845 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2846 			}
2847 		}
2848 		if (!data->mclk_dpm_key_disabled)
2849 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
2850 	}
2851 	return 0;
2852 }
2853 
2854 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2855 {
2856 	struct amdgpu_device *adev = hwmgr->adev;
2857 	struct smu7_hwmgr *data = hwmgr->backend;
2858 	struct ci_smumgr *smu_data = hwmgr->smu_backend;
2859 	struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2860 			hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2861 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2862 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2863 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2864 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2865 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2866 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2867 	int32_t i;
2868 
2869 	if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2870 		smu_data->smc_state_table.UvdBootLevel = 0;
2871 	else
2872 		smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2873 
2874 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2875 				UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2876 
2877 	data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2878 
2879 	for (i = uvd_table->count - 1; i >= 0; i--) {
2880 		if (uvd_table->entries[i].v <= max_vddc)
2881 			data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2882 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2883 			break;
2884 	}
2885 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2886 				data->dpm_level_enable_mask.uvd_dpm_enable_mask,
2887 				NULL);
2888 
2889 	return 0;
2890 }
2891 
2892 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2893 {
2894 	struct amdgpu_device *adev = hwmgr->adev;
2895 	struct smu7_hwmgr *data = hwmgr->backend;
2896 	struct phm_vce_clock_voltage_dependency_table *vce_table =
2897 			hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2898 	uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2899 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2900 					AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2901 					AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2902 	uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2903 						hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2904 	int32_t i;
2905 
2906 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2907 				VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2908 
2909 	data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2910 
2911 	for (i = vce_table->count - 1; i >= 0; i--) {
2912 		if (vce_table->entries[i].v <= max_vddc)
2913 			data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2914 		if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2915 			break;
2916 	}
2917 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2918 				data->dpm_level_enable_mask.vce_dpm_enable_mask,
2919 				NULL);
2920 
2921 	return 0;
2922 }
2923 
2924 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2925 {
2926 	switch (type) {
2927 	case SMU_UVD_TABLE:
2928 		ci_update_uvd_smc_table(hwmgr);
2929 		break;
2930 	case SMU_VCE_TABLE:
2931 		ci_update_vce_smc_table(hwmgr);
2932 		break;
2933 	default:
2934 		break;
2935 	}
2936 	return 0;
2937 }
2938 
2939 static void ci_reset_smc(struct pp_hwmgr *hwmgr)
2940 {
2941 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2942 				  SMC_SYSCON_RESET_CNTL,
2943 				  rst_reg, 1);
2944 }
2945 
2946 
2947 static void ci_stop_smc_clock(struct pp_hwmgr *hwmgr)
2948 {
2949 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2950 				  SMC_SYSCON_CLOCK_CNTL_0,
2951 				  ck_disable, 1);
2952 }
2953 
2954 static int ci_stop_smc(struct pp_hwmgr *hwmgr)
2955 {
2956 	ci_reset_smc(hwmgr);
2957 	ci_stop_smc_clock(hwmgr);
2958 
2959 	return 0;
2960 }
2961 
2962 const struct pp_smumgr_func ci_smu_funcs = {
2963 	.name = "ci_smu",
2964 	.smu_init = ci_smu_init,
2965 	.smu_fini = ci_smu_fini,
2966 	.start_smu = ci_start_smu,
2967 	.check_fw_load_finish = NULL,
2968 	.request_smu_load_fw = NULL,
2969 	.request_smu_load_specific_fw = NULL,
2970 	.send_msg_to_smc = ci_send_msg_to_smc,
2971 	.send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2972 	.get_argument = smu7_get_argument,
2973 	.download_pptable_settings = NULL,
2974 	.upload_pptable_settings = NULL,
2975 	.get_offsetof = ci_get_offsetof,
2976 	.process_firmware_header = ci_process_firmware_header,
2977 	.init_smc_table = ci_init_smc_table,
2978 	.update_sclk_threshold = ci_update_sclk_threshold,
2979 	.thermal_setup_fan_table = ci_thermal_setup_fan_table,
2980 	.populate_all_graphic_levels = ci_populate_all_graphic_levels,
2981 	.populate_all_memory_levels = ci_populate_all_memory_levels,
2982 	.get_mac_definition = ci_get_mac_definition,
2983 	.initialize_mc_reg_table = ci_initialize_mc_reg_table,
2984 	.is_dpm_running = ci_is_dpm_running,
2985 	.update_dpm_settings = ci_update_dpm_settings,
2986 	.update_smc_table = ci_update_smc_table,
2987 	.stop_smc = ci_stop_smc,
2988 };
2989