1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/fb.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 30 #include "hwmgr.h" 31 #include "amd_powerplay.h" 32 #include "hardwaremanager.h" 33 #include "ppatomfwctrl.h" 34 #include "atomfirmware.h" 35 #include "cgs_common.h" 36 #include "vega10_powertune.h" 37 #include "smu9.h" 38 #include "smu9_driver_if.h" 39 #include "vega10_inc.h" 40 #include "soc15_common.h" 41 #include "pppcielanes.h" 42 #include "vega10_hwmgr.h" 43 #include "vega10_smumgr.h" 44 #include "vega10_processpptables.h" 45 #include "vega10_pptable.h" 46 #include "vega10_thermal.h" 47 #include "pp_debug.h" 48 #include "amd_pcie_helpers.h" 49 #include "ppinterrupt.h" 50 #include "pp_overdriver.h" 51 #include "pp_thermal.h" 52 #include "vega10_baco.h" 53 54 #include "smuio/smuio_9_0_offset.h" 55 #include "smuio/smuio_9_0_sh_mask.h" 56 57 #define smnPCIE_LC_SPEED_CNTL 0x11140290 58 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 59 60 #define HBM_MEMORY_CHANNEL_WIDTH 128 61 62 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; 63 64 #define mmDF_CS_AON0_DramBaseAddress0 0x0044 65 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 66 67 //DF_CS_AON0_DramBaseAddress0 68 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 69 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 70 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 71 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 72 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc 73 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L 74 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L 75 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L 76 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L 77 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L 78 79 typedef enum { 80 CLK_SMNCLK = 0, 81 CLK_SOCCLK, 82 CLK_MP0CLK, 83 CLK_MP1CLK, 84 CLK_LCLK, 85 CLK_DCEFCLK, 86 CLK_VCLK, 87 CLK_DCLK, 88 CLK_ECLK, 89 CLK_UCLK, 90 CLK_GFXCLK, 91 CLK_COUNT, 92 } CLOCK_ID_e; 93 94 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); 95 96 static struct vega10_power_state *cast_phw_vega10_power_state( 97 struct pp_hw_power_state *hw_ps) 98 { 99 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 100 "Invalid Powerstate Type!", 101 return NULL;); 102 103 return (struct vega10_power_state *)hw_ps; 104 } 105 106 static const struct vega10_power_state *cast_const_phw_vega10_power_state( 107 const struct pp_hw_power_state *hw_ps) 108 { 109 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 110 "Invalid Powerstate Type!", 111 return NULL;); 112 113 return (const struct vega10_power_state *)hw_ps; 114 } 115 116 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) 117 { 118 struct vega10_hwmgr *data = hwmgr->backend; 119 120 data->registry_data.sclk_dpm_key_disabled = 121 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 122 data->registry_data.socclk_dpm_key_disabled = 123 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; 124 data->registry_data.mclk_dpm_key_disabled = 125 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 126 data->registry_data.pcie_dpm_key_disabled = 127 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; 128 129 data->registry_data.dcefclk_dpm_key_disabled = 130 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; 131 132 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { 133 data->registry_data.power_containment_support = 1; 134 data->registry_data.enable_pkg_pwr_tracking_feature = 1; 135 data->registry_data.enable_tdc_limit_feature = 1; 136 } 137 138 data->registry_data.clock_stretcher_support = 139 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; 140 141 data->registry_data.ulv_support = 142 hwmgr->feature_mask & PP_ULV_MASK ? true : false; 143 144 data->registry_data.sclk_deep_sleep_support = 145 hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; 146 147 data->registry_data.disable_water_mark = 0; 148 149 data->registry_data.fan_control_support = 1; 150 data->registry_data.thermal_support = 1; 151 data->registry_data.fw_ctf_enabled = 1; 152 153 data->registry_data.avfs_support = 154 hwmgr->feature_mask & PP_AVFS_MASK ? true : false; 155 data->registry_data.led_dpm_enabled = 1; 156 157 data->registry_data.vr0hot_enabled = 1; 158 data->registry_data.vr1hot_enabled = 1; 159 data->registry_data.regulator_hot_gpio_support = 1; 160 161 data->registry_data.didt_support = 1; 162 if (data->registry_data.didt_support) { 163 data->registry_data.didt_mode = 6; 164 data->registry_data.sq_ramping_support = 1; 165 data->registry_data.db_ramping_support = 0; 166 data->registry_data.td_ramping_support = 0; 167 data->registry_data.tcp_ramping_support = 0; 168 data->registry_data.dbr_ramping_support = 0; 169 data->registry_data.edc_didt_support = 1; 170 data->registry_data.gc_didt_support = 0; 171 data->registry_data.psm_didt_support = 0; 172 } 173 174 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; 175 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 176 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 177 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 178 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 179 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 180 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 181 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 182 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 183 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 184 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 185 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 186 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 187 188 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; 189 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; 190 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; 191 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; 192 } 193 194 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) 195 { 196 struct vega10_hwmgr *data = hwmgr->backend; 197 struct phm_ppt_v2_information *table_info = 198 (struct phm_ppt_v2_information *)hwmgr->pptable; 199 struct amdgpu_device *adev = hwmgr->adev; 200 201 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 202 PHM_PlatformCaps_SclkDeepSleep); 203 204 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 205 PHM_PlatformCaps_DynamicPatchPowerState); 206 207 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) 208 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 209 PHM_PlatformCaps_ControlVDDCI); 210 211 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 212 PHM_PlatformCaps_EnableSMU7ThermalManagement); 213 214 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 215 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 216 PHM_PlatformCaps_UVDPowerGating); 217 218 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 219 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 220 PHM_PlatformCaps_VCEPowerGating); 221 222 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 223 PHM_PlatformCaps_UnTabledHardwareInterface); 224 225 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 226 PHM_PlatformCaps_FanSpeedInTableIsRPM); 227 228 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 229 PHM_PlatformCaps_ODFuzzyFanControlSupport); 230 231 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 232 PHM_PlatformCaps_DynamicPowerManagement); 233 234 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 235 PHM_PlatformCaps_SMC); 236 237 /* power tune caps */ 238 /* assume disabled */ 239 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 240 PHM_PlatformCaps_PowerContainment); 241 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 242 PHM_PlatformCaps_DiDtSupport); 243 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 244 PHM_PlatformCaps_SQRamping); 245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 246 PHM_PlatformCaps_DBRamping); 247 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 248 PHM_PlatformCaps_TDRamping); 249 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 250 PHM_PlatformCaps_TCPRamping); 251 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 252 PHM_PlatformCaps_DBRRamping); 253 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 254 PHM_PlatformCaps_DiDtEDCEnable); 255 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 256 PHM_PlatformCaps_GCEDC); 257 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 258 PHM_PlatformCaps_PSM); 259 260 if (data->registry_data.didt_support) { 261 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); 262 if (data->registry_data.sq_ramping_support) 263 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); 264 if (data->registry_data.db_ramping_support) 265 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); 266 if (data->registry_data.td_ramping_support) 267 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); 268 if (data->registry_data.tcp_ramping_support) 269 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); 270 if (data->registry_data.dbr_ramping_support) 271 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); 272 if (data->registry_data.edc_didt_support) 273 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); 274 if (data->registry_data.gc_didt_support) 275 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); 276 if (data->registry_data.psm_didt_support) 277 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); 278 } 279 280 if (data->registry_data.power_containment_support) 281 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 282 PHM_PlatformCaps_PowerContainment); 283 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 284 PHM_PlatformCaps_CAC); 285 286 if (table_info->tdp_table->usClockStretchAmount && 287 data->registry_data.clock_stretcher_support) 288 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 289 PHM_PlatformCaps_ClockStretcher); 290 291 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 292 PHM_PlatformCaps_RegulatorHot); 293 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 294 PHM_PlatformCaps_AutomaticDCTransition); 295 296 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 297 PHM_PlatformCaps_UVDDPM); 298 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 299 PHM_PlatformCaps_VCEDPM); 300 301 return 0; 302 } 303 304 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 305 { 306 struct vega10_hwmgr *data = hwmgr->backend; 307 struct phm_ppt_v2_information *table_info = 308 (struct phm_ppt_v2_information *)(hwmgr->pptable); 309 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 310 struct vega10_odn_vddc_lookup_table *od_lookup_table; 311 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 312 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; 313 struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; 314 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 315 uint32_t i; 316 int result; 317 318 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 319 if (!result) { 320 data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; 321 data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; 322 } 323 324 od_lookup_table = &odn_table->vddc_lookup_table; 325 vddc_lookup_table = table_info->vddc_lookup_table; 326 327 for (i = 0; i < vddc_lookup_table->count; i++) 328 od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; 329 330 od_lookup_table->count = vddc_lookup_table->count; 331 332 dep_table[0] = table_info->vdd_dep_on_sclk; 333 dep_table[1] = table_info->vdd_dep_on_mclk; 334 dep_table[2] = table_info->vdd_dep_on_socclk; 335 od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; 336 od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; 337 od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; 338 339 for (i = 0; i < 3; i++) 340 smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); 341 342 if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) 343 odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; 344 if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) 345 odn_table->min_vddc = dep_table[0]->entries[0].vddc; 346 347 i = od_table[2]->count - 1; 348 od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? 349 hwmgr->platform_descriptor.overdriveLimit.memoryClock : 350 od_table[2]->entries[i].clk; 351 od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? 352 odn_table->max_vddc : 353 od_table[2]->entries[i].vddc; 354 355 return 0; 356 } 357 358 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) 359 { 360 struct vega10_hwmgr *data = hwmgr->backend; 361 int i; 362 uint32_t sub_vendor_id, hw_revision; 363 uint32_t top32, bottom32; 364 struct amdgpu_device *adev = hwmgr->adev; 365 366 vega10_initialize_power_tune_defaults(hwmgr); 367 368 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 369 data->smu_features[i].smu_feature_id = 0xffff; 370 data->smu_features[i].smu_feature_bitmap = 1 << i; 371 data->smu_features[i].enabled = false; 372 data->smu_features[i].supported = false; 373 } 374 375 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = 376 FEATURE_DPM_PREFETCHER_BIT; 377 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = 378 FEATURE_DPM_GFXCLK_BIT; 379 data->smu_features[GNLD_DPM_UCLK].smu_feature_id = 380 FEATURE_DPM_UCLK_BIT; 381 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = 382 FEATURE_DPM_SOCCLK_BIT; 383 data->smu_features[GNLD_DPM_UVD].smu_feature_id = 384 FEATURE_DPM_UVD_BIT; 385 data->smu_features[GNLD_DPM_VCE].smu_feature_id = 386 FEATURE_DPM_VCE_BIT; 387 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = 388 FEATURE_DPM_MP0CLK_BIT; 389 data->smu_features[GNLD_DPM_LINK].smu_feature_id = 390 FEATURE_DPM_LINK_BIT; 391 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = 392 FEATURE_DPM_DCEFCLK_BIT; 393 data->smu_features[GNLD_ULV].smu_feature_id = 394 FEATURE_ULV_BIT; 395 data->smu_features[GNLD_AVFS].smu_feature_id = 396 FEATURE_AVFS_BIT; 397 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = 398 FEATURE_DS_GFXCLK_BIT; 399 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = 400 FEATURE_DS_SOCCLK_BIT; 401 data->smu_features[GNLD_DS_LCLK].smu_feature_id = 402 FEATURE_DS_LCLK_BIT; 403 data->smu_features[GNLD_PPT].smu_feature_id = 404 FEATURE_PPT_BIT; 405 data->smu_features[GNLD_TDC].smu_feature_id = 406 FEATURE_TDC_BIT; 407 data->smu_features[GNLD_THERMAL].smu_feature_id = 408 FEATURE_THERMAL_BIT; 409 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = 410 FEATURE_GFX_PER_CU_CG_BIT; 411 data->smu_features[GNLD_RM].smu_feature_id = 412 FEATURE_RM_BIT; 413 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = 414 FEATURE_DS_DCEFCLK_BIT; 415 data->smu_features[GNLD_ACDC].smu_feature_id = 416 FEATURE_ACDC_BIT; 417 data->smu_features[GNLD_VR0HOT].smu_feature_id = 418 FEATURE_VR0HOT_BIT; 419 data->smu_features[GNLD_VR1HOT].smu_feature_id = 420 FEATURE_VR1HOT_BIT; 421 data->smu_features[GNLD_FW_CTF].smu_feature_id = 422 FEATURE_FW_CTF_BIT; 423 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = 424 FEATURE_LED_DISPLAY_BIT; 425 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = 426 FEATURE_FAN_CONTROL_BIT; 427 data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; 428 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; 429 data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT; 430 431 if (!data->registry_data.prefetcher_dpm_key_disabled) 432 data->smu_features[GNLD_DPM_PREFETCHER].supported = true; 433 434 if (!data->registry_data.sclk_dpm_key_disabled) 435 data->smu_features[GNLD_DPM_GFXCLK].supported = true; 436 437 if (!data->registry_data.mclk_dpm_key_disabled) 438 data->smu_features[GNLD_DPM_UCLK].supported = true; 439 440 if (!data->registry_data.socclk_dpm_key_disabled) 441 data->smu_features[GNLD_DPM_SOCCLK].supported = true; 442 443 if (PP_CAP(PHM_PlatformCaps_UVDDPM)) 444 data->smu_features[GNLD_DPM_UVD].supported = true; 445 446 if (PP_CAP(PHM_PlatformCaps_VCEDPM)) 447 data->smu_features[GNLD_DPM_VCE].supported = true; 448 449 data->smu_features[GNLD_DPM_LINK].supported = true; 450 451 if (!data->registry_data.dcefclk_dpm_key_disabled) 452 data->smu_features[GNLD_DPM_DCEFCLK].supported = true; 453 454 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && 455 data->registry_data.sclk_deep_sleep_support) { 456 data->smu_features[GNLD_DS_GFXCLK].supported = true; 457 data->smu_features[GNLD_DS_SOCCLK].supported = true; 458 data->smu_features[GNLD_DS_LCLK].supported = true; 459 data->smu_features[GNLD_DS_DCEFCLK].supported = true; 460 } 461 462 if (data->registry_data.enable_pkg_pwr_tracking_feature) 463 data->smu_features[GNLD_PPT].supported = true; 464 465 if (data->registry_data.enable_tdc_limit_feature) 466 data->smu_features[GNLD_TDC].supported = true; 467 468 if (data->registry_data.thermal_support) 469 data->smu_features[GNLD_THERMAL].supported = true; 470 471 if (data->registry_data.fan_control_support) 472 data->smu_features[GNLD_FAN_CONTROL].supported = true; 473 474 if (data->registry_data.fw_ctf_enabled) 475 data->smu_features[GNLD_FW_CTF].supported = true; 476 477 if (data->registry_data.avfs_support) 478 data->smu_features[GNLD_AVFS].supported = true; 479 480 if (data->registry_data.led_dpm_enabled) 481 data->smu_features[GNLD_LED_DISPLAY].supported = true; 482 483 if (data->registry_data.vr1hot_enabled) 484 data->smu_features[GNLD_VR1HOT].supported = true; 485 486 if (data->registry_data.vr0hot_enabled) 487 data->smu_features[GNLD_VR0HOT].supported = true; 488 489 smum_send_msg_to_smc(hwmgr, 490 PPSMC_MSG_GetSmuVersion, 491 &hwmgr->smu_version); 492 /* ACG firmware has major version 5 */ 493 if ((hwmgr->smu_version & 0xff000000) == 0x5000000) 494 data->smu_features[GNLD_ACG].supported = true; 495 if (data->registry_data.didt_support) 496 data->smu_features[GNLD_DIDT].supported = true; 497 498 hw_revision = adev->pdev->revision; 499 sub_vendor_id = adev->pdev->subsystem_vendor; 500 501 if ((hwmgr->chip_id == 0x6862 || 502 hwmgr->chip_id == 0x6861 || 503 hwmgr->chip_id == 0x6868) && 504 (hw_revision == 0) && 505 (sub_vendor_id != 0x1002)) 506 data->smu_features[GNLD_PCC_LIMIT].supported = true; 507 508 /* Get the SN to turn into a Unique ID */ 509 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); 510 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); 511 512 adev->unique_id = ((uint64_t)bottom32 << 32) | top32; 513 } 514 515 #ifdef PPLIB_VEGA10_EVV_SUPPORT 516 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, 517 phm_ppt_v1_voltage_lookup_table *lookup_table, 518 uint16_t virtual_voltage_id, int32_t *socclk) 519 { 520 uint8_t entry_id; 521 uint8_t voltage_id; 522 struct phm_ppt_v2_information *table_info = 523 (struct phm_ppt_v2_information *)(hwmgr->pptable); 524 525 PP_ASSERT_WITH_CODE(lookup_table->count != 0, 526 "Lookup table is empty", 527 return -EINVAL); 528 529 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ 530 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { 531 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; 532 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) 533 break; 534 } 535 536 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, 537 "Can't find requested voltage id in vdd_dep_on_socclk table!", 538 return -EINVAL); 539 540 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; 541 542 return 0; 543 } 544 545 #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 546 /** 547 * vega10_get_evv_voltages - Get Leakage VDDC based on leakage ID. 548 * 549 * @hwmgr: the address of the powerplay hardware manager. 550 * return: always 0. 551 */ 552 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) 553 { 554 struct vega10_hwmgr *data = hwmgr->backend; 555 uint16_t vv_id; 556 uint32_t vddc = 0; 557 uint16_t i, j; 558 uint32_t sclk = 0; 559 struct phm_ppt_v2_information *table_info = 560 (struct phm_ppt_v2_information *)hwmgr->pptable; 561 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = 562 table_info->vdd_dep_on_socclk; 563 int result; 564 565 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { 566 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 567 568 if (!vega10_get_socclk_for_voltage_evv(hwmgr, 569 table_info->vddc_lookup_table, vv_id, &sclk)) { 570 if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { 571 for (j = 1; j < socclk_table->count; j++) { 572 if (socclk_table->entries[j].clk == sclk && 573 socclk_table->entries[j].cks_enable == 0) { 574 sclk += 5000; 575 break; 576 } 577 } 578 } 579 580 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, 581 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), 582 "Error retrieving EVV voltage value!", 583 continue); 584 585 586 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ 587 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), 588 "Invalid VDDC value", result = -EINVAL;); 589 590 /* the voltage should not be zero nor equal to leakage ID */ 591 if (vddc != 0 && vddc != vv_id) { 592 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); 593 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 594 data->vddc_leakage.count++; 595 } 596 } 597 } 598 599 return 0; 600 } 601 602 /** 603 * vega10_patch_with_vdd_leakage - Change virtual leakage voltage to actual value. 604 * 605 * @hwmgr: the address of the powerplay hardware manager. 606 * @voltage: pointer to changing voltage 607 * @leakage_table: pointer to leakage table 608 */ 609 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, 610 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) 611 { 612 uint32_t index; 613 614 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 615 for (index = 0; index < leakage_table->count; index++) { 616 /* if this voltage matches a leakage voltage ID */ 617 /* patch with actual leakage voltage */ 618 if (leakage_table->leakage_id[index] == *voltage) { 619 *voltage = leakage_table->actual_voltage[index]; 620 break; 621 } 622 } 623 624 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 625 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 626 } 627 628 /** 629 * vega10_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages. 630 * 631 * @hwmgr: the address of the powerplay hardware manager. 632 * @lookup_table: pointer to voltage lookup table 633 * @leakage_table: pointer to leakage table 634 * return: always 0 635 */ 636 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 637 phm_ppt_v1_voltage_lookup_table *lookup_table, 638 struct vega10_leakage_voltage *leakage_table) 639 { 640 uint32_t i; 641 642 for (i = 0; i < lookup_table->count; i++) 643 vega10_patch_with_vdd_leakage(hwmgr, 644 &lookup_table->entries[i].us_vdd, leakage_table); 645 646 return 0; 647 } 648 649 static int vega10_patch_clock_voltage_limits_with_vddc_leakage( 650 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, 651 uint16_t *vddc) 652 { 653 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 654 655 return 0; 656 } 657 #endif 658 659 static int vega10_patch_voltage_dependency_tables_with_lookup_table( 660 struct pp_hwmgr *hwmgr) 661 { 662 uint8_t entry_id, voltage_id; 663 unsigned i; 664 struct phm_ppt_v2_information *table_info = 665 (struct phm_ppt_v2_information *)(hwmgr->pptable); 666 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 667 table_info->mm_dep_table; 668 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 669 table_info->vdd_dep_on_mclk; 670 671 for (i = 0; i < 6; i++) { 672 struct phm_ppt_v1_clock_voltage_dependency_table *vdt; 673 switch (i) { 674 case 0: vdt = table_info->vdd_dep_on_socclk; break; 675 case 1: vdt = table_info->vdd_dep_on_sclk; break; 676 case 2: vdt = table_info->vdd_dep_on_dcefclk; break; 677 case 3: vdt = table_info->vdd_dep_on_pixclk; break; 678 case 4: vdt = table_info->vdd_dep_on_dispclk; break; 679 case 5: vdt = table_info->vdd_dep_on_phyclk; break; 680 } 681 682 for (entry_id = 0; entry_id < vdt->count; entry_id++) { 683 voltage_id = vdt->entries[entry_id].vddInd; 684 vdt->entries[entry_id].vddc = 685 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 686 } 687 } 688 689 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 690 voltage_id = mm_table->entries[entry_id].vddcInd; 691 mm_table->entries[entry_id].vddc = 692 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 693 } 694 695 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 696 voltage_id = mclk_table->entries[entry_id].vddInd; 697 mclk_table->entries[entry_id].vddc = 698 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 699 voltage_id = mclk_table->entries[entry_id].vddciInd; 700 mclk_table->entries[entry_id].vddci = 701 table_info->vddci_lookup_table->entries[voltage_id].us_vdd; 702 voltage_id = mclk_table->entries[entry_id].mvddInd; 703 mclk_table->entries[entry_id].mvdd = 704 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; 705 } 706 707 708 return 0; 709 710 } 711 712 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, 713 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 714 { 715 uint32_t table_size, i, j; 716 717 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, 718 "Lookup table is empty", return -EINVAL); 719 720 table_size = lookup_table->count; 721 722 /* Sorting voltages */ 723 for (i = 0; i < table_size - 1; i++) { 724 for (j = i + 1; j > 0; j--) { 725 if (lookup_table->entries[j].us_vdd < 726 lookup_table->entries[j - 1].us_vdd) { 727 swap(lookup_table->entries[j - 1], 728 lookup_table->entries[j]); 729 } 730 } 731 } 732 733 return 0; 734 } 735 736 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) 737 { 738 int result = 0; 739 int tmp_result; 740 struct phm_ppt_v2_information *table_info = 741 (struct phm_ppt_v2_information *)(hwmgr->pptable); 742 #ifdef PPLIB_VEGA10_EVV_SUPPORT 743 struct vega10_hwmgr *data = hwmgr->backend; 744 745 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, 746 table_info->vddc_lookup_table, &(data->vddc_leakage)); 747 if (tmp_result) 748 result = tmp_result; 749 750 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 751 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 752 if (tmp_result) 753 result = tmp_result; 754 #endif 755 756 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 757 if (tmp_result) 758 result = tmp_result; 759 760 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 761 if (tmp_result) 762 result = tmp_result; 763 764 return result; 765 } 766 767 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) 768 { 769 struct phm_ppt_v2_information *table_info = 770 (struct phm_ppt_v2_information *)(hwmgr->pptable); 771 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 772 table_info->vdd_dep_on_socclk; 773 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 774 table_info->vdd_dep_on_mclk; 775 776 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, 777 "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL); 778 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 779 "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL); 780 781 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, 782 "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL); 783 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 784 "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL); 785 786 table_info->max_clock_voltage_on_ac.sclk = 787 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 788 table_info->max_clock_voltage_on_ac.mclk = 789 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 790 table_info->max_clock_voltage_on_ac.vddc = 791 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 792 table_info->max_clock_voltage_on_ac.vddci = 793 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 794 795 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 796 table_info->max_clock_voltage_on_ac.sclk; 797 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 798 table_info->max_clock_voltage_on_ac.mclk; 799 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 800 table_info->max_clock_voltage_on_ac.vddc; 801 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = 802 table_info->max_clock_voltage_on_ac.vddci; 803 804 return 0; 805 } 806 807 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 808 { 809 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 810 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 811 812 kfree(hwmgr->backend); 813 hwmgr->backend = NULL; 814 815 return 0; 816 } 817 818 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 819 { 820 int result = 0; 821 struct vega10_hwmgr *data; 822 uint32_t config_telemetry = 0; 823 struct pp_atomfwctrl_voltage_table vol_table; 824 struct amdgpu_device *adev = hwmgr->adev; 825 826 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); 827 if (data == NULL) 828 return -ENOMEM; 829 830 hwmgr->backend = data; 831 832 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; 833 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 834 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 835 836 vega10_set_default_registry_data(hwmgr); 837 data->disable_dpm_mask = 0xff; 838 839 /* need to set voltage control types before EVV patching */ 840 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; 841 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; 842 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; 843 844 /* VDDCR_SOC */ 845 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 846 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { 847 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 848 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, 849 &vol_table)) { 850 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | 851 (vol_table.telemetry_offset & 0xff); 852 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 853 } 854 } else { 855 kfree(hwmgr->backend); 856 hwmgr->backend = NULL; 857 PP_ASSERT_WITH_CODE(false, 858 "VDDCR_SOC is not SVID2!", 859 return -1); 860 } 861 862 /* MVDDC */ 863 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 864 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { 865 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 866 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, 867 &vol_table)) { 868 config_telemetry |= 869 ((vol_table.telemetry_slope << 24) & 0xff000000) | 870 ((vol_table.telemetry_offset << 16) & 0xff0000); 871 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 872 } 873 } 874 875 /* VDDCI_MEM */ 876 if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { 877 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 878 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 879 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; 880 } 881 882 data->config_telemetry = config_telemetry; 883 884 vega10_set_features_platform_caps(hwmgr); 885 886 vega10_init_dpm_defaults(hwmgr); 887 888 #ifdef PPLIB_VEGA10_EVV_SUPPORT 889 /* Get leakage voltage based on leakage ID. */ 890 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), 891 "Get EVV Voltage Failed. Abort Driver loading!", 892 return -1); 893 #endif 894 895 /* Patch our voltage dependency table with actual leakage voltage 896 * We need to perform leakage translation before it's used by other functions 897 */ 898 vega10_complete_dependency_tables(hwmgr); 899 900 /* Parse pptable data read from VBIOS */ 901 vega10_set_private_data_based_on_pptable(hwmgr); 902 903 data->is_tlu_enabled = false; 904 905 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 906 VEGA10_MAX_HARDWARE_POWERLEVELS; 907 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 908 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 909 910 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 911 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 912 hwmgr->platform_descriptor.clockStep.engineClock = 500; 913 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 914 915 data->total_active_cus = adev->gfx.cu_info.number; 916 if (!hwmgr->not_vf) 917 return result; 918 919 /* Setup default Overdrive Fan control settings */ 920 data->odn_fan_table.target_fan_speed = 921 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; 922 data->odn_fan_table.target_temperature = 923 hwmgr->thermal_controller. 924 advanceFanControlParameters.ucTargetTemperature; 925 data->odn_fan_table.min_performance_clock = 926 hwmgr->thermal_controller.advanceFanControlParameters. 927 ulMinFanSCLKAcousticLimit; 928 data->odn_fan_table.min_fan_limit = 929 hwmgr->thermal_controller. 930 advanceFanControlParameters.usFanPWMMinLimit * 931 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; 932 933 data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) & 934 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> 935 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; 936 PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number), 937 "Mem Channel Index Exceeded maximum!", 938 return -EINVAL); 939 940 return result; 941 } 942 943 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) 944 { 945 struct vega10_hwmgr *data = hwmgr->backend; 946 947 data->low_sclk_interrupt_threshold = 0; 948 949 return 0; 950 } 951 952 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) 953 { 954 struct vega10_hwmgr *data = hwmgr->backend; 955 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 956 957 struct pp_atomfwctrl_voltage_table table; 958 uint8_t i, j; 959 uint32_t mask = 0; 960 uint32_t tmp; 961 int32_t ret = 0; 962 963 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, 964 VOLTAGE_OBJ_GPIO_LUT, &table); 965 966 if (!ret) { 967 tmp = table.mask_low; 968 for (i = 0, j = 0; i < 32; i++) { 969 if (tmp & 1) { 970 mask |= (uint32_t)(i << (8 * j)); 971 if (++j >= 3) 972 break; 973 } 974 tmp >>= 1; 975 } 976 } 977 978 pp_table->LedPin0 = (uint8_t)(mask & 0xff); 979 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); 980 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); 981 return 0; 982 } 983 984 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) 985 { 986 if (!hwmgr->not_vf) 987 return 0; 988 989 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), 990 "Failed to init sclk threshold!", 991 return -EINVAL); 992 993 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), 994 "Failed to set up led dpm config!", 995 return -EINVAL); 996 997 smum_send_msg_to_smc_with_parameter(hwmgr, 998 PPSMC_MSG_NumOfDisplays, 999 0, 1000 NULL); 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * vega10_trim_voltage_table - Remove repeated voltage values and create table with unique values. 1007 * 1008 * @hwmgr: the address of the powerplay hardware manager. 1009 * @vol_table: the pointer to changing voltage table 1010 * return: 0 in success 1011 */ 1012 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, 1013 struct pp_atomfwctrl_voltage_table *vol_table) 1014 { 1015 uint32_t i, j; 1016 uint16_t vvalue; 1017 bool found = false; 1018 struct pp_atomfwctrl_voltage_table *table; 1019 1020 PP_ASSERT_WITH_CODE(vol_table, 1021 "Voltage Table empty.", return -EINVAL); 1022 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), 1023 GFP_KERNEL); 1024 1025 if (!table) 1026 return -ENOMEM; 1027 1028 table->mask_low = vol_table->mask_low; 1029 table->phase_delay = vol_table->phase_delay; 1030 1031 for (i = 0; i < vol_table->count; i++) { 1032 vvalue = vol_table->entries[i].value; 1033 found = false; 1034 1035 for (j = 0; j < table->count; j++) { 1036 if (vvalue == table->entries[j].value) { 1037 found = true; 1038 break; 1039 } 1040 } 1041 1042 if (!found) { 1043 table->entries[table->count].value = vvalue; 1044 table->entries[table->count].smio_low = 1045 vol_table->entries[i].smio_low; 1046 table->count++; 1047 } 1048 } 1049 1050 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); 1051 kfree(table); 1052 1053 return 0; 1054 } 1055 1056 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, 1057 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1058 struct pp_atomfwctrl_voltage_table *vol_table) 1059 { 1060 int i; 1061 1062 PP_ASSERT_WITH_CODE(dep_table->count, 1063 "Voltage Dependency Table empty.", 1064 return -EINVAL); 1065 1066 vol_table->mask_low = 0; 1067 vol_table->phase_delay = 0; 1068 vol_table->count = dep_table->count; 1069 1070 for (i = 0; i < vol_table->count; i++) { 1071 vol_table->entries[i].value = dep_table->entries[i].mvdd; 1072 vol_table->entries[i].smio_low = 0; 1073 } 1074 1075 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, 1076 vol_table), 1077 "Failed to trim MVDD Table!", 1078 return -1); 1079 1080 return 0; 1081 } 1082 1083 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, 1084 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1085 struct pp_atomfwctrl_voltage_table *vol_table) 1086 { 1087 uint32_t i; 1088 1089 PP_ASSERT_WITH_CODE(dep_table->count, 1090 "Voltage Dependency Table empty.", 1091 return -EINVAL); 1092 1093 vol_table->mask_low = 0; 1094 vol_table->phase_delay = 0; 1095 vol_table->count = dep_table->count; 1096 1097 for (i = 0; i < dep_table->count; i++) { 1098 vol_table->entries[i].value = dep_table->entries[i].vddci; 1099 vol_table->entries[i].smio_low = 0; 1100 } 1101 1102 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), 1103 "Failed to trim VDDCI table.", 1104 return -1); 1105 1106 return 0; 1107 } 1108 1109 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, 1110 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1111 struct pp_atomfwctrl_voltage_table *vol_table) 1112 { 1113 int i; 1114 1115 PP_ASSERT_WITH_CODE(dep_table->count, 1116 "Voltage Dependency Table empty.", 1117 return -EINVAL); 1118 1119 vol_table->mask_low = 0; 1120 vol_table->phase_delay = 0; 1121 vol_table->count = dep_table->count; 1122 1123 for (i = 0; i < vol_table->count; i++) { 1124 vol_table->entries[i].value = dep_table->entries[i].vddc; 1125 vol_table->entries[i].smio_low = 0; 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* ---- Voltage Tables ---- 1132 * If the voltage table would be bigger than 1133 * what will fit into the state table on 1134 * the SMC keep only the higher entries. 1135 */ 1136 static void vega10_trim_voltage_table_to_fit_state_table( 1137 struct pp_hwmgr *hwmgr, 1138 uint32_t max_vol_steps, 1139 struct pp_atomfwctrl_voltage_table *vol_table) 1140 { 1141 unsigned int i, diff; 1142 1143 if (vol_table->count <= max_vol_steps) 1144 return; 1145 1146 diff = vol_table->count - max_vol_steps; 1147 1148 for (i = 0; i < max_vol_steps; i++) 1149 vol_table->entries[i] = vol_table->entries[i + diff]; 1150 1151 vol_table->count = max_vol_steps; 1152 } 1153 1154 /** 1155 * vega10_construct_voltage_tables - Create Voltage Tables. 1156 * 1157 * @hwmgr: the address of the powerplay hardware manager. 1158 * return: always 0 1159 */ 1160 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) 1161 { 1162 struct vega10_hwmgr *data = hwmgr->backend; 1163 struct phm_ppt_v2_information *table_info = 1164 (struct phm_ppt_v2_information *)hwmgr->pptable; 1165 int result; 1166 1167 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1168 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1169 result = vega10_get_mvdd_voltage_table(hwmgr, 1170 table_info->vdd_dep_on_mclk, 1171 &(data->mvdd_voltage_table)); 1172 PP_ASSERT_WITH_CODE(!result, 1173 "Failed to retrieve MVDDC table!", 1174 return result); 1175 } 1176 1177 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1178 result = vega10_get_vddci_voltage_table(hwmgr, 1179 table_info->vdd_dep_on_mclk, 1180 &(data->vddci_voltage_table)); 1181 PP_ASSERT_WITH_CODE(!result, 1182 "Failed to retrieve VDDCI_MEM table!", 1183 return result); 1184 } 1185 1186 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1187 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1188 result = vega10_get_vdd_voltage_table(hwmgr, 1189 table_info->vdd_dep_on_sclk, 1190 &(data->vddc_voltage_table)); 1191 PP_ASSERT_WITH_CODE(!result, 1192 "Failed to retrieve VDDCR_SOC table!", 1193 return result); 1194 } 1195 1196 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, 1197 "Too many voltage values for VDDC. Trimming to fit state table.", 1198 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1199 16, &(data->vddc_voltage_table))); 1200 1201 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, 1202 "Too many voltage values for VDDCI. Trimming to fit state table.", 1203 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1204 16, &(data->vddci_voltage_table))); 1205 1206 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, 1207 "Too many voltage values for MVDD. Trimming to fit state table.", 1208 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1209 16, &(data->mvdd_voltage_table))); 1210 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * vega10_init_dpm_state 1217 * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. 1218 * 1219 * @dpm_state: - the address of the DPM Table to initiailize. 1220 * return: None. 1221 */ 1222 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) 1223 { 1224 dpm_state->soft_min_level = 0xff; 1225 dpm_state->soft_max_level = 0xff; 1226 dpm_state->hard_min_level = 0xff; 1227 dpm_state->hard_max_level = 0xff; 1228 } 1229 1230 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, 1231 struct vega10_single_dpm_table *dpm_table, 1232 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) 1233 { 1234 int i; 1235 1236 dpm_table->count = 0; 1237 1238 for (i = 0; i < dep_table->count; i++) { 1239 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= 1240 dep_table->entries[i].clk) { 1241 dpm_table->dpm_levels[dpm_table->count].value = 1242 dep_table->entries[i].clk; 1243 dpm_table->dpm_levels[dpm_table->count].enabled = true; 1244 dpm_table->count++; 1245 } 1246 } 1247 } 1248 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 1249 { 1250 struct vega10_hwmgr *data = hwmgr->backend; 1251 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); 1252 struct phm_ppt_v2_information *table_info = 1253 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1254 struct phm_ppt_v1_pcie_table *bios_pcie_table = 1255 table_info->pcie_table; 1256 uint32_t i; 1257 1258 PP_ASSERT_WITH_CODE(bios_pcie_table->count, 1259 "Incorrect number of PCIE States from VBIOS!", 1260 return -1); 1261 1262 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1263 if (data->registry_data.pcieSpeedOverride) 1264 pcie_table->pcie_gen[i] = 1265 data->registry_data.pcieSpeedOverride; 1266 else 1267 pcie_table->pcie_gen[i] = 1268 bios_pcie_table->entries[i].gen_speed; 1269 1270 if (data->registry_data.pcieLaneOverride) 1271 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1272 data->registry_data.pcieLaneOverride); 1273 else 1274 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1275 bios_pcie_table->entries[i].lane_width); 1276 if (data->registry_data.pcieClockOverride) 1277 pcie_table->lclk[i] = 1278 data->registry_data.pcieClockOverride; 1279 else 1280 pcie_table->lclk[i] = 1281 bios_pcie_table->entries[i].pcie_sclk; 1282 } 1283 1284 pcie_table->count = NUM_LINK_LEVELS; 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * This function is to initialize all DPM state tables 1291 * for SMU based on the dependency table. 1292 * Dynamic state patching function will then trim these 1293 * state tables to the allowed range based 1294 * on the power policy or external client requests, 1295 * such as UVD request, etc. 1296 */ 1297 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1298 { 1299 struct vega10_hwmgr *data = hwmgr->backend; 1300 struct phm_ppt_v2_information *table_info = 1301 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1302 struct vega10_single_dpm_table *dpm_table; 1303 uint32_t i; 1304 1305 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = 1306 table_info->vdd_dep_on_socclk; 1307 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = 1308 table_info->vdd_dep_on_sclk; 1309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 1310 table_info->vdd_dep_on_mclk; 1311 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = 1312 table_info->mm_dep_table; 1313 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = 1314 table_info->vdd_dep_on_dcefclk; 1315 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = 1316 table_info->vdd_dep_on_pixclk; 1317 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = 1318 table_info->vdd_dep_on_dispclk; 1319 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = 1320 table_info->vdd_dep_on_phyclk; 1321 1322 PP_ASSERT_WITH_CODE(dep_soc_table, 1323 "SOCCLK dependency table is missing. This table is mandatory", 1324 return -EINVAL); 1325 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, 1326 "SOCCLK dependency table is empty. This table is mandatory", 1327 return -EINVAL); 1328 1329 PP_ASSERT_WITH_CODE(dep_gfx_table, 1330 "GFXCLK dependency table is missing. This table is mandatory", 1331 return -EINVAL); 1332 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, 1333 "GFXCLK dependency table is empty. This table is mandatory", 1334 return -EINVAL); 1335 1336 PP_ASSERT_WITH_CODE(dep_mclk_table, 1337 "MCLK dependency table is missing. This table is mandatory", 1338 return -EINVAL); 1339 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 1340 "MCLK dependency table has to have is missing. This table is mandatory", 1341 return -EINVAL); 1342 1343 /* Initialize Sclk DPM table based on allow Sclk values */ 1344 dpm_table = &(data->dpm_table.soc_table); 1345 vega10_setup_default_single_dpm_table(hwmgr, 1346 dpm_table, 1347 dep_soc_table); 1348 1349 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1350 1351 dpm_table = &(data->dpm_table.gfx_table); 1352 vega10_setup_default_single_dpm_table(hwmgr, 1353 dpm_table, 1354 dep_gfx_table); 1355 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 1356 hwmgr->platform_descriptor.overdriveLimit.engineClock = 1357 dpm_table->dpm_levels[dpm_table->count-1].value; 1358 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1359 1360 /* Initialize Mclk DPM table based on allow Mclk values */ 1361 data->dpm_table.mem_table.count = 0; 1362 dpm_table = &(data->dpm_table.mem_table); 1363 vega10_setup_default_single_dpm_table(hwmgr, 1364 dpm_table, 1365 dep_mclk_table); 1366 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 1367 hwmgr->platform_descriptor.overdriveLimit.memoryClock = 1368 dpm_table->dpm_levels[dpm_table->count-1].value; 1369 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1370 1371 data->dpm_table.eclk_table.count = 0; 1372 dpm_table = &(data->dpm_table.eclk_table); 1373 for (i = 0; i < dep_mm_table->count; i++) { 1374 if (i == 0 || dpm_table->dpm_levels 1375 [dpm_table->count - 1].value <= 1376 dep_mm_table->entries[i].eclk) { 1377 dpm_table->dpm_levels[dpm_table->count].value = 1378 dep_mm_table->entries[i].eclk; 1379 dpm_table->dpm_levels[dpm_table->count].enabled = 1380 (i == 0) ? true : false; 1381 dpm_table->count++; 1382 } 1383 } 1384 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1385 1386 data->dpm_table.vclk_table.count = 0; 1387 data->dpm_table.dclk_table.count = 0; 1388 dpm_table = &(data->dpm_table.vclk_table); 1389 for (i = 0; i < dep_mm_table->count; i++) { 1390 if (i == 0 || dpm_table->dpm_levels 1391 [dpm_table->count - 1].value <= 1392 dep_mm_table->entries[i].vclk) { 1393 dpm_table->dpm_levels[dpm_table->count].value = 1394 dep_mm_table->entries[i].vclk; 1395 dpm_table->dpm_levels[dpm_table->count].enabled = 1396 (i == 0) ? true : false; 1397 dpm_table->count++; 1398 } 1399 } 1400 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1401 1402 dpm_table = &(data->dpm_table.dclk_table); 1403 for (i = 0; i < dep_mm_table->count; i++) { 1404 if (i == 0 || dpm_table->dpm_levels 1405 [dpm_table->count - 1].value <= 1406 dep_mm_table->entries[i].dclk) { 1407 dpm_table->dpm_levels[dpm_table->count].value = 1408 dep_mm_table->entries[i].dclk; 1409 dpm_table->dpm_levels[dpm_table->count].enabled = 1410 (i == 0) ? true : false; 1411 dpm_table->count++; 1412 } 1413 } 1414 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1415 1416 /* Assume there is no headless Vega10 for now */ 1417 dpm_table = &(data->dpm_table.dcef_table); 1418 vega10_setup_default_single_dpm_table(hwmgr, 1419 dpm_table, 1420 dep_dcef_table); 1421 1422 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1423 1424 dpm_table = &(data->dpm_table.pixel_table); 1425 vega10_setup_default_single_dpm_table(hwmgr, 1426 dpm_table, 1427 dep_pix_table); 1428 1429 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1430 1431 dpm_table = &(data->dpm_table.display_table); 1432 vega10_setup_default_single_dpm_table(hwmgr, 1433 dpm_table, 1434 dep_disp_table); 1435 1436 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1437 1438 dpm_table = &(data->dpm_table.phy_table); 1439 vega10_setup_default_single_dpm_table(hwmgr, 1440 dpm_table, 1441 dep_phy_table); 1442 1443 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1444 1445 vega10_setup_default_pcie_table(hwmgr); 1446 1447 /* Zero out the saved copy of the CUSTOM profile 1448 * This will be checked when trying to set the profile 1449 * and will require that new values be passed in 1450 */ 1451 data->custom_profile_mode[0] = 0; 1452 data->custom_profile_mode[1] = 0; 1453 data->custom_profile_mode[2] = 0; 1454 data->custom_profile_mode[3] = 0; 1455 1456 /* save a copy of the default DPM table */ 1457 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1458 sizeof(struct vega10_dpm_table)); 1459 1460 return 0; 1461 } 1462 1463 /* 1464 * vega10_populate_ulv_state 1465 * Function to provide parameters for Utral Low Voltage state to SMC. 1466 * 1467 * @hwmgr: - the address of the hardware manager. 1468 * return: Always 0. 1469 */ 1470 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) 1471 { 1472 struct vega10_hwmgr *data = hwmgr->backend; 1473 struct phm_ppt_v2_information *table_info = 1474 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1475 1476 data->smc_state_table.pp_table.UlvOffsetVid = 1477 (uint8_t)table_info->us_ulv_voltage_offset; 1478 1479 data->smc_state_table.pp_table.UlvSmnclkDid = 1480 (uint8_t)(table_info->us_ulv_smnclk_did); 1481 data->smc_state_table.pp_table.UlvMp1clkDid = 1482 (uint8_t)(table_info->us_ulv_mp1clk_did); 1483 data->smc_state_table.pp_table.UlvGfxclkBypass = 1484 (uint8_t)(table_info->us_ulv_gfxclk_bypass); 1485 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = 1486 (uint8_t)(data->vddc_voltage_table.psi0_enable); 1487 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = 1488 (uint8_t)(data->vddc_voltage_table.psi1_enable); 1489 1490 return 0; 1491 } 1492 1493 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, 1494 uint32_t lclock, uint8_t *curr_lclk_did) 1495 { 1496 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1497 1498 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1499 hwmgr, 1500 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1501 lclock, ÷rs), 1502 "Failed to get LCLK clock settings from VBIOS!", 1503 return -1); 1504 1505 *curr_lclk_did = dividers.ulDid; 1506 1507 return 0; 1508 } 1509 1510 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr) 1511 { 1512 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 1513 struct vega10_hwmgr *data = 1514 (struct vega10_hwmgr *)(hwmgr->backend); 1515 uint32_t pcie_gen = 0, pcie_width = 0; 1516 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1517 int i; 1518 1519 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) 1520 pcie_gen = 3; 1521 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 1522 pcie_gen = 2; 1523 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) 1524 pcie_gen = 1; 1525 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) 1526 pcie_gen = 0; 1527 1528 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) 1529 pcie_width = 6; 1530 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) 1531 pcie_width = 5; 1532 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) 1533 pcie_width = 4; 1534 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) 1535 pcie_width = 3; 1536 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) 1537 pcie_width = 2; 1538 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) 1539 pcie_width = 1; 1540 1541 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1542 if (pp_table->PcieGenSpeed[i] > pcie_gen) 1543 pp_table->PcieGenSpeed[i] = pcie_gen; 1544 1545 if (pp_table->PcieLaneCount[i] > pcie_width) 1546 pp_table->PcieLaneCount[i] = pcie_width; 1547 } 1548 1549 if (data->registry_data.pcie_dpm_key_disabled) { 1550 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1551 pp_table->PcieGenSpeed[i] = pcie_gen; 1552 pp_table->PcieLaneCount[i] = pcie_width; 1553 } 1554 } 1555 1556 return 0; 1557 } 1558 1559 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) 1560 { 1561 int result = -1; 1562 struct vega10_hwmgr *data = hwmgr->backend; 1563 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1564 struct vega10_pcie_table *pcie_table = 1565 &(data->dpm_table.pcie_table); 1566 uint32_t i, j; 1567 1568 for (i = 0; i < pcie_table->count; i++) { 1569 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; 1570 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; 1571 1572 result = vega10_populate_single_lclk_level(hwmgr, 1573 pcie_table->lclk[i], &(pp_table->LclkDid[i])); 1574 if (result) { 1575 pr_info("Populate LClock Level %d Failed!\n", i); 1576 return result; 1577 } 1578 } 1579 1580 j = i - 1; 1581 while (i < NUM_LINK_LEVELS) { 1582 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; 1583 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; 1584 1585 result = vega10_populate_single_lclk_level(hwmgr, 1586 pcie_table->lclk[j], &(pp_table->LclkDid[i])); 1587 if (result) { 1588 pr_info("Populate LClock Level %d Failed!\n", i); 1589 return result; 1590 } 1591 i++; 1592 } 1593 1594 return result; 1595 } 1596 1597 /** 1598 * vega10_populate_single_gfx_level - Populates single SMC GFXSCLK structure 1599 * using the provided engine clock 1600 * 1601 * @hwmgr: the address of the hardware manager 1602 * @gfx_clock: the GFX clock to use to populate the structure. 1603 * @current_gfxclk_level: location in PPTable for the SMC GFXCLK structure. 1604 * @acg_freq: ACG frequenty to return (MHz) 1605 */ 1606 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, 1607 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, 1608 uint32_t *acg_freq) 1609 { 1610 struct phm_ppt_v2_information *table_info = 1611 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1612 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; 1613 struct vega10_hwmgr *data = hwmgr->backend; 1614 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1615 uint32_t gfx_max_clock = 1616 hwmgr->platform_descriptor.overdriveLimit.engineClock; 1617 uint32_t i = 0; 1618 1619 if (hwmgr->od_enabled) 1620 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1621 &(data->odn_dpm_table.vdd_dep_on_sclk); 1622 else 1623 dep_on_sclk = table_info->vdd_dep_on_sclk; 1624 1625 PP_ASSERT_WITH_CODE(dep_on_sclk, 1626 "Invalid SOC_VDD-GFX_CLK Dependency Table!", 1627 return -EINVAL); 1628 1629 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) 1630 gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; 1631 else { 1632 for (i = 0; i < dep_on_sclk->count; i++) { 1633 if (dep_on_sclk->entries[i].clk == gfx_clock) 1634 break; 1635 } 1636 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, 1637 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", 1638 return -EINVAL); 1639 } 1640 1641 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1642 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, 1643 gfx_clock, ÷rs), 1644 "Failed to get GFX Clock settings from VBIOS!", 1645 return -EINVAL); 1646 1647 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ 1648 current_gfxclk_level->FbMult = 1649 cpu_to_le32(dividers.ulPll_fb_mult); 1650 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ 1651 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; 1652 current_gfxclk_level->SsFbMult = 1653 cpu_to_le32(dividers.ulPll_ss_fbsmult); 1654 current_gfxclk_level->SsSlewFrac = 1655 cpu_to_le16(dividers.usPll_ss_slew_frac); 1656 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); 1657 1658 *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ 1659 1660 return 0; 1661 } 1662 1663 /** 1664 * vega10_populate_single_soc_level - Populates single SMC SOCCLK structure 1665 * using the provided clock. 1666 * 1667 * @hwmgr: the address of the hardware manager. 1668 * @soc_clock: the SOC clock to use to populate the structure. 1669 * @current_soc_did: DFS divider to pass back to caller 1670 * @current_vol_index: index of current VDD to pass back to caller 1671 * return: 0 on success 1672 */ 1673 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, 1674 uint32_t soc_clock, uint8_t *current_soc_did, 1675 uint8_t *current_vol_index) 1676 { 1677 struct vega10_hwmgr *data = hwmgr->backend; 1678 struct phm_ppt_v2_information *table_info = 1679 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1680 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; 1681 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1682 uint32_t i; 1683 1684 if (hwmgr->od_enabled) { 1685 dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1686 &data->odn_dpm_table.vdd_dep_on_socclk; 1687 for (i = 0; i < dep_on_soc->count; i++) { 1688 if (dep_on_soc->entries[i].clk >= soc_clock) 1689 break; 1690 } 1691 } else { 1692 dep_on_soc = table_info->vdd_dep_on_socclk; 1693 for (i = 0; i < dep_on_soc->count; i++) { 1694 if (dep_on_soc->entries[i].clk == soc_clock) 1695 break; 1696 } 1697 } 1698 1699 PP_ASSERT_WITH_CODE(dep_on_soc->count > i, 1700 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", 1701 return -EINVAL); 1702 1703 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1704 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1705 soc_clock, ÷rs), 1706 "Failed to get SOC Clock settings from VBIOS!", 1707 return -EINVAL); 1708 1709 *current_soc_did = (uint8_t)dividers.ulDid; 1710 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); 1711 return 0; 1712 } 1713 1714 /** 1715 * vega10_populate_all_graphic_levels - Populates all SMC SCLK levels' structure 1716 * based on the trimmed allowed dpm engine clock states 1717 * 1718 * @hwmgr: the address of the hardware manager 1719 */ 1720 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 1721 { 1722 struct vega10_hwmgr *data = hwmgr->backend; 1723 struct phm_ppt_v2_information *table_info = 1724 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1725 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1726 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); 1727 int result = 0; 1728 uint32_t i, j; 1729 1730 for (i = 0; i < dpm_table->count; i++) { 1731 result = vega10_populate_single_gfx_level(hwmgr, 1732 dpm_table->dpm_levels[i].value, 1733 &(pp_table->GfxclkLevel[i]), 1734 &(pp_table->AcgFreqTable[i])); 1735 if (result) 1736 return result; 1737 } 1738 1739 j = i - 1; 1740 while (i < NUM_GFXCLK_DPM_LEVELS) { 1741 result = vega10_populate_single_gfx_level(hwmgr, 1742 dpm_table->dpm_levels[j].value, 1743 &(pp_table->GfxclkLevel[i]), 1744 &(pp_table->AcgFreqTable[i])); 1745 if (result) 1746 return result; 1747 i++; 1748 } 1749 1750 pp_table->GfxclkSlewRate = 1751 cpu_to_le16(table_info->us_gfxclk_slew_rate); 1752 1753 dpm_table = &(data->dpm_table.soc_table); 1754 for (i = 0; i < dpm_table->count; i++) { 1755 result = vega10_populate_single_soc_level(hwmgr, 1756 dpm_table->dpm_levels[i].value, 1757 &(pp_table->SocclkDid[i]), 1758 &(pp_table->SocDpmVoltageIndex[i])); 1759 if (result) 1760 return result; 1761 } 1762 1763 j = i - 1; 1764 while (i < NUM_SOCCLK_DPM_LEVELS) { 1765 result = vega10_populate_single_soc_level(hwmgr, 1766 dpm_table->dpm_levels[j].value, 1767 &(pp_table->SocclkDid[i]), 1768 &(pp_table->SocDpmVoltageIndex[i])); 1769 if (result) 1770 return result; 1771 i++; 1772 } 1773 1774 return result; 1775 } 1776 1777 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) 1778 { 1779 struct vega10_hwmgr *data = hwmgr->backend; 1780 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1781 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 1782 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 1783 1784 uint8_t soc_vid = 0; 1785 uint32_t i, max_vddc_level; 1786 1787 if (hwmgr->od_enabled) 1788 vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; 1789 else 1790 vddc_lookup_table = table_info->vddc_lookup_table; 1791 1792 max_vddc_level = vddc_lookup_table->count; 1793 for (i = 0; i < max_vddc_level; i++) { 1794 soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); 1795 pp_table->SocVid[i] = soc_vid; 1796 } 1797 while (i < MAX_REGULAR_DPM_NUMBER) { 1798 pp_table->SocVid[i] = soc_vid; 1799 i++; 1800 } 1801 } 1802 1803 /* 1804 * Populates single SMC GFXCLK structure using the provided clock. 1805 * 1806 * @hwmgr: the address of the hardware manager. 1807 * @mem_clock: the memory clock to use to populate the structure. 1808 * return: 0 on success.. 1809 */ 1810 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, 1811 uint32_t mem_clock, uint8_t *current_mem_vid, 1812 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) 1813 { 1814 struct vega10_hwmgr *data = hwmgr->backend; 1815 struct phm_ppt_v2_information *table_info = 1816 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1817 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; 1818 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1819 uint32_t mem_max_clock = 1820 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 1821 uint32_t i = 0; 1822 1823 if (hwmgr->od_enabled) 1824 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1825 &data->odn_dpm_table.vdd_dep_on_mclk; 1826 else 1827 dep_on_mclk = table_info->vdd_dep_on_mclk; 1828 1829 PP_ASSERT_WITH_CODE(dep_on_mclk, 1830 "Invalid SOC_VDD-UCLK Dependency Table!", 1831 return -EINVAL); 1832 1833 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 1834 mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; 1835 } else { 1836 for (i = 0; i < dep_on_mclk->count; i++) { 1837 if (dep_on_mclk->entries[i].clk == mem_clock) 1838 break; 1839 } 1840 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, 1841 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", 1842 return -EINVAL); 1843 } 1844 1845 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1846 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs), 1847 "Failed to get UCLK settings from VBIOS!", 1848 return -1); 1849 1850 *current_mem_vid = 1851 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); 1852 *current_mem_soc_vind = 1853 (uint8_t)(dep_on_mclk->entries[i].vddInd); 1854 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); 1855 current_memclk_level->Did = (uint8_t)(dividers.ulDid); 1856 1857 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, 1858 "Invalid Divider ID!", 1859 return -EINVAL); 1860 1861 return 0; 1862 } 1863 1864 /** 1865 * vega10_populate_all_memory_levels - Populates all SMC MCLK levels' structure 1866 * based on the trimmed allowed dpm memory clock states. 1867 * 1868 * @hwmgr: the address of the hardware manager. 1869 * return: PP_Result_OK on success. 1870 */ 1871 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1872 { 1873 struct vega10_hwmgr *data = hwmgr->backend; 1874 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1875 struct vega10_single_dpm_table *dpm_table = 1876 &(data->dpm_table.mem_table); 1877 int result = 0; 1878 uint32_t i, j; 1879 1880 for (i = 0; i < dpm_table->count; i++) { 1881 result = vega10_populate_single_memory_level(hwmgr, 1882 dpm_table->dpm_levels[i].value, 1883 &(pp_table->MemVid[i]), 1884 &(pp_table->UclkLevel[i]), 1885 &(pp_table->MemSocVoltageIndex[i])); 1886 if (result) 1887 return result; 1888 } 1889 1890 j = i - 1; 1891 while (i < NUM_UCLK_DPM_LEVELS) { 1892 result = vega10_populate_single_memory_level(hwmgr, 1893 dpm_table->dpm_levels[j].value, 1894 &(pp_table->MemVid[i]), 1895 &(pp_table->UclkLevel[i]), 1896 &(pp_table->MemSocVoltageIndex[i])); 1897 if (result) 1898 return result; 1899 i++; 1900 } 1901 1902 pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); 1903 pp_table->MemoryChannelWidth = 1904 (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH * 1905 channel_number[data->mem_channels]); 1906 1907 pp_table->LowestUclkReservedForUlv = 1908 (uint8_t)(data->lowest_uclk_reserved_for_ulv); 1909 1910 return result; 1911 } 1912 1913 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, 1914 DSPCLK_e disp_clock) 1915 { 1916 struct vega10_hwmgr *data = hwmgr->backend; 1917 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1918 struct phm_ppt_v2_information *table_info = 1919 (struct phm_ppt_v2_information *) 1920 (hwmgr->pptable); 1921 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 1922 uint32_t i; 1923 uint16_t clk = 0, vddc = 0; 1924 uint8_t vid = 0; 1925 1926 switch (disp_clock) { 1927 case DSPCLK_DCEFCLK: 1928 dep_table = table_info->vdd_dep_on_dcefclk; 1929 break; 1930 case DSPCLK_DISPCLK: 1931 dep_table = table_info->vdd_dep_on_dispclk; 1932 break; 1933 case DSPCLK_PIXCLK: 1934 dep_table = table_info->vdd_dep_on_pixclk; 1935 break; 1936 case DSPCLK_PHYCLK: 1937 dep_table = table_info->vdd_dep_on_phyclk; 1938 break; 1939 default: 1940 return -1; 1941 } 1942 1943 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, 1944 "Number Of Entries Exceeded maximum!", 1945 return -1); 1946 1947 for (i = 0; i < dep_table->count; i++) { 1948 clk = (uint16_t)(dep_table->entries[i].clk / 100); 1949 vddc = table_info->vddc_lookup_table-> 1950 entries[dep_table->entries[i].vddInd].us_vdd; 1951 vid = (uint8_t)convert_to_vid(vddc); 1952 pp_table->DisplayClockTable[disp_clock][i].Freq = 1953 cpu_to_le16(clk); 1954 pp_table->DisplayClockTable[disp_clock][i].Vid = 1955 cpu_to_le16(vid); 1956 } 1957 1958 while (i < NUM_DSPCLK_LEVELS) { 1959 pp_table->DisplayClockTable[disp_clock][i].Freq = 1960 cpu_to_le16(clk); 1961 pp_table->DisplayClockTable[disp_clock][i].Vid = 1962 cpu_to_le16(vid); 1963 i++; 1964 } 1965 1966 return 0; 1967 } 1968 1969 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) 1970 { 1971 uint32_t i; 1972 1973 for (i = 0; i < DSPCLK_COUNT; i++) { 1974 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), 1975 "Failed to populate Clock in DisplayClockTable!", 1976 return -1); 1977 } 1978 1979 return 0; 1980 } 1981 1982 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, 1983 uint32_t eclock, uint8_t *current_eclk_did, 1984 uint8_t *current_soc_vol) 1985 { 1986 struct phm_ppt_v2_information *table_info = 1987 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1988 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 1989 table_info->mm_dep_table; 1990 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1991 uint32_t i; 1992 1993 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1994 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1995 eclock, ÷rs), 1996 "Failed to get ECLK clock settings from VBIOS!", 1997 return -1); 1998 1999 *current_eclk_did = (uint8_t)dividers.ulDid; 2000 2001 for (i = 0; i < dep_table->count; i++) { 2002 if (dep_table->entries[i].eclk == eclock) 2003 *current_soc_vol = dep_table->entries[i].vddcInd; 2004 } 2005 2006 return 0; 2007 } 2008 2009 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) 2010 { 2011 struct vega10_hwmgr *data = hwmgr->backend; 2012 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2013 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); 2014 int result = -EINVAL; 2015 uint32_t i, j; 2016 2017 for (i = 0; i < dpm_table->count; i++) { 2018 result = vega10_populate_single_eclock_level(hwmgr, 2019 dpm_table->dpm_levels[i].value, 2020 &(pp_table->EclkDid[i]), 2021 &(pp_table->VceDpmVoltageIndex[i])); 2022 if (result) 2023 return result; 2024 } 2025 2026 j = i - 1; 2027 while (i < NUM_VCE_DPM_LEVELS) { 2028 result = vega10_populate_single_eclock_level(hwmgr, 2029 dpm_table->dpm_levels[j].value, 2030 &(pp_table->EclkDid[i]), 2031 &(pp_table->VceDpmVoltageIndex[i])); 2032 if (result) 2033 return result; 2034 i++; 2035 } 2036 2037 return result; 2038 } 2039 2040 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, 2041 uint32_t vclock, uint8_t *current_vclk_did) 2042 { 2043 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 2044 2045 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 2046 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 2047 vclock, ÷rs), 2048 "Failed to get VCLK clock settings from VBIOS!", 2049 return -EINVAL); 2050 2051 *current_vclk_did = (uint8_t)dividers.ulDid; 2052 2053 return 0; 2054 } 2055 2056 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, 2057 uint32_t dclock, uint8_t *current_dclk_did) 2058 { 2059 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 2060 2061 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 2062 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 2063 dclock, ÷rs), 2064 "Failed to get DCLK clock settings from VBIOS!", 2065 return -EINVAL); 2066 2067 *current_dclk_did = (uint8_t)dividers.ulDid; 2068 2069 return 0; 2070 } 2071 2072 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) 2073 { 2074 struct vega10_hwmgr *data = hwmgr->backend; 2075 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2076 struct vega10_single_dpm_table *vclk_dpm_table = 2077 &(data->dpm_table.vclk_table); 2078 struct vega10_single_dpm_table *dclk_dpm_table = 2079 &(data->dpm_table.dclk_table); 2080 struct phm_ppt_v2_information *table_info = 2081 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2082 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 2083 table_info->mm_dep_table; 2084 int result = -EINVAL; 2085 uint32_t i, j; 2086 2087 for (i = 0; i < vclk_dpm_table->count; i++) { 2088 result = vega10_populate_single_vclock_level(hwmgr, 2089 vclk_dpm_table->dpm_levels[i].value, 2090 &(pp_table->VclkDid[i])); 2091 if (result) 2092 return result; 2093 } 2094 2095 j = i - 1; 2096 while (i < NUM_UVD_DPM_LEVELS) { 2097 result = vega10_populate_single_vclock_level(hwmgr, 2098 vclk_dpm_table->dpm_levels[j].value, 2099 &(pp_table->VclkDid[i])); 2100 if (result) 2101 return result; 2102 i++; 2103 } 2104 2105 for (i = 0; i < dclk_dpm_table->count; i++) { 2106 result = vega10_populate_single_dclock_level(hwmgr, 2107 dclk_dpm_table->dpm_levels[i].value, 2108 &(pp_table->DclkDid[i])); 2109 if (result) 2110 return result; 2111 } 2112 2113 j = i - 1; 2114 while (i < NUM_UVD_DPM_LEVELS) { 2115 result = vega10_populate_single_dclock_level(hwmgr, 2116 dclk_dpm_table->dpm_levels[j].value, 2117 &(pp_table->DclkDid[i])); 2118 if (result) 2119 return result; 2120 i++; 2121 } 2122 2123 for (i = 0; i < dep_table->count; i++) { 2124 if (dep_table->entries[i].vclk == 2125 vclk_dpm_table->dpm_levels[i].value && 2126 dep_table->entries[i].dclk == 2127 dclk_dpm_table->dpm_levels[i].value) 2128 pp_table->UvdDpmVoltageIndex[i] = 2129 dep_table->entries[i].vddcInd; 2130 else 2131 return -1; 2132 } 2133 2134 j = i - 1; 2135 while (i < NUM_UVD_DPM_LEVELS) { 2136 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; 2137 i++; 2138 } 2139 2140 return 0; 2141 } 2142 2143 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) 2144 { 2145 struct vega10_hwmgr *data = hwmgr->backend; 2146 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2147 struct phm_ppt_v2_information *table_info = 2148 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2149 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2150 table_info->vdd_dep_on_sclk; 2151 uint32_t i; 2152 2153 for (i = 0; i < dep_table->count; i++) { 2154 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; 2155 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset 2156 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 2157 } 2158 2159 return 0; 2160 } 2161 2162 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) 2163 { 2164 struct vega10_hwmgr *data = hwmgr->backend; 2165 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2166 struct phm_ppt_v2_information *table_info = 2167 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2168 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2169 table_info->vdd_dep_on_sclk; 2170 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 2171 int result = 0; 2172 uint32_t i; 2173 2174 pp_table->MinVoltageVid = (uint8_t)0xff; 2175 pp_table->MaxVoltageVid = (uint8_t)0; 2176 2177 if (data->smu_features[GNLD_AVFS].supported) { 2178 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 2179 if (!result) { 2180 pp_table->MinVoltageVid = (uint8_t) 2181 convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); 2182 pp_table->MaxVoltageVid = (uint8_t) 2183 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); 2184 2185 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); 2186 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); 2187 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); 2188 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2189 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); 2190 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2191 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); 2192 2193 pp_table->BtcGbVdroopTableCksOff.a0 = 2194 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); 2195 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; 2196 pp_table->BtcGbVdroopTableCksOff.a1 = 2197 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); 2198 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; 2199 pp_table->BtcGbVdroopTableCksOff.a2 = 2200 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); 2201 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; 2202 2203 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; 2204 pp_table->BtcGbVdroopTableCksOn.a0 = 2205 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); 2206 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; 2207 pp_table->BtcGbVdroopTableCksOn.a1 = 2208 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); 2209 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; 2210 pp_table->BtcGbVdroopTableCksOn.a2 = 2211 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); 2212 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; 2213 2214 pp_table->AvfsGbCksOn.m1 = 2215 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); 2216 pp_table->AvfsGbCksOn.m2 = 2217 cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); 2218 pp_table->AvfsGbCksOn.b = 2219 cpu_to_le32(avfs_params.ulGbFuseTableCksonB); 2220 pp_table->AvfsGbCksOn.m1_shift = 24; 2221 pp_table->AvfsGbCksOn.m2_shift = 12; 2222 pp_table->AvfsGbCksOn.b_shift = 0; 2223 2224 pp_table->OverrideAvfsGbCksOn = 2225 avfs_params.ucEnableGbFuseTableCkson; 2226 pp_table->AvfsGbCksOff.m1 = 2227 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); 2228 pp_table->AvfsGbCksOff.m2 = 2229 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); 2230 pp_table->AvfsGbCksOff.b = 2231 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); 2232 pp_table->AvfsGbCksOff.m1_shift = 24; 2233 pp_table->AvfsGbCksOff.m2_shift = 12; 2234 pp_table->AvfsGbCksOff.b_shift = 0; 2235 2236 for (i = 0; i < dep_table->count; i++) 2237 pp_table->StaticVoltageOffsetVid[i] = 2238 convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); 2239 2240 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2241 data->disp_clk_quad_eqn_a) && 2242 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2243 data->disp_clk_quad_eqn_b)) { 2244 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2245 (int32_t)data->disp_clk_quad_eqn_a; 2246 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2247 (int32_t)data->disp_clk_quad_eqn_b; 2248 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2249 (int32_t)data->disp_clk_quad_eqn_c; 2250 } else { 2251 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2252 (int32_t)avfs_params.ulDispclk2GfxclkM1; 2253 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2254 (int32_t)avfs_params.ulDispclk2GfxclkM2; 2255 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2256 (int32_t)avfs_params.ulDispclk2GfxclkB; 2257 } 2258 2259 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; 2260 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; 2261 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; 2262 2263 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2264 data->dcef_clk_quad_eqn_a) && 2265 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2266 data->dcef_clk_quad_eqn_b)) { 2267 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2268 (int32_t)data->dcef_clk_quad_eqn_a; 2269 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2270 (int32_t)data->dcef_clk_quad_eqn_b; 2271 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2272 (int32_t)data->dcef_clk_quad_eqn_c; 2273 } else { 2274 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2275 (int32_t)avfs_params.ulDcefclk2GfxclkM1; 2276 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2277 (int32_t)avfs_params.ulDcefclk2GfxclkM2; 2278 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2279 (int32_t)avfs_params.ulDcefclk2GfxclkB; 2280 } 2281 2282 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; 2283 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; 2284 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; 2285 2286 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2287 data->pixel_clk_quad_eqn_a) && 2288 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2289 data->pixel_clk_quad_eqn_b)) { 2290 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2291 (int32_t)data->pixel_clk_quad_eqn_a; 2292 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2293 (int32_t)data->pixel_clk_quad_eqn_b; 2294 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2295 (int32_t)data->pixel_clk_quad_eqn_c; 2296 } else { 2297 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2298 (int32_t)avfs_params.ulPixelclk2GfxclkM1; 2299 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2300 (int32_t)avfs_params.ulPixelclk2GfxclkM2; 2301 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2302 (int32_t)avfs_params.ulPixelclk2GfxclkB; 2303 } 2304 2305 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; 2306 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; 2307 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; 2308 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2309 data->phy_clk_quad_eqn_a) && 2310 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2311 data->phy_clk_quad_eqn_b)) { 2312 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2313 (int32_t)data->phy_clk_quad_eqn_a; 2314 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2315 (int32_t)data->phy_clk_quad_eqn_b; 2316 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2317 (int32_t)data->phy_clk_quad_eqn_c; 2318 } else { 2319 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2320 (int32_t)avfs_params.ulPhyclk2GfxclkM1; 2321 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2322 (int32_t)avfs_params.ulPhyclk2GfxclkM2; 2323 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2324 (int32_t)avfs_params.ulPhyclk2GfxclkB; 2325 } 2326 2327 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; 2328 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; 2329 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; 2330 2331 pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; 2332 pp_table->AcgBtcGbVdroopTable.a0_shift = 20; 2333 pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; 2334 pp_table->AcgBtcGbVdroopTable.a1_shift = 20; 2335 pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; 2336 pp_table->AcgBtcGbVdroopTable.a2_shift = 20; 2337 2338 pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; 2339 pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; 2340 pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; 2341 pp_table->AcgAvfsGb.m1_shift = 24; 2342 pp_table->AcgAvfsGb.m2_shift = 12; 2343 pp_table->AcgAvfsGb.b_shift = 0; 2344 2345 } else { 2346 data->smu_features[GNLD_AVFS].supported = false; 2347 } 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int vega10_acg_enable(struct pp_hwmgr *hwmgr) 2354 { 2355 struct vega10_hwmgr *data = hwmgr->backend; 2356 uint32_t agc_btc_response; 2357 2358 if (data->smu_features[GNLD_ACG].supported) { 2359 if (0 == vega10_enable_smc_features(hwmgr, true, 2360 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) 2361 data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; 2362 2363 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL); 2364 2365 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response); 2366 2367 if (1 == agc_btc_response) { 2368 if (1 == data->acg_loop_state) 2369 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL); 2370 else if (2 == data->acg_loop_state) 2371 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL); 2372 if (0 == vega10_enable_smc_features(hwmgr, true, 2373 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2374 data->smu_features[GNLD_ACG].enabled = true; 2375 } else { 2376 pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); 2377 data->smu_features[GNLD_ACG].enabled = false; 2378 } 2379 } 2380 2381 return 0; 2382 } 2383 2384 static int vega10_acg_disable(struct pp_hwmgr *hwmgr) 2385 { 2386 struct vega10_hwmgr *data = hwmgr->backend; 2387 2388 if (data->smu_features[GNLD_ACG].supported && 2389 data->smu_features[GNLD_ACG].enabled) 2390 if (!vega10_enable_smc_features(hwmgr, false, 2391 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2392 data->smu_features[GNLD_ACG].enabled = false; 2393 2394 return 0; 2395 } 2396 2397 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) 2398 { 2399 struct vega10_hwmgr *data = hwmgr->backend; 2400 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2401 struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; 2402 int result; 2403 2404 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); 2405 if (!result) { 2406 if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && 2407 data->registry_data.regulator_hot_gpio_support) { 2408 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; 2409 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; 2410 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; 2411 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; 2412 } else { 2413 pp_table->VR0HotGpio = 0; 2414 pp_table->VR0HotPolarity = 0; 2415 pp_table->VR1HotGpio = 0; 2416 pp_table->VR1HotPolarity = 0; 2417 } 2418 2419 if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && 2420 data->registry_data.ac_dc_switch_gpio_support) { 2421 pp_table->AcDcGpio = gpio_params.ucAcDcGpio; 2422 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; 2423 } else { 2424 pp_table->AcDcGpio = 0; 2425 pp_table->AcDcPolarity = 0; 2426 } 2427 } 2428 2429 return result; 2430 } 2431 2432 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) 2433 { 2434 struct vega10_hwmgr *data = hwmgr->backend; 2435 2436 if (data->smu_features[GNLD_AVFS].supported) { 2437 /* Already enabled or disabled */ 2438 if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) 2439 return 0; 2440 2441 if (enable) { 2442 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2443 true, 2444 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2445 "[avfs_control] Attempt to Enable AVFS feature Failed!", 2446 return -1); 2447 data->smu_features[GNLD_AVFS].enabled = true; 2448 } else { 2449 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2450 false, 2451 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2452 "[avfs_control] Attempt to Disable AVFS feature Failed!", 2453 return -1); 2454 data->smu_features[GNLD_AVFS].enabled = false; 2455 } 2456 } 2457 2458 return 0; 2459 } 2460 2461 static int vega10_update_avfs(struct pp_hwmgr *hwmgr) 2462 { 2463 struct vega10_hwmgr *data = hwmgr->backend; 2464 2465 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 2466 vega10_avfs_enable(hwmgr, false); 2467 } else if (data->need_update_dpm_table) { 2468 vega10_avfs_enable(hwmgr, false); 2469 vega10_avfs_enable(hwmgr, true); 2470 } else { 2471 vega10_avfs_enable(hwmgr, true); 2472 } 2473 2474 return 0; 2475 } 2476 2477 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) 2478 { 2479 int result = 0; 2480 2481 uint64_t serial_number = 0; 2482 uint32_t top32, bottom32; 2483 struct phm_fuses_default fuse; 2484 2485 struct vega10_hwmgr *data = hwmgr->backend; 2486 AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); 2487 2488 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); 2489 2490 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); 2491 2492 serial_number = ((uint64_t)bottom32 << 32) | top32; 2493 2494 if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { 2495 avfs_fuse_table->VFT0_b = fuse.VFT0_b; 2496 avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; 2497 avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; 2498 avfs_fuse_table->VFT1_b = fuse.VFT1_b; 2499 avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; 2500 avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; 2501 avfs_fuse_table->VFT2_b = fuse.VFT2_b; 2502 avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; 2503 avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; 2504 result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, 2505 AVFSFUSETABLE, false); 2506 PP_ASSERT_WITH_CODE(!result, 2507 "Failed to upload FuseOVerride!", 2508 ); 2509 } 2510 2511 return result; 2512 } 2513 2514 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 2515 { 2516 struct vega10_hwmgr *data = hwmgr->backend; 2517 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2518 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 2519 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 2520 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 2521 uint32_t i; 2522 2523 dep_table = table_info->vdd_dep_on_mclk; 2524 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); 2525 2526 for (i = 0; i < dep_table->count; i++) { 2527 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2528 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 2529 return; 2530 } 2531 } 2532 2533 dep_table = table_info->vdd_dep_on_sclk; 2534 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); 2535 for (i = 0; i < dep_table->count; i++) { 2536 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2537 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 2538 return; 2539 } 2540 } 2541 } 2542 2543 /** 2544 * vega10_init_smc_table - Initializes the SMC table and uploads it 2545 * 2546 * @hwmgr: the address of the powerplay hardware manager. 2547 * return: always 0 2548 */ 2549 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) 2550 { 2551 int result; 2552 struct vega10_hwmgr *data = hwmgr->backend; 2553 struct phm_ppt_v2_information *table_info = 2554 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2555 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2556 struct pp_atomfwctrl_voltage_table voltage_table; 2557 struct pp_atomfwctrl_bios_boot_up_values boot_up_values; 2558 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2559 2560 result = vega10_setup_default_dpm_tables(hwmgr); 2561 PP_ASSERT_WITH_CODE(!result, 2562 "Failed to setup default DPM tables!", 2563 return result); 2564 2565 if (!hwmgr->not_vf) 2566 return 0; 2567 2568 /* initialize ODN table */ 2569 if (hwmgr->od_enabled) { 2570 if (odn_table->max_vddc) { 2571 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 2572 vega10_check_dpm_table_updated(hwmgr); 2573 } else { 2574 vega10_odn_initial_default_setting(hwmgr); 2575 } 2576 } 2577 2578 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, 2579 VOLTAGE_OBJ_SVID2, &voltage_table); 2580 pp_table->MaxVidStep = voltage_table.max_vid_step; 2581 2582 pp_table->GfxDpmVoltageMode = 2583 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); 2584 pp_table->SocDpmVoltageMode = 2585 (uint8_t)(table_info->uc_soc_dpm_voltage_mode); 2586 pp_table->UclkDpmVoltageMode = 2587 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); 2588 pp_table->UvdDpmVoltageMode = 2589 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); 2590 pp_table->VceDpmVoltageMode = 2591 (uint8_t)(table_info->uc_vce_dpm_voltage_mode); 2592 pp_table->Mp0DpmVoltageMode = 2593 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); 2594 2595 pp_table->DisplayDpmVoltageMode = 2596 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); 2597 2598 data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; 2599 data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; 2600 2601 if (data->registry_data.ulv_support && 2602 table_info->us_ulv_voltage_offset) { 2603 result = vega10_populate_ulv_state(hwmgr); 2604 PP_ASSERT_WITH_CODE(!result, 2605 "Failed to initialize ULV state!", 2606 return result); 2607 } 2608 2609 result = vega10_populate_smc_link_levels(hwmgr); 2610 PP_ASSERT_WITH_CODE(!result, 2611 "Failed to initialize Link Level!", 2612 return result); 2613 2614 result = vega10_override_pcie_parameters(hwmgr); 2615 PP_ASSERT_WITH_CODE(!result, 2616 "Failed to override pcie parameters!", 2617 return result); 2618 2619 result = vega10_populate_all_graphic_levels(hwmgr); 2620 PP_ASSERT_WITH_CODE(!result, 2621 "Failed to initialize Graphics Level!", 2622 return result); 2623 2624 result = vega10_populate_all_memory_levels(hwmgr); 2625 PP_ASSERT_WITH_CODE(!result, 2626 "Failed to initialize Memory Level!", 2627 return result); 2628 2629 vega10_populate_vddc_soc_levels(hwmgr); 2630 2631 result = vega10_populate_all_display_clock_levels(hwmgr); 2632 PP_ASSERT_WITH_CODE(!result, 2633 "Failed to initialize Display Level!", 2634 return result); 2635 2636 result = vega10_populate_smc_vce_levels(hwmgr); 2637 PP_ASSERT_WITH_CODE(!result, 2638 "Failed to initialize VCE Level!", 2639 return result); 2640 2641 result = vega10_populate_smc_uvd_levels(hwmgr); 2642 PP_ASSERT_WITH_CODE(!result, 2643 "Failed to initialize UVD Level!", 2644 return result); 2645 2646 if (data->registry_data.clock_stretcher_support) { 2647 result = vega10_populate_clock_stretcher_table(hwmgr); 2648 PP_ASSERT_WITH_CODE(!result, 2649 "Failed to populate Clock Stretcher Table!", 2650 return result); 2651 } 2652 2653 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); 2654 if (!result) { 2655 data->vbios_boot_state.vddc = boot_up_values.usVddc; 2656 data->vbios_boot_state.vddci = boot_up_values.usVddci; 2657 data->vbios_boot_state.mvddc = boot_up_values.usMvddc; 2658 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; 2659 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; 2660 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2661 SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); 2662 2663 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2664 SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); 2665 2666 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; 2667 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; 2668 if (0 != boot_up_values.usVddc) { 2669 smum_send_msg_to_smc_with_parameter(hwmgr, 2670 PPSMC_MSG_SetFloorSocVoltage, 2671 (boot_up_values.usVddc * 4), 2672 NULL); 2673 data->vbios_boot_state.bsoc_vddc_lock = true; 2674 } else { 2675 data->vbios_boot_state.bsoc_vddc_lock = false; 2676 } 2677 smum_send_msg_to_smc_with_parameter(hwmgr, 2678 PPSMC_MSG_SetMinDeepSleepDcefclk, 2679 (uint32_t)(data->vbios_boot_state.dcef_clock / 100), 2680 NULL); 2681 } 2682 2683 result = vega10_populate_avfs_parameters(hwmgr); 2684 PP_ASSERT_WITH_CODE(!result, 2685 "Failed to initialize AVFS Parameters!", 2686 return result); 2687 2688 result = vega10_populate_gpio_parameters(hwmgr); 2689 PP_ASSERT_WITH_CODE(!result, 2690 "Failed to initialize GPIO Parameters!", 2691 return result); 2692 2693 pp_table->GfxclkAverageAlpha = (uint8_t) 2694 (data->gfxclk_average_alpha); 2695 pp_table->SocclkAverageAlpha = (uint8_t) 2696 (data->socclk_average_alpha); 2697 pp_table->UclkAverageAlpha = (uint8_t) 2698 (data->uclk_average_alpha); 2699 pp_table->GfxActivityAverageAlpha = (uint8_t) 2700 (data->gfx_activity_average_alpha); 2701 2702 vega10_populate_and_upload_avfs_fuse_override(hwmgr); 2703 2704 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 2705 2706 PP_ASSERT_WITH_CODE(!result, 2707 "Failed to upload PPtable!", return result); 2708 2709 result = vega10_avfs_enable(hwmgr, true); 2710 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", 2711 return result); 2712 vega10_acg_enable(hwmgr); 2713 2714 return 0; 2715 } 2716 2717 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) 2718 { 2719 struct vega10_hwmgr *data = hwmgr->backend; 2720 2721 if (data->smu_features[GNLD_THERMAL].supported) { 2722 if (data->smu_features[GNLD_THERMAL].enabled) 2723 pr_info("THERMAL Feature Already enabled!"); 2724 2725 PP_ASSERT_WITH_CODE( 2726 !vega10_enable_smc_features(hwmgr, 2727 true, 2728 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2729 "Enable THERMAL Feature Failed!", 2730 return -1); 2731 data->smu_features[GNLD_THERMAL].enabled = true; 2732 } 2733 2734 return 0; 2735 } 2736 2737 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) 2738 { 2739 struct vega10_hwmgr *data = hwmgr->backend; 2740 2741 if (data->smu_features[GNLD_THERMAL].supported) { 2742 if (!data->smu_features[GNLD_THERMAL].enabled) 2743 pr_info("THERMAL Feature Already disabled!"); 2744 2745 PP_ASSERT_WITH_CODE( 2746 !vega10_enable_smc_features(hwmgr, 2747 false, 2748 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2749 "disable THERMAL Feature Failed!", 2750 return -1); 2751 data->smu_features[GNLD_THERMAL].enabled = false; 2752 } 2753 2754 return 0; 2755 } 2756 2757 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) 2758 { 2759 struct vega10_hwmgr *data = hwmgr->backend; 2760 2761 if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { 2762 if (data->smu_features[GNLD_VR0HOT].supported) { 2763 PP_ASSERT_WITH_CODE( 2764 !vega10_enable_smc_features(hwmgr, 2765 true, 2766 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), 2767 "Attempt to Enable VR0 Hot feature Failed!", 2768 return -1); 2769 data->smu_features[GNLD_VR0HOT].enabled = true; 2770 } else { 2771 if (data->smu_features[GNLD_VR1HOT].supported) { 2772 PP_ASSERT_WITH_CODE( 2773 !vega10_enable_smc_features(hwmgr, 2774 true, 2775 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), 2776 "Attempt to Enable VR0 Hot feature Failed!", 2777 return -1); 2778 data->smu_features[GNLD_VR1HOT].enabled = true; 2779 } 2780 } 2781 } 2782 return 0; 2783 } 2784 2785 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) 2786 { 2787 struct vega10_hwmgr *data = hwmgr->backend; 2788 2789 if (data->registry_data.ulv_support) { 2790 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2791 true, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2792 "Enable ULV Feature Failed!", 2793 return -1); 2794 data->smu_features[GNLD_ULV].enabled = true; 2795 } 2796 2797 return 0; 2798 } 2799 2800 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) 2801 { 2802 struct vega10_hwmgr *data = hwmgr->backend; 2803 2804 if (data->registry_data.ulv_support) { 2805 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2806 false, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2807 "disable ULV Feature Failed!", 2808 return -EINVAL); 2809 data->smu_features[GNLD_ULV].enabled = false; 2810 } 2811 2812 return 0; 2813 } 2814 2815 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2816 { 2817 struct vega10_hwmgr *data = hwmgr->backend; 2818 2819 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2820 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2821 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2822 "Attempt to Enable DS_GFXCLK Feature Failed!", 2823 return -EINVAL); 2824 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 2825 } 2826 2827 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2828 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2829 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2830 "Attempt to Enable DS_SOCCLK Feature Failed!", 2831 return -EINVAL); 2832 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 2833 } 2834 2835 if (data->smu_features[GNLD_DS_LCLK].supported) { 2836 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2837 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2838 "Attempt to Enable DS_LCLK Feature Failed!", 2839 return -EINVAL); 2840 data->smu_features[GNLD_DS_LCLK].enabled = true; 2841 } 2842 2843 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2844 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2845 true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2846 "Attempt to Enable DS_DCEFCLK Feature Failed!", 2847 return -EINVAL); 2848 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 2849 } 2850 2851 return 0; 2852 } 2853 2854 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2855 { 2856 struct vega10_hwmgr *data = hwmgr->backend; 2857 2858 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2859 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2860 false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2861 "Attempt to disable DS_GFXCLK Feature Failed!", 2862 return -EINVAL); 2863 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 2864 } 2865 2866 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2867 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2868 false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2869 "Attempt to disable DS_ Feature Failed!", 2870 return -EINVAL); 2871 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 2872 } 2873 2874 if (data->smu_features[GNLD_DS_LCLK].supported) { 2875 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2876 false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2877 "Attempt to disable DS_LCLK Feature Failed!", 2878 return -EINVAL); 2879 data->smu_features[GNLD_DS_LCLK].enabled = false; 2880 } 2881 2882 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2883 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2884 false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2885 "Attempt to disable DS_DCEFCLK Feature Failed!", 2886 return -EINVAL); 2887 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 2888 } 2889 2890 return 0; 2891 } 2892 2893 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2894 { 2895 struct vega10_hwmgr *data = hwmgr->backend; 2896 uint32_t i, feature_mask = 0; 2897 2898 if (!hwmgr->not_vf) 2899 return 0; 2900 2901 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2902 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2903 false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2904 "Attempt to disable LED DPM feature failed!", return -EINVAL); 2905 data->smu_features[GNLD_LED_DISPLAY].enabled = false; 2906 } 2907 2908 for (i = 0; i < GNLD_DPM_MAX; i++) { 2909 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2910 if (data->smu_features[i].supported) { 2911 if (data->smu_features[i].enabled) { 2912 feature_mask |= data->smu_features[i]. 2913 smu_feature_bitmap; 2914 data->smu_features[i].enabled = false; 2915 } 2916 } 2917 } 2918 } 2919 2920 vega10_enable_smc_features(hwmgr, false, feature_mask); 2921 2922 return 0; 2923 } 2924 2925 /** 2926 * vega10_start_dpm - Tell SMC to enabled the supported DPMs. 2927 * 2928 * @hwmgr: the address of the powerplay hardware manager. 2929 * @bitmap: bitmap for the features to enabled. 2930 * return: 0 on at least one DPM is successfully enabled. 2931 */ 2932 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2933 { 2934 struct vega10_hwmgr *data = hwmgr->backend; 2935 uint32_t i, feature_mask = 0; 2936 2937 for (i = 0; i < GNLD_DPM_MAX; i++) { 2938 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2939 if (data->smu_features[i].supported) { 2940 if (!data->smu_features[i].enabled) { 2941 feature_mask |= data->smu_features[i]. 2942 smu_feature_bitmap; 2943 data->smu_features[i].enabled = true; 2944 } 2945 } 2946 } 2947 } 2948 2949 if (vega10_enable_smc_features(hwmgr, 2950 true, feature_mask)) { 2951 for (i = 0; i < GNLD_DPM_MAX; i++) { 2952 if (data->smu_features[i].smu_feature_bitmap & 2953 feature_mask) 2954 data->smu_features[i].enabled = false; 2955 } 2956 } 2957 2958 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2959 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2960 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2961 "Attempt to Enable LED DPM feature Failed!", return -EINVAL); 2962 data->smu_features[GNLD_LED_DISPLAY].enabled = true; 2963 } 2964 2965 if (data->vbios_boot_state.bsoc_vddc_lock) { 2966 smum_send_msg_to_smc_with_parameter(hwmgr, 2967 PPSMC_MSG_SetFloorSocVoltage, 0, 2968 NULL); 2969 data->vbios_boot_state.bsoc_vddc_lock = false; 2970 } 2971 2972 if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { 2973 if (data->smu_features[GNLD_ACDC].supported) { 2974 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2975 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), 2976 "Attempt to Enable DS_GFXCLK Feature Failed!", 2977 return -1); 2978 data->smu_features[GNLD_ACDC].enabled = true; 2979 } 2980 } 2981 2982 if (data->registry_data.pcie_dpm_key_disabled) { 2983 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2984 false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap), 2985 "Attempt to Disable Link DPM feature Failed!", return -EINVAL); 2986 data->smu_features[GNLD_DPM_LINK].enabled = false; 2987 data->smu_features[GNLD_DPM_LINK].supported = false; 2988 } 2989 2990 return 0; 2991 } 2992 2993 2994 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable) 2995 { 2996 struct vega10_hwmgr *data = hwmgr->backend; 2997 2998 if (data->smu_features[GNLD_PCC_LIMIT].supported) { 2999 if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) 3000 pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled"); 3001 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 3002 enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap), 3003 "Attempt to Enable PCC Limit feature Failed!", 3004 return -EINVAL); 3005 data->smu_features[GNLD_PCC_LIMIT].enabled = enable; 3006 } 3007 3008 return 0; 3009 } 3010 3011 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 3012 { 3013 struct vega10_hwmgr *data = hwmgr->backend; 3014 int tmp_result, result = 0; 3015 3016 if (hwmgr->not_vf) { 3017 vega10_enable_disable_PCC_limit_feature(hwmgr, true); 3018 3019 smum_send_msg_to_smc_with_parameter(hwmgr, 3020 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry, 3021 NULL); 3022 3023 tmp_result = vega10_construct_voltage_tables(hwmgr); 3024 PP_ASSERT_WITH_CODE(!tmp_result, 3025 "Failed to construct voltage tables!", 3026 result = tmp_result); 3027 } 3028 3029 if (hwmgr->not_vf || hwmgr->pp_one_vf) { 3030 tmp_result = vega10_init_smc_table(hwmgr); 3031 PP_ASSERT_WITH_CODE(!tmp_result, 3032 "Failed to initialize SMC table!", 3033 result = tmp_result); 3034 } 3035 3036 if (hwmgr->not_vf) { 3037 if (PP_CAP(PHM_PlatformCaps_ThermalController)) { 3038 tmp_result = vega10_enable_thermal_protection(hwmgr); 3039 PP_ASSERT_WITH_CODE(!tmp_result, 3040 "Failed to enable thermal protection!", 3041 result = tmp_result); 3042 } 3043 3044 tmp_result = vega10_enable_vrhot_feature(hwmgr); 3045 PP_ASSERT_WITH_CODE(!tmp_result, 3046 "Failed to enable VR hot feature!", 3047 result = tmp_result); 3048 3049 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); 3050 PP_ASSERT_WITH_CODE(!tmp_result, 3051 "Failed to enable deep sleep master switch!", 3052 result = tmp_result); 3053 } 3054 3055 if (hwmgr->not_vf) { 3056 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); 3057 PP_ASSERT_WITH_CODE(!tmp_result, 3058 "Failed to start DPM!", result = tmp_result); 3059 } 3060 3061 if (hwmgr->not_vf) { 3062 /* enable didt, do not abort if failed didt */ 3063 tmp_result = vega10_enable_didt_config(hwmgr); 3064 PP_ASSERT(!tmp_result, 3065 "Failed to enable didt config!"); 3066 } 3067 3068 tmp_result = vega10_enable_power_containment(hwmgr); 3069 PP_ASSERT_WITH_CODE(!tmp_result, 3070 "Failed to enable power containment!", 3071 result = tmp_result); 3072 3073 if (hwmgr->not_vf) { 3074 tmp_result = vega10_power_control_set_level(hwmgr); 3075 PP_ASSERT_WITH_CODE(!tmp_result, 3076 "Failed to power control set level!", 3077 result = tmp_result); 3078 3079 tmp_result = vega10_enable_ulv(hwmgr); 3080 PP_ASSERT_WITH_CODE(!tmp_result, 3081 "Failed to enable ULV!", 3082 result = tmp_result); 3083 } 3084 3085 return result; 3086 } 3087 3088 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) 3089 { 3090 return sizeof(struct vega10_power_state); 3091 } 3092 3093 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, 3094 void *state, struct pp_power_state *power_state, 3095 void *pp_table, uint32_t classification_flag) 3096 { 3097 ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; 3098 struct vega10_power_state *vega10_power_state = 3099 cast_phw_vega10_power_state(&(power_state->hardware)); 3100 struct vega10_performance_level *performance_level; 3101 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; 3102 ATOM_Vega10_POWERPLAYTABLE *powerplay_table = 3103 (ATOM_Vega10_POWERPLAYTABLE *)pp_table; 3104 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = 3105 (ATOM_Vega10_SOCCLK_Dependency_Table *) 3106 (((unsigned long)powerplay_table) + 3107 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); 3108 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = 3109 (ATOM_Vega10_GFXCLK_Dependency_Table *) 3110 (((unsigned long)powerplay_table) + 3111 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); 3112 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = 3113 (ATOM_Vega10_MCLK_Dependency_Table *) 3114 (((unsigned long)powerplay_table) + 3115 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3116 3117 3118 /* The following fields are not initialized here: 3119 * id orderedList allStatesList 3120 */ 3121 power_state->classification.ui_label = 3122 (le16_to_cpu(state_entry->usClassification) & 3123 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3124 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3125 power_state->classification.flags = classification_flag; 3126 /* NOTE: There is a classification2 flag in BIOS 3127 * that is not being used right now 3128 */ 3129 power_state->classification.temporary_state = false; 3130 power_state->classification.to_be_deleted = false; 3131 3132 power_state->validation.disallowOnDC = 3133 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3134 ATOM_Vega10_DISALLOW_ON_DC) != 0); 3135 3136 power_state->display.disableFrameModulation = false; 3137 power_state->display.limitRefreshrate = false; 3138 power_state->display.enableVariBright = 3139 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3140 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); 3141 3142 power_state->validation.supportedPowerLevels = 0; 3143 power_state->uvd_clocks.VCLK = 0; 3144 power_state->uvd_clocks.DCLK = 0; 3145 power_state->temperatures.min = 0; 3146 power_state->temperatures.max = 0; 3147 3148 performance_level = &(vega10_power_state->performance_levels 3149 [vega10_power_state->performance_level_count++]); 3150 3151 PP_ASSERT_WITH_CODE( 3152 (vega10_power_state->performance_level_count < 3153 NUM_GFXCLK_DPM_LEVELS), 3154 "Performance levels exceeds SMC limit!", 3155 return -1); 3156 3157 PP_ASSERT_WITH_CODE( 3158 (vega10_power_state->performance_level_count <= 3159 hwmgr->platform_descriptor. 3160 hardwareActivityPerformanceLevels), 3161 "Performance levels exceeds Driver limit!", 3162 return -1); 3163 3164 /* Performance levels are arranged from low to high. */ 3165 performance_level->soc_clock = socclk_dep_table->entries 3166 [state_entry->ucSocClockIndexLow].ulClk; 3167 performance_level->gfx_clock = gfxclk_dep_table->entries 3168 [state_entry->ucGfxClockIndexLow].ulClk; 3169 performance_level->mem_clock = mclk_dep_table->entries 3170 [state_entry->ucMemClockIndexLow].ulMemClk; 3171 3172 performance_level = &(vega10_power_state->performance_levels 3173 [vega10_power_state->performance_level_count++]); 3174 performance_level->soc_clock = socclk_dep_table->entries 3175 [state_entry->ucSocClockIndexHigh].ulClk; 3176 if (gfxclk_dep_table->ucRevId == 0) { 3177 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 3178 * to level-4 due to the limited 110w-power 3179 */ 3180 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3181 performance_level->gfx_clock = 3182 gfxclk_dep_table->entries[4].ulClk; 3183 else 3184 performance_level->gfx_clock = gfxclk_dep_table->entries 3185 [state_entry->ucGfxClockIndexHigh].ulClk; 3186 } else if (gfxclk_dep_table->ucRevId == 1) { 3187 patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; 3188 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3189 performance_level->gfx_clock = patom_record_V2[4].ulClk; 3190 else 3191 performance_level->gfx_clock = 3192 patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; 3193 } 3194 3195 performance_level->mem_clock = mclk_dep_table->entries 3196 [state_entry->ucMemClockIndexHigh].ulMemClk; 3197 return 0; 3198 } 3199 3200 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3201 unsigned long entry_index, struct pp_power_state *state) 3202 { 3203 int result; 3204 struct vega10_power_state *ps; 3205 3206 state->hardware.magic = PhwVega10_Magic; 3207 3208 ps = cast_phw_vega10_power_state(&state->hardware); 3209 3210 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, 3211 vega10_get_pp_table_entry_callback_func); 3212 if (result) 3213 return result; 3214 3215 /* 3216 * This is the earliest time we have all the dependency table 3217 * and the VBIOS boot state 3218 */ 3219 /* set DC compatible flag if this state supports DC */ 3220 if (!state->validation.disallowOnDC) 3221 ps->dc_compatible = true; 3222 3223 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3224 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3225 3226 return 0; 3227 } 3228 3229 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, 3230 struct pp_hw_power_state *hw_ps) 3231 { 3232 return 0; 3233 } 3234 3235 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3236 struct pp_power_state *request_ps, 3237 const struct pp_power_state *current_ps) 3238 { 3239 struct amdgpu_device *adev = hwmgr->adev; 3240 struct vega10_power_state *vega10_ps = 3241 cast_phw_vega10_power_state(&request_ps->hardware); 3242 uint32_t sclk; 3243 uint32_t mclk; 3244 struct PP_Clocks minimum_clocks = {0}; 3245 bool disable_mclk_switching; 3246 bool disable_mclk_switching_for_frame_lock; 3247 bool disable_mclk_switching_for_vr; 3248 bool force_mclk_high; 3249 const struct phm_clock_and_voltage_limits *max_limits; 3250 uint32_t i; 3251 struct vega10_hwmgr *data = hwmgr->backend; 3252 struct phm_ppt_v2_information *table_info = 3253 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3254 int32_t count; 3255 uint32_t stable_pstate_sclk_dpm_percentage; 3256 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3257 uint32_t latency; 3258 3259 data->battery_state = (PP_StateUILabel_Battery == 3260 request_ps->classification.ui_label); 3261 3262 if (vega10_ps->performance_level_count != 2) 3263 pr_info("VI should always have 2 performance levels"); 3264 3265 max_limits = adev->pm.ac_power ? 3266 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3267 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3268 3269 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3270 if (!adev->pm.ac_power) { 3271 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3272 if (vega10_ps->performance_levels[i].mem_clock > 3273 max_limits->mclk) 3274 vega10_ps->performance_levels[i].mem_clock = 3275 max_limits->mclk; 3276 if (vega10_ps->performance_levels[i].gfx_clock > 3277 max_limits->sclk) 3278 vega10_ps->performance_levels[i].gfx_clock = 3279 max_limits->sclk; 3280 } 3281 } 3282 3283 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ 3284 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3285 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3286 3287 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3288 stable_pstate_sclk_dpm_percentage = 3289 data->registry_data.stable_pstate_sclk_dpm_percentage; 3290 PP_ASSERT_WITH_CODE( 3291 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && 3292 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, 3293 "percent sclk value must range from 1% to 100%, setting default value", 3294 stable_pstate_sclk_dpm_percentage = 75); 3295 3296 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3297 stable_pstate_sclk = (max_limits->sclk * 3298 stable_pstate_sclk_dpm_percentage) / 100; 3299 3300 for (count = table_info->vdd_dep_on_sclk->count - 1; 3301 count >= 0; count--) { 3302 if (stable_pstate_sclk >= 3303 table_info->vdd_dep_on_sclk->entries[count].clk) { 3304 stable_pstate_sclk = 3305 table_info->vdd_dep_on_sclk->entries[count].clk; 3306 break; 3307 } 3308 } 3309 3310 if (count < 0) 3311 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3312 3313 stable_pstate_mclk = max_limits->mclk; 3314 3315 minimum_clocks.engineClock = stable_pstate_sclk; 3316 minimum_clocks.memoryClock = stable_pstate_mclk; 3317 } 3318 3319 disable_mclk_switching_for_frame_lock = 3320 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3321 disable_mclk_switching_for_vr = 3322 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); 3323 force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); 3324 3325 if (hwmgr->display_config->num_display == 0) 3326 disable_mclk_switching = false; 3327 else 3328 disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && 3329 !hwmgr->display_config->multi_monitor_in_sync) || 3330 disable_mclk_switching_for_frame_lock || 3331 disable_mclk_switching_for_vr || 3332 force_mclk_high; 3333 3334 sclk = vega10_ps->performance_levels[0].gfx_clock; 3335 mclk = vega10_ps->performance_levels[0].mem_clock; 3336 3337 if (sclk < minimum_clocks.engineClock) 3338 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3339 max_limits->sclk : minimum_clocks.engineClock; 3340 3341 if (mclk < minimum_clocks.memoryClock) 3342 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3343 max_limits->mclk : minimum_clocks.memoryClock; 3344 3345 vega10_ps->performance_levels[0].gfx_clock = sclk; 3346 vega10_ps->performance_levels[0].mem_clock = mclk; 3347 3348 if (vega10_ps->performance_levels[1].gfx_clock < 3349 vega10_ps->performance_levels[0].gfx_clock) 3350 vega10_ps->performance_levels[0].gfx_clock = 3351 vega10_ps->performance_levels[1].gfx_clock; 3352 3353 if (disable_mclk_switching) { 3354 /* Set Mclk the max of level 0 and level 1 */ 3355 if (mclk < vega10_ps->performance_levels[1].mem_clock) 3356 mclk = vega10_ps->performance_levels[1].mem_clock; 3357 3358 /* Find the lowest MCLK frequency that is within 3359 * the tolerable latency defined in DAL 3360 */ 3361 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3362 for (i = 0; i < data->mclk_latency_table.count; i++) { 3363 if ((data->mclk_latency_table.entries[i].latency <= latency) && 3364 (data->mclk_latency_table.entries[i].frequency >= 3365 vega10_ps->performance_levels[0].mem_clock) && 3366 (data->mclk_latency_table.entries[i].frequency <= 3367 vega10_ps->performance_levels[1].mem_clock)) 3368 mclk = data->mclk_latency_table.entries[i].frequency; 3369 } 3370 vega10_ps->performance_levels[0].mem_clock = mclk; 3371 } else { 3372 if (vega10_ps->performance_levels[1].mem_clock < 3373 vega10_ps->performance_levels[0].mem_clock) 3374 vega10_ps->performance_levels[0].mem_clock = 3375 vega10_ps->performance_levels[1].mem_clock; 3376 } 3377 3378 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3379 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3380 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; 3381 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; 3382 } 3383 } 3384 3385 return 0; 3386 } 3387 3388 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 3389 { 3390 struct vega10_hwmgr *data = hwmgr->backend; 3391 const struct phm_set_power_state_input *states = 3392 (const struct phm_set_power_state_input *)input; 3393 const struct vega10_power_state *vega10_ps = 3394 cast_const_phw_vega10_power_state(states->pnew_state); 3395 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 3396 uint32_t sclk = vega10_ps->performance_levels 3397 [vega10_ps->performance_level_count - 1].gfx_clock; 3398 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 3399 uint32_t mclk = vega10_ps->performance_levels 3400 [vega10_ps->performance_level_count - 1].mem_clock; 3401 uint32_t i; 3402 3403 for (i = 0; i < sclk_table->count; i++) { 3404 if (sclk == sclk_table->dpm_levels[i].value) 3405 break; 3406 } 3407 3408 if (i >= sclk_table->count) { 3409 if (sclk > sclk_table->dpm_levels[i-1].value) { 3410 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 3411 sclk_table->dpm_levels[i-1].value = sclk; 3412 } 3413 } 3414 3415 for (i = 0; i < mclk_table->count; i++) { 3416 if (mclk == mclk_table->dpm_levels[i].value) 3417 break; 3418 } 3419 3420 if (i >= mclk_table->count) { 3421 if (mclk > mclk_table->dpm_levels[i-1].value) { 3422 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 3423 mclk_table->dpm_levels[i-1].value = mclk; 3424 } 3425 } 3426 3427 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 3428 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; 3429 3430 return 0; 3431 } 3432 3433 static int vega10_populate_and_upload_sclk_mclk_dpm_levels( 3434 struct pp_hwmgr *hwmgr, const void *input) 3435 { 3436 int result = 0; 3437 struct vega10_hwmgr *data = hwmgr->backend; 3438 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3439 struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; 3440 struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; 3441 int count; 3442 3443 if (!data->need_update_dpm_table) 3444 return 0; 3445 3446 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 3447 for (count = 0; count < dpm_table->gfx_table.count; count++) 3448 dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3449 } 3450 3451 odn_clk_table = &odn_table->vdd_dep_on_mclk; 3452 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 3453 for (count = 0; count < dpm_table->mem_table.count; count++) 3454 dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3455 } 3456 3457 if (data->need_update_dpm_table & 3458 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) { 3459 result = vega10_populate_all_graphic_levels(hwmgr); 3460 PP_ASSERT_WITH_CODE((0 == result), 3461 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 3462 return result); 3463 } 3464 3465 if (data->need_update_dpm_table & 3466 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { 3467 result = vega10_populate_all_memory_levels(hwmgr); 3468 PP_ASSERT_WITH_CODE((0 == result), 3469 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 3470 return result); 3471 } 3472 3473 vega10_populate_vddc_soc_levels(hwmgr); 3474 3475 return result; 3476 } 3477 3478 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 3479 struct vega10_single_dpm_table *dpm_table, 3480 uint32_t low_limit, uint32_t high_limit) 3481 { 3482 uint32_t i; 3483 3484 for (i = 0; i < dpm_table->count; i++) { 3485 if ((dpm_table->dpm_levels[i].value < low_limit) || 3486 (dpm_table->dpm_levels[i].value > high_limit)) 3487 dpm_table->dpm_levels[i].enabled = false; 3488 else 3489 dpm_table->dpm_levels[i].enabled = true; 3490 } 3491 return 0; 3492 } 3493 3494 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, 3495 struct vega10_single_dpm_table *dpm_table, 3496 uint32_t low_limit, uint32_t high_limit, 3497 uint32_t disable_dpm_mask) 3498 { 3499 uint32_t i; 3500 3501 for (i = 0; i < dpm_table->count; i++) { 3502 if ((dpm_table->dpm_levels[i].value < low_limit) || 3503 (dpm_table->dpm_levels[i].value > high_limit)) 3504 dpm_table->dpm_levels[i].enabled = false; 3505 else if (!((1 << i) & disable_dpm_mask)) 3506 dpm_table->dpm_levels[i].enabled = false; 3507 else 3508 dpm_table->dpm_levels[i].enabled = true; 3509 } 3510 return 0; 3511 } 3512 3513 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, 3514 const struct vega10_power_state *vega10_ps) 3515 { 3516 struct vega10_hwmgr *data = hwmgr->backend; 3517 uint32_t high_limit_count; 3518 3519 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), 3520 "power state did not have any performance level", 3521 return -1); 3522 3523 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; 3524 3525 vega10_trim_single_dpm_states(hwmgr, 3526 &(data->dpm_table.soc_table), 3527 vega10_ps->performance_levels[0].soc_clock, 3528 vega10_ps->performance_levels[high_limit_count].soc_clock); 3529 3530 vega10_trim_single_dpm_states_with_mask(hwmgr, 3531 &(data->dpm_table.gfx_table), 3532 vega10_ps->performance_levels[0].gfx_clock, 3533 vega10_ps->performance_levels[high_limit_count].gfx_clock, 3534 data->disable_dpm_mask); 3535 3536 vega10_trim_single_dpm_states(hwmgr, 3537 &(data->dpm_table.mem_table), 3538 vega10_ps->performance_levels[0].mem_clock, 3539 vega10_ps->performance_levels[high_limit_count].mem_clock); 3540 3541 return 0; 3542 } 3543 3544 static uint32_t vega10_find_lowest_dpm_level( 3545 struct vega10_single_dpm_table *table) 3546 { 3547 uint32_t i; 3548 3549 for (i = 0; i < table->count; i++) { 3550 if (table->dpm_levels[i].enabled) 3551 break; 3552 } 3553 3554 return i; 3555 } 3556 3557 static uint32_t vega10_find_highest_dpm_level( 3558 struct vega10_single_dpm_table *table) 3559 { 3560 uint32_t i = 0; 3561 3562 if (table->count <= MAX_REGULAR_DPM_NUMBER) { 3563 for (i = table->count; i > 0; i--) { 3564 if (table->dpm_levels[i - 1].enabled) 3565 return i - 1; 3566 } 3567 } else { 3568 pr_info("DPM Table Has Too Many Entries!"); 3569 return MAX_REGULAR_DPM_NUMBER - 1; 3570 } 3571 3572 return i; 3573 } 3574 3575 static void vega10_apply_dal_minimum_voltage_request( 3576 struct pp_hwmgr *hwmgr) 3577 { 3578 return; 3579 } 3580 3581 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) 3582 { 3583 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; 3584 struct phm_ppt_v2_information *table_info = 3585 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3586 3587 vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; 3588 3589 return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; 3590 } 3591 3592 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) 3593 { 3594 struct vega10_hwmgr *data = hwmgr->backend; 3595 uint32_t socclk_idx; 3596 3597 vega10_apply_dal_minimum_voltage_request(hwmgr); 3598 3599 if (!data->registry_data.sclk_dpm_key_disabled) { 3600 if (data->smc_state_table.gfx_boot_level != 3601 data->dpm_table.gfx_table.dpm_state.soft_min_level) { 3602 smum_send_msg_to_smc_with_parameter(hwmgr, 3603 PPSMC_MSG_SetSoftMinGfxclkByIndex, 3604 data->smc_state_table.gfx_boot_level, 3605 NULL); 3606 3607 data->dpm_table.gfx_table.dpm_state.soft_min_level = 3608 data->smc_state_table.gfx_boot_level; 3609 } 3610 } 3611 3612 if (!data->registry_data.mclk_dpm_key_disabled) { 3613 if (data->smc_state_table.mem_boot_level != 3614 data->dpm_table.mem_table.dpm_state.soft_min_level) { 3615 if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) 3616 && hwmgr->not_vf) { 3617 socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); 3618 smum_send_msg_to_smc_with_parameter(hwmgr, 3619 PPSMC_MSG_SetSoftMinSocclkByIndex, 3620 socclk_idx, 3621 NULL); 3622 } else { 3623 smum_send_msg_to_smc_with_parameter(hwmgr, 3624 PPSMC_MSG_SetSoftMinUclkByIndex, 3625 data->smc_state_table.mem_boot_level, 3626 NULL); 3627 } 3628 data->dpm_table.mem_table.dpm_state.soft_min_level = 3629 data->smc_state_table.mem_boot_level; 3630 } 3631 } 3632 3633 if (!hwmgr->not_vf) 3634 return 0; 3635 3636 if (!data->registry_data.socclk_dpm_key_disabled) { 3637 if (data->smc_state_table.soc_boot_level != 3638 data->dpm_table.soc_table.dpm_state.soft_min_level) { 3639 smum_send_msg_to_smc_with_parameter(hwmgr, 3640 PPSMC_MSG_SetSoftMinSocclkByIndex, 3641 data->smc_state_table.soc_boot_level, 3642 NULL); 3643 data->dpm_table.soc_table.dpm_state.soft_min_level = 3644 data->smc_state_table.soc_boot_level; 3645 } 3646 } 3647 3648 return 0; 3649 } 3650 3651 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) 3652 { 3653 struct vega10_hwmgr *data = hwmgr->backend; 3654 3655 vega10_apply_dal_minimum_voltage_request(hwmgr); 3656 3657 if (!data->registry_data.sclk_dpm_key_disabled) { 3658 if (data->smc_state_table.gfx_max_level != 3659 data->dpm_table.gfx_table.dpm_state.soft_max_level) { 3660 smum_send_msg_to_smc_with_parameter(hwmgr, 3661 PPSMC_MSG_SetSoftMaxGfxclkByIndex, 3662 data->smc_state_table.gfx_max_level, 3663 NULL); 3664 data->dpm_table.gfx_table.dpm_state.soft_max_level = 3665 data->smc_state_table.gfx_max_level; 3666 } 3667 } 3668 3669 if (!data->registry_data.mclk_dpm_key_disabled) { 3670 if (data->smc_state_table.mem_max_level != 3671 data->dpm_table.mem_table.dpm_state.soft_max_level) { 3672 smum_send_msg_to_smc_with_parameter(hwmgr, 3673 PPSMC_MSG_SetSoftMaxUclkByIndex, 3674 data->smc_state_table.mem_max_level, 3675 NULL); 3676 data->dpm_table.mem_table.dpm_state.soft_max_level = 3677 data->smc_state_table.mem_max_level; 3678 } 3679 } 3680 3681 if (!hwmgr->not_vf) 3682 return 0; 3683 3684 if (!data->registry_data.socclk_dpm_key_disabled) { 3685 if (data->smc_state_table.soc_max_level != 3686 data->dpm_table.soc_table.dpm_state.soft_max_level) { 3687 smum_send_msg_to_smc_with_parameter(hwmgr, 3688 PPSMC_MSG_SetSoftMaxSocclkByIndex, 3689 data->smc_state_table.soc_max_level, 3690 NULL); 3691 data->dpm_table.soc_table.dpm_state.soft_max_level = 3692 data->smc_state_table.soc_max_level; 3693 } 3694 } 3695 3696 return 0; 3697 } 3698 3699 static int vega10_generate_dpm_level_enable_mask( 3700 struct pp_hwmgr *hwmgr, const void *input) 3701 { 3702 struct vega10_hwmgr *data = hwmgr->backend; 3703 const struct phm_set_power_state_input *states = 3704 (const struct phm_set_power_state_input *)input; 3705 const struct vega10_power_state *vega10_ps = 3706 cast_const_phw_vega10_power_state(states->pnew_state); 3707 int i; 3708 3709 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), 3710 "Attempt to Trim DPM States Failed!", 3711 return -1); 3712 3713 data->smc_state_table.gfx_boot_level = 3714 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 3715 data->smc_state_table.gfx_max_level = 3716 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 3717 data->smc_state_table.mem_boot_level = 3718 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 3719 data->smc_state_table.mem_max_level = 3720 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 3721 data->smc_state_table.soc_boot_level = 3722 vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); 3723 data->smc_state_table.soc_max_level = 3724 vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); 3725 3726 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 3727 "Attempt to upload DPM Bootup Levels Failed!", 3728 return -1); 3729 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 3730 "Attempt to upload DPM Max Levels Failed!", 3731 return -1); 3732 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) 3733 data->dpm_table.gfx_table.dpm_levels[i].enabled = true; 3734 3735 3736 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) 3737 data->dpm_table.mem_table.dpm_levels[i].enabled = true; 3738 3739 for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) 3740 data->dpm_table.soc_table.dpm_levels[i].enabled = true; 3741 3742 return 0; 3743 } 3744 3745 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) 3746 { 3747 struct vega10_hwmgr *data = hwmgr->backend; 3748 3749 if (data->smu_features[GNLD_DPM_VCE].supported) { 3750 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 3751 enable, 3752 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), 3753 "Attempt to Enable/Disable DPM VCE Failed!", 3754 return -1); 3755 data->smu_features[GNLD_DPM_VCE].enabled = enable; 3756 } 3757 3758 return 0; 3759 } 3760 3761 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) 3762 { 3763 struct vega10_hwmgr *data = hwmgr->backend; 3764 uint32_t low_sclk_interrupt_threshold = 0; 3765 3766 if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && 3767 (data->low_sclk_interrupt_threshold != 0)) { 3768 low_sclk_interrupt_threshold = 3769 data->low_sclk_interrupt_threshold; 3770 3771 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = 3772 cpu_to_le32(low_sclk_interrupt_threshold); 3773 3774 /* This message will also enable SmcToHost Interrupt */ 3775 smum_send_msg_to_smc_with_parameter(hwmgr, 3776 PPSMC_MSG_SetLowGfxclkInterruptThreshold, 3777 (uint32_t)low_sclk_interrupt_threshold, 3778 NULL); 3779 } 3780 3781 return 0; 3782 } 3783 3784 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, 3785 const void *input) 3786 { 3787 int tmp_result, result = 0; 3788 struct vega10_hwmgr *data = hwmgr->backend; 3789 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 3790 3791 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 3792 PP_ASSERT_WITH_CODE(!tmp_result, 3793 "Failed to find DPM states clocks in DPM table!", 3794 result = tmp_result); 3795 3796 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 3797 PP_ASSERT_WITH_CODE(!tmp_result, 3798 "Failed to populate and upload SCLK MCLK DPM levels!", 3799 result = tmp_result); 3800 3801 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); 3802 PP_ASSERT_WITH_CODE(!tmp_result, 3803 "Failed to generate DPM level enabled mask!", 3804 result = tmp_result); 3805 3806 tmp_result = vega10_update_sclk_threshold(hwmgr); 3807 PP_ASSERT_WITH_CODE(!tmp_result, 3808 "Failed to update SCLK threshold!", 3809 result = tmp_result); 3810 3811 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 3812 PP_ASSERT_WITH_CODE(!result, 3813 "Failed to upload PPtable!", return result); 3814 3815 /* 3816 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 3817 * That effectively disables AVFS feature. 3818 */ 3819 if(hwmgr->hardcode_pp_table != NULL) 3820 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 3821 3822 vega10_update_avfs(hwmgr); 3823 3824 /* 3825 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. 3826 * That will help to keep AVFS disabled. 3827 */ 3828 data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 3829 3830 return 0; 3831 } 3832 3833 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3834 { 3835 struct pp_power_state *ps; 3836 struct vega10_power_state *vega10_ps; 3837 3838 if (hwmgr == NULL) 3839 return -EINVAL; 3840 3841 ps = hwmgr->request_ps; 3842 3843 if (ps == NULL) 3844 return -EINVAL; 3845 3846 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3847 3848 if (low) 3849 return vega10_ps->performance_levels[0].gfx_clock; 3850 else 3851 return vega10_ps->performance_levels 3852 [vega10_ps->performance_level_count - 1].gfx_clock; 3853 } 3854 3855 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3856 { 3857 struct pp_power_state *ps; 3858 struct vega10_power_state *vega10_ps; 3859 3860 if (hwmgr == NULL) 3861 return -EINVAL; 3862 3863 ps = hwmgr->request_ps; 3864 3865 if (ps == NULL) 3866 return -EINVAL; 3867 3868 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3869 3870 if (low) 3871 return vega10_ps->performance_levels[0].mem_clock; 3872 else 3873 return vega10_ps->performance_levels 3874 [vega10_ps->performance_level_count-1].mem_clock; 3875 } 3876 3877 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, 3878 uint32_t *query) 3879 { 3880 uint32_t value; 3881 3882 if (!query) 3883 return -EINVAL; 3884 3885 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value); 3886 3887 /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ 3888 *query = value << 8; 3889 3890 return 0; 3891 } 3892 3893 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3894 void *value, int *size) 3895 { 3896 struct amdgpu_device *adev = hwmgr->adev; 3897 uint32_t sclk_mhz, mclk_idx, activity_percent = 0; 3898 struct vega10_hwmgr *data = hwmgr->backend; 3899 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3900 int ret = 0; 3901 uint32_t val_vid; 3902 3903 switch (idx) { 3904 case AMDGPU_PP_SENSOR_GFX_SCLK: 3905 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz); 3906 *((uint32_t *)value) = sclk_mhz * 100; 3907 break; 3908 case AMDGPU_PP_SENSOR_GFX_MCLK: 3909 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx); 3910 if (mclk_idx < dpm_table->mem_table.count) { 3911 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; 3912 *size = 4; 3913 } else { 3914 ret = -EINVAL; 3915 } 3916 break; 3917 case AMDGPU_PP_SENSOR_GPU_LOAD: 3918 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0, 3919 &activity_percent); 3920 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 3921 *size = 4; 3922 break; 3923 case AMDGPU_PP_SENSOR_GPU_TEMP: 3924 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); 3925 *size = 4; 3926 break; 3927 case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: 3928 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value); 3929 *((uint32_t *)value) = *((uint32_t *)value) * 3930 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3931 *size = 4; 3932 break; 3933 case AMDGPU_PP_SENSOR_MEM_TEMP: 3934 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value); 3935 *((uint32_t *)value) = *((uint32_t *)value) * 3936 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3937 *size = 4; 3938 break; 3939 case AMDGPU_PP_SENSOR_UVD_POWER: 3940 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 3941 *size = 4; 3942 break; 3943 case AMDGPU_PP_SENSOR_VCE_POWER: 3944 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 3945 *size = 4; 3946 break; 3947 case AMDGPU_PP_SENSOR_GPU_POWER: 3948 ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); 3949 break; 3950 case AMDGPU_PP_SENSOR_VDDGFX: 3951 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) & 3952 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >> 3953 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT; 3954 *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); 3955 return 0; 3956 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: 3957 ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); 3958 if (!ret) 3959 *size = 8; 3960 break; 3961 default: 3962 ret = -EOPNOTSUPP; 3963 break; 3964 } 3965 3966 return ret; 3967 } 3968 3969 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, 3970 bool has_disp) 3971 { 3972 smum_send_msg_to_smc_with_parameter(hwmgr, 3973 PPSMC_MSG_SetUclkFastSwitch, 3974 has_disp ? 1 : 0, 3975 NULL); 3976 } 3977 3978 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, 3979 struct pp_display_clock_request *clock_req) 3980 { 3981 int result = 0; 3982 enum amd_pp_clock_type clk_type = clock_req->clock_type; 3983 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; 3984 DSPCLK_e clk_select = 0; 3985 uint32_t clk_request = 0; 3986 3987 switch (clk_type) { 3988 case amd_pp_dcef_clock: 3989 clk_select = DSPCLK_DCEFCLK; 3990 break; 3991 case amd_pp_disp_clock: 3992 clk_select = DSPCLK_DISPCLK; 3993 break; 3994 case amd_pp_pixel_clock: 3995 clk_select = DSPCLK_PIXCLK; 3996 break; 3997 case amd_pp_phy_clock: 3998 clk_select = DSPCLK_PHYCLK; 3999 break; 4000 default: 4001 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); 4002 result = -1; 4003 break; 4004 } 4005 4006 if (!result) { 4007 clk_request = (clk_freq << 16) | clk_select; 4008 smum_send_msg_to_smc_with_parameter(hwmgr, 4009 PPSMC_MSG_RequestDisplayClockByFreq, 4010 clk_request, 4011 NULL); 4012 } 4013 4014 return result; 4015 } 4016 4017 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, 4018 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, 4019 uint32_t frequency) 4020 { 4021 uint8_t count; 4022 uint8_t i; 4023 4024 if (mclk_table == NULL || mclk_table->count == 0) 4025 return 0; 4026 4027 count = (uint8_t)(mclk_table->count); 4028 4029 for(i = 0; i < count; i++) { 4030 if(mclk_table->entries[i].clk >= frequency) 4031 return i; 4032 } 4033 4034 return i-1; 4035 } 4036 4037 static int vega10_notify_smc_display_config_after_ps_adjustment( 4038 struct pp_hwmgr *hwmgr) 4039 { 4040 struct vega10_hwmgr *data = hwmgr->backend; 4041 struct vega10_single_dpm_table *dpm_table = 4042 &data->dpm_table.dcef_table; 4043 struct phm_ppt_v2_information *table_info = 4044 (struct phm_ppt_v2_information *)hwmgr->pptable; 4045 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; 4046 uint32_t idx; 4047 struct PP_Clocks min_clocks = {0}; 4048 uint32_t i; 4049 struct pp_display_clock_request clock_req; 4050 4051 if ((hwmgr->display_config->num_display > 1) && 4052 !hwmgr->display_config->multi_monitor_in_sync && 4053 !hwmgr->display_config->nb_pstate_switch_disable) 4054 vega10_notify_smc_display_change(hwmgr, false); 4055 else 4056 vega10_notify_smc_display_change(hwmgr, true); 4057 4058 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; 4059 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; 4060 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 4061 4062 for (i = 0; i < dpm_table->count; i++) { 4063 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) 4064 break; 4065 } 4066 4067 if (i < dpm_table->count) { 4068 clock_req.clock_type = amd_pp_dcef_clock; 4069 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; 4070 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { 4071 smum_send_msg_to_smc_with_parameter( 4072 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, 4073 min_clocks.dcefClockInSR / 100, 4074 NULL); 4075 } else { 4076 pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); 4077 } 4078 } else { 4079 pr_debug("Cannot find requested DCEFCLK!"); 4080 } 4081 4082 if (min_clocks.memoryClock != 0) { 4083 idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); 4084 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx, 4085 NULL); 4086 data->dpm_table.mem_table.dpm_state.soft_min_level= idx; 4087 } 4088 4089 return 0; 4090 } 4091 4092 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) 4093 { 4094 struct vega10_hwmgr *data = hwmgr->backend; 4095 4096 data->smc_state_table.gfx_boot_level = 4097 data->smc_state_table.gfx_max_level = 4098 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4099 data->smc_state_table.mem_boot_level = 4100 data->smc_state_table.mem_max_level = 4101 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4102 4103 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4104 "Failed to upload boot level to highest!", 4105 return -1); 4106 4107 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4108 "Failed to upload dpm max level to highest!", 4109 return -1); 4110 4111 return 0; 4112 } 4113 4114 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) 4115 { 4116 struct vega10_hwmgr *data = hwmgr->backend; 4117 4118 data->smc_state_table.gfx_boot_level = 4119 data->smc_state_table.gfx_max_level = 4120 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4121 data->smc_state_table.mem_boot_level = 4122 data->smc_state_table.mem_max_level = 4123 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4124 4125 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4126 "Failed to upload boot level to highest!", 4127 return -1); 4128 4129 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4130 "Failed to upload dpm max level to highest!", 4131 return -1); 4132 4133 return 0; 4134 4135 } 4136 4137 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 4138 { 4139 struct vega10_hwmgr *data = hwmgr->backend; 4140 4141 data->smc_state_table.gfx_boot_level = 4142 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4143 data->smc_state_table.gfx_max_level = 4144 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4145 data->smc_state_table.mem_boot_level = 4146 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4147 data->smc_state_table.mem_max_level = 4148 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4149 4150 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4151 "Failed to upload DPM Bootup Levels!", 4152 return -1); 4153 4154 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4155 "Failed to upload DPM Max Levels!", 4156 return -1); 4157 return 0; 4158 } 4159 4160 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 4161 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) 4162 { 4163 struct phm_ppt_v2_information *table_info = 4164 (struct phm_ppt_v2_information *)(hwmgr->pptable); 4165 4166 if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && 4167 table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && 4168 table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { 4169 *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; 4170 *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; 4171 *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; 4172 hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk; 4173 hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk; 4174 } 4175 4176 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 4177 *sclk_mask = 0; 4178 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { 4179 *mclk_mask = 0; 4180 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 4181 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 4182 * to level-4 due to the limited power 4183 */ 4184 if (hwmgr->pp_one_vf) 4185 *sclk_mask = 4; 4186 else 4187 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 4188 *soc_mask = table_info->vdd_dep_on_socclk->count - 1; 4189 *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; 4190 } 4191 4192 return 0; 4193 } 4194 4195 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 4196 { 4197 if (!hwmgr->not_vf) 4198 return; 4199 4200 switch (mode) { 4201 case AMD_FAN_CTRL_NONE: 4202 vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 4203 break; 4204 case AMD_FAN_CTRL_MANUAL: 4205 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4206 vega10_fan_ctrl_stop_smc_fan_control(hwmgr); 4207 break; 4208 case AMD_FAN_CTRL_AUTO: 4209 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4210 vega10_fan_ctrl_start_smc_fan_control(hwmgr); 4211 break; 4212 default: 4213 break; 4214 } 4215 } 4216 4217 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, 4218 enum pp_clock_type type, uint32_t mask) 4219 { 4220 struct vega10_hwmgr *data = hwmgr->backend; 4221 4222 switch (type) { 4223 case PP_SCLK: 4224 data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; 4225 data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; 4226 4227 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4228 "Failed to upload boot level to lowest!", 4229 return -EINVAL); 4230 4231 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4232 "Failed to upload dpm max level to highest!", 4233 return -EINVAL); 4234 break; 4235 4236 case PP_MCLK: 4237 data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; 4238 data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; 4239 4240 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4241 "Failed to upload boot level to lowest!", 4242 return -EINVAL); 4243 4244 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4245 "Failed to upload dpm max level to highest!", 4246 return -EINVAL); 4247 4248 break; 4249 4250 case PP_SOCCLK: 4251 data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; 4252 data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; 4253 4254 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4255 "Failed to upload boot level to lowest!", 4256 return -EINVAL); 4257 4258 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4259 "Failed to upload dpm max level to highest!", 4260 return -EINVAL); 4261 4262 break; 4263 4264 case PP_DCEFCLK: 4265 pr_info("Setting DCEFCLK min/max dpm level is not supported!\n"); 4266 break; 4267 4268 case PP_PCIE: 4269 default: 4270 break; 4271 } 4272 4273 return 0; 4274 } 4275 4276 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, 4277 enum amd_dpm_forced_level level) 4278 { 4279 int ret = 0; 4280 uint32_t sclk_mask = 0; 4281 uint32_t mclk_mask = 0; 4282 uint32_t soc_mask = 0; 4283 4284 if (hwmgr->pstate_sclk == 0) 4285 vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4286 4287 switch (level) { 4288 case AMD_DPM_FORCED_LEVEL_HIGH: 4289 ret = vega10_force_dpm_highest(hwmgr); 4290 break; 4291 case AMD_DPM_FORCED_LEVEL_LOW: 4292 ret = vega10_force_dpm_lowest(hwmgr); 4293 break; 4294 case AMD_DPM_FORCED_LEVEL_AUTO: 4295 ret = vega10_unforce_dpm_levels(hwmgr); 4296 break; 4297 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 4298 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 4299 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 4300 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 4301 ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4302 if (ret) 4303 return ret; 4304 vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 4305 vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 4306 break; 4307 case AMD_DPM_FORCED_LEVEL_MANUAL: 4308 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 4309 default: 4310 break; 4311 } 4312 4313 if (!hwmgr->not_vf) 4314 return ret; 4315 4316 if (!ret) { 4317 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4318 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); 4319 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4320 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); 4321 } 4322 4323 return ret; 4324 } 4325 4326 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) 4327 { 4328 struct vega10_hwmgr *data = hwmgr->backend; 4329 4330 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) 4331 return AMD_FAN_CTRL_MANUAL; 4332 else 4333 return AMD_FAN_CTRL_AUTO; 4334 } 4335 4336 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, 4337 struct amd_pp_simple_clock_info *info) 4338 { 4339 struct phm_ppt_v2_information *table_info = 4340 (struct phm_ppt_v2_information *)hwmgr->pptable; 4341 struct phm_clock_and_voltage_limits *max_limits = 4342 &table_info->max_clock_voltage_on_ac; 4343 4344 info->engine_max_clock = max_limits->sclk; 4345 info->memory_max_clock = max_limits->mclk; 4346 4347 return 0; 4348 } 4349 4350 static void vega10_get_sclks(struct pp_hwmgr *hwmgr, 4351 struct pp_clock_levels_with_latency *clocks) 4352 { 4353 struct phm_ppt_v2_information *table_info = 4354 (struct phm_ppt_v2_information *)hwmgr->pptable; 4355 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4356 table_info->vdd_dep_on_sclk; 4357 uint32_t i; 4358 4359 clocks->num_levels = 0; 4360 for (i = 0; i < dep_table->count; i++) { 4361 if (dep_table->entries[i].clk) { 4362 clocks->data[clocks->num_levels].clocks_in_khz = 4363 dep_table->entries[i].clk * 10; 4364 clocks->num_levels++; 4365 } 4366 } 4367 4368 } 4369 4370 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, 4371 struct pp_clock_levels_with_latency *clocks) 4372 { 4373 struct phm_ppt_v2_information *table_info = 4374 (struct phm_ppt_v2_information *)hwmgr->pptable; 4375 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4376 table_info->vdd_dep_on_mclk; 4377 struct vega10_hwmgr *data = hwmgr->backend; 4378 uint32_t j = 0; 4379 uint32_t i; 4380 4381 for (i = 0; i < dep_table->count; i++) { 4382 if (dep_table->entries[i].clk) { 4383 4384 clocks->data[j].clocks_in_khz = 4385 dep_table->entries[i].clk * 10; 4386 data->mclk_latency_table.entries[j].frequency = 4387 dep_table->entries[i].clk; 4388 clocks->data[j].latency_in_us = 4389 data->mclk_latency_table.entries[j].latency = 25; 4390 j++; 4391 } 4392 } 4393 clocks->num_levels = data->mclk_latency_table.count = j; 4394 } 4395 4396 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, 4397 struct pp_clock_levels_with_latency *clocks) 4398 { 4399 struct phm_ppt_v2_information *table_info = 4400 (struct phm_ppt_v2_information *)hwmgr->pptable; 4401 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4402 table_info->vdd_dep_on_dcefclk; 4403 uint32_t i; 4404 4405 for (i = 0; i < dep_table->count; i++) { 4406 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4407 clocks->data[i].latency_in_us = 0; 4408 clocks->num_levels++; 4409 } 4410 } 4411 4412 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, 4413 struct pp_clock_levels_with_latency *clocks) 4414 { 4415 struct phm_ppt_v2_information *table_info = 4416 (struct phm_ppt_v2_information *)hwmgr->pptable; 4417 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4418 table_info->vdd_dep_on_socclk; 4419 uint32_t i; 4420 4421 for (i = 0; i < dep_table->count; i++) { 4422 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4423 clocks->data[i].latency_in_us = 0; 4424 clocks->num_levels++; 4425 } 4426 } 4427 4428 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 4429 enum amd_pp_clock_type type, 4430 struct pp_clock_levels_with_latency *clocks) 4431 { 4432 switch (type) { 4433 case amd_pp_sys_clock: 4434 vega10_get_sclks(hwmgr, clocks); 4435 break; 4436 case amd_pp_mem_clock: 4437 vega10_get_memclocks(hwmgr, clocks); 4438 break; 4439 case amd_pp_dcef_clock: 4440 vega10_get_dcefclocks(hwmgr, clocks); 4441 break; 4442 case amd_pp_soc_clock: 4443 vega10_get_socclocks(hwmgr, clocks); 4444 break; 4445 default: 4446 return -1; 4447 } 4448 4449 return 0; 4450 } 4451 4452 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, 4453 enum amd_pp_clock_type type, 4454 struct pp_clock_levels_with_voltage *clocks) 4455 { 4456 struct phm_ppt_v2_information *table_info = 4457 (struct phm_ppt_v2_information *)hwmgr->pptable; 4458 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 4459 uint32_t i; 4460 4461 switch (type) { 4462 case amd_pp_mem_clock: 4463 dep_table = table_info->vdd_dep_on_mclk; 4464 break; 4465 case amd_pp_dcef_clock: 4466 dep_table = table_info->vdd_dep_on_dcefclk; 4467 break; 4468 case amd_pp_disp_clock: 4469 dep_table = table_info->vdd_dep_on_dispclk; 4470 break; 4471 case amd_pp_pixel_clock: 4472 dep_table = table_info->vdd_dep_on_pixclk; 4473 break; 4474 case amd_pp_phy_clock: 4475 dep_table = table_info->vdd_dep_on_phyclk; 4476 break; 4477 default: 4478 return -1; 4479 } 4480 4481 for (i = 0; i < dep_table->count; i++) { 4482 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4483 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> 4484 entries[dep_table->entries[i].vddInd].us_vdd); 4485 clocks->num_levels++; 4486 } 4487 4488 if (i < dep_table->count) 4489 return -1; 4490 4491 return 0; 4492 } 4493 4494 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 4495 void *clock_range) 4496 { 4497 struct vega10_hwmgr *data = hwmgr->backend; 4498 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; 4499 Watermarks_t *table = &(data->smc_state_table.water_marks_table); 4500 4501 if (!data->registry_data.disable_water_mark) { 4502 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); 4503 data->water_marks_bitmap = WaterMarksExist; 4504 } 4505 4506 return 0; 4507 } 4508 4509 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) 4510 { 4511 static const char *ppfeature_name[] = { 4512 "DPM_PREFETCHER", 4513 "GFXCLK_DPM", 4514 "UCLK_DPM", 4515 "SOCCLK_DPM", 4516 "UVD_DPM", 4517 "VCE_DPM", 4518 "ULV", 4519 "MP0CLK_DPM", 4520 "LINK_DPM", 4521 "DCEFCLK_DPM", 4522 "AVFS", 4523 "GFXCLK_DS", 4524 "SOCCLK_DS", 4525 "LCLK_DS", 4526 "PPT", 4527 "TDC", 4528 "THERMAL", 4529 "GFX_PER_CU_CG", 4530 "RM", 4531 "DCEFCLK_DS", 4532 "ACDC", 4533 "VR0HOT", 4534 "VR1HOT", 4535 "FW_CTF", 4536 "LED_DISPLAY", 4537 "FAN_CONTROL", 4538 "FAST_PPT", 4539 "DIDT", 4540 "ACG", 4541 "PCC_LIMIT"}; 4542 static const char *output_title[] = { 4543 "FEATURES", 4544 "BITMASK", 4545 "ENABLEMENT"}; 4546 uint64_t features_enabled; 4547 int i; 4548 int ret = 0; 4549 int size = 0; 4550 4551 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4552 PP_ASSERT_WITH_CODE(!ret, 4553 "[EnableAllSmuFeatures] Failed to get enabled smc features!", 4554 return ret); 4555 4556 size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled); 4557 size += sprintf(buf + size, "%-19s %-22s %s\n", 4558 output_title[0], 4559 output_title[1], 4560 output_title[2]); 4561 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 4562 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", 4563 ppfeature_name[i], 4564 1ULL << i, 4565 (features_enabled & (1ULL << i)) ? "Y" : "N"); 4566 } 4567 4568 return size; 4569 } 4570 4571 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) 4572 { 4573 uint64_t features_enabled; 4574 uint64_t features_to_enable; 4575 uint64_t features_to_disable; 4576 int ret = 0; 4577 4578 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) 4579 return -EINVAL; 4580 4581 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4582 if (ret) 4583 return ret; 4584 4585 features_to_disable = 4586 features_enabled & ~new_ppfeature_masks; 4587 features_to_enable = 4588 ~features_enabled & new_ppfeature_masks; 4589 4590 pr_debug("features_to_disable 0x%llx\n", features_to_disable); 4591 pr_debug("features_to_enable 0x%llx\n", features_to_enable); 4592 4593 if (features_to_disable) { 4594 ret = vega10_enable_smc_features(hwmgr, false, features_to_disable); 4595 if (ret) 4596 return ret; 4597 } 4598 4599 if (features_to_enable) { 4600 ret = vega10_enable_smc_features(hwmgr, true, features_to_enable); 4601 if (ret) 4602 return ret; 4603 } 4604 4605 return 0; 4606 } 4607 4608 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) 4609 { 4610 struct amdgpu_device *adev = hwmgr->adev; 4611 4612 return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & 4613 PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) 4614 >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; 4615 } 4616 4617 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) 4618 { 4619 struct amdgpu_device *adev = hwmgr->adev; 4620 4621 return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & 4622 PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) 4623 >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; 4624 } 4625 4626 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, 4627 enum pp_clock_type type, char *buf) 4628 { 4629 struct vega10_hwmgr *data = hwmgr->backend; 4630 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4631 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4632 struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); 4633 struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); 4634 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; 4635 uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; 4636 PPTable_t *pptable = &(data->smc_state_table.pp_table); 4637 4638 int i, now, size = 0, count = 0; 4639 4640 switch (type) { 4641 case PP_SCLK: 4642 if (data->registry_data.sclk_dpm_key_disabled) 4643 break; 4644 4645 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now); 4646 4647 if (hwmgr->pp_one_vf && 4648 (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) 4649 count = 5; 4650 else 4651 count = sclk_table->count; 4652 for (i = 0; i < count; i++) 4653 size += sprintf(buf + size, "%d: %uMhz %s\n", 4654 i, sclk_table->dpm_levels[i].value / 100, 4655 (i == now) ? "*" : ""); 4656 break; 4657 case PP_MCLK: 4658 if (data->registry_data.mclk_dpm_key_disabled) 4659 break; 4660 4661 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now); 4662 4663 for (i = 0; i < mclk_table->count; i++) 4664 size += sprintf(buf + size, "%d: %uMhz %s\n", 4665 i, mclk_table->dpm_levels[i].value / 100, 4666 (i == now) ? "*" : ""); 4667 break; 4668 case PP_SOCCLK: 4669 if (data->registry_data.socclk_dpm_key_disabled) 4670 break; 4671 4672 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now); 4673 4674 for (i = 0; i < soc_table->count; i++) 4675 size += sprintf(buf + size, "%d: %uMhz %s\n", 4676 i, soc_table->dpm_levels[i].value / 100, 4677 (i == now) ? "*" : ""); 4678 break; 4679 case PP_DCEFCLK: 4680 if (data->registry_data.dcefclk_dpm_key_disabled) 4681 break; 4682 4683 smum_send_msg_to_smc_with_parameter(hwmgr, 4684 PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now); 4685 4686 for (i = 0; i < dcef_table->count; i++) 4687 size += sprintf(buf + size, "%d: %uMhz %s\n", 4688 i, dcef_table->dpm_levels[i].value / 100, 4689 (dcef_table->dpm_levels[i].value / 100 == now) ? 4690 "*" : ""); 4691 break; 4692 case PP_PCIE: 4693 current_gen_speed = 4694 vega10_get_current_pcie_link_speed_level(hwmgr); 4695 current_lane_width = 4696 vega10_get_current_pcie_link_width_level(hwmgr); 4697 for (i = 0; i < NUM_LINK_LEVELS; i++) { 4698 gen_speed = pptable->PcieGenSpeed[i]; 4699 lane_width = pptable->PcieLaneCount[i]; 4700 4701 size += sprintf(buf + size, "%d: %s %s %s\n", i, 4702 (gen_speed == 0) ? "2.5GT/s," : 4703 (gen_speed == 1) ? "5.0GT/s," : 4704 (gen_speed == 2) ? "8.0GT/s," : 4705 (gen_speed == 3) ? "16.0GT/s," : "", 4706 (lane_width == 1) ? "x1" : 4707 (lane_width == 2) ? "x2" : 4708 (lane_width == 3) ? "x4" : 4709 (lane_width == 4) ? "x8" : 4710 (lane_width == 5) ? "x12" : 4711 (lane_width == 6) ? "x16" : "", 4712 (current_gen_speed == gen_speed) && 4713 (current_lane_width == lane_width) ? 4714 "*" : ""); 4715 } 4716 break; 4717 4718 case OD_SCLK: 4719 if (hwmgr->od_enabled) { 4720 size = sprintf(buf, "%s:\n", "OD_SCLK"); 4721 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 4722 for (i = 0; i < podn_vdd_dep->count; i++) 4723 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4724 i, podn_vdd_dep->entries[i].clk / 100, 4725 podn_vdd_dep->entries[i].vddc); 4726 } 4727 break; 4728 case OD_MCLK: 4729 if (hwmgr->od_enabled) { 4730 size = sprintf(buf, "%s:\n", "OD_MCLK"); 4731 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 4732 for (i = 0; i < podn_vdd_dep->count; i++) 4733 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4734 i, podn_vdd_dep->entries[i].clk/100, 4735 podn_vdd_dep->entries[i].vddc); 4736 } 4737 break; 4738 case OD_RANGE: 4739 if (hwmgr->od_enabled) { 4740 size = sprintf(buf, "%s:\n", "OD_RANGE"); 4741 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 4742 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, 4743 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 4744 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 4745 data->golden_dpm_table.mem_table.dpm_levels[0].value/100, 4746 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 4747 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 4748 data->odn_dpm_table.min_vddc, 4749 data->odn_dpm_table.max_vddc); 4750 } 4751 break; 4752 default: 4753 break; 4754 } 4755 return size; 4756 } 4757 4758 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4759 { 4760 struct vega10_hwmgr *data = hwmgr->backend; 4761 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); 4762 int result = 0; 4763 4764 if ((data->water_marks_bitmap & WaterMarksExist) && 4765 !(data->water_marks_bitmap & WaterMarksLoaded)) { 4766 result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false); 4767 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); 4768 data->water_marks_bitmap |= WaterMarksLoaded; 4769 } 4770 4771 if (data->water_marks_bitmap & WaterMarksLoaded) { 4772 smum_send_msg_to_smc_with_parameter(hwmgr, 4773 PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, 4774 NULL); 4775 } 4776 4777 return result; 4778 } 4779 4780 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) 4781 { 4782 struct vega10_hwmgr *data = hwmgr->backend; 4783 4784 if (data->smu_features[GNLD_DPM_UVD].supported) { 4785 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 4786 enable, 4787 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), 4788 "Attempt to Enable/Disable DPM UVD Failed!", 4789 return -1); 4790 data->smu_features[GNLD_DPM_UVD].enabled = enable; 4791 } 4792 return 0; 4793 } 4794 4795 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) 4796 { 4797 struct vega10_hwmgr *data = hwmgr->backend; 4798 4799 data->vce_power_gated = bgate; 4800 vega10_enable_disable_vce_dpm(hwmgr, !bgate); 4801 } 4802 4803 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) 4804 { 4805 struct vega10_hwmgr *data = hwmgr->backend; 4806 4807 data->uvd_power_gated = bgate; 4808 vega10_enable_disable_uvd_dpm(hwmgr, !bgate); 4809 } 4810 4811 static inline bool vega10_are_power_levels_equal( 4812 const struct vega10_performance_level *pl1, 4813 const struct vega10_performance_level *pl2) 4814 { 4815 return ((pl1->soc_clock == pl2->soc_clock) && 4816 (pl1->gfx_clock == pl2->gfx_clock) && 4817 (pl1->mem_clock == pl2->mem_clock)); 4818 } 4819 4820 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, 4821 const struct pp_hw_power_state *pstate1, 4822 const struct pp_hw_power_state *pstate2, bool *equal) 4823 { 4824 const struct vega10_power_state *psa; 4825 const struct vega10_power_state *psb; 4826 int i; 4827 4828 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4829 return -EINVAL; 4830 4831 psa = cast_const_phw_vega10_power_state(pstate1); 4832 psb = cast_const_phw_vega10_power_state(pstate2); 4833 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4834 if (psa->performance_level_count != psb->performance_level_count) { 4835 *equal = false; 4836 return 0; 4837 } 4838 4839 for (i = 0; i < psa->performance_level_count; i++) { 4840 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4841 /* If we have found even one performance level pair that is different the states are different. */ 4842 *equal = false; 4843 return 0; 4844 } 4845 } 4846 4847 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4848 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4849 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4850 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4851 4852 return 0; 4853 } 4854 4855 static bool 4856 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4857 { 4858 struct vega10_hwmgr *data = hwmgr->backend; 4859 bool is_update_required = false; 4860 4861 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4862 is_update_required = true; 4863 4864 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { 4865 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) 4866 is_update_required = true; 4867 } 4868 4869 return is_update_required; 4870 } 4871 4872 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 4873 { 4874 int tmp_result, result = 0; 4875 4876 if (!hwmgr->not_vf) 4877 return 0; 4878 4879 if (PP_CAP(PHM_PlatformCaps_ThermalController)) 4880 vega10_disable_thermal_protection(hwmgr); 4881 4882 tmp_result = vega10_disable_power_containment(hwmgr); 4883 PP_ASSERT_WITH_CODE((tmp_result == 0), 4884 "Failed to disable power containment!", result = tmp_result); 4885 4886 tmp_result = vega10_disable_didt_config(hwmgr); 4887 PP_ASSERT_WITH_CODE((tmp_result == 0), 4888 "Failed to disable didt config!", result = tmp_result); 4889 4890 tmp_result = vega10_avfs_enable(hwmgr, false); 4891 PP_ASSERT_WITH_CODE((tmp_result == 0), 4892 "Failed to disable AVFS!", result = tmp_result); 4893 4894 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); 4895 PP_ASSERT_WITH_CODE((tmp_result == 0), 4896 "Failed to stop DPM!", result = tmp_result); 4897 4898 tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); 4899 PP_ASSERT_WITH_CODE((tmp_result == 0), 4900 "Failed to disable deep sleep!", result = tmp_result); 4901 4902 tmp_result = vega10_disable_ulv(hwmgr); 4903 PP_ASSERT_WITH_CODE((tmp_result == 0), 4904 "Failed to disable ulv!", result = tmp_result); 4905 4906 tmp_result = vega10_acg_disable(hwmgr); 4907 PP_ASSERT_WITH_CODE((tmp_result == 0), 4908 "Failed to disable acg!", result = tmp_result); 4909 4910 vega10_enable_disable_PCC_limit_feature(hwmgr, false); 4911 return result; 4912 } 4913 4914 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) 4915 { 4916 struct vega10_hwmgr *data = hwmgr->backend; 4917 int result; 4918 4919 result = vega10_disable_dpm_tasks(hwmgr); 4920 PP_ASSERT_WITH_CODE((0 == result), 4921 "[disable_dpm_tasks] Failed to disable DPM!", 4922 ); 4923 data->water_marks_bitmap &= ~(WaterMarksLoaded); 4924 4925 return result; 4926 } 4927 4928 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) 4929 { 4930 struct vega10_hwmgr *data = hwmgr->backend; 4931 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4932 struct vega10_single_dpm_table *golden_sclk_table = 4933 &(data->golden_dpm_table.gfx_table); 4934 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 4935 int golden_value = golden_sclk_table->dpm_levels 4936 [golden_sclk_table->count - 1].value; 4937 4938 value -= golden_value; 4939 value = DIV_ROUND_UP(value * 100, golden_value); 4940 4941 return value; 4942 } 4943 4944 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4945 { 4946 struct vega10_hwmgr *data = hwmgr->backend; 4947 struct vega10_single_dpm_table *golden_sclk_table = 4948 &(data->golden_dpm_table.gfx_table); 4949 struct pp_power_state *ps; 4950 struct vega10_power_state *vega10_ps; 4951 4952 ps = hwmgr->request_ps; 4953 4954 if (ps == NULL) 4955 return -EINVAL; 4956 4957 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 4958 4959 vega10_ps->performance_levels 4960 [vega10_ps->performance_level_count - 1].gfx_clock = 4961 golden_sclk_table->dpm_levels 4962 [golden_sclk_table->count - 1].value * 4963 value / 100 + 4964 golden_sclk_table->dpm_levels 4965 [golden_sclk_table->count - 1].value; 4966 4967 if (vega10_ps->performance_levels 4968 [vega10_ps->performance_level_count - 1].gfx_clock > 4969 hwmgr->platform_descriptor.overdriveLimit.engineClock) { 4970 vega10_ps->performance_levels 4971 [vega10_ps->performance_level_count - 1].gfx_clock = 4972 hwmgr->platform_descriptor.overdriveLimit.engineClock; 4973 pr_warn("max sclk supported by vbios is %d\n", 4974 hwmgr->platform_descriptor.overdriveLimit.engineClock); 4975 } 4976 return 0; 4977 } 4978 4979 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) 4980 { 4981 struct vega10_hwmgr *data = hwmgr->backend; 4982 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4983 struct vega10_single_dpm_table *golden_mclk_table = 4984 &(data->golden_dpm_table.mem_table); 4985 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 4986 int golden_value = golden_mclk_table->dpm_levels 4987 [golden_mclk_table->count - 1].value; 4988 4989 value -= golden_value; 4990 value = DIV_ROUND_UP(value * 100, golden_value); 4991 4992 return value; 4993 } 4994 4995 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4996 { 4997 struct vega10_hwmgr *data = hwmgr->backend; 4998 struct vega10_single_dpm_table *golden_mclk_table = 4999 &(data->golden_dpm_table.mem_table); 5000 struct pp_power_state *ps; 5001 struct vega10_power_state *vega10_ps; 5002 5003 ps = hwmgr->request_ps; 5004 5005 if (ps == NULL) 5006 return -EINVAL; 5007 5008 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5009 5010 vega10_ps->performance_levels 5011 [vega10_ps->performance_level_count - 1].mem_clock = 5012 golden_mclk_table->dpm_levels 5013 [golden_mclk_table->count - 1].value * 5014 value / 100 + 5015 golden_mclk_table->dpm_levels 5016 [golden_mclk_table->count - 1].value; 5017 5018 if (vega10_ps->performance_levels 5019 [vega10_ps->performance_level_count - 1].mem_clock > 5020 hwmgr->platform_descriptor.overdriveLimit.memoryClock) { 5021 vega10_ps->performance_levels 5022 [vega10_ps->performance_level_count - 1].mem_clock = 5023 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 5024 pr_warn("max mclk supported by vbios is %d\n", 5025 hwmgr->platform_descriptor.overdriveLimit.memoryClock); 5026 } 5027 5028 return 0; 5029 } 5030 5031 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 5032 uint32_t virtual_addr_low, 5033 uint32_t virtual_addr_hi, 5034 uint32_t mc_addr_low, 5035 uint32_t mc_addr_hi, 5036 uint32_t size) 5037 { 5038 smum_send_msg_to_smc_with_parameter(hwmgr, 5039 PPSMC_MSG_SetSystemVirtualDramAddrHigh, 5040 virtual_addr_hi, 5041 NULL); 5042 smum_send_msg_to_smc_with_parameter(hwmgr, 5043 PPSMC_MSG_SetSystemVirtualDramAddrLow, 5044 virtual_addr_low, 5045 NULL); 5046 smum_send_msg_to_smc_with_parameter(hwmgr, 5047 PPSMC_MSG_DramLogSetDramAddrHigh, 5048 mc_addr_hi, 5049 NULL); 5050 5051 smum_send_msg_to_smc_with_parameter(hwmgr, 5052 PPSMC_MSG_DramLogSetDramAddrLow, 5053 mc_addr_low, 5054 NULL); 5055 5056 smum_send_msg_to_smc_with_parameter(hwmgr, 5057 PPSMC_MSG_DramLogSetDramSize, 5058 size, 5059 NULL); 5060 return 0; 5061 } 5062 5063 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 5064 struct PP_TemperatureRange *thermal_data) 5065 { 5066 struct vega10_hwmgr *data = hwmgr->backend; 5067 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 5068 5069 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); 5070 5071 thermal_data->max = pp_table->TedgeLimit * 5072 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5073 thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * 5074 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5075 thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * 5076 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5077 thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * 5078 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5079 thermal_data->mem_crit_max = pp_table->ThbmLimit * 5080 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5081 thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* 5082 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5083 5084 return 0; 5085 } 5086 5087 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 5088 { 5089 struct vega10_hwmgr *data = hwmgr->backend; 5090 uint32_t i, size = 0; 5091 static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, 5092 {70, 60, 1, 3,}, 5093 {90, 60, 0, 0,}, 5094 {70, 60, 0, 0,}, 5095 {70, 90, 0, 0,}, 5096 {30, 60, 0, 6,}, 5097 }; 5098 static const char *profile_name[7] = {"BOOTUP_DEFAULT", 5099 "3D_FULL_SCREEN", 5100 "POWER_SAVING", 5101 "VIDEO", 5102 "VR", 5103 "COMPUTE", 5104 "CUSTOM"}; 5105 static const char *title[6] = {"NUM", 5106 "MODE_NAME", 5107 "BUSY_SET_POINT", 5108 "FPS", 5109 "USE_RLC_BUSY", 5110 "MIN_ACTIVE_LEVEL"}; 5111 5112 if (!buf) 5113 return -EINVAL; 5114 5115 size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0], 5116 title[1], title[2], title[3], title[4], title[5]); 5117 5118 for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) 5119 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", 5120 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5121 profile_mode_setting[i][0], profile_mode_setting[i][1], 5122 profile_mode_setting[i][2], profile_mode_setting[i][3]); 5123 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i, 5124 profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5125 data->custom_profile_mode[0], data->custom_profile_mode[1], 5126 data->custom_profile_mode[2], data->custom_profile_mode[3]); 5127 return size; 5128 } 5129 5130 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5131 { 5132 struct vega10_hwmgr *data = hwmgr->backend; 5133 uint8_t busy_set_point; 5134 uint8_t FPS; 5135 uint8_t use_rlc_busy; 5136 uint8_t min_active_level; 5137 uint32_t power_profile_mode = input[size]; 5138 5139 if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { 5140 if (size != 0 && size != 4) 5141 return -EINVAL; 5142 5143 /* If size = 0 and the CUSTOM profile has been set already 5144 * then just apply the profile. The copy stored in the hwmgr 5145 * is zeroed out on init 5146 */ 5147 if (size == 0) { 5148 if (data->custom_profile_mode[0] != 0) 5149 goto out; 5150 else 5151 return -EINVAL; 5152 } 5153 5154 data->custom_profile_mode[0] = busy_set_point = input[0]; 5155 data->custom_profile_mode[1] = FPS = input[1]; 5156 data->custom_profile_mode[2] = use_rlc_busy = input[2]; 5157 data->custom_profile_mode[3] = min_active_level = input[3]; 5158 smum_send_msg_to_smc_with_parameter(hwmgr, 5159 PPSMC_MSG_SetCustomGfxDpmParameters, 5160 busy_set_point | FPS<<8 | 5161 use_rlc_busy << 16 | min_active_level<<24, 5162 NULL); 5163 } 5164 5165 out: 5166 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 5167 (!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1), 5168 NULL); 5169 hwmgr->power_profile_mode = power_profile_mode; 5170 5171 return 0; 5172 } 5173 5174 5175 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5176 enum PP_OD_DPM_TABLE_COMMAND type, 5177 uint32_t clk, 5178 uint32_t voltage) 5179 { 5180 struct vega10_hwmgr *data = hwmgr->backend; 5181 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 5182 struct vega10_single_dpm_table *golden_table; 5183 5184 if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { 5185 pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc); 5186 return false; 5187 } 5188 5189 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5190 golden_table = &(data->golden_dpm_table.gfx_table); 5191 if (golden_table->dpm_levels[0].value > clk || 5192 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5193 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5194 golden_table->dpm_levels[0].value/100, 5195 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5196 return false; 5197 } 5198 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5199 golden_table = &(data->golden_dpm_table.mem_table); 5200 if (golden_table->dpm_levels[0].value > clk || 5201 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5202 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5203 golden_table->dpm_levels[0].value/100, 5204 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5205 return false; 5206 } 5207 } else { 5208 return false; 5209 } 5210 5211 return true; 5212 } 5213 5214 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) 5215 { 5216 struct vega10_hwmgr *data = hwmgr->backend; 5217 struct pp_power_state *ps = hwmgr->request_ps; 5218 struct vega10_power_state *vega10_ps; 5219 struct vega10_single_dpm_table *gfx_dpm_table = 5220 &data->dpm_table.gfx_table; 5221 struct vega10_single_dpm_table *soc_dpm_table = 5222 &data->dpm_table.soc_table; 5223 struct vega10_single_dpm_table *mem_dpm_table = 5224 &data->dpm_table.mem_table; 5225 int max_level; 5226 5227 if (!ps) 5228 return; 5229 5230 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5231 max_level = vega10_ps->performance_level_count - 1; 5232 5233 if (vega10_ps->performance_levels[max_level].gfx_clock != 5234 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5235 vega10_ps->performance_levels[max_level].gfx_clock = 5236 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5237 5238 if (vega10_ps->performance_levels[max_level].soc_clock != 5239 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5240 vega10_ps->performance_levels[max_level].soc_clock = 5241 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5242 5243 if (vega10_ps->performance_levels[max_level].mem_clock != 5244 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5245 vega10_ps->performance_levels[max_level].mem_clock = 5246 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5247 5248 if (!hwmgr->ps) 5249 return; 5250 5251 ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); 5252 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5253 max_level = vega10_ps->performance_level_count - 1; 5254 5255 if (vega10_ps->performance_levels[max_level].gfx_clock != 5256 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5257 vega10_ps->performance_levels[max_level].gfx_clock = 5258 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5259 5260 if (vega10_ps->performance_levels[max_level].soc_clock != 5261 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5262 vega10_ps->performance_levels[max_level].soc_clock = 5263 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5264 5265 if (vega10_ps->performance_levels[max_level].mem_clock != 5266 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5267 vega10_ps->performance_levels[max_level].mem_clock = 5268 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5269 } 5270 5271 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, 5272 enum PP_OD_DPM_TABLE_COMMAND type) 5273 { 5274 struct vega10_hwmgr *data = hwmgr->backend; 5275 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 5276 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; 5277 struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; 5278 5279 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = 5280 &data->odn_dpm_table.vdd_dep_on_socclk; 5281 struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; 5282 5283 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; 5284 uint8_t i, j; 5285 5286 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5287 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 5288 for (i = 0; i < podn_vdd_dep->count; i++) 5289 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; 5290 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5291 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 5292 for (i = 0; i < dpm_table->count; i++) { 5293 for (j = 0; j < od_vddc_lookup_table->count; j++) { 5294 if (od_vddc_lookup_table->entries[j].us_vdd > 5295 podn_vdd_dep->entries[i].vddc) 5296 break; 5297 } 5298 if (j == od_vddc_lookup_table->count) { 5299 j = od_vddc_lookup_table->count - 1; 5300 od_vddc_lookup_table->entries[j].us_vdd = 5301 podn_vdd_dep->entries[i].vddc; 5302 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 5303 } 5304 podn_vdd_dep->entries[i].vddInd = j; 5305 } 5306 dpm_table = &data->dpm_table.soc_table; 5307 for (i = 0; i < dep_table->count; i++) { 5308 if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && 5309 dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { 5310 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5311 for (; (i < dep_table->count) && 5312 (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { 5313 podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; 5314 dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; 5315 } 5316 break; 5317 } else { 5318 dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; 5319 podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; 5320 podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; 5321 podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; 5322 } 5323 } 5324 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < 5325 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { 5326 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5327 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = 5328 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5329 dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = 5330 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5331 } 5332 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < 5333 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { 5334 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5335 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = 5336 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; 5337 } 5338 } 5339 vega10_odn_update_power_state(hwmgr); 5340 } 5341 5342 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5343 enum PP_OD_DPM_TABLE_COMMAND type, 5344 long *input, uint32_t size) 5345 { 5346 struct vega10_hwmgr *data = hwmgr->backend; 5347 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; 5348 struct vega10_single_dpm_table *dpm_table; 5349 5350 uint32_t input_clk; 5351 uint32_t input_vol; 5352 uint32_t input_level; 5353 uint32_t i; 5354 5355 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5356 return -EINVAL); 5357 5358 if (!hwmgr->od_enabled) { 5359 pr_info("OverDrive feature not enabled\n"); 5360 return -EINVAL; 5361 } 5362 5363 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5364 dpm_table = &data->dpm_table.gfx_table; 5365 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; 5366 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 5367 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5368 dpm_table = &data->dpm_table.mem_table; 5369 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; 5370 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 5371 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5372 memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table)); 5373 vega10_odn_initial_default_setting(hwmgr); 5374 vega10_odn_update_power_state(hwmgr); 5375 /* force to update all clock tables */ 5376 data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK | 5377 DPMTABLE_UPDATE_MCLK | 5378 DPMTABLE_UPDATE_SOCCLK; 5379 return 0; 5380 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5381 vega10_check_dpm_table_updated(hwmgr); 5382 return 0; 5383 } else { 5384 return -EINVAL; 5385 } 5386 5387 for (i = 0; i < size; i += 3) { 5388 if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { 5389 pr_info("invalid clock voltage input\n"); 5390 return 0; 5391 } 5392 input_level = input[i]; 5393 input_clk = input[i+1] * 100; 5394 input_vol = input[i+2]; 5395 5396 if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5397 dpm_table->dpm_levels[input_level].value = input_clk; 5398 podn_vdd_dep_table->entries[input_level].clk = input_clk; 5399 podn_vdd_dep_table->entries[input_level].vddc = input_vol; 5400 } else { 5401 return -EINVAL; 5402 } 5403 } 5404 vega10_odn_update_soc_table(hwmgr, type); 5405 return 0; 5406 } 5407 5408 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, 5409 enum pp_mp1_state mp1_state) 5410 { 5411 uint16_t msg; 5412 int ret; 5413 5414 switch (mp1_state) { 5415 case PP_MP1_STATE_UNLOAD: 5416 msg = PPSMC_MSG_PrepareMp1ForUnload; 5417 break; 5418 case PP_MP1_STATE_SHUTDOWN: 5419 case PP_MP1_STATE_RESET: 5420 case PP_MP1_STATE_NONE: 5421 default: 5422 return 0; 5423 } 5424 5425 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, 5426 "[PrepareMp1] Failed!", 5427 return ret); 5428 5429 return 0; 5430 } 5431 5432 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5433 PHM_PerformanceLevelDesignation designation, uint32_t index, 5434 PHM_PerformanceLevel *level) 5435 { 5436 const struct vega10_power_state *ps; 5437 uint32_t i; 5438 5439 if (level == NULL || hwmgr == NULL || state == NULL) 5440 return -EINVAL; 5441 5442 ps = cast_const_phw_vega10_power_state(state); 5443 5444 i = index > ps->performance_level_count - 1 ? 5445 ps->performance_level_count - 1 : index; 5446 5447 level->coreClock = ps->performance_levels[i].gfx_clock; 5448 level->memory_clock = ps->performance_levels[i].mem_clock; 5449 5450 return 0; 5451 } 5452 5453 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable) 5454 { 5455 struct vega10_hwmgr *data = hwmgr->backend; 5456 uint32_t feature_mask = 0; 5457 5458 if (disable) { 5459 feature_mask |= data->smu_features[GNLD_ULV].enabled ? 5460 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5461 feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? 5462 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5463 feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? 5464 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5465 feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? 5466 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5467 feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? 5468 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5469 } else { 5470 feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? 5471 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5472 feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? 5473 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5474 feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? 5475 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5476 feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? 5477 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5478 feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? 5479 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5480 } 5481 5482 if (feature_mask) 5483 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 5484 !disable, feature_mask), 5485 "enable/disable power features for compute performance Failed!", 5486 return -EINVAL); 5487 5488 if (disable) { 5489 data->smu_features[GNLD_ULV].enabled = false; 5490 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 5491 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 5492 data->smu_features[GNLD_DS_LCLK].enabled = false; 5493 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 5494 } else { 5495 data->smu_features[GNLD_ULV].enabled = true; 5496 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 5497 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 5498 data->smu_features[GNLD_DS_LCLK].enabled = true; 5499 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 5500 } 5501 5502 return 0; 5503 5504 } 5505 5506 static const struct pp_hwmgr_func vega10_hwmgr_funcs = { 5507 .backend_init = vega10_hwmgr_backend_init, 5508 .backend_fini = vega10_hwmgr_backend_fini, 5509 .asic_setup = vega10_setup_asic_task, 5510 .dynamic_state_management_enable = vega10_enable_dpm_tasks, 5511 .dynamic_state_management_disable = vega10_disable_dpm_tasks, 5512 .get_num_of_pp_table_entries = 5513 vega10_get_number_of_powerplay_table_entries, 5514 .get_power_state_size = vega10_get_power_state_size, 5515 .get_pp_table_entry = vega10_get_pp_table_entry, 5516 .patch_boot_state = vega10_patch_boot_state, 5517 .apply_state_adjust_rules = vega10_apply_state_adjust_rules, 5518 .power_state_set = vega10_set_power_state_tasks, 5519 .get_sclk = vega10_dpm_get_sclk, 5520 .get_mclk = vega10_dpm_get_mclk, 5521 .notify_smc_display_config_after_ps_adjustment = 5522 vega10_notify_smc_display_config_after_ps_adjustment, 5523 .force_dpm_level = vega10_dpm_force_dpm_level, 5524 .stop_thermal_controller = vega10_thermal_stop_thermal_controller, 5525 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, 5526 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, 5527 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, 5528 .reset_fan_speed_to_default = 5529 vega10_fan_ctrl_reset_fan_speed_to_default, 5530 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, 5531 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, 5532 .uninitialize_thermal_controller = 5533 vega10_thermal_ctrl_uninitialize_thermal_controller, 5534 .set_fan_control_mode = vega10_set_fan_control_mode, 5535 .get_fan_control_mode = vega10_get_fan_control_mode, 5536 .read_sensor = vega10_read_sensor, 5537 .get_dal_power_level = vega10_get_dal_power_level, 5538 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, 5539 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, 5540 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, 5541 .display_clock_voltage_request = vega10_display_clock_voltage_request, 5542 .force_clock_level = vega10_force_clock_level, 5543 .print_clock_levels = vega10_print_clock_levels, 5544 .display_config_changed = vega10_display_configuration_changed_task, 5545 .powergate_uvd = vega10_power_gate_uvd, 5546 .powergate_vce = vega10_power_gate_vce, 5547 .check_states_equal = vega10_check_states_equal, 5548 .check_smc_update_required_for_display_configuration = 5549 vega10_check_smc_update_required_for_display_configuration, 5550 .power_off_asic = vega10_power_off_asic, 5551 .disable_smc_firmware_ctf = vega10_thermal_disable_alert, 5552 .get_sclk_od = vega10_get_sclk_od, 5553 .set_sclk_od = vega10_set_sclk_od, 5554 .get_mclk_od = vega10_get_mclk_od, 5555 .set_mclk_od = vega10_set_mclk_od, 5556 .avfs_control = vega10_avfs_enable, 5557 .notify_cac_buffer_info = vega10_notify_cac_buffer_info, 5558 .get_thermal_temperature_range = vega10_get_thermal_temperature_range, 5559 .register_irq_handlers = smu9_register_irq_handlers, 5560 .start_thermal_controller = vega10_start_thermal_controller, 5561 .get_power_profile_mode = vega10_get_power_profile_mode, 5562 .set_power_profile_mode = vega10_set_power_profile_mode, 5563 .set_power_limit = vega10_set_power_limit, 5564 .odn_edit_dpm_table = vega10_odn_edit_dpm_table, 5565 .get_performance_level = vega10_get_performance_level, 5566 .get_asic_baco_capability = smu9_baco_get_capability, 5567 .get_asic_baco_state = smu9_baco_get_state, 5568 .set_asic_baco_state = vega10_baco_set_state, 5569 .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, 5570 .get_ppfeature_status = vega10_get_ppfeature_status, 5571 .set_ppfeature_status = vega10_set_ppfeature_status, 5572 .set_mp1_state = vega10_set_mp1_state, 5573 .disable_power_features_for_compute_performance = 5574 vega10_disable_power_features_for_compute_performance, 5575 }; 5576 5577 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) 5578 { 5579 struct amdgpu_device *adev = hwmgr->adev; 5580 5581 hwmgr->hwmgr_func = &vega10_hwmgr_funcs; 5582 hwmgr->pptable_func = &vega10_pptable_funcs; 5583 if (amdgpu_passthrough(adev)) 5584 return vega10_baco_set_cap(hwmgr); 5585 5586 return 0; 5587 } 5588