1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 
30 #include "hwmgr.h"
31 #include "amd_powerplay.h"
32 #include "hardwaremanager.h"
33 #include "ppatomfwctrl.h"
34 #include "atomfirmware.h"
35 #include "cgs_common.h"
36 #include "vega10_powertune.h"
37 #include "smu9.h"
38 #include "smu9_driver_if.h"
39 #include "vega10_inc.h"
40 #include "soc15_common.h"
41 #include "pppcielanes.h"
42 #include "vega10_hwmgr.h"
43 #include "vega10_smumgr.h"
44 #include "vega10_processpptables.h"
45 #include "vega10_pptable.h"
46 #include "vega10_thermal.h"
47 #include "pp_debug.h"
48 #include "amd_pcie_helpers.h"
49 #include "ppinterrupt.h"
50 #include "pp_overdriver.h"
51 #include "pp_thermal.h"
52 #include "vega10_baco.h"
53 
54 #include "smuio/smuio_9_0_offset.h"
55 #include "smuio/smuio_9_0_sh_mask.h"
56 
57 #define HBM_MEMORY_CHANNEL_WIDTH    128
58 
59 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
60 
61 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
62 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
63 
64 //DF_CS_AON0_DramBaseAddress0
65 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
66 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
67 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
68 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
69 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
70 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
71 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
72 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
73 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
74 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
75 
76 typedef enum {
77 	CLK_SMNCLK = 0,
78 	CLK_SOCCLK,
79 	CLK_MP0CLK,
80 	CLK_MP1CLK,
81 	CLK_LCLK,
82 	CLK_DCEFCLK,
83 	CLK_VCLK,
84 	CLK_DCLK,
85 	CLK_ECLK,
86 	CLK_UCLK,
87 	CLK_GFXCLK,
88 	CLK_COUNT,
89 } CLOCK_ID_e;
90 
91 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
92 
93 static struct vega10_power_state *cast_phw_vega10_power_state(
94 				  struct pp_hw_power_state *hw_ps)
95 {
96 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
97 				"Invalid Powerstate Type!",
98 				 return NULL;);
99 
100 	return (struct vega10_power_state *)hw_ps;
101 }
102 
103 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
104 				 const struct pp_hw_power_state *hw_ps)
105 {
106 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
107 				"Invalid Powerstate Type!",
108 				 return NULL;);
109 
110 	return (const struct vega10_power_state *)hw_ps;
111 }
112 
113 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
114 {
115 	struct vega10_hwmgr *data = hwmgr->backend;
116 
117 	data->registry_data.sclk_dpm_key_disabled =
118 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
119 	data->registry_data.socclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
121 	data->registry_data.mclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
123 	data->registry_data.pcie_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
125 
126 	data->registry_data.dcefclk_dpm_key_disabled =
127 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
128 
129 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
130 		data->registry_data.power_containment_support = 1;
131 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
132 		data->registry_data.enable_tdc_limit_feature = 1;
133 	}
134 
135 	data->registry_data.clock_stretcher_support =
136 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
137 
138 	data->registry_data.ulv_support =
139 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
140 
141 	data->registry_data.sclk_deep_sleep_support =
142 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
143 
144 	data->registry_data.disable_water_mark = 0;
145 
146 	data->registry_data.fan_control_support = 1;
147 	data->registry_data.thermal_support = 1;
148 	data->registry_data.fw_ctf_enabled = 1;
149 
150 	data->registry_data.avfs_support =
151 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
152 	data->registry_data.led_dpm_enabled = 1;
153 
154 	data->registry_data.vr0hot_enabled = 1;
155 	data->registry_data.vr1hot_enabled = 1;
156 	data->registry_data.regulator_hot_gpio_support = 1;
157 
158 	data->registry_data.didt_support = 1;
159 	if (data->registry_data.didt_support) {
160 		data->registry_data.didt_mode = 6;
161 		data->registry_data.sq_ramping_support = 1;
162 		data->registry_data.db_ramping_support = 0;
163 		data->registry_data.td_ramping_support = 0;
164 		data->registry_data.tcp_ramping_support = 0;
165 		data->registry_data.dbr_ramping_support = 0;
166 		data->registry_data.edc_didt_support = 1;
167 		data->registry_data.gc_didt_support = 0;
168 		data->registry_data.psm_didt_support = 0;
169 	}
170 
171 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
172 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
173 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
174 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 
185 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
186 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
187 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
188 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
189 }
190 
191 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
192 {
193 	struct vega10_hwmgr *data = hwmgr->backend;
194 	struct phm_ppt_v2_information *table_info =
195 			(struct phm_ppt_v2_information *)hwmgr->pptable;
196 	struct amdgpu_device *adev = hwmgr->adev;
197 
198 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
199 			PHM_PlatformCaps_SclkDeepSleep);
200 
201 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
202 			PHM_PlatformCaps_DynamicPatchPowerState);
203 
204 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
205 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
206 				PHM_PlatformCaps_ControlVDDCI);
207 
208 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
209 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
210 
211 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
212 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
213 				PHM_PlatformCaps_UVDPowerGating);
214 
215 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
216 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
217 				PHM_PlatformCaps_VCEPowerGating);
218 
219 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
220 			PHM_PlatformCaps_UnTabledHardwareInterface);
221 
222 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
223 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
224 
225 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
226 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
227 
228 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 				PHM_PlatformCaps_DynamicPowerManagement);
230 
231 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
232 			PHM_PlatformCaps_SMC);
233 
234 	/* power tune caps */
235 	/* assume disabled */
236 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
237 			PHM_PlatformCaps_PowerContainment);
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_DiDtSupport);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_SQRamping);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_DBRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_TDRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TCPRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_DBRRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DiDtEDCEnable);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_GCEDC);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_PSM);
256 
257 	if (data->registry_data.didt_support) {
258 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
259 		if (data->registry_data.sq_ramping_support)
260 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
261 		if (data->registry_data.db_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
263 		if (data->registry_data.td_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
265 		if (data->registry_data.tcp_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
267 		if (data->registry_data.dbr_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
269 		if (data->registry_data.edc_didt_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
271 		if (data->registry_data.gc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
273 		if (data->registry_data.psm_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
275 	}
276 
277 	if (data->registry_data.power_containment_support)
278 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
279 				PHM_PlatformCaps_PowerContainment);
280 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 			PHM_PlatformCaps_CAC);
282 
283 	if (table_info->tdp_table->usClockStretchAmount &&
284 			data->registry_data.clock_stretcher_support)
285 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
286 				PHM_PlatformCaps_ClockStretcher);
287 
288 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 			PHM_PlatformCaps_RegulatorHot);
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_AutomaticDCTransition);
292 
293 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 			PHM_PlatformCaps_UVDDPM);
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_VCEDPM);
297 
298 	return 0;
299 }
300 
301 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
302 {
303 	struct vega10_hwmgr *data = hwmgr->backend;
304 	struct phm_ppt_v2_information *table_info =
305 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
306 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
307 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
308 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
309 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
310 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
311 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
312 	uint32_t i;
313 	int result;
314 
315 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
316 	if (!result) {
317 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
318 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
319 	}
320 
321 	od_lookup_table = &odn_table->vddc_lookup_table;
322 	vddc_lookup_table = table_info->vddc_lookup_table;
323 
324 	for (i = 0; i < vddc_lookup_table->count; i++)
325 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
326 
327 	od_lookup_table->count = vddc_lookup_table->count;
328 
329 	dep_table[0] = table_info->vdd_dep_on_sclk;
330 	dep_table[1] = table_info->vdd_dep_on_mclk;
331 	dep_table[2] = table_info->vdd_dep_on_socclk;
332 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
333 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
334 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
335 
336 	for (i = 0; i < 3; i++)
337 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
338 
339 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
340 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
341 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
342 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
343 
344 	i = od_table[2]->count - 1;
345 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
346 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
347 					od_table[2]->entries[i].clk;
348 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
349 					odn_table->max_vddc :
350 					od_table[2]->entries[i].vddc;
351 
352 	return 0;
353 }
354 
355 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
356 {
357 	struct vega10_hwmgr *data = hwmgr->backend;
358 	int i;
359 	uint32_t sub_vendor_id, hw_revision;
360 	uint32_t top32, bottom32;
361 	struct amdgpu_device *adev = hwmgr->adev;
362 
363 	vega10_initialize_power_tune_defaults(hwmgr);
364 
365 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
366 		data->smu_features[i].smu_feature_id = 0xffff;
367 		data->smu_features[i].smu_feature_bitmap = 1 << i;
368 		data->smu_features[i].enabled = false;
369 		data->smu_features[i].supported = false;
370 	}
371 
372 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
373 			FEATURE_DPM_PREFETCHER_BIT;
374 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
375 			FEATURE_DPM_GFXCLK_BIT;
376 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
377 			FEATURE_DPM_UCLK_BIT;
378 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
379 			FEATURE_DPM_SOCCLK_BIT;
380 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
381 			FEATURE_DPM_UVD_BIT;
382 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
383 			FEATURE_DPM_VCE_BIT;
384 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
385 			FEATURE_DPM_MP0CLK_BIT;
386 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
387 			FEATURE_DPM_LINK_BIT;
388 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
389 			FEATURE_DPM_DCEFCLK_BIT;
390 	data->smu_features[GNLD_ULV].smu_feature_id =
391 			FEATURE_ULV_BIT;
392 	data->smu_features[GNLD_AVFS].smu_feature_id =
393 			FEATURE_AVFS_BIT;
394 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
395 			FEATURE_DS_GFXCLK_BIT;
396 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
397 			FEATURE_DS_SOCCLK_BIT;
398 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
399 			FEATURE_DS_LCLK_BIT;
400 	data->smu_features[GNLD_PPT].smu_feature_id =
401 			FEATURE_PPT_BIT;
402 	data->smu_features[GNLD_TDC].smu_feature_id =
403 			FEATURE_TDC_BIT;
404 	data->smu_features[GNLD_THERMAL].smu_feature_id =
405 			FEATURE_THERMAL_BIT;
406 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
407 			FEATURE_GFX_PER_CU_CG_BIT;
408 	data->smu_features[GNLD_RM].smu_feature_id =
409 			FEATURE_RM_BIT;
410 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
411 			FEATURE_DS_DCEFCLK_BIT;
412 	data->smu_features[GNLD_ACDC].smu_feature_id =
413 			FEATURE_ACDC_BIT;
414 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
415 			FEATURE_VR0HOT_BIT;
416 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
417 			FEATURE_VR1HOT_BIT;
418 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
419 			FEATURE_FW_CTF_BIT;
420 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
421 			FEATURE_LED_DISPLAY_BIT;
422 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
423 			FEATURE_FAN_CONTROL_BIT;
424 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
425 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
426 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
427 
428 	if (!data->registry_data.prefetcher_dpm_key_disabled)
429 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
430 
431 	if (!data->registry_data.sclk_dpm_key_disabled)
432 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
433 
434 	if (!data->registry_data.mclk_dpm_key_disabled)
435 		data->smu_features[GNLD_DPM_UCLK].supported = true;
436 
437 	if (!data->registry_data.socclk_dpm_key_disabled)
438 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
439 
440 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
441 		data->smu_features[GNLD_DPM_UVD].supported = true;
442 
443 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
444 		data->smu_features[GNLD_DPM_VCE].supported = true;
445 
446 	if (!data->registry_data.pcie_dpm_key_disabled)
447 		data->smu_features[GNLD_DPM_LINK].supported = true;
448 
449 	if (!data->registry_data.dcefclk_dpm_key_disabled)
450 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
451 
452 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
453 	    data->registry_data.sclk_deep_sleep_support) {
454 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
455 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
456 		data->smu_features[GNLD_DS_LCLK].supported = true;
457 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
458 	}
459 
460 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
461 		data->smu_features[GNLD_PPT].supported = true;
462 
463 	if (data->registry_data.enable_tdc_limit_feature)
464 		data->smu_features[GNLD_TDC].supported = true;
465 
466 	if (data->registry_data.thermal_support)
467 		data->smu_features[GNLD_THERMAL].supported = true;
468 
469 	if (data->registry_data.fan_control_support)
470 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
471 
472 	if (data->registry_data.fw_ctf_enabled)
473 		data->smu_features[GNLD_FW_CTF].supported = true;
474 
475 	if (data->registry_data.avfs_support)
476 		data->smu_features[GNLD_AVFS].supported = true;
477 
478 	if (data->registry_data.led_dpm_enabled)
479 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
480 
481 	if (data->registry_data.vr1hot_enabled)
482 		data->smu_features[GNLD_VR1HOT].supported = true;
483 
484 	if (data->registry_data.vr0hot_enabled)
485 		data->smu_features[GNLD_VR0HOT].supported = true;
486 
487 	smum_send_msg_to_smc(hwmgr,
488 			PPSMC_MSG_GetSmuVersion,
489 			&hwmgr->smu_version);
490 		/* ACG firmware has major version 5 */
491 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
492 		data->smu_features[GNLD_ACG].supported = true;
493 	if (data->registry_data.didt_support)
494 		data->smu_features[GNLD_DIDT].supported = true;
495 
496 	hw_revision = adev->pdev->revision;
497 	sub_vendor_id = adev->pdev->subsystem_vendor;
498 
499 	if ((hwmgr->chip_id == 0x6862 ||
500 		hwmgr->chip_id == 0x6861 ||
501 		hwmgr->chip_id == 0x6868) &&
502 		(hw_revision == 0) &&
503 		(sub_vendor_id != 0x1002))
504 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
505 
506 	/* Get the SN to turn into a Unique ID */
507 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
508 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
509 
510 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
511 }
512 
513 #ifdef PPLIB_VEGA10_EVV_SUPPORT
514 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
515 	phm_ppt_v1_voltage_lookup_table *lookup_table,
516 	uint16_t virtual_voltage_id, int32_t *socclk)
517 {
518 	uint8_t entry_id;
519 	uint8_t voltage_id;
520 	struct phm_ppt_v2_information *table_info =
521 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
522 
523 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
524 			"Lookup table is empty",
525 			return -EINVAL);
526 
527 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
528 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
529 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
530 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
531 			break;
532 	}
533 
534 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
535 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
536 			return -EINVAL);
537 
538 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
539 
540 	return 0;
541 }
542 
543 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
544 /**
545  * Get Leakage VDDC based on leakage ID.
546  *
547  * @hwmgr:  the address of the powerplay hardware manager.
548  * return:  always 0.
549  */
550 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
551 {
552 	struct vega10_hwmgr *data = hwmgr->backend;
553 	uint16_t vv_id;
554 	uint32_t vddc = 0;
555 	uint16_t i, j;
556 	uint32_t sclk = 0;
557 	struct phm_ppt_v2_information *table_info =
558 			(struct phm_ppt_v2_information *)hwmgr->pptable;
559 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
560 			table_info->vdd_dep_on_socclk;
561 	int result;
562 
563 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
564 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
565 
566 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
567 				table_info->vddc_lookup_table, vv_id, &sclk)) {
568 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
569 				for (j = 1; j < socclk_table->count; j++) {
570 					if (socclk_table->entries[j].clk == sclk &&
571 							socclk_table->entries[j].cks_enable == 0) {
572 						sclk += 5000;
573 						break;
574 					}
575 				}
576 			}
577 
578 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
579 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
580 					"Error retrieving EVV voltage value!",
581 					continue);
582 
583 
584 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
585 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
586 					"Invalid VDDC value", result = -EINVAL;);
587 
588 			/* the voltage should not be zero nor equal to leakage ID */
589 			if (vddc != 0 && vddc != vv_id) {
590 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
591 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
592 				data->vddc_leakage.count++;
593 			}
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * Change virtual leakage voltage to actual value.
602  *
603  * @hwmgr:         the address of the powerplay hardware manager.
604  * @voltage:       pointer to changing voltage
605  * @leakage_table: pointer to leakage table
606  */
607 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
608 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
609 {
610 	uint32_t index;
611 
612 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
613 	for (index = 0; index < leakage_table->count; index++) {
614 		/* if this voltage matches a leakage voltage ID */
615 		/* patch with actual leakage voltage */
616 		if (leakage_table->leakage_id[index] == *voltage) {
617 			*voltage = leakage_table->actual_voltage[index];
618 			break;
619 		}
620 	}
621 
622 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
623 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
624 }
625 
626 /**
627  * Patch voltage lookup table by EVV leakages.
628  *
629  * @hwmgr:         the address of the powerplay hardware manager.
630  * @lookup_table:  pointer to voltage lookup table
631  * @leakage_table: pointer to leakage table
632  * return:         always 0
633  */
634 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
635 		phm_ppt_v1_voltage_lookup_table *lookup_table,
636 		struct vega10_leakage_voltage *leakage_table)
637 {
638 	uint32_t i;
639 
640 	for (i = 0; i < lookup_table->count; i++)
641 		vega10_patch_with_vdd_leakage(hwmgr,
642 				&lookup_table->entries[i].us_vdd, leakage_table);
643 
644 	return 0;
645 }
646 
647 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
648 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
649 		uint16_t *vddc)
650 {
651 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
652 
653 	return 0;
654 }
655 #endif
656 
657 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
658 		struct pp_hwmgr *hwmgr)
659 {
660 	uint8_t entry_id, voltage_id;
661 	unsigned i;
662 	struct phm_ppt_v2_information *table_info =
663 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
664 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
665 			table_info->mm_dep_table;
666 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
667 			table_info->vdd_dep_on_mclk;
668 
669 	for (i = 0; i < 6; i++) {
670 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
671 		switch (i) {
672 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
673 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
674 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
675 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
676 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
677 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
678 		}
679 
680 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
681 			voltage_id = vdt->entries[entry_id].vddInd;
682 			vdt->entries[entry_id].vddc =
683 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
684 		}
685 	}
686 
687 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
688 		voltage_id = mm_table->entries[entry_id].vddcInd;
689 		mm_table->entries[entry_id].vddc =
690 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
691 	}
692 
693 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
694 		voltage_id = mclk_table->entries[entry_id].vddInd;
695 		mclk_table->entries[entry_id].vddc =
696 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
697 		voltage_id = mclk_table->entries[entry_id].vddciInd;
698 		mclk_table->entries[entry_id].vddci =
699 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
700 		voltage_id = mclk_table->entries[entry_id].mvddInd;
701 		mclk_table->entries[entry_id].mvdd =
702 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
703 	}
704 
705 
706 	return 0;
707 
708 }
709 
710 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
711 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
712 {
713 	uint32_t table_size, i, j;
714 
715 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
716 		"Lookup table is empty", return -EINVAL);
717 
718 	table_size = lookup_table->count;
719 
720 	/* Sorting voltages */
721 	for (i = 0; i < table_size - 1; i++) {
722 		for (j = i + 1; j > 0; j--) {
723 			if (lookup_table->entries[j].us_vdd <
724 					lookup_table->entries[j - 1].us_vdd) {
725 				swap(lookup_table->entries[j - 1],
726 				     lookup_table->entries[j]);
727 			}
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
735 {
736 	int result = 0;
737 	int tmp_result;
738 	struct phm_ppt_v2_information *table_info =
739 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
740 #ifdef PPLIB_VEGA10_EVV_SUPPORT
741 	struct vega10_hwmgr *data = hwmgr->backend;
742 
743 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
744 			table_info->vddc_lookup_table, &(data->vddc_leakage));
745 	if (tmp_result)
746 		result = tmp_result;
747 
748 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
749 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
750 	if (tmp_result)
751 		result = tmp_result;
752 #endif
753 
754 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
755 	if (tmp_result)
756 		result = tmp_result;
757 
758 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
759 	if (tmp_result)
760 		result = tmp_result;
761 
762 	return result;
763 }
764 
765 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
766 {
767 	struct phm_ppt_v2_information *table_info =
768 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
769 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
770 			table_info->vdd_dep_on_socclk;
771 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
772 			table_info->vdd_dep_on_mclk;
773 
774 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
775 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
776 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
777 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
778 
779 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
780 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
781 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
782 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
783 
784 	table_info->max_clock_voltage_on_ac.sclk =
785 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
786 	table_info->max_clock_voltage_on_ac.mclk =
787 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
788 	table_info->max_clock_voltage_on_ac.vddc =
789 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
790 	table_info->max_clock_voltage_on_ac.vddci =
791 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
792 
793 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
794 		table_info->max_clock_voltage_on_ac.sclk;
795 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
796 		table_info->max_clock_voltage_on_ac.mclk;
797 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
798 		table_info->max_clock_voltage_on_ac.vddc;
799 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
800 		table_info->max_clock_voltage_on_ac.vddci;
801 
802 	return 0;
803 }
804 
805 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
806 {
807 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
808 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
809 
810 	kfree(hwmgr->backend);
811 	hwmgr->backend = NULL;
812 
813 	return 0;
814 }
815 
816 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
817 {
818 	int result = 0;
819 	struct vega10_hwmgr *data;
820 	uint32_t config_telemetry = 0;
821 	struct pp_atomfwctrl_voltage_table vol_table;
822 	struct amdgpu_device *adev = hwmgr->adev;
823 
824 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
825 	if (data == NULL)
826 		return -ENOMEM;
827 
828 	hwmgr->backend = data;
829 
830 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
831 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
832 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833 
834 	vega10_set_default_registry_data(hwmgr);
835 	data->disable_dpm_mask = 0xff;
836 
837 	/* need to set voltage control types before EVV patching */
838 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
839 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
840 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 
842 	/* VDDCR_SOC */
843 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
844 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
845 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
846 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
847 				&vol_table)) {
848 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
849 					(vol_table.telemetry_offset & 0xff);
850 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
851 		}
852 	} else {
853 		kfree(hwmgr->backend);
854 		hwmgr->backend = NULL;
855 		PP_ASSERT_WITH_CODE(false,
856 				"VDDCR_SOC is not SVID2!",
857 				return -1);
858 	}
859 
860 	/* MVDDC */
861 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
862 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
863 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
864 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
865 				&vol_table)) {
866 			config_telemetry |=
867 					((vol_table.telemetry_slope << 24) & 0xff000000) |
868 					((vol_table.telemetry_offset << 16) & 0xff0000);
869 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
870 		}
871 	}
872 
873 	 /* VDDCI_MEM */
874 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
875 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
876 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
877 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
878 	}
879 
880 	data->config_telemetry = config_telemetry;
881 
882 	vega10_set_features_platform_caps(hwmgr);
883 
884 	vega10_init_dpm_defaults(hwmgr);
885 
886 #ifdef PPLIB_VEGA10_EVV_SUPPORT
887 	/* Get leakage voltage based on leakage ID. */
888 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
889 			"Get EVV Voltage Failed.  Abort Driver loading!",
890 			return -1);
891 #endif
892 
893 	/* Patch our voltage dependency table with actual leakage voltage
894 	 * We need to perform leakage translation before it's used by other functions
895 	 */
896 	vega10_complete_dependency_tables(hwmgr);
897 
898 	/* Parse pptable data read from VBIOS */
899 	vega10_set_private_data_based_on_pptable(hwmgr);
900 
901 	data->is_tlu_enabled = false;
902 
903 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
904 			VEGA10_MAX_HARDWARE_POWERLEVELS;
905 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
906 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
907 
908 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
909 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
910 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
911 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
912 
913 	data->total_active_cus = adev->gfx.cu_info.number;
914 	if (!hwmgr->not_vf)
915 		return result;
916 
917 	/* Setup default Overdrive Fan control settings */
918 	data->odn_fan_table.target_fan_speed =
919 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
920 	data->odn_fan_table.target_temperature =
921 			hwmgr->thermal_controller.
922 			advanceFanControlParameters.ucTargetTemperature;
923 	data->odn_fan_table.min_performance_clock =
924 			hwmgr->thermal_controller.advanceFanControlParameters.
925 			ulMinFanSCLKAcousticLimit;
926 	data->odn_fan_table.min_fan_limit =
927 			hwmgr->thermal_controller.
928 			advanceFanControlParameters.usFanPWMMinLimit *
929 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
930 
931 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
932 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
933 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
934 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
935 			"Mem Channel Index Exceeded maximum!",
936 			return -EINVAL);
937 
938 	return result;
939 }
940 
941 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
942 {
943 	struct vega10_hwmgr *data = hwmgr->backend;
944 
945 	data->low_sclk_interrupt_threshold = 0;
946 
947 	return 0;
948 }
949 
950 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
951 {
952 	struct vega10_hwmgr *data = hwmgr->backend;
953 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
954 
955 	struct pp_atomfwctrl_voltage_table table;
956 	uint8_t i, j;
957 	uint32_t mask = 0;
958 	uint32_t tmp;
959 	int32_t ret = 0;
960 
961 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
962 						VOLTAGE_OBJ_GPIO_LUT, &table);
963 
964 	if (!ret) {
965 		tmp = table.mask_low;
966 		for (i = 0, j = 0; i < 32; i++) {
967 			if (tmp & 1) {
968 				mask |= (uint32_t)(i << (8 * j));
969 				if (++j >= 3)
970 					break;
971 			}
972 			tmp >>= 1;
973 		}
974 	}
975 
976 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
977 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
978 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
979 	return 0;
980 }
981 
982 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
983 {
984 	if (!hwmgr->not_vf)
985 		return 0;
986 
987 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
988 			"Failed to init sclk threshold!",
989 			return -EINVAL);
990 
991 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
992 			"Failed to set up led dpm config!",
993 			return -EINVAL);
994 
995 	smum_send_msg_to_smc_with_parameter(hwmgr,
996 				PPSMC_MSG_NumOfDisplays,
997 				0,
998 				NULL);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * Remove repeated voltage values and create table with unique values.
1005  *
1006  * @hwmgr:      the address of the powerplay hardware manager.
1007  * @vol_table:  the pointer to changing voltage table
1008  * return:      0 in success
1009  */
1010 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1011 		struct pp_atomfwctrl_voltage_table *vol_table)
1012 {
1013 	uint32_t i, j;
1014 	uint16_t vvalue;
1015 	bool found = false;
1016 	struct pp_atomfwctrl_voltage_table *table;
1017 
1018 	PP_ASSERT_WITH_CODE(vol_table,
1019 			"Voltage Table empty.", return -EINVAL);
1020 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1021 			GFP_KERNEL);
1022 
1023 	if (!table)
1024 		return -ENOMEM;
1025 
1026 	table->mask_low = vol_table->mask_low;
1027 	table->phase_delay = vol_table->phase_delay;
1028 
1029 	for (i = 0; i < vol_table->count; i++) {
1030 		vvalue = vol_table->entries[i].value;
1031 		found = false;
1032 
1033 		for (j = 0; j < table->count; j++) {
1034 			if (vvalue == table->entries[j].value) {
1035 				found = true;
1036 				break;
1037 			}
1038 		}
1039 
1040 		if (!found) {
1041 			table->entries[table->count].value = vvalue;
1042 			table->entries[table->count].smio_low =
1043 					vol_table->entries[i].smio_low;
1044 			table->count++;
1045 		}
1046 	}
1047 
1048 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1049 	kfree(table);
1050 
1051 	return 0;
1052 }
1053 
1054 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1055 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1056 		struct pp_atomfwctrl_voltage_table *vol_table)
1057 {
1058 	int i;
1059 
1060 	PP_ASSERT_WITH_CODE(dep_table->count,
1061 			"Voltage Dependency Table empty.",
1062 			return -EINVAL);
1063 
1064 	vol_table->mask_low = 0;
1065 	vol_table->phase_delay = 0;
1066 	vol_table->count = dep_table->count;
1067 
1068 	for (i = 0; i < vol_table->count; i++) {
1069 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1070 		vol_table->entries[i].smio_low = 0;
1071 	}
1072 
1073 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1074 			vol_table),
1075 			"Failed to trim MVDD Table!",
1076 			return -1);
1077 
1078 	return 0;
1079 }
1080 
1081 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1082 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1083 		struct pp_atomfwctrl_voltage_table *vol_table)
1084 {
1085 	uint32_t i;
1086 
1087 	PP_ASSERT_WITH_CODE(dep_table->count,
1088 			"Voltage Dependency Table empty.",
1089 			return -EINVAL);
1090 
1091 	vol_table->mask_low = 0;
1092 	vol_table->phase_delay = 0;
1093 	vol_table->count = dep_table->count;
1094 
1095 	for (i = 0; i < dep_table->count; i++) {
1096 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1097 		vol_table->entries[i].smio_low = 0;
1098 	}
1099 
1100 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1101 			"Failed to trim VDDCI table.",
1102 			return -1);
1103 
1104 	return 0;
1105 }
1106 
1107 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1108 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1109 		struct pp_atomfwctrl_voltage_table *vol_table)
1110 {
1111 	int i;
1112 
1113 	PP_ASSERT_WITH_CODE(dep_table->count,
1114 			"Voltage Dependency Table empty.",
1115 			return -EINVAL);
1116 
1117 	vol_table->mask_low = 0;
1118 	vol_table->phase_delay = 0;
1119 	vol_table->count = dep_table->count;
1120 
1121 	for (i = 0; i < vol_table->count; i++) {
1122 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1123 		vol_table->entries[i].smio_low = 0;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /* ---- Voltage Tables ----
1130  * If the voltage table would be bigger than
1131  * what will fit into the state table on
1132  * the SMC keep only the higher entries.
1133  */
1134 static void vega10_trim_voltage_table_to_fit_state_table(
1135 		struct pp_hwmgr *hwmgr,
1136 		uint32_t max_vol_steps,
1137 		struct pp_atomfwctrl_voltage_table *vol_table)
1138 {
1139 	unsigned int i, diff;
1140 
1141 	if (vol_table->count <= max_vol_steps)
1142 		return;
1143 
1144 	diff = vol_table->count - max_vol_steps;
1145 
1146 	for (i = 0; i < max_vol_steps; i++)
1147 		vol_table->entries[i] = vol_table->entries[i + diff];
1148 
1149 	vol_table->count = max_vol_steps;
1150 }
1151 
1152 /**
1153  * Create Voltage Tables.
1154  *
1155  * @hwmgr:  the address of the powerplay hardware manager.
1156  * return:  always 0
1157  */
1158 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1159 {
1160 	struct vega10_hwmgr *data = hwmgr->backend;
1161 	struct phm_ppt_v2_information *table_info =
1162 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1163 	int result;
1164 
1165 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1166 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1167 		result = vega10_get_mvdd_voltage_table(hwmgr,
1168 				table_info->vdd_dep_on_mclk,
1169 				&(data->mvdd_voltage_table));
1170 		PP_ASSERT_WITH_CODE(!result,
1171 				"Failed to retrieve MVDDC table!",
1172 				return result);
1173 	}
1174 
1175 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1176 		result = vega10_get_vddci_voltage_table(hwmgr,
1177 				table_info->vdd_dep_on_mclk,
1178 				&(data->vddci_voltage_table));
1179 		PP_ASSERT_WITH_CODE(!result,
1180 				"Failed to retrieve VDDCI_MEM table!",
1181 				return result);
1182 	}
1183 
1184 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1185 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1186 		result = vega10_get_vdd_voltage_table(hwmgr,
1187 				table_info->vdd_dep_on_sclk,
1188 				&(data->vddc_voltage_table));
1189 		PP_ASSERT_WITH_CODE(!result,
1190 				"Failed to retrieve VDDCR_SOC table!",
1191 				return result);
1192 	}
1193 
1194 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1195 			"Too many voltage values for VDDC. Trimming to fit state table.",
1196 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1197 					16, &(data->vddc_voltage_table)));
1198 
1199 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1200 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1201 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1202 					16, &(data->vddci_voltage_table)));
1203 
1204 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1205 			"Too many voltage values for MVDD. Trimming to fit state table.",
1206 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1207 					16, &(data->mvdd_voltage_table)));
1208 
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * vega10_init_dpm_state
1215  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1216  *
1217  * @dpm_state: - the address of the DPM Table to initiailize.
1218  * return:   None.
1219  */
1220 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1221 {
1222 	dpm_state->soft_min_level = 0xff;
1223 	dpm_state->soft_max_level = 0xff;
1224 	dpm_state->hard_min_level = 0xff;
1225 	dpm_state->hard_max_level = 0xff;
1226 }
1227 
1228 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1229 		struct vega10_single_dpm_table *dpm_table,
1230 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1231 {
1232 	int i;
1233 
1234 	dpm_table->count = 0;
1235 
1236 	for (i = 0; i < dep_table->count; i++) {
1237 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1238 				dep_table->entries[i].clk) {
1239 			dpm_table->dpm_levels[dpm_table->count].value =
1240 					dep_table->entries[i].clk;
1241 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1242 			dpm_table->count++;
1243 		}
1244 	}
1245 }
1246 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1247 {
1248 	struct vega10_hwmgr *data = hwmgr->backend;
1249 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1250 	struct phm_ppt_v2_information *table_info =
1251 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1252 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1253 			table_info->pcie_table;
1254 	uint32_t i;
1255 
1256 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1257 			"Incorrect number of PCIE States from VBIOS!",
1258 			return -1);
1259 
1260 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1261 		if (data->registry_data.pcieSpeedOverride)
1262 			pcie_table->pcie_gen[i] =
1263 					data->registry_data.pcieSpeedOverride;
1264 		else
1265 			pcie_table->pcie_gen[i] =
1266 					bios_pcie_table->entries[i].gen_speed;
1267 
1268 		if (data->registry_data.pcieLaneOverride)
1269 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1270 					data->registry_data.pcieLaneOverride);
1271 		else
1272 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1273 							bios_pcie_table->entries[i].lane_width);
1274 		if (data->registry_data.pcieClockOverride)
1275 			pcie_table->lclk[i] =
1276 					data->registry_data.pcieClockOverride;
1277 		else
1278 			pcie_table->lclk[i] =
1279 					bios_pcie_table->entries[i].pcie_sclk;
1280 	}
1281 
1282 	pcie_table->count = NUM_LINK_LEVELS;
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * This function is to initialize all DPM state tables
1289  * for SMU based on the dependency table.
1290  * Dynamic state patching function will then trim these
1291  * state tables to the allowed range based
1292  * on the power policy or external client requests,
1293  * such as UVD request, etc.
1294  */
1295 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1296 {
1297 	struct vega10_hwmgr *data = hwmgr->backend;
1298 	struct phm_ppt_v2_information *table_info =
1299 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1300 	struct vega10_single_dpm_table *dpm_table;
1301 	uint32_t i;
1302 
1303 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1304 			table_info->vdd_dep_on_socclk;
1305 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1306 			table_info->vdd_dep_on_sclk;
1307 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1308 			table_info->vdd_dep_on_mclk;
1309 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1310 			table_info->mm_dep_table;
1311 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1312 			table_info->vdd_dep_on_dcefclk;
1313 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1314 			table_info->vdd_dep_on_pixclk;
1315 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1316 			table_info->vdd_dep_on_dispclk;
1317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1318 			table_info->vdd_dep_on_phyclk;
1319 
1320 	PP_ASSERT_WITH_CODE(dep_soc_table,
1321 			"SOCCLK dependency table is missing. This table is mandatory",
1322 			return -EINVAL);
1323 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1324 			"SOCCLK dependency table is empty. This table is mandatory",
1325 			return -EINVAL);
1326 
1327 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1328 			"GFXCLK dependency table is missing. This table is mandatory",
1329 			return -EINVAL);
1330 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1331 			"GFXCLK dependency table is empty. This table is mandatory",
1332 			return -EINVAL);
1333 
1334 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1335 			"MCLK dependency table is missing. This table is mandatory",
1336 			return -EINVAL);
1337 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1338 			"MCLK dependency table has to have is missing. This table is mandatory",
1339 			return -EINVAL);
1340 
1341 	/* Initialize Sclk DPM table based on allow Sclk values */
1342 	dpm_table = &(data->dpm_table.soc_table);
1343 	vega10_setup_default_single_dpm_table(hwmgr,
1344 			dpm_table,
1345 			dep_soc_table);
1346 
1347 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1348 
1349 	dpm_table = &(data->dpm_table.gfx_table);
1350 	vega10_setup_default_single_dpm_table(hwmgr,
1351 			dpm_table,
1352 			dep_gfx_table);
1353 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1354 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1355 					dpm_table->dpm_levels[dpm_table->count-1].value;
1356 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1357 
1358 	/* Initialize Mclk DPM table based on allow Mclk values */
1359 	data->dpm_table.mem_table.count = 0;
1360 	dpm_table = &(data->dpm_table.mem_table);
1361 	vega10_setup_default_single_dpm_table(hwmgr,
1362 			dpm_table,
1363 			dep_mclk_table);
1364 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1365 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1366 					dpm_table->dpm_levels[dpm_table->count-1].value;
1367 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1368 
1369 	data->dpm_table.eclk_table.count = 0;
1370 	dpm_table = &(data->dpm_table.eclk_table);
1371 	for (i = 0; i < dep_mm_table->count; i++) {
1372 		if (i == 0 || dpm_table->dpm_levels
1373 				[dpm_table->count - 1].value <=
1374 						dep_mm_table->entries[i].eclk) {
1375 			dpm_table->dpm_levels[dpm_table->count].value =
1376 					dep_mm_table->entries[i].eclk;
1377 			dpm_table->dpm_levels[dpm_table->count].enabled =
1378 					(i == 0) ? true : false;
1379 			dpm_table->count++;
1380 		}
1381 	}
1382 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1383 
1384 	data->dpm_table.vclk_table.count = 0;
1385 	data->dpm_table.dclk_table.count = 0;
1386 	dpm_table = &(data->dpm_table.vclk_table);
1387 	for (i = 0; i < dep_mm_table->count; i++) {
1388 		if (i == 0 || dpm_table->dpm_levels
1389 				[dpm_table->count - 1].value <=
1390 						dep_mm_table->entries[i].vclk) {
1391 			dpm_table->dpm_levels[dpm_table->count].value =
1392 					dep_mm_table->entries[i].vclk;
1393 			dpm_table->dpm_levels[dpm_table->count].enabled =
1394 					(i == 0) ? true : false;
1395 			dpm_table->count++;
1396 		}
1397 	}
1398 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1399 
1400 	dpm_table = &(data->dpm_table.dclk_table);
1401 	for (i = 0; i < dep_mm_table->count; i++) {
1402 		if (i == 0 || dpm_table->dpm_levels
1403 				[dpm_table->count - 1].value <=
1404 						dep_mm_table->entries[i].dclk) {
1405 			dpm_table->dpm_levels[dpm_table->count].value =
1406 					dep_mm_table->entries[i].dclk;
1407 			dpm_table->dpm_levels[dpm_table->count].enabled =
1408 					(i == 0) ? true : false;
1409 			dpm_table->count++;
1410 		}
1411 	}
1412 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1413 
1414 	/* Assume there is no headless Vega10 for now */
1415 	dpm_table = &(data->dpm_table.dcef_table);
1416 	vega10_setup_default_single_dpm_table(hwmgr,
1417 			dpm_table,
1418 			dep_dcef_table);
1419 
1420 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1421 
1422 	dpm_table = &(data->dpm_table.pixel_table);
1423 	vega10_setup_default_single_dpm_table(hwmgr,
1424 			dpm_table,
1425 			dep_pix_table);
1426 
1427 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1428 
1429 	dpm_table = &(data->dpm_table.display_table);
1430 	vega10_setup_default_single_dpm_table(hwmgr,
1431 			dpm_table,
1432 			dep_disp_table);
1433 
1434 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1435 
1436 	dpm_table = &(data->dpm_table.phy_table);
1437 	vega10_setup_default_single_dpm_table(hwmgr,
1438 			dpm_table,
1439 			dep_phy_table);
1440 
1441 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1442 
1443 	vega10_setup_default_pcie_table(hwmgr);
1444 
1445 	/* Zero out the saved copy of the CUSTOM profile
1446 	 * This will be checked when trying to set the profile
1447 	 * and will require that new values be passed in
1448 	 */
1449 	data->custom_profile_mode[0] = 0;
1450 	data->custom_profile_mode[1] = 0;
1451 	data->custom_profile_mode[2] = 0;
1452 	data->custom_profile_mode[3] = 0;
1453 
1454 	/* save a copy of the default DPM table */
1455 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1456 			sizeof(struct vega10_dpm_table));
1457 
1458 	return 0;
1459 }
1460 
1461 /*
1462  * vega10_populate_ulv_state
1463  * Function to provide parameters for Utral Low Voltage state to SMC.
1464  *
1465  * @hwmgr: - the address of the hardware manager.
1466  * return:   Always 0.
1467  */
1468 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1469 {
1470 	struct vega10_hwmgr *data = hwmgr->backend;
1471 	struct phm_ppt_v2_information *table_info =
1472 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1473 
1474 	data->smc_state_table.pp_table.UlvOffsetVid =
1475 			(uint8_t)table_info->us_ulv_voltage_offset;
1476 
1477 	data->smc_state_table.pp_table.UlvSmnclkDid =
1478 			(uint8_t)(table_info->us_ulv_smnclk_did);
1479 	data->smc_state_table.pp_table.UlvMp1clkDid =
1480 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1481 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1482 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1483 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1484 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1485 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1486 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1487 
1488 	return 0;
1489 }
1490 
1491 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1492 		uint32_t lclock, uint8_t *curr_lclk_did)
1493 {
1494 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1495 
1496 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1497 			hwmgr,
1498 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1499 			lclock, &dividers),
1500 			"Failed to get LCLK clock settings from VBIOS!",
1501 			return -1);
1502 
1503 	*curr_lclk_did = dividers.ulDid;
1504 
1505 	return 0;
1506 }
1507 
1508 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr)
1509 {
1510 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
1511 	struct vega10_hwmgr *data =
1512 			(struct vega10_hwmgr *)(hwmgr->backend);
1513 	uint32_t pcie_gen = 0, pcie_width = 0;
1514 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1515 	int i;
1516 
1517 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1518 		pcie_gen = 3;
1519 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1520 		pcie_gen = 2;
1521 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1522 		pcie_gen = 1;
1523 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1524 		pcie_gen = 0;
1525 
1526 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1527 		pcie_width = 6;
1528 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1529 		pcie_width = 5;
1530 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1531 		pcie_width = 4;
1532 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1533 		pcie_width = 3;
1534 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1535 		pcie_width = 2;
1536 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1537 		pcie_width = 1;
1538 
1539 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1540 		if (pp_table->PcieGenSpeed[i] > pcie_gen)
1541 			pp_table->PcieGenSpeed[i] = pcie_gen;
1542 
1543 		if (pp_table->PcieLaneCount[i] > pcie_width)
1544 			pp_table->PcieLaneCount[i] = pcie_width;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1551 {
1552 	int result = -1;
1553 	struct vega10_hwmgr *data = hwmgr->backend;
1554 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1555 	struct vega10_pcie_table *pcie_table =
1556 			&(data->dpm_table.pcie_table);
1557 	uint32_t i, j;
1558 
1559 	for (i = 0; i < pcie_table->count; i++) {
1560 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1561 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1562 
1563 		result = vega10_populate_single_lclk_level(hwmgr,
1564 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1565 		if (result) {
1566 			pr_info("Populate LClock Level %d Failed!\n", i);
1567 			return result;
1568 		}
1569 	}
1570 
1571 	j = i - 1;
1572 	while (i < NUM_LINK_LEVELS) {
1573 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1574 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1575 
1576 		result = vega10_populate_single_lclk_level(hwmgr,
1577 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1578 		if (result) {
1579 			pr_info("Populate LClock Level %d Failed!\n", i);
1580 			return result;
1581 		}
1582 		i++;
1583 	}
1584 
1585 	return result;
1586 }
1587 
1588 /**
1589  * Populates single SMC GFXSCLK structure using the provided engine clock
1590  *
1591  * @hwmgr:      the address of the hardware manager
1592  * @gfx_clock:  the GFX clock to use to populate the structure.
1593  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1594  * @acg_freq:   ACG frequenty to return (MHz)
1595  */
1596 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1597 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1598 		uint32_t *acg_freq)
1599 {
1600 	struct phm_ppt_v2_information *table_info =
1601 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1602 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1603 	struct vega10_hwmgr *data = hwmgr->backend;
1604 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1605 	uint32_t gfx_max_clock =
1606 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1607 	uint32_t i = 0;
1608 
1609 	if (hwmgr->od_enabled)
1610 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1611 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1612 	else
1613 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1614 
1615 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1616 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1617 			return -EINVAL);
1618 
1619 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1620 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1621 	else {
1622 		for (i = 0; i < dep_on_sclk->count; i++) {
1623 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1624 				break;
1625 		}
1626 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1627 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1628 				return -EINVAL);
1629 	}
1630 
1631 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1632 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1633 			gfx_clock, &dividers),
1634 			"Failed to get GFX Clock settings from VBIOS!",
1635 			return -EINVAL);
1636 
1637 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1638 	current_gfxclk_level->FbMult =
1639 			cpu_to_le32(dividers.ulPll_fb_mult);
1640 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1641 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1642 	current_gfxclk_level->SsFbMult =
1643 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1644 	current_gfxclk_level->SsSlewFrac =
1645 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1646 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1647 
1648 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1649 
1650 	return 0;
1651 }
1652 
1653 /**
1654  * Populates single SMC SOCCLK structure using the provided clock.
1655  *
1656  * @hwmgr:     the address of the hardware manager.
1657  * @soc_clock: the SOC clock to use to populate the structure.
1658  * @current_soc_did:   DFS divider to pass back to caller
1659  * @current_vol_index: index of current VDD to pass back to caller
1660  * return:      0 on success
1661  */
1662 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1663 		uint32_t soc_clock, uint8_t *current_soc_did,
1664 		uint8_t *current_vol_index)
1665 {
1666 	struct vega10_hwmgr *data = hwmgr->backend;
1667 	struct phm_ppt_v2_information *table_info =
1668 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1669 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1670 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1671 	uint32_t i;
1672 
1673 	if (hwmgr->od_enabled) {
1674 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1675 						&data->odn_dpm_table.vdd_dep_on_socclk;
1676 		for (i = 0; i < dep_on_soc->count; i++) {
1677 			if (dep_on_soc->entries[i].clk >= soc_clock)
1678 				break;
1679 		}
1680 	} else {
1681 		dep_on_soc = table_info->vdd_dep_on_socclk;
1682 		for (i = 0; i < dep_on_soc->count; i++) {
1683 			if (dep_on_soc->entries[i].clk == soc_clock)
1684 				break;
1685 		}
1686 	}
1687 
1688 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1689 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1690 			return -EINVAL);
1691 
1692 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1693 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1694 			soc_clock, &dividers),
1695 			"Failed to get SOC Clock settings from VBIOS!",
1696 			return -EINVAL);
1697 
1698 	*current_soc_did = (uint8_t)dividers.ulDid;
1699 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1700 	return 0;
1701 }
1702 
1703 /**
1704  * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1705  *
1706  * @hwmgr:      the address of the hardware manager
1707  */
1708 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1709 {
1710 	struct vega10_hwmgr *data = hwmgr->backend;
1711 	struct phm_ppt_v2_information *table_info =
1712 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1713 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1714 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1715 	int result = 0;
1716 	uint32_t i, j;
1717 
1718 	for (i = 0; i < dpm_table->count; i++) {
1719 		result = vega10_populate_single_gfx_level(hwmgr,
1720 				dpm_table->dpm_levels[i].value,
1721 				&(pp_table->GfxclkLevel[i]),
1722 				&(pp_table->AcgFreqTable[i]));
1723 		if (result)
1724 			return result;
1725 	}
1726 
1727 	j = i - 1;
1728 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1729 		result = vega10_populate_single_gfx_level(hwmgr,
1730 				dpm_table->dpm_levels[j].value,
1731 				&(pp_table->GfxclkLevel[i]),
1732 				&(pp_table->AcgFreqTable[i]));
1733 		if (result)
1734 			return result;
1735 		i++;
1736 	}
1737 
1738 	pp_table->GfxclkSlewRate =
1739 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1740 
1741 	dpm_table = &(data->dpm_table.soc_table);
1742 	for (i = 0; i < dpm_table->count; i++) {
1743 		result = vega10_populate_single_soc_level(hwmgr,
1744 				dpm_table->dpm_levels[i].value,
1745 				&(pp_table->SocclkDid[i]),
1746 				&(pp_table->SocDpmVoltageIndex[i]));
1747 		if (result)
1748 			return result;
1749 	}
1750 
1751 	j = i - 1;
1752 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1753 		result = vega10_populate_single_soc_level(hwmgr,
1754 				dpm_table->dpm_levels[j].value,
1755 				&(pp_table->SocclkDid[i]),
1756 				&(pp_table->SocDpmVoltageIndex[i]));
1757 		if (result)
1758 			return result;
1759 		i++;
1760 	}
1761 
1762 	return result;
1763 }
1764 
1765 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1766 {
1767 	struct vega10_hwmgr *data = hwmgr->backend;
1768 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1769 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1770 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1771 
1772 	uint8_t soc_vid = 0;
1773 	uint32_t i, max_vddc_level;
1774 
1775 	if (hwmgr->od_enabled)
1776 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1777 	else
1778 		vddc_lookup_table = table_info->vddc_lookup_table;
1779 
1780 	max_vddc_level = vddc_lookup_table->count;
1781 	for (i = 0; i < max_vddc_level; i++) {
1782 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1783 		pp_table->SocVid[i] = soc_vid;
1784 	}
1785 	while (i < MAX_REGULAR_DPM_NUMBER) {
1786 		pp_table->SocVid[i] = soc_vid;
1787 		i++;
1788 	}
1789 }
1790 
1791 /*
1792  * Populates single SMC GFXCLK structure using the provided clock.
1793  *
1794  * @hwmgr:     the address of the hardware manager.
1795  * @mem_clock: the memory clock to use to populate the structure.
1796  * return:     0 on success..
1797  */
1798 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1799 		uint32_t mem_clock, uint8_t *current_mem_vid,
1800 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1801 {
1802 	struct vega10_hwmgr *data = hwmgr->backend;
1803 	struct phm_ppt_v2_information *table_info =
1804 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1805 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1806 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1807 	uint32_t mem_max_clock =
1808 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1809 	uint32_t i = 0;
1810 
1811 	if (hwmgr->od_enabled)
1812 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1813 					&data->odn_dpm_table.vdd_dep_on_mclk;
1814 	else
1815 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1816 
1817 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1818 			"Invalid SOC_VDD-UCLK Dependency Table!",
1819 			return -EINVAL);
1820 
1821 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1822 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1823 	} else {
1824 		for (i = 0; i < dep_on_mclk->count; i++) {
1825 			if (dep_on_mclk->entries[i].clk == mem_clock)
1826 				break;
1827 		}
1828 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1829 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1830 				return -EINVAL);
1831 	}
1832 
1833 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1834 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1835 			"Failed to get UCLK settings from VBIOS!",
1836 			return -1);
1837 
1838 	*current_mem_vid =
1839 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1840 	*current_mem_soc_vind =
1841 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1842 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1843 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1844 
1845 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1846 			"Invalid Divider ID!",
1847 			return -EINVAL);
1848 
1849 	return 0;
1850 }
1851 
1852 /**
1853  * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1854  *
1855  * @hwmgr:  the address of the hardware manager.
1856  * return:   PP_Result_OK on success.
1857  */
1858 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1859 {
1860 	struct vega10_hwmgr *data = hwmgr->backend;
1861 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1862 	struct vega10_single_dpm_table *dpm_table =
1863 			&(data->dpm_table.mem_table);
1864 	int result = 0;
1865 	uint32_t i, j;
1866 
1867 	for (i = 0; i < dpm_table->count; i++) {
1868 		result = vega10_populate_single_memory_level(hwmgr,
1869 				dpm_table->dpm_levels[i].value,
1870 				&(pp_table->MemVid[i]),
1871 				&(pp_table->UclkLevel[i]),
1872 				&(pp_table->MemSocVoltageIndex[i]));
1873 		if (result)
1874 			return result;
1875 	}
1876 
1877 	j = i - 1;
1878 	while (i < NUM_UCLK_DPM_LEVELS) {
1879 		result = vega10_populate_single_memory_level(hwmgr,
1880 				dpm_table->dpm_levels[j].value,
1881 				&(pp_table->MemVid[i]),
1882 				&(pp_table->UclkLevel[i]),
1883 				&(pp_table->MemSocVoltageIndex[i]));
1884 		if (result)
1885 			return result;
1886 		i++;
1887 	}
1888 
1889 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1890 	pp_table->MemoryChannelWidth =
1891 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1892 					channel_number[data->mem_channels]);
1893 
1894 	pp_table->LowestUclkReservedForUlv =
1895 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1896 
1897 	return result;
1898 }
1899 
1900 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1901 		DSPCLK_e disp_clock)
1902 {
1903 	struct vega10_hwmgr *data = hwmgr->backend;
1904 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1905 	struct phm_ppt_v2_information *table_info =
1906 			(struct phm_ppt_v2_information *)
1907 			(hwmgr->pptable);
1908 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1909 	uint32_t i;
1910 	uint16_t clk = 0, vddc = 0;
1911 	uint8_t vid = 0;
1912 
1913 	switch (disp_clock) {
1914 	case DSPCLK_DCEFCLK:
1915 		dep_table = table_info->vdd_dep_on_dcefclk;
1916 		break;
1917 	case DSPCLK_DISPCLK:
1918 		dep_table = table_info->vdd_dep_on_dispclk;
1919 		break;
1920 	case DSPCLK_PIXCLK:
1921 		dep_table = table_info->vdd_dep_on_pixclk;
1922 		break;
1923 	case DSPCLK_PHYCLK:
1924 		dep_table = table_info->vdd_dep_on_phyclk;
1925 		break;
1926 	default:
1927 		return -1;
1928 	}
1929 
1930 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1931 			"Number Of Entries Exceeded maximum!",
1932 			return -1);
1933 
1934 	for (i = 0; i < dep_table->count; i++) {
1935 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1936 		vddc = table_info->vddc_lookup_table->
1937 				entries[dep_table->entries[i].vddInd].us_vdd;
1938 		vid = (uint8_t)convert_to_vid(vddc);
1939 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1940 				cpu_to_le16(clk);
1941 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1942 				cpu_to_le16(vid);
1943 	}
1944 
1945 	while (i < NUM_DSPCLK_LEVELS) {
1946 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1947 				cpu_to_le16(clk);
1948 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1949 				cpu_to_le16(vid);
1950 		i++;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1957 {
1958 	uint32_t i;
1959 
1960 	for (i = 0; i < DSPCLK_COUNT; i++) {
1961 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1962 				"Failed to populate Clock in DisplayClockTable!",
1963 				return -1);
1964 	}
1965 
1966 	return 0;
1967 }
1968 
1969 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1970 		uint32_t eclock, uint8_t *current_eclk_did,
1971 		uint8_t *current_soc_vol)
1972 {
1973 	struct phm_ppt_v2_information *table_info =
1974 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1975 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1976 			table_info->mm_dep_table;
1977 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1978 	uint32_t i;
1979 
1980 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1981 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1982 			eclock, &dividers),
1983 			"Failed to get ECLK clock settings from VBIOS!",
1984 			return -1);
1985 
1986 	*current_eclk_did = (uint8_t)dividers.ulDid;
1987 
1988 	for (i = 0; i < dep_table->count; i++) {
1989 		if (dep_table->entries[i].eclk == eclock)
1990 			*current_soc_vol = dep_table->entries[i].vddcInd;
1991 	}
1992 
1993 	return 0;
1994 }
1995 
1996 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1997 {
1998 	struct vega10_hwmgr *data = hwmgr->backend;
1999 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2000 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
2001 	int result = -EINVAL;
2002 	uint32_t i, j;
2003 
2004 	for (i = 0; i < dpm_table->count; i++) {
2005 		result = vega10_populate_single_eclock_level(hwmgr,
2006 				dpm_table->dpm_levels[i].value,
2007 				&(pp_table->EclkDid[i]),
2008 				&(pp_table->VceDpmVoltageIndex[i]));
2009 		if (result)
2010 			return result;
2011 	}
2012 
2013 	j = i - 1;
2014 	while (i < NUM_VCE_DPM_LEVELS) {
2015 		result = vega10_populate_single_eclock_level(hwmgr,
2016 				dpm_table->dpm_levels[j].value,
2017 				&(pp_table->EclkDid[i]),
2018 				&(pp_table->VceDpmVoltageIndex[i]));
2019 		if (result)
2020 			return result;
2021 		i++;
2022 	}
2023 
2024 	return result;
2025 }
2026 
2027 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
2028 		uint32_t vclock, uint8_t *current_vclk_did)
2029 {
2030 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2031 
2032 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2033 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2034 			vclock, &dividers),
2035 			"Failed to get VCLK clock settings from VBIOS!",
2036 			return -EINVAL);
2037 
2038 	*current_vclk_did = (uint8_t)dividers.ulDid;
2039 
2040 	return 0;
2041 }
2042 
2043 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2044 		uint32_t dclock, uint8_t *current_dclk_did)
2045 {
2046 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2047 
2048 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2049 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2050 			dclock, &dividers),
2051 			"Failed to get DCLK clock settings from VBIOS!",
2052 			return -EINVAL);
2053 
2054 	*current_dclk_did = (uint8_t)dividers.ulDid;
2055 
2056 	return 0;
2057 }
2058 
2059 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2060 {
2061 	struct vega10_hwmgr *data = hwmgr->backend;
2062 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2063 	struct vega10_single_dpm_table *vclk_dpm_table =
2064 			&(data->dpm_table.vclk_table);
2065 	struct vega10_single_dpm_table *dclk_dpm_table =
2066 			&(data->dpm_table.dclk_table);
2067 	struct phm_ppt_v2_information *table_info =
2068 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2069 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2070 			table_info->mm_dep_table;
2071 	int result = -EINVAL;
2072 	uint32_t i, j;
2073 
2074 	for (i = 0; i < vclk_dpm_table->count; i++) {
2075 		result = vega10_populate_single_vclock_level(hwmgr,
2076 				vclk_dpm_table->dpm_levels[i].value,
2077 				&(pp_table->VclkDid[i]));
2078 		if (result)
2079 			return result;
2080 	}
2081 
2082 	j = i - 1;
2083 	while (i < NUM_UVD_DPM_LEVELS) {
2084 		result = vega10_populate_single_vclock_level(hwmgr,
2085 				vclk_dpm_table->dpm_levels[j].value,
2086 				&(pp_table->VclkDid[i]));
2087 		if (result)
2088 			return result;
2089 		i++;
2090 	}
2091 
2092 	for (i = 0; i < dclk_dpm_table->count; i++) {
2093 		result = vega10_populate_single_dclock_level(hwmgr,
2094 				dclk_dpm_table->dpm_levels[i].value,
2095 				&(pp_table->DclkDid[i]));
2096 		if (result)
2097 			return result;
2098 	}
2099 
2100 	j = i - 1;
2101 	while (i < NUM_UVD_DPM_LEVELS) {
2102 		result = vega10_populate_single_dclock_level(hwmgr,
2103 				dclk_dpm_table->dpm_levels[j].value,
2104 				&(pp_table->DclkDid[i]));
2105 		if (result)
2106 			return result;
2107 		i++;
2108 	}
2109 
2110 	for (i = 0; i < dep_table->count; i++) {
2111 		if (dep_table->entries[i].vclk ==
2112 				vclk_dpm_table->dpm_levels[i].value &&
2113 			dep_table->entries[i].dclk ==
2114 				dclk_dpm_table->dpm_levels[i].value)
2115 			pp_table->UvdDpmVoltageIndex[i] =
2116 					dep_table->entries[i].vddcInd;
2117 		else
2118 			return -1;
2119 	}
2120 
2121 	j = i - 1;
2122 	while (i < NUM_UVD_DPM_LEVELS) {
2123 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2124 		i++;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2131 {
2132 	struct vega10_hwmgr *data = hwmgr->backend;
2133 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2134 	struct phm_ppt_v2_information *table_info =
2135 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2136 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2137 			table_info->vdd_dep_on_sclk;
2138 	uint32_t i;
2139 
2140 	for (i = 0; i < dep_table->count; i++) {
2141 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2142 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2143 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2150 {
2151 	struct vega10_hwmgr *data = hwmgr->backend;
2152 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2153 	struct phm_ppt_v2_information *table_info =
2154 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2155 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2156 			table_info->vdd_dep_on_sclk;
2157 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2158 	int result = 0;
2159 	uint32_t i;
2160 
2161 	pp_table->MinVoltageVid = (uint8_t)0xff;
2162 	pp_table->MaxVoltageVid = (uint8_t)0;
2163 
2164 	if (data->smu_features[GNLD_AVFS].supported) {
2165 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2166 		if (!result) {
2167 			pp_table->MinVoltageVid = (uint8_t)
2168 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2169 			pp_table->MaxVoltageVid = (uint8_t)
2170 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2171 
2172 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2173 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2174 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2175 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2176 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2177 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2178 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2179 
2180 			pp_table->BtcGbVdroopTableCksOff.a0 =
2181 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2182 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2183 			pp_table->BtcGbVdroopTableCksOff.a1 =
2184 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2185 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2186 			pp_table->BtcGbVdroopTableCksOff.a2 =
2187 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2188 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2189 
2190 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2191 			pp_table->BtcGbVdroopTableCksOn.a0 =
2192 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2193 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2194 			pp_table->BtcGbVdroopTableCksOn.a1 =
2195 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2196 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2197 			pp_table->BtcGbVdroopTableCksOn.a2 =
2198 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2199 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2200 
2201 			pp_table->AvfsGbCksOn.m1 =
2202 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2203 			pp_table->AvfsGbCksOn.m2 =
2204 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2205 			pp_table->AvfsGbCksOn.b =
2206 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2207 			pp_table->AvfsGbCksOn.m1_shift = 24;
2208 			pp_table->AvfsGbCksOn.m2_shift = 12;
2209 			pp_table->AvfsGbCksOn.b_shift = 0;
2210 
2211 			pp_table->OverrideAvfsGbCksOn =
2212 					avfs_params.ucEnableGbFuseTableCkson;
2213 			pp_table->AvfsGbCksOff.m1 =
2214 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2215 			pp_table->AvfsGbCksOff.m2 =
2216 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2217 			pp_table->AvfsGbCksOff.b =
2218 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2219 			pp_table->AvfsGbCksOff.m1_shift = 24;
2220 			pp_table->AvfsGbCksOff.m2_shift = 12;
2221 			pp_table->AvfsGbCksOff.b_shift = 0;
2222 
2223 			for (i = 0; i < dep_table->count; i++)
2224 				pp_table->StaticVoltageOffsetVid[i] =
2225 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2226 
2227 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2228 					data->disp_clk_quad_eqn_a) &&
2229 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2230 					data->disp_clk_quad_eqn_b)) {
2231 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2232 						(int32_t)data->disp_clk_quad_eqn_a;
2233 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2234 						(int32_t)data->disp_clk_quad_eqn_b;
2235 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2236 						(int32_t)data->disp_clk_quad_eqn_c;
2237 			} else {
2238 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2239 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2240 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2241 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2242 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2243 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2244 			}
2245 
2246 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2247 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2248 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2249 
2250 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2251 					data->dcef_clk_quad_eqn_a) &&
2252 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2253 					data->dcef_clk_quad_eqn_b)) {
2254 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2255 						(int32_t)data->dcef_clk_quad_eqn_a;
2256 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2257 						(int32_t)data->dcef_clk_quad_eqn_b;
2258 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2259 						(int32_t)data->dcef_clk_quad_eqn_c;
2260 			} else {
2261 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2262 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2263 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2264 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2265 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2266 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2267 			}
2268 
2269 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2270 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2271 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2272 
2273 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2274 					data->pixel_clk_quad_eqn_a) &&
2275 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2276 					data->pixel_clk_quad_eqn_b)) {
2277 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2278 						(int32_t)data->pixel_clk_quad_eqn_a;
2279 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2280 						(int32_t)data->pixel_clk_quad_eqn_b;
2281 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2282 						(int32_t)data->pixel_clk_quad_eqn_c;
2283 			} else {
2284 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2285 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2286 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2287 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2288 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2289 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2290 			}
2291 
2292 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2293 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2294 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2295 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2296 					data->phy_clk_quad_eqn_a) &&
2297 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2298 					data->phy_clk_quad_eqn_b)) {
2299 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2300 						(int32_t)data->phy_clk_quad_eqn_a;
2301 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2302 						(int32_t)data->phy_clk_quad_eqn_b;
2303 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2304 						(int32_t)data->phy_clk_quad_eqn_c;
2305 			} else {
2306 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2307 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2308 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2309 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2310 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2311 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2312 			}
2313 
2314 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2315 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2316 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2317 
2318 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2319 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2320 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2321 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2322 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2323 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2324 
2325 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2326 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2327 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2328 			pp_table->AcgAvfsGb.m1_shift             = 24;
2329 			pp_table->AcgAvfsGb.m2_shift             = 12;
2330 			pp_table->AcgAvfsGb.b_shift              = 0;
2331 
2332 		} else {
2333 			data->smu_features[GNLD_AVFS].supported = false;
2334 		}
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2341 {
2342 	struct vega10_hwmgr *data = hwmgr->backend;
2343 	uint32_t agc_btc_response;
2344 
2345 	if (data->smu_features[GNLD_ACG].supported) {
2346 		if (0 == vega10_enable_smc_features(hwmgr, true,
2347 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2348 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2349 
2350 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2351 
2352 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2353 
2354 		if (1 == agc_btc_response) {
2355 			if (1 == data->acg_loop_state)
2356 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2357 			else if (2 == data->acg_loop_state)
2358 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2359 			if (0 == vega10_enable_smc_features(hwmgr, true,
2360 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2361 					data->smu_features[GNLD_ACG].enabled = true;
2362 		} else {
2363 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2364 			data->smu_features[GNLD_ACG].enabled = false;
2365 		}
2366 	}
2367 
2368 	return 0;
2369 }
2370 
2371 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2372 {
2373 	struct vega10_hwmgr *data = hwmgr->backend;
2374 
2375 	if (data->smu_features[GNLD_ACG].supported &&
2376 	    data->smu_features[GNLD_ACG].enabled)
2377 		if (!vega10_enable_smc_features(hwmgr, false,
2378 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2379 			data->smu_features[GNLD_ACG].enabled = false;
2380 
2381 	return 0;
2382 }
2383 
2384 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2385 {
2386 	struct vega10_hwmgr *data = hwmgr->backend;
2387 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2388 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2389 	int result;
2390 
2391 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2392 	if (!result) {
2393 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2394 		    data->registry_data.regulator_hot_gpio_support) {
2395 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2396 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2397 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2398 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2399 		} else {
2400 			pp_table->VR0HotGpio = 0;
2401 			pp_table->VR0HotPolarity = 0;
2402 			pp_table->VR1HotGpio = 0;
2403 			pp_table->VR1HotPolarity = 0;
2404 		}
2405 
2406 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2407 		    data->registry_data.ac_dc_switch_gpio_support) {
2408 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2409 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2410 		} else {
2411 			pp_table->AcDcGpio = 0;
2412 			pp_table->AcDcPolarity = 0;
2413 		}
2414 	}
2415 
2416 	return result;
2417 }
2418 
2419 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2420 {
2421 	struct vega10_hwmgr *data = hwmgr->backend;
2422 
2423 	if (data->smu_features[GNLD_AVFS].supported) {
2424 		/* Already enabled or disabled */
2425 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2426 			return 0;
2427 
2428 		if (enable) {
2429 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2430 					true,
2431 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2432 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2433 					return -1);
2434 			data->smu_features[GNLD_AVFS].enabled = true;
2435 		} else {
2436 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2437 					false,
2438 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2439 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2440 					return -1);
2441 			data->smu_features[GNLD_AVFS].enabled = false;
2442 		}
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2449 {
2450 	struct vega10_hwmgr *data = hwmgr->backend;
2451 
2452 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2453 		vega10_avfs_enable(hwmgr, false);
2454 	} else if (data->need_update_dpm_table) {
2455 		vega10_avfs_enable(hwmgr, false);
2456 		vega10_avfs_enable(hwmgr, true);
2457 	} else {
2458 		vega10_avfs_enable(hwmgr, true);
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2465 {
2466 	int result = 0;
2467 
2468 	uint64_t serial_number = 0;
2469 	uint32_t top32, bottom32;
2470 	struct phm_fuses_default fuse;
2471 
2472 	struct vega10_hwmgr *data = hwmgr->backend;
2473 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2474 
2475 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2476 
2477 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2478 
2479 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2480 
2481 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2482 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2483 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2484 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2485 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2486 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2487 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2488 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2489 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2490 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2491 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2492 						AVFSFUSETABLE, false);
2493 		PP_ASSERT_WITH_CODE(!result,
2494 			"Failed to upload FuseOVerride!",
2495 			);
2496 	}
2497 
2498 	return result;
2499 }
2500 
2501 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2502 {
2503 	struct vega10_hwmgr *data = hwmgr->backend;
2504 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2505 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2506 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2507 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2508 	uint32_t i;
2509 
2510 	dep_table = table_info->vdd_dep_on_mclk;
2511 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2512 
2513 	for (i = 0; i < dep_table->count; i++) {
2514 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2515 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2516 			return;
2517 		}
2518 	}
2519 
2520 	dep_table = table_info->vdd_dep_on_sclk;
2521 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2522 	for (i = 0; i < dep_table->count; i++) {
2523 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2524 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2525 			return;
2526 		}
2527 	}
2528 }
2529 
2530 /**
2531  * Initializes the SMC table and uploads it
2532  *
2533  * @hwmgr:  the address of the powerplay hardware manager.
2534  * return:  always 0
2535  */
2536 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2537 {
2538 	int result;
2539 	struct vega10_hwmgr *data = hwmgr->backend;
2540 	struct phm_ppt_v2_information *table_info =
2541 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2542 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2543 	struct pp_atomfwctrl_voltage_table voltage_table;
2544 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2545 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2546 
2547 	result = vega10_setup_default_dpm_tables(hwmgr);
2548 	PP_ASSERT_WITH_CODE(!result,
2549 			"Failed to setup default DPM tables!",
2550 			return result);
2551 
2552 	if (!hwmgr->not_vf)
2553 		return 0;
2554 
2555 	/* initialize ODN table */
2556 	if (hwmgr->od_enabled) {
2557 		if (odn_table->max_vddc) {
2558 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2559 			vega10_check_dpm_table_updated(hwmgr);
2560 		} else {
2561 			vega10_odn_initial_default_setting(hwmgr);
2562 		}
2563 	}
2564 
2565 	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2566 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2567 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2568 
2569 	pp_table->GfxDpmVoltageMode =
2570 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2571 	pp_table->SocDpmVoltageMode =
2572 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2573 	pp_table->UclkDpmVoltageMode =
2574 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2575 	pp_table->UvdDpmVoltageMode =
2576 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2577 	pp_table->VceDpmVoltageMode =
2578 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2579 	pp_table->Mp0DpmVoltageMode =
2580 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2581 
2582 	pp_table->DisplayDpmVoltageMode =
2583 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2584 
2585 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2586 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2587 
2588 	if (data->registry_data.ulv_support &&
2589 			table_info->us_ulv_voltage_offset) {
2590 		result = vega10_populate_ulv_state(hwmgr);
2591 		PP_ASSERT_WITH_CODE(!result,
2592 				"Failed to initialize ULV state!",
2593 				return result);
2594 	}
2595 
2596 	result = vega10_populate_smc_link_levels(hwmgr);
2597 	PP_ASSERT_WITH_CODE(!result,
2598 			"Failed to initialize Link Level!",
2599 			return result);
2600 
2601 	result = vega10_override_pcie_parameters(hwmgr);
2602 	PP_ASSERT_WITH_CODE(!result,
2603 			"Failed to override pcie parameters!",
2604 			return result);
2605 
2606 	result = vega10_populate_all_graphic_levels(hwmgr);
2607 	PP_ASSERT_WITH_CODE(!result,
2608 			"Failed to initialize Graphics Level!",
2609 			return result);
2610 
2611 	result = vega10_populate_all_memory_levels(hwmgr);
2612 	PP_ASSERT_WITH_CODE(!result,
2613 			"Failed to initialize Memory Level!",
2614 			return result);
2615 
2616 	vega10_populate_vddc_soc_levels(hwmgr);
2617 
2618 	result = vega10_populate_all_display_clock_levels(hwmgr);
2619 	PP_ASSERT_WITH_CODE(!result,
2620 			"Failed to initialize Display Level!",
2621 			return result);
2622 
2623 	result = vega10_populate_smc_vce_levels(hwmgr);
2624 	PP_ASSERT_WITH_CODE(!result,
2625 			"Failed to initialize VCE Level!",
2626 			return result);
2627 
2628 	result = vega10_populate_smc_uvd_levels(hwmgr);
2629 	PP_ASSERT_WITH_CODE(!result,
2630 			"Failed to initialize UVD Level!",
2631 			return result);
2632 
2633 	if (data->registry_data.clock_stretcher_support) {
2634 		result = vega10_populate_clock_stretcher_table(hwmgr);
2635 		PP_ASSERT_WITH_CODE(!result,
2636 				"Failed to populate Clock Stretcher Table!",
2637 				return result);
2638 	}
2639 
2640 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2641 	if (!result) {
2642 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2643 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2644 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2645 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2646 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2647 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2648 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2649 
2650 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2651 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2652 
2653 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2654 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2655 		if (0 != boot_up_values.usVddc) {
2656 			smum_send_msg_to_smc_with_parameter(hwmgr,
2657 						PPSMC_MSG_SetFloorSocVoltage,
2658 						(boot_up_values.usVddc * 4),
2659 						NULL);
2660 			data->vbios_boot_state.bsoc_vddc_lock = true;
2661 		} else {
2662 			data->vbios_boot_state.bsoc_vddc_lock = false;
2663 		}
2664 		smum_send_msg_to_smc_with_parameter(hwmgr,
2665 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2666 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2667 				NULL);
2668 	}
2669 
2670 	result = vega10_populate_avfs_parameters(hwmgr);
2671 	PP_ASSERT_WITH_CODE(!result,
2672 			"Failed to initialize AVFS Parameters!",
2673 			return result);
2674 
2675 	result = vega10_populate_gpio_parameters(hwmgr);
2676 	PP_ASSERT_WITH_CODE(!result,
2677 			"Failed to initialize GPIO Parameters!",
2678 			return result);
2679 
2680 	pp_table->GfxclkAverageAlpha = (uint8_t)
2681 			(data->gfxclk_average_alpha);
2682 	pp_table->SocclkAverageAlpha = (uint8_t)
2683 			(data->socclk_average_alpha);
2684 	pp_table->UclkAverageAlpha = (uint8_t)
2685 			(data->uclk_average_alpha);
2686 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2687 			(data->gfx_activity_average_alpha);
2688 
2689 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2690 
2691 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2692 
2693 	PP_ASSERT_WITH_CODE(!result,
2694 			"Failed to upload PPtable!", return result);
2695 
2696 	result = vega10_avfs_enable(hwmgr, true);
2697 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2698 					return result);
2699 	vega10_acg_enable(hwmgr);
2700 
2701 	return 0;
2702 }
2703 
2704 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2705 {
2706 	struct vega10_hwmgr *data = hwmgr->backend;
2707 
2708 	if (data->smu_features[GNLD_THERMAL].supported) {
2709 		if (data->smu_features[GNLD_THERMAL].enabled)
2710 			pr_info("THERMAL Feature Already enabled!");
2711 
2712 		PP_ASSERT_WITH_CODE(
2713 				!vega10_enable_smc_features(hwmgr,
2714 				true,
2715 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2716 				"Enable THERMAL Feature Failed!",
2717 				return -1);
2718 		data->smu_features[GNLD_THERMAL].enabled = true;
2719 	}
2720 
2721 	return 0;
2722 }
2723 
2724 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2725 {
2726 	struct vega10_hwmgr *data = hwmgr->backend;
2727 
2728 	if (data->smu_features[GNLD_THERMAL].supported) {
2729 		if (!data->smu_features[GNLD_THERMAL].enabled)
2730 			pr_info("THERMAL Feature Already disabled!");
2731 
2732 		PP_ASSERT_WITH_CODE(
2733 				!vega10_enable_smc_features(hwmgr,
2734 				false,
2735 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2736 				"disable THERMAL Feature Failed!",
2737 				return -1);
2738 		data->smu_features[GNLD_THERMAL].enabled = false;
2739 	}
2740 
2741 	return 0;
2742 }
2743 
2744 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2745 {
2746 	struct vega10_hwmgr *data = hwmgr->backend;
2747 
2748 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2749 		if (data->smu_features[GNLD_VR0HOT].supported) {
2750 			PP_ASSERT_WITH_CODE(
2751 					!vega10_enable_smc_features(hwmgr,
2752 					true,
2753 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2754 					"Attempt to Enable VR0 Hot feature Failed!",
2755 					return -1);
2756 			data->smu_features[GNLD_VR0HOT].enabled = true;
2757 		} else {
2758 			if (data->smu_features[GNLD_VR1HOT].supported) {
2759 				PP_ASSERT_WITH_CODE(
2760 						!vega10_enable_smc_features(hwmgr,
2761 						true,
2762 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2763 						"Attempt to Enable VR0 Hot feature Failed!",
2764 						return -1);
2765 				data->smu_features[GNLD_VR1HOT].enabled = true;
2766 			}
2767 		}
2768 	}
2769 	return 0;
2770 }
2771 
2772 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2773 {
2774 	struct vega10_hwmgr *data = hwmgr->backend;
2775 
2776 	if (data->registry_data.ulv_support) {
2777 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2778 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2779 				"Enable ULV Feature Failed!",
2780 				return -1);
2781 		data->smu_features[GNLD_ULV].enabled = true;
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2788 {
2789 	struct vega10_hwmgr *data = hwmgr->backend;
2790 
2791 	if (data->registry_data.ulv_support) {
2792 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2793 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2794 				"disable ULV Feature Failed!",
2795 				return -EINVAL);
2796 		data->smu_features[GNLD_ULV].enabled = false;
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2803 {
2804 	struct vega10_hwmgr *data = hwmgr->backend;
2805 
2806 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2807 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2808 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2809 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2810 				return -EINVAL);
2811 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2812 	}
2813 
2814 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2815 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2817 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2818 				return -EINVAL);
2819 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2820 	}
2821 
2822 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2823 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2824 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2825 				"Attempt to Enable DS_LCLK Feature Failed!",
2826 				return -EINVAL);
2827 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2828 	}
2829 
2830 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2831 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2832 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2833 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2834 				return -EINVAL);
2835 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2836 	}
2837 
2838 	return 0;
2839 }
2840 
2841 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2842 {
2843 	struct vega10_hwmgr *data = hwmgr->backend;
2844 
2845 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2846 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2847 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2848 				"Attempt to disable DS_GFXCLK Feature Failed!",
2849 				return -EINVAL);
2850 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2851 	}
2852 
2853 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2854 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2855 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2856 				"Attempt to disable DS_ Feature Failed!",
2857 				return -EINVAL);
2858 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2859 	}
2860 
2861 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2862 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2863 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2864 				"Attempt to disable DS_LCLK Feature Failed!",
2865 				return -EINVAL);
2866 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2867 	}
2868 
2869 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2870 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2871 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2872 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2873 				return -EINVAL);
2874 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2881 {
2882 	struct vega10_hwmgr *data = hwmgr->backend;
2883 	uint32_t i, feature_mask = 0;
2884 
2885 	if (!hwmgr->not_vf)
2886 		return 0;
2887 
2888 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2889 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2890 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2891 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2892 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2893 	}
2894 
2895 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2896 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2897 			if (data->smu_features[i].supported) {
2898 				if (data->smu_features[i].enabled) {
2899 					feature_mask |= data->smu_features[i].
2900 							smu_feature_bitmap;
2901 					data->smu_features[i].enabled = false;
2902 				}
2903 			}
2904 		}
2905 	}
2906 
2907 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2908 
2909 	return 0;
2910 }
2911 
2912 /**
2913  * Tell SMC to enabled the supported DPMs.
2914  *
2915  * @hwmgr:   the address of the powerplay hardware manager.
2916  * @bitmap:  bitmap for the features to enabled.
2917  * return:  0 on at least one DPM is successfully enabled.
2918  */
2919 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2920 {
2921 	struct vega10_hwmgr *data = hwmgr->backend;
2922 	uint32_t i, feature_mask = 0;
2923 
2924 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2925 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2926 			if (data->smu_features[i].supported) {
2927 				if (!data->smu_features[i].enabled) {
2928 					feature_mask |= data->smu_features[i].
2929 							smu_feature_bitmap;
2930 					data->smu_features[i].enabled = true;
2931 				}
2932 			}
2933 		}
2934 	}
2935 
2936 	if (vega10_enable_smc_features(hwmgr,
2937 			true, feature_mask)) {
2938 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2939 			if (data->smu_features[i].smu_feature_bitmap &
2940 					feature_mask)
2941 				data->smu_features[i].enabled = false;
2942 		}
2943 	}
2944 
2945 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2946 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2947 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2948 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2949 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2950 	}
2951 
2952 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2953 		smum_send_msg_to_smc_with_parameter(hwmgr,
2954 						PPSMC_MSG_SetFloorSocVoltage, 0,
2955 						NULL);
2956 		data->vbios_boot_state.bsoc_vddc_lock = false;
2957 	}
2958 
2959 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2960 		if (data->smu_features[GNLD_ACDC].supported) {
2961 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2962 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2963 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2964 					return -1);
2965 			data->smu_features[GNLD_ACDC].enabled = true;
2966 		}
2967 	}
2968 
2969 	return 0;
2970 }
2971 
2972 
2973 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2974 {
2975 	struct vega10_hwmgr *data = hwmgr->backend;
2976 
2977 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2978 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2979 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2980 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2981 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2982 				"Attempt to Enable PCC Limit feature Failed!",
2983 				return -EINVAL);
2984 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2991 {
2992 	struct vega10_hwmgr *data = hwmgr->backend;
2993 	int tmp_result, result = 0;
2994 
2995 	if (hwmgr->not_vf) {
2996 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2997 
2998 		smum_send_msg_to_smc_with_parameter(hwmgr,
2999 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
3000 			NULL);
3001 
3002 		tmp_result = vega10_construct_voltage_tables(hwmgr);
3003 		PP_ASSERT_WITH_CODE(!tmp_result,
3004 				    "Failed to construct voltage tables!",
3005 				    result = tmp_result);
3006 	}
3007 
3008 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
3009 		tmp_result = vega10_init_smc_table(hwmgr);
3010 		PP_ASSERT_WITH_CODE(!tmp_result,
3011 				    "Failed to initialize SMC table!",
3012 				    result = tmp_result);
3013 	}
3014 
3015 	if (hwmgr->not_vf) {
3016 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
3017 			tmp_result = vega10_enable_thermal_protection(hwmgr);
3018 			PP_ASSERT_WITH_CODE(!tmp_result,
3019 					    "Failed to enable thermal protection!",
3020 					    result = tmp_result);
3021 		}
3022 
3023 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
3024 		PP_ASSERT_WITH_CODE(!tmp_result,
3025 				    "Failed to enable VR hot feature!",
3026 				    result = tmp_result);
3027 
3028 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
3029 		PP_ASSERT_WITH_CODE(!tmp_result,
3030 				    "Failed to enable deep sleep master switch!",
3031 				    result = tmp_result);
3032 	}
3033 
3034 	if (hwmgr->not_vf) {
3035 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
3036 		PP_ASSERT_WITH_CODE(!tmp_result,
3037 				    "Failed to start DPM!", result = tmp_result);
3038 	}
3039 
3040 	if (hwmgr->not_vf) {
3041 		/* enable didt, do not abort if failed didt */
3042 		tmp_result = vega10_enable_didt_config(hwmgr);
3043 		PP_ASSERT(!tmp_result,
3044 			  "Failed to enable didt config!");
3045 	}
3046 
3047 	tmp_result = vega10_enable_power_containment(hwmgr);
3048 	PP_ASSERT_WITH_CODE(!tmp_result,
3049 			    "Failed to enable power containment!",
3050 			    result = tmp_result);
3051 
3052 	if (hwmgr->not_vf) {
3053 		tmp_result = vega10_power_control_set_level(hwmgr);
3054 		PP_ASSERT_WITH_CODE(!tmp_result,
3055 				    "Failed to power control set level!",
3056 				    result = tmp_result);
3057 
3058 		tmp_result = vega10_enable_ulv(hwmgr);
3059 		PP_ASSERT_WITH_CODE(!tmp_result,
3060 				    "Failed to enable ULV!",
3061 				    result = tmp_result);
3062 	}
3063 
3064 	return result;
3065 }
3066 
3067 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3068 {
3069 	return sizeof(struct vega10_power_state);
3070 }
3071 
3072 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3073 		void *state, struct pp_power_state *power_state,
3074 		void *pp_table, uint32_t classification_flag)
3075 {
3076 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3077 	struct vega10_power_state *vega10_power_state =
3078 			cast_phw_vega10_power_state(&(power_state->hardware));
3079 	struct vega10_performance_level *performance_level;
3080 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3081 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3082 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3083 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3084 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3085 			(((unsigned long)powerplay_table) +
3086 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3087 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3088 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3089 			(((unsigned long)powerplay_table) +
3090 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3091 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3092 			(ATOM_Vega10_MCLK_Dependency_Table *)
3093 			(((unsigned long)powerplay_table) +
3094 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3095 
3096 
3097 	/* The following fields are not initialized here:
3098 	 * id orderedList allStatesList
3099 	 */
3100 	power_state->classification.ui_label =
3101 			(le16_to_cpu(state_entry->usClassification) &
3102 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3103 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3104 	power_state->classification.flags = classification_flag;
3105 	/* NOTE: There is a classification2 flag in BIOS
3106 	 * that is not being used right now
3107 	 */
3108 	power_state->classification.temporary_state = false;
3109 	power_state->classification.to_be_deleted = false;
3110 
3111 	power_state->validation.disallowOnDC =
3112 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3113 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3114 
3115 	power_state->display.disableFrameModulation = false;
3116 	power_state->display.limitRefreshrate = false;
3117 	power_state->display.enableVariBright =
3118 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3119 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3120 
3121 	power_state->validation.supportedPowerLevels = 0;
3122 	power_state->uvd_clocks.VCLK = 0;
3123 	power_state->uvd_clocks.DCLK = 0;
3124 	power_state->temperatures.min = 0;
3125 	power_state->temperatures.max = 0;
3126 
3127 	performance_level = &(vega10_power_state->performance_levels
3128 			[vega10_power_state->performance_level_count++]);
3129 
3130 	PP_ASSERT_WITH_CODE(
3131 			(vega10_power_state->performance_level_count <
3132 					NUM_GFXCLK_DPM_LEVELS),
3133 			"Performance levels exceeds SMC limit!",
3134 			return -1);
3135 
3136 	PP_ASSERT_WITH_CODE(
3137 			(vega10_power_state->performance_level_count <=
3138 					hwmgr->platform_descriptor.
3139 					hardwareActivityPerformanceLevels),
3140 			"Performance levels exceeds Driver limit!",
3141 			return -1);
3142 
3143 	/* Performance levels are arranged from low to high. */
3144 	performance_level->soc_clock = socclk_dep_table->entries
3145 			[state_entry->ucSocClockIndexLow].ulClk;
3146 	performance_level->gfx_clock = gfxclk_dep_table->entries
3147 			[state_entry->ucGfxClockIndexLow].ulClk;
3148 	performance_level->mem_clock = mclk_dep_table->entries
3149 			[state_entry->ucMemClockIndexLow].ulMemClk;
3150 
3151 	performance_level = &(vega10_power_state->performance_levels
3152 				[vega10_power_state->performance_level_count++]);
3153 	performance_level->soc_clock = socclk_dep_table->entries
3154 				[state_entry->ucSocClockIndexHigh].ulClk;
3155 	if (gfxclk_dep_table->ucRevId == 0) {
3156 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3157 		 * to level-4 due to the limited 110w-power
3158 		 */
3159 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3160 			performance_level->gfx_clock =
3161 				gfxclk_dep_table->entries[4].ulClk;
3162 		else
3163 			performance_level->gfx_clock = gfxclk_dep_table->entries
3164 				[state_entry->ucGfxClockIndexHigh].ulClk;
3165 	} else if (gfxclk_dep_table->ucRevId == 1) {
3166 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3167 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3168 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3169 		else
3170 			performance_level->gfx_clock =
3171 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3172 	}
3173 
3174 	performance_level->mem_clock = mclk_dep_table->entries
3175 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3176 	return 0;
3177 }
3178 
3179 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3180 		unsigned long entry_index, struct pp_power_state *state)
3181 {
3182 	int result;
3183 	struct vega10_power_state *ps;
3184 
3185 	state->hardware.magic = PhwVega10_Magic;
3186 
3187 	ps = cast_phw_vega10_power_state(&state->hardware);
3188 
3189 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3190 			vega10_get_pp_table_entry_callback_func);
3191 	if (result)
3192 		return result;
3193 
3194 	/*
3195 	 * This is the earliest time we have all the dependency table
3196 	 * and the VBIOS boot state
3197 	 */
3198 	/* set DC compatible flag if this state supports DC */
3199 	if (!state->validation.disallowOnDC)
3200 		ps->dc_compatible = true;
3201 
3202 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3203 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3204 
3205 	return 0;
3206 }
3207 
3208 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3209 	     struct pp_hw_power_state *hw_ps)
3210 {
3211 	return 0;
3212 }
3213 
3214 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3215 				struct pp_power_state  *request_ps,
3216 			const struct pp_power_state *current_ps)
3217 {
3218 	struct amdgpu_device *adev = hwmgr->adev;
3219 	struct vega10_power_state *vega10_ps =
3220 				cast_phw_vega10_power_state(&request_ps->hardware);
3221 	uint32_t sclk;
3222 	uint32_t mclk;
3223 	struct PP_Clocks minimum_clocks = {0};
3224 	bool disable_mclk_switching;
3225 	bool disable_mclk_switching_for_frame_lock;
3226 	bool disable_mclk_switching_for_vr;
3227 	bool force_mclk_high;
3228 	const struct phm_clock_and_voltage_limits *max_limits;
3229 	uint32_t i;
3230 	struct vega10_hwmgr *data = hwmgr->backend;
3231 	struct phm_ppt_v2_information *table_info =
3232 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3233 	int32_t count;
3234 	uint32_t stable_pstate_sclk_dpm_percentage;
3235 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3236 	uint32_t latency;
3237 
3238 	data->battery_state = (PP_StateUILabel_Battery ==
3239 			request_ps->classification.ui_label);
3240 
3241 	if (vega10_ps->performance_level_count != 2)
3242 		pr_info("VI should always have 2 performance levels");
3243 
3244 	max_limits = adev->pm.ac_power ?
3245 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3246 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3247 
3248 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3249 	if (!adev->pm.ac_power) {
3250 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3251 			if (vega10_ps->performance_levels[i].mem_clock >
3252 				max_limits->mclk)
3253 				vega10_ps->performance_levels[i].mem_clock =
3254 						max_limits->mclk;
3255 			if (vega10_ps->performance_levels[i].gfx_clock >
3256 				max_limits->sclk)
3257 				vega10_ps->performance_levels[i].gfx_clock =
3258 						max_limits->sclk;
3259 		}
3260 	}
3261 
3262 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3263 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3264 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3265 
3266 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3267 		stable_pstate_sclk_dpm_percentage =
3268 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3269 		PP_ASSERT_WITH_CODE(
3270 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3271 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3272 			"percent sclk value must range from 1% to 100%, setting default value",
3273 			stable_pstate_sclk_dpm_percentage = 75);
3274 
3275 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3276 		stable_pstate_sclk = (max_limits->sclk *
3277 				stable_pstate_sclk_dpm_percentage) / 100;
3278 
3279 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3280 				count >= 0; count--) {
3281 			if (stable_pstate_sclk >=
3282 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3283 				stable_pstate_sclk =
3284 						table_info->vdd_dep_on_sclk->entries[count].clk;
3285 				break;
3286 			}
3287 		}
3288 
3289 		if (count < 0)
3290 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3291 
3292 		stable_pstate_mclk = max_limits->mclk;
3293 
3294 		minimum_clocks.engineClock = stable_pstate_sclk;
3295 		minimum_clocks.memoryClock = stable_pstate_mclk;
3296 	}
3297 
3298 	disable_mclk_switching_for_frame_lock =
3299 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3300 	disable_mclk_switching_for_vr =
3301 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3302 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3303 
3304 	if (hwmgr->display_config->num_display == 0)
3305 		disable_mclk_switching = false;
3306 	else
3307 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3308 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3309 			disable_mclk_switching_for_frame_lock ||
3310 			disable_mclk_switching_for_vr ||
3311 			force_mclk_high;
3312 
3313 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3314 	mclk = vega10_ps->performance_levels[0].mem_clock;
3315 
3316 	if (sclk < minimum_clocks.engineClock)
3317 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3318 				max_limits->sclk : minimum_clocks.engineClock;
3319 
3320 	if (mclk < minimum_clocks.memoryClock)
3321 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3322 				max_limits->mclk : minimum_clocks.memoryClock;
3323 
3324 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3325 	vega10_ps->performance_levels[0].mem_clock = mclk;
3326 
3327 	if (vega10_ps->performance_levels[1].gfx_clock <
3328 			vega10_ps->performance_levels[0].gfx_clock)
3329 		vega10_ps->performance_levels[0].gfx_clock =
3330 				vega10_ps->performance_levels[1].gfx_clock;
3331 
3332 	if (disable_mclk_switching) {
3333 		/* Set Mclk the max of level 0 and level 1 */
3334 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3335 			mclk = vega10_ps->performance_levels[1].mem_clock;
3336 
3337 		/* Find the lowest MCLK frequency that is within
3338 		 * the tolerable latency defined in DAL
3339 		 */
3340 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3341 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3342 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3343 				(data->mclk_latency_table.entries[i].frequency >=
3344 						vega10_ps->performance_levels[0].mem_clock) &&
3345 				(data->mclk_latency_table.entries[i].frequency <=
3346 						vega10_ps->performance_levels[1].mem_clock))
3347 				mclk = data->mclk_latency_table.entries[i].frequency;
3348 		}
3349 		vega10_ps->performance_levels[0].mem_clock = mclk;
3350 	} else {
3351 		if (vega10_ps->performance_levels[1].mem_clock <
3352 				vega10_ps->performance_levels[0].mem_clock)
3353 			vega10_ps->performance_levels[0].mem_clock =
3354 					vega10_ps->performance_levels[1].mem_clock;
3355 	}
3356 
3357 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3358 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3359 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3360 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3361 		}
3362 	}
3363 
3364 	return 0;
3365 }
3366 
3367 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3368 {
3369 	struct vega10_hwmgr *data = hwmgr->backend;
3370 	const struct phm_set_power_state_input *states =
3371 			(const struct phm_set_power_state_input *)input;
3372 	const struct vega10_power_state *vega10_ps =
3373 			cast_const_phw_vega10_power_state(states->pnew_state);
3374 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3375 	uint32_t sclk = vega10_ps->performance_levels
3376 			[vega10_ps->performance_level_count - 1].gfx_clock;
3377 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3378 	uint32_t mclk = vega10_ps->performance_levels
3379 			[vega10_ps->performance_level_count - 1].mem_clock;
3380 	uint32_t i;
3381 
3382 	for (i = 0; i < sclk_table->count; i++) {
3383 		if (sclk == sclk_table->dpm_levels[i].value)
3384 			break;
3385 	}
3386 
3387 	if (i >= sclk_table->count) {
3388 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3389 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3390 			sclk_table->dpm_levels[i-1].value = sclk;
3391 		}
3392 	}
3393 
3394 	for (i = 0; i < mclk_table->count; i++) {
3395 		if (mclk == mclk_table->dpm_levels[i].value)
3396 			break;
3397 	}
3398 
3399 	if (i >= mclk_table->count) {
3400 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3401 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3402 			mclk_table->dpm_levels[i-1].value = mclk;
3403 		}
3404 	}
3405 
3406 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3407 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3408 
3409 	return 0;
3410 }
3411 
3412 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3413 		struct pp_hwmgr *hwmgr, const void *input)
3414 {
3415 	int result = 0;
3416 	struct vega10_hwmgr *data = hwmgr->backend;
3417 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3418 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3419 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3420 	int count;
3421 
3422 	if (!data->need_update_dpm_table)
3423 		return 0;
3424 
3425 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3426 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3427 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3428 	}
3429 
3430 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3431 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3432 		for (count = 0; count < dpm_table->mem_table.count; count++)
3433 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3434 	}
3435 
3436 	if (data->need_update_dpm_table &
3437 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3438 		result = vega10_populate_all_graphic_levels(hwmgr);
3439 		PP_ASSERT_WITH_CODE((0 == result),
3440 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3441 				return result);
3442 	}
3443 
3444 	if (data->need_update_dpm_table &
3445 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3446 		result = vega10_populate_all_memory_levels(hwmgr);
3447 		PP_ASSERT_WITH_CODE((0 == result),
3448 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3449 				return result);
3450 	}
3451 
3452 	vega10_populate_vddc_soc_levels(hwmgr);
3453 
3454 	return result;
3455 }
3456 
3457 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3458 		struct vega10_single_dpm_table *dpm_table,
3459 		uint32_t low_limit, uint32_t high_limit)
3460 {
3461 	uint32_t i;
3462 
3463 	for (i = 0; i < dpm_table->count; i++) {
3464 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3465 		    (dpm_table->dpm_levels[i].value > high_limit))
3466 			dpm_table->dpm_levels[i].enabled = false;
3467 		else
3468 			dpm_table->dpm_levels[i].enabled = true;
3469 	}
3470 	return 0;
3471 }
3472 
3473 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3474 		struct vega10_single_dpm_table *dpm_table,
3475 		uint32_t low_limit, uint32_t high_limit,
3476 		uint32_t disable_dpm_mask)
3477 {
3478 	uint32_t i;
3479 
3480 	for (i = 0; i < dpm_table->count; i++) {
3481 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3482 		    (dpm_table->dpm_levels[i].value > high_limit))
3483 			dpm_table->dpm_levels[i].enabled = false;
3484 		else if (!((1 << i) & disable_dpm_mask))
3485 			dpm_table->dpm_levels[i].enabled = false;
3486 		else
3487 			dpm_table->dpm_levels[i].enabled = true;
3488 	}
3489 	return 0;
3490 }
3491 
3492 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3493 		const struct vega10_power_state *vega10_ps)
3494 {
3495 	struct vega10_hwmgr *data = hwmgr->backend;
3496 	uint32_t high_limit_count;
3497 
3498 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3499 			"power state did not have any performance level",
3500 			return -1);
3501 
3502 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3503 
3504 	vega10_trim_single_dpm_states(hwmgr,
3505 			&(data->dpm_table.soc_table),
3506 			vega10_ps->performance_levels[0].soc_clock,
3507 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3508 
3509 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3510 			&(data->dpm_table.gfx_table),
3511 			vega10_ps->performance_levels[0].gfx_clock,
3512 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3513 			data->disable_dpm_mask);
3514 
3515 	vega10_trim_single_dpm_states(hwmgr,
3516 			&(data->dpm_table.mem_table),
3517 			vega10_ps->performance_levels[0].mem_clock,
3518 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3519 
3520 	return 0;
3521 }
3522 
3523 static uint32_t vega10_find_lowest_dpm_level(
3524 		struct vega10_single_dpm_table *table)
3525 {
3526 	uint32_t i;
3527 
3528 	for (i = 0; i < table->count; i++) {
3529 		if (table->dpm_levels[i].enabled)
3530 			break;
3531 	}
3532 
3533 	return i;
3534 }
3535 
3536 static uint32_t vega10_find_highest_dpm_level(
3537 		struct vega10_single_dpm_table *table)
3538 {
3539 	uint32_t i = 0;
3540 
3541 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3542 		for (i = table->count; i > 0; i--) {
3543 			if (table->dpm_levels[i - 1].enabled)
3544 				return i - 1;
3545 		}
3546 	} else {
3547 		pr_info("DPM Table Has Too Many Entries!");
3548 		return MAX_REGULAR_DPM_NUMBER - 1;
3549 	}
3550 
3551 	return i;
3552 }
3553 
3554 static void vega10_apply_dal_minimum_voltage_request(
3555 		struct pp_hwmgr *hwmgr)
3556 {
3557 	return;
3558 }
3559 
3560 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3561 {
3562 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3563 	struct phm_ppt_v2_information *table_info =
3564 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3565 
3566 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3567 
3568 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3569 }
3570 
3571 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3572 {
3573 	struct vega10_hwmgr *data = hwmgr->backend;
3574 	uint32_t socclk_idx;
3575 
3576 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3577 
3578 	if (!data->registry_data.sclk_dpm_key_disabled) {
3579 		if (data->smc_state_table.gfx_boot_level !=
3580 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3581 			smum_send_msg_to_smc_with_parameter(hwmgr,
3582 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3583 				data->smc_state_table.gfx_boot_level,
3584 				NULL);
3585 
3586 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3587 					data->smc_state_table.gfx_boot_level;
3588 		}
3589 	}
3590 
3591 	if (!data->registry_data.mclk_dpm_key_disabled) {
3592 		if (data->smc_state_table.mem_boot_level !=
3593 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3594 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3595 			    && hwmgr->not_vf) {
3596 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3597 				smum_send_msg_to_smc_with_parameter(hwmgr,
3598 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3599 						socclk_idx,
3600 						NULL);
3601 			} else {
3602 				smum_send_msg_to_smc_with_parameter(hwmgr,
3603 						PPSMC_MSG_SetSoftMinUclkByIndex,
3604 						data->smc_state_table.mem_boot_level,
3605 						NULL);
3606 			}
3607 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3608 					data->smc_state_table.mem_boot_level;
3609 		}
3610 	}
3611 
3612 	if (!hwmgr->not_vf)
3613 		return 0;
3614 
3615 	if (!data->registry_data.socclk_dpm_key_disabled) {
3616 		if (data->smc_state_table.soc_boot_level !=
3617 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3618 			smum_send_msg_to_smc_with_parameter(hwmgr,
3619 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3620 				data->smc_state_table.soc_boot_level,
3621 				NULL);
3622 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3623 					data->smc_state_table.soc_boot_level;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3631 {
3632 	struct vega10_hwmgr *data = hwmgr->backend;
3633 
3634 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3635 
3636 	if (!data->registry_data.sclk_dpm_key_disabled) {
3637 		if (data->smc_state_table.gfx_max_level !=
3638 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3639 			smum_send_msg_to_smc_with_parameter(hwmgr,
3640 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3641 				data->smc_state_table.gfx_max_level,
3642 				NULL);
3643 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3644 					data->smc_state_table.gfx_max_level;
3645 		}
3646 	}
3647 
3648 	if (!data->registry_data.mclk_dpm_key_disabled) {
3649 		if (data->smc_state_table.mem_max_level !=
3650 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3651 			smum_send_msg_to_smc_with_parameter(hwmgr,
3652 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3653 					data->smc_state_table.mem_max_level,
3654 					NULL);
3655 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3656 					data->smc_state_table.mem_max_level;
3657 		}
3658 	}
3659 
3660 	if (!hwmgr->not_vf)
3661 		return 0;
3662 
3663 	if (!data->registry_data.socclk_dpm_key_disabled) {
3664 		if (data->smc_state_table.soc_max_level !=
3665 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3666 			smum_send_msg_to_smc_with_parameter(hwmgr,
3667 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3668 				data->smc_state_table.soc_max_level,
3669 				NULL);
3670 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3671 					data->smc_state_table.soc_max_level;
3672 		}
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 static int vega10_generate_dpm_level_enable_mask(
3679 		struct pp_hwmgr *hwmgr, const void *input)
3680 {
3681 	struct vega10_hwmgr *data = hwmgr->backend;
3682 	const struct phm_set_power_state_input *states =
3683 			(const struct phm_set_power_state_input *)input;
3684 	const struct vega10_power_state *vega10_ps =
3685 			cast_const_phw_vega10_power_state(states->pnew_state);
3686 	int i;
3687 
3688 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3689 			"Attempt to Trim DPM States Failed!",
3690 			return -1);
3691 
3692 	data->smc_state_table.gfx_boot_level =
3693 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3694 	data->smc_state_table.gfx_max_level =
3695 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3696 	data->smc_state_table.mem_boot_level =
3697 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3698 	data->smc_state_table.mem_max_level =
3699 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3700 	data->smc_state_table.soc_boot_level =
3701 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3702 	data->smc_state_table.soc_max_level =
3703 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3704 
3705 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3706 			"Attempt to upload DPM Bootup Levels Failed!",
3707 			return -1);
3708 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3709 			"Attempt to upload DPM Max Levels Failed!",
3710 			return -1);
3711 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3712 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3713 
3714 
3715 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3716 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3717 
3718 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3719 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3720 
3721 	return 0;
3722 }
3723 
3724 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3725 {
3726 	struct vega10_hwmgr *data = hwmgr->backend;
3727 
3728 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3729 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3730 				enable,
3731 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3732 				"Attempt to Enable/Disable DPM VCE Failed!",
3733 				return -1);
3734 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3741 {
3742 	struct vega10_hwmgr *data = hwmgr->backend;
3743 	uint32_t low_sclk_interrupt_threshold = 0;
3744 
3745 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3746 		(data->low_sclk_interrupt_threshold != 0)) {
3747 		low_sclk_interrupt_threshold =
3748 				data->low_sclk_interrupt_threshold;
3749 
3750 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3751 				cpu_to_le32(low_sclk_interrupt_threshold);
3752 
3753 		/* This message will also enable SmcToHost Interrupt */
3754 		smum_send_msg_to_smc_with_parameter(hwmgr,
3755 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3756 				(uint32_t)low_sclk_interrupt_threshold,
3757 				NULL);
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3764 		const void *input)
3765 {
3766 	int tmp_result, result = 0;
3767 	struct vega10_hwmgr *data = hwmgr->backend;
3768 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3769 
3770 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3771 	PP_ASSERT_WITH_CODE(!tmp_result,
3772 			"Failed to find DPM states clocks in DPM table!",
3773 			result = tmp_result);
3774 
3775 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3776 	PP_ASSERT_WITH_CODE(!tmp_result,
3777 			"Failed to populate and upload SCLK MCLK DPM levels!",
3778 			result = tmp_result);
3779 
3780 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3781 	PP_ASSERT_WITH_CODE(!tmp_result,
3782 			"Failed to generate DPM level enabled mask!",
3783 			result = tmp_result);
3784 
3785 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3786 	PP_ASSERT_WITH_CODE(!tmp_result,
3787 			"Failed to update SCLK threshold!",
3788 			result = tmp_result);
3789 
3790 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3791 	PP_ASSERT_WITH_CODE(!result,
3792 			"Failed to upload PPtable!", return result);
3793 
3794 	/*
3795 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3796 	 * That effectively disables AVFS feature.
3797 	 */
3798 	if(hwmgr->hardcode_pp_table != NULL)
3799 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3800 
3801 	vega10_update_avfs(hwmgr);
3802 
3803 	/*
3804 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3805 	 * That will help to keep AVFS disabled.
3806 	 */
3807 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3808 
3809 	return 0;
3810 }
3811 
3812 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3813 {
3814 	struct pp_power_state *ps;
3815 	struct vega10_power_state *vega10_ps;
3816 
3817 	if (hwmgr == NULL)
3818 		return -EINVAL;
3819 
3820 	ps = hwmgr->request_ps;
3821 
3822 	if (ps == NULL)
3823 		return -EINVAL;
3824 
3825 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3826 
3827 	if (low)
3828 		return vega10_ps->performance_levels[0].gfx_clock;
3829 	else
3830 		return vega10_ps->performance_levels
3831 				[vega10_ps->performance_level_count - 1].gfx_clock;
3832 }
3833 
3834 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3835 {
3836 	struct pp_power_state *ps;
3837 	struct vega10_power_state *vega10_ps;
3838 
3839 	if (hwmgr == NULL)
3840 		return -EINVAL;
3841 
3842 	ps = hwmgr->request_ps;
3843 
3844 	if (ps == NULL)
3845 		return -EINVAL;
3846 
3847 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3848 
3849 	if (low)
3850 		return vega10_ps->performance_levels[0].mem_clock;
3851 	else
3852 		return vega10_ps->performance_levels
3853 				[vega10_ps->performance_level_count-1].mem_clock;
3854 }
3855 
3856 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3857 		uint32_t *query)
3858 {
3859 	uint32_t value;
3860 
3861 	if (!query)
3862 		return -EINVAL;
3863 
3864 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3865 
3866 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3867 	*query = value << 8;
3868 
3869 	return 0;
3870 }
3871 
3872 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3873 			      void *value, int *size)
3874 {
3875 	struct amdgpu_device *adev = hwmgr->adev;
3876 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3877 	struct vega10_hwmgr *data = hwmgr->backend;
3878 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3879 	int ret = 0;
3880 	uint32_t val_vid;
3881 
3882 	switch (idx) {
3883 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3884 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3885 		*((uint32_t *)value) = sclk_mhz * 100;
3886 		break;
3887 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3888 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3889 		if (mclk_idx < dpm_table->mem_table.count) {
3890 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3891 			*size = 4;
3892 		} else {
3893 			ret = -EINVAL;
3894 		}
3895 		break;
3896 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3897 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3898 						&activity_percent);
3899 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3900 		*size = 4;
3901 		break;
3902 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3903 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3904 		*size = 4;
3905 		break;
3906 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3907 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3908 		*((uint32_t *)value) = *((uint32_t *)value) *
3909 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3910 		*size = 4;
3911 		break;
3912 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3913 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3914 		*((uint32_t *)value) = *((uint32_t *)value) *
3915 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3916 		*size = 4;
3917 		break;
3918 	case AMDGPU_PP_SENSOR_UVD_POWER:
3919 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3920 		*size = 4;
3921 		break;
3922 	case AMDGPU_PP_SENSOR_VCE_POWER:
3923 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3924 		*size = 4;
3925 		break;
3926 	case AMDGPU_PP_SENSOR_GPU_POWER:
3927 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3928 		break;
3929 	case AMDGPU_PP_SENSOR_VDDGFX:
3930 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3931 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3932 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3933 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3934 		return 0;
3935 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3936 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3937 		if (!ret)
3938 			*size = 8;
3939 		break;
3940 	default:
3941 		ret = -EINVAL;
3942 		break;
3943 	}
3944 
3945 	return ret;
3946 }
3947 
3948 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3949 		bool has_disp)
3950 {
3951 	smum_send_msg_to_smc_with_parameter(hwmgr,
3952 			PPSMC_MSG_SetUclkFastSwitch,
3953 			has_disp ? 1 : 0,
3954 			NULL);
3955 }
3956 
3957 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3958 		struct pp_display_clock_request *clock_req)
3959 {
3960 	int result = 0;
3961 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3962 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3963 	DSPCLK_e clk_select = 0;
3964 	uint32_t clk_request = 0;
3965 
3966 	switch (clk_type) {
3967 	case amd_pp_dcef_clock:
3968 		clk_select = DSPCLK_DCEFCLK;
3969 		break;
3970 	case amd_pp_disp_clock:
3971 		clk_select = DSPCLK_DISPCLK;
3972 		break;
3973 	case amd_pp_pixel_clock:
3974 		clk_select = DSPCLK_PIXCLK;
3975 		break;
3976 	case amd_pp_phy_clock:
3977 		clk_select = DSPCLK_PHYCLK;
3978 		break;
3979 	default:
3980 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3981 		result = -1;
3982 		break;
3983 	}
3984 
3985 	if (!result) {
3986 		clk_request = (clk_freq << 16) | clk_select;
3987 		smum_send_msg_to_smc_with_parameter(hwmgr,
3988 				PPSMC_MSG_RequestDisplayClockByFreq,
3989 				clk_request,
3990 				NULL);
3991 	}
3992 
3993 	return result;
3994 }
3995 
3996 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
3997 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
3998 						uint32_t frequency)
3999 {
4000 	uint8_t count;
4001 	uint8_t i;
4002 
4003 	if (mclk_table == NULL || mclk_table->count == 0)
4004 		return 0;
4005 
4006 	count = (uint8_t)(mclk_table->count);
4007 
4008 	for(i = 0; i < count; i++) {
4009 		if(mclk_table->entries[i].clk >= frequency)
4010 			return i;
4011 	}
4012 
4013 	return i-1;
4014 }
4015 
4016 static int vega10_notify_smc_display_config_after_ps_adjustment(
4017 		struct pp_hwmgr *hwmgr)
4018 {
4019 	struct vega10_hwmgr *data = hwmgr->backend;
4020 	struct vega10_single_dpm_table *dpm_table =
4021 			&data->dpm_table.dcef_table;
4022 	struct phm_ppt_v2_information *table_info =
4023 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4024 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
4025 	uint32_t idx;
4026 	struct PP_Clocks min_clocks = {0};
4027 	uint32_t i;
4028 	struct pp_display_clock_request clock_req;
4029 
4030 	if ((hwmgr->display_config->num_display > 1) &&
4031 	     !hwmgr->display_config->multi_monitor_in_sync &&
4032 	     !hwmgr->display_config->nb_pstate_switch_disable)
4033 		vega10_notify_smc_display_change(hwmgr, false);
4034 	else
4035 		vega10_notify_smc_display_change(hwmgr, true);
4036 
4037 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
4038 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
4039 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
4040 
4041 	for (i = 0; i < dpm_table->count; i++) {
4042 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
4043 			break;
4044 	}
4045 
4046 	if (i < dpm_table->count) {
4047 		clock_req.clock_type = amd_pp_dcef_clock;
4048 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4049 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4050 			smum_send_msg_to_smc_with_parameter(
4051 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4052 					min_clocks.dcefClockInSR / 100,
4053 					NULL);
4054 		} else {
4055 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4056 		}
4057 	} else {
4058 		pr_debug("Cannot find requested DCEFCLK!");
4059 	}
4060 
4061 	if (min_clocks.memoryClock != 0) {
4062 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4063 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4064 						NULL);
4065 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4066 	}
4067 
4068 	return 0;
4069 }
4070 
4071 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4072 {
4073 	struct vega10_hwmgr *data = hwmgr->backend;
4074 
4075 	data->smc_state_table.gfx_boot_level =
4076 	data->smc_state_table.gfx_max_level =
4077 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4078 	data->smc_state_table.mem_boot_level =
4079 	data->smc_state_table.mem_max_level =
4080 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4081 
4082 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4083 			"Failed to upload boot level to highest!",
4084 			return -1);
4085 
4086 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4087 			"Failed to upload dpm max level to highest!",
4088 			return -1);
4089 
4090 	return 0;
4091 }
4092 
4093 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4094 {
4095 	struct vega10_hwmgr *data = hwmgr->backend;
4096 
4097 	data->smc_state_table.gfx_boot_level =
4098 	data->smc_state_table.gfx_max_level =
4099 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4100 	data->smc_state_table.mem_boot_level =
4101 	data->smc_state_table.mem_max_level =
4102 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4103 
4104 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4105 			"Failed to upload boot level to highest!",
4106 			return -1);
4107 
4108 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4109 			"Failed to upload dpm max level to highest!",
4110 			return -1);
4111 
4112 	return 0;
4113 
4114 }
4115 
4116 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4117 {
4118 	struct vega10_hwmgr *data = hwmgr->backend;
4119 
4120 	data->smc_state_table.gfx_boot_level =
4121 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4122 	data->smc_state_table.gfx_max_level =
4123 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4124 	data->smc_state_table.mem_boot_level =
4125 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4126 	data->smc_state_table.mem_max_level =
4127 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4128 
4129 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4130 			"Failed to upload DPM Bootup Levels!",
4131 			return -1);
4132 
4133 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4134 			"Failed to upload DPM Max Levels!",
4135 			return -1);
4136 	return 0;
4137 }
4138 
4139 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4140 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4141 {
4142 	struct phm_ppt_v2_information *table_info =
4143 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4144 
4145 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4146 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4147 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4148 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4149 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4150 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4151 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4152 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4153 	}
4154 
4155 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4156 		*sclk_mask = 0;
4157 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4158 		*mclk_mask = 0;
4159 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4160 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4161 		 * to level-4 due to the limited power
4162 		 */
4163 		if (hwmgr->pp_one_vf)
4164 			*sclk_mask = 4;
4165 		else
4166 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4167 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4168 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4169 	}
4170 
4171 	return 0;
4172 }
4173 
4174 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4175 {
4176 	if (!hwmgr->not_vf)
4177 		return;
4178 
4179 	switch (mode) {
4180 	case AMD_FAN_CTRL_NONE:
4181 		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4182 		break;
4183 	case AMD_FAN_CTRL_MANUAL:
4184 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4185 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4186 		break;
4187 	case AMD_FAN_CTRL_AUTO:
4188 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4189 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4190 		break;
4191 	default:
4192 		break;
4193 	}
4194 }
4195 
4196 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4197 		enum pp_clock_type type, uint32_t mask)
4198 {
4199 	struct vega10_hwmgr *data = hwmgr->backend;
4200 
4201 	switch (type) {
4202 	case PP_SCLK:
4203 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4204 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4205 
4206 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4207 			"Failed to upload boot level to lowest!",
4208 			return -EINVAL);
4209 
4210 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4211 			"Failed to upload dpm max level to highest!",
4212 			return -EINVAL);
4213 		break;
4214 
4215 	case PP_MCLK:
4216 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4217 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4218 
4219 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4220 			"Failed to upload boot level to lowest!",
4221 			return -EINVAL);
4222 
4223 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4224 			"Failed to upload dpm max level to highest!",
4225 			return -EINVAL);
4226 
4227 		break;
4228 
4229 	case PP_SOCCLK:
4230 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4231 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4232 
4233 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4234 			"Failed to upload boot level to lowest!",
4235 			return -EINVAL);
4236 
4237 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4238 			"Failed to upload dpm max level to highest!",
4239 			return -EINVAL);
4240 
4241 		break;
4242 
4243 	case PP_DCEFCLK:
4244 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4245 		break;
4246 
4247 	case PP_PCIE:
4248 	default:
4249 		break;
4250 	}
4251 
4252 	return 0;
4253 }
4254 
4255 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4256 				enum amd_dpm_forced_level level)
4257 {
4258 	int ret = 0;
4259 	uint32_t sclk_mask = 0;
4260 	uint32_t mclk_mask = 0;
4261 	uint32_t soc_mask = 0;
4262 
4263 	if (hwmgr->pstate_sclk == 0)
4264 		vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4265 
4266 	switch (level) {
4267 	case AMD_DPM_FORCED_LEVEL_HIGH:
4268 		ret = vega10_force_dpm_highest(hwmgr);
4269 		break;
4270 	case AMD_DPM_FORCED_LEVEL_LOW:
4271 		ret = vega10_force_dpm_lowest(hwmgr);
4272 		break;
4273 	case AMD_DPM_FORCED_LEVEL_AUTO:
4274 		ret = vega10_unforce_dpm_levels(hwmgr);
4275 		break;
4276 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4277 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4278 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4279 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4280 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4281 		if (ret)
4282 			return ret;
4283 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4284 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4285 		break;
4286 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4287 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4288 	default:
4289 		break;
4290 	}
4291 
4292 	if (!hwmgr->not_vf)
4293 		return ret;
4294 
4295 	if (!ret) {
4296 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4297 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4298 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4299 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4300 	}
4301 
4302 	return ret;
4303 }
4304 
4305 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4306 {
4307 	struct vega10_hwmgr *data = hwmgr->backend;
4308 
4309 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4310 		return AMD_FAN_CTRL_MANUAL;
4311 	else
4312 		return AMD_FAN_CTRL_AUTO;
4313 }
4314 
4315 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4316 		struct amd_pp_simple_clock_info *info)
4317 {
4318 	struct phm_ppt_v2_information *table_info =
4319 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4320 	struct phm_clock_and_voltage_limits *max_limits =
4321 			&table_info->max_clock_voltage_on_ac;
4322 
4323 	info->engine_max_clock = max_limits->sclk;
4324 	info->memory_max_clock = max_limits->mclk;
4325 
4326 	return 0;
4327 }
4328 
4329 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4330 		struct pp_clock_levels_with_latency *clocks)
4331 {
4332 	struct phm_ppt_v2_information *table_info =
4333 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4334 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4335 			table_info->vdd_dep_on_sclk;
4336 	uint32_t i;
4337 
4338 	clocks->num_levels = 0;
4339 	for (i = 0; i < dep_table->count; i++) {
4340 		if (dep_table->entries[i].clk) {
4341 			clocks->data[clocks->num_levels].clocks_in_khz =
4342 					dep_table->entries[i].clk * 10;
4343 			clocks->num_levels++;
4344 		}
4345 	}
4346 
4347 }
4348 
4349 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4350 		struct pp_clock_levels_with_latency *clocks)
4351 {
4352 	struct phm_ppt_v2_information *table_info =
4353 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4354 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4355 			table_info->vdd_dep_on_mclk;
4356 	struct vega10_hwmgr *data = hwmgr->backend;
4357 	uint32_t j = 0;
4358 	uint32_t i;
4359 
4360 	for (i = 0; i < dep_table->count; i++) {
4361 		if (dep_table->entries[i].clk) {
4362 
4363 			clocks->data[j].clocks_in_khz =
4364 						dep_table->entries[i].clk * 10;
4365 			data->mclk_latency_table.entries[j].frequency =
4366 							dep_table->entries[i].clk;
4367 			clocks->data[j].latency_in_us =
4368 				data->mclk_latency_table.entries[j].latency = 25;
4369 			j++;
4370 		}
4371 	}
4372 	clocks->num_levels = data->mclk_latency_table.count = j;
4373 }
4374 
4375 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4376 		struct pp_clock_levels_with_latency *clocks)
4377 {
4378 	struct phm_ppt_v2_information *table_info =
4379 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4380 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4381 			table_info->vdd_dep_on_dcefclk;
4382 	uint32_t i;
4383 
4384 	for (i = 0; i < dep_table->count; i++) {
4385 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4386 		clocks->data[i].latency_in_us = 0;
4387 		clocks->num_levels++;
4388 	}
4389 }
4390 
4391 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4392 		struct pp_clock_levels_with_latency *clocks)
4393 {
4394 	struct phm_ppt_v2_information *table_info =
4395 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4396 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4397 			table_info->vdd_dep_on_socclk;
4398 	uint32_t i;
4399 
4400 	for (i = 0; i < dep_table->count; i++) {
4401 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4402 		clocks->data[i].latency_in_us = 0;
4403 		clocks->num_levels++;
4404 	}
4405 }
4406 
4407 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4408 		enum amd_pp_clock_type type,
4409 		struct pp_clock_levels_with_latency *clocks)
4410 {
4411 	switch (type) {
4412 	case amd_pp_sys_clock:
4413 		vega10_get_sclks(hwmgr, clocks);
4414 		break;
4415 	case amd_pp_mem_clock:
4416 		vega10_get_memclocks(hwmgr, clocks);
4417 		break;
4418 	case amd_pp_dcef_clock:
4419 		vega10_get_dcefclocks(hwmgr, clocks);
4420 		break;
4421 	case amd_pp_soc_clock:
4422 		vega10_get_socclocks(hwmgr, clocks);
4423 		break;
4424 	default:
4425 		return -1;
4426 	}
4427 
4428 	return 0;
4429 }
4430 
4431 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4432 		enum amd_pp_clock_type type,
4433 		struct pp_clock_levels_with_voltage *clocks)
4434 {
4435 	struct phm_ppt_v2_information *table_info =
4436 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4437 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4438 	uint32_t i;
4439 
4440 	switch (type) {
4441 	case amd_pp_mem_clock:
4442 		dep_table = table_info->vdd_dep_on_mclk;
4443 		break;
4444 	case amd_pp_dcef_clock:
4445 		dep_table = table_info->vdd_dep_on_dcefclk;
4446 		break;
4447 	case amd_pp_disp_clock:
4448 		dep_table = table_info->vdd_dep_on_dispclk;
4449 		break;
4450 	case amd_pp_pixel_clock:
4451 		dep_table = table_info->vdd_dep_on_pixclk;
4452 		break;
4453 	case amd_pp_phy_clock:
4454 		dep_table = table_info->vdd_dep_on_phyclk;
4455 		break;
4456 	default:
4457 		return -1;
4458 	}
4459 
4460 	for (i = 0; i < dep_table->count; i++) {
4461 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4462 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4463 				entries[dep_table->entries[i].vddInd].us_vdd);
4464 		clocks->num_levels++;
4465 	}
4466 
4467 	if (i < dep_table->count)
4468 		return -1;
4469 
4470 	return 0;
4471 }
4472 
4473 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4474 							void *clock_range)
4475 {
4476 	struct vega10_hwmgr *data = hwmgr->backend;
4477 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4478 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4479 
4480 	if (!data->registry_data.disable_water_mark) {
4481 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4482 		data->water_marks_bitmap = WaterMarksExist;
4483 	}
4484 
4485 	return 0;
4486 }
4487 
4488 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4489 {
4490 	static const char *ppfeature_name[] = {
4491 				"DPM_PREFETCHER",
4492 				"GFXCLK_DPM",
4493 				"UCLK_DPM",
4494 				"SOCCLK_DPM",
4495 				"UVD_DPM",
4496 				"VCE_DPM",
4497 				"ULV",
4498 				"MP0CLK_DPM",
4499 				"LINK_DPM",
4500 				"DCEFCLK_DPM",
4501 				"AVFS",
4502 				"GFXCLK_DS",
4503 				"SOCCLK_DS",
4504 				"LCLK_DS",
4505 				"PPT",
4506 				"TDC",
4507 				"THERMAL",
4508 				"GFX_PER_CU_CG",
4509 				"RM",
4510 				"DCEFCLK_DS",
4511 				"ACDC",
4512 				"VR0HOT",
4513 				"VR1HOT",
4514 				"FW_CTF",
4515 				"LED_DISPLAY",
4516 				"FAN_CONTROL",
4517 				"FAST_PPT",
4518 				"DIDT",
4519 				"ACG",
4520 				"PCC_LIMIT"};
4521 	static const char *output_title[] = {
4522 				"FEATURES",
4523 				"BITMASK",
4524 				"ENABLEMENT"};
4525 	uint64_t features_enabled;
4526 	int i;
4527 	int ret = 0;
4528 	int size = 0;
4529 
4530 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4531 	PP_ASSERT_WITH_CODE(!ret,
4532 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4533 			return ret);
4534 
4535 	size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4536 	size += sprintf(buf + size, "%-19s %-22s %s\n",
4537 				output_title[0],
4538 				output_title[1],
4539 				output_title[2]);
4540 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4541 		size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4542 					ppfeature_name[i],
4543 					1ULL << i,
4544 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4545 	}
4546 
4547 	return size;
4548 }
4549 
4550 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4551 {
4552 	uint64_t features_enabled;
4553 	uint64_t features_to_enable;
4554 	uint64_t features_to_disable;
4555 	int ret = 0;
4556 
4557 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4558 		return -EINVAL;
4559 
4560 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4561 	if (ret)
4562 		return ret;
4563 
4564 	features_to_disable =
4565 		features_enabled & ~new_ppfeature_masks;
4566 	features_to_enable =
4567 		~features_enabled & new_ppfeature_masks;
4568 
4569 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4570 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4571 
4572 	if (features_to_disable) {
4573 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4574 		if (ret)
4575 			return ret;
4576 	}
4577 
4578 	if (features_to_enable) {
4579 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4580 		if (ret)
4581 			return ret;
4582 	}
4583 
4584 	return 0;
4585 }
4586 
4587 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4588 		enum pp_clock_type type, char *buf)
4589 {
4590 	struct vega10_hwmgr *data = hwmgr->backend;
4591 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4592 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4593 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4594 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4595 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4596 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4597 
4598 	int i, now, size = 0, count = 0;
4599 
4600 	switch (type) {
4601 	case PP_SCLK:
4602 		if (data->registry_data.sclk_dpm_key_disabled)
4603 			break;
4604 
4605 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4606 
4607 		if (hwmgr->pp_one_vf &&
4608 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4609 			count = 5;
4610 		else
4611 			count = sclk_table->count;
4612 		for (i = 0; i < count; i++)
4613 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4614 					i, sclk_table->dpm_levels[i].value / 100,
4615 					(i == now) ? "*" : "");
4616 		break;
4617 	case PP_MCLK:
4618 		if (data->registry_data.mclk_dpm_key_disabled)
4619 			break;
4620 
4621 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4622 
4623 		for (i = 0; i < mclk_table->count; i++)
4624 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4625 					i, mclk_table->dpm_levels[i].value / 100,
4626 					(i == now) ? "*" : "");
4627 		break;
4628 	case PP_SOCCLK:
4629 		if (data->registry_data.socclk_dpm_key_disabled)
4630 			break;
4631 
4632 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4633 
4634 		for (i = 0; i < soc_table->count; i++)
4635 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4636 					i, soc_table->dpm_levels[i].value / 100,
4637 					(i == now) ? "*" : "");
4638 		break;
4639 	case PP_DCEFCLK:
4640 		if (data->registry_data.dcefclk_dpm_key_disabled)
4641 			break;
4642 
4643 		smum_send_msg_to_smc_with_parameter(hwmgr,
4644 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4645 
4646 		for (i = 0; i < dcef_table->count; i++)
4647 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4648 					i, dcef_table->dpm_levels[i].value / 100,
4649 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4650 					"*" : "");
4651 		break;
4652 	case PP_PCIE:
4653 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now);
4654 
4655 		for (i = 0; i < pcie_table->count; i++)
4656 			size += sprintf(buf + size, "%d: %s %s\n", i,
4657 					(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
4658 					(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
4659 					(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4660 					(i == now) ? "*" : "");
4661 		break;
4662 	case OD_SCLK:
4663 		if (hwmgr->od_enabled) {
4664 			size = sprintf(buf, "%s:\n", "OD_SCLK");
4665 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4666 			for (i = 0; i < podn_vdd_dep->count; i++)
4667 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4668 					i, podn_vdd_dep->entries[i].clk / 100,
4669 						podn_vdd_dep->entries[i].vddc);
4670 		}
4671 		break;
4672 	case OD_MCLK:
4673 		if (hwmgr->od_enabled) {
4674 			size = sprintf(buf, "%s:\n", "OD_MCLK");
4675 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4676 			for (i = 0; i < podn_vdd_dep->count; i++)
4677 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4678 					i, podn_vdd_dep->entries[i].clk/100,
4679 						podn_vdd_dep->entries[i].vddc);
4680 		}
4681 		break;
4682 	case OD_RANGE:
4683 		if (hwmgr->od_enabled) {
4684 			size = sprintf(buf, "%s:\n", "OD_RANGE");
4685 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4686 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4687 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4688 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4689 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4690 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4691 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4692 				data->odn_dpm_table.min_vddc,
4693 				data->odn_dpm_table.max_vddc);
4694 		}
4695 		break;
4696 	default:
4697 		break;
4698 	}
4699 	return size;
4700 }
4701 
4702 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4703 {
4704 	struct vega10_hwmgr *data = hwmgr->backend;
4705 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4706 	int result = 0;
4707 
4708 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4709 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4710 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4711 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4712 		data->water_marks_bitmap |= WaterMarksLoaded;
4713 	}
4714 
4715 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4716 		smum_send_msg_to_smc_with_parameter(hwmgr,
4717 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4718 			NULL);
4719 	}
4720 
4721 	return result;
4722 }
4723 
4724 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4725 {
4726 	struct vega10_hwmgr *data = hwmgr->backend;
4727 
4728 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4729 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4730 				enable,
4731 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4732 				"Attempt to Enable/Disable DPM UVD Failed!",
4733 				return -1);
4734 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4735 	}
4736 	return 0;
4737 }
4738 
4739 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4740 {
4741 	struct vega10_hwmgr *data = hwmgr->backend;
4742 
4743 	data->vce_power_gated = bgate;
4744 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4745 }
4746 
4747 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4748 {
4749 	struct vega10_hwmgr *data = hwmgr->backend;
4750 
4751 	data->uvd_power_gated = bgate;
4752 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4753 }
4754 
4755 static inline bool vega10_are_power_levels_equal(
4756 				const struct vega10_performance_level *pl1,
4757 				const struct vega10_performance_level *pl2)
4758 {
4759 	return ((pl1->soc_clock == pl2->soc_clock) &&
4760 			(pl1->gfx_clock == pl2->gfx_clock) &&
4761 			(pl1->mem_clock == pl2->mem_clock));
4762 }
4763 
4764 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4765 				const struct pp_hw_power_state *pstate1,
4766 			const struct pp_hw_power_state *pstate2, bool *equal)
4767 {
4768 	const struct vega10_power_state *psa;
4769 	const struct vega10_power_state *psb;
4770 	int i;
4771 
4772 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4773 		return -EINVAL;
4774 
4775 	psa = cast_const_phw_vega10_power_state(pstate1);
4776 	psb = cast_const_phw_vega10_power_state(pstate2);
4777 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4778 	if (psa->performance_level_count != psb->performance_level_count) {
4779 		*equal = false;
4780 		return 0;
4781 	}
4782 
4783 	for (i = 0; i < psa->performance_level_count; i++) {
4784 		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4785 			/* If we have found even one performance level pair that is different the states are different. */
4786 			*equal = false;
4787 			return 0;
4788 		}
4789 	}
4790 
4791 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4792 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4793 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4794 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4795 
4796 	return 0;
4797 }
4798 
4799 static bool
4800 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4801 {
4802 	struct vega10_hwmgr *data = hwmgr->backend;
4803 	bool is_update_required = false;
4804 
4805 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4806 		is_update_required = true;
4807 
4808 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4809 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4810 			is_update_required = true;
4811 	}
4812 
4813 	return is_update_required;
4814 }
4815 
4816 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4817 {
4818 	int tmp_result, result = 0;
4819 
4820 	if (!hwmgr->not_vf)
4821 		return 0;
4822 
4823 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4824 		vega10_disable_thermal_protection(hwmgr);
4825 
4826 	tmp_result = vega10_disable_power_containment(hwmgr);
4827 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4828 			"Failed to disable power containment!", result = tmp_result);
4829 
4830 	tmp_result = vega10_disable_didt_config(hwmgr);
4831 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4832 			"Failed to disable didt config!", result = tmp_result);
4833 
4834 	tmp_result = vega10_avfs_enable(hwmgr, false);
4835 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4836 			"Failed to disable AVFS!", result = tmp_result);
4837 
4838 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4839 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4840 			"Failed to stop DPM!", result = tmp_result);
4841 
4842 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4843 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4844 			"Failed to disable deep sleep!", result = tmp_result);
4845 
4846 	tmp_result = vega10_disable_ulv(hwmgr);
4847 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4848 			"Failed to disable ulv!", result = tmp_result);
4849 
4850 	tmp_result =  vega10_acg_disable(hwmgr);
4851 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4852 			"Failed to disable acg!", result = tmp_result);
4853 
4854 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4855 	return result;
4856 }
4857 
4858 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4859 {
4860 	struct vega10_hwmgr *data = hwmgr->backend;
4861 	int result;
4862 
4863 	result = vega10_disable_dpm_tasks(hwmgr);
4864 	PP_ASSERT_WITH_CODE((0 == result),
4865 			"[disable_dpm_tasks] Failed to disable DPM!",
4866 			);
4867 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
4868 
4869 	return result;
4870 }
4871 
4872 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4873 {
4874 	struct vega10_hwmgr *data = hwmgr->backend;
4875 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4876 	struct vega10_single_dpm_table *golden_sclk_table =
4877 			&(data->golden_dpm_table.gfx_table);
4878 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4879 	int golden_value = golden_sclk_table->dpm_levels
4880 			[golden_sclk_table->count - 1].value;
4881 
4882 	value -= golden_value;
4883 	value = DIV_ROUND_UP(value * 100, golden_value);
4884 
4885 	return value;
4886 }
4887 
4888 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4889 {
4890 	struct vega10_hwmgr *data = hwmgr->backend;
4891 	struct vega10_single_dpm_table *golden_sclk_table =
4892 			&(data->golden_dpm_table.gfx_table);
4893 	struct pp_power_state *ps;
4894 	struct vega10_power_state *vega10_ps;
4895 
4896 	ps = hwmgr->request_ps;
4897 
4898 	if (ps == NULL)
4899 		return -EINVAL;
4900 
4901 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4902 
4903 	vega10_ps->performance_levels
4904 	[vega10_ps->performance_level_count - 1].gfx_clock =
4905 			golden_sclk_table->dpm_levels
4906 			[golden_sclk_table->count - 1].value *
4907 			value / 100 +
4908 			golden_sclk_table->dpm_levels
4909 			[golden_sclk_table->count - 1].value;
4910 
4911 	if (vega10_ps->performance_levels
4912 			[vega10_ps->performance_level_count - 1].gfx_clock >
4913 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4914 		vega10_ps->performance_levels
4915 		[vega10_ps->performance_level_count - 1].gfx_clock =
4916 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
4917 		pr_warn("max sclk supported by vbios is %d\n",
4918 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
4919 	}
4920 	return 0;
4921 }
4922 
4923 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4924 {
4925 	struct vega10_hwmgr *data = hwmgr->backend;
4926 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4927 	struct vega10_single_dpm_table *golden_mclk_table =
4928 			&(data->golden_dpm_table.mem_table);
4929 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4930 	int golden_value = golden_mclk_table->dpm_levels
4931 			[golden_mclk_table->count - 1].value;
4932 
4933 	value -= golden_value;
4934 	value = DIV_ROUND_UP(value * 100, golden_value);
4935 
4936 	return value;
4937 }
4938 
4939 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4940 {
4941 	struct vega10_hwmgr *data = hwmgr->backend;
4942 	struct vega10_single_dpm_table *golden_mclk_table =
4943 			&(data->golden_dpm_table.mem_table);
4944 	struct pp_power_state  *ps;
4945 	struct vega10_power_state  *vega10_ps;
4946 
4947 	ps = hwmgr->request_ps;
4948 
4949 	if (ps == NULL)
4950 		return -EINVAL;
4951 
4952 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4953 
4954 	vega10_ps->performance_levels
4955 	[vega10_ps->performance_level_count - 1].mem_clock =
4956 			golden_mclk_table->dpm_levels
4957 			[golden_mclk_table->count - 1].value *
4958 			value / 100 +
4959 			golden_mclk_table->dpm_levels
4960 			[golden_mclk_table->count - 1].value;
4961 
4962 	if (vega10_ps->performance_levels
4963 			[vega10_ps->performance_level_count - 1].mem_clock >
4964 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4965 		vega10_ps->performance_levels
4966 		[vega10_ps->performance_level_count - 1].mem_clock =
4967 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4968 		pr_warn("max mclk supported by vbios is %d\n",
4969 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4970 	}
4971 
4972 	return 0;
4973 }
4974 
4975 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4976 					uint32_t virtual_addr_low,
4977 					uint32_t virtual_addr_hi,
4978 					uint32_t mc_addr_low,
4979 					uint32_t mc_addr_hi,
4980 					uint32_t size)
4981 {
4982 	smum_send_msg_to_smc_with_parameter(hwmgr,
4983 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4984 					virtual_addr_hi,
4985 					NULL);
4986 	smum_send_msg_to_smc_with_parameter(hwmgr,
4987 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
4988 					virtual_addr_low,
4989 					NULL);
4990 	smum_send_msg_to_smc_with_parameter(hwmgr,
4991 					PPSMC_MSG_DramLogSetDramAddrHigh,
4992 					mc_addr_hi,
4993 					NULL);
4994 
4995 	smum_send_msg_to_smc_with_parameter(hwmgr,
4996 					PPSMC_MSG_DramLogSetDramAddrLow,
4997 					mc_addr_low,
4998 					NULL);
4999 
5000 	smum_send_msg_to_smc_with_parameter(hwmgr,
5001 					PPSMC_MSG_DramLogSetDramSize,
5002 					size,
5003 					NULL);
5004 	return 0;
5005 }
5006 
5007 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5008 		struct PP_TemperatureRange *thermal_data)
5009 {
5010 	struct vega10_hwmgr *data = hwmgr->backend;
5011 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
5012 
5013 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
5014 
5015 	thermal_data->max = pp_table->TedgeLimit *
5016 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5017 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
5018 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5019 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
5020 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5021 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
5022 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5023 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
5024 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5025 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
5026 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5027 
5028 	return 0;
5029 }
5030 
5031 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5032 {
5033 	struct vega10_hwmgr *data = hwmgr->backend;
5034 	uint32_t i, size = 0;
5035 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
5036 						{70, 60, 1, 3,},
5037 						{90, 60, 0, 0,},
5038 						{70, 60, 0, 0,},
5039 						{70, 90, 0, 0,},
5040 						{30, 60, 0, 6,},
5041 						};
5042 	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
5043 					"3D_FULL_SCREEN",
5044 					"POWER_SAVING",
5045 					"VIDEO",
5046 					"VR",
5047 					"COMPUTE",
5048 					"CUSTOM"};
5049 	static const char *title[6] = {"NUM",
5050 			"MODE_NAME",
5051 			"BUSY_SET_POINT",
5052 			"FPS",
5053 			"USE_RLC_BUSY",
5054 			"MIN_ACTIVE_LEVEL"};
5055 
5056 	if (!buf)
5057 		return -EINVAL;
5058 
5059 	size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
5060 			title[1], title[2], title[3], title[4], title[5]);
5061 
5062 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5063 		size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
5064 			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5065 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5066 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5067 	size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5068 			profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5069 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5070 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5071 	return size;
5072 }
5073 
5074 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5075 {
5076 	struct vega10_hwmgr *data = hwmgr->backend;
5077 	uint8_t busy_set_point;
5078 	uint8_t FPS;
5079 	uint8_t use_rlc_busy;
5080 	uint8_t min_active_level;
5081 	uint32_t power_profile_mode = input[size];
5082 
5083 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5084 		if (size != 0 && size != 4)
5085 			return -EINVAL;
5086 
5087 		/* If size = 0 and the CUSTOM profile has been set already
5088 		 * then just apply the profile. The copy stored in the hwmgr
5089 		 * is zeroed out on init
5090 		 */
5091 		if (size == 0) {
5092 			if (data->custom_profile_mode[0] != 0)
5093 				goto out;
5094 			else
5095 				return -EINVAL;
5096 		}
5097 
5098 		data->custom_profile_mode[0] = busy_set_point = input[0];
5099 		data->custom_profile_mode[1] = FPS = input[1];
5100 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5101 		data->custom_profile_mode[3] = min_active_level = input[3];
5102 		smum_send_msg_to_smc_with_parameter(hwmgr,
5103 					PPSMC_MSG_SetCustomGfxDpmParameters,
5104 					busy_set_point | FPS<<8 |
5105 					use_rlc_busy << 16 | min_active_level<<24,
5106 					NULL);
5107 	}
5108 
5109 out:
5110 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5111 						1 << power_profile_mode,
5112 						NULL);
5113 	hwmgr->power_profile_mode = power_profile_mode;
5114 
5115 	return 0;
5116 }
5117 
5118 
5119 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5120 					enum PP_OD_DPM_TABLE_COMMAND type,
5121 					uint32_t clk,
5122 					uint32_t voltage)
5123 {
5124 	struct vega10_hwmgr *data = hwmgr->backend;
5125 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5126 	struct vega10_single_dpm_table *golden_table;
5127 
5128 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5129 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5130 		return false;
5131 	}
5132 
5133 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5134 		golden_table = &(data->golden_dpm_table.gfx_table);
5135 		if (golden_table->dpm_levels[0].value > clk ||
5136 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5137 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5138 				golden_table->dpm_levels[0].value/100,
5139 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5140 			return false;
5141 		}
5142 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5143 		golden_table = &(data->golden_dpm_table.mem_table);
5144 		if (golden_table->dpm_levels[0].value > clk ||
5145 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5146 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5147 				golden_table->dpm_levels[0].value/100,
5148 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5149 			return false;
5150 		}
5151 	} else {
5152 		return false;
5153 	}
5154 
5155 	return true;
5156 }
5157 
5158 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5159 {
5160 	struct vega10_hwmgr *data = hwmgr->backend;
5161 	struct pp_power_state *ps = hwmgr->request_ps;
5162 	struct vega10_power_state *vega10_ps;
5163 	struct vega10_single_dpm_table *gfx_dpm_table =
5164 		&data->dpm_table.gfx_table;
5165 	struct vega10_single_dpm_table *soc_dpm_table =
5166 		&data->dpm_table.soc_table;
5167 	struct vega10_single_dpm_table *mem_dpm_table =
5168 		&data->dpm_table.mem_table;
5169 	int max_level;
5170 
5171 	if (!ps)
5172 		return;
5173 
5174 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5175 	max_level = vega10_ps->performance_level_count - 1;
5176 
5177 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5178 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5179 		vega10_ps->performance_levels[max_level].gfx_clock =
5180 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5181 
5182 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5183 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5184 		vega10_ps->performance_levels[max_level].soc_clock =
5185 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5186 
5187 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5188 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5189 		vega10_ps->performance_levels[max_level].mem_clock =
5190 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5191 
5192 	if (!hwmgr->ps)
5193 		return;
5194 
5195 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5196 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5197 	max_level = vega10_ps->performance_level_count - 1;
5198 
5199 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5200 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5201 		vega10_ps->performance_levels[max_level].gfx_clock =
5202 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5203 
5204 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5205 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5206 		vega10_ps->performance_levels[max_level].soc_clock =
5207 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5208 
5209 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5210 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5211 		vega10_ps->performance_levels[max_level].mem_clock =
5212 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5213 }
5214 
5215 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5216 						enum PP_OD_DPM_TABLE_COMMAND type)
5217 {
5218 	struct vega10_hwmgr *data = hwmgr->backend;
5219 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5220 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5221 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5222 
5223 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5224 							&data->odn_dpm_table.vdd_dep_on_socclk;
5225 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5226 
5227 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5228 	uint8_t i, j;
5229 
5230 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5231 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5232 		for (i = 0; i < podn_vdd_dep->count; i++)
5233 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5234 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5235 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5236 		for (i = 0; i < dpm_table->count; i++) {
5237 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5238 				if (od_vddc_lookup_table->entries[j].us_vdd >
5239 					podn_vdd_dep->entries[i].vddc)
5240 					break;
5241 			}
5242 			if (j == od_vddc_lookup_table->count) {
5243 				j = od_vddc_lookup_table->count - 1;
5244 				od_vddc_lookup_table->entries[j].us_vdd =
5245 					podn_vdd_dep->entries[i].vddc;
5246 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5247 			}
5248 			podn_vdd_dep->entries[i].vddInd = j;
5249 		}
5250 		dpm_table = &data->dpm_table.soc_table;
5251 		for (i = 0; i < dep_table->count; i++) {
5252 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5253 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5254 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5255 				for (; (i < dep_table->count) &&
5256 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5257 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5258 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5259 				}
5260 				break;
5261 			} else {
5262 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5263 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5264 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5265 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5266 			}
5267 		}
5268 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5269 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5270 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5271 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5272 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5273 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5274 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5275 		}
5276 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5277 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5278 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5279 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5280 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5281 		}
5282 	}
5283 	vega10_odn_update_power_state(hwmgr);
5284 }
5285 
5286 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5287 					enum PP_OD_DPM_TABLE_COMMAND type,
5288 					long *input, uint32_t size)
5289 {
5290 	struct vega10_hwmgr *data = hwmgr->backend;
5291 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5292 	struct vega10_single_dpm_table *dpm_table;
5293 
5294 	uint32_t input_clk;
5295 	uint32_t input_vol;
5296 	uint32_t input_level;
5297 	uint32_t i;
5298 
5299 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5300 				return -EINVAL);
5301 
5302 	if (!hwmgr->od_enabled) {
5303 		pr_info("OverDrive feature not enabled\n");
5304 		return -EINVAL;
5305 	}
5306 
5307 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5308 		dpm_table = &data->dpm_table.gfx_table;
5309 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5310 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5311 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5312 		dpm_table = &data->dpm_table.mem_table;
5313 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5314 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5315 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5316 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5317 		vega10_odn_initial_default_setting(hwmgr);
5318 		vega10_odn_update_power_state(hwmgr);
5319 		/* force to update all clock tables */
5320 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5321 					      DPMTABLE_UPDATE_MCLK |
5322 					      DPMTABLE_UPDATE_SOCCLK;
5323 		return 0;
5324 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5325 		vega10_check_dpm_table_updated(hwmgr);
5326 		return 0;
5327 	} else {
5328 		return -EINVAL;
5329 	}
5330 
5331 	for (i = 0; i < size; i += 3) {
5332 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5333 			pr_info("invalid clock voltage input\n");
5334 			return 0;
5335 		}
5336 		input_level = input[i];
5337 		input_clk = input[i+1] * 100;
5338 		input_vol = input[i+2];
5339 
5340 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5341 			dpm_table->dpm_levels[input_level].value = input_clk;
5342 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5343 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5344 		} else {
5345 			return -EINVAL;
5346 		}
5347 	}
5348 	vega10_odn_update_soc_table(hwmgr, type);
5349 	return 0;
5350 }
5351 
5352 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5353 				enum pp_mp1_state mp1_state)
5354 {
5355 	uint16_t msg;
5356 	int ret;
5357 
5358 	switch (mp1_state) {
5359 	case PP_MP1_STATE_UNLOAD:
5360 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5361 		break;
5362 	case PP_MP1_STATE_SHUTDOWN:
5363 	case PP_MP1_STATE_RESET:
5364 	case PP_MP1_STATE_NONE:
5365 	default:
5366 		return 0;
5367 	}
5368 
5369 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5370 			    "[PrepareMp1] Failed!",
5371 			    return ret);
5372 
5373 	return 0;
5374 }
5375 
5376 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5377 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5378 				PHM_PerformanceLevel *level)
5379 {
5380 	const struct vega10_power_state *ps;
5381 	uint32_t i;
5382 
5383 	if (level == NULL || hwmgr == NULL || state == NULL)
5384 		return -EINVAL;
5385 
5386 	ps = cast_const_phw_vega10_power_state(state);
5387 
5388 	i = index > ps->performance_level_count - 1 ?
5389 			ps->performance_level_count - 1 : index;
5390 
5391 	level->coreClock = ps->performance_levels[i].gfx_clock;
5392 	level->memory_clock = ps->performance_levels[i].mem_clock;
5393 
5394 	return 0;
5395 }
5396 
5397 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5398 {
5399 	struct vega10_hwmgr *data = hwmgr->backend;
5400 	uint32_t feature_mask = 0;
5401 
5402 	if (disable) {
5403 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5404 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5405 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5406 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5407 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5408 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5409 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5410 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5411 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5412 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5413 	} else {
5414 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5415 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5416 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5417 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5418 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5419 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5420 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5421 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5422 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5423 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5424 	}
5425 
5426 	if (feature_mask)
5427 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5428 				!disable, feature_mask),
5429 				"enable/disable power features for compute performance Failed!",
5430 				return -EINVAL);
5431 
5432 	if (disable) {
5433 		data->smu_features[GNLD_ULV].enabled = false;
5434 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5435 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5436 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5437 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5438 	} else {
5439 		data->smu_features[GNLD_ULV].enabled = true;
5440 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5441 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5442 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5443 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5444 	}
5445 
5446 	return 0;
5447 
5448 }
5449 
5450 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5451 	.backend_init = vega10_hwmgr_backend_init,
5452 	.backend_fini = vega10_hwmgr_backend_fini,
5453 	.asic_setup = vega10_setup_asic_task,
5454 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5455 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5456 	.get_num_of_pp_table_entries =
5457 			vega10_get_number_of_powerplay_table_entries,
5458 	.get_power_state_size = vega10_get_power_state_size,
5459 	.get_pp_table_entry = vega10_get_pp_table_entry,
5460 	.patch_boot_state = vega10_patch_boot_state,
5461 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5462 	.power_state_set = vega10_set_power_state_tasks,
5463 	.get_sclk = vega10_dpm_get_sclk,
5464 	.get_mclk = vega10_dpm_get_mclk,
5465 	.notify_smc_display_config_after_ps_adjustment =
5466 			vega10_notify_smc_display_config_after_ps_adjustment,
5467 	.force_dpm_level = vega10_dpm_force_dpm_level,
5468 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5469 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5470 	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5471 	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5472 	.reset_fan_speed_to_default =
5473 			vega10_fan_ctrl_reset_fan_speed_to_default,
5474 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5475 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5476 	.uninitialize_thermal_controller =
5477 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5478 	.set_fan_control_mode = vega10_set_fan_control_mode,
5479 	.get_fan_control_mode = vega10_get_fan_control_mode,
5480 	.read_sensor = vega10_read_sensor,
5481 	.get_dal_power_level = vega10_get_dal_power_level,
5482 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5483 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5484 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5485 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5486 	.force_clock_level = vega10_force_clock_level,
5487 	.print_clock_levels = vega10_print_clock_levels,
5488 	.display_config_changed = vega10_display_configuration_changed_task,
5489 	.powergate_uvd = vega10_power_gate_uvd,
5490 	.powergate_vce = vega10_power_gate_vce,
5491 	.check_states_equal = vega10_check_states_equal,
5492 	.check_smc_update_required_for_display_configuration =
5493 			vega10_check_smc_update_required_for_display_configuration,
5494 	.power_off_asic = vega10_power_off_asic,
5495 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5496 	.get_sclk_od = vega10_get_sclk_od,
5497 	.set_sclk_od = vega10_set_sclk_od,
5498 	.get_mclk_od = vega10_get_mclk_od,
5499 	.set_mclk_od = vega10_set_mclk_od,
5500 	.avfs_control = vega10_avfs_enable,
5501 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5502 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5503 	.register_irq_handlers = smu9_register_irq_handlers,
5504 	.start_thermal_controller = vega10_start_thermal_controller,
5505 	.get_power_profile_mode = vega10_get_power_profile_mode,
5506 	.set_power_profile_mode = vega10_set_power_profile_mode,
5507 	.set_power_limit = vega10_set_power_limit,
5508 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5509 	.get_performance_level = vega10_get_performance_level,
5510 	.get_asic_baco_capability = smu9_baco_get_capability,
5511 	.get_asic_baco_state = smu9_baco_get_state,
5512 	.set_asic_baco_state = vega10_baco_set_state,
5513 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5514 	.get_ppfeature_status = vega10_get_ppfeature_status,
5515 	.set_ppfeature_status = vega10_set_ppfeature_status,
5516 	.set_mp1_state = vega10_set_mp1_state,
5517 	.disable_power_features_for_compute_performance =
5518 			vega10_disable_power_features_for_compute_performance,
5519 };
5520 
5521 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5522 {
5523 	struct amdgpu_device *adev = hwmgr->adev;
5524 
5525 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5526 	hwmgr->pptable_func = &vega10_pptable_funcs;
5527 	if (amdgpu_passthrough(adev))
5528 		return vega10_baco_set_cap(hwmgr);
5529 
5530 	return 0;
5531 }
5532