1 /* 2 * Copyright 2016 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/delay.h> 25 #include <linux/fb.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 30 #include "hwmgr.h" 31 #include "amd_powerplay.h" 32 #include "hardwaremanager.h" 33 #include "ppatomfwctrl.h" 34 #include "atomfirmware.h" 35 #include "cgs_common.h" 36 #include "vega10_powertune.h" 37 #include "smu9.h" 38 #include "smu9_driver_if.h" 39 #include "vega10_inc.h" 40 #include "soc15_common.h" 41 #include "pppcielanes.h" 42 #include "vega10_hwmgr.h" 43 #include "vega10_smumgr.h" 44 #include "vega10_processpptables.h" 45 #include "vega10_pptable.h" 46 #include "vega10_thermal.h" 47 #include "pp_debug.h" 48 #include "amd_pcie_helpers.h" 49 #include "ppinterrupt.h" 50 #include "pp_overdriver.h" 51 #include "pp_thermal.h" 52 #include "vega10_baco.h" 53 54 #include "smuio/smuio_9_0_offset.h" 55 #include "smuio/smuio_9_0_sh_mask.h" 56 57 #define smnPCIE_LC_SPEED_CNTL 0x11140290 58 #define smnPCIE_LC_LINK_WIDTH_CNTL 0x11140288 59 60 #define HBM_MEMORY_CHANNEL_WIDTH 128 61 62 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; 63 64 #define mmDF_CS_AON0_DramBaseAddress0 0x0044 65 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 66 67 //DF_CS_AON0_DramBaseAddress0 68 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 69 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 70 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 71 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 72 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc 73 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L 74 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L 75 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L 76 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L 77 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L 78 79 typedef enum { 80 CLK_SMNCLK = 0, 81 CLK_SOCCLK, 82 CLK_MP0CLK, 83 CLK_MP1CLK, 84 CLK_LCLK, 85 CLK_DCEFCLK, 86 CLK_VCLK, 87 CLK_DCLK, 88 CLK_ECLK, 89 CLK_UCLK, 90 CLK_GFXCLK, 91 CLK_COUNT, 92 } CLOCK_ID_e; 93 94 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); 95 96 static struct vega10_power_state *cast_phw_vega10_power_state( 97 struct pp_hw_power_state *hw_ps) 98 { 99 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 100 "Invalid Powerstate Type!", 101 return NULL;); 102 103 return (struct vega10_power_state *)hw_ps; 104 } 105 106 static const struct vega10_power_state *cast_const_phw_vega10_power_state( 107 const struct pp_hw_power_state *hw_ps) 108 { 109 PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), 110 "Invalid Powerstate Type!", 111 return NULL;); 112 113 return (const struct vega10_power_state *)hw_ps; 114 } 115 116 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) 117 { 118 struct vega10_hwmgr *data = hwmgr->backend; 119 120 data->registry_data.sclk_dpm_key_disabled = 121 hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 122 data->registry_data.socclk_dpm_key_disabled = 123 hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; 124 data->registry_data.mclk_dpm_key_disabled = 125 hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 126 data->registry_data.pcie_dpm_key_disabled = 127 hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; 128 129 data->registry_data.dcefclk_dpm_key_disabled = 130 hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; 131 132 if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { 133 data->registry_data.power_containment_support = 1; 134 data->registry_data.enable_pkg_pwr_tracking_feature = 1; 135 data->registry_data.enable_tdc_limit_feature = 1; 136 } 137 138 data->registry_data.clock_stretcher_support = 139 hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; 140 141 data->registry_data.ulv_support = 142 hwmgr->feature_mask & PP_ULV_MASK ? true : false; 143 144 data->registry_data.sclk_deep_sleep_support = 145 hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; 146 147 data->registry_data.disable_water_mark = 0; 148 149 data->registry_data.fan_control_support = 1; 150 data->registry_data.thermal_support = 1; 151 data->registry_data.fw_ctf_enabled = 1; 152 153 data->registry_data.avfs_support = 154 hwmgr->feature_mask & PP_AVFS_MASK ? true : false; 155 data->registry_data.led_dpm_enabled = 1; 156 157 data->registry_data.vr0hot_enabled = 1; 158 data->registry_data.vr1hot_enabled = 1; 159 data->registry_data.regulator_hot_gpio_support = 1; 160 161 data->registry_data.didt_support = 1; 162 if (data->registry_data.didt_support) { 163 data->registry_data.didt_mode = 6; 164 data->registry_data.sq_ramping_support = 1; 165 data->registry_data.db_ramping_support = 0; 166 data->registry_data.td_ramping_support = 0; 167 data->registry_data.tcp_ramping_support = 0; 168 data->registry_data.dbr_ramping_support = 0; 169 data->registry_data.edc_didt_support = 1; 170 data->registry_data.gc_didt_support = 0; 171 data->registry_data.psm_didt_support = 0; 172 } 173 174 data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; 175 data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 176 data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 177 data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 178 data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 179 data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 180 data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 181 data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 182 data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 183 data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 184 data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 185 data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 186 data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; 187 188 data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; 189 data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; 190 data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; 191 data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; 192 } 193 194 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) 195 { 196 struct vega10_hwmgr *data = hwmgr->backend; 197 struct phm_ppt_v2_information *table_info = 198 (struct phm_ppt_v2_information *)hwmgr->pptable; 199 struct amdgpu_device *adev = hwmgr->adev; 200 201 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 202 PHM_PlatformCaps_SclkDeepSleep); 203 204 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 205 PHM_PlatformCaps_DynamicPatchPowerState); 206 207 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) 208 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 209 PHM_PlatformCaps_ControlVDDCI); 210 211 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 212 PHM_PlatformCaps_EnableSMU7ThermalManagement); 213 214 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 215 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 216 PHM_PlatformCaps_UVDPowerGating); 217 218 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 219 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 220 PHM_PlatformCaps_VCEPowerGating); 221 222 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 223 PHM_PlatformCaps_UnTabledHardwareInterface); 224 225 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 226 PHM_PlatformCaps_FanSpeedInTableIsRPM); 227 228 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 229 PHM_PlatformCaps_ODFuzzyFanControlSupport); 230 231 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 232 PHM_PlatformCaps_DynamicPowerManagement); 233 234 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 235 PHM_PlatformCaps_SMC); 236 237 /* power tune caps */ 238 /* assume disabled */ 239 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 240 PHM_PlatformCaps_PowerContainment); 241 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 242 PHM_PlatformCaps_DiDtSupport); 243 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 244 PHM_PlatformCaps_SQRamping); 245 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 246 PHM_PlatformCaps_DBRamping); 247 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 248 PHM_PlatformCaps_TDRamping); 249 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 250 PHM_PlatformCaps_TCPRamping); 251 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 252 PHM_PlatformCaps_DBRRamping); 253 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 254 PHM_PlatformCaps_DiDtEDCEnable); 255 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 256 PHM_PlatformCaps_GCEDC); 257 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 258 PHM_PlatformCaps_PSM); 259 260 if (data->registry_data.didt_support) { 261 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); 262 if (data->registry_data.sq_ramping_support) 263 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); 264 if (data->registry_data.db_ramping_support) 265 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); 266 if (data->registry_data.td_ramping_support) 267 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); 268 if (data->registry_data.tcp_ramping_support) 269 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); 270 if (data->registry_data.dbr_ramping_support) 271 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); 272 if (data->registry_data.edc_didt_support) 273 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); 274 if (data->registry_data.gc_didt_support) 275 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); 276 if (data->registry_data.psm_didt_support) 277 phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); 278 } 279 280 if (data->registry_data.power_containment_support) 281 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 282 PHM_PlatformCaps_PowerContainment); 283 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 284 PHM_PlatformCaps_CAC); 285 286 if (table_info->tdp_table->usClockStretchAmount && 287 data->registry_data.clock_stretcher_support) 288 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 289 PHM_PlatformCaps_ClockStretcher); 290 291 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 292 PHM_PlatformCaps_RegulatorHot); 293 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 294 PHM_PlatformCaps_AutomaticDCTransition); 295 296 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 297 PHM_PlatformCaps_UVDDPM); 298 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 299 PHM_PlatformCaps_VCEDPM); 300 301 return 0; 302 } 303 304 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 305 { 306 struct vega10_hwmgr *data = hwmgr->backend; 307 struct phm_ppt_v2_information *table_info = 308 (struct phm_ppt_v2_information *)(hwmgr->pptable); 309 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 310 struct vega10_odn_vddc_lookup_table *od_lookup_table; 311 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 312 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3]; 313 struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3]; 314 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 315 uint32_t i; 316 int result; 317 318 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 319 if (!result) { 320 data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc; 321 data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc; 322 } 323 324 od_lookup_table = &odn_table->vddc_lookup_table; 325 vddc_lookup_table = table_info->vddc_lookup_table; 326 327 for (i = 0; i < vddc_lookup_table->count; i++) 328 od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd; 329 330 od_lookup_table->count = vddc_lookup_table->count; 331 332 dep_table[0] = table_info->vdd_dep_on_sclk; 333 dep_table[1] = table_info->vdd_dep_on_mclk; 334 dep_table[2] = table_info->vdd_dep_on_socclk; 335 od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk; 336 od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk; 337 od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk; 338 339 for (i = 0; i < 3; i++) 340 smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]); 341 342 if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000) 343 odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc; 344 if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000) 345 odn_table->min_vddc = dep_table[0]->entries[0].vddc; 346 347 i = od_table[2]->count - 1; 348 od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ? 349 hwmgr->platform_descriptor.overdriveLimit.memoryClock : 350 od_table[2]->entries[i].clk; 351 od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ? 352 odn_table->max_vddc : 353 od_table[2]->entries[i].vddc; 354 355 return 0; 356 } 357 358 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) 359 { 360 struct vega10_hwmgr *data = hwmgr->backend; 361 int i; 362 uint32_t sub_vendor_id, hw_revision; 363 uint32_t top32, bottom32; 364 struct amdgpu_device *adev = hwmgr->adev; 365 366 vega10_initialize_power_tune_defaults(hwmgr); 367 368 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 369 data->smu_features[i].smu_feature_id = 0xffff; 370 data->smu_features[i].smu_feature_bitmap = 1 << i; 371 data->smu_features[i].enabled = false; 372 data->smu_features[i].supported = false; 373 } 374 375 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = 376 FEATURE_DPM_PREFETCHER_BIT; 377 data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = 378 FEATURE_DPM_GFXCLK_BIT; 379 data->smu_features[GNLD_DPM_UCLK].smu_feature_id = 380 FEATURE_DPM_UCLK_BIT; 381 data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = 382 FEATURE_DPM_SOCCLK_BIT; 383 data->smu_features[GNLD_DPM_UVD].smu_feature_id = 384 FEATURE_DPM_UVD_BIT; 385 data->smu_features[GNLD_DPM_VCE].smu_feature_id = 386 FEATURE_DPM_VCE_BIT; 387 data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = 388 FEATURE_DPM_MP0CLK_BIT; 389 data->smu_features[GNLD_DPM_LINK].smu_feature_id = 390 FEATURE_DPM_LINK_BIT; 391 data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = 392 FEATURE_DPM_DCEFCLK_BIT; 393 data->smu_features[GNLD_ULV].smu_feature_id = 394 FEATURE_ULV_BIT; 395 data->smu_features[GNLD_AVFS].smu_feature_id = 396 FEATURE_AVFS_BIT; 397 data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = 398 FEATURE_DS_GFXCLK_BIT; 399 data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = 400 FEATURE_DS_SOCCLK_BIT; 401 data->smu_features[GNLD_DS_LCLK].smu_feature_id = 402 FEATURE_DS_LCLK_BIT; 403 data->smu_features[GNLD_PPT].smu_feature_id = 404 FEATURE_PPT_BIT; 405 data->smu_features[GNLD_TDC].smu_feature_id = 406 FEATURE_TDC_BIT; 407 data->smu_features[GNLD_THERMAL].smu_feature_id = 408 FEATURE_THERMAL_BIT; 409 data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = 410 FEATURE_GFX_PER_CU_CG_BIT; 411 data->smu_features[GNLD_RM].smu_feature_id = 412 FEATURE_RM_BIT; 413 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = 414 FEATURE_DS_DCEFCLK_BIT; 415 data->smu_features[GNLD_ACDC].smu_feature_id = 416 FEATURE_ACDC_BIT; 417 data->smu_features[GNLD_VR0HOT].smu_feature_id = 418 FEATURE_VR0HOT_BIT; 419 data->smu_features[GNLD_VR1HOT].smu_feature_id = 420 FEATURE_VR1HOT_BIT; 421 data->smu_features[GNLD_FW_CTF].smu_feature_id = 422 FEATURE_FW_CTF_BIT; 423 data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = 424 FEATURE_LED_DISPLAY_BIT; 425 data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = 426 FEATURE_FAN_CONTROL_BIT; 427 data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; 428 data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; 429 data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT; 430 431 if (!data->registry_data.prefetcher_dpm_key_disabled) 432 data->smu_features[GNLD_DPM_PREFETCHER].supported = true; 433 434 if (!data->registry_data.sclk_dpm_key_disabled) 435 data->smu_features[GNLD_DPM_GFXCLK].supported = true; 436 437 if (!data->registry_data.mclk_dpm_key_disabled) 438 data->smu_features[GNLD_DPM_UCLK].supported = true; 439 440 if (!data->registry_data.socclk_dpm_key_disabled) 441 data->smu_features[GNLD_DPM_SOCCLK].supported = true; 442 443 if (PP_CAP(PHM_PlatformCaps_UVDDPM)) 444 data->smu_features[GNLD_DPM_UVD].supported = true; 445 446 if (PP_CAP(PHM_PlatformCaps_VCEDPM)) 447 data->smu_features[GNLD_DPM_VCE].supported = true; 448 449 data->smu_features[GNLD_DPM_LINK].supported = true; 450 451 if (!data->registry_data.dcefclk_dpm_key_disabled) 452 data->smu_features[GNLD_DPM_DCEFCLK].supported = true; 453 454 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && 455 data->registry_data.sclk_deep_sleep_support) { 456 data->smu_features[GNLD_DS_GFXCLK].supported = true; 457 data->smu_features[GNLD_DS_SOCCLK].supported = true; 458 data->smu_features[GNLD_DS_LCLK].supported = true; 459 data->smu_features[GNLD_DS_DCEFCLK].supported = true; 460 } 461 462 if (data->registry_data.enable_pkg_pwr_tracking_feature) 463 data->smu_features[GNLD_PPT].supported = true; 464 465 if (data->registry_data.enable_tdc_limit_feature) 466 data->smu_features[GNLD_TDC].supported = true; 467 468 if (data->registry_data.thermal_support) 469 data->smu_features[GNLD_THERMAL].supported = true; 470 471 if (data->registry_data.fan_control_support) 472 data->smu_features[GNLD_FAN_CONTROL].supported = true; 473 474 if (data->registry_data.fw_ctf_enabled) 475 data->smu_features[GNLD_FW_CTF].supported = true; 476 477 if (data->registry_data.avfs_support) 478 data->smu_features[GNLD_AVFS].supported = true; 479 480 if (data->registry_data.led_dpm_enabled) 481 data->smu_features[GNLD_LED_DISPLAY].supported = true; 482 483 if (data->registry_data.vr1hot_enabled) 484 data->smu_features[GNLD_VR1HOT].supported = true; 485 486 if (data->registry_data.vr0hot_enabled) 487 data->smu_features[GNLD_VR0HOT].supported = true; 488 489 smum_send_msg_to_smc(hwmgr, 490 PPSMC_MSG_GetSmuVersion, 491 &hwmgr->smu_version); 492 /* ACG firmware has major version 5 */ 493 if ((hwmgr->smu_version & 0xff000000) == 0x5000000) 494 data->smu_features[GNLD_ACG].supported = true; 495 if (data->registry_data.didt_support) 496 data->smu_features[GNLD_DIDT].supported = true; 497 498 hw_revision = adev->pdev->revision; 499 sub_vendor_id = adev->pdev->subsystem_vendor; 500 501 if ((hwmgr->chip_id == 0x6862 || 502 hwmgr->chip_id == 0x6861 || 503 hwmgr->chip_id == 0x6868) && 504 (hw_revision == 0) && 505 (sub_vendor_id != 0x1002)) 506 data->smu_features[GNLD_PCC_LIMIT].supported = true; 507 508 /* Get the SN to turn into a Unique ID */ 509 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); 510 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); 511 512 adev->unique_id = ((uint64_t)bottom32 << 32) | top32; 513 } 514 515 #ifdef PPLIB_VEGA10_EVV_SUPPORT 516 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, 517 phm_ppt_v1_voltage_lookup_table *lookup_table, 518 uint16_t virtual_voltage_id, int32_t *socclk) 519 { 520 uint8_t entry_id; 521 uint8_t voltage_id; 522 struct phm_ppt_v2_information *table_info = 523 (struct phm_ppt_v2_information *)(hwmgr->pptable); 524 525 PP_ASSERT_WITH_CODE(lookup_table->count != 0, 526 "Lookup table is empty", 527 return -EINVAL); 528 529 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ 530 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { 531 voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; 532 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) 533 break; 534 } 535 536 PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, 537 "Can't find requested voltage id in vdd_dep_on_socclk table!", 538 return -EINVAL); 539 540 *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; 541 542 return 0; 543 } 544 545 #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 546 /** 547 * Get Leakage VDDC based on leakage ID. 548 * 549 * @hwmgr: the address of the powerplay hardware manager. 550 * return: always 0. 551 */ 552 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) 553 { 554 struct vega10_hwmgr *data = hwmgr->backend; 555 uint16_t vv_id; 556 uint32_t vddc = 0; 557 uint16_t i, j; 558 uint32_t sclk = 0; 559 struct phm_ppt_v2_information *table_info = 560 (struct phm_ppt_v2_information *)hwmgr->pptable; 561 struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = 562 table_info->vdd_dep_on_socclk; 563 int result; 564 565 for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { 566 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 567 568 if (!vega10_get_socclk_for_voltage_evv(hwmgr, 569 table_info->vddc_lookup_table, vv_id, &sclk)) { 570 if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { 571 for (j = 1; j < socclk_table->count; j++) { 572 if (socclk_table->entries[j].clk == sclk && 573 socclk_table->entries[j].cks_enable == 0) { 574 sclk += 5000; 575 break; 576 } 577 } 578 } 579 580 PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, 581 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), 582 "Error retrieving EVV voltage value!", 583 continue); 584 585 586 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ 587 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), 588 "Invalid VDDC value", result = -EINVAL;); 589 590 /* the voltage should not be zero nor equal to leakage ID */ 591 if (vddc != 0 && vddc != vv_id) { 592 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); 593 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 594 data->vddc_leakage.count++; 595 } 596 } 597 } 598 599 return 0; 600 } 601 602 /** 603 * Change virtual leakage voltage to actual value. 604 * 605 * @hwmgr: the address of the powerplay hardware manager. 606 * @voltage: pointer to changing voltage 607 * @leakage_table: pointer to leakage table 608 */ 609 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, 610 uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) 611 { 612 uint32_t index; 613 614 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 615 for (index = 0; index < leakage_table->count; index++) { 616 /* if this voltage matches a leakage voltage ID */ 617 /* patch with actual leakage voltage */ 618 if (leakage_table->leakage_id[index] == *voltage) { 619 *voltage = leakage_table->actual_voltage[index]; 620 break; 621 } 622 } 623 624 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 625 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 626 } 627 628 /** 629 * Patch voltage lookup table by EVV leakages. 630 * 631 * @hwmgr: the address of the powerplay hardware manager. 632 * @lookup_table: pointer to voltage lookup table 633 * @leakage_table: pointer to leakage table 634 * return: always 0 635 */ 636 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 637 phm_ppt_v1_voltage_lookup_table *lookup_table, 638 struct vega10_leakage_voltage *leakage_table) 639 { 640 uint32_t i; 641 642 for (i = 0; i < lookup_table->count; i++) 643 vega10_patch_with_vdd_leakage(hwmgr, 644 &lookup_table->entries[i].us_vdd, leakage_table); 645 646 return 0; 647 } 648 649 static int vega10_patch_clock_voltage_limits_with_vddc_leakage( 650 struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, 651 uint16_t *vddc) 652 { 653 vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 654 655 return 0; 656 } 657 #endif 658 659 static int vega10_patch_voltage_dependency_tables_with_lookup_table( 660 struct pp_hwmgr *hwmgr) 661 { 662 uint8_t entry_id, voltage_id; 663 unsigned i; 664 struct phm_ppt_v2_information *table_info = 665 (struct phm_ppt_v2_information *)(hwmgr->pptable); 666 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 667 table_info->mm_dep_table; 668 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 669 table_info->vdd_dep_on_mclk; 670 671 for (i = 0; i < 6; i++) { 672 struct phm_ppt_v1_clock_voltage_dependency_table *vdt; 673 switch (i) { 674 case 0: vdt = table_info->vdd_dep_on_socclk; break; 675 case 1: vdt = table_info->vdd_dep_on_sclk; break; 676 case 2: vdt = table_info->vdd_dep_on_dcefclk; break; 677 case 3: vdt = table_info->vdd_dep_on_pixclk; break; 678 case 4: vdt = table_info->vdd_dep_on_dispclk; break; 679 case 5: vdt = table_info->vdd_dep_on_phyclk; break; 680 } 681 682 for (entry_id = 0; entry_id < vdt->count; entry_id++) { 683 voltage_id = vdt->entries[entry_id].vddInd; 684 vdt->entries[entry_id].vddc = 685 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 686 } 687 } 688 689 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 690 voltage_id = mm_table->entries[entry_id].vddcInd; 691 mm_table->entries[entry_id].vddc = 692 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 693 } 694 695 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 696 voltage_id = mclk_table->entries[entry_id].vddInd; 697 mclk_table->entries[entry_id].vddc = 698 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 699 voltage_id = mclk_table->entries[entry_id].vddciInd; 700 mclk_table->entries[entry_id].vddci = 701 table_info->vddci_lookup_table->entries[voltage_id].us_vdd; 702 voltage_id = mclk_table->entries[entry_id].mvddInd; 703 mclk_table->entries[entry_id].mvdd = 704 table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; 705 } 706 707 708 return 0; 709 710 } 711 712 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, 713 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 714 { 715 uint32_t table_size, i, j; 716 717 PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, 718 "Lookup table is empty", return -EINVAL); 719 720 table_size = lookup_table->count; 721 722 /* Sorting voltages */ 723 for (i = 0; i < table_size - 1; i++) { 724 for (j = i + 1; j > 0; j--) { 725 if (lookup_table->entries[j].us_vdd < 726 lookup_table->entries[j - 1].us_vdd) { 727 swap(lookup_table->entries[j - 1], 728 lookup_table->entries[j]); 729 } 730 } 731 } 732 733 return 0; 734 } 735 736 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) 737 { 738 int result = 0; 739 int tmp_result; 740 struct phm_ppt_v2_information *table_info = 741 (struct phm_ppt_v2_information *)(hwmgr->pptable); 742 #ifdef PPLIB_VEGA10_EVV_SUPPORT 743 struct vega10_hwmgr *data = hwmgr->backend; 744 745 tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, 746 table_info->vddc_lookup_table, &(data->vddc_leakage)); 747 if (tmp_result) 748 result = tmp_result; 749 750 tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 751 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 752 if (tmp_result) 753 result = tmp_result; 754 #endif 755 756 tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 757 if (tmp_result) 758 result = tmp_result; 759 760 tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 761 if (tmp_result) 762 result = tmp_result; 763 764 return result; 765 } 766 767 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) 768 { 769 struct phm_ppt_v2_information *table_info = 770 (struct phm_ppt_v2_information *)(hwmgr->pptable); 771 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 772 table_info->vdd_dep_on_socclk; 773 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 774 table_info->vdd_dep_on_mclk; 775 776 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, 777 "VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL); 778 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 779 "VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL); 780 781 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, 782 "VDD dependency on MCLK table is missing. This table is mandatory", return -EINVAL); 783 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 784 "VDD dependency on MCLK table is empty. This table is mandatory", return -EINVAL); 785 786 table_info->max_clock_voltage_on_ac.sclk = 787 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 788 table_info->max_clock_voltage_on_ac.mclk = 789 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 790 table_info->max_clock_voltage_on_ac.vddc = 791 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 792 table_info->max_clock_voltage_on_ac.vddci = 793 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 794 795 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 796 table_info->max_clock_voltage_on_ac.sclk; 797 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 798 table_info->max_clock_voltage_on_ac.mclk; 799 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 800 table_info->max_clock_voltage_on_ac.vddc; 801 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = 802 table_info->max_clock_voltage_on_ac.vddci; 803 804 return 0; 805 } 806 807 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 808 { 809 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 810 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 811 812 kfree(hwmgr->backend); 813 hwmgr->backend = NULL; 814 815 return 0; 816 } 817 818 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 819 { 820 int result = 0; 821 struct vega10_hwmgr *data; 822 uint32_t config_telemetry = 0; 823 struct pp_atomfwctrl_voltage_table vol_table; 824 struct amdgpu_device *adev = hwmgr->adev; 825 826 data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); 827 if (data == NULL) 828 return -ENOMEM; 829 830 hwmgr->backend = data; 831 832 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT]; 833 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 834 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT; 835 836 vega10_set_default_registry_data(hwmgr); 837 data->disable_dpm_mask = 0xff; 838 839 /* need to set voltage control types before EVV patching */ 840 data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; 841 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; 842 data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; 843 844 /* VDDCR_SOC */ 845 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 846 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { 847 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 848 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, 849 &vol_table)) { 850 config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | 851 (vol_table.telemetry_offset & 0xff); 852 data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 853 } 854 } else { 855 kfree(hwmgr->backend); 856 hwmgr->backend = NULL; 857 PP_ASSERT_WITH_CODE(false, 858 "VDDCR_SOC is not SVID2!", 859 return -1); 860 } 861 862 /* MVDDC */ 863 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 864 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { 865 if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, 866 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, 867 &vol_table)) { 868 config_telemetry |= 869 ((vol_table.telemetry_slope << 24) & 0xff000000) | 870 ((vol_table.telemetry_offset << 16) & 0xff0000); 871 data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; 872 } 873 } 874 875 /* VDDCI_MEM */ 876 if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { 877 if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, 878 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 879 data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; 880 } 881 882 data->config_telemetry = config_telemetry; 883 884 vega10_set_features_platform_caps(hwmgr); 885 886 vega10_init_dpm_defaults(hwmgr); 887 888 #ifdef PPLIB_VEGA10_EVV_SUPPORT 889 /* Get leakage voltage based on leakage ID. */ 890 PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), 891 "Get EVV Voltage Failed. Abort Driver loading!", 892 return -1); 893 #endif 894 895 /* Patch our voltage dependency table with actual leakage voltage 896 * We need to perform leakage translation before it's used by other functions 897 */ 898 vega10_complete_dependency_tables(hwmgr); 899 900 /* Parse pptable data read from VBIOS */ 901 vega10_set_private_data_based_on_pptable(hwmgr); 902 903 data->is_tlu_enabled = false; 904 905 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 906 VEGA10_MAX_HARDWARE_POWERLEVELS; 907 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 908 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 909 910 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 911 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 912 hwmgr->platform_descriptor.clockStep.engineClock = 500; 913 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 914 915 data->total_active_cus = adev->gfx.cu_info.number; 916 if (!hwmgr->not_vf) 917 return result; 918 919 /* Setup default Overdrive Fan control settings */ 920 data->odn_fan_table.target_fan_speed = 921 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; 922 data->odn_fan_table.target_temperature = 923 hwmgr->thermal_controller. 924 advanceFanControlParameters.ucTargetTemperature; 925 data->odn_fan_table.min_performance_clock = 926 hwmgr->thermal_controller.advanceFanControlParameters. 927 ulMinFanSCLKAcousticLimit; 928 data->odn_fan_table.min_fan_limit = 929 hwmgr->thermal_controller. 930 advanceFanControlParameters.usFanPWMMinLimit * 931 hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; 932 933 data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) & 934 DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> 935 DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; 936 PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number), 937 "Mem Channel Index Exceeded maximum!", 938 return -EINVAL); 939 940 return result; 941 } 942 943 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) 944 { 945 struct vega10_hwmgr *data = hwmgr->backend; 946 947 data->low_sclk_interrupt_threshold = 0; 948 949 return 0; 950 } 951 952 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) 953 { 954 struct vega10_hwmgr *data = hwmgr->backend; 955 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 956 957 struct pp_atomfwctrl_voltage_table table; 958 uint8_t i, j; 959 uint32_t mask = 0; 960 uint32_t tmp; 961 int32_t ret = 0; 962 963 ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, 964 VOLTAGE_OBJ_GPIO_LUT, &table); 965 966 if (!ret) { 967 tmp = table.mask_low; 968 for (i = 0, j = 0; i < 32; i++) { 969 if (tmp & 1) { 970 mask |= (uint32_t)(i << (8 * j)); 971 if (++j >= 3) 972 break; 973 } 974 tmp >>= 1; 975 } 976 } 977 978 pp_table->LedPin0 = (uint8_t)(mask & 0xff); 979 pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); 980 pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); 981 return 0; 982 } 983 984 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) 985 { 986 if (!hwmgr->not_vf) 987 return 0; 988 989 PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), 990 "Failed to init sclk threshold!", 991 return -EINVAL); 992 993 PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), 994 "Failed to set up led dpm config!", 995 return -EINVAL); 996 997 smum_send_msg_to_smc_with_parameter(hwmgr, 998 PPSMC_MSG_NumOfDisplays, 999 0, 1000 NULL); 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * Remove repeated voltage values and create table with unique values. 1007 * 1008 * @hwmgr: the address of the powerplay hardware manager. 1009 * @vol_table: the pointer to changing voltage table 1010 * return: 0 in success 1011 */ 1012 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, 1013 struct pp_atomfwctrl_voltage_table *vol_table) 1014 { 1015 uint32_t i, j; 1016 uint16_t vvalue; 1017 bool found = false; 1018 struct pp_atomfwctrl_voltage_table *table; 1019 1020 PP_ASSERT_WITH_CODE(vol_table, 1021 "Voltage Table empty.", return -EINVAL); 1022 table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), 1023 GFP_KERNEL); 1024 1025 if (!table) 1026 return -ENOMEM; 1027 1028 table->mask_low = vol_table->mask_low; 1029 table->phase_delay = vol_table->phase_delay; 1030 1031 for (i = 0; i < vol_table->count; i++) { 1032 vvalue = vol_table->entries[i].value; 1033 found = false; 1034 1035 for (j = 0; j < table->count; j++) { 1036 if (vvalue == table->entries[j].value) { 1037 found = true; 1038 break; 1039 } 1040 } 1041 1042 if (!found) { 1043 table->entries[table->count].value = vvalue; 1044 table->entries[table->count].smio_low = 1045 vol_table->entries[i].smio_low; 1046 table->count++; 1047 } 1048 } 1049 1050 memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); 1051 kfree(table); 1052 1053 return 0; 1054 } 1055 1056 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, 1057 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1058 struct pp_atomfwctrl_voltage_table *vol_table) 1059 { 1060 int i; 1061 1062 PP_ASSERT_WITH_CODE(dep_table->count, 1063 "Voltage Dependency Table empty.", 1064 return -EINVAL); 1065 1066 vol_table->mask_low = 0; 1067 vol_table->phase_delay = 0; 1068 vol_table->count = dep_table->count; 1069 1070 for (i = 0; i < vol_table->count; i++) { 1071 vol_table->entries[i].value = dep_table->entries[i].mvdd; 1072 vol_table->entries[i].smio_low = 0; 1073 } 1074 1075 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, 1076 vol_table), 1077 "Failed to trim MVDD Table!", 1078 return -1); 1079 1080 return 0; 1081 } 1082 1083 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, 1084 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1085 struct pp_atomfwctrl_voltage_table *vol_table) 1086 { 1087 uint32_t i; 1088 1089 PP_ASSERT_WITH_CODE(dep_table->count, 1090 "Voltage Dependency Table empty.", 1091 return -EINVAL); 1092 1093 vol_table->mask_low = 0; 1094 vol_table->phase_delay = 0; 1095 vol_table->count = dep_table->count; 1096 1097 for (i = 0; i < dep_table->count; i++) { 1098 vol_table->entries[i].value = dep_table->entries[i].vddci; 1099 vol_table->entries[i].smio_low = 0; 1100 } 1101 1102 PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), 1103 "Failed to trim VDDCI table.", 1104 return -1); 1105 1106 return 0; 1107 } 1108 1109 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, 1110 phm_ppt_v1_clock_voltage_dependency_table *dep_table, 1111 struct pp_atomfwctrl_voltage_table *vol_table) 1112 { 1113 int i; 1114 1115 PP_ASSERT_WITH_CODE(dep_table->count, 1116 "Voltage Dependency Table empty.", 1117 return -EINVAL); 1118 1119 vol_table->mask_low = 0; 1120 vol_table->phase_delay = 0; 1121 vol_table->count = dep_table->count; 1122 1123 for (i = 0; i < vol_table->count; i++) { 1124 vol_table->entries[i].value = dep_table->entries[i].vddc; 1125 vol_table->entries[i].smio_low = 0; 1126 } 1127 1128 return 0; 1129 } 1130 1131 /* ---- Voltage Tables ---- 1132 * If the voltage table would be bigger than 1133 * what will fit into the state table on 1134 * the SMC keep only the higher entries. 1135 */ 1136 static void vega10_trim_voltage_table_to_fit_state_table( 1137 struct pp_hwmgr *hwmgr, 1138 uint32_t max_vol_steps, 1139 struct pp_atomfwctrl_voltage_table *vol_table) 1140 { 1141 unsigned int i, diff; 1142 1143 if (vol_table->count <= max_vol_steps) 1144 return; 1145 1146 diff = vol_table->count - max_vol_steps; 1147 1148 for (i = 0; i < max_vol_steps; i++) 1149 vol_table->entries[i] = vol_table->entries[i + diff]; 1150 1151 vol_table->count = max_vol_steps; 1152 } 1153 1154 /** 1155 * Create Voltage Tables. 1156 * 1157 * @hwmgr: the address of the powerplay hardware manager. 1158 * return: always 0 1159 */ 1160 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) 1161 { 1162 struct vega10_hwmgr *data = hwmgr->backend; 1163 struct phm_ppt_v2_information *table_info = 1164 (struct phm_ppt_v2_information *)hwmgr->pptable; 1165 int result; 1166 1167 if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1168 data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1169 result = vega10_get_mvdd_voltage_table(hwmgr, 1170 table_info->vdd_dep_on_mclk, 1171 &(data->mvdd_voltage_table)); 1172 PP_ASSERT_WITH_CODE(!result, 1173 "Failed to retrieve MVDDC table!", 1174 return result); 1175 } 1176 1177 if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1178 result = vega10_get_vddci_voltage_table(hwmgr, 1179 table_info->vdd_dep_on_mclk, 1180 &(data->vddci_voltage_table)); 1181 PP_ASSERT_WITH_CODE(!result, 1182 "Failed to retrieve VDDCI_MEM table!", 1183 return result); 1184 } 1185 1186 if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || 1187 data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { 1188 result = vega10_get_vdd_voltage_table(hwmgr, 1189 table_info->vdd_dep_on_sclk, 1190 &(data->vddc_voltage_table)); 1191 PP_ASSERT_WITH_CODE(!result, 1192 "Failed to retrieve VDDCR_SOC table!", 1193 return result); 1194 } 1195 1196 PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, 1197 "Too many voltage values for VDDC. Trimming to fit state table.", 1198 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1199 16, &(data->vddc_voltage_table))); 1200 1201 PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, 1202 "Too many voltage values for VDDCI. Trimming to fit state table.", 1203 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1204 16, &(data->vddci_voltage_table))); 1205 1206 PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, 1207 "Too many voltage values for MVDD. Trimming to fit state table.", 1208 vega10_trim_voltage_table_to_fit_state_table(hwmgr, 1209 16, &(data->mvdd_voltage_table))); 1210 1211 1212 return 0; 1213 } 1214 1215 /* 1216 * vega10_init_dpm_state 1217 * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. 1218 * 1219 * @dpm_state: - the address of the DPM Table to initiailize. 1220 * return: None. 1221 */ 1222 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) 1223 { 1224 dpm_state->soft_min_level = 0xff; 1225 dpm_state->soft_max_level = 0xff; 1226 dpm_state->hard_min_level = 0xff; 1227 dpm_state->hard_max_level = 0xff; 1228 } 1229 1230 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, 1231 struct vega10_single_dpm_table *dpm_table, 1232 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) 1233 { 1234 int i; 1235 1236 dpm_table->count = 0; 1237 1238 for (i = 0; i < dep_table->count; i++) { 1239 if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= 1240 dep_table->entries[i].clk) { 1241 dpm_table->dpm_levels[dpm_table->count].value = 1242 dep_table->entries[i].clk; 1243 dpm_table->dpm_levels[dpm_table->count].enabled = true; 1244 dpm_table->count++; 1245 } 1246 } 1247 } 1248 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 1249 { 1250 struct vega10_hwmgr *data = hwmgr->backend; 1251 struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); 1252 struct phm_ppt_v2_information *table_info = 1253 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1254 struct phm_ppt_v1_pcie_table *bios_pcie_table = 1255 table_info->pcie_table; 1256 uint32_t i; 1257 1258 PP_ASSERT_WITH_CODE(bios_pcie_table->count, 1259 "Incorrect number of PCIE States from VBIOS!", 1260 return -1); 1261 1262 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1263 if (data->registry_data.pcieSpeedOverride) 1264 pcie_table->pcie_gen[i] = 1265 data->registry_data.pcieSpeedOverride; 1266 else 1267 pcie_table->pcie_gen[i] = 1268 bios_pcie_table->entries[i].gen_speed; 1269 1270 if (data->registry_data.pcieLaneOverride) 1271 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1272 data->registry_data.pcieLaneOverride); 1273 else 1274 pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( 1275 bios_pcie_table->entries[i].lane_width); 1276 if (data->registry_data.pcieClockOverride) 1277 pcie_table->lclk[i] = 1278 data->registry_data.pcieClockOverride; 1279 else 1280 pcie_table->lclk[i] = 1281 bios_pcie_table->entries[i].pcie_sclk; 1282 } 1283 1284 pcie_table->count = NUM_LINK_LEVELS; 1285 1286 return 0; 1287 } 1288 1289 /* 1290 * This function is to initialize all DPM state tables 1291 * for SMU based on the dependency table. 1292 * Dynamic state patching function will then trim these 1293 * state tables to the allowed range based 1294 * on the power policy or external client requests, 1295 * such as UVD request, etc. 1296 */ 1297 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1298 { 1299 struct vega10_hwmgr *data = hwmgr->backend; 1300 struct phm_ppt_v2_information *table_info = 1301 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1302 struct vega10_single_dpm_table *dpm_table; 1303 uint32_t i; 1304 1305 struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = 1306 table_info->vdd_dep_on_socclk; 1307 struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = 1308 table_info->vdd_dep_on_sclk; 1309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 1310 table_info->vdd_dep_on_mclk; 1311 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = 1312 table_info->mm_dep_table; 1313 struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = 1314 table_info->vdd_dep_on_dcefclk; 1315 struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = 1316 table_info->vdd_dep_on_pixclk; 1317 struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = 1318 table_info->vdd_dep_on_dispclk; 1319 struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = 1320 table_info->vdd_dep_on_phyclk; 1321 1322 PP_ASSERT_WITH_CODE(dep_soc_table, 1323 "SOCCLK dependency table is missing. This table is mandatory", 1324 return -EINVAL); 1325 PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, 1326 "SOCCLK dependency table is empty. This table is mandatory", 1327 return -EINVAL); 1328 1329 PP_ASSERT_WITH_CODE(dep_gfx_table, 1330 "GFXCLK dependency table is missing. This table is mandatory", 1331 return -EINVAL); 1332 PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, 1333 "GFXCLK dependency table is empty. This table is mandatory", 1334 return -EINVAL); 1335 1336 PP_ASSERT_WITH_CODE(dep_mclk_table, 1337 "MCLK dependency table is missing. This table is mandatory", 1338 return -EINVAL); 1339 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 1340 "MCLK dependency table has to have is missing. This table is mandatory", 1341 return -EINVAL); 1342 1343 /* Initialize Sclk DPM table based on allow Sclk values */ 1344 dpm_table = &(data->dpm_table.soc_table); 1345 vega10_setup_default_single_dpm_table(hwmgr, 1346 dpm_table, 1347 dep_soc_table); 1348 1349 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1350 1351 dpm_table = &(data->dpm_table.gfx_table); 1352 vega10_setup_default_single_dpm_table(hwmgr, 1353 dpm_table, 1354 dep_gfx_table); 1355 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 1356 hwmgr->platform_descriptor.overdriveLimit.engineClock = 1357 dpm_table->dpm_levels[dpm_table->count-1].value; 1358 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1359 1360 /* Initialize Mclk DPM table based on allow Mclk values */ 1361 data->dpm_table.mem_table.count = 0; 1362 dpm_table = &(data->dpm_table.mem_table); 1363 vega10_setup_default_single_dpm_table(hwmgr, 1364 dpm_table, 1365 dep_mclk_table); 1366 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 1367 hwmgr->platform_descriptor.overdriveLimit.memoryClock = 1368 dpm_table->dpm_levels[dpm_table->count-1].value; 1369 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1370 1371 data->dpm_table.eclk_table.count = 0; 1372 dpm_table = &(data->dpm_table.eclk_table); 1373 for (i = 0; i < dep_mm_table->count; i++) { 1374 if (i == 0 || dpm_table->dpm_levels 1375 [dpm_table->count - 1].value <= 1376 dep_mm_table->entries[i].eclk) { 1377 dpm_table->dpm_levels[dpm_table->count].value = 1378 dep_mm_table->entries[i].eclk; 1379 dpm_table->dpm_levels[dpm_table->count].enabled = 1380 (i == 0) ? true : false; 1381 dpm_table->count++; 1382 } 1383 } 1384 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1385 1386 data->dpm_table.vclk_table.count = 0; 1387 data->dpm_table.dclk_table.count = 0; 1388 dpm_table = &(data->dpm_table.vclk_table); 1389 for (i = 0; i < dep_mm_table->count; i++) { 1390 if (i == 0 || dpm_table->dpm_levels 1391 [dpm_table->count - 1].value <= 1392 dep_mm_table->entries[i].vclk) { 1393 dpm_table->dpm_levels[dpm_table->count].value = 1394 dep_mm_table->entries[i].vclk; 1395 dpm_table->dpm_levels[dpm_table->count].enabled = 1396 (i == 0) ? true : false; 1397 dpm_table->count++; 1398 } 1399 } 1400 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1401 1402 dpm_table = &(data->dpm_table.dclk_table); 1403 for (i = 0; i < dep_mm_table->count; i++) { 1404 if (i == 0 || dpm_table->dpm_levels 1405 [dpm_table->count - 1].value <= 1406 dep_mm_table->entries[i].dclk) { 1407 dpm_table->dpm_levels[dpm_table->count].value = 1408 dep_mm_table->entries[i].dclk; 1409 dpm_table->dpm_levels[dpm_table->count].enabled = 1410 (i == 0) ? true : false; 1411 dpm_table->count++; 1412 } 1413 } 1414 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1415 1416 /* Assume there is no headless Vega10 for now */ 1417 dpm_table = &(data->dpm_table.dcef_table); 1418 vega10_setup_default_single_dpm_table(hwmgr, 1419 dpm_table, 1420 dep_dcef_table); 1421 1422 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1423 1424 dpm_table = &(data->dpm_table.pixel_table); 1425 vega10_setup_default_single_dpm_table(hwmgr, 1426 dpm_table, 1427 dep_pix_table); 1428 1429 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1430 1431 dpm_table = &(data->dpm_table.display_table); 1432 vega10_setup_default_single_dpm_table(hwmgr, 1433 dpm_table, 1434 dep_disp_table); 1435 1436 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1437 1438 dpm_table = &(data->dpm_table.phy_table); 1439 vega10_setup_default_single_dpm_table(hwmgr, 1440 dpm_table, 1441 dep_phy_table); 1442 1443 vega10_init_dpm_state(&(dpm_table->dpm_state)); 1444 1445 vega10_setup_default_pcie_table(hwmgr); 1446 1447 /* Zero out the saved copy of the CUSTOM profile 1448 * This will be checked when trying to set the profile 1449 * and will require that new values be passed in 1450 */ 1451 data->custom_profile_mode[0] = 0; 1452 data->custom_profile_mode[1] = 0; 1453 data->custom_profile_mode[2] = 0; 1454 data->custom_profile_mode[3] = 0; 1455 1456 /* save a copy of the default DPM table */ 1457 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1458 sizeof(struct vega10_dpm_table)); 1459 1460 return 0; 1461 } 1462 1463 /* 1464 * vega10_populate_ulv_state 1465 * Function to provide parameters for Utral Low Voltage state to SMC. 1466 * 1467 * @hwmgr: - the address of the hardware manager. 1468 * return: Always 0. 1469 */ 1470 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) 1471 { 1472 struct vega10_hwmgr *data = hwmgr->backend; 1473 struct phm_ppt_v2_information *table_info = 1474 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1475 1476 data->smc_state_table.pp_table.UlvOffsetVid = 1477 (uint8_t)table_info->us_ulv_voltage_offset; 1478 1479 data->smc_state_table.pp_table.UlvSmnclkDid = 1480 (uint8_t)(table_info->us_ulv_smnclk_did); 1481 data->smc_state_table.pp_table.UlvMp1clkDid = 1482 (uint8_t)(table_info->us_ulv_mp1clk_did); 1483 data->smc_state_table.pp_table.UlvGfxclkBypass = 1484 (uint8_t)(table_info->us_ulv_gfxclk_bypass); 1485 data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = 1486 (uint8_t)(data->vddc_voltage_table.psi0_enable); 1487 data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = 1488 (uint8_t)(data->vddc_voltage_table.psi1_enable); 1489 1490 return 0; 1491 } 1492 1493 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, 1494 uint32_t lclock, uint8_t *curr_lclk_did) 1495 { 1496 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1497 1498 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1499 hwmgr, 1500 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1501 lclock, ÷rs), 1502 "Failed to get LCLK clock settings from VBIOS!", 1503 return -1); 1504 1505 *curr_lclk_did = dividers.ulDid; 1506 1507 return 0; 1508 } 1509 1510 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr) 1511 { 1512 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 1513 struct vega10_hwmgr *data = 1514 (struct vega10_hwmgr *)(hwmgr->backend); 1515 uint32_t pcie_gen = 0, pcie_width = 0; 1516 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1517 int i; 1518 1519 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4) 1520 pcie_gen = 3; 1521 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 1522 pcie_gen = 2; 1523 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2) 1524 pcie_gen = 1; 1525 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1) 1526 pcie_gen = 0; 1527 1528 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) 1529 pcie_width = 6; 1530 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) 1531 pcie_width = 5; 1532 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) 1533 pcie_width = 4; 1534 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) 1535 pcie_width = 3; 1536 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) 1537 pcie_width = 2; 1538 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) 1539 pcie_width = 1; 1540 1541 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1542 if (pp_table->PcieGenSpeed[i] > pcie_gen) 1543 pp_table->PcieGenSpeed[i] = pcie_gen; 1544 1545 if (pp_table->PcieLaneCount[i] > pcie_width) 1546 pp_table->PcieLaneCount[i] = pcie_width; 1547 } 1548 1549 if (data->registry_data.pcie_dpm_key_disabled) { 1550 for (i = 0; i < NUM_LINK_LEVELS; i++) { 1551 pp_table->PcieGenSpeed[i] = pcie_gen; 1552 pp_table->PcieLaneCount[i] = pcie_width; 1553 } 1554 } 1555 1556 return 0; 1557 } 1558 1559 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) 1560 { 1561 int result = -1; 1562 struct vega10_hwmgr *data = hwmgr->backend; 1563 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1564 struct vega10_pcie_table *pcie_table = 1565 &(data->dpm_table.pcie_table); 1566 uint32_t i, j; 1567 1568 for (i = 0; i < pcie_table->count; i++) { 1569 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; 1570 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; 1571 1572 result = vega10_populate_single_lclk_level(hwmgr, 1573 pcie_table->lclk[i], &(pp_table->LclkDid[i])); 1574 if (result) { 1575 pr_info("Populate LClock Level %d Failed!\n", i); 1576 return result; 1577 } 1578 } 1579 1580 j = i - 1; 1581 while (i < NUM_LINK_LEVELS) { 1582 pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; 1583 pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; 1584 1585 result = vega10_populate_single_lclk_level(hwmgr, 1586 pcie_table->lclk[j], &(pp_table->LclkDid[i])); 1587 if (result) { 1588 pr_info("Populate LClock Level %d Failed!\n", i); 1589 return result; 1590 } 1591 i++; 1592 } 1593 1594 return result; 1595 } 1596 1597 /** 1598 * Populates single SMC GFXSCLK structure using the provided engine clock 1599 * 1600 * @hwmgr: the address of the hardware manager 1601 * @gfx_clock: the GFX clock to use to populate the structure. 1602 * @current_gfxclk_level: location in PPTable for the SMC GFXCLK structure. 1603 * @acg_freq: ACG frequenty to return (MHz) 1604 */ 1605 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, 1606 uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, 1607 uint32_t *acg_freq) 1608 { 1609 struct phm_ppt_v2_information *table_info = 1610 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1611 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk; 1612 struct vega10_hwmgr *data = hwmgr->backend; 1613 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1614 uint32_t gfx_max_clock = 1615 hwmgr->platform_descriptor.overdriveLimit.engineClock; 1616 uint32_t i = 0; 1617 1618 if (hwmgr->od_enabled) 1619 dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1620 &(data->odn_dpm_table.vdd_dep_on_sclk); 1621 else 1622 dep_on_sclk = table_info->vdd_dep_on_sclk; 1623 1624 PP_ASSERT_WITH_CODE(dep_on_sclk, 1625 "Invalid SOC_VDD-GFX_CLK Dependency Table!", 1626 return -EINVAL); 1627 1628 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) 1629 gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; 1630 else { 1631 for (i = 0; i < dep_on_sclk->count; i++) { 1632 if (dep_on_sclk->entries[i].clk == gfx_clock) 1633 break; 1634 } 1635 PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, 1636 "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", 1637 return -EINVAL); 1638 } 1639 1640 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1641 COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, 1642 gfx_clock, ÷rs), 1643 "Failed to get GFX Clock settings from VBIOS!", 1644 return -EINVAL); 1645 1646 /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ 1647 current_gfxclk_level->FbMult = 1648 cpu_to_le32(dividers.ulPll_fb_mult); 1649 /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ 1650 current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; 1651 current_gfxclk_level->SsFbMult = 1652 cpu_to_le32(dividers.ulPll_ss_fbsmult); 1653 current_gfxclk_level->SsSlewFrac = 1654 cpu_to_le16(dividers.usPll_ss_slew_frac); 1655 current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); 1656 1657 *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ 1658 1659 return 0; 1660 } 1661 1662 /** 1663 * Populates single SMC SOCCLK structure using the provided clock. 1664 * 1665 * @hwmgr: the address of the hardware manager. 1666 * @soc_clock: the SOC clock to use to populate the structure. 1667 * @current_soc_did: DFS divider to pass back to caller 1668 * @current_vol_index: index of current VDD to pass back to caller 1669 * return: 0 on success 1670 */ 1671 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, 1672 uint32_t soc_clock, uint8_t *current_soc_did, 1673 uint8_t *current_vol_index) 1674 { 1675 struct vega10_hwmgr *data = hwmgr->backend; 1676 struct phm_ppt_v2_information *table_info = 1677 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1678 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc; 1679 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1680 uint32_t i; 1681 1682 if (hwmgr->od_enabled) { 1683 dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1684 &data->odn_dpm_table.vdd_dep_on_socclk; 1685 for (i = 0; i < dep_on_soc->count; i++) { 1686 if (dep_on_soc->entries[i].clk >= soc_clock) 1687 break; 1688 } 1689 } else { 1690 dep_on_soc = table_info->vdd_dep_on_socclk; 1691 for (i = 0; i < dep_on_soc->count; i++) { 1692 if (dep_on_soc->entries[i].clk == soc_clock) 1693 break; 1694 } 1695 } 1696 1697 PP_ASSERT_WITH_CODE(dep_on_soc->count > i, 1698 "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", 1699 return -EINVAL); 1700 1701 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1702 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1703 soc_clock, ÷rs), 1704 "Failed to get SOC Clock settings from VBIOS!", 1705 return -EINVAL); 1706 1707 *current_soc_did = (uint8_t)dividers.ulDid; 1708 *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); 1709 return 0; 1710 } 1711 1712 /** 1713 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states 1714 * 1715 * @hwmgr: the address of the hardware manager 1716 */ 1717 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) 1718 { 1719 struct vega10_hwmgr *data = hwmgr->backend; 1720 struct phm_ppt_v2_information *table_info = 1721 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1722 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1723 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); 1724 int result = 0; 1725 uint32_t i, j; 1726 1727 for (i = 0; i < dpm_table->count; i++) { 1728 result = vega10_populate_single_gfx_level(hwmgr, 1729 dpm_table->dpm_levels[i].value, 1730 &(pp_table->GfxclkLevel[i]), 1731 &(pp_table->AcgFreqTable[i])); 1732 if (result) 1733 return result; 1734 } 1735 1736 j = i - 1; 1737 while (i < NUM_GFXCLK_DPM_LEVELS) { 1738 result = vega10_populate_single_gfx_level(hwmgr, 1739 dpm_table->dpm_levels[j].value, 1740 &(pp_table->GfxclkLevel[i]), 1741 &(pp_table->AcgFreqTable[i])); 1742 if (result) 1743 return result; 1744 i++; 1745 } 1746 1747 pp_table->GfxclkSlewRate = 1748 cpu_to_le16(table_info->us_gfxclk_slew_rate); 1749 1750 dpm_table = &(data->dpm_table.soc_table); 1751 for (i = 0; i < dpm_table->count; i++) { 1752 result = vega10_populate_single_soc_level(hwmgr, 1753 dpm_table->dpm_levels[i].value, 1754 &(pp_table->SocclkDid[i]), 1755 &(pp_table->SocDpmVoltageIndex[i])); 1756 if (result) 1757 return result; 1758 } 1759 1760 j = i - 1; 1761 while (i < NUM_SOCCLK_DPM_LEVELS) { 1762 result = vega10_populate_single_soc_level(hwmgr, 1763 dpm_table->dpm_levels[j].value, 1764 &(pp_table->SocclkDid[i]), 1765 &(pp_table->SocDpmVoltageIndex[i])); 1766 if (result) 1767 return result; 1768 i++; 1769 } 1770 1771 return result; 1772 } 1773 1774 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr) 1775 { 1776 struct vega10_hwmgr *data = hwmgr->backend; 1777 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1778 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 1779 struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table; 1780 1781 uint8_t soc_vid = 0; 1782 uint32_t i, max_vddc_level; 1783 1784 if (hwmgr->od_enabled) 1785 vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table; 1786 else 1787 vddc_lookup_table = table_info->vddc_lookup_table; 1788 1789 max_vddc_level = vddc_lookup_table->count; 1790 for (i = 0; i < max_vddc_level; i++) { 1791 soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd); 1792 pp_table->SocVid[i] = soc_vid; 1793 } 1794 while (i < MAX_REGULAR_DPM_NUMBER) { 1795 pp_table->SocVid[i] = soc_vid; 1796 i++; 1797 } 1798 } 1799 1800 /* 1801 * Populates single SMC GFXCLK structure using the provided clock. 1802 * 1803 * @hwmgr: the address of the hardware manager. 1804 * @mem_clock: the memory clock to use to populate the structure. 1805 * return: 0 on success.. 1806 */ 1807 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, 1808 uint32_t mem_clock, uint8_t *current_mem_vid, 1809 PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) 1810 { 1811 struct vega10_hwmgr *data = hwmgr->backend; 1812 struct phm_ppt_v2_information *table_info = 1813 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1814 struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk; 1815 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1816 uint32_t mem_max_clock = 1817 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 1818 uint32_t i = 0; 1819 1820 if (hwmgr->od_enabled) 1821 dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) 1822 &data->odn_dpm_table.vdd_dep_on_mclk; 1823 else 1824 dep_on_mclk = table_info->vdd_dep_on_mclk; 1825 1826 PP_ASSERT_WITH_CODE(dep_on_mclk, 1827 "Invalid SOC_VDD-UCLK Dependency Table!", 1828 return -EINVAL); 1829 1830 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 1831 mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; 1832 } else { 1833 for (i = 0; i < dep_on_mclk->count; i++) { 1834 if (dep_on_mclk->entries[i].clk == mem_clock) 1835 break; 1836 } 1837 PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, 1838 "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", 1839 return -EINVAL); 1840 } 1841 1842 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( 1843 hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs), 1844 "Failed to get UCLK settings from VBIOS!", 1845 return -1); 1846 1847 *current_mem_vid = 1848 (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); 1849 *current_mem_soc_vind = 1850 (uint8_t)(dep_on_mclk->entries[i].vddInd); 1851 current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); 1852 current_memclk_level->Did = (uint8_t)(dividers.ulDid); 1853 1854 PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, 1855 "Invalid Divider ID!", 1856 return -EINVAL); 1857 1858 return 0; 1859 } 1860 1861 /** 1862 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states. 1863 * 1864 * @hwmgr: the address of the hardware manager. 1865 * return: PP_Result_OK on success. 1866 */ 1867 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) 1868 { 1869 struct vega10_hwmgr *data = hwmgr->backend; 1870 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1871 struct vega10_single_dpm_table *dpm_table = 1872 &(data->dpm_table.mem_table); 1873 int result = 0; 1874 uint32_t i, j; 1875 1876 for (i = 0; i < dpm_table->count; i++) { 1877 result = vega10_populate_single_memory_level(hwmgr, 1878 dpm_table->dpm_levels[i].value, 1879 &(pp_table->MemVid[i]), 1880 &(pp_table->UclkLevel[i]), 1881 &(pp_table->MemSocVoltageIndex[i])); 1882 if (result) 1883 return result; 1884 } 1885 1886 j = i - 1; 1887 while (i < NUM_UCLK_DPM_LEVELS) { 1888 result = vega10_populate_single_memory_level(hwmgr, 1889 dpm_table->dpm_levels[j].value, 1890 &(pp_table->MemVid[i]), 1891 &(pp_table->UclkLevel[i]), 1892 &(pp_table->MemSocVoltageIndex[i])); 1893 if (result) 1894 return result; 1895 i++; 1896 } 1897 1898 pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels); 1899 pp_table->MemoryChannelWidth = 1900 (uint16_t)(HBM_MEMORY_CHANNEL_WIDTH * 1901 channel_number[data->mem_channels]); 1902 1903 pp_table->LowestUclkReservedForUlv = 1904 (uint8_t)(data->lowest_uclk_reserved_for_ulv); 1905 1906 return result; 1907 } 1908 1909 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, 1910 DSPCLK_e disp_clock) 1911 { 1912 struct vega10_hwmgr *data = hwmgr->backend; 1913 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 1914 struct phm_ppt_v2_information *table_info = 1915 (struct phm_ppt_v2_information *) 1916 (hwmgr->pptable); 1917 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 1918 uint32_t i; 1919 uint16_t clk = 0, vddc = 0; 1920 uint8_t vid = 0; 1921 1922 switch (disp_clock) { 1923 case DSPCLK_DCEFCLK: 1924 dep_table = table_info->vdd_dep_on_dcefclk; 1925 break; 1926 case DSPCLK_DISPCLK: 1927 dep_table = table_info->vdd_dep_on_dispclk; 1928 break; 1929 case DSPCLK_PIXCLK: 1930 dep_table = table_info->vdd_dep_on_pixclk; 1931 break; 1932 case DSPCLK_PHYCLK: 1933 dep_table = table_info->vdd_dep_on_phyclk; 1934 break; 1935 default: 1936 return -1; 1937 } 1938 1939 PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, 1940 "Number Of Entries Exceeded maximum!", 1941 return -1); 1942 1943 for (i = 0; i < dep_table->count; i++) { 1944 clk = (uint16_t)(dep_table->entries[i].clk / 100); 1945 vddc = table_info->vddc_lookup_table-> 1946 entries[dep_table->entries[i].vddInd].us_vdd; 1947 vid = (uint8_t)convert_to_vid(vddc); 1948 pp_table->DisplayClockTable[disp_clock][i].Freq = 1949 cpu_to_le16(clk); 1950 pp_table->DisplayClockTable[disp_clock][i].Vid = 1951 cpu_to_le16(vid); 1952 } 1953 1954 while (i < NUM_DSPCLK_LEVELS) { 1955 pp_table->DisplayClockTable[disp_clock][i].Freq = 1956 cpu_to_le16(clk); 1957 pp_table->DisplayClockTable[disp_clock][i].Vid = 1958 cpu_to_le16(vid); 1959 i++; 1960 } 1961 1962 return 0; 1963 } 1964 1965 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) 1966 { 1967 uint32_t i; 1968 1969 for (i = 0; i < DSPCLK_COUNT; i++) { 1970 PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), 1971 "Failed to populate Clock in DisplayClockTable!", 1972 return -1); 1973 } 1974 1975 return 0; 1976 } 1977 1978 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, 1979 uint32_t eclock, uint8_t *current_eclk_did, 1980 uint8_t *current_soc_vol) 1981 { 1982 struct phm_ppt_v2_information *table_info = 1983 (struct phm_ppt_v2_information *)(hwmgr->pptable); 1984 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 1985 table_info->mm_dep_table; 1986 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 1987 uint32_t i; 1988 1989 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 1990 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 1991 eclock, ÷rs), 1992 "Failed to get ECLK clock settings from VBIOS!", 1993 return -1); 1994 1995 *current_eclk_did = (uint8_t)dividers.ulDid; 1996 1997 for (i = 0; i < dep_table->count; i++) { 1998 if (dep_table->entries[i].eclk == eclock) 1999 *current_soc_vol = dep_table->entries[i].vddcInd; 2000 } 2001 2002 return 0; 2003 } 2004 2005 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) 2006 { 2007 struct vega10_hwmgr *data = hwmgr->backend; 2008 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2009 struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); 2010 int result = -EINVAL; 2011 uint32_t i, j; 2012 2013 for (i = 0; i < dpm_table->count; i++) { 2014 result = vega10_populate_single_eclock_level(hwmgr, 2015 dpm_table->dpm_levels[i].value, 2016 &(pp_table->EclkDid[i]), 2017 &(pp_table->VceDpmVoltageIndex[i])); 2018 if (result) 2019 return result; 2020 } 2021 2022 j = i - 1; 2023 while (i < NUM_VCE_DPM_LEVELS) { 2024 result = vega10_populate_single_eclock_level(hwmgr, 2025 dpm_table->dpm_levels[j].value, 2026 &(pp_table->EclkDid[i]), 2027 &(pp_table->VceDpmVoltageIndex[i])); 2028 if (result) 2029 return result; 2030 i++; 2031 } 2032 2033 return result; 2034 } 2035 2036 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, 2037 uint32_t vclock, uint8_t *current_vclk_did) 2038 { 2039 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 2040 2041 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 2042 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 2043 vclock, ÷rs), 2044 "Failed to get VCLK clock settings from VBIOS!", 2045 return -EINVAL); 2046 2047 *current_vclk_did = (uint8_t)dividers.ulDid; 2048 2049 return 0; 2050 } 2051 2052 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, 2053 uint32_t dclock, uint8_t *current_dclk_did) 2054 { 2055 struct pp_atomfwctrl_clock_dividers_soc15 dividers; 2056 2057 PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, 2058 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, 2059 dclock, ÷rs), 2060 "Failed to get DCLK clock settings from VBIOS!", 2061 return -EINVAL); 2062 2063 *current_dclk_did = (uint8_t)dividers.ulDid; 2064 2065 return 0; 2066 } 2067 2068 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) 2069 { 2070 struct vega10_hwmgr *data = hwmgr->backend; 2071 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2072 struct vega10_single_dpm_table *vclk_dpm_table = 2073 &(data->dpm_table.vclk_table); 2074 struct vega10_single_dpm_table *dclk_dpm_table = 2075 &(data->dpm_table.dclk_table); 2076 struct phm_ppt_v2_information *table_info = 2077 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2078 struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = 2079 table_info->mm_dep_table; 2080 int result = -EINVAL; 2081 uint32_t i, j; 2082 2083 for (i = 0; i < vclk_dpm_table->count; i++) { 2084 result = vega10_populate_single_vclock_level(hwmgr, 2085 vclk_dpm_table->dpm_levels[i].value, 2086 &(pp_table->VclkDid[i])); 2087 if (result) 2088 return result; 2089 } 2090 2091 j = i - 1; 2092 while (i < NUM_UVD_DPM_LEVELS) { 2093 result = vega10_populate_single_vclock_level(hwmgr, 2094 vclk_dpm_table->dpm_levels[j].value, 2095 &(pp_table->VclkDid[i])); 2096 if (result) 2097 return result; 2098 i++; 2099 } 2100 2101 for (i = 0; i < dclk_dpm_table->count; i++) { 2102 result = vega10_populate_single_dclock_level(hwmgr, 2103 dclk_dpm_table->dpm_levels[i].value, 2104 &(pp_table->DclkDid[i])); 2105 if (result) 2106 return result; 2107 } 2108 2109 j = i - 1; 2110 while (i < NUM_UVD_DPM_LEVELS) { 2111 result = vega10_populate_single_dclock_level(hwmgr, 2112 dclk_dpm_table->dpm_levels[j].value, 2113 &(pp_table->DclkDid[i])); 2114 if (result) 2115 return result; 2116 i++; 2117 } 2118 2119 for (i = 0; i < dep_table->count; i++) { 2120 if (dep_table->entries[i].vclk == 2121 vclk_dpm_table->dpm_levels[i].value && 2122 dep_table->entries[i].dclk == 2123 dclk_dpm_table->dpm_levels[i].value) 2124 pp_table->UvdDpmVoltageIndex[i] = 2125 dep_table->entries[i].vddcInd; 2126 else 2127 return -1; 2128 } 2129 2130 j = i - 1; 2131 while (i < NUM_UVD_DPM_LEVELS) { 2132 pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; 2133 i++; 2134 } 2135 2136 return 0; 2137 } 2138 2139 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) 2140 { 2141 struct vega10_hwmgr *data = hwmgr->backend; 2142 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2143 struct phm_ppt_v2_information *table_info = 2144 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2145 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2146 table_info->vdd_dep_on_sclk; 2147 uint32_t i; 2148 2149 for (i = 0; i < dep_table->count; i++) { 2150 pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; 2151 pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset 2152 * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); 2153 } 2154 2155 return 0; 2156 } 2157 2158 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) 2159 { 2160 struct vega10_hwmgr *data = hwmgr->backend; 2161 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2162 struct phm_ppt_v2_information *table_info = 2163 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2164 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 2165 table_info->vdd_dep_on_sclk; 2166 struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; 2167 int result = 0; 2168 uint32_t i; 2169 2170 pp_table->MinVoltageVid = (uint8_t)0xff; 2171 pp_table->MaxVoltageVid = (uint8_t)0; 2172 2173 if (data->smu_features[GNLD_AVFS].supported) { 2174 result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); 2175 if (!result) { 2176 pp_table->MinVoltageVid = (uint8_t) 2177 convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); 2178 pp_table->MaxVoltageVid = (uint8_t) 2179 convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); 2180 2181 pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); 2182 pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); 2183 pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); 2184 pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2185 pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); 2186 pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); 2187 pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); 2188 2189 pp_table->BtcGbVdroopTableCksOff.a0 = 2190 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); 2191 pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; 2192 pp_table->BtcGbVdroopTableCksOff.a1 = 2193 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); 2194 pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; 2195 pp_table->BtcGbVdroopTableCksOff.a2 = 2196 cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); 2197 pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; 2198 2199 pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; 2200 pp_table->BtcGbVdroopTableCksOn.a0 = 2201 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); 2202 pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; 2203 pp_table->BtcGbVdroopTableCksOn.a1 = 2204 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); 2205 pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; 2206 pp_table->BtcGbVdroopTableCksOn.a2 = 2207 cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); 2208 pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; 2209 2210 pp_table->AvfsGbCksOn.m1 = 2211 cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); 2212 pp_table->AvfsGbCksOn.m2 = 2213 cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); 2214 pp_table->AvfsGbCksOn.b = 2215 cpu_to_le32(avfs_params.ulGbFuseTableCksonB); 2216 pp_table->AvfsGbCksOn.m1_shift = 24; 2217 pp_table->AvfsGbCksOn.m2_shift = 12; 2218 pp_table->AvfsGbCksOn.b_shift = 0; 2219 2220 pp_table->OverrideAvfsGbCksOn = 2221 avfs_params.ucEnableGbFuseTableCkson; 2222 pp_table->AvfsGbCksOff.m1 = 2223 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); 2224 pp_table->AvfsGbCksOff.m2 = 2225 cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); 2226 pp_table->AvfsGbCksOff.b = 2227 cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); 2228 pp_table->AvfsGbCksOff.m1_shift = 24; 2229 pp_table->AvfsGbCksOff.m2_shift = 12; 2230 pp_table->AvfsGbCksOff.b_shift = 0; 2231 2232 for (i = 0; i < dep_table->count; i++) 2233 pp_table->StaticVoltageOffsetVid[i] = 2234 convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); 2235 2236 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2237 data->disp_clk_quad_eqn_a) && 2238 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2239 data->disp_clk_quad_eqn_b)) { 2240 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2241 (int32_t)data->disp_clk_quad_eqn_a; 2242 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2243 (int32_t)data->disp_clk_quad_eqn_b; 2244 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2245 (int32_t)data->disp_clk_quad_eqn_c; 2246 } else { 2247 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = 2248 (int32_t)avfs_params.ulDispclk2GfxclkM1; 2249 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = 2250 (int32_t)avfs_params.ulDispclk2GfxclkM2; 2251 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = 2252 (int32_t)avfs_params.ulDispclk2GfxclkB; 2253 } 2254 2255 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; 2256 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; 2257 pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; 2258 2259 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2260 data->dcef_clk_quad_eqn_a) && 2261 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2262 data->dcef_clk_quad_eqn_b)) { 2263 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2264 (int32_t)data->dcef_clk_quad_eqn_a; 2265 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2266 (int32_t)data->dcef_clk_quad_eqn_b; 2267 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2268 (int32_t)data->dcef_clk_quad_eqn_c; 2269 } else { 2270 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = 2271 (int32_t)avfs_params.ulDcefclk2GfxclkM1; 2272 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = 2273 (int32_t)avfs_params.ulDcefclk2GfxclkM2; 2274 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = 2275 (int32_t)avfs_params.ulDcefclk2GfxclkB; 2276 } 2277 2278 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; 2279 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; 2280 pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; 2281 2282 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2283 data->pixel_clk_quad_eqn_a) && 2284 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2285 data->pixel_clk_quad_eqn_b)) { 2286 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2287 (int32_t)data->pixel_clk_quad_eqn_a; 2288 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2289 (int32_t)data->pixel_clk_quad_eqn_b; 2290 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2291 (int32_t)data->pixel_clk_quad_eqn_c; 2292 } else { 2293 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = 2294 (int32_t)avfs_params.ulPixelclk2GfxclkM1; 2295 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = 2296 (int32_t)avfs_params.ulPixelclk2GfxclkM2; 2297 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = 2298 (int32_t)avfs_params.ulPixelclk2GfxclkB; 2299 } 2300 2301 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; 2302 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; 2303 pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; 2304 if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2305 data->phy_clk_quad_eqn_a) && 2306 (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != 2307 data->phy_clk_quad_eqn_b)) { 2308 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2309 (int32_t)data->phy_clk_quad_eqn_a; 2310 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2311 (int32_t)data->phy_clk_quad_eqn_b; 2312 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2313 (int32_t)data->phy_clk_quad_eqn_c; 2314 } else { 2315 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = 2316 (int32_t)avfs_params.ulPhyclk2GfxclkM1; 2317 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = 2318 (int32_t)avfs_params.ulPhyclk2GfxclkM2; 2319 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = 2320 (int32_t)avfs_params.ulPhyclk2GfxclkB; 2321 } 2322 2323 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; 2324 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; 2325 pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; 2326 2327 pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; 2328 pp_table->AcgBtcGbVdroopTable.a0_shift = 20; 2329 pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; 2330 pp_table->AcgBtcGbVdroopTable.a1_shift = 20; 2331 pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; 2332 pp_table->AcgBtcGbVdroopTable.a2_shift = 20; 2333 2334 pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; 2335 pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; 2336 pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; 2337 pp_table->AcgAvfsGb.m1_shift = 24; 2338 pp_table->AcgAvfsGb.m2_shift = 12; 2339 pp_table->AcgAvfsGb.b_shift = 0; 2340 2341 } else { 2342 data->smu_features[GNLD_AVFS].supported = false; 2343 } 2344 } 2345 2346 return 0; 2347 } 2348 2349 static int vega10_acg_enable(struct pp_hwmgr *hwmgr) 2350 { 2351 struct vega10_hwmgr *data = hwmgr->backend; 2352 uint32_t agc_btc_response; 2353 2354 if (data->smu_features[GNLD_ACG].supported) { 2355 if (0 == vega10_enable_smc_features(hwmgr, true, 2356 data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) 2357 data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; 2358 2359 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL); 2360 2361 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response); 2362 2363 if (1 == agc_btc_response) { 2364 if (1 == data->acg_loop_state) 2365 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL); 2366 else if (2 == data->acg_loop_state) 2367 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL); 2368 if (0 == vega10_enable_smc_features(hwmgr, true, 2369 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2370 data->smu_features[GNLD_ACG].enabled = true; 2371 } else { 2372 pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); 2373 data->smu_features[GNLD_ACG].enabled = false; 2374 } 2375 } 2376 2377 return 0; 2378 } 2379 2380 static int vega10_acg_disable(struct pp_hwmgr *hwmgr) 2381 { 2382 struct vega10_hwmgr *data = hwmgr->backend; 2383 2384 if (data->smu_features[GNLD_ACG].supported && 2385 data->smu_features[GNLD_ACG].enabled) 2386 if (!vega10_enable_smc_features(hwmgr, false, 2387 data->smu_features[GNLD_ACG].smu_feature_bitmap)) 2388 data->smu_features[GNLD_ACG].enabled = false; 2389 2390 return 0; 2391 } 2392 2393 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) 2394 { 2395 struct vega10_hwmgr *data = hwmgr->backend; 2396 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2397 struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; 2398 int result; 2399 2400 result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); 2401 if (!result) { 2402 if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && 2403 data->registry_data.regulator_hot_gpio_support) { 2404 pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; 2405 pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; 2406 pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; 2407 pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; 2408 } else { 2409 pp_table->VR0HotGpio = 0; 2410 pp_table->VR0HotPolarity = 0; 2411 pp_table->VR1HotGpio = 0; 2412 pp_table->VR1HotPolarity = 0; 2413 } 2414 2415 if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && 2416 data->registry_data.ac_dc_switch_gpio_support) { 2417 pp_table->AcDcGpio = gpio_params.ucAcDcGpio; 2418 pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; 2419 } else { 2420 pp_table->AcDcGpio = 0; 2421 pp_table->AcDcPolarity = 0; 2422 } 2423 } 2424 2425 return result; 2426 } 2427 2428 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) 2429 { 2430 struct vega10_hwmgr *data = hwmgr->backend; 2431 2432 if (data->smu_features[GNLD_AVFS].supported) { 2433 /* Already enabled or disabled */ 2434 if (!(enable ^ data->smu_features[GNLD_AVFS].enabled)) 2435 return 0; 2436 2437 if (enable) { 2438 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2439 true, 2440 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2441 "[avfs_control] Attempt to Enable AVFS feature Failed!", 2442 return -1); 2443 data->smu_features[GNLD_AVFS].enabled = true; 2444 } else { 2445 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2446 false, 2447 data->smu_features[GNLD_AVFS].smu_feature_bitmap), 2448 "[avfs_control] Attempt to Disable AVFS feature Failed!", 2449 return -1); 2450 data->smu_features[GNLD_AVFS].enabled = false; 2451 } 2452 } 2453 2454 return 0; 2455 } 2456 2457 static int vega10_update_avfs(struct pp_hwmgr *hwmgr) 2458 { 2459 struct vega10_hwmgr *data = hwmgr->backend; 2460 2461 if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 2462 vega10_avfs_enable(hwmgr, false); 2463 } else if (data->need_update_dpm_table) { 2464 vega10_avfs_enable(hwmgr, false); 2465 vega10_avfs_enable(hwmgr, true); 2466 } else { 2467 vega10_avfs_enable(hwmgr, true); 2468 } 2469 2470 return 0; 2471 } 2472 2473 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) 2474 { 2475 int result = 0; 2476 2477 uint64_t serial_number = 0; 2478 uint32_t top32, bottom32; 2479 struct phm_fuses_default fuse; 2480 2481 struct vega10_hwmgr *data = hwmgr->backend; 2482 AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); 2483 2484 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32); 2485 2486 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32); 2487 2488 serial_number = ((uint64_t)bottom32 << 32) | top32; 2489 2490 if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) { 2491 avfs_fuse_table->VFT0_b = fuse.VFT0_b; 2492 avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; 2493 avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; 2494 avfs_fuse_table->VFT1_b = fuse.VFT1_b; 2495 avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; 2496 avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; 2497 avfs_fuse_table->VFT2_b = fuse.VFT2_b; 2498 avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; 2499 avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; 2500 result = smum_smc_table_manager(hwmgr, (uint8_t *)avfs_fuse_table, 2501 AVFSFUSETABLE, false); 2502 PP_ASSERT_WITH_CODE(!result, 2503 "Failed to upload FuseOVerride!", 2504 ); 2505 } 2506 2507 return result; 2508 } 2509 2510 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 2511 { 2512 struct vega10_hwmgr *data = hwmgr->backend; 2513 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2514 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 2515 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 2516 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 2517 uint32_t i; 2518 2519 dep_table = table_info->vdd_dep_on_mclk; 2520 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk); 2521 2522 for (i = 0; i < dep_table->count; i++) { 2523 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2524 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 2525 return; 2526 } 2527 } 2528 2529 dep_table = table_info->vdd_dep_on_sclk; 2530 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk); 2531 for (i = 0; i < dep_table->count; i++) { 2532 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 2533 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 2534 return; 2535 } 2536 } 2537 } 2538 2539 /** 2540 * Initializes the SMC table and uploads it 2541 * 2542 * @hwmgr: the address of the powerplay hardware manager. 2543 * return: always 0 2544 */ 2545 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) 2546 { 2547 int result; 2548 struct vega10_hwmgr *data = hwmgr->backend; 2549 struct phm_ppt_v2_information *table_info = 2550 (struct phm_ppt_v2_information *)(hwmgr->pptable); 2551 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 2552 struct pp_atomfwctrl_voltage_table voltage_table; 2553 struct pp_atomfwctrl_bios_boot_up_values boot_up_values; 2554 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 2555 2556 result = vega10_setup_default_dpm_tables(hwmgr); 2557 PP_ASSERT_WITH_CODE(!result, 2558 "Failed to setup default DPM tables!", 2559 return result); 2560 2561 if (!hwmgr->not_vf) 2562 return 0; 2563 2564 /* initialize ODN table */ 2565 if (hwmgr->od_enabled) { 2566 if (odn_table->max_vddc) { 2567 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 2568 vega10_check_dpm_table_updated(hwmgr); 2569 } else { 2570 vega10_odn_initial_default_setting(hwmgr); 2571 } 2572 } 2573 2574 pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, 2575 VOLTAGE_OBJ_SVID2, &voltage_table); 2576 pp_table->MaxVidStep = voltage_table.max_vid_step; 2577 2578 pp_table->GfxDpmVoltageMode = 2579 (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); 2580 pp_table->SocDpmVoltageMode = 2581 (uint8_t)(table_info->uc_soc_dpm_voltage_mode); 2582 pp_table->UclkDpmVoltageMode = 2583 (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); 2584 pp_table->UvdDpmVoltageMode = 2585 (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); 2586 pp_table->VceDpmVoltageMode = 2587 (uint8_t)(table_info->uc_vce_dpm_voltage_mode); 2588 pp_table->Mp0DpmVoltageMode = 2589 (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); 2590 2591 pp_table->DisplayDpmVoltageMode = 2592 (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); 2593 2594 data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; 2595 data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; 2596 2597 if (data->registry_data.ulv_support && 2598 table_info->us_ulv_voltage_offset) { 2599 result = vega10_populate_ulv_state(hwmgr); 2600 PP_ASSERT_WITH_CODE(!result, 2601 "Failed to initialize ULV state!", 2602 return result); 2603 } 2604 2605 result = vega10_populate_smc_link_levels(hwmgr); 2606 PP_ASSERT_WITH_CODE(!result, 2607 "Failed to initialize Link Level!", 2608 return result); 2609 2610 result = vega10_override_pcie_parameters(hwmgr); 2611 PP_ASSERT_WITH_CODE(!result, 2612 "Failed to override pcie parameters!", 2613 return result); 2614 2615 result = vega10_populate_all_graphic_levels(hwmgr); 2616 PP_ASSERT_WITH_CODE(!result, 2617 "Failed to initialize Graphics Level!", 2618 return result); 2619 2620 result = vega10_populate_all_memory_levels(hwmgr); 2621 PP_ASSERT_WITH_CODE(!result, 2622 "Failed to initialize Memory Level!", 2623 return result); 2624 2625 vega10_populate_vddc_soc_levels(hwmgr); 2626 2627 result = vega10_populate_all_display_clock_levels(hwmgr); 2628 PP_ASSERT_WITH_CODE(!result, 2629 "Failed to initialize Display Level!", 2630 return result); 2631 2632 result = vega10_populate_smc_vce_levels(hwmgr); 2633 PP_ASSERT_WITH_CODE(!result, 2634 "Failed to initialize VCE Level!", 2635 return result); 2636 2637 result = vega10_populate_smc_uvd_levels(hwmgr); 2638 PP_ASSERT_WITH_CODE(!result, 2639 "Failed to initialize UVD Level!", 2640 return result); 2641 2642 if (data->registry_data.clock_stretcher_support) { 2643 result = vega10_populate_clock_stretcher_table(hwmgr); 2644 PP_ASSERT_WITH_CODE(!result, 2645 "Failed to populate Clock Stretcher Table!", 2646 return result); 2647 } 2648 2649 result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); 2650 if (!result) { 2651 data->vbios_boot_state.vddc = boot_up_values.usVddc; 2652 data->vbios_boot_state.vddci = boot_up_values.usVddci; 2653 data->vbios_boot_state.mvddc = boot_up_values.usMvddc; 2654 data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; 2655 data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; 2656 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2657 SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk); 2658 2659 pp_atomfwctrl_get_clk_information_by_clkid(hwmgr, 2660 SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk); 2661 2662 data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; 2663 data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; 2664 if (0 != boot_up_values.usVddc) { 2665 smum_send_msg_to_smc_with_parameter(hwmgr, 2666 PPSMC_MSG_SetFloorSocVoltage, 2667 (boot_up_values.usVddc * 4), 2668 NULL); 2669 data->vbios_boot_state.bsoc_vddc_lock = true; 2670 } else { 2671 data->vbios_boot_state.bsoc_vddc_lock = false; 2672 } 2673 smum_send_msg_to_smc_with_parameter(hwmgr, 2674 PPSMC_MSG_SetMinDeepSleepDcefclk, 2675 (uint32_t)(data->vbios_boot_state.dcef_clock / 100), 2676 NULL); 2677 } 2678 2679 result = vega10_populate_avfs_parameters(hwmgr); 2680 PP_ASSERT_WITH_CODE(!result, 2681 "Failed to initialize AVFS Parameters!", 2682 return result); 2683 2684 result = vega10_populate_gpio_parameters(hwmgr); 2685 PP_ASSERT_WITH_CODE(!result, 2686 "Failed to initialize GPIO Parameters!", 2687 return result); 2688 2689 pp_table->GfxclkAverageAlpha = (uint8_t) 2690 (data->gfxclk_average_alpha); 2691 pp_table->SocclkAverageAlpha = (uint8_t) 2692 (data->socclk_average_alpha); 2693 pp_table->UclkAverageAlpha = (uint8_t) 2694 (data->uclk_average_alpha); 2695 pp_table->GfxActivityAverageAlpha = (uint8_t) 2696 (data->gfx_activity_average_alpha); 2697 2698 vega10_populate_and_upload_avfs_fuse_override(hwmgr); 2699 2700 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 2701 2702 PP_ASSERT_WITH_CODE(!result, 2703 "Failed to upload PPtable!", return result); 2704 2705 result = vega10_avfs_enable(hwmgr, true); 2706 PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", 2707 return result); 2708 vega10_acg_enable(hwmgr); 2709 2710 return 0; 2711 } 2712 2713 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) 2714 { 2715 struct vega10_hwmgr *data = hwmgr->backend; 2716 2717 if (data->smu_features[GNLD_THERMAL].supported) { 2718 if (data->smu_features[GNLD_THERMAL].enabled) 2719 pr_info("THERMAL Feature Already enabled!"); 2720 2721 PP_ASSERT_WITH_CODE( 2722 !vega10_enable_smc_features(hwmgr, 2723 true, 2724 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2725 "Enable THERMAL Feature Failed!", 2726 return -1); 2727 data->smu_features[GNLD_THERMAL].enabled = true; 2728 } 2729 2730 return 0; 2731 } 2732 2733 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) 2734 { 2735 struct vega10_hwmgr *data = hwmgr->backend; 2736 2737 if (data->smu_features[GNLD_THERMAL].supported) { 2738 if (!data->smu_features[GNLD_THERMAL].enabled) 2739 pr_info("THERMAL Feature Already disabled!"); 2740 2741 PP_ASSERT_WITH_CODE( 2742 !vega10_enable_smc_features(hwmgr, 2743 false, 2744 data->smu_features[GNLD_THERMAL].smu_feature_bitmap), 2745 "disable THERMAL Feature Failed!", 2746 return -1); 2747 data->smu_features[GNLD_THERMAL].enabled = false; 2748 } 2749 2750 return 0; 2751 } 2752 2753 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) 2754 { 2755 struct vega10_hwmgr *data = hwmgr->backend; 2756 2757 if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { 2758 if (data->smu_features[GNLD_VR0HOT].supported) { 2759 PP_ASSERT_WITH_CODE( 2760 !vega10_enable_smc_features(hwmgr, 2761 true, 2762 data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), 2763 "Attempt to Enable VR0 Hot feature Failed!", 2764 return -1); 2765 data->smu_features[GNLD_VR0HOT].enabled = true; 2766 } else { 2767 if (data->smu_features[GNLD_VR1HOT].supported) { 2768 PP_ASSERT_WITH_CODE( 2769 !vega10_enable_smc_features(hwmgr, 2770 true, 2771 data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), 2772 "Attempt to Enable VR0 Hot feature Failed!", 2773 return -1); 2774 data->smu_features[GNLD_VR1HOT].enabled = true; 2775 } 2776 } 2777 } 2778 return 0; 2779 } 2780 2781 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) 2782 { 2783 struct vega10_hwmgr *data = hwmgr->backend; 2784 2785 if (data->registry_data.ulv_support) { 2786 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2787 true, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2788 "Enable ULV Feature Failed!", 2789 return -1); 2790 data->smu_features[GNLD_ULV].enabled = true; 2791 } 2792 2793 return 0; 2794 } 2795 2796 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) 2797 { 2798 struct vega10_hwmgr *data = hwmgr->backend; 2799 2800 if (data->registry_data.ulv_support) { 2801 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2802 false, data->smu_features[GNLD_ULV].smu_feature_bitmap), 2803 "disable ULV Feature Failed!", 2804 return -EINVAL); 2805 data->smu_features[GNLD_ULV].enabled = false; 2806 } 2807 2808 return 0; 2809 } 2810 2811 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2812 { 2813 struct vega10_hwmgr *data = hwmgr->backend; 2814 2815 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2816 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2817 true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2818 "Attempt to Enable DS_GFXCLK Feature Failed!", 2819 return -EINVAL); 2820 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 2821 } 2822 2823 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2824 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2825 true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2826 "Attempt to Enable DS_SOCCLK Feature Failed!", 2827 return -EINVAL); 2828 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 2829 } 2830 2831 if (data->smu_features[GNLD_DS_LCLK].supported) { 2832 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2833 true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2834 "Attempt to Enable DS_LCLK Feature Failed!", 2835 return -EINVAL); 2836 data->smu_features[GNLD_DS_LCLK].enabled = true; 2837 } 2838 2839 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2840 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2841 true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2842 "Attempt to Enable DS_DCEFCLK Feature Failed!", 2843 return -EINVAL); 2844 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 2845 } 2846 2847 return 0; 2848 } 2849 2850 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 2851 { 2852 struct vega10_hwmgr *data = hwmgr->backend; 2853 2854 if (data->smu_features[GNLD_DS_GFXCLK].supported) { 2855 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2856 false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), 2857 "Attempt to disable DS_GFXCLK Feature Failed!", 2858 return -EINVAL); 2859 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 2860 } 2861 2862 if (data->smu_features[GNLD_DS_SOCCLK].supported) { 2863 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2864 false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), 2865 "Attempt to disable DS_ Feature Failed!", 2866 return -EINVAL); 2867 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 2868 } 2869 2870 if (data->smu_features[GNLD_DS_LCLK].supported) { 2871 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2872 false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), 2873 "Attempt to disable DS_LCLK Feature Failed!", 2874 return -EINVAL); 2875 data->smu_features[GNLD_DS_LCLK].enabled = false; 2876 } 2877 2878 if (data->smu_features[GNLD_DS_DCEFCLK].supported) { 2879 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2880 false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), 2881 "Attempt to disable DS_DCEFCLK Feature Failed!", 2882 return -EINVAL); 2883 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 2884 } 2885 2886 return 0; 2887 } 2888 2889 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2890 { 2891 struct vega10_hwmgr *data = hwmgr->backend; 2892 uint32_t i, feature_mask = 0; 2893 2894 if (!hwmgr->not_vf) 2895 return 0; 2896 2897 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2898 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2899 false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2900 "Attempt to disable LED DPM feature failed!", return -EINVAL); 2901 data->smu_features[GNLD_LED_DISPLAY].enabled = false; 2902 } 2903 2904 for (i = 0; i < GNLD_DPM_MAX; i++) { 2905 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2906 if (data->smu_features[i].supported) { 2907 if (data->smu_features[i].enabled) { 2908 feature_mask |= data->smu_features[i]. 2909 smu_feature_bitmap; 2910 data->smu_features[i].enabled = false; 2911 } 2912 } 2913 } 2914 } 2915 2916 vega10_enable_smc_features(hwmgr, false, feature_mask); 2917 2918 return 0; 2919 } 2920 2921 /** 2922 * Tell SMC to enabled the supported DPMs. 2923 * 2924 * @hwmgr: the address of the powerplay hardware manager. 2925 * @bitmap: bitmap for the features to enabled. 2926 * return: 0 on at least one DPM is successfully enabled. 2927 */ 2928 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) 2929 { 2930 struct vega10_hwmgr *data = hwmgr->backend; 2931 uint32_t i, feature_mask = 0; 2932 2933 for (i = 0; i < GNLD_DPM_MAX; i++) { 2934 if (data->smu_features[i].smu_feature_bitmap & bitmap) { 2935 if (data->smu_features[i].supported) { 2936 if (!data->smu_features[i].enabled) { 2937 feature_mask |= data->smu_features[i]. 2938 smu_feature_bitmap; 2939 data->smu_features[i].enabled = true; 2940 } 2941 } 2942 } 2943 } 2944 2945 if (vega10_enable_smc_features(hwmgr, 2946 true, feature_mask)) { 2947 for (i = 0; i < GNLD_DPM_MAX; i++) { 2948 if (data->smu_features[i].smu_feature_bitmap & 2949 feature_mask) 2950 data->smu_features[i].enabled = false; 2951 } 2952 } 2953 2954 if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ 2955 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2956 true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), 2957 "Attempt to Enable LED DPM feature Failed!", return -EINVAL); 2958 data->smu_features[GNLD_LED_DISPLAY].enabled = true; 2959 } 2960 2961 if (data->vbios_boot_state.bsoc_vddc_lock) { 2962 smum_send_msg_to_smc_with_parameter(hwmgr, 2963 PPSMC_MSG_SetFloorSocVoltage, 0, 2964 NULL); 2965 data->vbios_boot_state.bsoc_vddc_lock = false; 2966 } 2967 2968 if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { 2969 if (data->smu_features[GNLD_ACDC].supported) { 2970 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2971 true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), 2972 "Attempt to Enable DS_GFXCLK Feature Failed!", 2973 return -1); 2974 data->smu_features[GNLD_ACDC].enabled = true; 2975 } 2976 } 2977 2978 if (data->registry_data.pcie_dpm_key_disabled) { 2979 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2980 false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap), 2981 "Attempt to Disable Link DPM feature Failed!", return -EINVAL); 2982 data->smu_features[GNLD_DPM_LINK].enabled = false; 2983 data->smu_features[GNLD_DPM_LINK].supported = false; 2984 } 2985 2986 return 0; 2987 } 2988 2989 2990 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable) 2991 { 2992 struct vega10_hwmgr *data = hwmgr->backend; 2993 2994 if (data->smu_features[GNLD_PCC_LIMIT].supported) { 2995 if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled) 2996 pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled"); 2997 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 2998 enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap), 2999 "Attempt to Enable PCC Limit feature Failed!", 3000 return -EINVAL); 3001 data->smu_features[GNLD_PCC_LIMIT].enabled = enable; 3002 } 3003 3004 return 0; 3005 } 3006 3007 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 3008 { 3009 struct vega10_hwmgr *data = hwmgr->backend; 3010 int tmp_result, result = 0; 3011 3012 if (hwmgr->not_vf) { 3013 vega10_enable_disable_PCC_limit_feature(hwmgr, true); 3014 3015 smum_send_msg_to_smc_with_parameter(hwmgr, 3016 PPSMC_MSG_ConfigureTelemetry, data->config_telemetry, 3017 NULL); 3018 3019 tmp_result = vega10_construct_voltage_tables(hwmgr); 3020 PP_ASSERT_WITH_CODE(!tmp_result, 3021 "Failed to construct voltage tables!", 3022 result = tmp_result); 3023 } 3024 3025 if (hwmgr->not_vf || hwmgr->pp_one_vf) { 3026 tmp_result = vega10_init_smc_table(hwmgr); 3027 PP_ASSERT_WITH_CODE(!tmp_result, 3028 "Failed to initialize SMC table!", 3029 result = tmp_result); 3030 } 3031 3032 if (hwmgr->not_vf) { 3033 if (PP_CAP(PHM_PlatformCaps_ThermalController)) { 3034 tmp_result = vega10_enable_thermal_protection(hwmgr); 3035 PP_ASSERT_WITH_CODE(!tmp_result, 3036 "Failed to enable thermal protection!", 3037 result = tmp_result); 3038 } 3039 3040 tmp_result = vega10_enable_vrhot_feature(hwmgr); 3041 PP_ASSERT_WITH_CODE(!tmp_result, 3042 "Failed to enable VR hot feature!", 3043 result = tmp_result); 3044 3045 tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); 3046 PP_ASSERT_WITH_CODE(!tmp_result, 3047 "Failed to enable deep sleep master switch!", 3048 result = tmp_result); 3049 } 3050 3051 if (hwmgr->not_vf) { 3052 tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); 3053 PP_ASSERT_WITH_CODE(!tmp_result, 3054 "Failed to start DPM!", result = tmp_result); 3055 } 3056 3057 if (hwmgr->not_vf) { 3058 /* enable didt, do not abort if failed didt */ 3059 tmp_result = vega10_enable_didt_config(hwmgr); 3060 PP_ASSERT(!tmp_result, 3061 "Failed to enable didt config!"); 3062 } 3063 3064 tmp_result = vega10_enable_power_containment(hwmgr); 3065 PP_ASSERT_WITH_CODE(!tmp_result, 3066 "Failed to enable power containment!", 3067 result = tmp_result); 3068 3069 if (hwmgr->not_vf) { 3070 tmp_result = vega10_power_control_set_level(hwmgr); 3071 PP_ASSERT_WITH_CODE(!tmp_result, 3072 "Failed to power control set level!", 3073 result = tmp_result); 3074 3075 tmp_result = vega10_enable_ulv(hwmgr); 3076 PP_ASSERT_WITH_CODE(!tmp_result, 3077 "Failed to enable ULV!", 3078 result = tmp_result); 3079 } 3080 3081 return result; 3082 } 3083 3084 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) 3085 { 3086 return sizeof(struct vega10_power_state); 3087 } 3088 3089 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, 3090 void *state, struct pp_power_state *power_state, 3091 void *pp_table, uint32_t classification_flag) 3092 { 3093 ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; 3094 struct vega10_power_state *vega10_power_state = 3095 cast_phw_vega10_power_state(&(power_state->hardware)); 3096 struct vega10_performance_level *performance_level; 3097 ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; 3098 ATOM_Vega10_POWERPLAYTABLE *powerplay_table = 3099 (ATOM_Vega10_POWERPLAYTABLE *)pp_table; 3100 ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = 3101 (ATOM_Vega10_SOCCLK_Dependency_Table *) 3102 (((unsigned long)powerplay_table) + 3103 le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); 3104 ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = 3105 (ATOM_Vega10_GFXCLK_Dependency_Table *) 3106 (((unsigned long)powerplay_table) + 3107 le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); 3108 ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = 3109 (ATOM_Vega10_MCLK_Dependency_Table *) 3110 (((unsigned long)powerplay_table) + 3111 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3112 3113 3114 /* The following fields are not initialized here: 3115 * id orderedList allStatesList 3116 */ 3117 power_state->classification.ui_label = 3118 (le16_to_cpu(state_entry->usClassification) & 3119 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3120 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3121 power_state->classification.flags = classification_flag; 3122 /* NOTE: There is a classification2 flag in BIOS 3123 * that is not being used right now 3124 */ 3125 power_state->classification.temporary_state = false; 3126 power_state->classification.to_be_deleted = false; 3127 3128 power_state->validation.disallowOnDC = 3129 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3130 ATOM_Vega10_DISALLOW_ON_DC) != 0); 3131 3132 power_state->display.disableFrameModulation = false; 3133 power_state->display.limitRefreshrate = false; 3134 power_state->display.enableVariBright = 3135 ((le32_to_cpu(state_entry->ulCapsAndSettings) & 3136 ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); 3137 3138 power_state->validation.supportedPowerLevels = 0; 3139 power_state->uvd_clocks.VCLK = 0; 3140 power_state->uvd_clocks.DCLK = 0; 3141 power_state->temperatures.min = 0; 3142 power_state->temperatures.max = 0; 3143 3144 performance_level = &(vega10_power_state->performance_levels 3145 [vega10_power_state->performance_level_count++]); 3146 3147 PP_ASSERT_WITH_CODE( 3148 (vega10_power_state->performance_level_count < 3149 NUM_GFXCLK_DPM_LEVELS), 3150 "Performance levels exceeds SMC limit!", 3151 return -1); 3152 3153 PP_ASSERT_WITH_CODE( 3154 (vega10_power_state->performance_level_count <= 3155 hwmgr->platform_descriptor. 3156 hardwareActivityPerformanceLevels), 3157 "Performance levels exceeds Driver limit!", 3158 return -1); 3159 3160 /* Performance levels are arranged from low to high. */ 3161 performance_level->soc_clock = socclk_dep_table->entries 3162 [state_entry->ucSocClockIndexLow].ulClk; 3163 performance_level->gfx_clock = gfxclk_dep_table->entries 3164 [state_entry->ucGfxClockIndexLow].ulClk; 3165 performance_level->mem_clock = mclk_dep_table->entries 3166 [state_entry->ucMemClockIndexLow].ulMemClk; 3167 3168 performance_level = &(vega10_power_state->performance_levels 3169 [vega10_power_state->performance_level_count++]); 3170 performance_level->soc_clock = socclk_dep_table->entries 3171 [state_entry->ucSocClockIndexHigh].ulClk; 3172 if (gfxclk_dep_table->ucRevId == 0) { 3173 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 3174 * to level-4 due to the limited 110w-power 3175 */ 3176 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3177 performance_level->gfx_clock = 3178 gfxclk_dep_table->entries[4].ulClk; 3179 else 3180 performance_level->gfx_clock = gfxclk_dep_table->entries 3181 [state_entry->ucGfxClockIndexHigh].ulClk; 3182 } else if (gfxclk_dep_table->ucRevId == 1) { 3183 patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; 3184 if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0)) 3185 performance_level->gfx_clock = patom_record_V2[4].ulClk; 3186 else 3187 performance_level->gfx_clock = 3188 patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; 3189 } 3190 3191 performance_level->mem_clock = mclk_dep_table->entries 3192 [state_entry->ucMemClockIndexHigh].ulMemClk; 3193 return 0; 3194 } 3195 3196 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3197 unsigned long entry_index, struct pp_power_state *state) 3198 { 3199 int result; 3200 struct vega10_power_state *ps; 3201 3202 state->hardware.magic = PhwVega10_Magic; 3203 3204 ps = cast_phw_vega10_power_state(&state->hardware); 3205 3206 result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, 3207 vega10_get_pp_table_entry_callback_func); 3208 if (result) 3209 return result; 3210 3211 /* 3212 * This is the earliest time we have all the dependency table 3213 * and the VBIOS boot state 3214 */ 3215 /* set DC compatible flag if this state supports DC */ 3216 if (!state->validation.disallowOnDC) 3217 ps->dc_compatible = true; 3218 3219 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3220 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3221 3222 return 0; 3223 } 3224 3225 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, 3226 struct pp_hw_power_state *hw_ps) 3227 { 3228 return 0; 3229 } 3230 3231 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3232 struct pp_power_state *request_ps, 3233 const struct pp_power_state *current_ps) 3234 { 3235 struct amdgpu_device *adev = hwmgr->adev; 3236 struct vega10_power_state *vega10_ps = 3237 cast_phw_vega10_power_state(&request_ps->hardware); 3238 uint32_t sclk; 3239 uint32_t mclk; 3240 struct PP_Clocks minimum_clocks = {0}; 3241 bool disable_mclk_switching; 3242 bool disable_mclk_switching_for_frame_lock; 3243 bool disable_mclk_switching_for_vr; 3244 bool force_mclk_high; 3245 const struct phm_clock_and_voltage_limits *max_limits; 3246 uint32_t i; 3247 struct vega10_hwmgr *data = hwmgr->backend; 3248 struct phm_ppt_v2_information *table_info = 3249 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3250 int32_t count; 3251 uint32_t stable_pstate_sclk_dpm_percentage; 3252 uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3253 uint32_t latency; 3254 3255 data->battery_state = (PP_StateUILabel_Battery == 3256 request_ps->classification.ui_label); 3257 3258 if (vega10_ps->performance_level_count != 2) 3259 pr_info("VI should always have 2 performance levels"); 3260 3261 max_limits = adev->pm.ac_power ? 3262 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3263 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3264 3265 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3266 if (!adev->pm.ac_power) { 3267 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3268 if (vega10_ps->performance_levels[i].mem_clock > 3269 max_limits->mclk) 3270 vega10_ps->performance_levels[i].mem_clock = 3271 max_limits->mclk; 3272 if (vega10_ps->performance_levels[i].gfx_clock > 3273 max_limits->sclk) 3274 vega10_ps->performance_levels[i].gfx_clock = 3275 max_limits->sclk; 3276 } 3277 } 3278 3279 /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ 3280 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3281 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3282 3283 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3284 stable_pstate_sclk_dpm_percentage = 3285 data->registry_data.stable_pstate_sclk_dpm_percentage; 3286 PP_ASSERT_WITH_CODE( 3287 data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && 3288 data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, 3289 "percent sclk value must range from 1% to 100%, setting default value", 3290 stable_pstate_sclk_dpm_percentage = 75); 3291 3292 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3293 stable_pstate_sclk = (max_limits->sclk * 3294 stable_pstate_sclk_dpm_percentage) / 100; 3295 3296 for (count = table_info->vdd_dep_on_sclk->count - 1; 3297 count >= 0; count--) { 3298 if (stable_pstate_sclk >= 3299 table_info->vdd_dep_on_sclk->entries[count].clk) { 3300 stable_pstate_sclk = 3301 table_info->vdd_dep_on_sclk->entries[count].clk; 3302 break; 3303 } 3304 } 3305 3306 if (count < 0) 3307 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3308 3309 stable_pstate_mclk = max_limits->mclk; 3310 3311 minimum_clocks.engineClock = stable_pstate_sclk; 3312 minimum_clocks.memoryClock = stable_pstate_mclk; 3313 } 3314 3315 disable_mclk_switching_for_frame_lock = 3316 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3317 disable_mclk_switching_for_vr = 3318 PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); 3319 force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); 3320 3321 if (hwmgr->display_config->num_display == 0) 3322 disable_mclk_switching = false; 3323 else 3324 disable_mclk_switching = ((1 < hwmgr->display_config->num_display) && 3325 !hwmgr->display_config->multi_monitor_in_sync) || 3326 disable_mclk_switching_for_frame_lock || 3327 disable_mclk_switching_for_vr || 3328 force_mclk_high; 3329 3330 sclk = vega10_ps->performance_levels[0].gfx_clock; 3331 mclk = vega10_ps->performance_levels[0].mem_clock; 3332 3333 if (sclk < minimum_clocks.engineClock) 3334 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3335 max_limits->sclk : minimum_clocks.engineClock; 3336 3337 if (mclk < minimum_clocks.memoryClock) 3338 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3339 max_limits->mclk : minimum_clocks.memoryClock; 3340 3341 vega10_ps->performance_levels[0].gfx_clock = sclk; 3342 vega10_ps->performance_levels[0].mem_clock = mclk; 3343 3344 if (vega10_ps->performance_levels[1].gfx_clock < 3345 vega10_ps->performance_levels[0].gfx_clock) 3346 vega10_ps->performance_levels[0].gfx_clock = 3347 vega10_ps->performance_levels[1].gfx_clock; 3348 3349 if (disable_mclk_switching) { 3350 /* Set Mclk the max of level 0 and level 1 */ 3351 if (mclk < vega10_ps->performance_levels[1].mem_clock) 3352 mclk = vega10_ps->performance_levels[1].mem_clock; 3353 3354 /* Find the lowest MCLK frequency that is within 3355 * the tolerable latency defined in DAL 3356 */ 3357 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3358 for (i = 0; i < data->mclk_latency_table.count; i++) { 3359 if ((data->mclk_latency_table.entries[i].latency <= latency) && 3360 (data->mclk_latency_table.entries[i].frequency >= 3361 vega10_ps->performance_levels[0].mem_clock) && 3362 (data->mclk_latency_table.entries[i].frequency <= 3363 vega10_ps->performance_levels[1].mem_clock)) 3364 mclk = data->mclk_latency_table.entries[i].frequency; 3365 } 3366 vega10_ps->performance_levels[0].mem_clock = mclk; 3367 } else { 3368 if (vega10_ps->performance_levels[1].mem_clock < 3369 vega10_ps->performance_levels[0].mem_clock) 3370 vega10_ps->performance_levels[0].mem_clock = 3371 vega10_ps->performance_levels[1].mem_clock; 3372 } 3373 3374 if (PP_CAP(PHM_PlatformCaps_StablePState)) { 3375 for (i = 0; i < vega10_ps->performance_level_count; i++) { 3376 vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; 3377 vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; 3378 } 3379 } 3380 3381 return 0; 3382 } 3383 3384 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 3385 { 3386 struct vega10_hwmgr *data = hwmgr->backend; 3387 const struct phm_set_power_state_input *states = 3388 (const struct phm_set_power_state_input *)input; 3389 const struct vega10_power_state *vega10_ps = 3390 cast_const_phw_vega10_power_state(states->pnew_state); 3391 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 3392 uint32_t sclk = vega10_ps->performance_levels 3393 [vega10_ps->performance_level_count - 1].gfx_clock; 3394 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 3395 uint32_t mclk = vega10_ps->performance_levels 3396 [vega10_ps->performance_level_count - 1].mem_clock; 3397 uint32_t i; 3398 3399 for (i = 0; i < sclk_table->count; i++) { 3400 if (sclk == sclk_table->dpm_levels[i].value) 3401 break; 3402 } 3403 3404 if (i >= sclk_table->count) { 3405 if (sclk > sclk_table->dpm_levels[i-1].value) { 3406 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 3407 sclk_table->dpm_levels[i-1].value = sclk; 3408 } 3409 } 3410 3411 for (i = 0; i < mclk_table->count; i++) { 3412 if (mclk == mclk_table->dpm_levels[i].value) 3413 break; 3414 } 3415 3416 if (i >= mclk_table->count) { 3417 if (mclk > mclk_table->dpm_levels[i-1].value) { 3418 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 3419 mclk_table->dpm_levels[i-1].value = mclk; 3420 } 3421 } 3422 3423 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 3424 data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; 3425 3426 return 0; 3427 } 3428 3429 static int vega10_populate_and_upload_sclk_mclk_dpm_levels( 3430 struct pp_hwmgr *hwmgr, const void *input) 3431 { 3432 int result = 0; 3433 struct vega10_hwmgr *data = hwmgr->backend; 3434 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3435 struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table; 3436 struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk; 3437 int count; 3438 3439 if (!data->need_update_dpm_table) 3440 return 0; 3441 3442 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 3443 for (count = 0; count < dpm_table->gfx_table.count; count++) 3444 dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3445 } 3446 3447 odn_clk_table = &odn_table->vdd_dep_on_mclk; 3448 if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 3449 for (count = 0; count < dpm_table->mem_table.count; count++) 3450 dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk; 3451 } 3452 3453 if (data->need_update_dpm_table & 3454 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) { 3455 result = vega10_populate_all_graphic_levels(hwmgr); 3456 PP_ASSERT_WITH_CODE((0 == result), 3457 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 3458 return result); 3459 } 3460 3461 if (data->need_update_dpm_table & 3462 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { 3463 result = vega10_populate_all_memory_levels(hwmgr); 3464 PP_ASSERT_WITH_CODE((0 == result), 3465 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 3466 return result); 3467 } 3468 3469 vega10_populate_vddc_soc_levels(hwmgr); 3470 3471 return result; 3472 } 3473 3474 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 3475 struct vega10_single_dpm_table *dpm_table, 3476 uint32_t low_limit, uint32_t high_limit) 3477 { 3478 uint32_t i; 3479 3480 for (i = 0; i < dpm_table->count; i++) { 3481 if ((dpm_table->dpm_levels[i].value < low_limit) || 3482 (dpm_table->dpm_levels[i].value > high_limit)) 3483 dpm_table->dpm_levels[i].enabled = false; 3484 else 3485 dpm_table->dpm_levels[i].enabled = true; 3486 } 3487 return 0; 3488 } 3489 3490 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, 3491 struct vega10_single_dpm_table *dpm_table, 3492 uint32_t low_limit, uint32_t high_limit, 3493 uint32_t disable_dpm_mask) 3494 { 3495 uint32_t i; 3496 3497 for (i = 0; i < dpm_table->count; i++) { 3498 if ((dpm_table->dpm_levels[i].value < low_limit) || 3499 (dpm_table->dpm_levels[i].value > high_limit)) 3500 dpm_table->dpm_levels[i].enabled = false; 3501 else if (!((1 << i) & disable_dpm_mask)) 3502 dpm_table->dpm_levels[i].enabled = false; 3503 else 3504 dpm_table->dpm_levels[i].enabled = true; 3505 } 3506 return 0; 3507 } 3508 3509 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, 3510 const struct vega10_power_state *vega10_ps) 3511 { 3512 struct vega10_hwmgr *data = hwmgr->backend; 3513 uint32_t high_limit_count; 3514 3515 PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), 3516 "power state did not have any performance level", 3517 return -1); 3518 3519 high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; 3520 3521 vega10_trim_single_dpm_states(hwmgr, 3522 &(data->dpm_table.soc_table), 3523 vega10_ps->performance_levels[0].soc_clock, 3524 vega10_ps->performance_levels[high_limit_count].soc_clock); 3525 3526 vega10_trim_single_dpm_states_with_mask(hwmgr, 3527 &(data->dpm_table.gfx_table), 3528 vega10_ps->performance_levels[0].gfx_clock, 3529 vega10_ps->performance_levels[high_limit_count].gfx_clock, 3530 data->disable_dpm_mask); 3531 3532 vega10_trim_single_dpm_states(hwmgr, 3533 &(data->dpm_table.mem_table), 3534 vega10_ps->performance_levels[0].mem_clock, 3535 vega10_ps->performance_levels[high_limit_count].mem_clock); 3536 3537 return 0; 3538 } 3539 3540 static uint32_t vega10_find_lowest_dpm_level( 3541 struct vega10_single_dpm_table *table) 3542 { 3543 uint32_t i; 3544 3545 for (i = 0; i < table->count; i++) { 3546 if (table->dpm_levels[i].enabled) 3547 break; 3548 } 3549 3550 return i; 3551 } 3552 3553 static uint32_t vega10_find_highest_dpm_level( 3554 struct vega10_single_dpm_table *table) 3555 { 3556 uint32_t i = 0; 3557 3558 if (table->count <= MAX_REGULAR_DPM_NUMBER) { 3559 for (i = table->count; i > 0; i--) { 3560 if (table->dpm_levels[i - 1].enabled) 3561 return i - 1; 3562 } 3563 } else { 3564 pr_info("DPM Table Has Too Many Entries!"); 3565 return MAX_REGULAR_DPM_NUMBER - 1; 3566 } 3567 3568 return i; 3569 } 3570 3571 static void vega10_apply_dal_minimum_voltage_request( 3572 struct pp_hwmgr *hwmgr) 3573 { 3574 return; 3575 } 3576 3577 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) 3578 { 3579 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; 3580 struct phm_ppt_v2_information *table_info = 3581 (struct phm_ppt_v2_information *)(hwmgr->pptable); 3582 3583 vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; 3584 3585 return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; 3586 } 3587 3588 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) 3589 { 3590 struct vega10_hwmgr *data = hwmgr->backend; 3591 uint32_t socclk_idx; 3592 3593 vega10_apply_dal_minimum_voltage_request(hwmgr); 3594 3595 if (!data->registry_data.sclk_dpm_key_disabled) { 3596 if (data->smc_state_table.gfx_boot_level != 3597 data->dpm_table.gfx_table.dpm_state.soft_min_level) { 3598 smum_send_msg_to_smc_with_parameter(hwmgr, 3599 PPSMC_MSG_SetSoftMinGfxclkByIndex, 3600 data->smc_state_table.gfx_boot_level, 3601 NULL); 3602 3603 data->dpm_table.gfx_table.dpm_state.soft_min_level = 3604 data->smc_state_table.gfx_boot_level; 3605 } 3606 } 3607 3608 if (!data->registry_data.mclk_dpm_key_disabled) { 3609 if (data->smc_state_table.mem_boot_level != 3610 data->dpm_table.mem_table.dpm_state.soft_min_level) { 3611 if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) 3612 && hwmgr->not_vf) { 3613 socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); 3614 smum_send_msg_to_smc_with_parameter(hwmgr, 3615 PPSMC_MSG_SetSoftMinSocclkByIndex, 3616 socclk_idx, 3617 NULL); 3618 } else { 3619 smum_send_msg_to_smc_with_parameter(hwmgr, 3620 PPSMC_MSG_SetSoftMinUclkByIndex, 3621 data->smc_state_table.mem_boot_level, 3622 NULL); 3623 } 3624 data->dpm_table.mem_table.dpm_state.soft_min_level = 3625 data->smc_state_table.mem_boot_level; 3626 } 3627 } 3628 3629 if (!hwmgr->not_vf) 3630 return 0; 3631 3632 if (!data->registry_data.socclk_dpm_key_disabled) { 3633 if (data->smc_state_table.soc_boot_level != 3634 data->dpm_table.soc_table.dpm_state.soft_min_level) { 3635 smum_send_msg_to_smc_with_parameter(hwmgr, 3636 PPSMC_MSG_SetSoftMinSocclkByIndex, 3637 data->smc_state_table.soc_boot_level, 3638 NULL); 3639 data->dpm_table.soc_table.dpm_state.soft_min_level = 3640 data->smc_state_table.soc_boot_level; 3641 } 3642 } 3643 3644 return 0; 3645 } 3646 3647 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) 3648 { 3649 struct vega10_hwmgr *data = hwmgr->backend; 3650 3651 vega10_apply_dal_minimum_voltage_request(hwmgr); 3652 3653 if (!data->registry_data.sclk_dpm_key_disabled) { 3654 if (data->smc_state_table.gfx_max_level != 3655 data->dpm_table.gfx_table.dpm_state.soft_max_level) { 3656 smum_send_msg_to_smc_with_parameter(hwmgr, 3657 PPSMC_MSG_SetSoftMaxGfxclkByIndex, 3658 data->smc_state_table.gfx_max_level, 3659 NULL); 3660 data->dpm_table.gfx_table.dpm_state.soft_max_level = 3661 data->smc_state_table.gfx_max_level; 3662 } 3663 } 3664 3665 if (!data->registry_data.mclk_dpm_key_disabled) { 3666 if (data->smc_state_table.mem_max_level != 3667 data->dpm_table.mem_table.dpm_state.soft_max_level) { 3668 smum_send_msg_to_smc_with_parameter(hwmgr, 3669 PPSMC_MSG_SetSoftMaxUclkByIndex, 3670 data->smc_state_table.mem_max_level, 3671 NULL); 3672 data->dpm_table.mem_table.dpm_state.soft_max_level = 3673 data->smc_state_table.mem_max_level; 3674 } 3675 } 3676 3677 if (!hwmgr->not_vf) 3678 return 0; 3679 3680 if (!data->registry_data.socclk_dpm_key_disabled) { 3681 if (data->smc_state_table.soc_max_level != 3682 data->dpm_table.soc_table.dpm_state.soft_max_level) { 3683 smum_send_msg_to_smc_with_parameter(hwmgr, 3684 PPSMC_MSG_SetSoftMaxSocclkByIndex, 3685 data->smc_state_table.soc_max_level, 3686 NULL); 3687 data->dpm_table.soc_table.dpm_state.soft_max_level = 3688 data->smc_state_table.soc_max_level; 3689 } 3690 } 3691 3692 return 0; 3693 } 3694 3695 static int vega10_generate_dpm_level_enable_mask( 3696 struct pp_hwmgr *hwmgr, const void *input) 3697 { 3698 struct vega10_hwmgr *data = hwmgr->backend; 3699 const struct phm_set_power_state_input *states = 3700 (const struct phm_set_power_state_input *)input; 3701 const struct vega10_power_state *vega10_ps = 3702 cast_const_phw_vega10_power_state(states->pnew_state); 3703 int i; 3704 3705 PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), 3706 "Attempt to Trim DPM States Failed!", 3707 return -1); 3708 3709 data->smc_state_table.gfx_boot_level = 3710 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 3711 data->smc_state_table.gfx_max_level = 3712 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 3713 data->smc_state_table.mem_boot_level = 3714 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 3715 data->smc_state_table.mem_max_level = 3716 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 3717 data->smc_state_table.soc_boot_level = 3718 vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table)); 3719 data->smc_state_table.soc_max_level = 3720 vega10_find_highest_dpm_level(&(data->dpm_table.soc_table)); 3721 3722 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 3723 "Attempt to upload DPM Bootup Levels Failed!", 3724 return -1); 3725 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 3726 "Attempt to upload DPM Max Levels Failed!", 3727 return -1); 3728 for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) 3729 data->dpm_table.gfx_table.dpm_levels[i].enabled = true; 3730 3731 3732 for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) 3733 data->dpm_table.mem_table.dpm_levels[i].enabled = true; 3734 3735 for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++) 3736 data->dpm_table.soc_table.dpm_levels[i].enabled = true; 3737 3738 return 0; 3739 } 3740 3741 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) 3742 { 3743 struct vega10_hwmgr *data = hwmgr->backend; 3744 3745 if (data->smu_features[GNLD_DPM_VCE].supported) { 3746 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 3747 enable, 3748 data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), 3749 "Attempt to Enable/Disable DPM VCE Failed!", 3750 return -1); 3751 data->smu_features[GNLD_DPM_VCE].enabled = enable; 3752 } 3753 3754 return 0; 3755 } 3756 3757 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) 3758 { 3759 struct vega10_hwmgr *data = hwmgr->backend; 3760 uint32_t low_sclk_interrupt_threshold = 0; 3761 3762 if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && 3763 (data->low_sclk_interrupt_threshold != 0)) { 3764 low_sclk_interrupt_threshold = 3765 data->low_sclk_interrupt_threshold; 3766 3767 data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = 3768 cpu_to_le32(low_sclk_interrupt_threshold); 3769 3770 /* This message will also enable SmcToHost Interrupt */ 3771 smum_send_msg_to_smc_with_parameter(hwmgr, 3772 PPSMC_MSG_SetLowGfxclkInterruptThreshold, 3773 (uint32_t)low_sclk_interrupt_threshold, 3774 NULL); 3775 } 3776 3777 return 0; 3778 } 3779 3780 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, 3781 const void *input) 3782 { 3783 int tmp_result, result = 0; 3784 struct vega10_hwmgr *data = hwmgr->backend; 3785 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 3786 3787 tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 3788 PP_ASSERT_WITH_CODE(!tmp_result, 3789 "Failed to find DPM states clocks in DPM table!", 3790 result = tmp_result); 3791 3792 tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 3793 PP_ASSERT_WITH_CODE(!tmp_result, 3794 "Failed to populate and upload SCLK MCLK DPM levels!", 3795 result = tmp_result); 3796 3797 tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); 3798 PP_ASSERT_WITH_CODE(!tmp_result, 3799 "Failed to generate DPM level enabled mask!", 3800 result = tmp_result); 3801 3802 tmp_result = vega10_update_sclk_threshold(hwmgr); 3803 PP_ASSERT_WITH_CODE(!tmp_result, 3804 "Failed to update SCLK threshold!", 3805 result = tmp_result); 3806 3807 result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false); 3808 PP_ASSERT_WITH_CODE(!result, 3809 "Failed to upload PPtable!", return result); 3810 3811 /* 3812 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 3813 * That effectively disables AVFS feature. 3814 */ 3815 if(hwmgr->hardcode_pp_table != NULL) 3816 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 3817 3818 vega10_update_avfs(hwmgr); 3819 3820 /* 3821 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC. 3822 * That will help to keep AVFS disabled. 3823 */ 3824 data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 3825 3826 return 0; 3827 } 3828 3829 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3830 { 3831 struct pp_power_state *ps; 3832 struct vega10_power_state *vega10_ps; 3833 3834 if (hwmgr == NULL) 3835 return -EINVAL; 3836 3837 ps = hwmgr->request_ps; 3838 3839 if (ps == NULL) 3840 return -EINVAL; 3841 3842 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3843 3844 if (low) 3845 return vega10_ps->performance_levels[0].gfx_clock; 3846 else 3847 return vega10_ps->performance_levels 3848 [vega10_ps->performance_level_count - 1].gfx_clock; 3849 } 3850 3851 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3852 { 3853 struct pp_power_state *ps; 3854 struct vega10_power_state *vega10_ps; 3855 3856 if (hwmgr == NULL) 3857 return -EINVAL; 3858 3859 ps = hwmgr->request_ps; 3860 3861 if (ps == NULL) 3862 return -EINVAL; 3863 3864 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 3865 3866 if (low) 3867 return vega10_ps->performance_levels[0].mem_clock; 3868 else 3869 return vega10_ps->performance_levels 3870 [vega10_ps->performance_level_count-1].mem_clock; 3871 } 3872 3873 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, 3874 uint32_t *query) 3875 { 3876 uint32_t value; 3877 3878 if (!query) 3879 return -EINVAL; 3880 3881 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value); 3882 3883 /* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */ 3884 *query = value << 8; 3885 3886 return 0; 3887 } 3888 3889 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3890 void *value, int *size) 3891 { 3892 struct amdgpu_device *adev = hwmgr->adev; 3893 uint32_t sclk_mhz, mclk_idx, activity_percent = 0; 3894 struct vega10_hwmgr *data = hwmgr->backend; 3895 struct vega10_dpm_table *dpm_table = &data->dpm_table; 3896 int ret = 0; 3897 uint32_t val_vid; 3898 3899 switch (idx) { 3900 case AMDGPU_PP_SENSOR_GFX_SCLK: 3901 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz); 3902 *((uint32_t *)value) = sclk_mhz * 100; 3903 break; 3904 case AMDGPU_PP_SENSOR_GFX_MCLK: 3905 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx); 3906 if (mclk_idx < dpm_table->mem_table.count) { 3907 *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; 3908 *size = 4; 3909 } else { 3910 ret = -EINVAL; 3911 } 3912 break; 3913 case AMDGPU_PP_SENSOR_GPU_LOAD: 3914 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0, 3915 &activity_percent); 3916 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 3917 *size = 4; 3918 break; 3919 case AMDGPU_PP_SENSOR_GPU_TEMP: 3920 *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); 3921 *size = 4; 3922 break; 3923 case AMDGPU_PP_SENSOR_HOTSPOT_TEMP: 3924 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value); 3925 *((uint32_t *)value) = *((uint32_t *)value) * 3926 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3927 *size = 4; 3928 break; 3929 case AMDGPU_PP_SENSOR_MEM_TEMP: 3930 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value); 3931 *((uint32_t *)value) = *((uint32_t *)value) * 3932 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 3933 *size = 4; 3934 break; 3935 case AMDGPU_PP_SENSOR_UVD_POWER: 3936 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 3937 *size = 4; 3938 break; 3939 case AMDGPU_PP_SENSOR_VCE_POWER: 3940 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 3941 *size = 4; 3942 break; 3943 case AMDGPU_PP_SENSOR_GPU_POWER: 3944 ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value); 3945 break; 3946 case AMDGPU_PP_SENSOR_VDDGFX: 3947 val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) & 3948 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >> 3949 SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT; 3950 *((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid); 3951 return 0; 3952 case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK: 3953 ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value); 3954 if (!ret) 3955 *size = 8; 3956 break; 3957 default: 3958 ret = -EOPNOTSUPP; 3959 break; 3960 } 3961 3962 return ret; 3963 } 3964 3965 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, 3966 bool has_disp) 3967 { 3968 smum_send_msg_to_smc_with_parameter(hwmgr, 3969 PPSMC_MSG_SetUclkFastSwitch, 3970 has_disp ? 1 : 0, 3971 NULL); 3972 } 3973 3974 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, 3975 struct pp_display_clock_request *clock_req) 3976 { 3977 int result = 0; 3978 enum amd_pp_clock_type clk_type = clock_req->clock_type; 3979 uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; 3980 DSPCLK_e clk_select = 0; 3981 uint32_t clk_request = 0; 3982 3983 switch (clk_type) { 3984 case amd_pp_dcef_clock: 3985 clk_select = DSPCLK_DCEFCLK; 3986 break; 3987 case amd_pp_disp_clock: 3988 clk_select = DSPCLK_DISPCLK; 3989 break; 3990 case amd_pp_pixel_clock: 3991 clk_select = DSPCLK_PIXCLK; 3992 break; 3993 case amd_pp_phy_clock: 3994 clk_select = DSPCLK_PHYCLK; 3995 break; 3996 default: 3997 pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); 3998 result = -1; 3999 break; 4000 } 4001 4002 if (!result) { 4003 clk_request = (clk_freq << 16) | clk_select; 4004 smum_send_msg_to_smc_with_parameter(hwmgr, 4005 PPSMC_MSG_RequestDisplayClockByFreq, 4006 clk_request, 4007 NULL); 4008 } 4009 4010 return result; 4011 } 4012 4013 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, 4014 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, 4015 uint32_t frequency) 4016 { 4017 uint8_t count; 4018 uint8_t i; 4019 4020 if (mclk_table == NULL || mclk_table->count == 0) 4021 return 0; 4022 4023 count = (uint8_t)(mclk_table->count); 4024 4025 for(i = 0; i < count; i++) { 4026 if(mclk_table->entries[i].clk >= frequency) 4027 return i; 4028 } 4029 4030 return i-1; 4031 } 4032 4033 static int vega10_notify_smc_display_config_after_ps_adjustment( 4034 struct pp_hwmgr *hwmgr) 4035 { 4036 struct vega10_hwmgr *data = hwmgr->backend; 4037 struct vega10_single_dpm_table *dpm_table = 4038 &data->dpm_table.dcef_table; 4039 struct phm_ppt_v2_information *table_info = 4040 (struct phm_ppt_v2_information *)hwmgr->pptable; 4041 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; 4042 uint32_t idx; 4043 struct PP_Clocks min_clocks = {0}; 4044 uint32_t i; 4045 struct pp_display_clock_request clock_req; 4046 4047 if ((hwmgr->display_config->num_display > 1) && 4048 !hwmgr->display_config->multi_monitor_in_sync && 4049 !hwmgr->display_config->nb_pstate_switch_disable) 4050 vega10_notify_smc_display_change(hwmgr, false); 4051 else 4052 vega10_notify_smc_display_change(hwmgr, true); 4053 4054 min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk; 4055 min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk; 4056 min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 4057 4058 for (i = 0; i < dpm_table->count; i++) { 4059 if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) 4060 break; 4061 } 4062 4063 if (i < dpm_table->count) { 4064 clock_req.clock_type = amd_pp_dcef_clock; 4065 clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10; 4066 if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { 4067 smum_send_msg_to_smc_with_parameter( 4068 hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, 4069 min_clocks.dcefClockInSR / 100, 4070 NULL); 4071 } else { 4072 pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); 4073 } 4074 } else { 4075 pr_debug("Cannot find requested DCEFCLK!"); 4076 } 4077 4078 if (min_clocks.memoryClock != 0) { 4079 idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); 4080 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx, 4081 NULL); 4082 data->dpm_table.mem_table.dpm_state.soft_min_level= idx; 4083 } 4084 4085 return 0; 4086 } 4087 4088 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) 4089 { 4090 struct vega10_hwmgr *data = hwmgr->backend; 4091 4092 data->smc_state_table.gfx_boot_level = 4093 data->smc_state_table.gfx_max_level = 4094 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4095 data->smc_state_table.mem_boot_level = 4096 data->smc_state_table.mem_max_level = 4097 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4098 4099 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4100 "Failed to upload boot level to highest!", 4101 return -1); 4102 4103 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4104 "Failed to upload dpm max level to highest!", 4105 return -1); 4106 4107 return 0; 4108 } 4109 4110 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) 4111 { 4112 struct vega10_hwmgr *data = hwmgr->backend; 4113 4114 data->smc_state_table.gfx_boot_level = 4115 data->smc_state_table.gfx_max_level = 4116 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4117 data->smc_state_table.mem_boot_level = 4118 data->smc_state_table.mem_max_level = 4119 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4120 4121 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4122 "Failed to upload boot level to highest!", 4123 return -1); 4124 4125 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4126 "Failed to upload dpm max level to highest!", 4127 return -1); 4128 4129 return 0; 4130 4131 } 4132 4133 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 4134 { 4135 struct vega10_hwmgr *data = hwmgr->backend; 4136 4137 data->smc_state_table.gfx_boot_level = 4138 vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); 4139 data->smc_state_table.gfx_max_level = 4140 vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); 4141 data->smc_state_table.mem_boot_level = 4142 vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); 4143 data->smc_state_table.mem_max_level = 4144 vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); 4145 4146 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4147 "Failed to upload DPM Bootup Levels!", 4148 return -1); 4149 4150 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4151 "Failed to upload DPM Max Levels!", 4152 return -1); 4153 return 0; 4154 } 4155 4156 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 4157 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) 4158 { 4159 struct phm_ppt_v2_information *table_info = 4160 (struct phm_ppt_v2_information *)(hwmgr->pptable); 4161 4162 if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && 4163 table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && 4164 table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { 4165 *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; 4166 *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; 4167 *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; 4168 hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk; 4169 hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk; 4170 } 4171 4172 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 4173 *sclk_mask = 0; 4174 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { 4175 *mclk_mask = 0; 4176 } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { 4177 /* under vega10 pp one vf mode, the gfx clk dpm need be lower 4178 * to level-4 due to the limited power 4179 */ 4180 if (hwmgr->pp_one_vf) 4181 *sclk_mask = 4; 4182 else 4183 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 4184 *soc_mask = table_info->vdd_dep_on_socclk->count - 1; 4185 *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; 4186 } 4187 4188 return 0; 4189 } 4190 4191 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 4192 { 4193 if (!hwmgr->not_vf) 4194 return; 4195 4196 switch (mode) { 4197 case AMD_FAN_CTRL_NONE: 4198 vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 4199 break; 4200 case AMD_FAN_CTRL_MANUAL: 4201 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4202 vega10_fan_ctrl_stop_smc_fan_control(hwmgr); 4203 break; 4204 case AMD_FAN_CTRL_AUTO: 4205 if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) 4206 vega10_fan_ctrl_start_smc_fan_control(hwmgr); 4207 break; 4208 default: 4209 break; 4210 } 4211 } 4212 4213 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, 4214 enum pp_clock_type type, uint32_t mask) 4215 { 4216 struct vega10_hwmgr *data = hwmgr->backend; 4217 4218 switch (type) { 4219 case PP_SCLK: 4220 data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0; 4221 data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0; 4222 4223 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4224 "Failed to upload boot level to lowest!", 4225 return -EINVAL); 4226 4227 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4228 "Failed to upload dpm max level to highest!", 4229 return -EINVAL); 4230 break; 4231 4232 case PP_MCLK: 4233 data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0; 4234 data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0; 4235 4236 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4237 "Failed to upload boot level to lowest!", 4238 return -EINVAL); 4239 4240 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4241 "Failed to upload dpm max level to highest!", 4242 return -EINVAL); 4243 4244 break; 4245 4246 case PP_SOCCLK: 4247 data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0; 4248 data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0; 4249 4250 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), 4251 "Failed to upload boot level to lowest!", 4252 return -EINVAL); 4253 4254 PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), 4255 "Failed to upload dpm max level to highest!", 4256 return -EINVAL); 4257 4258 break; 4259 4260 case PP_DCEFCLK: 4261 pr_info("Setting DCEFCLK min/max dpm level is not supported!\n"); 4262 break; 4263 4264 case PP_PCIE: 4265 default: 4266 break; 4267 } 4268 4269 return 0; 4270 } 4271 4272 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, 4273 enum amd_dpm_forced_level level) 4274 { 4275 int ret = 0; 4276 uint32_t sclk_mask = 0; 4277 uint32_t mclk_mask = 0; 4278 uint32_t soc_mask = 0; 4279 4280 if (hwmgr->pstate_sclk == 0) 4281 vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4282 4283 switch (level) { 4284 case AMD_DPM_FORCED_LEVEL_HIGH: 4285 ret = vega10_force_dpm_highest(hwmgr); 4286 break; 4287 case AMD_DPM_FORCED_LEVEL_LOW: 4288 ret = vega10_force_dpm_lowest(hwmgr); 4289 break; 4290 case AMD_DPM_FORCED_LEVEL_AUTO: 4291 ret = vega10_unforce_dpm_levels(hwmgr); 4292 break; 4293 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 4294 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 4295 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 4296 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 4297 ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); 4298 if (ret) 4299 return ret; 4300 vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 4301 vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 4302 break; 4303 case AMD_DPM_FORCED_LEVEL_MANUAL: 4304 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 4305 default: 4306 break; 4307 } 4308 4309 if (!hwmgr->not_vf) 4310 return ret; 4311 4312 if (!ret) { 4313 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4314 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); 4315 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 4316 vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); 4317 } 4318 4319 return ret; 4320 } 4321 4322 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) 4323 { 4324 struct vega10_hwmgr *data = hwmgr->backend; 4325 4326 if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) 4327 return AMD_FAN_CTRL_MANUAL; 4328 else 4329 return AMD_FAN_CTRL_AUTO; 4330 } 4331 4332 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, 4333 struct amd_pp_simple_clock_info *info) 4334 { 4335 struct phm_ppt_v2_information *table_info = 4336 (struct phm_ppt_v2_information *)hwmgr->pptable; 4337 struct phm_clock_and_voltage_limits *max_limits = 4338 &table_info->max_clock_voltage_on_ac; 4339 4340 info->engine_max_clock = max_limits->sclk; 4341 info->memory_max_clock = max_limits->mclk; 4342 4343 return 0; 4344 } 4345 4346 static void vega10_get_sclks(struct pp_hwmgr *hwmgr, 4347 struct pp_clock_levels_with_latency *clocks) 4348 { 4349 struct phm_ppt_v2_information *table_info = 4350 (struct phm_ppt_v2_information *)hwmgr->pptable; 4351 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4352 table_info->vdd_dep_on_sclk; 4353 uint32_t i; 4354 4355 clocks->num_levels = 0; 4356 for (i = 0; i < dep_table->count; i++) { 4357 if (dep_table->entries[i].clk) { 4358 clocks->data[clocks->num_levels].clocks_in_khz = 4359 dep_table->entries[i].clk * 10; 4360 clocks->num_levels++; 4361 } 4362 } 4363 4364 } 4365 4366 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, 4367 struct pp_clock_levels_with_latency *clocks) 4368 { 4369 struct phm_ppt_v2_information *table_info = 4370 (struct phm_ppt_v2_information *)hwmgr->pptable; 4371 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4372 table_info->vdd_dep_on_mclk; 4373 struct vega10_hwmgr *data = hwmgr->backend; 4374 uint32_t j = 0; 4375 uint32_t i; 4376 4377 for (i = 0; i < dep_table->count; i++) { 4378 if (dep_table->entries[i].clk) { 4379 4380 clocks->data[j].clocks_in_khz = 4381 dep_table->entries[i].clk * 10; 4382 data->mclk_latency_table.entries[j].frequency = 4383 dep_table->entries[i].clk; 4384 clocks->data[j].latency_in_us = 4385 data->mclk_latency_table.entries[j].latency = 25; 4386 j++; 4387 } 4388 } 4389 clocks->num_levels = data->mclk_latency_table.count = j; 4390 } 4391 4392 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, 4393 struct pp_clock_levels_with_latency *clocks) 4394 { 4395 struct phm_ppt_v2_information *table_info = 4396 (struct phm_ppt_v2_information *)hwmgr->pptable; 4397 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4398 table_info->vdd_dep_on_dcefclk; 4399 uint32_t i; 4400 4401 for (i = 0; i < dep_table->count; i++) { 4402 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4403 clocks->data[i].latency_in_us = 0; 4404 clocks->num_levels++; 4405 } 4406 } 4407 4408 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, 4409 struct pp_clock_levels_with_latency *clocks) 4410 { 4411 struct phm_ppt_v2_information *table_info = 4412 (struct phm_ppt_v2_information *)hwmgr->pptable; 4413 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = 4414 table_info->vdd_dep_on_socclk; 4415 uint32_t i; 4416 4417 for (i = 0; i < dep_table->count; i++) { 4418 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4419 clocks->data[i].latency_in_us = 0; 4420 clocks->num_levels++; 4421 } 4422 } 4423 4424 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 4425 enum amd_pp_clock_type type, 4426 struct pp_clock_levels_with_latency *clocks) 4427 { 4428 switch (type) { 4429 case amd_pp_sys_clock: 4430 vega10_get_sclks(hwmgr, clocks); 4431 break; 4432 case amd_pp_mem_clock: 4433 vega10_get_memclocks(hwmgr, clocks); 4434 break; 4435 case amd_pp_dcef_clock: 4436 vega10_get_dcefclocks(hwmgr, clocks); 4437 break; 4438 case amd_pp_soc_clock: 4439 vega10_get_socclocks(hwmgr, clocks); 4440 break; 4441 default: 4442 return -1; 4443 } 4444 4445 return 0; 4446 } 4447 4448 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, 4449 enum amd_pp_clock_type type, 4450 struct pp_clock_levels_with_voltage *clocks) 4451 { 4452 struct phm_ppt_v2_information *table_info = 4453 (struct phm_ppt_v2_information *)hwmgr->pptable; 4454 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 4455 uint32_t i; 4456 4457 switch (type) { 4458 case amd_pp_mem_clock: 4459 dep_table = table_info->vdd_dep_on_mclk; 4460 break; 4461 case amd_pp_dcef_clock: 4462 dep_table = table_info->vdd_dep_on_dcefclk; 4463 break; 4464 case amd_pp_disp_clock: 4465 dep_table = table_info->vdd_dep_on_dispclk; 4466 break; 4467 case amd_pp_pixel_clock: 4468 dep_table = table_info->vdd_dep_on_pixclk; 4469 break; 4470 case amd_pp_phy_clock: 4471 dep_table = table_info->vdd_dep_on_phyclk; 4472 break; 4473 default: 4474 return -1; 4475 } 4476 4477 for (i = 0; i < dep_table->count; i++) { 4478 clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10; 4479 clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> 4480 entries[dep_table->entries[i].vddInd].us_vdd); 4481 clocks->num_levels++; 4482 } 4483 4484 if (i < dep_table->count) 4485 return -1; 4486 4487 return 0; 4488 } 4489 4490 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 4491 void *clock_range) 4492 { 4493 struct vega10_hwmgr *data = hwmgr->backend; 4494 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range; 4495 Watermarks_t *table = &(data->smc_state_table.water_marks_table); 4496 4497 if (!data->registry_data.disable_water_mark) { 4498 smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges); 4499 data->water_marks_bitmap = WaterMarksExist; 4500 } 4501 4502 return 0; 4503 } 4504 4505 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf) 4506 { 4507 static const char *ppfeature_name[] = { 4508 "DPM_PREFETCHER", 4509 "GFXCLK_DPM", 4510 "UCLK_DPM", 4511 "SOCCLK_DPM", 4512 "UVD_DPM", 4513 "VCE_DPM", 4514 "ULV", 4515 "MP0CLK_DPM", 4516 "LINK_DPM", 4517 "DCEFCLK_DPM", 4518 "AVFS", 4519 "GFXCLK_DS", 4520 "SOCCLK_DS", 4521 "LCLK_DS", 4522 "PPT", 4523 "TDC", 4524 "THERMAL", 4525 "GFX_PER_CU_CG", 4526 "RM", 4527 "DCEFCLK_DS", 4528 "ACDC", 4529 "VR0HOT", 4530 "VR1HOT", 4531 "FW_CTF", 4532 "LED_DISPLAY", 4533 "FAN_CONTROL", 4534 "FAST_PPT", 4535 "DIDT", 4536 "ACG", 4537 "PCC_LIMIT"}; 4538 static const char *output_title[] = { 4539 "FEATURES", 4540 "BITMASK", 4541 "ENABLEMENT"}; 4542 uint64_t features_enabled; 4543 int i; 4544 int ret = 0; 4545 int size = 0; 4546 4547 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4548 PP_ASSERT_WITH_CODE(!ret, 4549 "[EnableAllSmuFeatures] Failed to get enabled smc features!", 4550 return ret); 4551 4552 size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled); 4553 size += sprintf(buf + size, "%-19s %-22s %s\n", 4554 output_title[0], 4555 output_title[1], 4556 output_title[2]); 4557 for (i = 0; i < GNLD_FEATURES_MAX; i++) { 4558 size += sprintf(buf + size, "%-19s 0x%016llx %6s\n", 4559 ppfeature_name[i], 4560 1ULL << i, 4561 (features_enabled & (1ULL << i)) ? "Y" : "N"); 4562 } 4563 4564 return size; 4565 } 4566 4567 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks) 4568 { 4569 uint64_t features_enabled; 4570 uint64_t features_to_enable; 4571 uint64_t features_to_disable; 4572 int ret = 0; 4573 4574 if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX)) 4575 return -EINVAL; 4576 4577 ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled); 4578 if (ret) 4579 return ret; 4580 4581 features_to_disable = 4582 features_enabled & ~new_ppfeature_masks; 4583 features_to_enable = 4584 ~features_enabled & new_ppfeature_masks; 4585 4586 pr_debug("features_to_disable 0x%llx\n", features_to_disable); 4587 pr_debug("features_to_enable 0x%llx\n", features_to_enable); 4588 4589 if (features_to_disable) { 4590 ret = vega10_enable_smc_features(hwmgr, false, features_to_disable); 4591 if (ret) 4592 return ret; 4593 } 4594 4595 if (features_to_enable) { 4596 ret = vega10_enable_smc_features(hwmgr, true, features_to_enable); 4597 if (ret) 4598 return ret; 4599 } 4600 4601 return 0; 4602 } 4603 4604 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr) 4605 { 4606 struct amdgpu_device *adev = hwmgr->adev; 4607 4608 return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) & 4609 PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK) 4610 >> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT; 4611 } 4612 4613 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr) 4614 { 4615 struct amdgpu_device *adev = hwmgr->adev; 4616 4617 return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) & 4618 PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK) 4619 >> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT; 4620 } 4621 4622 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, 4623 enum pp_clock_type type, char *buf) 4624 { 4625 struct vega10_hwmgr *data = hwmgr->backend; 4626 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4627 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4628 struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table); 4629 struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table); 4630 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL; 4631 uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width; 4632 PPTable_t *pptable = &(data->smc_state_table.pp_table); 4633 4634 int i, now, size = 0, count = 0; 4635 4636 switch (type) { 4637 case PP_SCLK: 4638 if (data->registry_data.sclk_dpm_key_disabled) 4639 break; 4640 4641 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now); 4642 4643 if (hwmgr->pp_one_vf && 4644 (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)) 4645 count = 5; 4646 else 4647 count = sclk_table->count; 4648 for (i = 0; i < count; i++) 4649 size += sprintf(buf + size, "%d: %uMhz %s\n", 4650 i, sclk_table->dpm_levels[i].value / 100, 4651 (i == now) ? "*" : ""); 4652 break; 4653 case PP_MCLK: 4654 if (data->registry_data.mclk_dpm_key_disabled) 4655 break; 4656 4657 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now); 4658 4659 for (i = 0; i < mclk_table->count; i++) 4660 size += sprintf(buf + size, "%d: %uMhz %s\n", 4661 i, mclk_table->dpm_levels[i].value / 100, 4662 (i == now) ? "*" : ""); 4663 break; 4664 case PP_SOCCLK: 4665 if (data->registry_data.socclk_dpm_key_disabled) 4666 break; 4667 4668 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now); 4669 4670 for (i = 0; i < soc_table->count; i++) 4671 size += sprintf(buf + size, "%d: %uMhz %s\n", 4672 i, soc_table->dpm_levels[i].value / 100, 4673 (i == now) ? "*" : ""); 4674 break; 4675 case PP_DCEFCLK: 4676 if (data->registry_data.dcefclk_dpm_key_disabled) 4677 break; 4678 4679 smum_send_msg_to_smc_with_parameter(hwmgr, 4680 PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now); 4681 4682 for (i = 0; i < dcef_table->count; i++) 4683 size += sprintf(buf + size, "%d: %uMhz %s\n", 4684 i, dcef_table->dpm_levels[i].value / 100, 4685 (dcef_table->dpm_levels[i].value / 100 == now) ? 4686 "*" : ""); 4687 break; 4688 case PP_PCIE: 4689 current_gen_speed = 4690 vega10_get_current_pcie_link_speed_level(hwmgr); 4691 current_lane_width = 4692 vega10_get_current_pcie_link_width_level(hwmgr); 4693 for (i = 0; i < NUM_LINK_LEVELS; i++) { 4694 gen_speed = pptable->PcieGenSpeed[i]; 4695 lane_width = pptable->PcieLaneCount[i]; 4696 4697 size += sprintf(buf + size, "%d: %s %s %s\n", i, 4698 (gen_speed == 0) ? "2.5GT/s," : 4699 (gen_speed == 1) ? "5.0GT/s," : 4700 (gen_speed == 2) ? "8.0GT/s," : 4701 (gen_speed == 3) ? "16.0GT/s," : "", 4702 (lane_width == 1) ? "x1" : 4703 (lane_width == 2) ? "x2" : 4704 (lane_width == 3) ? "x4" : 4705 (lane_width == 4) ? "x8" : 4706 (lane_width == 5) ? "x12" : 4707 (lane_width == 6) ? "x16" : "", 4708 (current_gen_speed == gen_speed) && 4709 (current_lane_width == lane_width) ? 4710 "*" : ""); 4711 } 4712 break; 4713 4714 case OD_SCLK: 4715 if (hwmgr->od_enabled) { 4716 size = sprintf(buf, "%s:\n", "OD_SCLK"); 4717 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 4718 for (i = 0; i < podn_vdd_dep->count; i++) 4719 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4720 i, podn_vdd_dep->entries[i].clk / 100, 4721 podn_vdd_dep->entries[i].vddc); 4722 } 4723 break; 4724 case OD_MCLK: 4725 if (hwmgr->od_enabled) { 4726 size = sprintf(buf, "%s:\n", "OD_MCLK"); 4727 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 4728 for (i = 0; i < podn_vdd_dep->count; i++) 4729 size += sprintf(buf + size, "%d: %10uMhz %10umV\n", 4730 i, podn_vdd_dep->entries[i].clk/100, 4731 podn_vdd_dep->entries[i].vddc); 4732 } 4733 break; 4734 case OD_RANGE: 4735 if (hwmgr->od_enabled) { 4736 size = sprintf(buf, "%s:\n", "OD_RANGE"); 4737 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 4738 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100, 4739 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 4740 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 4741 data->golden_dpm_table.mem_table.dpm_levels[0].value/100, 4742 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 4743 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 4744 data->odn_dpm_table.min_vddc, 4745 data->odn_dpm_table.max_vddc); 4746 } 4747 break; 4748 default: 4749 break; 4750 } 4751 return size; 4752 } 4753 4754 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4755 { 4756 struct vega10_hwmgr *data = hwmgr->backend; 4757 Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); 4758 int result = 0; 4759 4760 if ((data->water_marks_bitmap & WaterMarksExist) && 4761 !(data->water_marks_bitmap & WaterMarksLoaded)) { 4762 result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false); 4763 PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL); 4764 data->water_marks_bitmap |= WaterMarksLoaded; 4765 } 4766 4767 if (data->water_marks_bitmap & WaterMarksLoaded) { 4768 smum_send_msg_to_smc_with_parameter(hwmgr, 4769 PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display, 4770 NULL); 4771 } 4772 4773 return result; 4774 } 4775 4776 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) 4777 { 4778 struct vega10_hwmgr *data = hwmgr->backend; 4779 4780 if (data->smu_features[GNLD_DPM_UVD].supported) { 4781 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 4782 enable, 4783 data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), 4784 "Attempt to Enable/Disable DPM UVD Failed!", 4785 return -1); 4786 data->smu_features[GNLD_DPM_UVD].enabled = enable; 4787 } 4788 return 0; 4789 } 4790 4791 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) 4792 { 4793 struct vega10_hwmgr *data = hwmgr->backend; 4794 4795 data->vce_power_gated = bgate; 4796 vega10_enable_disable_vce_dpm(hwmgr, !bgate); 4797 } 4798 4799 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) 4800 { 4801 struct vega10_hwmgr *data = hwmgr->backend; 4802 4803 data->uvd_power_gated = bgate; 4804 vega10_enable_disable_uvd_dpm(hwmgr, !bgate); 4805 } 4806 4807 static inline bool vega10_are_power_levels_equal( 4808 const struct vega10_performance_level *pl1, 4809 const struct vega10_performance_level *pl2) 4810 { 4811 return ((pl1->soc_clock == pl2->soc_clock) && 4812 (pl1->gfx_clock == pl2->gfx_clock) && 4813 (pl1->mem_clock == pl2->mem_clock)); 4814 } 4815 4816 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, 4817 const struct pp_hw_power_state *pstate1, 4818 const struct pp_hw_power_state *pstate2, bool *equal) 4819 { 4820 const struct vega10_power_state *psa; 4821 const struct vega10_power_state *psb; 4822 int i; 4823 4824 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4825 return -EINVAL; 4826 4827 psa = cast_const_phw_vega10_power_state(pstate1); 4828 psb = cast_const_phw_vega10_power_state(pstate2); 4829 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4830 if (psa->performance_level_count != psb->performance_level_count) { 4831 *equal = false; 4832 return 0; 4833 } 4834 4835 for (i = 0; i < psa->performance_level_count; i++) { 4836 if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4837 /* If we have found even one performance level pair that is different the states are different. */ 4838 *equal = false; 4839 return 0; 4840 } 4841 } 4842 4843 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4844 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4845 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4846 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4847 4848 return 0; 4849 } 4850 4851 static bool 4852 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4853 { 4854 struct vega10_hwmgr *data = hwmgr->backend; 4855 bool is_update_required = false; 4856 4857 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4858 is_update_required = true; 4859 4860 if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { 4861 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr) 4862 is_update_required = true; 4863 } 4864 4865 return is_update_required; 4866 } 4867 4868 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 4869 { 4870 int tmp_result, result = 0; 4871 4872 if (!hwmgr->not_vf) 4873 return 0; 4874 4875 if (PP_CAP(PHM_PlatformCaps_ThermalController)) 4876 vega10_disable_thermal_protection(hwmgr); 4877 4878 tmp_result = vega10_disable_power_containment(hwmgr); 4879 PP_ASSERT_WITH_CODE((tmp_result == 0), 4880 "Failed to disable power containment!", result = tmp_result); 4881 4882 tmp_result = vega10_disable_didt_config(hwmgr); 4883 PP_ASSERT_WITH_CODE((tmp_result == 0), 4884 "Failed to disable didt config!", result = tmp_result); 4885 4886 tmp_result = vega10_avfs_enable(hwmgr, false); 4887 PP_ASSERT_WITH_CODE((tmp_result == 0), 4888 "Failed to disable AVFS!", result = tmp_result); 4889 4890 tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); 4891 PP_ASSERT_WITH_CODE((tmp_result == 0), 4892 "Failed to stop DPM!", result = tmp_result); 4893 4894 tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); 4895 PP_ASSERT_WITH_CODE((tmp_result == 0), 4896 "Failed to disable deep sleep!", result = tmp_result); 4897 4898 tmp_result = vega10_disable_ulv(hwmgr); 4899 PP_ASSERT_WITH_CODE((tmp_result == 0), 4900 "Failed to disable ulv!", result = tmp_result); 4901 4902 tmp_result = vega10_acg_disable(hwmgr); 4903 PP_ASSERT_WITH_CODE((tmp_result == 0), 4904 "Failed to disable acg!", result = tmp_result); 4905 4906 vega10_enable_disable_PCC_limit_feature(hwmgr, false); 4907 return result; 4908 } 4909 4910 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) 4911 { 4912 struct vega10_hwmgr *data = hwmgr->backend; 4913 int result; 4914 4915 result = vega10_disable_dpm_tasks(hwmgr); 4916 PP_ASSERT_WITH_CODE((0 == result), 4917 "[disable_dpm_tasks] Failed to disable DPM!", 4918 ); 4919 data->water_marks_bitmap &= ~(WaterMarksLoaded); 4920 4921 return result; 4922 } 4923 4924 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) 4925 { 4926 struct vega10_hwmgr *data = hwmgr->backend; 4927 struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); 4928 struct vega10_single_dpm_table *golden_sclk_table = 4929 &(data->golden_dpm_table.gfx_table); 4930 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 4931 int golden_value = golden_sclk_table->dpm_levels 4932 [golden_sclk_table->count - 1].value; 4933 4934 value -= golden_value; 4935 value = DIV_ROUND_UP(value * 100, golden_value); 4936 4937 return value; 4938 } 4939 4940 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4941 { 4942 struct vega10_hwmgr *data = hwmgr->backend; 4943 struct vega10_single_dpm_table *golden_sclk_table = 4944 &(data->golden_dpm_table.gfx_table); 4945 struct pp_power_state *ps; 4946 struct vega10_power_state *vega10_ps; 4947 4948 ps = hwmgr->request_ps; 4949 4950 if (ps == NULL) 4951 return -EINVAL; 4952 4953 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 4954 4955 vega10_ps->performance_levels 4956 [vega10_ps->performance_level_count - 1].gfx_clock = 4957 golden_sclk_table->dpm_levels 4958 [golden_sclk_table->count - 1].value * 4959 value / 100 + 4960 golden_sclk_table->dpm_levels 4961 [golden_sclk_table->count - 1].value; 4962 4963 if (vega10_ps->performance_levels 4964 [vega10_ps->performance_level_count - 1].gfx_clock > 4965 hwmgr->platform_descriptor.overdriveLimit.engineClock) { 4966 vega10_ps->performance_levels 4967 [vega10_ps->performance_level_count - 1].gfx_clock = 4968 hwmgr->platform_descriptor.overdriveLimit.engineClock; 4969 pr_warn("max sclk supported by vbios is %d\n", 4970 hwmgr->platform_descriptor.overdriveLimit.engineClock); 4971 } 4972 return 0; 4973 } 4974 4975 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) 4976 { 4977 struct vega10_hwmgr *data = hwmgr->backend; 4978 struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); 4979 struct vega10_single_dpm_table *golden_mclk_table = 4980 &(data->golden_dpm_table.mem_table); 4981 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 4982 int golden_value = golden_mclk_table->dpm_levels 4983 [golden_mclk_table->count - 1].value; 4984 4985 value -= golden_value; 4986 value = DIV_ROUND_UP(value * 100, golden_value); 4987 4988 return value; 4989 } 4990 4991 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4992 { 4993 struct vega10_hwmgr *data = hwmgr->backend; 4994 struct vega10_single_dpm_table *golden_mclk_table = 4995 &(data->golden_dpm_table.mem_table); 4996 struct pp_power_state *ps; 4997 struct vega10_power_state *vega10_ps; 4998 4999 ps = hwmgr->request_ps; 5000 5001 if (ps == NULL) 5002 return -EINVAL; 5003 5004 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5005 5006 vega10_ps->performance_levels 5007 [vega10_ps->performance_level_count - 1].mem_clock = 5008 golden_mclk_table->dpm_levels 5009 [golden_mclk_table->count - 1].value * 5010 value / 100 + 5011 golden_mclk_table->dpm_levels 5012 [golden_mclk_table->count - 1].value; 5013 5014 if (vega10_ps->performance_levels 5015 [vega10_ps->performance_level_count - 1].mem_clock > 5016 hwmgr->platform_descriptor.overdriveLimit.memoryClock) { 5017 vega10_ps->performance_levels 5018 [vega10_ps->performance_level_count - 1].mem_clock = 5019 hwmgr->platform_descriptor.overdriveLimit.memoryClock; 5020 pr_warn("max mclk supported by vbios is %d\n", 5021 hwmgr->platform_descriptor.overdriveLimit.memoryClock); 5022 } 5023 5024 return 0; 5025 } 5026 5027 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 5028 uint32_t virtual_addr_low, 5029 uint32_t virtual_addr_hi, 5030 uint32_t mc_addr_low, 5031 uint32_t mc_addr_hi, 5032 uint32_t size) 5033 { 5034 smum_send_msg_to_smc_with_parameter(hwmgr, 5035 PPSMC_MSG_SetSystemVirtualDramAddrHigh, 5036 virtual_addr_hi, 5037 NULL); 5038 smum_send_msg_to_smc_with_parameter(hwmgr, 5039 PPSMC_MSG_SetSystemVirtualDramAddrLow, 5040 virtual_addr_low, 5041 NULL); 5042 smum_send_msg_to_smc_with_parameter(hwmgr, 5043 PPSMC_MSG_DramLogSetDramAddrHigh, 5044 mc_addr_hi, 5045 NULL); 5046 5047 smum_send_msg_to_smc_with_parameter(hwmgr, 5048 PPSMC_MSG_DramLogSetDramAddrLow, 5049 mc_addr_low, 5050 NULL); 5051 5052 smum_send_msg_to_smc_with_parameter(hwmgr, 5053 PPSMC_MSG_DramLogSetDramSize, 5054 size, 5055 NULL); 5056 return 0; 5057 } 5058 5059 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 5060 struct PP_TemperatureRange *thermal_data) 5061 { 5062 struct vega10_hwmgr *data = hwmgr->backend; 5063 PPTable_t *pp_table = &(data->smc_state_table.pp_table); 5064 5065 memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange)); 5066 5067 thermal_data->max = pp_table->TedgeLimit * 5068 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5069 thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) * 5070 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5071 thermal_data->hotspot_crit_max = pp_table->ThotspotLimit * 5072 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5073 thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) * 5074 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5075 thermal_data->mem_crit_max = pp_table->ThbmLimit * 5076 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5077 thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)* 5078 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5079 5080 return 0; 5081 } 5082 5083 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 5084 { 5085 struct vega10_hwmgr *data = hwmgr->backend; 5086 uint32_t i, size = 0; 5087 static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,}, 5088 {70, 60, 1, 3,}, 5089 {90, 60, 0, 0,}, 5090 {70, 60, 0, 0,}, 5091 {70, 90, 0, 0,}, 5092 {30, 60, 0, 6,}, 5093 }; 5094 static const char *profile_name[7] = {"BOOTUP_DEFAULT", 5095 "3D_FULL_SCREEN", 5096 "POWER_SAVING", 5097 "VIDEO", 5098 "VR", 5099 "COMPUTE", 5100 "CUSTOM"}; 5101 static const char *title[6] = {"NUM", 5102 "MODE_NAME", 5103 "BUSY_SET_POINT", 5104 "FPS", 5105 "USE_RLC_BUSY", 5106 "MIN_ACTIVE_LEVEL"}; 5107 5108 if (!buf) 5109 return -EINVAL; 5110 5111 size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0], 5112 title[1], title[2], title[3], title[4], title[5]); 5113 5114 for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++) 5115 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", 5116 i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5117 profile_mode_setting[i][0], profile_mode_setting[i][1], 5118 profile_mode_setting[i][2], profile_mode_setting[i][3]); 5119 size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i, 5120 profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ", 5121 data->custom_profile_mode[0], data->custom_profile_mode[1], 5122 data->custom_profile_mode[2], data->custom_profile_mode[3]); 5123 return size; 5124 } 5125 5126 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5127 { 5128 struct vega10_hwmgr *data = hwmgr->backend; 5129 uint8_t busy_set_point; 5130 uint8_t FPS; 5131 uint8_t use_rlc_busy; 5132 uint8_t min_active_level; 5133 uint32_t power_profile_mode = input[size]; 5134 5135 if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) { 5136 if (size != 0 && size != 4) 5137 return -EINVAL; 5138 5139 /* If size = 0 and the CUSTOM profile has been set already 5140 * then just apply the profile. The copy stored in the hwmgr 5141 * is zeroed out on init 5142 */ 5143 if (size == 0) { 5144 if (data->custom_profile_mode[0] != 0) 5145 goto out; 5146 else 5147 return -EINVAL; 5148 } 5149 5150 data->custom_profile_mode[0] = busy_set_point = input[0]; 5151 data->custom_profile_mode[1] = FPS = input[1]; 5152 data->custom_profile_mode[2] = use_rlc_busy = input[2]; 5153 data->custom_profile_mode[3] = min_active_level = input[3]; 5154 smum_send_msg_to_smc_with_parameter(hwmgr, 5155 PPSMC_MSG_SetCustomGfxDpmParameters, 5156 busy_set_point | FPS<<8 | 5157 use_rlc_busy << 16 | min_active_level<<24, 5158 NULL); 5159 } 5160 5161 out: 5162 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask, 5163 (!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1), 5164 NULL); 5165 hwmgr->power_profile_mode = power_profile_mode; 5166 5167 return 0; 5168 } 5169 5170 5171 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5172 enum PP_OD_DPM_TABLE_COMMAND type, 5173 uint32_t clk, 5174 uint32_t voltage) 5175 { 5176 struct vega10_hwmgr *data = hwmgr->backend; 5177 struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table); 5178 struct vega10_single_dpm_table *golden_table; 5179 5180 if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) { 5181 pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc); 5182 return false; 5183 } 5184 5185 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5186 golden_table = &(data->golden_dpm_table.gfx_table); 5187 if (golden_table->dpm_levels[0].value > clk || 5188 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5189 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5190 golden_table->dpm_levels[0].value/100, 5191 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5192 return false; 5193 } 5194 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5195 golden_table = &(data->golden_dpm_table.mem_table); 5196 if (golden_table->dpm_levels[0].value > clk || 5197 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5198 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5199 golden_table->dpm_levels[0].value/100, 5200 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5201 return false; 5202 } 5203 } else { 5204 return false; 5205 } 5206 5207 return true; 5208 } 5209 5210 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr) 5211 { 5212 struct vega10_hwmgr *data = hwmgr->backend; 5213 struct pp_power_state *ps = hwmgr->request_ps; 5214 struct vega10_power_state *vega10_ps; 5215 struct vega10_single_dpm_table *gfx_dpm_table = 5216 &data->dpm_table.gfx_table; 5217 struct vega10_single_dpm_table *soc_dpm_table = 5218 &data->dpm_table.soc_table; 5219 struct vega10_single_dpm_table *mem_dpm_table = 5220 &data->dpm_table.mem_table; 5221 int max_level; 5222 5223 if (!ps) 5224 return; 5225 5226 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5227 max_level = vega10_ps->performance_level_count - 1; 5228 5229 if (vega10_ps->performance_levels[max_level].gfx_clock != 5230 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5231 vega10_ps->performance_levels[max_level].gfx_clock = 5232 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5233 5234 if (vega10_ps->performance_levels[max_level].soc_clock != 5235 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5236 vega10_ps->performance_levels[max_level].soc_clock = 5237 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5238 5239 if (vega10_ps->performance_levels[max_level].mem_clock != 5240 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5241 vega10_ps->performance_levels[max_level].mem_clock = 5242 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5243 5244 if (!hwmgr->ps) 5245 return; 5246 5247 ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1)); 5248 vega10_ps = cast_phw_vega10_power_state(&ps->hardware); 5249 max_level = vega10_ps->performance_level_count - 1; 5250 5251 if (vega10_ps->performance_levels[max_level].gfx_clock != 5252 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value) 5253 vega10_ps->performance_levels[max_level].gfx_clock = 5254 gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value; 5255 5256 if (vega10_ps->performance_levels[max_level].soc_clock != 5257 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value) 5258 vega10_ps->performance_levels[max_level].soc_clock = 5259 soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value; 5260 5261 if (vega10_ps->performance_levels[max_level].mem_clock != 5262 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value) 5263 vega10_ps->performance_levels[max_level].mem_clock = 5264 mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value; 5265 } 5266 5267 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr, 5268 enum PP_OD_DPM_TABLE_COMMAND type) 5269 { 5270 struct vega10_hwmgr *data = hwmgr->backend; 5271 struct phm_ppt_v2_information *table_info = hwmgr->pptable; 5272 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; 5273 struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table; 5274 5275 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk = 5276 &data->odn_dpm_table.vdd_dep_on_socclk; 5277 struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table; 5278 5279 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep; 5280 uint8_t i, j; 5281 5282 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5283 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk; 5284 for (i = 0; i < podn_vdd_dep->count; i++) 5285 od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc; 5286 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5287 podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk; 5288 for (i = 0; i < dpm_table->count; i++) { 5289 for (j = 0; j < od_vddc_lookup_table->count; j++) { 5290 if (od_vddc_lookup_table->entries[j].us_vdd > 5291 podn_vdd_dep->entries[i].vddc) 5292 break; 5293 } 5294 if (j == od_vddc_lookup_table->count) { 5295 j = od_vddc_lookup_table->count - 1; 5296 od_vddc_lookup_table->entries[j].us_vdd = 5297 podn_vdd_dep->entries[i].vddc; 5298 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 5299 } 5300 podn_vdd_dep->entries[i].vddInd = j; 5301 } 5302 dpm_table = &data->dpm_table.soc_table; 5303 for (i = 0; i < dep_table->count; i++) { 5304 if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd && 5305 dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) { 5306 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5307 for (; (i < dep_table->count) && 5308 (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) { 5309 podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk; 5310 dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk; 5311 } 5312 break; 5313 } else { 5314 dpm_table->dpm_levels[i].value = dep_table->entries[i].clk; 5315 podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc; 5316 podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd; 5317 podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk; 5318 } 5319 } 5320 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk < 5321 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) { 5322 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5323 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk = 5324 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5325 dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value = 5326 podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk; 5327 } 5328 if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd < 5329 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) { 5330 data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK; 5331 podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd = 5332 podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd; 5333 } 5334 } 5335 vega10_odn_update_power_state(hwmgr); 5336 } 5337 5338 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5339 enum PP_OD_DPM_TABLE_COMMAND type, 5340 long *input, uint32_t size) 5341 { 5342 struct vega10_hwmgr *data = hwmgr->backend; 5343 struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table; 5344 struct vega10_single_dpm_table *dpm_table; 5345 5346 uint32_t input_clk; 5347 uint32_t input_vol; 5348 uint32_t input_level; 5349 uint32_t i; 5350 5351 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5352 return -EINVAL); 5353 5354 if (!hwmgr->od_enabled) { 5355 pr_info("OverDrive feature not enabled\n"); 5356 return -EINVAL; 5357 } 5358 5359 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5360 dpm_table = &data->dpm_table.gfx_table; 5361 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk; 5362 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 5363 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5364 dpm_table = &data->dpm_table.mem_table; 5365 podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk; 5366 data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 5367 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5368 memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table)); 5369 vega10_odn_initial_default_setting(hwmgr); 5370 vega10_odn_update_power_state(hwmgr); 5371 /* force to update all clock tables */ 5372 data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK | 5373 DPMTABLE_UPDATE_MCLK | 5374 DPMTABLE_UPDATE_SOCCLK; 5375 return 0; 5376 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5377 vega10_check_dpm_table_updated(hwmgr); 5378 return 0; 5379 } else { 5380 return -EINVAL; 5381 } 5382 5383 for (i = 0; i < size; i += 3) { 5384 if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) { 5385 pr_info("invalid clock voltage input\n"); 5386 return 0; 5387 } 5388 input_level = input[i]; 5389 input_clk = input[i+1] * 100; 5390 input_vol = input[i+2]; 5391 5392 if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5393 dpm_table->dpm_levels[input_level].value = input_clk; 5394 podn_vdd_dep_table->entries[input_level].clk = input_clk; 5395 podn_vdd_dep_table->entries[input_level].vddc = input_vol; 5396 } else { 5397 return -EINVAL; 5398 } 5399 } 5400 vega10_odn_update_soc_table(hwmgr, type); 5401 return 0; 5402 } 5403 5404 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr, 5405 enum pp_mp1_state mp1_state) 5406 { 5407 uint16_t msg; 5408 int ret; 5409 5410 switch (mp1_state) { 5411 case PP_MP1_STATE_UNLOAD: 5412 msg = PPSMC_MSG_PrepareMp1ForUnload; 5413 break; 5414 case PP_MP1_STATE_SHUTDOWN: 5415 case PP_MP1_STATE_RESET: 5416 case PP_MP1_STATE_NONE: 5417 default: 5418 return 0; 5419 } 5420 5421 PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0, 5422 "[PrepareMp1] Failed!", 5423 return ret); 5424 5425 return 0; 5426 } 5427 5428 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5429 PHM_PerformanceLevelDesignation designation, uint32_t index, 5430 PHM_PerformanceLevel *level) 5431 { 5432 const struct vega10_power_state *ps; 5433 uint32_t i; 5434 5435 if (level == NULL || hwmgr == NULL || state == NULL) 5436 return -EINVAL; 5437 5438 ps = cast_const_phw_vega10_power_state(state); 5439 5440 i = index > ps->performance_level_count - 1 ? 5441 ps->performance_level_count - 1 : index; 5442 5443 level->coreClock = ps->performance_levels[i].gfx_clock; 5444 level->memory_clock = ps->performance_levels[i].mem_clock; 5445 5446 return 0; 5447 } 5448 5449 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable) 5450 { 5451 struct vega10_hwmgr *data = hwmgr->backend; 5452 uint32_t feature_mask = 0; 5453 5454 if (disable) { 5455 feature_mask |= data->smu_features[GNLD_ULV].enabled ? 5456 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5457 feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ? 5458 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5459 feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ? 5460 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5461 feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ? 5462 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5463 feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ? 5464 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5465 } else { 5466 feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ? 5467 data->smu_features[GNLD_ULV].smu_feature_bitmap : 0; 5468 feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ? 5469 data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0; 5470 feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ? 5471 data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0; 5472 feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ? 5473 data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0; 5474 feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ? 5475 data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0; 5476 } 5477 5478 if (feature_mask) 5479 PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, 5480 !disable, feature_mask), 5481 "enable/disable power features for compute performance Failed!", 5482 return -EINVAL); 5483 5484 if (disable) { 5485 data->smu_features[GNLD_ULV].enabled = false; 5486 data->smu_features[GNLD_DS_GFXCLK].enabled = false; 5487 data->smu_features[GNLD_DS_SOCCLK].enabled = false; 5488 data->smu_features[GNLD_DS_LCLK].enabled = false; 5489 data->smu_features[GNLD_DS_DCEFCLK].enabled = false; 5490 } else { 5491 data->smu_features[GNLD_ULV].enabled = true; 5492 data->smu_features[GNLD_DS_GFXCLK].enabled = true; 5493 data->smu_features[GNLD_DS_SOCCLK].enabled = true; 5494 data->smu_features[GNLD_DS_LCLK].enabled = true; 5495 data->smu_features[GNLD_DS_DCEFCLK].enabled = true; 5496 } 5497 5498 return 0; 5499 5500 } 5501 5502 static const struct pp_hwmgr_func vega10_hwmgr_funcs = { 5503 .backend_init = vega10_hwmgr_backend_init, 5504 .backend_fini = vega10_hwmgr_backend_fini, 5505 .asic_setup = vega10_setup_asic_task, 5506 .dynamic_state_management_enable = vega10_enable_dpm_tasks, 5507 .dynamic_state_management_disable = vega10_disable_dpm_tasks, 5508 .get_num_of_pp_table_entries = 5509 vega10_get_number_of_powerplay_table_entries, 5510 .get_power_state_size = vega10_get_power_state_size, 5511 .get_pp_table_entry = vega10_get_pp_table_entry, 5512 .patch_boot_state = vega10_patch_boot_state, 5513 .apply_state_adjust_rules = vega10_apply_state_adjust_rules, 5514 .power_state_set = vega10_set_power_state_tasks, 5515 .get_sclk = vega10_dpm_get_sclk, 5516 .get_mclk = vega10_dpm_get_mclk, 5517 .notify_smc_display_config_after_ps_adjustment = 5518 vega10_notify_smc_display_config_after_ps_adjustment, 5519 .force_dpm_level = vega10_dpm_force_dpm_level, 5520 .stop_thermal_controller = vega10_thermal_stop_thermal_controller, 5521 .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, 5522 .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, 5523 .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, 5524 .reset_fan_speed_to_default = 5525 vega10_fan_ctrl_reset_fan_speed_to_default, 5526 .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, 5527 .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, 5528 .uninitialize_thermal_controller = 5529 vega10_thermal_ctrl_uninitialize_thermal_controller, 5530 .set_fan_control_mode = vega10_set_fan_control_mode, 5531 .get_fan_control_mode = vega10_get_fan_control_mode, 5532 .read_sensor = vega10_read_sensor, 5533 .get_dal_power_level = vega10_get_dal_power_level, 5534 .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, 5535 .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, 5536 .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, 5537 .display_clock_voltage_request = vega10_display_clock_voltage_request, 5538 .force_clock_level = vega10_force_clock_level, 5539 .print_clock_levels = vega10_print_clock_levels, 5540 .display_config_changed = vega10_display_configuration_changed_task, 5541 .powergate_uvd = vega10_power_gate_uvd, 5542 .powergate_vce = vega10_power_gate_vce, 5543 .check_states_equal = vega10_check_states_equal, 5544 .check_smc_update_required_for_display_configuration = 5545 vega10_check_smc_update_required_for_display_configuration, 5546 .power_off_asic = vega10_power_off_asic, 5547 .disable_smc_firmware_ctf = vega10_thermal_disable_alert, 5548 .get_sclk_od = vega10_get_sclk_od, 5549 .set_sclk_od = vega10_set_sclk_od, 5550 .get_mclk_od = vega10_get_mclk_od, 5551 .set_mclk_od = vega10_set_mclk_od, 5552 .avfs_control = vega10_avfs_enable, 5553 .notify_cac_buffer_info = vega10_notify_cac_buffer_info, 5554 .get_thermal_temperature_range = vega10_get_thermal_temperature_range, 5555 .register_irq_handlers = smu9_register_irq_handlers, 5556 .start_thermal_controller = vega10_start_thermal_controller, 5557 .get_power_profile_mode = vega10_get_power_profile_mode, 5558 .set_power_profile_mode = vega10_set_power_profile_mode, 5559 .set_power_limit = vega10_set_power_limit, 5560 .odn_edit_dpm_table = vega10_odn_edit_dpm_table, 5561 .get_performance_level = vega10_get_performance_level, 5562 .get_asic_baco_capability = smu9_baco_get_capability, 5563 .get_asic_baco_state = smu9_baco_get_state, 5564 .set_asic_baco_state = vega10_baco_set_state, 5565 .enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost, 5566 .get_ppfeature_status = vega10_get_ppfeature_status, 5567 .set_ppfeature_status = vega10_set_ppfeature_status, 5568 .set_mp1_state = vega10_set_mp1_state, 5569 .disable_power_features_for_compute_performance = 5570 vega10_disable_power_features_for_compute_performance, 5571 }; 5572 5573 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) 5574 { 5575 struct amdgpu_device *adev = hwmgr->adev; 5576 5577 hwmgr->hwmgr_func = &vega10_hwmgr_funcs; 5578 hwmgr->pptable_func = &vega10_pptable_funcs; 5579 if (amdgpu_passthrough(adev)) 5580 return vega10_baco_set_cap(hwmgr); 5581 5582 return 0; 5583 } 5584