1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 
30 #include "hwmgr.h"
31 #include "amd_powerplay.h"
32 #include "hardwaremanager.h"
33 #include "ppatomfwctrl.h"
34 #include "atomfirmware.h"
35 #include "cgs_common.h"
36 #include "vega10_powertune.h"
37 #include "smu9.h"
38 #include "smu9_driver_if.h"
39 #include "vega10_inc.h"
40 #include "soc15_common.h"
41 #include "pppcielanes.h"
42 #include "vega10_hwmgr.h"
43 #include "vega10_smumgr.h"
44 #include "vega10_processpptables.h"
45 #include "vega10_pptable.h"
46 #include "vega10_thermal.h"
47 #include "pp_debug.h"
48 #include "amd_pcie_helpers.h"
49 #include "ppinterrupt.h"
50 #include "pp_overdriver.h"
51 #include "pp_thermal.h"
52 #include "vega10_baco.h"
53 
54 #include "smuio/smuio_9_0_offset.h"
55 #include "smuio/smuio_9_0_sh_mask.h"
56 
57 #define smnPCIE_LC_SPEED_CNTL			0x11140290
58 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
59 
60 #define HBM_MEMORY_CHANNEL_WIDTH    128
61 
62 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
63 
64 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
65 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
66 
67 //DF_CS_AON0_DramBaseAddress0
68 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
69 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
70 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
71 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
72 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
73 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
74 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
75 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
76 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
77 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
78 
79 typedef enum {
80 	CLK_SMNCLK = 0,
81 	CLK_SOCCLK,
82 	CLK_MP0CLK,
83 	CLK_MP1CLK,
84 	CLK_LCLK,
85 	CLK_DCEFCLK,
86 	CLK_VCLK,
87 	CLK_DCLK,
88 	CLK_ECLK,
89 	CLK_UCLK,
90 	CLK_GFXCLK,
91 	CLK_COUNT,
92 } CLOCK_ID_e;
93 
94 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
95 
96 static struct vega10_power_state *cast_phw_vega10_power_state(
97 				  struct pp_hw_power_state *hw_ps)
98 {
99 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
100 				"Invalid Powerstate Type!",
101 				 return NULL;);
102 
103 	return (struct vega10_power_state *)hw_ps;
104 }
105 
106 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
107 				 const struct pp_hw_power_state *hw_ps)
108 {
109 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
110 				"Invalid Powerstate Type!",
111 				 return NULL;);
112 
113 	return (const struct vega10_power_state *)hw_ps;
114 }
115 
116 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
117 {
118 	struct vega10_hwmgr *data = hwmgr->backend;
119 
120 	data->registry_data.sclk_dpm_key_disabled =
121 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
122 	data->registry_data.socclk_dpm_key_disabled =
123 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
124 	data->registry_data.mclk_dpm_key_disabled =
125 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
126 	data->registry_data.pcie_dpm_key_disabled =
127 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
128 
129 	data->registry_data.dcefclk_dpm_key_disabled =
130 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
131 
132 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
133 		data->registry_data.power_containment_support = 1;
134 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
135 		data->registry_data.enable_tdc_limit_feature = 1;
136 	}
137 
138 	data->registry_data.clock_stretcher_support =
139 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
140 
141 	data->registry_data.ulv_support =
142 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
143 
144 	data->registry_data.sclk_deep_sleep_support =
145 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
146 
147 	data->registry_data.disable_water_mark = 0;
148 
149 	data->registry_data.fan_control_support = 1;
150 	data->registry_data.thermal_support = 1;
151 	data->registry_data.fw_ctf_enabled = 1;
152 
153 	data->registry_data.avfs_support =
154 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
155 	data->registry_data.led_dpm_enabled = 1;
156 
157 	data->registry_data.vr0hot_enabled = 1;
158 	data->registry_data.vr1hot_enabled = 1;
159 	data->registry_data.regulator_hot_gpio_support = 1;
160 
161 	data->registry_data.didt_support = 1;
162 	if (data->registry_data.didt_support) {
163 		data->registry_data.didt_mode = 6;
164 		data->registry_data.sq_ramping_support = 1;
165 		data->registry_data.db_ramping_support = 0;
166 		data->registry_data.td_ramping_support = 0;
167 		data->registry_data.tcp_ramping_support = 0;
168 		data->registry_data.dbr_ramping_support = 0;
169 		data->registry_data.edc_didt_support = 1;
170 		data->registry_data.gc_didt_support = 0;
171 		data->registry_data.psm_didt_support = 0;
172 	}
173 
174 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
175 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
185 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
186 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
187 
188 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
189 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
190 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
191 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
192 }
193 
194 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
195 {
196 	struct vega10_hwmgr *data = hwmgr->backend;
197 	struct phm_ppt_v2_information *table_info =
198 			(struct phm_ppt_v2_information *)hwmgr->pptable;
199 	struct amdgpu_device *adev = hwmgr->adev;
200 
201 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
202 			PHM_PlatformCaps_SclkDeepSleep);
203 
204 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
205 			PHM_PlatformCaps_DynamicPatchPowerState);
206 
207 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
208 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
209 				PHM_PlatformCaps_ControlVDDCI);
210 
211 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
212 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
213 
214 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
215 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
216 				PHM_PlatformCaps_UVDPowerGating);
217 
218 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
219 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
220 				PHM_PlatformCaps_VCEPowerGating);
221 
222 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
223 			PHM_PlatformCaps_UnTabledHardwareInterface);
224 
225 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
226 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
227 
228 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
230 
231 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
232 				PHM_PlatformCaps_DynamicPowerManagement);
233 
234 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
235 			PHM_PlatformCaps_SMC);
236 
237 	/* power tune caps */
238 	/* assume disabled */
239 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
240 			PHM_PlatformCaps_PowerContainment);
241 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
242 			PHM_PlatformCaps_DiDtSupport);
243 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
244 			PHM_PlatformCaps_SQRamping);
245 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
246 			PHM_PlatformCaps_DBRamping);
247 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
248 			PHM_PlatformCaps_TDRamping);
249 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
250 			PHM_PlatformCaps_TCPRamping);
251 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
252 			PHM_PlatformCaps_DBRRamping);
253 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
254 			PHM_PlatformCaps_DiDtEDCEnable);
255 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
256 			PHM_PlatformCaps_GCEDC);
257 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
258 			PHM_PlatformCaps_PSM);
259 
260 	if (data->registry_data.didt_support) {
261 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
262 		if (data->registry_data.sq_ramping_support)
263 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
264 		if (data->registry_data.db_ramping_support)
265 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
266 		if (data->registry_data.td_ramping_support)
267 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
268 		if (data->registry_data.tcp_ramping_support)
269 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
270 		if (data->registry_data.dbr_ramping_support)
271 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
272 		if (data->registry_data.edc_didt_support)
273 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
274 		if (data->registry_data.gc_didt_support)
275 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
276 		if (data->registry_data.psm_didt_support)
277 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
278 	}
279 
280 	if (data->registry_data.power_containment_support)
281 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
282 				PHM_PlatformCaps_PowerContainment);
283 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
284 			PHM_PlatformCaps_CAC);
285 
286 	if (table_info->tdp_table->usClockStretchAmount &&
287 			data->registry_data.clock_stretcher_support)
288 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 				PHM_PlatformCaps_ClockStretcher);
290 
291 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
292 			PHM_PlatformCaps_RegulatorHot);
293 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 			PHM_PlatformCaps_AutomaticDCTransition);
295 
296 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
297 			PHM_PlatformCaps_UVDDPM);
298 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
299 			PHM_PlatformCaps_VCEDPM);
300 
301 	return 0;
302 }
303 
304 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
305 {
306 	struct vega10_hwmgr *data = hwmgr->backend;
307 	struct phm_ppt_v2_information *table_info =
308 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
309 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
310 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
311 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
312 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
313 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
314 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
315 	uint32_t i;
316 	int result;
317 
318 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
319 	if (!result) {
320 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
321 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
322 	}
323 
324 	od_lookup_table = &odn_table->vddc_lookup_table;
325 	vddc_lookup_table = table_info->vddc_lookup_table;
326 
327 	for (i = 0; i < vddc_lookup_table->count; i++)
328 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
329 
330 	od_lookup_table->count = vddc_lookup_table->count;
331 
332 	dep_table[0] = table_info->vdd_dep_on_sclk;
333 	dep_table[1] = table_info->vdd_dep_on_mclk;
334 	dep_table[2] = table_info->vdd_dep_on_socclk;
335 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
336 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
337 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
338 
339 	for (i = 0; i < 3; i++)
340 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
341 
342 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
343 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
344 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
345 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
346 
347 	i = od_table[2]->count - 1;
348 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
349 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
350 					od_table[2]->entries[i].clk;
351 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
352 					odn_table->max_vddc :
353 					od_table[2]->entries[i].vddc;
354 
355 	return 0;
356 }
357 
358 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
359 {
360 	struct vega10_hwmgr *data = hwmgr->backend;
361 	int i;
362 	uint32_t sub_vendor_id, hw_revision;
363 	uint32_t top32, bottom32;
364 	struct amdgpu_device *adev = hwmgr->adev;
365 
366 	vega10_initialize_power_tune_defaults(hwmgr);
367 
368 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
369 		data->smu_features[i].smu_feature_id = 0xffff;
370 		data->smu_features[i].smu_feature_bitmap = 1 << i;
371 		data->smu_features[i].enabled = false;
372 		data->smu_features[i].supported = false;
373 	}
374 
375 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
376 			FEATURE_DPM_PREFETCHER_BIT;
377 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
378 			FEATURE_DPM_GFXCLK_BIT;
379 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
380 			FEATURE_DPM_UCLK_BIT;
381 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
382 			FEATURE_DPM_SOCCLK_BIT;
383 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
384 			FEATURE_DPM_UVD_BIT;
385 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
386 			FEATURE_DPM_VCE_BIT;
387 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
388 			FEATURE_DPM_MP0CLK_BIT;
389 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
390 			FEATURE_DPM_LINK_BIT;
391 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
392 			FEATURE_DPM_DCEFCLK_BIT;
393 	data->smu_features[GNLD_ULV].smu_feature_id =
394 			FEATURE_ULV_BIT;
395 	data->smu_features[GNLD_AVFS].smu_feature_id =
396 			FEATURE_AVFS_BIT;
397 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
398 			FEATURE_DS_GFXCLK_BIT;
399 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
400 			FEATURE_DS_SOCCLK_BIT;
401 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
402 			FEATURE_DS_LCLK_BIT;
403 	data->smu_features[GNLD_PPT].smu_feature_id =
404 			FEATURE_PPT_BIT;
405 	data->smu_features[GNLD_TDC].smu_feature_id =
406 			FEATURE_TDC_BIT;
407 	data->smu_features[GNLD_THERMAL].smu_feature_id =
408 			FEATURE_THERMAL_BIT;
409 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
410 			FEATURE_GFX_PER_CU_CG_BIT;
411 	data->smu_features[GNLD_RM].smu_feature_id =
412 			FEATURE_RM_BIT;
413 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
414 			FEATURE_DS_DCEFCLK_BIT;
415 	data->smu_features[GNLD_ACDC].smu_feature_id =
416 			FEATURE_ACDC_BIT;
417 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
418 			FEATURE_VR0HOT_BIT;
419 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
420 			FEATURE_VR1HOT_BIT;
421 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
422 			FEATURE_FW_CTF_BIT;
423 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
424 			FEATURE_LED_DISPLAY_BIT;
425 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
426 			FEATURE_FAN_CONTROL_BIT;
427 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
428 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
429 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
430 
431 	if (!data->registry_data.prefetcher_dpm_key_disabled)
432 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
433 
434 	if (!data->registry_data.sclk_dpm_key_disabled)
435 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
436 
437 	if (!data->registry_data.mclk_dpm_key_disabled)
438 		data->smu_features[GNLD_DPM_UCLK].supported = true;
439 
440 	if (!data->registry_data.socclk_dpm_key_disabled)
441 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
442 
443 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
444 		data->smu_features[GNLD_DPM_UVD].supported = true;
445 
446 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
447 		data->smu_features[GNLD_DPM_VCE].supported = true;
448 
449 	data->smu_features[GNLD_DPM_LINK].supported = true;
450 
451 	if (!data->registry_data.dcefclk_dpm_key_disabled)
452 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
453 
454 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
455 	    data->registry_data.sclk_deep_sleep_support) {
456 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
457 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
458 		data->smu_features[GNLD_DS_LCLK].supported = true;
459 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
460 	}
461 
462 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
463 		data->smu_features[GNLD_PPT].supported = true;
464 
465 	if (data->registry_data.enable_tdc_limit_feature)
466 		data->smu_features[GNLD_TDC].supported = true;
467 
468 	if (data->registry_data.thermal_support)
469 		data->smu_features[GNLD_THERMAL].supported = true;
470 
471 	if (data->registry_data.fan_control_support)
472 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
473 
474 	if (data->registry_data.fw_ctf_enabled)
475 		data->smu_features[GNLD_FW_CTF].supported = true;
476 
477 	if (data->registry_data.avfs_support)
478 		data->smu_features[GNLD_AVFS].supported = true;
479 
480 	if (data->registry_data.led_dpm_enabled)
481 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
482 
483 	if (data->registry_data.vr1hot_enabled)
484 		data->smu_features[GNLD_VR1HOT].supported = true;
485 
486 	if (data->registry_data.vr0hot_enabled)
487 		data->smu_features[GNLD_VR0HOT].supported = true;
488 
489 	smum_send_msg_to_smc(hwmgr,
490 			PPSMC_MSG_GetSmuVersion,
491 			&hwmgr->smu_version);
492 		/* ACG firmware has major version 5 */
493 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
494 		data->smu_features[GNLD_ACG].supported = true;
495 	if (data->registry_data.didt_support)
496 		data->smu_features[GNLD_DIDT].supported = true;
497 
498 	hw_revision = adev->pdev->revision;
499 	sub_vendor_id = adev->pdev->subsystem_vendor;
500 
501 	if ((hwmgr->chip_id == 0x6862 ||
502 		hwmgr->chip_id == 0x6861 ||
503 		hwmgr->chip_id == 0x6868) &&
504 		(hw_revision == 0) &&
505 		(sub_vendor_id != 0x1002))
506 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
507 
508 	/* Get the SN to turn into a Unique ID */
509 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
510 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
511 
512 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
513 }
514 
515 #ifdef PPLIB_VEGA10_EVV_SUPPORT
516 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
517 	phm_ppt_v1_voltage_lookup_table *lookup_table,
518 	uint16_t virtual_voltage_id, int32_t *socclk)
519 {
520 	uint8_t entry_id;
521 	uint8_t voltage_id;
522 	struct phm_ppt_v2_information *table_info =
523 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
524 
525 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
526 			"Lookup table is empty",
527 			return -EINVAL);
528 
529 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
530 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
531 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
532 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
533 			break;
534 	}
535 
536 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
537 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
538 			return -EINVAL);
539 
540 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
541 
542 	return 0;
543 }
544 
545 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
546 /**
547  * Get Leakage VDDC based on leakage ID.
548  *
549  * @hwmgr:  the address of the powerplay hardware manager.
550  * return:  always 0.
551  */
552 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
553 {
554 	struct vega10_hwmgr *data = hwmgr->backend;
555 	uint16_t vv_id;
556 	uint32_t vddc = 0;
557 	uint16_t i, j;
558 	uint32_t sclk = 0;
559 	struct phm_ppt_v2_information *table_info =
560 			(struct phm_ppt_v2_information *)hwmgr->pptable;
561 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
562 			table_info->vdd_dep_on_socclk;
563 	int result;
564 
565 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
566 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
567 
568 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
569 				table_info->vddc_lookup_table, vv_id, &sclk)) {
570 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
571 				for (j = 1; j < socclk_table->count; j++) {
572 					if (socclk_table->entries[j].clk == sclk &&
573 							socclk_table->entries[j].cks_enable == 0) {
574 						sclk += 5000;
575 						break;
576 					}
577 				}
578 			}
579 
580 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
581 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
582 					"Error retrieving EVV voltage value!",
583 					continue);
584 
585 
586 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
587 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
588 					"Invalid VDDC value", result = -EINVAL;);
589 
590 			/* the voltage should not be zero nor equal to leakage ID */
591 			if (vddc != 0 && vddc != vv_id) {
592 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
593 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
594 				data->vddc_leakage.count++;
595 			}
596 		}
597 	}
598 
599 	return 0;
600 }
601 
602 /**
603  * Change virtual leakage voltage to actual value.
604  *
605  * @hwmgr:         the address of the powerplay hardware manager.
606  * @voltage:       pointer to changing voltage
607  * @leakage_table: pointer to leakage table
608  */
609 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
610 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
611 {
612 	uint32_t index;
613 
614 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
615 	for (index = 0; index < leakage_table->count; index++) {
616 		/* if this voltage matches a leakage voltage ID */
617 		/* patch with actual leakage voltage */
618 		if (leakage_table->leakage_id[index] == *voltage) {
619 			*voltage = leakage_table->actual_voltage[index];
620 			break;
621 		}
622 	}
623 
624 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
625 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
626 }
627 
628 /**
629  * Patch voltage lookup table by EVV leakages.
630  *
631  * @hwmgr:         the address of the powerplay hardware manager.
632  * @lookup_table:  pointer to voltage lookup table
633  * @leakage_table: pointer to leakage table
634  * return:         always 0
635  */
636 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
637 		phm_ppt_v1_voltage_lookup_table *lookup_table,
638 		struct vega10_leakage_voltage *leakage_table)
639 {
640 	uint32_t i;
641 
642 	for (i = 0; i < lookup_table->count; i++)
643 		vega10_patch_with_vdd_leakage(hwmgr,
644 				&lookup_table->entries[i].us_vdd, leakage_table);
645 
646 	return 0;
647 }
648 
649 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
650 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
651 		uint16_t *vddc)
652 {
653 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
654 
655 	return 0;
656 }
657 #endif
658 
659 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
660 		struct pp_hwmgr *hwmgr)
661 {
662 	uint8_t entry_id, voltage_id;
663 	unsigned i;
664 	struct phm_ppt_v2_information *table_info =
665 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
666 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
667 			table_info->mm_dep_table;
668 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
669 			table_info->vdd_dep_on_mclk;
670 
671 	for (i = 0; i < 6; i++) {
672 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
673 		switch (i) {
674 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
675 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
676 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
677 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
678 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
679 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
680 		}
681 
682 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
683 			voltage_id = vdt->entries[entry_id].vddInd;
684 			vdt->entries[entry_id].vddc =
685 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
686 		}
687 	}
688 
689 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
690 		voltage_id = mm_table->entries[entry_id].vddcInd;
691 		mm_table->entries[entry_id].vddc =
692 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
693 	}
694 
695 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
696 		voltage_id = mclk_table->entries[entry_id].vddInd;
697 		mclk_table->entries[entry_id].vddc =
698 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
699 		voltage_id = mclk_table->entries[entry_id].vddciInd;
700 		mclk_table->entries[entry_id].vddci =
701 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
702 		voltage_id = mclk_table->entries[entry_id].mvddInd;
703 		mclk_table->entries[entry_id].mvdd =
704 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
705 	}
706 
707 
708 	return 0;
709 
710 }
711 
712 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
713 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
714 {
715 	uint32_t table_size, i, j;
716 
717 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
718 		"Lookup table is empty", return -EINVAL);
719 
720 	table_size = lookup_table->count;
721 
722 	/* Sorting voltages */
723 	for (i = 0; i < table_size - 1; i++) {
724 		for (j = i + 1; j > 0; j--) {
725 			if (lookup_table->entries[j].us_vdd <
726 					lookup_table->entries[j - 1].us_vdd) {
727 				swap(lookup_table->entries[j - 1],
728 				     lookup_table->entries[j]);
729 			}
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
737 {
738 	int result = 0;
739 	int tmp_result;
740 	struct phm_ppt_v2_information *table_info =
741 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
742 #ifdef PPLIB_VEGA10_EVV_SUPPORT
743 	struct vega10_hwmgr *data = hwmgr->backend;
744 
745 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
746 			table_info->vddc_lookup_table, &(data->vddc_leakage));
747 	if (tmp_result)
748 		result = tmp_result;
749 
750 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
751 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
752 	if (tmp_result)
753 		result = tmp_result;
754 #endif
755 
756 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
757 	if (tmp_result)
758 		result = tmp_result;
759 
760 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
761 	if (tmp_result)
762 		result = tmp_result;
763 
764 	return result;
765 }
766 
767 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
768 {
769 	struct phm_ppt_v2_information *table_info =
770 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
771 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
772 			table_info->vdd_dep_on_socclk;
773 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
774 			table_info->vdd_dep_on_mclk;
775 
776 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
777 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
778 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
779 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
780 
781 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
782 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
783 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
784 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
785 
786 	table_info->max_clock_voltage_on_ac.sclk =
787 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
788 	table_info->max_clock_voltage_on_ac.mclk =
789 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
790 	table_info->max_clock_voltage_on_ac.vddc =
791 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
792 	table_info->max_clock_voltage_on_ac.vddci =
793 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
794 
795 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
796 		table_info->max_clock_voltage_on_ac.sclk;
797 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
798 		table_info->max_clock_voltage_on_ac.mclk;
799 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
800 		table_info->max_clock_voltage_on_ac.vddc;
801 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
802 		table_info->max_clock_voltage_on_ac.vddci;
803 
804 	return 0;
805 }
806 
807 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
808 {
809 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
810 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
811 
812 	kfree(hwmgr->backend);
813 	hwmgr->backend = NULL;
814 
815 	return 0;
816 }
817 
818 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
819 {
820 	int result = 0;
821 	struct vega10_hwmgr *data;
822 	uint32_t config_telemetry = 0;
823 	struct pp_atomfwctrl_voltage_table vol_table;
824 	struct amdgpu_device *adev = hwmgr->adev;
825 
826 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
827 	if (data == NULL)
828 		return -ENOMEM;
829 
830 	hwmgr->backend = data;
831 
832 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
833 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
834 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
835 
836 	vega10_set_default_registry_data(hwmgr);
837 	data->disable_dpm_mask = 0xff;
838 
839 	/* need to set voltage control types before EVV patching */
840 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
842 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
843 
844 	/* VDDCR_SOC */
845 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
846 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
847 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
848 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
849 				&vol_table)) {
850 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
851 					(vol_table.telemetry_offset & 0xff);
852 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
853 		}
854 	} else {
855 		kfree(hwmgr->backend);
856 		hwmgr->backend = NULL;
857 		PP_ASSERT_WITH_CODE(false,
858 				"VDDCR_SOC is not SVID2!",
859 				return -1);
860 	}
861 
862 	/* MVDDC */
863 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
864 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
865 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
866 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
867 				&vol_table)) {
868 			config_telemetry |=
869 					((vol_table.telemetry_slope << 24) & 0xff000000) |
870 					((vol_table.telemetry_offset << 16) & 0xff0000);
871 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
872 		}
873 	}
874 
875 	 /* VDDCI_MEM */
876 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
877 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
878 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
879 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
880 	}
881 
882 	data->config_telemetry = config_telemetry;
883 
884 	vega10_set_features_platform_caps(hwmgr);
885 
886 	vega10_init_dpm_defaults(hwmgr);
887 
888 #ifdef PPLIB_VEGA10_EVV_SUPPORT
889 	/* Get leakage voltage based on leakage ID. */
890 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
891 			"Get EVV Voltage Failed.  Abort Driver loading!",
892 			return -1);
893 #endif
894 
895 	/* Patch our voltage dependency table with actual leakage voltage
896 	 * We need to perform leakage translation before it's used by other functions
897 	 */
898 	vega10_complete_dependency_tables(hwmgr);
899 
900 	/* Parse pptable data read from VBIOS */
901 	vega10_set_private_data_based_on_pptable(hwmgr);
902 
903 	data->is_tlu_enabled = false;
904 
905 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
906 			VEGA10_MAX_HARDWARE_POWERLEVELS;
907 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
908 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
909 
910 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
911 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
912 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
913 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
914 
915 	data->total_active_cus = adev->gfx.cu_info.number;
916 	if (!hwmgr->not_vf)
917 		return result;
918 
919 	/* Setup default Overdrive Fan control settings */
920 	data->odn_fan_table.target_fan_speed =
921 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
922 	data->odn_fan_table.target_temperature =
923 			hwmgr->thermal_controller.
924 			advanceFanControlParameters.ucTargetTemperature;
925 	data->odn_fan_table.min_performance_clock =
926 			hwmgr->thermal_controller.advanceFanControlParameters.
927 			ulMinFanSCLKAcousticLimit;
928 	data->odn_fan_table.min_fan_limit =
929 			hwmgr->thermal_controller.
930 			advanceFanControlParameters.usFanPWMMinLimit *
931 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
932 
933 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
934 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
935 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
936 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
937 			"Mem Channel Index Exceeded maximum!",
938 			return -EINVAL);
939 
940 	return result;
941 }
942 
943 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
944 {
945 	struct vega10_hwmgr *data = hwmgr->backend;
946 
947 	data->low_sclk_interrupt_threshold = 0;
948 
949 	return 0;
950 }
951 
952 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
953 {
954 	struct vega10_hwmgr *data = hwmgr->backend;
955 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
956 
957 	struct pp_atomfwctrl_voltage_table table;
958 	uint8_t i, j;
959 	uint32_t mask = 0;
960 	uint32_t tmp;
961 	int32_t ret = 0;
962 
963 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
964 						VOLTAGE_OBJ_GPIO_LUT, &table);
965 
966 	if (!ret) {
967 		tmp = table.mask_low;
968 		for (i = 0, j = 0; i < 32; i++) {
969 			if (tmp & 1) {
970 				mask |= (uint32_t)(i << (8 * j));
971 				if (++j >= 3)
972 					break;
973 			}
974 			tmp >>= 1;
975 		}
976 	}
977 
978 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
979 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
980 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
981 	return 0;
982 }
983 
984 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
985 {
986 	if (!hwmgr->not_vf)
987 		return 0;
988 
989 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
990 			"Failed to init sclk threshold!",
991 			return -EINVAL);
992 
993 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
994 			"Failed to set up led dpm config!",
995 			return -EINVAL);
996 
997 	smum_send_msg_to_smc_with_parameter(hwmgr,
998 				PPSMC_MSG_NumOfDisplays,
999 				0,
1000 				NULL);
1001 
1002 	return 0;
1003 }
1004 
1005 /**
1006  * Remove repeated voltage values and create table with unique values.
1007  *
1008  * @hwmgr:      the address of the powerplay hardware manager.
1009  * @vol_table:  the pointer to changing voltage table
1010  * return:      0 in success
1011  */
1012 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1013 		struct pp_atomfwctrl_voltage_table *vol_table)
1014 {
1015 	uint32_t i, j;
1016 	uint16_t vvalue;
1017 	bool found = false;
1018 	struct pp_atomfwctrl_voltage_table *table;
1019 
1020 	PP_ASSERT_WITH_CODE(vol_table,
1021 			"Voltage Table empty.", return -EINVAL);
1022 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1023 			GFP_KERNEL);
1024 
1025 	if (!table)
1026 		return -ENOMEM;
1027 
1028 	table->mask_low = vol_table->mask_low;
1029 	table->phase_delay = vol_table->phase_delay;
1030 
1031 	for (i = 0; i < vol_table->count; i++) {
1032 		vvalue = vol_table->entries[i].value;
1033 		found = false;
1034 
1035 		for (j = 0; j < table->count; j++) {
1036 			if (vvalue == table->entries[j].value) {
1037 				found = true;
1038 				break;
1039 			}
1040 		}
1041 
1042 		if (!found) {
1043 			table->entries[table->count].value = vvalue;
1044 			table->entries[table->count].smio_low =
1045 					vol_table->entries[i].smio_low;
1046 			table->count++;
1047 		}
1048 	}
1049 
1050 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1051 	kfree(table);
1052 
1053 	return 0;
1054 }
1055 
1056 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1057 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1058 		struct pp_atomfwctrl_voltage_table *vol_table)
1059 {
1060 	int i;
1061 
1062 	PP_ASSERT_WITH_CODE(dep_table->count,
1063 			"Voltage Dependency Table empty.",
1064 			return -EINVAL);
1065 
1066 	vol_table->mask_low = 0;
1067 	vol_table->phase_delay = 0;
1068 	vol_table->count = dep_table->count;
1069 
1070 	for (i = 0; i < vol_table->count; i++) {
1071 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1072 		vol_table->entries[i].smio_low = 0;
1073 	}
1074 
1075 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1076 			vol_table),
1077 			"Failed to trim MVDD Table!",
1078 			return -1);
1079 
1080 	return 0;
1081 }
1082 
1083 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1084 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1085 		struct pp_atomfwctrl_voltage_table *vol_table)
1086 {
1087 	uint32_t i;
1088 
1089 	PP_ASSERT_WITH_CODE(dep_table->count,
1090 			"Voltage Dependency Table empty.",
1091 			return -EINVAL);
1092 
1093 	vol_table->mask_low = 0;
1094 	vol_table->phase_delay = 0;
1095 	vol_table->count = dep_table->count;
1096 
1097 	for (i = 0; i < dep_table->count; i++) {
1098 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1099 		vol_table->entries[i].smio_low = 0;
1100 	}
1101 
1102 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1103 			"Failed to trim VDDCI table.",
1104 			return -1);
1105 
1106 	return 0;
1107 }
1108 
1109 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1110 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1111 		struct pp_atomfwctrl_voltage_table *vol_table)
1112 {
1113 	int i;
1114 
1115 	PP_ASSERT_WITH_CODE(dep_table->count,
1116 			"Voltage Dependency Table empty.",
1117 			return -EINVAL);
1118 
1119 	vol_table->mask_low = 0;
1120 	vol_table->phase_delay = 0;
1121 	vol_table->count = dep_table->count;
1122 
1123 	for (i = 0; i < vol_table->count; i++) {
1124 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1125 		vol_table->entries[i].smio_low = 0;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
1131 /* ---- Voltage Tables ----
1132  * If the voltage table would be bigger than
1133  * what will fit into the state table on
1134  * the SMC keep only the higher entries.
1135  */
1136 static void vega10_trim_voltage_table_to_fit_state_table(
1137 		struct pp_hwmgr *hwmgr,
1138 		uint32_t max_vol_steps,
1139 		struct pp_atomfwctrl_voltage_table *vol_table)
1140 {
1141 	unsigned int i, diff;
1142 
1143 	if (vol_table->count <= max_vol_steps)
1144 		return;
1145 
1146 	diff = vol_table->count - max_vol_steps;
1147 
1148 	for (i = 0; i < max_vol_steps; i++)
1149 		vol_table->entries[i] = vol_table->entries[i + diff];
1150 
1151 	vol_table->count = max_vol_steps;
1152 }
1153 
1154 /**
1155  * Create Voltage Tables.
1156  *
1157  * @hwmgr:  the address of the powerplay hardware manager.
1158  * return:  always 0
1159  */
1160 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1161 {
1162 	struct vega10_hwmgr *data = hwmgr->backend;
1163 	struct phm_ppt_v2_information *table_info =
1164 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1165 	int result;
1166 
1167 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1168 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1169 		result = vega10_get_mvdd_voltage_table(hwmgr,
1170 				table_info->vdd_dep_on_mclk,
1171 				&(data->mvdd_voltage_table));
1172 		PP_ASSERT_WITH_CODE(!result,
1173 				"Failed to retrieve MVDDC table!",
1174 				return result);
1175 	}
1176 
1177 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1178 		result = vega10_get_vddci_voltage_table(hwmgr,
1179 				table_info->vdd_dep_on_mclk,
1180 				&(data->vddci_voltage_table));
1181 		PP_ASSERT_WITH_CODE(!result,
1182 				"Failed to retrieve VDDCI_MEM table!",
1183 				return result);
1184 	}
1185 
1186 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1187 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1188 		result = vega10_get_vdd_voltage_table(hwmgr,
1189 				table_info->vdd_dep_on_sclk,
1190 				&(data->vddc_voltage_table));
1191 		PP_ASSERT_WITH_CODE(!result,
1192 				"Failed to retrieve VDDCR_SOC table!",
1193 				return result);
1194 	}
1195 
1196 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1197 			"Too many voltage values for VDDC. Trimming to fit state table.",
1198 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1199 					16, &(data->vddc_voltage_table)));
1200 
1201 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1202 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1203 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1204 					16, &(data->vddci_voltage_table)));
1205 
1206 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1207 			"Too many voltage values for MVDD. Trimming to fit state table.",
1208 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1209 					16, &(data->mvdd_voltage_table)));
1210 
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * vega10_init_dpm_state
1217  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1218  *
1219  * @dpm_state: - the address of the DPM Table to initiailize.
1220  * return:   None.
1221  */
1222 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1223 {
1224 	dpm_state->soft_min_level = 0xff;
1225 	dpm_state->soft_max_level = 0xff;
1226 	dpm_state->hard_min_level = 0xff;
1227 	dpm_state->hard_max_level = 0xff;
1228 }
1229 
1230 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1231 		struct vega10_single_dpm_table *dpm_table,
1232 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1233 {
1234 	int i;
1235 
1236 	dpm_table->count = 0;
1237 
1238 	for (i = 0; i < dep_table->count; i++) {
1239 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1240 				dep_table->entries[i].clk) {
1241 			dpm_table->dpm_levels[dpm_table->count].value =
1242 					dep_table->entries[i].clk;
1243 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1244 			dpm_table->count++;
1245 		}
1246 	}
1247 }
1248 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1249 {
1250 	struct vega10_hwmgr *data = hwmgr->backend;
1251 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1252 	struct phm_ppt_v2_information *table_info =
1253 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1254 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1255 			table_info->pcie_table;
1256 	uint32_t i;
1257 
1258 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1259 			"Incorrect number of PCIE States from VBIOS!",
1260 			return -1);
1261 
1262 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1263 		if (data->registry_data.pcieSpeedOverride)
1264 			pcie_table->pcie_gen[i] =
1265 					data->registry_data.pcieSpeedOverride;
1266 		else
1267 			pcie_table->pcie_gen[i] =
1268 					bios_pcie_table->entries[i].gen_speed;
1269 
1270 		if (data->registry_data.pcieLaneOverride)
1271 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1272 					data->registry_data.pcieLaneOverride);
1273 		else
1274 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1275 							bios_pcie_table->entries[i].lane_width);
1276 		if (data->registry_data.pcieClockOverride)
1277 			pcie_table->lclk[i] =
1278 					data->registry_data.pcieClockOverride;
1279 		else
1280 			pcie_table->lclk[i] =
1281 					bios_pcie_table->entries[i].pcie_sclk;
1282 	}
1283 
1284 	pcie_table->count = NUM_LINK_LEVELS;
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * This function is to initialize all DPM state tables
1291  * for SMU based on the dependency table.
1292  * Dynamic state patching function will then trim these
1293  * state tables to the allowed range based
1294  * on the power policy or external client requests,
1295  * such as UVD request, etc.
1296  */
1297 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1298 {
1299 	struct vega10_hwmgr *data = hwmgr->backend;
1300 	struct phm_ppt_v2_information *table_info =
1301 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1302 	struct vega10_single_dpm_table *dpm_table;
1303 	uint32_t i;
1304 
1305 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1306 			table_info->vdd_dep_on_socclk;
1307 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1308 			table_info->vdd_dep_on_sclk;
1309 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1310 			table_info->vdd_dep_on_mclk;
1311 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1312 			table_info->mm_dep_table;
1313 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1314 			table_info->vdd_dep_on_dcefclk;
1315 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1316 			table_info->vdd_dep_on_pixclk;
1317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1318 			table_info->vdd_dep_on_dispclk;
1319 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1320 			table_info->vdd_dep_on_phyclk;
1321 
1322 	PP_ASSERT_WITH_CODE(dep_soc_table,
1323 			"SOCCLK dependency table is missing. This table is mandatory",
1324 			return -EINVAL);
1325 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1326 			"SOCCLK dependency table is empty. This table is mandatory",
1327 			return -EINVAL);
1328 
1329 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1330 			"GFXCLK dependency table is missing. This table is mandatory",
1331 			return -EINVAL);
1332 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1333 			"GFXCLK dependency table is empty. This table is mandatory",
1334 			return -EINVAL);
1335 
1336 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1337 			"MCLK dependency table is missing. This table is mandatory",
1338 			return -EINVAL);
1339 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1340 			"MCLK dependency table has to have is missing. This table is mandatory",
1341 			return -EINVAL);
1342 
1343 	/* Initialize Sclk DPM table based on allow Sclk values */
1344 	dpm_table = &(data->dpm_table.soc_table);
1345 	vega10_setup_default_single_dpm_table(hwmgr,
1346 			dpm_table,
1347 			dep_soc_table);
1348 
1349 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1350 
1351 	dpm_table = &(data->dpm_table.gfx_table);
1352 	vega10_setup_default_single_dpm_table(hwmgr,
1353 			dpm_table,
1354 			dep_gfx_table);
1355 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1356 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1357 					dpm_table->dpm_levels[dpm_table->count-1].value;
1358 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1359 
1360 	/* Initialize Mclk DPM table based on allow Mclk values */
1361 	data->dpm_table.mem_table.count = 0;
1362 	dpm_table = &(data->dpm_table.mem_table);
1363 	vega10_setup_default_single_dpm_table(hwmgr,
1364 			dpm_table,
1365 			dep_mclk_table);
1366 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1367 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1368 					dpm_table->dpm_levels[dpm_table->count-1].value;
1369 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1370 
1371 	data->dpm_table.eclk_table.count = 0;
1372 	dpm_table = &(data->dpm_table.eclk_table);
1373 	for (i = 0; i < dep_mm_table->count; i++) {
1374 		if (i == 0 || dpm_table->dpm_levels
1375 				[dpm_table->count - 1].value <=
1376 						dep_mm_table->entries[i].eclk) {
1377 			dpm_table->dpm_levels[dpm_table->count].value =
1378 					dep_mm_table->entries[i].eclk;
1379 			dpm_table->dpm_levels[dpm_table->count].enabled =
1380 					(i == 0) ? true : false;
1381 			dpm_table->count++;
1382 		}
1383 	}
1384 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1385 
1386 	data->dpm_table.vclk_table.count = 0;
1387 	data->dpm_table.dclk_table.count = 0;
1388 	dpm_table = &(data->dpm_table.vclk_table);
1389 	for (i = 0; i < dep_mm_table->count; i++) {
1390 		if (i == 0 || dpm_table->dpm_levels
1391 				[dpm_table->count - 1].value <=
1392 						dep_mm_table->entries[i].vclk) {
1393 			dpm_table->dpm_levels[dpm_table->count].value =
1394 					dep_mm_table->entries[i].vclk;
1395 			dpm_table->dpm_levels[dpm_table->count].enabled =
1396 					(i == 0) ? true : false;
1397 			dpm_table->count++;
1398 		}
1399 	}
1400 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1401 
1402 	dpm_table = &(data->dpm_table.dclk_table);
1403 	for (i = 0; i < dep_mm_table->count; i++) {
1404 		if (i == 0 || dpm_table->dpm_levels
1405 				[dpm_table->count - 1].value <=
1406 						dep_mm_table->entries[i].dclk) {
1407 			dpm_table->dpm_levels[dpm_table->count].value =
1408 					dep_mm_table->entries[i].dclk;
1409 			dpm_table->dpm_levels[dpm_table->count].enabled =
1410 					(i == 0) ? true : false;
1411 			dpm_table->count++;
1412 		}
1413 	}
1414 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1415 
1416 	/* Assume there is no headless Vega10 for now */
1417 	dpm_table = &(data->dpm_table.dcef_table);
1418 	vega10_setup_default_single_dpm_table(hwmgr,
1419 			dpm_table,
1420 			dep_dcef_table);
1421 
1422 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1423 
1424 	dpm_table = &(data->dpm_table.pixel_table);
1425 	vega10_setup_default_single_dpm_table(hwmgr,
1426 			dpm_table,
1427 			dep_pix_table);
1428 
1429 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1430 
1431 	dpm_table = &(data->dpm_table.display_table);
1432 	vega10_setup_default_single_dpm_table(hwmgr,
1433 			dpm_table,
1434 			dep_disp_table);
1435 
1436 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1437 
1438 	dpm_table = &(data->dpm_table.phy_table);
1439 	vega10_setup_default_single_dpm_table(hwmgr,
1440 			dpm_table,
1441 			dep_phy_table);
1442 
1443 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1444 
1445 	vega10_setup_default_pcie_table(hwmgr);
1446 
1447 	/* Zero out the saved copy of the CUSTOM profile
1448 	 * This will be checked when trying to set the profile
1449 	 * and will require that new values be passed in
1450 	 */
1451 	data->custom_profile_mode[0] = 0;
1452 	data->custom_profile_mode[1] = 0;
1453 	data->custom_profile_mode[2] = 0;
1454 	data->custom_profile_mode[3] = 0;
1455 
1456 	/* save a copy of the default DPM table */
1457 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1458 			sizeof(struct vega10_dpm_table));
1459 
1460 	return 0;
1461 }
1462 
1463 /*
1464  * vega10_populate_ulv_state
1465  * Function to provide parameters for Utral Low Voltage state to SMC.
1466  *
1467  * @hwmgr: - the address of the hardware manager.
1468  * return:   Always 0.
1469  */
1470 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1471 {
1472 	struct vega10_hwmgr *data = hwmgr->backend;
1473 	struct phm_ppt_v2_information *table_info =
1474 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1475 
1476 	data->smc_state_table.pp_table.UlvOffsetVid =
1477 			(uint8_t)table_info->us_ulv_voltage_offset;
1478 
1479 	data->smc_state_table.pp_table.UlvSmnclkDid =
1480 			(uint8_t)(table_info->us_ulv_smnclk_did);
1481 	data->smc_state_table.pp_table.UlvMp1clkDid =
1482 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1483 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1484 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1485 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1486 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1487 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1488 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1489 
1490 	return 0;
1491 }
1492 
1493 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1494 		uint32_t lclock, uint8_t *curr_lclk_did)
1495 {
1496 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1497 
1498 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1499 			hwmgr,
1500 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1501 			lclock, &dividers),
1502 			"Failed to get LCLK clock settings from VBIOS!",
1503 			return -1);
1504 
1505 	*curr_lclk_did = dividers.ulDid;
1506 
1507 	return 0;
1508 }
1509 
1510 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr)
1511 {
1512 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
1513 	struct vega10_hwmgr *data =
1514 			(struct vega10_hwmgr *)(hwmgr->backend);
1515 	uint32_t pcie_gen = 0, pcie_width = 0;
1516 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1517 	int i;
1518 
1519 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1520 		pcie_gen = 3;
1521 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1522 		pcie_gen = 2;
1523 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1524 		pcie_gen = 1;
1525 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1526 		pcie_gen = 0;
1527 
1528 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1529 		pcie_width = 6;
1530 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1531 		pcie_width = 5;
1532 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1533 		pcie_width = 4;
1534 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1535 		pcie_width = 3;
1536 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1537 		pcie_width = 2;
1538 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1539 		pcie_width = 1;
1540 
1541 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1542 		if (pp_table->PcieGenSpeed[i] > pcie_gen)
1543 			pp_table->PcieGenSpeed[i] = pcie_gen;
1544 
1545 		if (pp_table->PcieLaneCount[i] > pcie_width)
1546 			pp_table->PcieLaneCount[i] = pcie_width;
1547 	}
1548 
1549 	if (data->registry_data.pcie_dpm_key_disabled) {
1550 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
1551 			pp_table->PcieGenSpeed[i] = pcie_gen;
1552 			pp_table->PcieLaneCount[i] = pcie_width;
1553 		}
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1560 {
1561 	int result = -1;
1562 	struct vega10_hwmgr *data = hwmgr->backend;
1563 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1564 	struct vega10_pcie_table *pcie_table =
1565 			&(data->dpm_table.pcie_table);
1566 	uint32_t i, j;
1567 
1568 	for (i = 0; i < pcie_table->count; i++) {
1569 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1570 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1571 
1572 		result = vega10_populate_single_lclk_level(hwmgr,
1573 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1574 		if (result) {
1575 			pr_info("Populate LClock Level %d Failed!\n", i);
1576 			return result;
1577 		}
1578 	}
1579 
1580 	j = i - 1;
1581 	while (i < NUM_LINK_LEVELS) {
1582 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1583 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1584 
1585 		result = vega10_populate_single_lclk_level(hwmgr,
1586 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1587 		if (result) {
1588 			pr_info("Populate LClock Level %d Failed!\n", i);
1589 			return result;
1590 		}
1591 		i++;
1592 	}
1593 
1594 	return result;
1595 }
1596 
1597 /**
1598  * Populates single SMC GFXSCLK structure using the provided engine clock
1599  *
1600  * @hwmgr:      the address of the hardware manager
1601  * @gfx_clock:  the GFX clock to use to populate the structure.
1602  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1603  * @acg_freq:   ACG frequenty to return (MHz)
1604  */
1605 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1606 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1607 		uint32_t *acg_freq)
1608 {
1609 	struct phm_ppt_v2_information *table_info =
1610 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1611 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1612 	struct vega10_hwmgr *data = hwmgr->backend;
1613 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1614 	uint32_t gfx_max_clock =
1615 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1616 	uint32_t i = 0;
1617 
1618 	if (hwmgr->od_enabled)
1619 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1620 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1621 	else
1622 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1623 
1624 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1625 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1626 			return -EINVAL);
1627 
1628 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1629 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1630 	else {
1631 		for (i = 0; i < dep_on_sclk->count; i++) {
1632 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1633 				break;
1634 		}
1635 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1636 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1637 				return -EINVAL);
1638 	}
1639 
1640 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1641 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1642 			gfx_clock, &dividers),
1643 			"Failed to get GFX Clock settings from VBIOS!",
1644 			return -EINVAL);
1645 
1646 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1647 	current_gfxclk_level->FbMult =
1648 			cpu_to_le32(dividers.ulPll_fb_mult);
1649 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1650 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1651 	current_gfxclk_level->SsFbMult =
1652 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1653 	current_gfxclk_level->SsSlewFrac =
1654 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1655 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1656 
1657 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * Populates single SMC SOCCLK structure using the provided clock.
1664  *
1665  * @hwmgr:     the address of the hardware manager.
1666  * @soc_clock: the SOC clock to use to populate the structure.
1667  * @current_soc_did:   DFS divider to pass back to caller
1668  * @current_vol_index: index of current VDD to pass back to caller
1669  * return:      0 on success
1670  */
1671 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1672 		uint32_t soc_clock, uint8_t *current_soc_did,
1673 		uint8_t *current_vol_index)
1674 {
1675 	struct vega10_hwmgr *data = hwmgr->backend;
1676 	struct phm_ppt_v2_information *table_info =
1677 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1678 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1679 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1680 	uint32_t i;
1681 
1682 	if (hwmgr->od_enabled) {
1683 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1684 						&data->odn_dpm_table.vdd_dep_on_socclk;
1685 		for (i = 0; i < dep_on_soc->count; i++) {
1686 			if (dep_on_soc->entries[i].clk >= soc_clock)
1687 				break;
1688 		}
1689 	} else {
1690 		dep_on_soc = table_info->vdd_dep_on_socclk;
1691 		for (i = 0; i < dep_on_soc->count; i++) {
1692 			if (dep_on_soc->entries[i].clk == soc_clock)
1693 				break;
1694 		}
1695 	}
1696 
1697 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1698 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1699 			return -EINVAL);
1700 
1701 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1702 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1703 			soc_clock, &dividers),
1704 			"Failed to get SOC Clock settings from VBIOS!",
1705 			return -EINVAL);
1706 
1707 	*current_soc_did = (uint8_t)dividers.ulDid;
1708 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1709 	return 0;
1710 }
1711 
1712 /**
1713  * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1714  *
1715  * @hwmgr:      the address of the hardware manager
1716  */
1717 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1718 {
1719 	struct vega10_hwmgr *data = hwmgr->backend;
1720 	struct phm_ppt_v2_information *table_info =
1721 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1722 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1723 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1724 	int result = 0;
1725 	uint32_t i, j;
1726 
1727 	for (i = 0; i < dpm_table->count; i++) {
1728 		result = vega10_populate_single_gfx_level(hwmgr,
1729 				dpm_table->dpm_levels[i].value,
1730 				&(pp_table->GfxclkLevel[i]),
1731 				&(pp_table->AcgFreqTable[i]));
1732 		if (result)
1733 			return result;
1734 	}
1735 
1736 	j = i - 1;
1737 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1738 		result = vega10_populate_single_gfx_level(hwmgr,
1739 				dpm_table->dpm_levels[j].value,
1740 				&(pp_table->GfxclkLevel[i]),
1741 				&(pp_table->AcgFreqTable[i]));
1742 		if (result)
1743 			return result;
1744 		i++;
1745 	}
1746 
1747 	pp_table->GfxclkSlewRate =
1748 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1749 
1750 	dpm_table = &(data->dpm_table.soc_table);
1751 	for (i = 0; i < dpm_table->count; i++) {
1752 		result = vega10_populate_single_soc_level(hwmgr,
1753 				dpm_table->dpm_levels[i].value,
1754 				&(pp_table->SocclkDid[i]),
1755 				&(pp_table->SocDpmVoltageIndex[i]));
1756 		if (result)
1757 			return result;
1758 	}
1759 
1760 	j = i - 1;
1761 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1762 		result = vega10_populate_single_soc_level(hwmgr,
1763 				dpm_table->dpm_levels[j].value,
1764 				&(pp_table->SocclkDid[i]),
1765 				&(pp_table->SocDpmVoltageIndex[i]));
1766 		if (result)
1767 			return result;
1768 		i++;
1769 	}
1770 
1771 	return result;
1772 }
1773 
1774 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1775 {
1776 	struct vega10_hwmgr *data = hwmgr->backend;
1777 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1778 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1779 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1780 
1781 	uint8_t soc_vid = 0;
1782 	uint32_t i, max_vddc_level;
1783 
1784 	if (hwmgr->od_enabled)
1785 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1786 	else
1787 		vddc_lookup_table = table_info->vddc_lookup_table;
1788 
1789 	max_vddc_level = vddc_lookup_table->count;
1790 	for (i = 0; i < max_vddc_level; i++) {
1791 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1792 		pp_table->SocVid[i] = soc_vid;
1793 	}
1794 	while (i < MAX_REGULAR_DPM_NUMBER) {
1795 		pp_table->SocVid[i] = soc_vid;
1796 		i++;
1797 	}
1798 }
1799 
1800 /*
1801  * Populates single SMC GFXCLK structure using the provided clock.
1802  *
1803  * @hwmgr:     the address of the hardware manager.
1804  * @mem_clock: the memory clock to use to populate the structure.
1805  * return:     0 on success..
1806  */
1807 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1808 		uint32_t mem_clock, uint8_t *current_mem_vid,
1809 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1810 {
1811 	struct vega10_hwmgr *data = hwmgr->backend;
1812 	struct phm_ppt_v2_information *table_info =
1813 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1814 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1815 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1816 	uint32_t mem_max_clock =
1817 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1818 	uint32_t i = 0;
1819 
1820 	if (hwmgr->od_enabled)
1821 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1822 					&data->odn_dpm_table.vdd_dep_on_mclk;
1823 	else
1824 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1825 
1826 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1827 			"Invalid SOC_VDD-UCLK Dependency Table!",
1828 			return -EINVAL);
1829 
1830 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1831 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1832 	} else {
1833 		for (i = 0; i < dep_on_mclk->count; i++) {
1834 			if (dep_on_mclk->entries[i].clk == mem_clock)
1835 				break;
1836 		}
1837 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1838 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1839 				return -EINVAL);
1840 	}
1841 
1842 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1843 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1844 			"Failed to get UCLK settings from VBIOS!",
1845 			return -1);
1846 
1847 	*current_mem_vid =
1848 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1849 	*current_mem_soc_vind =
1850 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1851 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1852 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1853 
1854 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1855 			"Invalid Divider ID!",
1856 			return -EINVAL);
1857 
1858 	return 0;
1859 }
1860 
1861 /**
1862  * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1863  *
1864  * @hwmgr:  the address of the hardware manager.
1865  * return:   PP_Result_OK on success.
1866  */
1867 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1868 {
1869 	struct vega10_hwmgr *data = hwmgr->backend;
1870 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1871 	struct vega10_single_dpm_table *dpm_table =
1872 			&(data->dpm_table.mem_table);
1873 	int result = 0;
1874 	uint32_t i, j;
1875 
1876 	for (i = 0; i < dpm_table->count; i++) {
1877 		result = vega10_populate_single_memory_level(hwmgr,
1878 				dpm_table->dpm_levels[i].value,
1879 				&(pp_table->MemVid[i]),
1880 				&(pp_table->UclkLevel[i]),
1881 				&(pp_table->MemSocVoltageIndex[i]));
1882 		if (result)
1883 			return result;
1884 	}
1885 
1886 	j = i - 1;
1887 	while (i < NUM_UCLK_DPM_LEVELS) {
1888 		result = vega10_populate_single_memory_level(hwmgr,
1889 				dpm_table->dpm_levels[j].value,
1890 				&(pp_table->MemVid[i]),
1891 				&(pp_table->UclkLevel[i]),
1892 				&(pp_table->MemSocVoltageIndex[i]));
1893 		if (result)
1894 			return result;
1895 		i++;
1896 	}
1897 
1898 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1899 	pp_table->MemoryChannelWidth =
1900 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1901 					channel_number[data->mem_channels]);
1902 
1903 	pp_table->LowestUclkReservedForUlv =
1904 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1905 
1906 	return result;
1907 }
1908 
1909 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1910 		DSPCLK_e disp_clock)
1911 {
1912 	struct vega10_hwmgr *data = hwmgr->backend;
1913 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1914 	struct phm_ppt_v2_information *table_info =
1915 			(struct phm_ppt_v2_information *)
1916 			(hwmgr->pptable);
1917 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1918 	uint32_t i;
1919 	uint16_t clk = 0, vddc = 0;
1920 	uint8_t vid = 0;
1921 
1922 	switch (disp_clock) {
1923 	case DSPCLK_DCEFCLK:
1924 		dep_table = table_info->vdd_dep_on_dcefclk;
1925 		break;
1926 	case DSPCLK_DISPCLK:
1927 		dep_table = table_info->vdd_dep_on_dispclk;
1928 		break;
1929 	case DSPCLK_PIXCLK:
1930 		dep_table = table_info->vdd_dep_on_pixclk;
1931 		break;
1932 	case DSPCLK_PHYCLK:
1933 		dep_table = table_info->vdd_dep_on_phyclk;
1934 		break;
1935 	default:
1936 		return -1;
1937 	}
1938 
1939 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1940 			"Number Of Entries Exceeded maximum!",
1941 			return -1);
1942 
1943 	for (i = 0; i < dep_table->count; i++) {
1944 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1945 		vddc = table_info->vddc_lookup_table->
1946 				entries[dep_table->entries[i].vddInd].us_vdd;
1947 		vid = (uint8_t)convert_to_vid(vddc);
1948 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1949 				cpu_to_le16(clk);
1950 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1951 				cpu_to_le16(vid);
1952 	}
1953 
1954 	while (i < NUM_DSPCLK_LEVELS) {
1955 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1956 				cpu_to_le16(clk);
1957 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1958 				cpu_to_le16(vid);
1959 		i++;
1960 	}
1961 
1962 	return 0;
1963 }
1964 
1965 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1966 {
1967 	uint32_t i;
1968 
1969 	for (i = 0; i < DSPCLK_COUNT; i++) {
1970 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1971 				"Failed to populate Clock in DisplayClockTable!",
1972 				return -1);
1973 	}
1974 
1975 	return 0;
1976 }
1977 
1978 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1979 		uint32_t eclock, uint8_t *current_eclk_did,
1980 		uint8_t *current_soc_vol)
1981 {
1982 	struct phm_ppt_v2_information *table_info =
1983 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1984 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1985 			table_info->mm_dep_table;
1986 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1987 	uint32_t i;
1988 
1989 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1990 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1991 			eclock, &dividers),
1992 			"Failed to get ECLK clock settings from VBIOS!",
1993 			return -1);
1994 
1995 	*current_eclk_did = (uint8_t)dividers.ulDid;
1996 
1997 	for (i = 0; i < dep_table->count; i++) {
1998 		if (dep_table->entries[i].eclk == eclock)
1999 			*current_soc_vol = dep_table->entries[i].vddcInd;
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
2006 {
2007 	struct vega10_hwmgr *data = hwmgr->backend;
2008 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2009 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
2010 	int result = -EINVAL;
2011 	uint32_t i, j;
2012 
2013 	for (i = 0; i < dpm_table->count; i++) {
2014 		result = vega10_populate_single_eclock_level(hwmgr,
2015 				dpm_table->dpm_levels[i].value,
2016 				&(pp_table->EclkDid[i]),
2017 				&(pp_table->VceDpmVoltageIndex[i]));
2018 		if (result)
2019 			return result;
2020 	}
2021 
2022 	j = i - 1;
2023 	while (i < NUM_VCE_DPM_LEVELS) {
2024 		result = vega10_populate_single_eclock_level(hwmgr,
2025 				dpm_table->dpm_levels[j].value,
2026 				&(pp_table->EclkDid[i]),
2027 				&(pp_table->VceDpmVoltageIndex[i]));
2028 		if (result)
2029 			return result;
2030 		i++;
2031 	}
2032 
2033 	return result;
2034 }
2035 
2036 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
2037 		uint32_t vclock, uint8_t *current_vclk_did)
2038 {
2039 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2040 
2041 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2042 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2043 			vclock, &dividers),
2044 			"Failed to get VCLK clock settings from VBIOS!",
2045 			return -EINVAL);
2046 
2047 	*current_vclk_did = (uint8_t)dividers.ulDid;
2048 
2049 	return 0;
2050 }
2051 
2052 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2053 		uint32_t dclock, uint8_t *current_dclk_did)
2054 {
2055 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2056 
2057 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2058 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2059 			dclock, &dividers),
2060 			"Failed to get DCLK clock settings from VBIOS!",
2061 			return -EINVAL);
2062 
2063 	*current_dclk_did = (uint8_t)dividers.ulDid;
2064 
2065 	return 0;
2066 }
2067 
2068 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2069 {
2070 	struct vega10_hwmgr *data = hwmgr->backend;
2071 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2072 	struct vega10_single_dpm_table *vclk_dpm_table =
2073 			&(data->dpm_table.vclk_table);
2074 	struct vega10_single_dpm_table *dclk_dpm_table =
2075 			&(data->dpm_table.dclk_table);
2076 	struct phm_ppt_v2_information *table_info =
2077 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2078 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2079 			table_info->mm_dep_table;
2080 	int result = -EINVAL;
2081 	uint32_t i, j;
2082 
2083 	for (i = 0; i < vclk_dpm_table->count; i++) {
2084 		result = vega10_populate_single_vclock_level(hwmgr,
2085 				vclk_dpm_table->dpm_levels[i].value,
2086 				&(pp_table->VclkDid[i]));
2087 		if (result)
2088 			return result;
2089 	}
2090 
2091 	j = i - 1;
2092 	while (i < NUM_UVD_DPM_LEVELS) {
2093 		result = vega10_populate_single_vclock_level(hwmgr,
2094 				vclk_dpm_table->dpm_levels[j].value,
2095 				&(pp_table->VclkDid[i]));
2096 		if (result)
2097 			return result;
2098 		i++;
2099 	}
2100 
2101 	for (i = 0; i < dclk_dpm_table->count; i++) {
2102 		result = vega10_populate_single_dclock_level(hwmgr,
2103 				dclk_dpm_table->dpm_levels[i].value,
2104 				&(pp_table->DclkDid[i]));
2105 		if (result)
2106 			return result;
2107 	}
2108 
2109 	j = i - 1;
2110 	while (i < NUM_UVD_DPM_LEVELS) {
2111 		result = vega10_populate_single_dclock_level(hwmgr,
2112 				dclk_dpm_table->dpm_levels[j].value,
2113 				&(pp_table->DclkDid[i]));
2114 		if (result)
2115 			return result;
2116 		i++;
2117 	}
2118 
2119 	for (i = 0; i < dep_table->count; i++) {
2120 		if (dep_table->entries[i].vclk ==
2121 				vclk_dpm_table->dpm_levels[i].value &&
2122 			dep_table->entries[i].dclk ==
2123 				dclk_dpm_table->dpm_levels[i].value)
2124 			pp_table->UvdDpmVoltageIndex[i] =
2125 					dep_table->entries[i].vddcInd;
2126 		else
2127 			return -1;
2128 	}
2129 
2130 	j = i - 1;
2131 	while (i < NUM_UVD_DPM_LEVELS) {
2132 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2133 		i++;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2140 {
2141 	struct vega10_hwmgr *data = hwmgr->backend;
2142 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2143 	struct phm_ppt_v2_information *table_info =
2144 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2145 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2146 			table_info->vdd_dep_on_sclk;
2147 	uint32_t i;
2148 
2149 	for (i = 0; i < dep_table->count; i++) {
2150 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2151 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2152 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2159 {
2160 	struct vega10_hwmgr *data = hwmgr->backend;
2161 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2162 	struct phm_ppt_v2_information *table_info =
2163 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2164 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2165 			table_info->vdd_dep_on_sclk;
2166 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2167 	int result = 0;
2168 	uint32_t i;
2169 
2170 	pp_table->MinVoltageVid = (uint8_t)0xff;
2171 	pp_table->MaxVoltageVid = (uint8_t)0;
2172 
2173 	if (data->smu_features[GNLD_AVFS].supported) {
2174 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2175 		if (!result) {
2176 			pp_table->MinVoltageVid = (uint8_t)
2177 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2178 			pp_table->MaxVoltageVid = (uint8_t)
2179 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2180 
2181 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2182 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2183 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2184 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2185 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2186 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2187 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2188 
2189 			pp_table->BtcGbVdroopTableCksOff.a0 =
2190 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2191 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2192 			pp_table->BtcGbVdroopTableCksOff.a1 =
2193 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2194 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2195 			pp_table->BtcGbVdroopTableCksOff.a2 =
2196 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2197 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2198 
2199 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2200 			pp_table->BtcGbVdroopTableCksOn.a0 =
2201 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2202 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2203 			pp_table->BtcGbVdroopTableCksOn.a1 =
2204 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2205 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2206 			pp_table->BtcGbVdroopTableCksOn.a2 =
2207 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2208 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2209 
2210 			pp_table->AvfsGbCksOn.m1 =
2211 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2212 			pp_table->AvfsGbCksOn.m2 =
2213 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2214 			pp_table->AvfsGbCksOn.b =
2215 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2216 			pp_table->AvfsGbCksOn.m1_shift = 24;
2217 			pp_table->AvfsGbCksOn.m2_shift = 12;
2218 			pp_table->AvfsGbCksOn.b_shift = 0;
2219 
2220 			pp_table->OverrideAvfsGbCksOn =
2221 					avfs_params.ucEnableGbFuseTableCkson;
2222 			pp_table->AvfsGbCksOff.m1 =
2223 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2224 			pp_table->AvfsGbCksOff.m2 =
2225 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2226 			pp_table->AvfsGbCksOff.b =
2227 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2228 			pp_table->AvfsGbCksOff.m1_shift = 24;
2229 			pp_table->AvfsGbCksOff.m2_shift = 12;
2230 			pp_table->AvfsGbCksOff.b_shift = 0;
2231 
2232 			for (i = 0; i < dep_table->count; i++)
2233 				pp_table->StaticVoltageOffsetVid[i] =
2234 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2235 
2236 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2237 					data->disp_clk_quad_eqn_a) &&
2238 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2239 					data->disp_clk_quad_eqn_b)) {
2240 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2241 						(int32_t)data->disp_clk_quad_eqn_a;
2242 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2243 						(int32_t)data->disp_clk_quad_eqn_b;
2244 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2245 						(int32_t)data->disp_clk_quad_eqn_c;
2246 			} else {
2247 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2248 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2249 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2250 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2251 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2252 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2253 			}
2254 
2255 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2256 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2257 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2258 
2259 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2260 					data->dcef_clk_quad_eqn_a) &&
2261 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2262 					data->dcef_clk_quad_eqn_b)) {
2263 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2264 						(int32_t)data->dcef_clk_quad_eqn_a;
2265 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2266 						(int32_t)data->dcef_clk_quad_eqn_b;
2267 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2268 						(int32_t)data->dcef_clk_quad_eqn_c;
2269 			} else {
2270 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2271 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2272 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2273 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2274 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2275 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2276 			}
2277 
2278 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2279 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2280 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2281 
2282 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2283 					data->pixel_clk_quad_eqn_a) &&
2284 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2285 					data->pixel_clk_quad_eqn_b)) {
2286 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2287 						(int32_t)data->pixel_clk_quad_eqn_a;
2288 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2289 						(int32_t)data->pixel_clk_quad_eqn_b;
2290 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2291 						(int32_t)data->pixel_clk_quad_eqn_c;
2292 			} else {
2293 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2294 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2295 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2296 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2297 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2298 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2299 			}
2300 
2301 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2302 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2303 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2304 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2305 					data->phy_clk_quad_eqn_a) &&
2306 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2307 					data->phy_clk_quad_eqn_b)) {
2308 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2309 						(int32_t)data->phy_clk_quad_eqn_a;
2310 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2311 						(int32_t)data->phy_clk_quad_eqn_b;
2312 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2313 						(int32_t)data->phy_clk_quad_eqn_c;
2314 			} else {
2315 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2316 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2317 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2318 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2319 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2320 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2321 			}
2322 
2323 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2324 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2325 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2326 
2327 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2328 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2329 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2330 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2331 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2332 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2333 
2334 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2335 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2336 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2337 			pp_table->AcgAvfsGb.m1_shift             = 24;
2338 			pp_table->AcgAvfsGb.m2_shift             = 12;
2339 			pp_table->AcgAvfsGb.b_shift              = 0;
2340 
2341 		} else {
2342 			data->smu_features[GNLD_AVFS].supported = false;
2343 		}
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2350 {
2351 	struct vega10_hwmgr *data = hwmgr->backend;
2352 	uint32_t agc_btc_response;
2353 
2354 	if (data->smu_features[GNLD_ACG].supported) {
2355 		if (0 == vega10_enable_smc_features(hwmgr, true,
2356 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2357 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2358 
2359 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2360 
2361 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2362 
2363 		if (1 == agc_btc_response) {
2364 			if (1 == data->acg_loop_state)
2365 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2366 			else if (2 == data->acg_loop_state)
2367 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2368 			if (0 == vega10_enable_smc_features(hwmgr, true,
2369 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2370 					data->smu_features[GNLD_ACG].enabled = true;
2371 		} else {
2372 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2373 			data->smu_features[GNLD_ACG].enabled = false;
2374 		}
2375 	}
2376 
2377 	return 0;
2378 }
2379 
2380 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2381 {
2382 	struct vega10_hwmgr *data = hwmgr->backend;
2383 
2384 	if (data->smu_features[GNLD_ACG].supported &&
2385 	    data->smu_features[GNLD_ACG].enabled)
2386 		if (!vega10_enable_smc_features(hwmgr, false,
2387 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2388 			data->smu_features[GNLD_ACG].enabled = false;
2389 
2390 	return 0;
2391 }
2392 
2393 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2394 {
2395 	struct vega10_hwmgr *data = hwmgr->backend;
2396 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2397 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2398 	int result;
2399 
2400 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2401 	if (!result) {
2402 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2403 		    data->registry_data.regulator_hot_gpio_support) {
2404 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2405 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2406 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2407 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2408 		} else {
2409 			pp_table->VR0HotGpio = 0;
2410 			pp_table->VR0HotPolarity = 0;
2411 			pp_table->VR1HotGpio = 0;
2412 			pp_table->VR1HotPolarity = 0;
2413 		}
2414 
2415 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2416 		    data->registry_data.ac_dc_switch_gpio_support) {
2417 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2418 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2419 		} else {
2420 			pp_table->AcDcGpio = 0;
2421 			pp_table->AcDcPolarity = 0;
2422 		}
2423 	}
2424 
2425 	return result;
2426 }
2427 
2428 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2429 {
2430 	struct vega10_hwmgr *data = hwmgr->backend;
2431 
2432 	if (data->smu_features[GNLD_AVFS].supported) {
2433 		/* Already enabled or disabled */
2434 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2435 			return 0;
2436 
2437 		if (enable) {
2438 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2439 					true,
2440 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2441 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2442 					return -1);
2443 			data->smu_features[GNLD_AVFS].enabled = true;
2444 		} else {
2445 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2446 					false,
2447 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2448 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2449 					return -1);
2450 			data->smu_features[GNLD_AVFS].enabled = false;
2451 		}
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2458 {
2459 	struct vega10_hwmgr *data = hwmgr->backend;
2460 
2461 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2462 		vega10_avfs_enable(hwmgr, false);
2463 	} else if (data->need_update_dpm_table) {
2464 		vega10_avfs_enable(hwmgr, false);
2465 		vega10_avfs_enable(hwmgr, true);
2466 	} else {
2467 		vega10_avfs_enable(hwmgr, true);
2468 	}
2469 
2470 	return 0;
2471 }
2472 
2473 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2474 {
2475 	int result = 0;
2476 
2477 	uint64_t serial_number = 0;
2478 	uint32_t top32, bottom32;
2479 	struct phm_fuses_default fuse;
2480 
2481 	struct vega10_hwmgr *data = hwmgr->backend;
2482 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2483 
2484 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2485 
2486 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2487 
2488 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2489 
2490 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2491 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2492 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2493 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2494 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2495 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2496 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2497 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2498 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2499 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2500 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2501 						AVFSFUSETABLE, false);
2502 		PP_ASSERT_WITH_CODE(!result,
2503 			"Failed to upload FuseOVerride!",
2504 			);
2505 	}
2506 
2507 	return result;
2508 }
2509 
2510 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2511 {
2512 	struct vega10_hwmgr *data = hwmgr->backend;
2513 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2514 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2515 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2516 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2517 	uint32_t i;
2518 
2519 	dep_table = table_info->vdd_dep_on_mclk;
2520 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2521 
2522 	for (i = 0; i < dep_table->count; i++) {
2523 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2524 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2525 			return;
2526 		}
2527 	}
2528 
2529 	dep_table = table_info->vdd_dep_on_sclk;
2530 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2531 	for (i = 0; i < dep_table->count; i++) {
2532 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2533 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2534 			return;
2535 		}
2536 	}
2537 }
2538 
2539 /**
2540  * Initializes the SMC table and uploads it
2541  *
2542  * @hwmgr:  the address of the powerplay hardware manager.
2543  * return:  always 0
2544  */
2545 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2546 {
2547 	int result;
2548 	struct vega10_hwmgr *data = hwmgr->backend;
2549 	struct phm_ppt_v2_information *table_info =
2550 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2551 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2552 	struct pp_atomfwctrl_voltage_table voltage_table;
2553 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2554 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2555 
2556 	result = vega10_setup_default_dpm_tables(hwmgr);
2557 	PP_ASSERT_WITH_CODE(!result,
2558 			"Failed to setup default DPM tables!",
2559 			return result);
2560 
2561 	if (!hwmgr->not_vf)
2562 		return 0;
2563 
2564 	/* initialize ODN table */
2565 	if (hwmgr->od_enabled) {
2566 		if (odn_table->max_vddc) {
2567 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2568 			vega10_check_dpm_table_updated(hwmgr);
2569 		} else {
2570 			vega10_odn_initial_default_setting(hwmgr);
2571 		}
2572 	}
2573 
2574 	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2575 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2576 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2577 
2578 	pp_table->GfxDpmVoltageMode =
2579 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2580 	pp_table->SocDpmVoltageMode =
2581 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2582 	pp_table->UclkDpmVoltageMode =
2583 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2584 	pp_table->UvdDpmVoltageMode =
2585 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2586 	pp_table->VceDpmVoltageMode =
2587 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2588 	pp_table->Mp0DpmVoltageMode =
2589 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2590 
2591 	pp_table->DisplayDpmVoltageMode =
2592 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2593 
2594 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2595 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2596 
2597 	if (data->registry_data.ulv_support &&
2598 			table_info->us_ulv_voltage_offset) {
2599 		result = vega10_populate_ulv_state(hwmgr);
2600 		PP_ASSERT_WITH_CODE(!result,
2601 				"Failed to initialize ULV state!",
2602 				return result);
2603 	}
2604 
2605 	result = vega10_populate_smc_link_levels(hwmgr);
2606 	PP_ASSERT_WITH_CODE(!result,
2607 			"Failed to initialize Link Level!",
2608 			return result);
2609 
2610 	result = vega10_override_pcie_parameters(hwmgr);
2611 	PP_ASSERT_WITH_CODE(!result,
2612 			"Failed to override pcie parameters!",
2613 			return result);
2614 
2615 	result = vega10_populate_all_graphic_levels(hwmgr);
2616 	PP_ASSERT_WITH_CODE(!result,
2617 			"Failed to initialize Graphics Level!",
2618 			return result);
2619 
2620 	result = vega10_populate_all_memory_levels(hwmgr);
2621 	PP_ASSERT_WITH_CODE(!result,
2622 			"Failed to initialize Memory Level!",
2623 			return result);
2624 
2625 	vega10_populate_vddc_soc_levels(hwmgr);
2626 
2627 	result = vega10_populate_all_display_clock_levels(hwmgr);
2628 	PP_ASSERT_WITH_CODE(!result,
2629 			"Failed to initialize Display Level!",
2630 			return result);
2631 
2632 	result = vega10_populate_smc_vce_levels(hwmgr);
2633 	PP_ASSERT_WITH_CODE(!result,
2634 			"Failed to initialize VCE Level!",
2635 			return result);
2636 
2637 	result = vega10_populate_smc_uvd_levels(hwmgr);
2638 	PP_ASSERT_WITH_CODE(!result,
2639 			"Failed to initialize UVD Level!",
2640 			return result);
2641 
2642 	if (data->registry_data.clock_stretcher_support) {
2643 		result = vega10_populate_clock_stretcher_table(hwmgr);
2644 		PP_ASSERT_WITH_CODE(!result,
2645 				"Failed to populate Clock Stretcher Table!",
2646 				return result);
2647 	}
2648 
2649 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2650 	if (!result) {
2651 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2652 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2653 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2654 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2655 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2656 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2657 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2658 
2659 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2660 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2661 
2662 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2663 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2664 		if (0 != boot_up_values.usVddc) {
2665 			smum_send_msg_to_smc_with_parameter(hwmgr,
2666 						PPSMC_MSG_SetFloorSocVoltage,
2667 						(boot_up_values.usVddc * 4),
2668 						NULL);
2669 			data->vbios_boot_state.bsoc_vddc_lock = true;
2670 		} else {
2671 			data->vbios_boot_state.bsoc_vddc_lock = false;
2672 		}
2673 		smum_send_msg_to_smc_with_parameter(hwmgr,
2674 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2675 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2676 				NULL);
2677 	}
2678 
2679 	result = vega10_populate_avfs_parameters(hwmgr);
2680 	PP_ASSERT_WITH_CODE(!result,
2681 			"Failed to initialize AVFS Parameters!",
2682 			return result);
2683 
2684 	result = vega10_populate_gpio_parameters(hwmgr);
2685 	PP_ASSERT_WITH_CODE(!result,
2686 			"Failed to initialize GPIO Parameters!",
2687 			return result);
2688 
2689 	pp_table->GfxclkAverageAlpha = (uint8_t)
2690 			(data->gfxclk_average_alpha);
2691 	pp_table->SocclkAverageAlpha = (uint8_t)
2692 			(data->socclk_average_alpha);
2693 	pp_table->UclkAverageAlpha = (uint8_t)
2694 			(data->uclk_average_alpha);
2695 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2696 			(data->gfx_activity_average_alpha);
2697 
2698 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2699 
2700 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2701 
2702 	PP_ASSERT_WITH_CODE(!result,
2703 			"Failed to upload PPtable!", return result);
2704 
2705 	result = vega10_avfs_enable(hwmgr, true);
2706 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2707 					return result);
2708 	vega10_acg_enable(hwmgr);
2709 
2710 	return 0;
2711 }
2712 
2713 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2714 {
2715 	struct vega10_hwmgr *data = hwmgr->backend;
2716 
2717 	if (data->smu_features[GNLD_THERMAL].supported) {
2718 		if (data->smu_features[GNLD_THERMAL].enabled)
2719 			pr_info("THERMAL Feature Already enabled!");
2720 
2721 		PP_ASSERT_WITH_CODE(
2722 				!vega10_enable_smc_features(hwmgr,
2723 				true,
2724 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2725 				"Enable THERMAL Feature Failed!",
2726 				return -1);
2727 		data->smu_features[GNLD_THERMAL].enabled = true;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
2733 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2734 {
2735 	struct vega10_hwmgr *data = hwmgr->backend;
2736 
2737 	if (data->smu_features[GNLD_THERMAL].supported) {
2738 		if (!data->smu_features[GNLD_THERMAL].enabled)
2739 			pr_info("THERMAL Feature Already disabled!");
2740 
2741 		PP_ASSERT_WITH_CODE(
2742 				!vega10_enable_smc_features(hwmgr,
2743 				false,
2744 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2745 				"disable THERMAL Feature Failed!",
2746 				return -1);
2747 		data->smu_features[GNLD_THERMAL].enabled = false;
2748 	}
2749 
2750 	return 0;
2751 }
2752 
2753 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2754 {
2755 	struct vega10_hwmgr *data = hwmgr->backend;
2756 
2757 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2758 		if (data->smu_features[GNLD_VR0HOT].supported) {
2759 			PP_ASSERT_WITH_CODE(
2760 					!vega10_enable_smc_features(hwmgr,
2761 					true,
2762 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2763 					"Attempt to Enable VR0 Hot feature Failed!",
2764 					return -1);
2765 			data->smu_features[GNLD_VR0HOT].enabled = true;
2766 		} else {
2767 			if (data->smu_features[GNLD_VR1HOT].supported) {
2768 				PP_ASSERT_WITH_CODE(
2769 						!vega10_enable_smc_features(hwmgr,
2770 						true,
2771 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2772 						"Attempt to Enable VR0 Hot feature Failed!",
2773 						return -1);
2774 				data->smu_features[GNLD_VR1HOT].enabled = true;
2775 			}
2776 		}
2777 	}
2778 	return 0;
2779 }
2780 
2781 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2782 {
2783 	struct vega10_hwmgr *data = hwmgr->backend;
2784 
2785 	if (data->registry_data.ulv_support) {
2786 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2787 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2788 				"Enable ULV Feature Failed!",
2789 				return -1);
2790 		data->smu_features[GNLD_ULV].enabled = true;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2797 {
2798 	struct vega10_hwmgr *data = hwmgr->backend;
2799 
2800 	if (data->registry_data.ulv_support) {
2801 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2802 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2803 				"disable ULV Feature Failed!",
2804 				return -EINVAL);
2805 		data->smu_features[GNLD_ULV].enabled = false;
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2812 {
2813 	struct vega10_hwmgr *data = hwmgr->backend;
2814 
2815 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2816 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2817 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2818 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2819 				return -EINVAL);
2820 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2821 	}
2822 
2823 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2824 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2825 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2826 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2827 				return -EINVAL);
2828 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2829 	}
2830 
2831 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2832 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2833 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2834 				"Attempt to Enable DS_LCLK Feature Failed!",
2835 				return -EINVAL);
2836 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2837 	}
2838 
2839 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2840 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2841 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2842 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2843 				return -EINVAL);
2844 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2851 {
2852 	struct vega10_hwmgr *data = hwmgr->backend;
2853 
2854 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2855 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2856 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2857 				"Attempt to disable DS_GFXCLK Feature Failed!",
2858 				return -EINVAL);
2859 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2860 	}
2861 
2862 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2863 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2864 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2865 				"Attempt to disable DS_ Feature Failed!",
2866 				return -EINVAL);
2867 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2868 	}
2869 
2870 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2871 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2872 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2873 				"Attempt to disable DS_LCLK Feature Failed!",
2874 				return -EINVAL);
2875 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2876 	}
2877 
2878 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2879 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2880 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2881 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2882 				return -EINVAL);
2883 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2884 	}
2885 
2886 	return 0;
2887 }
2888 
2889 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2890 {
2891 	struct vega10_hwmgr *data = hwmgr->backend;
2892 	uint32_t i, feature_mask = 0;
2893 
2894 	if (!hwmgr->not_vf)
2895 		return 0;
2896 
2897 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2898 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2899 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2900 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2901 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2902 	}
2903 
2904 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2905 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2906 			if (data->smu_features[i].supported) {
2907 				if (data->smu_features[i].enabled) {
2908 					feature_mask |= data->smu_features[i].
2909 							smu_feature_bitmap;
2910 					data->smu_features[i].enabled = false;
2911 				}
2912 			}
2913 		}
2914 	}
2915 
2916 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2917 
2918 	return 0;
2919 }
2920 
2921 /**
2922  * Tell SMC to enabled the supported DPMs.
2923  *
2924  * @hwmgr:   the address of the powerplay hardware manager.
2925  * @bitmap:  bitmap for the features to enabled.
2926  * return:  0 on at least one DPM is successfully enabled.
2927  */
2928 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2929 {
2930 	struct vega10_hwmgr *data = hwmgr->backend;
2931 	uint32_t i, feature_mask = 0;
2932 
2933 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2934 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2935 			if (data->smu_features[i].supported) {
2936 				if (!data->smu_features[i].enabled) {
2937 					feature_mask |= data->smu_features[i].
2938 							smu_feature_bitmap;
2939 					data->smu_features[i].enabled = true;
2940 				}
2941 			}
2942 		}
2943 	}
2944 
2945 	if (vega10_enable_smc_features(hwmgr,
2946 			true, feature_mask)) {
2947 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2948 			if (data->smu_features[i].smu_feature_bitmap &
2949 					feature_mask)
2950 				data->smu_features[i].enabled = false;
2951 		}
2952 	}
2953 
2954 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2955 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2956 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2957 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2958 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2959 	}
2960 
2961 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2962 		smum_send_msg_to_smc_with_parameter(hwmgr,
2963 						PPSMC_MSG_SetFloorSocVoltage, 0,
2964 						NULL);
2965 		data->vbios_boot_state.bsoc_vddc_lock = false;
2966 	}
2967 
2968 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2969 		if (data->smu_features[GNLD_ACDC].supported) {
2970 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2971 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2972 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2973 					return -1);
2974 			data->smu_features[GNLD_ACDC].enabled = true;
2975 		}
2976 	}
2977 
2978 	if (data->registry_data.pcie_dpm_key_disabled) {
2979 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2980 				false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap),
2981 		"Attempt to Disable Link DPM feature Failed!", return -EINVAL);
2982 		data->smu_features[GNLD_DPM_LINK].enabled = false;
2983 		data->smu_features[GNLD_DPM_LINK].supported = false;
2984 	}
2985 
2986 	return 0;
2987 }
2988 
2989 
2990 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2991 {
2992 	struct vega10_hwmgr *data = hwmgr->backend;
2993 
2994 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2995 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2996 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2997 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2998 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2999 				"Attempt to Enable PCC Limit feature Failed!",
3000 				return -EINVAL);
3001 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3008 {
3009 	struct vega10_hwmgr *data = hwmgr->backend;
3010 	int tmp_result, result = 0;
3011 
3012 	if (hwmgr->not_vf) {
3013 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
3014 
3015 		smum_send_msg_to_smc_with_parameter(hwmgr,
3016 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
3017 			NULL);
3018 
3019 		tmp_result = vega10_construct_voltage_tables(hwmgr);
3020 		PP_ASSERT_WITH_CODE(!tmp_result,
3021 				    "Failed to construct voltage tables!",
3022 				    result = tmp_result);
3023 	}
3024 
3025 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
3026 		tmp_result = vega10_init_smc_table(hwmgr);
3027 		PP_ASSERT_WITH_CODE(!tmp_result,
3028 				    "Failed to initialize SMC table!",
3029 				    result = tmp_result);
3030 	}
3031 
3032 	if (hwmgr->not_vf) {
3033 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
3034 			tmp_result = vega10_enable_thermal_protection(hwmgr);
3035 			PP_ASSERT_WITH_CODE(!tmp_result,
3036 					    "Failed to enable thermal protection!",
3037 					    result = tmp_result);
3038 		}
3039 
3040 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
3041 		PP_ASSERT_WITH_CODE(!tmp_result,
3042 				    "Failed to enable VR hot feature!",
3043 				    result = tmp_result);
3044 
3045 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
3046 		PP_ASSERT_WITH_CODE(!tmp_result,
3047 				    "Failed to enable deep sleep master switch!",
3048 				    result = tmp_result);
3049 	}
3050 
3051 	if (hwmgr->not_vf) {
3052 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
3053 		PP_ASSERT_WITH_CODE(!tmp_result,
3054 				    "Failed to start DPM!", result = tmp_result);
3055 	}
3056 
3057 	if (hwmgr->not_vf) {
3058 		/* enable didt, do not abort if failed didt */
3059 		tmp_result = vega10_enable_didt_config(hwmgr);
3060 		PP_ASSERT(!tmp_result,
3061 			  "Failed to enable didt config!");
3062 	}
3063 
3064 	tmp_result = vega10_enable_power_containment(hwmgr);
3065 	PP_ASSERT_WITH_CODE(!tmp_result,
3066 			    "Failed to enable power containment!",
3067 			    result = tmp_result);
3068 
3069 	if (hwmgr->not_vf) {
3070 		tmp_result = vega10_power_control_set_level(hwmgr);
3071 		PP_ASSERT_WITH_CODE(!tmp_result,
3072 				    "Failed to power control set level!",
3073 				    result = tmp_result);
3074 
3075 		tmp_result = vega10_enable_ulv(hwmgr);
3076 		PP_ASSERT_WITH_CODE(!tmp_result,
3077 				    "Failed to enable ULV!",
3078 				    result = tmp_result);
3079 	}
3080 
3081 	return result;
3082 }
3083 
3084 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3085 {
3086 	return sizeof(struct vega10_power_state);
3087 }
3088 
3089 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3090 		void *state, struct pp_power_state *power_state,
3091 		void *pp_table, uint32_t classification_flag)
3092 {
3093 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3094 	struct vega10_power_state *vega10_power_state =
3095 			cast_phw_vega10_power_state(&(power_state->hardware));
3096 	struct vega10_performance_level *performance_level;
3097 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3098 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3099 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3100 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3101 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3102 			(((unsigned long)powerplay_table) +
3103 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3104 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3105 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3106 			(((unsigned long)powerplay_table) +
3107 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3108 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3109 			(ATOM_Vega10_MCLK_Dependency_Table *)
3110 			(((unsigned long)powerplay_table) +
3111 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3112 
3113 
3114 	/* The following fields are not initialized here:
3115 	 * id orderedList allStatesList
3116 	 */
3117 	power_state->classification.ui_label =
3118 			(le16_to_cpu(state_entry->usClassification) &
3119 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3120 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3121 	power_state->classification.flags = classification_flag;
3122 	/* NOTE: There is a classification2 flag in BIOS
3123 	 * that is not being used right now
3124 	 */
3125 	power_state->classification.temporary_state = false;
3126 	power_state->classification.to_be_deleted = false;
3127 
3128 	power_state->validation.disallowOnDC =
3129 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3130 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3131 
3132 	power_state->display.disableFrameModulation = false;
3133 	power_state->display.limitRefreshrate = false;
3134 	power_state->display.enableVariBright =
3135 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3136 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3137 
3138 	power_state->validation.supportedPowerLevels = 0;
3139 	power_state->uvd_clocks.VCLK = 0;
3140 	power_state->uvd_clocks.DCLK = 0;
3141 	power_state->temperatures.min = 0;
3142 	power_state->temperatures.max = 0;
3143 
3144 	performance_level = &(vega10_power_state->performance_levels
3145 			[vega10_power_state->performance_level_count++]);
3146 
3147 	PP_ASSERT_WITH_CODE(
3148 			(vega10_power_state->performance_level_count <
3149 					NUM_GFXCLK_DPM_LEVELS),
3150 			"Performance levels exceeds SMC limit!",
3151 			return -1);
3152 
3153 	PP_ASSERT_WITH_CODE(
3154 			(vega10_power_state->performance_level_count <=
3155 					hwmgr->platform_descriptor.
3156 					hardwareActivityPerformanceLevels),
3157 			"Performance levels exceeds Driver limit!",
3158 			return -1);
3159 
3160 	/* Performance levels are arranged from low to high. */
3161 	performance_level->soc_clock = socclk_dep_table->entries
3162 			[state_entry->ucSocClockIndexLow].ulClk;
3163 	performance_level->gfx_clock = gfxclk_dep_table->entries
3164 			[state_entry->ucGfxClockIndexLow].ulClk;
3165 	performance_level->mem_clock = mclk_dep_table->entries
3166 			[state_entry->ucMemClockIndexLow].ulMemClk;
3167 
3168 	performance_level = &(vega10_power_state->performance_levels
3169 				[vega10_power_state->performance_level_count++]);
3170 	performance_level->soc_clock = socclk_dep_table->entries
3171 				[state_entry->ucSocClockIndexHigh].ulClk;
3172 	if (gfxclk_dep_table->ucRevId == 0) {
3173 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3174 		 * to level-4 due to the limited 110w-power
3175 		 */
3176 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3177 			performance_level->gfx_clock =
3178 				gfxclk_dep_table->entries[4].ulClk;
3179 		else
3180 			performance_level->gfx_clock = gfxclk_dep_table->entries
3181 				[state_entry->ucGfxClockIndexHigh].ulClk;
3182 	} else if (gfxclk_dep_table->ucRevId == 1) {
3183 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3184 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3185 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3186 		else
3187 			performance_level->gfx_clock =
3188 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3189 	}
3190 
3191 	performance_level->mem_clock = mclk_dep_table->entries
3192 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3193 	return 0;
3194 }
3195 
3196 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3197 		unsigned long entry_index, struct pp_power_state *state)
3198 {
3199 	int result;
3200 	struct vega10_power_state *ps;
3201 
3202 	state->hardware.magic = PhwVega10_Magic;
3203 
3204 	ps = cast_phw_vega10_power_state(&state->hardware);
3205 
3206 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3207 			vega10_get_pp_table_entry_callback_func);
3208 	if (result)
3209 		return result;
3210 
3211 	/*
3212 	 * This is the earliest time we have all the dependency table
3213 	 * and the VBIOS boot state
3214 	 */
3215 	/* set DC compatible flag if this state supports DC */
3216 	if (!state->validation.disallowOnDC)
3217 		ps->dc_compatible = true;
3218 
3219 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3220 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3221 
3222 	return 0;
3223 }
3224 
3225 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3226 	     struct pp_hw_power_state *hw_ps)
3227 {
3228 	return 0;
3229 }
3230 
3231 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3232 				struct pp_power_state  *request_ps,
3233 			const struct pp_power_state *current_ps)
3234 {
3235 	struct amdgpu_device *adev = hwmgr->adev;
3236 	struct vega10_power_state *vega10_ps =
3237 				cast_phw_vega10_power_state(&request_ps->hardware);
3238 	uint32_t sclk;
3239 	uint32_t mclk;
3240 	struct PP_Clocks minimum_clocks = {0};
3241 	bool disable_mclk_switching;
3242 	bool disable_mclk_switching_for_frame_lock;
3243 	bool disable_mclk_switching_for_vr;
3244 	bool force_mclk_high;
3245 	const struct phm_clock_and_voltage_limits *max_limits;
3246 	uint32_t i;
3247 	struct vega10_hwmgr *data = hwmgr->backend;
3248 	struct phm_ppt_v2_information *table_info =
3249 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3250 	int32_t count;
3251 	uint32_t stable_pstate_sclk_dpm_percentage;
3252 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3253 	uint32_t latency;
3254 
3255 	data->battery_state = (PP_StateUILabel_Battery ==
3256 			request_ps->classification.ui_label);
3257 
3258 	if (vega10_ps->performance_level_count != 2)
3259 		pr_info("VI should always have 2 performance levels");
3260 
3261 	max_limits = adev->pm.ac_power ?
3262 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3263 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3264 
3265 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3266 	if (!adev->pm.ac_power) {
3267 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3268 			if (vega10_ps->performance_levels[i].mem_clock >
3269 				max_limits->mclk)
3270 				vega10_ps->performance_levels[i].mem_clock =
3271 						max_limits->mclk;
3272 			if (vega10_ps->performance_levels[i].gfx_clock >
3273 				max_limits->sclk)
3274 				vega10_ps->performance_levels[i].gfx_clock =
3275 						max_limits->sclk;
3276 		}
3277 	}
3278 
3279 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3280 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3281 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3282 
3283 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3284 		stable_pstate_sclk_dpm_percentage =
3285 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3286 		PP_ASSERT_WITH_CODE(
3287 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3288 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3289 			"percent sclk value must range from 1% to 100%, setting default value",
3290 			stable_pstate_sclk_dpm_percentage = 75);
3291 
3292 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3293 		stable_pstate_sclk = (max_limits->sclk *
3294 				stable_pstate_sclk_dpm_percentage) / 100;
3295 
3296 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3297 				count >= 0; count--) {
3298 			if (stable_pstate_sclk >=
3299 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3300 				stable_pstate_sclk =
3301 						table_info->vdd_dep_on_sclk->entries[count].clk;
3302 				break;
3303 			}
3304 		}
3305 
3306 		if (count < 0)
3307 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3308 
3309 		stable_pstate_mclk = max_limits->mclk;
3310 
3311 		minimum_clocks.engineClock = stable_pstate_sclk;
3312 		minimum_clocks.memoryClock = stable_pstate_mclk;
3313 	}
3314 
3315 	disable_mclk_switching_for_frame_lock =
3316 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3317 	disable_mclk_switching_for_vr =
3318 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3319 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3320 
3321 	if (hwmgr->display_config->num_display == 0)
3322 		disable_mclk_switching = false;
3323 	else
3324 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3325 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3326 			disable_mclk_switching_for_frame_lock ||
3327 			disable_mclk_switching_for_vr ||
3328 			force_mclk_high;
3329 
3330 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3331 	mclk = vega10_ps->performance_levels[0].mem_clock;
3332 
3333 	if (sclk < minimum_clocks.engineClock)
3334 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3335 				max_limits->sclk : minimum_clocks.engineClock;
3336 
3337 	if (mclk < minimum_clocks.memoryClock)
3338 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3339 				max_limits->mclk : minimum_clocks.memoryClock;
3340 
3341 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3342 	vega10_ps->performance_levels[0].mem_clock = mclk;
3343 
3344 	if (vega10_ps->performance_levels[1].gfx_clock <
3345 			vega10_ps->performance_levels[0].gfx_clock)
3346 		vega10_ps->performance_levels[0].gfx_clock =
3347 				vega10_ps->performance_levels[1].gfx_clock;
3348 
3349 	if (disable_mclk_switching) {
3350 		/* Set Mclk the max of level 0 and level 1 */
3351 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3352 			mclk = vega10_ps->performance_levels[1].mem_clock;
3353 
3354 		/* Find the lowest MCLK frequency that is within
3355 		 * the tolerable latency defined in DAL
3356 		 */
3357 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3358 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3359 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3360 				(data->mclk_latency_table.entries[i].frequency >=
3361 						vega10_ps->performance_levels[0].mem_clock) &&
3362 				(data->mclk_latency_table.entries[i].frequency <=
3363 						vega10_ps->performance_levels[1].mem_clock))
3364 				mclk = data->mclk_latency_table.entries[i].frequency;
3365 		}
3366 		vega10_ps->performance_levels[0].mem_clock = mclk;
3367 	} else {
3368 		if (vega10_ps->performance_levels[1].mem_clock <
3369 				vega10_ps->performance_levels[0].mem_clock)
3370 			vega10_ps->performance_levels[0].mem_clock =
3371 					vega10_ps->performance_levels[1].mem_clock;
3372 	}
3373 
3374 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3375 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3376 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3377 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3378 		}
3379 	}
3380 
3381 	return 0;
3382 }
3383 
3384 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3385 {
3386 	struct vega10_hwmgr *data = hwmgr->backend;
3387 	const struct phm_set_power_state_input *states =
3388 			(const struct phm_set_power_state_input *)input;
3389 	const struct vega10_power_state *vega10_ps =
3390 			cast_const_phw_vega10_power_state(states->pnew_state);
3391 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3392 	uint32_t sclk = vega10_ps->performance_levels
3393 			[vega10_ps->performance_level_count - 1].gfx_clock;
3394 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3395 	uint32_t mclk = vega10_ps->performance_levels
3396 			[vega10_ps->performance_level_count - 1].mem_clock;
3397 	uint32_t i;
3398 
3399 	for (i = 0; i < sclk_table->count; i++) {
3400 		if (sclk == sclk_table->dpm_levels[i].value)
3401 			break;
3402 	}
3403 
3404 	if (i >= sclk_table->count) {
3405 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3406 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3407 			sclk_table->dpm_levels[i-1].value = sclk;
3408 		}
3409 	}
3410 
3411 	for (i = 0; i < mclk_table->count; i++) {
3412 		if (mclk == mclk_table->dpm_levels[i].value)
3413 			break;
3414 	}
3415 
3416 	if (i >= mclk_table->count) {
3417 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3418 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3419 			mclk_table->dpm_levels[i-1].value = mclk;
3420 		}
3421 	}
3422 
3423 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3424 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3425 
3426 	return 0;
3427 }
3428 
3429 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3430 		struct pp_hwmgr *hwmgr, const void *input)
3431 {
3432 	int result = 0;
3433 	struct vega10_hwmgr *data = hwmgr->backend;
3434 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3435 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3436 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3437 	int count;
3438 
3439 	if (!data->need_update_dpm_table)
3440 		return 0;
3441 
3442 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3443 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3444 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3445 	}
3446 
3447 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3448 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3449 		for (count = 0; count < dpm_table->mem_table.count; count++)
3450 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3451 	}
3452 
3453 	if (data->need_update_dpm_table &
3454 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3455 		result = vega10_populate_all_graphic_levels(hwmgr);
3456 		PP_ASSERT_WITH_CODE((0 == result),
3457 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3458 				return result);
3459 	}
3460 
3461 	if (data->need_update_dpm_table &
3462 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3463 		result = vega10_populate_all_memory_levels(hwmgr);
3464 		PP_ASSERT_WITH_CODE((0 == result),
3465 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3466 				return result);
3467 	}
3468 
3469 	vega10_populate_vddc_soc_levels(hwmgr);
3470 
3471 	return result;
3472 }
3473 
3474 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3475 		struct vega10_single_dpm_table *dpm_table,
3476 		uint32_t low_limit, uint32_t high_limit)
3477 {
3478 	uint32_t i;
3479 
3480 	for (i = 0; i < dpm_table->count; i++) {
3481 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3482 		    (dpm_table->dpm_levels[i].value > high_limit))
3483 			dpm_table->dpm_levels[i].enabled = false;
3484 		else
3485 			dpm_table->dpm_levels[i].enabled = true;
3486 	}
3487 	return 0;
3488 }
3489 
3490 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3491 		struct vega10_single_dpm_table *dpm_table,
3492 		uint32_t low_limit, uint32_t high_limit,
3493 		uint32_t disable_dpm_mask)
3494 {
3495 	uint32_t i;
3496 
3497 	for (i = 0; i < dpm_table->count; i++) {
3498 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3499 		    (dpm_table->dpm_levels[i].value > high_limit))
3500 			dpm_table->dpm_levels[i].enabled = false;
3501 		else if (!((1 << i) & disable_dpm_mask))
3502 			dpm_table->dpm_levels[i].enabled = false;
3503 		else
3504 			dpm_table->dpm_levels[i].enabled = true;
3505 	}
3506 	return 0;
3507 }
3508 
3509 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3510 		const struct vega10_power_state *vega10_ps)
3511 {
3512 	struct vega10_hwmgr *data = hwmgr->backend;
3513 	uint32_t high_limit_count;
3514 
3515 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3516 			"power state did not have any performance level",
3517 			return -1);
3518 
3519 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3520 
3521 	vega10_trim_single_dpm_states(hwmgr,
3522 			&(data->dpm_table.soc_table),
3523 			vega10_ps->performance_levels[0].soc_clock,
3524 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3525 
3526 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3527 			&(data->dpm_table.gfx_table),
3528 			vega10_ps->performance_levels[0].gfx_clock,
3529 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3530 			data->disable_dpm_mask);
3531 
3532 	vega10_trim_single_dpm_states(hwmgr,
3533 			&(data->dpm_table.mem_table),
3534 			vega10_ps->performance_levels[0].mem_clock,
3535 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3536 
3537 	return 0;
3538 }
3539 
3540 static uint32_t vega10_find_lowest_dpm_level(
3541 		struct vega10_single_dpm_table *table)
3542 {
3543 	uint32_t i;
3544 
3545 	for (i = 0; i < table->count; i++) {
3546 		if (table->dpm_levels[i].enabled)
3547 			break;
3548 	}
3549 
3550 	return i;
3551 }
3552 
3553 static uint32_t vega10_find_highest_dpm_level(
3554 		struct vega10_single_dpm_table *table)
3555 {
3556 	uint32_t i = 0;
3557 
3558 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3559 		for (i = table->count; i > 0; i--) {
3560 			if (table->dpm_levels[i - 1].enabled)
3561 				return i - 1;
3562 		}
3563 	} else {
3564 		pr_info("DPM Table Has Too Many Entries!");
3565 		return MAX_REGULAR_DPM_NUMBER - 1;
3566 	}
3567 
3568 	return i;
3569 }
3570 
3571 static void vega10_apply_dal_minimum_voltage_request(
3572 		struct pp_hwmgr *hwmgr)
3573 {
3574 	return;
3575 }
3576 
3577 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3578 {
3579 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3580 	struct phm_ppt_v2_information *table_info =
3581 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3582 
3583 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3584 
3585 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3586 }
3587 
3588 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3589 {
3590 	struct vega10_hwmgr *data = hwmgr->backend;
3591 	uint32_t socclk_idx;
3592 
3593 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3594 
3595 	if (!data->registry_data.sclk_dpm_key_disabled) {
3596 		if (data->smc_state_table.gfx_boot_level !=
3597 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3598 			smum_send_msg_to_smc_with_parameter(hwmgr,
3599 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3600 				data->smc_state_table.gfx_boot_level,
3601 				NULL);
3602 
3603 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3604 					data->smc_state_table.gfx_boot_level;
3605 		}
3606 	}
3607 
3608 	if (!data->registry_data.mclk_dpm_key_disabled) {
3609 		if (data->smc_state_table.mem_boot_level !=
3610 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3611 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3612 			    && hwmgr->not_vf) {
3613 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3614 				smum_send_msg_to_smc_with_parameter(hwmgr,
3615 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3616 						socclk_idx,
3617 						NULL);
3618 			} else {
3619 				smum_send_msg_to_smc_with_parameter(hwmgr,
3620 						PPSMC_MSG_SetSoftMinUclkByIndex,
3621 						data->smc_state_table.mem_boot_level,
3622 						NULL);
3623 			}
3624 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3625 					data->smc_state_table.mem_boot_level;
3626 		}
3627 	}
3628 
3629 	if (!hwmgr->not_vf)
3630 		return 0;
3631 
3632 	if (!data->registry_data.socclk_dpm_key_disabled) {
3633 		if (data->smc_state_table.soc_boot_level !=
3634 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3635 			smum_send_msg_to_smc_with_parameter(hwmgr,
3636 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3637 				data->smc_state_table.soc_boot_level,
3638 				NULL);
3639 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3640 					data->smc_state_table.soc_boot_level;
3641 		}
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3648 {
3649 	struct vega10_hwmgr *data = hwmgr->backend;
3650 
3651 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3652 
3653 	if (!data->registry_data.sclk_dpm_key_disabled) {
3654 		if (data->smc_state_table.gfx_max_level !=
3655 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3656 			smum_send_msg_to_smc_with_parameter(hwmgr,
3657 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3658 				data->smc_state_table.gfx_max_level,
3659 				NULL);
3660 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3661 					data->smc_state_table.gfx_max_level;
3662 		}
3663 	}
3664 
3665 	if (!data->registry_data.mclk_dpm_key_disabled) {
3666 		if (data->smc_state_table.mem_max_level !=
3667 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3668 			smum_send_msg_to_smc_with_parameter(hwmgr,
3669 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3670 					data->smc_state_table.mem_max_level,
3671 					NULL);
3672 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3673 					data->smc_state_table.mem_max_level;
3674 		}
3675 	}
3676 
3677 	if (!hwmgr->not_vf)
3678 		return 0;
3679 
3680 	if (!data->registry_data.socclk_dpm_key_disabled) {
3681 		if (data->smc_state_table.soc_max_level !=
3682 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3683 			smum_send_msg_to_smc_with_parameter(hwmgr,
3684 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3685 				data->smc_state_table.soc_max_level,
3686 				NULL);
3687 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3688 					data->smc_state_table.soc_max_level;
3689 		}
3690 	}
3691 
3692 	return 0;
3693 }
3694 
3695 static int vega10_generate_dpm_level_enable_mask(
3696 		struct pp_hwmgr *hwmgr, const void *input)
3697 {
3698 	struct vega10_hwmgr *data = hwmgr->backend;
3699 	const struct phm_set_power_state_input *states =
3700 			(const struct phm_set_power_state_input *)input;
3701 	const struct vega10_power_state *vega10_ps =
3702 			cast_const_phw_vega10_power_state(states->pnew_state);
3703 	int i;
3704 
3705 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3706 			"Attempt to Trim DPM States Failed!",
3707 			return -1);
3708 
3709 	data->smc_state_table.gfx_boot_level =
3710 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3711 	data->smc_state_table.gfx_max_level =
3712 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3713 	data->smc_state_table.mem_boot_level =
3714 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3715 	data->smc_state_table.mem_max_level =
3716 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3717 	data->smc_state_table.soc_boot_level =
3718 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3719 	data->smc_state_table.soc_max_level =
3720 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3721 
3722 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3723 			"Attempt to upload DPM Bootup Levels Failed!",
3724 			return -1);
3725 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3726 			"Attempt to upload DPM Max Levels Failed!",
3727 			return -1);
3728 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3729 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3730 
3731 
3732 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3733 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3734 
3735 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3736 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3737 
3738 	return 0;
3739 }
3740 
3741 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3742 {
3743 	struct vega10_hwmgr *data = hwmgr->backend;
3744 
3745 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3746 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3747 				enable,
3748 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3749 				"Attempt to Enable/Disable DPM VCE Failed!",
3750 				return -1);
3751 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3758 {
3759 	struct vega10_hwmgr *data = hwmgr->backend;
3760 	uint32_t low_sclk_interrupt_threshold = 0;
3761 
3762 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3763 		(data->low_sclk_interrupt_threshold != 0)) {
3764 		low_sclk_interrupt_threshold =
3765 				data->low_sclk_interrupt_threshold;
3766 
3767 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3768 				cpu_to_le32(low_sclk_interrupt_threshold);
3769 
3770 		/* This message will also enable SmcToHost Interrupt */
3771 		smum_send_msg_to_smc_with_parameter(hwmgr,
3772 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3773 				(uint32_t)low_sclk_interrupt_threshold,
3774 				NULL);
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3781 		const void *input)
3782 {
3783 	int tmp_result, result = 0;
3784 	struct vega10_hwmgr *data = hwmgr->backend;
3785 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3786 
3787 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3788 	PP_ASSERT_WITH_CODE(!tmp_result,
3789 			"Failed to find DPM states clocks in DPM table!",
3790 			result = tmp_result);
3791 
3792 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3793 	PP_ASSERT_WITH_CODE(!tmp_result,
3794 			"Failed to populate and upload SCLK MCLK DPM levels!",
3795 			result = tmp_result);
3796 
3797 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3798 	PP_ASSERT_WITH_CODE(!tmp_result,
3799 			"Failed to generate DPM level enabled mask!",
3800 			result = tmp_result);
3801 
3802 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3803 	PP_ASSERT_WITH_CODE(!tmp_result,
3804 			"Failed to update SCLK threshold!",
3805 			result = tmp_result);
3806 
3807 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3808 	PP_ASSERT_WITH_CODE(!result,
3809 			"Failed to upload PPtable!", return result);
3810 
3811 	/*
3812 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3813 	 * That effectively disables AVFS feature.
3814 	 */
3815 	if(hwmgr->hardcode_pp_table != NULL)
3816 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3817 
3818 	vega10_update_avfs(hwmgr);
3819 
3820 	/*
3821 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3822 	 * That will help to keep AVFS disabled.
3823 	 */
3824 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3825 
3826 	return 0;
3827 }
3828 
3829 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3830 {
3831 	struct pp_power_state *ps;
3832 	struct vega10_power_state *vega10_ps;
3833 
3834 	if (hwmgr == NULL)
3835 		return -EINVAL;
3836 
3837 	ps = hwmgr->request_ps;
3838 
3839 	if (ps == NULL)
3840 		return -EINVAL;
3841 
3842 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3843 
3844 	if (low)
3845 		return vega10_ps->performance_levels[0].gfx_clock;
3846 	else
3847 		return vega10_ps->performance_levels
3848 				[vega10_ps->performance_level_count - 1].gfx_clock;
3849 }
3850 
3851 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3852 {
3853 	struct pp_power_state *ps;
3854 	struct vega10_power_state *vega10_ps;
3855 
3856 	if (hwmgr == NULL)
3857 		return -EINVAL;
3858 
3859 	ps = hwmgr->request_ps;
3860 
3861 	if (ps == NULL)
3862 		return -EINVAL;
3863 
3864 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3865 
3866 	if (low)
3867 		return vega10_ps->performance_levels[0].mem_clock;
3868 	else
3869 		return vega10_ps->performance_levels
3870 				[vega10_ps->performance_level_count-1].mem_clock;
3871 }
3872 
3873 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3874 		uint32_t *query)
3875 {
3876 	uint32_t value;
3877 
3878 	if (!query)
3879 		return -EINVAL;
3880 
3881 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3882 
3883 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3884 	*query = value << 8;
3885 
3886 	return 0;
3887 }
3888 
3889 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3890 			      void *value, int *size)
3891 {
3892 	struct amdgpu_device *adev = hwmgr->adev;
3893 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3894 	struct vega10_hwmgr *data = hwmgr->backend;
3895 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3896 	int ret = 0;
3897 	uint32_t val_vid;
3898 
3899 	switch (idx) {
3900 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3901 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3902 		*((uint32_t *)value) = sclk_mhz * 100;
3903 		break;
3904 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3905 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3906 		if (mclk_idx < dpm_table->mem_table.count) {
3907 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3908 			*size = 4;
3909 		} else {
3910 			ret = -EINVAL;
3911 		}
3912 		break;
3913 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3914 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3915 						&activity_percent);
3916 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3917 		*size = 4;
3918 		break;
3919 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3920 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3921 		*size = 4;
3922 		break;
3923 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3924 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3925 		*((uint32_t *)value) = *((uint32_t *)value) *
3926 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3927 		*size = 4;
3928 		break;
3929 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3930 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3931 		*((uint32_t *)value) = *((uint32_t *)value) *
3932 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3933 		*size = 4;
3934 		break;
3935 	case AMDGPU_PP_SENSOR_UVD_POWER:
3936 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3937 		*size = 4;
3938 		break;
3939 	case AMDGPU_PP_SENSOR_VCE_POWER:
3940 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3941 		*size = 4;
3942 		break;
3943 	case AMDGPU_PP_SENSOR_GPU_POWER:
3944 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3945 		break;
3946 	case AMDGPU_PP_SENSOR_VDDGFX:
3947 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3948 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3949 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3950 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3951 		return 0;
3952 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3953 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3954 		if (!ret)
3955 			*size = 8;
3956 		break;
3957 	default:
3958 		ret = -EOPNOTSUPP;
3959 		break;
3960 	}
3961 
3962 	return ret;
3963 }
3964 
3965 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3966 		bool has_disp)
3967 {
3968 	smum_send_msg_to_smc_with_parameter(hwmgr,
3969 			PPSMC_MSG_SetUclkFastSwitch,
3970 			has_disp ? 1 : 0,
3971 			NULL);
3972 }
3973 
3974 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3975 		struct pp_display_clock_request *clock_req)
3976 {
3977 	int result = 0;
3978 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3979 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3980 	DSPCLK_e clk_select = 0;
3981 	uint32_t clk_request = 0;
3982 
3983 	switch (clk_type) {
3984 	case amd_pp_dcef_clock:
3985 		clk_select = DSPCLK_DCEFCLK;
3986 		break;
3987 	case amd_pp_disp_clock:
3988 		clk_select = DSPCLK_DISPCLK;
3989 		break;
3990 	case amd_pp_pixel_clock:
3991 		clk_select = DSPCLK_PIXCLK;
3992 		break;
3993 	case amd_pp_phy_clock:
3994 		clk_select = DSPCLK_PHYCLK;
3995 		break;
3996 	default:
3997 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3998 		result = -1;
3999 		break;
4000 	}
4001 
4002 	if (!result) {
4003 		clk_request = (clk_freq << 16) | clk_select;
4004 		smum_send_msg_to_smc_with_parameter(hwmgr,
4005 				PPSMC_MSG_RequestDisplayClockByFreq,
4006 				clk_request,
4007 				NULL);
4008 	}
4009 
4010 	return result;
4011 }
4012 
4013 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
4014 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
4015 						uint32_t frequency)
4016 {
4017 	uint8_t count;
4018 	uint8_t i;
4019 
4020 	if (mclk_table == NULL || mclk_table->count == 0)
4021 		return 0;
4022 
4023 	count = (uint8_t)(mclk_table->count);
4024 
4025 	for(i = 0; i < count; i++) {
4026 		if(mclk_table->entries[i].clk >= frequency)
4027 			return i;
4028 	}
4029 
4030 	return i-1;
4031 }
4032 
4033 static int vega10_notify_smc_display_config_after_ps_adjustment(
4034 		struct pp_hwmgr *hwmgr)
4035 {
4036 	struct vega10_hwmgr *data = hwmgr->backend;
4037 	struct vega10_single_dpm_table *dpm_table =
4038 			&data->dpm_table.dcef_table;
4039 	struct phm_ppt_v2_information *table_info =
4040 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4041 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
4042 	uint32_t idx;
4043 	struct PP_Clocks min_clocks = {0};
4044 	uint32_t i;
4045 	struct pp_display_clock_request clock_req;
4046 
4047 	if ((hwmgr->display_config->num_display > 1) &&
4048 	     !hwmgr->display_config->multi_monitor_in_sync &&
4049 	     !hwmgr->display_config->nb_pstate_switch_disable)
4050 		vega10_notify_smc_display_change(hwmgr, false);
4051 	else
4052 		vega10_notify_smc_display_change(hwmgr, true);
4053 
4054 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
4055 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
4056 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
4057 
4058 	for (i = 0; i < dpm_table->count; i++) {
4059 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
4060 			break;
4061 	}
4062 
4063 	if (i < dpm_table->count) {
4064 		clock_req.clock_type = amd_pp_dcef_clock;
4065 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4066 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4067 			smum_send_msg_to_smc_with_parameter(
4068 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4069 					min_clocks.dcefClockInSR / 100,
4070 					NULL);
4071 		} else {
4072 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4073 		}
4074 	} else {
4075 		pr_debug("Cannot find requested DCEFCLK!");
4076 	}
4077 
4078 	if (min_clocks.memoryClock != 0) {
4079 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4080 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4081 						NULL);
4082 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4083 	}
4084 
4085 	return 0;
4086 }
4087 
4088 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4089 {
4090 	struct vega10_hwmgr *data = hwmgr->backend;
4091 
4092 	data->smc_state_table.gfx_boot_level =
4093 	data->smc_state_table.gfx_max_level =
4094 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4095 	data->smc_state_table.mem_boot_level =
4096 	data->smc_state_table.mem_max_level =
4097 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4098 
4099 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4100 			"Failed to upload boot level to highest!",
4101 			return -1);
4102 
4103 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4104 			"Failed to upload dpm max level to highest!",
4105 			return -1);
4106 
4107 	return 0;
4108 }
4109 
4110 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4111 {
4112 	struct vega10_hwmgr *data = hwmgr->backend;
4113 
4114 	data->smc_state_table.gfx_boot_level =
4115 	data->smc_state_table.gfx_max_level =
4116 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4117 	data->smc_state_table.mem_boot_level =
4118 	data->smc_state_table.mem_max_level =
4119 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4120 
4121 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4122 			"Failed to upload boot level to highest!",
4123 			return -1);
4124 
4125 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4126 			"Failed to upload dpm max level to highest!",
4127 			return -1);
4128 
4129 	return 0;
4130 
4131 }
4132 
4133 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4134 {
4135 	struct vega10_hwmgr *data = hwmgr->backend;
4136 
4137 	data->smc_state_table.gfx_boot_level =
4138 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4139 	data->smc_state_table.gfx_max_level =
4140 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4141 	data->smc_state_table.mem_boot_level =
4142 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4143 	data->smc_state_table.mem_max_level =
4144 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4145 
4146 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4147 			"Failed to upload DPM Bootup Levels!",
4148 			return -1);
4149 
4150 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4151 			"Failed to upload DPM Max Levels!",
4152 			return -1);
4153 	return 0;
4154 }
4155 
4156 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4157 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4158 {
4159 	struct phm_ppt_v2_information *table_info =
4160 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4161 
4162 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4163 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4164 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4165 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4166 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4167 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4168 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4169 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4170 	}
4171 
4172 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4173 		*sclk_mask = 0;
4174 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4175 		*mclk_mask = 0;
4176 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4177 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4178 		 * to level-4 due to the limited power
4179 		 */
4180 		if (hwmgr->pp_one_vf)
4181 			*sclk_mask = 4;
4182 		else
4183 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4184 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4185 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4186 	}
4187 
4188 	return 0;
4189 }
4190 
4191 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4192 {
4193 	if (!hwmgr->not_vf)
4194 		return;
4195 
4196 	switch (mode) {
4197 	case AMD_FAN_CTRL_NONE:
4198 		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4199 		break;
4200 	case AMD_FAN_CTRL_MANUAL:
4201 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4202 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4203 		break;
4204 	case AMD_FAN_CTRL_AUTO:
4205 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4206 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4207 		break;
4208 	default:
4209 		break;
4210 	}
4211 }
4212 
4213 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4214 		enum pp_clock_type type, uint32_t mask)
4215 {
4216 	struct vega10_hwmgr *data = hwmgr->backend;
4217 
4218 	switch (type) {
4219 	case PP_SCLK:
4220 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4221 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4222 
4223 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4224 			"Failed to upload boot level to lowest!",
4225 			return -EINVAL);
4226 
4227 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4228 			"Failed to upload dpm max level to highest!",
4229 			return -EINVAL);
4230 		break;
4231 
4232 	case PP_MCLK:
4233 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4234 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4235 
4236 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4237 			"Failed to upload boot level to lowest!",
4238 			return -EINVAL);
4239 
4240 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4241 			"Failed to upload dpm max level to highest!",
4242 			return -EINVAL);
4243 
4244 		break;
4245 
4246 	case PP_SOCCLK:
4247 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4248 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4249 
4250 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4251 			"Failed to upload boot level to lowest!",
4252 			return -EINVAL);
4253 
4254 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4255 			"Failed to upload dpm max level to highest!",
4256 			return -EINVAL);
4257 
4258 		break;
4259 
4260 	case PP_DCEFCLK:
4261 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4262 		break;
4263 
4264 	case PP_PCIE:
4265 	default:
4266 		break;
4267 	}
4268 
4269 	return 0;
4270 }
4271 
4272 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4273 				enum amd_dpm_forced_level level)
4274 {
4275 	int ret = 0;
4276 	uint32_t sclk_mask = 0;
4277 	uint32_t mclk_mask = 0;
4278 	uint32_t soc_mask = 0;
4279 
4280 	if (hwmgr->pstate_sclk == 0)
4281 		vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4282 
4283 	switch (level) {
4284 	case AMD_DPM_FORCED_LEVEL_HIGH:
4285 		ret = vega10_force_dpm_highest(hwmgr);
4286 		break;
4287 	case AMD_DPM_FORCED_LEVEL_LOW:
4288 		ret = vega10_force_dpm_lowest(hwmgr);
4289 		break;
4290 	case AMD_DPM_FORCED_LEVEL_AUTO:
4291 		ret = vega10_unforce_dpm_levels(hwmgr);
4292 		break;
4293 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4294 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4295 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4296 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4297 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4298 		if (ret)
4299 			return ret;
4300 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4301 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4302 		break;
4303 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4304 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4305 	default:
4306 		break;
4307 	}
4308 
4309 	if (!hwmgr->not_vf)
4310 		return ret;
4311 
4312 	if (!ret) {
4313 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4314 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4315 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4316 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4317 	}
4318 
4319 	return ret;
4320 }
4321 
4322 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4323 {
4324 	struct vega10_hwmgr *data = hwmgr->backend;
4325 
4326 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4327 		return AMD_FAN_CTRL_MANUAL;
4328 	else
4329 		return AMD_FAN_CTRL_AUTO;
4330 }
4331 
4332 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4333 		struct amd_pp_simple_clock_info *info)
4334 {
4335 	struct phm_ppt_v2_information *table_info =
4336 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4337 	struct phm_clock_and_voltage_limits *max_limits =
4338 			&table_info->max_clock_voltage_on_ac;
4339 
4340 	info->engine_max_clock = max_limits->sclk;
4341 	info->memory_max_clock = max_limits->mclk;
4342 
4343 	return 0;
4344 }
4345 
4346 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4347 		struct pp_clock_levels_with_latency *clocks)
4348 {
4349 	struct phm_ppt_v2_information *table_info =
4350 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4351 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4352 			table_info->vdd_dep_on_sclk;
4353 	uint32_t i;
4354 
4355 	clocks->num_levels = 0;
4356 	for (i = 0; i < dep_table->count; i++) {
4357 		if (dep_table->entries[i].clk) {
4358 			clocks->data[clocks->num_levels].clocks_in_khz =
4359 					dep_table->entries[i].clk * 10;
4360 			clocks->num_levels++;
4361 		}
4362 	}
4363 
4364 }
4365 
4366 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4367 		struct pp_clock_levels_with_latency *clocks)
4368 {
4369 	struct phm_ppt_v2_information *table_info =
4370 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4371 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4372 			table_info->vdd_dep_on_mclk;
4373 	struct vega10_hwmgr *data = hwmgr->backend;
4374 	uint32_t j = 0;
4375 	uint32_t i;
4376 
4377 	for (i = 0; i < dep_table->count; i++) {
4378 		if (dep_table->entries[i].clk) {
4379 
4380 			clocks->data[j].clocks_in_khz =
4381 						dep_table->entries[i].clk * 10;
4382 			data->mclk_latency_table.entries[j].frequency =
4383 							dep_table->entries[i].clk;
4384 			clocks->data[j].latency_in_us =
4385 				data->mclk_latency_table.entries[j].latency = 25;
4386 			j++;
4387 		}
4388 	}
4389 	clocks->num_levels = data->mclk_latency_table.count = j;
4390 }
4391 
4392 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4393 		struct pp_clock_levels_with_latency *clocks)
4394 {
4395 	struct phm_ppt_v2_information *table_info =
4396 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4397 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4398 			table_info->vdd_dep_on_dcefclk;
4399 	uint32_t i;
4400 
4401 	for (i = 0; i < dep_table->count; i++) {
4402 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4403 		clocks->data[i].latency_in_us = 0;
4404 		clocks->num_levels++;
4405 	}
4406 }
4407 
4408 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4409 		struct pp_clock_levels_with_latency *clocks)
4410 {
4411 	struct phm_ppt_v2_information *table_info =
4412 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4413 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4414 			table_info->vdd_dep_on_socclk;
4415 	uint32_t i;
4416 
4417 	for (i = 0; i < dep_table->count; i++) {
4418 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4419 		clocks->data[i].latency_in_us = 0;
4420 		clocks->num_levels++;
4421 	}
4422 }
4423 
4424 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4425 		enum amd_pp_clock_type type,
4426 		struct pp_clock_levels_with_latency *clocks)
4427 {
4428 	switch (type) {
4429 	case amd_pp_sys_clock:
4430 		vega10_get_sclks(hwmgr, clocks);
4431 		break;
4432 	case amd_pp_mem_clock:
4433 		vega10_get_memclocks(hwmgr, clocks);
4434 		break;
4435 	case amd_pp_dcef_clock:
4436 		vega10_get_dcefclocks(hwmgr, clocks);
4437 		break;
4438 	case amd_pp_soc_clock:
4439 		vega10_get_socclocks(hwmgr, clocks);
4440 		break;
4441 	default:
4442 		return -1;
4443 	}
4444 
4445 	return 0;
4446 }
4447 
4448 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4449 		enum amd_pp_clock_type type,
4450 		struct pp_clock_levels_with_voltage *clocks)
4451 {
4452 	struct phm_ppt_v2_information *table_info =
4453 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4454 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4455 	uint32_t i;
4456 
4457 	switch (type) {
4458 	case amd_pp_mem_clock:
4459 		dep_table = table_info->vdd_dep_on_mclk;
4460 		break;
4461 	case amd_pp_dcef_clock:
4462 		dep_table = table_info->vdd_dep_on_dcefclk;
4463 		break;
4464 	case amd_pp_disp_clock:
4465 		dep_table = table_info->vdd_dep_on_dispclk;
4466 		break;
4467 	case amd_pp_pixel_clock:
4468 		dep_table = table_info->vdd_dep_on_pixclk;
4469 		break;
4470 	case amd_pp_phy_clock:
4471 		dep_table = table_info->vdd_dep_on_phyclk;
4472 		break;
4473 	default:
4474 		return -1;
4475 	}
4476 
4477 	for (i = 0; i < dep_table->count; i++) {
4478 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4479 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4480 				entries[dep_table->entries[i].vddInd].us_vdd);
4481 		clocks->num_levels++;
4482 	}
4483 
4484 	if (i < dep_table->count)
4485 		return -1;
4486 
4487 	return 0;
4488 }
4489 
4490 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4491 							void *clock_range)
4492 {
4493 	struct vega10_hwmgr *data = hwmgr->backend;
4494 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4495 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4496 
4497 	if (!data->registry_data.disable_water_mark) {
4498 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4499 		data->water_marks_bitmap = WaterMarksExist;
4500 	}
4501 
4502 	return 0;
4503 }
4504 
4505 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4506 {
4507 	static const char *ppfeature_name[] = {
4508 				"DPM_PREFETCHER",
4509 				"GFXCLK_DPM",
4510 				"UCLK_DPM",
4511 				"SOCCLK_DPM",
4512 				"UVD_DPM",
4513 				"VCE_DPM",
4514 				"ULV",
4515 				"MP0CLK_DPM",
4516 				"LINK_DPM",
4517 				"DCEFCLK_DPM",
4518 				"AVFS",
4519 				"GFXCLK_DS",
4520 				"SOCCLK_DS",
4521 				"LCLK_DS",
4522 				"PPT",
4523 				"TDC",
4524 				"THERMAL",
4525 				"GFX_PER_CU_CG",
4526 				"RM",
4527 				"DCEFCLK_DS",
4528 				"ACDC",
4529 				"VR0HOT",
4530 				"VR1HOT",
4531 				"FW_CTF",
4532 				"LED_DISPLAY",
4533 				"FAN_CONTROL",
4534 				"FAST_PPT",
4535 				"DIDT",
4536 				"ACG",
4537 				"PCC_LIMIT"};
4538 	static const char *output_title[] = {
4539 				"FEATURES",
4540 				"BITMASK",
4541 				"ENABLEMENT"};
4542 	uint64_t features_enabled;
4543 	int i;
4544 	int ret = 0;
4545 	int size = 0;
4546 
4547 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4548 	PP_ASSERT_WITH_CODE(!ret,
4549 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4550 			return ret);
4551 
4552 	size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4553 	size += sprintf(buf + size, "%-19s %-22s %s\n",
4554 				output_title[0],
4555 				output_title[1],
4556 				output_title[2]);
4557 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4558 		size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4559 					ppfeature_name[i],
4560 					1ULL << i,
4561 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4562 	}
4563 
4564 	return size;
4565 }
4566 
4567 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4568 {
4569 	uint64_t features_enabled;
4570 	uint64_t features_to_enable;
4571 	uint64_t features_to_disable;
4572 	int ret = 0;
4573 
4574 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4575 		return -EINVAL;
4576 
4577 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4578 	if (ret)
4579 		return ret;
4580 
4581 	features_to_disable =
4582 		features_enabled & ~new_ppfeature_masks;
4583 	features_to_enable =
4584 		~features_enabled & new_ppfeature_masks;
4585 
4586 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4587 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4588 
4589 	if (features_to_disable) {
4590 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4591 		if (ret)
4592 			return ret;
4593 	}
4594 
4595 	if (features_to_enable) {
4596 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4597 		if (ret)
4598 			return ret;
4599 	}
4600 
4601 	return 0;
4602 }
4603 
4604 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr)
4605 {
4606 	struct amdgpu_device *adev = hwmgr->adev;
4607 
4608 	return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
4609 		PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
4610 		>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
4611 }
4612 
4613 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr)
4614 {
4615 	struct amdgpu_device *adev = hwmgr->adev;
4616 
4617 	return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
4618 		PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
4619 		>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
4620 }
4621 
4622 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4623 		enum pp_clock_type type, char *buf)
4624 {
4625 	struct vega10_hwmgr *data = hwmgr->backend;
4626 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4627 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4628 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4629 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4630 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4631 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4632 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4633 
4634 	int i, now, size = 0, count = 0;
4635 
4636 	switch (type) {
4637 	case PP_SCLK:
4638 		if (data->registry_data.sclk_dpm_key_disabled)
4639 			break;
4640 
4641 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4642 
4643 		if (hwmgr->pp_one_vf &&
4644 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4645 			count = 5;
4646 		else
4647 			count = sclk_table->count;
4648 		for (i = 0; i < count; i++)
4649 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4650 					i, sclk_table->dpm_levels[i].value / 100,
4651 					(i == now) ? "*" : "");
4652 		break;
4653 	case PP_MCLK:
4654 		if (data->registry_data.mclk_dpm_key_disabled)
4655 			break;
4656 
4657 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4658 
4659 		for (i = 0; i < mclk_table->count; i++)
4660 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4661 					i, mclk_table->dpm_levels[i].value / 100,
4662 					(i == now) ? "*" : "");
4663 		break;
4664 	case PP_SOCCLK:
4665 		if (data->registry_data.socclk_dpm_key_disabled)
4666 			break;
4667 
4668 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4669 
4670 		for (i = 0; i < soc_table->count; i++)
4671 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4672 					i, soc_table->dpm_levels[i].value / 100,
4673 					(i == now) ? "*" : "");
4674 		break;
4675 	case PP_DCEFCLK:
4676 		if (data->registry_data.dcefclk_dpm_key_disabled)
4677 			break;
4678 
4679 		smum_send_msg_to_smc_with_parameter(hwmgr,
4680 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4681 
4682 		for (i = 0; i < dcef_table->count; i++)
4683 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4684 					i, dcef_table->dpm_levels[i].value / 100,
4685 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4686 					"*" : "");
4687 		break;
4688 	case PP_PCIE:
4689 		current_gen_speed =
4690 			vega10_get_current_pcie_link_speed_level(hwmgr);
4691 		current_lane_width =
4692 			vega10_get_current_pcie_link_width_level(hwmgr);
4693 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4694 			gen_speed = pptable->PcieGenSpeed[i];
4695 			lane_width = pptable->PcieLaneCount[i];
4696 
4697 			size += sprintf(buf + size, "%d: %s %s %s\n", i,
4698 					(gen_speed == 0) ? "2.5GT/s," :
4699 					(gen_speed == 1) ? "5.0GT/s," :
4700 					(gen_speed == 2) ? "8.0GT/s," :
4701 					(gen_speed == 3) ? "16.0GT/s," : "",
4702 					(lane_width == 1) ? "x1" :
4703 					(lane_width == 2) ? "x2" :
4704 					(lane_width == 3) ? "x4" :
4705 					(lane_width == 4) ? "x8" :
4706 					(lane_width == 5) ? "x12" :
4707 					(lane_width == 6) ? "x16" : "",
4708 					(current_gen_speed == gen_speed) &&
4709 					(current_lane_width == lane_width) ?
4710 					"*" : "");
4711 		}
4712 		break;
4713 
4714 	case OD_SCLK:
4715 		if (hwmgr->od_enabled) {
4716 			size = sprintf(buf, "%s:\n", "OD_SCLK");
4717 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4718 			for (i = 0; i < podn_vdd_dep->count; i++)
4719 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4720 					i, podn_vdd_dep->entries[i].clk / 100,
4721 						podn_vdd_dep->entries[i].vddc);
4722 		}
4723 		break;
4724 	case OD_MCLK:
4725 		if (hwmgr->od_enabled) {
4726 			size = sprintf(buf, "%s:\n", "OD_MCLK");
4727 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4728 			for (i = 0; i < podn_vdd_dep->count; i++)
4729 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4730 					i, podn_vdd_dep->entries[i].clk/100,
4731 						podn_vdd_dep->entries[i].vddc);
4732 		}
4733 		break;
4734 	case OD_RANGE:
4735 		if (hwmgr->od_enabled) {
4736 			size = sprintf(buf, "%s:\n", "OD_RANGE");
4737 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4738 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4739 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4740 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4741 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4742 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4743 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4744 				data->odn_dpm_table.min_vddc,
4745 				data->odn_dpm_table.max_vddc);
4746 		}
4747 		break;
4748 	default:
4749 		break;
4750 	}
4751 	return size;
4752 }
4753 
4754 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4755 {
4756 	struct vega10_hwmgr *data = hwmgr->backend;
4757 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4758 	int result = 0;
4759 
4760 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4761 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4762 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4763 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4764 		data->water_marks_bitmap |= WaterMarksLoaded;
4765 	}
4766 
4767 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4768 		smum_send_msg_to_smc_with_parameter(hwmgr,
4769 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4770 			NULL);
4771 	}
4772 
4773 	return result;
4774 }
4775 
4776 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4777 {
4778 	struct vega10_hwmgr *data = hwmgr->backend;
4779 
4780 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4781 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4782 				enable,
4783 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4784 				"Attempt to Enable/Disable DPM UVD Failed!",
4785 				return -1);
4786 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4787 	}
4788 	return 0;
4789 }
4790 
4791 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4792 {
4793 	struct vega10_hwmgr *data = hwmgr->backend;
4794 
4795 	data->vce_power_gated = bgate;
4796 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4797 }
4798 
4799 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4800 {
4801 	struct vega10_hwmgr *data = hwmgr->backend;
4802 
4803 	data->uvd_power_gated = bgate;
4804 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4805 }
4806 
4807 static inline bool vega10_are_power_levels_equal(
4808 				const struct vega10_performance_level *pl1,
4809 				const struct vega10_performance_level *pl2)
4810 {
4811 	return ((pl1->soc_clock == pl2->soc_clock) &&
4812 			(pl1->gfx_clock == pl2->gfx_clock) &&
4813 			(pl1->mem_clock == pl2->mem_clock));
4814 }
4815 
4816 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4817 				const struct pp_hw_power_state *pstate1,
4818 			const struct pp_hw_power_state *pstate2, bool *equal)
4819 {
4820 	const struct vega10_power_state *psa;
4821 	const struct vega10_power_state *psb;
4822 	int i;
4823 
4824 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4825 		return -EINVAL;
4826 
4827 	psa = cast_const_phw_vega10_power_state(pstate1);
4828 	psb = cast_const_phw_vega10_power_state(pstate2);
4829 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4830 	if (psa->performance_level_count != psb->performance_level_count) {
4831 		*equal = false;
4832 		return 0;
4833 	}
4834 
4835 	for (i = 0; i < psa->performance_level_count; i++) {
4836 		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4837 			/* If we have found even one performance level pair that is different the states are different. */
4838 			*equal = false;
4839 			return 0;
4840 		}
4841 	}
4842 
4843 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4844 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4845 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4846 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4847 
4848 	return 0;
4849 }
4850 
4851 static bool
4852 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4853 {
4854 	struct vega10_hwmgr *data = hwmgr->backend;
4855 	bool is_update_required = false;
4856 
4857 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4858 		is_update_required = true;
4859 
4860 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4861 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4862 			is_update_required = true;
4863 	}
4864 
4865 	return is_update_required;
4866 }
4867 
4868 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4869 {
4870 	int tmp_result, result = 0;
4871 
4872 	if (!hwmgr->not_vf)
4873 		return 0;
4874 
4875 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4876 		vega10_disable_thermal_protection(hwmgr);
4877 
4878 	tmp_result = vega10_disable_power_containment(hwmgr);
4879 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4880 			"Failed to disable power containment!", result = tmp_result);
4881 
4882 	tmp_result = vega10_disable_didt_config(hwmgr);
4883 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4884 			"Failed to disable didt config!", result = tmp_result);
4885 
4886 	tmp_result = vega10_avfs_enable(hwmgr, false);
4887 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4888 			"Failed to disable AVFS!", result = tmp_result);
4889 
4890 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4891 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4892 			"Failed to stop DPM!", result = tmp_result);
4893 
4894 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4895 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4896 			"Failed to disable deep sleep!", result = tmp_result);
4897 
4898 	tmp_result = vega10_disable_ulv(hwmgr);
4899 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4900 			"Failed to disable ulv!", result = tmp_result);
4901 
4902 	tmp_result =  vega10_acg_disable(hwmgr);
4903 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4904 			"Failed to disable acg!", result = tmp_result);
4905 
4906 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4907 	return result;
4908 }
4909 
4910 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4911 {
4912 	struct vega10_hwmgr *data = hwmgr->backend;
4913 	int result;
4914 
4915 	result = vega10_disable_dpm_tasks(hwmgr);
4916 	PP_ASSERT_WITH_CODE((0 == result),
4917 			"[disable_dpm_tasks] Failed to disable DPM!",
4918 			);
4919 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
4920 
4921 	return result;
4922 }
4923 
4924 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4925 {
4926 	struct vega10_hwmgr *data = hwmgr->backend;
4927 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4928 	struct vega10_single_dpm_table *golden_sclk_table =
4929 			&(data->golden_dpm_table.gfx_table);
4930 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4931 	int golden_value = golden_sclk_table->dpm_levels
4932 			[golden_sclk_table->count - 1].value;
4933 
4934 	value -= golden_value;
4935 	value = DIV_ROUND_UP(value * 100, golden_value);
4936 
4937 	return value;
4938 }
4939 
4940 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4941 {
4942 	struct vega10_hwmgr *data = hwmgr->backend;
4943 	struct vega10_single_dpm_table *golden_sclk_table =
4944 			&(data->golden_dpm_table.gfx_table);
4945 	struct pp_power_state *ps;
4946 	struct vega10_power_state *vega10_ps;
4947 
4948 	ps = hwmgr->request_ps;
4949 
4950 	if (ps == NULL)
4951 		return -EINVAL;
4952 
4953 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4954 
4955 	vega10_ps->performance_levels
4956 	[vega10_ps->performance_level_count - 1].gfx_clock =
4957 			golden_sclk_table->dpm_levels
4958 			[golden_sclk_table->count - 1].value *
4959 			value / 100 +
4960 			golden_sclk_table->dpm_levels
4961 			[golden_sclk_table->count - 1].value;
4962 
4963 	if (vega10_ps->performance_levels
4964 			[vega10_ps->performance_level_count - 1].gfx_clock >
4965 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4966 		vega10_ps->performance_levels
4967 		[vega10_ps->performance_level_count - 1].gfx_clock =
4968 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
4969 		pr_warn("max sclk supported by vbios is %d\n",
4970 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
4971 	}
4972 	return 0;
4973 }
4974 
4975 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4976 {
4977 	struct vega10_hwmgr *data = hwmgr->backend;
4978 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4979 	struct vega10_single_dpm_table *golden_mclk_table =
4980 			&(data->golden_dpm_table.mem_table);
4981 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4982 	int golden_value = golden_mclk_table->dpm_levels
4983 			[golden_mclk_table->count - 1].value;
4984 
4985 	value -= golden_value;
4986 	value = DIV_ROUND_UP(value * 100, golden_value);
4987 
4988 	return value;
4989 }
4990 
4991 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4992 {
4993 	struct vega10_hwmgr *data = hwmgr->backend;
4994 	struct vega10_single_dpm_table *golden_mclk_table =
4995 			&(data->golden_dpm_table.mem_table);
4996 	struct pp_power_state  *ps;
4997 	struct vega10_power_state  *vega10_ps;
4998 
4999 	ps = hwmgr->request_ps;
5000 
5001 	if (ps == NULL)
5002 		return -EINVAL;
5003 
5004 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5005 
5006 	vega10_ps->performance_levels
5007 	[vega10_ps->performance_level_count - 1].mem_clock =
5008 			golden_mclk_table->dpm_levels
5009 			[golden_mclk_table->count - 1].value *
5010 			value / 100 +
5011 			golden_mclk_table->dpm_levels
5012 			[golden_mclk_table->count - 1].value;
5013 
5014 	if (vega10_ps->performance_levels
5015 			[vega10_ps->performance_level_count - 1].mem_clock >
5016 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
5017 		vega10_ps->performance_levels
5018 		[vega10_ps->performance_level_count - 1].mem_clock =
5019 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
5020 		pr_warn("max mclk supported by vbios is %d\n",
5021 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
5022 	}
5023 
5024 	return 0;
5025 }
5026 
5027 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5028 					uint32_t virtual_addr_low,
5029 					uint32_t virtual_addr_hi,
5030 					uint32_t mc_addr_low,
5031 					uint32_t mc_addr_hi,
5032 					uint32_t size)
5033 {
5034 	smum_send_msg_to_smc_with_parameter(hwmgr,
5035 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
5036 					virtual_addr_hi,
5037 					NULL);
5038 	smum_send_msg_to_smc_with_parameter(hwmgr,
5039 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
5040 					virtual_addr_low,
5041 					NULL);
5042 	smum_send_msg_to_smc_with_parameter(hwmgr,
5043 					PPSMC_MSG_DramLogSetDramAddrHigh,
5044 					mc_addr_hi,
5045 					NULL);
5046 
5047 	smum_send_msg_to_smc_with_parameter(hwmgr,
5048 					PPSMC_MSG_DramLogSetDramAddrLow,
5049 					mc_addr_low,
5050 					NULL);
5051 
5052 	smum_send_msg_to_smc_with_parameter(hwmgr,
5053 					PPSMC_MSG_DramLogSetDramSize,
5054 					size,
5055 					NULL);
5056 	return 0;
5057 }
5058 
5059 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5060 		struct PP_TemperatureRange *thermal_data)
5061 {
5062 	struct vega10_hwmgr *data = hwmgr->backend;
5063 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
5064 
5065 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
5066 
5067 	thermal_data->max = pp_table->TedgeLimit *
5068 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5069 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
5070 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5071 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
5072 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5073 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
5074 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5075 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
5076 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5077 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
5078 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5079 
5080 	return 0;
5081 }
5082 
5083 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5084 {
5085 	struct vega10_hwmgr *data = hwmgr->backend;
5086 	uint32_t i, size = 0;
5087 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
5088 						{70, 60, 1, 3,},
5089 						{90, 60, 0, 0,},
5090 						{70, 60, 0, 0,},
5091 						{70, 90, 0, 0,},
5092 						{30, 60, 0, 6,},
5093 						};
5094 	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
5095 					"3D_FULL_SCREEN",
5096 					"POWER_SAVING",
5097 					"VIDEO",
5098 					"VR",
5099 					"COMPUTE",
5100 					"CUSTOM"};
5101 	static const char *title[6] = {"NUM",
5102 			"MODE_NAME",
5103 			"BUSY_SET_POINT",
5104 			"FPS",
5105 			"USE_RLC_BUSY",
5106 			"MIN_ACTIVE_LEVEL"};
5107 
5108 	if (!buf)
5109 		return -EINVAL;
5110 
5111 	size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
5112 			title[1], title[2], title[3], title[4], title[5]);
5113 
5114 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5115 		size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
5116 			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5117 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5118 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5119 	size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5120 			profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5121 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5122 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5123 	return size;
5124 }
5125 
5126 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5127 {
5128 	struct vega10_hwmgr *data = hwmgr->backend;
5129 	uint8_t busy_set_point;
5130 	uint8_t FPS;
5131 	uint8_t use_rlc_busy;
5132 	uint8_t min_active_level;
5133 	uint32_t power_profile_mode = input[size];
5134 
5135 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5136 		if (size != 0 && size != 4)
5137 			return -EINVAL;
5138 
5139 		/* If size = 0 and the CUSTOM profile has been set already
5140 		 * then just apply the profile. The copy stored in the hwmgr
5141 		 * is zeroed out on init
5142 		 */
5143 		if (size == 0) {
5144 			if (data->custom_profile_mode[0] != 0)
5145 				goto out;
5146 			else
5147 				return -EINVAL;
5148 		}
5149 
5150 		data->custom_profile_mode[0] = busy_set_point = input[0];
5151 		data->custom_profile_mode[1] = FPS = input[1];
5152 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5153 		data->custom_profile_mode[3] = min_active_level = input[3];
5154 		smum_send_msg_to_smc_with_parameter(hwmgr,
5155 					PPSMC_MSG_SetCustomGfxDpmParameters,
5156 					busy_set_point | FPS<<8 |
5157 					use_rlc_busy << 16 | min_active_level<<24,
5158 					NULL);
5159 	}
5160 
5161 out:
5162 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5163 						(!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1),
5164 						NULL);
5165 	hwmgr->power_profile_mode = power_profile_mode;
5166 
5167 	return 0;
5168 }
5169 
5170 
5171 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5172 					enum PP_OD_DPM_TABLE_COMMAND type,
5173 					uint32_t clk,
5174 					uint32_t voltage)
5175 {
5176 	struct vega10_hwmgr *data = hwmgr->backend;
5177 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5178 	struct vega10_single_dpm_table *golden_table;
5179 
5180 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5181 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5182 		return false;
5183 	}
5184 
5185 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5186 		golden_table = &(data->golden_dpm_table.gfx_table);
5187 		if (golden_table->dpm_levels[0].value > clk ||
5188 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5189 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5190 				golden_table->dpm_levels[0].value/100,
5191 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5192 			return false;
5193 		}
5194 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5195 		golden_table = &(data->golden_dpm_table.mem_table);
5196 		if (golden_table->dpm_levels[0].value > clk ||
5197 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5198 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5199 				golden_table->dpm_levels[0].value/100,
5200 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5201 			return false;
5202 		}
5203 	} else {
5204 		return false;
5205 	}
5206 
5207 	return true;
5208 }
5209 
5210 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5211 {
5212 	struct vega10_hwmgr *data = hwmgr->backend;
5213 	struct pp_power_state *ps = hwmgr->request_ps;
5214 	struct vega10_power_state *vega10_ps;
5215 	struct vega10_single_dpm_table *gfx_dpm_table =
5216 		&data->dpm_table.gfx_table;
5217 	struct vega10_single_dpm_table *soc_dpm_table =
5218 		&data->dpm_table.soc_table;
5219 	struct vega10_single_dpm_table *mem_dpm_table =
5220 		&data->dpm_table.mem_table;
5221 	int max_level;
5222 
5223 	if (!ps)
5224 		return;
5225 
5226 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5227 	max_level = vega10_ps->performance_level_count - 1;
5228 
5229 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5230 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5231 		vega10_ps->performance_levels[max_level].gfx_clock =
5232 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5233 
5234 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5235 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5236 		vega10_ps->performance_levels[max_level].soc_clock =
5237 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5238 
5239 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5240 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5241 		vega10_ps->performance_levels[max_level].mem_clock =
5242 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5243 
5244 	if (!hwmgr->ps)
5245 		return;
5246 
5247 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5248 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5249 	max_level = vega10_ps->performance_level_count - 1;
5250 
5251 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5252 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5253 		vega10_ps->performance_levels[max_level].gfx_clock =
5254 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5255 
5256 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5257 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5258 		vega10_ps->performance_levels[max_level].soc_clock =
5259 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5260 
5261 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5262 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5263 		vega10_ps->performance_levels[max_level].mem_clock =
5264 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5265 }
5266 
5267 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5268 						enum PP_OD_DPM_TABLE_COMMAND type)
5269 {
5270 	struct vega10_hwmgr *data = hwmgr->backend;
5271 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5272 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5273 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5274 
5275 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5276 							&data->odn_dpm_table.vdd_dep_on_socclk;
5277 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5278 
5279 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5280 	uint8_t i, j;
5281 
5282 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5283 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5284 		for (i = 0; i < podn_vdd_dep->count; i++)
5285 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5286 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5287 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5288 		for (i = 0; i < dpm_table->count; i++) {
5289 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5290 				if (od_vddc_lookup_table->entries[j].us_vdd >
5291 					podn_vdd_dep->entries[i].vddc)
5292 					break;
5293 			}
5294 			if (j == od_vddc_lookup_table->count) {
5295 				j = od_vddc_lookup_table->count - 1;
5296 				od_vddc_lookup_table->entries[j].us_vdd =
5297 					podn_vdd_dep->entries[i].vddc;
5298 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5299 			}
5300 			podn_vdd_dep->entries[i].vddInd = j;
5301 		}
5302 		dpm_table = &data->dpm_table.soc_table;
5303 		for (i = 0; i < dep_table->count; i++) {
5304 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5305 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5306 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5307 				for (; (i < dep_table->count) &&
5308 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5309 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5310 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5311 				}
5312 				break;
5313 			} else {
5314 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5315 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5316 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5317 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5318 			}
5319 		}
5320 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5321 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5322 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5323 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5324 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5325 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5326 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5327 		}
5328 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5329 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5330 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5331 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5332 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5333 		}
5334 	}
5335 	vega10_odn_update_power_state(hwmgr);
5336 }
5337 
5338 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5339 					enum PP_OD_DPM_TABLE_COMMAND type,
5340 					long *input, uint32_t size)
5341 {
5342 	struct vega10_hwmgr *data = hwmgr->backend;
5343 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5344 	struct vega10_single_dpm_table *dpm_table;
5345 
5346 	uint32_t input_clk;
5347 	uint32_t input_vol;
5348 	uint32_t input_level;
5349 	uint32_t i;
5350 
5351 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5352 				return -EINVAL);
5353 
5354 	if (!hwmgr->od_enabled) {
5355 		pr_info("OverDrive feature not enabled\n");
5356 		return -EINVAL;
5357 	}
5358 
5359 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5360 		dpm_table = &data->dpm_table.gfx_table;
5361 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5362 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5363 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5364 		dpm_table = &data->dpm_table.mem_table;
5365 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5366 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5367 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5368 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5369 		vega10_odn_initial_default_setting(hwmgr);
5370 		vega10_odn_update_power_state(hwmgr);
5371 		/* force to update all clock tables */
5372 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5373 					      DPMTABLE_UPDATE_MCLK |
5374 					      DPMTABLE_UPDATE_SOCCLK;
5375 		return 0;
5376 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5377 		vega10_check_dpm_table_updated(hwmgr);
5378 		return 0;
5379 	} else {
5380 		return -EINVAL;
5381 	}
5382 
5383 	for (i = 0; i < size; i += 3) {
5384 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5385 			pr_info("invalid clock voltage input\n");
5386 			return 0;
5387 		}
5388 		input_level = input[i];
5389 		input_clk = input[i+1] * 100;
5390 		input_vol = input[i+2];
5391 
5392 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5393 			dpm_table->dpm_levels[input_level].value = input_clk;
5394 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5395 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5396 		} else {
5397 			return -EINVAL;
5398 		}
5399 	}
5400 	vega10_odn_update_soc_table(hwmgr, type);
5401 	return 0;
5402 }
5403 
5404 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5405 				enum pp_mp1_state mp1_state)
5406 {
5407 	uint16_t msg;
5408 	int ret;
5409 
5410 	switch (mp1_state) {
5411 	case PP_MP1_STATE_UNLOAD:
5412 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5413 		break;
5414 	case PP_MP1_STATE_SHUTDOWN:
5415 	case PP_MP1_STATE_RESET:
5416 	case PP_MP1_STATE_NONE:
5417 	default:
5418 		return 0;
5419 	}
5420 
5421 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5422 			    "[PrepareMp1] Failed!",
5423 			    return ret);
5424 
5425 	return 0;
5426 }
5427 
5428 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5429 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5430 				PHM_PerformanceLevel *level)
5431 {
5432 	const struct vega10_power_state *ps;
5433 	uint32_t i;
5434 
5435 	if (level == NULL || hwmgr == NULL || state == NULL)
5436 		return -EINVAL;
5437 
5438 	ps = cast_const_phw_vega10_power_state(state);
5439 
5440 	i = index > ps->performance_level_count - 1 ?
5441 			ps->performance_level_count - 1 : index;
5442 
5443 	level->coreClock = ps->performance_levels[i].gfx_clock;
5444 	level->memory_clock = ps->performance_levels[i].mem_clock;
5445 
5446 	return 0;
5447 }
5448 
5449 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5450 {
5451 	struct vega10_hwmgr *data = hwmgr->backend;
5452 	uint32_t feature_mask = 0;
5453 
5454 	if (disable) {
5455 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5456 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5457 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5458 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5459 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5460 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5461 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5462 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5463 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5464 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5465 	} else {
5466 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5467 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5468 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5469 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5470 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5471 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5472 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5473 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5474 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5475 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5476 	}
5477 
5478 	if (feature_mask)
5479 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5480 				!disable, feature_mask),
5481 				"enable/disable power features for compute performance Failed!",
5482 				return -EINVAL);
5483 
5484 	if (disable) {
5485 		data->smu_features[GNLD_ULV].enabled = false;
5486 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5487 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5488 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5489 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5490 	} else {
5491 		data->smu_features[GNLD_ULV].enabled = true;
5492 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5493 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5494 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5495 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5496 	}
5497 
5498 	return 0;
5499 
5500 }
5501 
5502 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5503 	.backend_init = vega10_hwmgr_backend_init,
5504 	.backend_fini = vega10_hwmgr_backend_fini,
5505 	.asic_setup = vega10_setup_asic_task,
5506 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5507 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5508 	.get_num_of_pp_table_entries =
5509 			vega10_get_number_of_powerplay_table_entries,
5510 	.get_power_state_size = vega10_get_power_state_size,
5511 	.get_pp_table_entry = vega10_get_pp_table_entry,
5512 	.patch_boot_state = vega10_patch_boot_state,
5513 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5514 	.power_state_set = vega10_set_power_state_tasks,
5515 	.get_sclk = vega10_dpm_get_sclk,
5516 	.get_mclk = vega10_dpm_get_mclk,
5517 	.notify_smc_display_config_after_ps_adjustment =
5518 			vega10_notify_smc_display_config_after_ps_adjustment,
5519 	.force_dpm_level = vega10_dpm_force_dpm_level,
5520 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5521 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5522 	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5523 	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5524 	.reset_fan_speed_to_default =
5525 			vega10_fan_ctrl_reset_fan_speed_to_default,
5526 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5527 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5528 	.uninitialize_thermal_controller =
5529 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5530 	.set_fan_control_mode = vega10_set_fan_control_mode,
5531 	.get_fan_control_mode = vega10_get_fan_control_mode,
5532 	.read_sensor = vega10_read_sensor,
5533 	.get_dal_power_level = vega10_get_dal_power_level,
5534 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5535 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5536 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5537 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5538 	.force_clock_level = vega10_force_clock_level,
5539 	.print_clock_levels = vega10_print_clock_levels,
5540 	.display_config_changed = vega10_display_configuration_changed_task,
5541 	.powergate_uvd = vega10_power_gate_uvd,
5542 	.powergate_vce = vega10_power_gate_vce,
5543 	.check_states_equal = vega10_check_states_equal,
5544 	.check_smc_update_required_for_display_configuration =
5545 			vega10_check_smc_update_required_for_display_configuration,
5546 	.power_off_asic = vega10_power_off_asic,
5547 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5548 	.get_sclk_od = vega10_get_sclk_od,
5549 	.set_sclk_od = vega10_set_sclk_od,
5550 	.get_mclk_od = vega10_get_mclk_od,
5551 	.set_mclk_od = vega10_set_mclk_od,
5552 	.avfs_control = vega10_avfs_enable,
5553 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5554 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5555 	.register_irq_handlers = smu9_register_irq_handlers,
5556 	.start_thermal_controller = vega10_start_thermal_controller,
5557 	.get_power_profile_mode = vega10_get_power_profile_mode,
5558 	.set_power_profile_mode = vega10_set_power_profile_mode,
5559 	.set_power_limit = vega10_set_power_limit,
5560 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5561 	.get_performance_level = vega10_get_performance_level,
5562 	.get_asic_baco_capability = smu9_baco_get_capability,
5563 	.get_asic_baco_state = smu9_baco_get_state,
5564 	.set_asic_baco_state = vega10_baco_set_state,
5565 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5566 	.get_ppfeature_status = vega10_get_ppfeature_status,
5567 	.set_ppfeature_status = vega10_set_ppfeature_status,
5568 	.set_mp1_state = vega10_set_mp1_state,
5569 	.disable_power_features_for_compute_performance =
5570 			vega10_disable_power_features_for_compute_performance,
5571 };
5572 
5573 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5574 {
5575 	struct amdgpu_device *adev = hwmgr->adev;
5576 
5577 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5578 	hwmgr->pptable_func = &vega10_pptable_funcs;
5579 	if (amdgpu_passthrough(adev))
5580 		return vega10_baco_set_cap(hwmgr);
5581 
5582 	return 0;
5583 }
5584