1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 
30 #include "hwmgr.h"
31 #include "amd_powerplay.h"
32 #include "hardwaremanager.h"
33 #include "ppatomfwctrl.h"
34 #include "atomfirmware.h"
35 #include "cgs_common.h"
36 #include "vega10_powertune.h"
37 #include "smu9.h"
38 #include "smu9_driver_if.h"
39 #include "vega10_inc.h"
40 #include "soc15_common.h"
41 #include "pppcielanes.h"
42 #include "vega10_hwmgr.h"
43 #include "vega10_smumgr.h"
44 #include "vega10_processpptables.h"
45 #include "vega10_pptable.h"
46 #include "vega10_thermal.h"
47 #include "pp_debug.h"
48 #include "amd_pcie_helpers.h"
49 #include "ppinterrupt.h"
50 #include "pp_overdriver.h"
51 #include "pp_thermal.h"
52 #include "vega10_baco.h"
53 
54 #include "smuio/smuio_9_0_offset.h"
55 #include "smuio/smuio_9_0_sh_mask.h"
56 
57 #define HBM_MEMORY_CHANNEL_WIDTH    128
58 
59 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
60 
61 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
62 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
63 
64 //DF_CS_AON0_DramBaseAddress0
65 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
66 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
67 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
68 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
69 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
70 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
71 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
72 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
73 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
74 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
75 
76 typedef enum {
77 	CLK_SMNCLK = 0,
78 	CLK_SOCCLK,
79 	CLK_MP0CLK,
80 	CLK_MP1CLK,
81 	CLK_LCLK,
82 	CLK_DCEFCLK,
83 	CLK_VCLK,
84 	CLK_DCLK,
85 	CLK_ECLK,
86 	CLK_UCLK,
87 	CLK_GFXCLK,
88 	CLK_COUNT,
89 } CLOCK_ID_e;
90 
91 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
92 
93 static struct vega10_power_state *cast_phw_vega10_power_state(
94 				  struct pp_hw_power_state *hw_ps)
95 {
96 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
97 				"Invalid Powerstate Type!",
98 				 return NULL;);
99 
100 	return (struct vega10_power_state *)hw_ps;
101 }
102 
103 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
104 				 const struct pp_hw_power_state *hw_ps)
105 {
106 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
107 				"Invalid Powerstate Type!",
108 				 return NULL;);
109 
110 	return (const struct vega10_power_state *)hw_ps;
111 }
112 
113 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
114 {
115 	struct vega10_hwmgr *data = hwmgr->backend;
116 
117 	data->registry_data.sclk_dpm_key_disabled =
118 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
119 	data->registry_data.socclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
121 	data->registry_data.mclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
123 	data->registry_data.pcie_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
125 
126 	data->registry_data.dcefclk_dpm_key_disabled =
127 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
128 
129 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
130 		data->registry_data.power_containment_support = 1;
131 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
132 		data->registry_data.enable_tdc_limit_feature = 1;
133 	}
134 
135 	data->registry_data.clock_stretcher_support =
136 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
137 
138 	data->registry_data.ulv_support =
139 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
140 
141 	data->registry_data.sclk_deep_sleep_support =
142 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
143 
144 	data->registry_data.disable_water_mark = 0;
145 
146 	data->registry_data.fan_control_support = 1;
147 	data->registry_data.thermal_support = 1;
148 	data->registry_data.fw_ctf_enabled = 1;
149 
150 	data->registry_data.avfs_support =
151 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
152 	data->registry_data.led_dpm_enabled = 1;
153 
154 	data->registry_data.vr0hot_enabled = 1;
155 	data->registry_data.vr1hot_enabled = 1;
156 	data->registry_data.regulator_hot_gpio_support = 1;
157 
158 	data->registry_data.didt_support = 1;
159 	if (data->registry_data.didt_support) {
160 		data->registry_data.didt_mode = 6;
161 		data->registry_data.sq_ramping_support = 1;
162 		data->registry_data.db_ramping_support = 0;
163 		data->registry_data.td_ramping_support = 0;
164 		data->registry_data.tcp_ramping_support = 0;
165 		data->registry_data.dbr_ramping_support = 0;
166 		data->registry_data.edc_didt_support = 1;
167 		data->registry_data.gc_didt_support = 0;
168 		data->registry_data.psm_didt_support = 0;
169 	}
170 
171 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
172 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
173 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
174 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 
185 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
186 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
187 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
188 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
189 }
190 
191 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
192 {
193 	struct vega10_hwmgr *data = hwmgr->backend;
194 	struct phm_ppt_v2_information *table_info =
195 			(struct phm_ppt_v2_information *)hwmgr->pptable;
196 	struct amdgpu_device *adev = hwmgr->adev;
197 
198 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
199 			PHM_PlatformCaps_SclkDeepSleep);
200 
201 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
202 			PHM_PlatformCaps_DynamicPatchPowerState);
203 
204 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
205 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
206 				PHM_PlatformCaps_ControlVDDCI);
207 
208 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
209 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
210 
211 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
212 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
213 				PHM_PlatformCaps_UVDPowerGating);
214 
215 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
216 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
217 				PHM_PlatformCaps_VCEPowerGating);
218 
219 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
220 			PHM_PlatformCaps_UnTabledHardwareInterface);
221 
222 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
223 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
224 
225 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
226 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
227 
228 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 				PHM_PlatformCaps_DynamicPowerManagement);
230 
231 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
232 			PHM_PlatformCaps_SMC);
233 
234 	/* power tune caps */
235 	/* assume disabled */
236 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
237 			PHM_PlatformCaps_PowerContainment);
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_DiDtSupport);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_SQRamping);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_DBRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_TDRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TCPRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_DBRRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DiDtEDCEnable);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_GCEDC);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_PSM);
256 
257 	if (data->registry_data.didt_support) {
258 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
259 		if (data->registry_data.sq_ramping_support)
260 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
261 		if (data->registry_data.db_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
263 		if (data->registry_data.td_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
265 		if (data->registry_data.tcp_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
267 		if (data->registry_data.dbr_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
269 		if (data->registry_data.edc_didt_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
271 		if (data->registry_data.gc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
273 		if (data->registry_data.psm_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
275 	}
276 
277 	if (data->registry_data.power_containment_support)
278 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
279 				PHM_PlatformCaps_PowerContainment);
280 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 			PHM_PlatformCaps_CAC);
282 
283 	if (table_info->tdp_table->usClockStretchAmount &&
284 			data->registry_data.clock_stretcher_support)
285 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
286 				PHM_PlatformCaps_ClockStretcher);
287 
288 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 			PHM_PlatformCaps_RegulatorHot);
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_AutomaticDCTransition);
292 
293 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 			PHM_PlatformCaps_UVDDPM);
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_VCEDPM);
297 
298 	return 0;
299 }
300 
301 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
302 {
303 	struct vega10_hwmgr *data = hwmgr->backend;
304 	struct phm_ppt_v2_information *table_info =
305 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
306 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
307 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
308 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
309 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
310 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
311 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
312 	uint32_t i;
313 	int result;
314 
315 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
316 	if (!result) {
317 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
318 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
319 	}
320 
321 	od_lookup_table = &odn_table->vddc_lookup_table;
322 	vddc_lookup_table = table_info->vddc_lookup_table;
323 
324 	for (i = 0; i < vddc_lookup_table->count; i++)
325 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
326 
327 	od_lookup_table->count = vddc_lookup_table->count;
328 
329 	dep_table[0] = table_info->vdd_dep_on_sclk;
330 	dep_table[1] = table_info->vdd_dep_on_mclk;
331 	dep_table[2] = table_info->vdd_dep_on_socclk;
332 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
333 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
334 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
335 
336 	for (i = 0; i < 3; i++)
337 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
338 
339 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
340 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
341 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
342 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
343 
344 	i = od_table[2]->count - 1;
345 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
346 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
347 					od_table[2]->entries[i].clk;
348 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
349 					odn_table->max_vddc :
350 					od_table[2]->entries[i].vddc;
351 
352 	return 0;
353 }
354 
355 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
356 {
357 	struct vega10_hwmgr *data = hwmgr->backend;
358 	int i;
359 	uint32_t sub_vendor_id, hw_revision;
360 	uint32_t top32, bottom32;
361 	struct amdgpu_device *adev = hwmgr->adev;
362 
363 	vega10_initialize_power_tune_defaults(hwmgr);
364 
365 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
366 		data->smu_features[i].smu_feature_id = 0xffff;
367 		data->smu_features[i].smu_feature_bitmap = 1 << i;
368 		data->smu_features[i].enabled = false;
369 		data->smu_features[i].supported = false;
370 	}
371 
372 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
373 			FEATURE_DPM_PREFETCHER_BIT;
374 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
375 			FEATURE_DPM_GFXCLK_BIT;
376 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
377 			FEATURE_DPM_UCLK_BIT;
378 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
379 			FEATURE_DPM_SOCCLK_BIT;
380 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
381 			FEATURE_DPM_UVD_BIT;
382 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
383 			FEATURE_DPM_VCE_BIT;
384 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
385 			FEATURE_DPM_MP0CLK_BIT;
386 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
387 			FEATURE_DPM_LINK_BIT;
388 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
389 			FEATURE_DPM_DCEFCLK_BIT;
390 	data->smu_features[GNLD_ULV].smu_feature_id =
391 			FEATURE_ULV_BIT;
392 	data->smu_features[GNLD_AVFS].smu_feature_id =
393 			FEATURE_AVFS_BIT;
394 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
395 			FEATURE_DS_GFXCLK_BIT;
396 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
397 			FEATURE_DS_SOCCLK_BIT;
398 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
399 			FEATURE_DS_LCLK_BIT;
400 	data->smu_features[GNLD_PPT].smu_feature_id =
401 			FEATURE_PPT_BIT;
402 	data->smu_features[GNLD_TDC].smu_feature_id =
403 			FEATURE_TDC_BIT;
404 	data->smu_features[GNLD_THERMAL].smu_feature_id =
405 			FEATURE_THERMAL_BIT;
406 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
407 			FEATURE_GFX_PER_CU_CG_BIT;
408 	data->smu_features[GNLD_RM].smu_feature_id =
409 			FEATURE_RM_BIT;
410 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
411 			FEATURE_DS_DCEFCLK_BIT;
412 	data->smu_features[GNLD_ACDC].smu_feature_id =
413 			FEATURE_ACDC_BIT;
414 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
415 			FEATURE_VR0HOT_BIT;
416 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
417 			FEATURE_VR1HOT_BIT;
418 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
419 			FEATURE_FW_CTF_BIT;
420 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
421 			FEATURE_LED_DISPLAY_BIT;
422 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
423 			FEATURE_FAN_CONTROL_BIT;
424 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
425 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
426 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
427 
428 	if (!data->registry_data.prefetcher_dpm_key_disabled)
429 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
430 
431 	if (!data->registry_data.sclk_dpm_key_disabled)
432 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
433 
434 	if (!data->registry_data.mclk_dpm_key_disabled)
435 		data->smu_features[GNLD_DPM_UCLK].supported = true;
436 
437 	if (!data->registry_data.socclk_dpm_key_disabled)
438 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
439 
440 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
441 		data->smu_features[GNLD_DPM_UVD].supported = true;
442 
443 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
444 		data->smu_features[GNLD_DPM_VCE].supported = true;
445 
446 	if (!data->registry_data.pcie_dpm_key_disabled)
447 		data->smu_features[GNLD_DPM_LINK].supported = true;
448 
449 	if (!data->registry_data.dcefclk_dpm_key_disabled)
450 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
451 
452 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
453 	    data->registry_data.sclk_deep_sleep_support) {
454 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
455 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
456 		data->smu_features[GNLD_DS_LCLK].supported = true;
457 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
458 	}
459 
460 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
461 		data->smu_features[GNLD_PPT].supported = true;
462 
463 	if (data->registry_data.enable_tdc_limit_feature)
464 		data->smu_features[GNLD_TDC].supported = true;
465 
466 	if (data->registry_data.thermal_support)
467 		data->smu_features[GNLD_THERMAL].supported = true;
468 
469 	if (data->registry_data.fan_control_support)
470 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
471 
472 	if (data->registry_data.fw_ctf_enabled)
473 		data->smu_features[GNLD_FW_CTF].supported = true;
474 
475 	if (data->registry_data.avfs_support)
476 		data->smu_features[GNLD_AVFS].supported = true;
477 
478 	if (data->registry_data.led_dpm_enabled)
479 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
480 
481 	if (data->registry_data.vr1hot_enabled)
482 		data->smu_features[GNLD_VR1HOT].supported = true;
483 
484 	if (data->registry_data.vr0hot_enabled)
485 		data->smu_features[GNLD_VR0HOT].supported = true;
486 
487 	smum_send_msg_to_smc(hwmgr,
488 			PPSMC_MSG_GetSmuVersion,
489 			&hwmgr->smu_version);
490 		/* ACG firmware has major version 5 */
491 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
492 		data->smu_features[GNLD_ACG].supported = true;
493 	if (data->registry_data.didt_support)
494 		data->smu_features[GNLD_DIDT].supported = true;
495 
496 	hw_revision = adev->pdev->revision;
497 	sub_vendor_id = adev->pdev->subsystem_vendor;
498 
499 	if ((hwmgr->chip_id == 0x6862 ||
500 		hwmgr->chip_id == 0x6861 ||
501 		hwmgr->chip_id == 0x6868) &&
502 		(hw_revision == 0) &&
503 		(sub_vendor_id != 0x1002))
504 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
505 
506 	/* Get the SN to turn into a Unique ID */
507 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
508 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
509 
510 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
511 }
512 
513 #ifdef PPLIB_VEGA10_EVV_SUPPORT
514 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
515 	phm_ppt_v1_voltage_lookup_table *lookup_table,
516 	uint16_t virtual_voltage_id, int32_t *socclk)
517 {
518 	uint8_t entry_id;
519 	uint8_t voltage_id;
520 	struct phm_ppt_v2_information *table_info =
521 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
522 
523 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
524 			"Lookup table is empty",
525 			return -EINVAL);
526 
527 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
528 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
529 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
530 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
531 			break;
532 	}
533 
534 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
535 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
536 			return -EINVAL);
537 
538 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
539 
540 	return 0;
541 }
542 
543 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
544 /**
545  * Get Leakage VDDC based on leakage ID.
546  *
547  * @hwmgr:  the address of the powerplay hardware manager.
548  * return:  always 0.
549  */
550 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
551 {
552 	struct vega10_hwmgr *data = hwmgr->backend;
553 	uint16_t vv_id;
554 	uint32_t vddc = 0;
555 	uint16_t i, j;
556 	uint32_t sclk = 0;
557 	struct phm_ppt_v2_information *table_info =
558 			(struct phm_ppt_v2_information *)hwmgr->pptable;
559 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
560 			table_info->vdd_dep_on_socclk;
561 	int result;
562 
563 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
564 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
565 
566 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
567 				table_info->vddc_lookup_table, vv_id, &sclk)) {
568 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
569 				for (j = 1; j < socclk_table->count; j++) {
570 					if (socclk_table->entries[j].clk == sclk &&
571 							socclk_table->entries[j].cks_enable == 0) {
572 						sclk += 5000;
573 						break;
574 					}
575 				}
576 			}
577 
578 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
579 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
580 					"Error retrieving EVV voltage value!",
581 					continue);
582 
583 
584 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
585 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
586 					"Invalid VDDC value", result = -EINVAL;);
587 
588 			/* the voltage should not be zero nor equal to leakage ID */
589 			if (vddc != 0 && vddc != vv_id) {
590 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
591 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
592 				data->vddc_leakage.count++;
593 			}
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * Change virtual leakage voltage to actual value.
602  *
603  * @hwmgr:         the address of the powerplay hardware manager.
604  * @voltage:       pointer to changing voltage
605  * @leakage_table: pointer to leakage table
606  */
607 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
608 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
609 {
610 	uint32_t index;
611 
612 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
613 	for (index = 0; index < leakage_table->count; index++) {
614 		/* if this voltage matches a leakage voltage ID */
615 		/* patch with actual leakage voltage */
616 		if (leakage_table->leakage_id[index] == *voltage) {
617 			*voltage = leakage_table->actual_voltage[index];
618 			break;
619 		}
620 	}
621 
622 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
623 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
624 }
625 
626 /**
627  * Patch voltage lookup table by EVV leakages.
628  *
629  * @hwmgr:         the address of the powerplay hardware manager.
630  * @lookup_table:  pointer to voltage lookup table
631  * @leakage_table: pointer to leakage table
632  * return:         always 0
633  */
634 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
635 		phm_ppt_v1_voltage_lookup_table *lookup_table,
636 		struct vega10_leakage_voltage *leakage_table)
637 {
638 	uint32_t i;
639 
640 	for (i = 0; i < lookup_table->count; i++)
641 		vega10_patch_with_vdd_leakage(hwmgr,
642 				&lookup_table->entries[i].us_vdd, leakage_table);
643 
644 	return 0;
645 }
646 
647 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
648 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
649 		uint16_t *vddc)
650 {
651 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
652 
653 	return 0;
654 }
655 #endif
656 
657 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
658 		struct pp_hwmgr *hwmgr)
659 {
660 	uint8_t entry_id, voltage_id;
661 	unsigned i;
662 	struct phm_ppt_v2_information *table_info =
663 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
664 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
665 			table_info->mm_dep_table;
666 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
667 			table_info->vdd_dep_on_mclk;
668 
669 	for (i = 0; i < 6; i++) {
670 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
671 		switch (i) {
672 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
673 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
674 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
675 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
676 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
677 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
678 		}
679 
680 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
681 			voltage_id = vdt->entries[entry_id].vddInd;
682 			vdt->entries[entry_id].vddc =
683 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
684 		}
685 	}
686 
687 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
688 		voltage_id = mm_table->entries[entry_id].vddcInd;
689 		mm_table->entries[entry_id].vddc =
690 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
691 	}
692 
693 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
694 		voltage_id = mclk_table->entries[entry_id].vddInd;
695 		mclk_table->entries[entry_id].vddc =
696 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
697 		voltage_id = mclk_table->entries[entry_id].vddciInd;
698 		mclk_table->entries[entry_id].vddci =
699 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
700 		voltage_id = mclk_table->entries[entry_id].mvddInd;
701 		mclk_table->entries[entry_id].mvdd =
702 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
703 	}
704 
705 
706 	return 0;
707 
708 }
709 
710 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
711 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
712 {
713 	uint32_t table_size, i, j;
714 
715 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
716 		"Lookup table is empty", return -EINVAL);
717 
718 	table_size = lookup_table->count;
719 
720 	/* Sorting voltages */
721 	for (i = 0; i < table_size - 1; i++) {
722 		for (j = i + 1; j > 0; j--) {
723 			if (lookup_table->entries[j].us_vdd <
724 					lookup_table->entries[j - 1].us_vdd) {
725 				swap(lookup_table->entries[j - 1],
726 				     lookup_table->entries[j]);
727 			}
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
735 {
736 	int result = 0;
737 	int tmp_result;
738 	struct phm_ppt_v2_information *table_info =
739 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
740 #ifdef PPLIB_VEGA10_EVV_SUPPORT
741 	struct vega10_hwmgr *data = hwmgr->backend;
742 
743 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
744 			table_info->vddc_lookup_table, &(data->vddc_leakage));
745 	if (tmp_result)
746 		result = tmp_result;
747 
748 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
749 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
750 	if (tmp_result)
751 		result = tmp_result;
752 #endif
753 
754 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
755 	if (tmp_result)
756 		result = tmp_result;
757 
758 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
759 	if (tmp_result)
760 		result = tmp_result;
761 
762 	return result;
763 }
764 
765 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
766 {
767 	struct phm_ppt_v2_information *table_info =
768 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
769 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
770 			table_info->vdd_dep_on_socclk;
771 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
772 			table_info->vdd_dep_on_mclk;
773 
774 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
775 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
776 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
777 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
778 
779 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
780 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
781 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
782 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
783 
784 	table_info->max_clock_voltage_on_ac.sclk =
785 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
786 	table_info->max_clock_voltage_on_ac.mclk =
787 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
788 	table_info->max_clock_voltage_on_ac.vddc =
789 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
790 	table_info->max_clock_voltage_on_ac.vddci =
791 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
792 
793 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
794 		table_info->max_clock_voltage_on_ac.sclk;
795 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
796 		table_info->max_clock_voltage_on_ac.mclk;
797 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
798 		table_info->max_clock_voltage_on_ac.vddc;
799 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
800 		table_info->max_clock_voltage_on_ac.vddci;
801 
802 	return 0;
803 }
804 
805 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
806 {
807 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
808 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
809 
810 	kfree(hwmgr->backend);
811 	hwmgr->backend = NULL;
812 
813 	return 0;
814 }
815 
816 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
817 {
818 	int result = 0;
819 	struct vega10_hwmgr *data;
820 	uint32_t config_telemetry = 0;
821 	struct pp_atomfwctrl_voltage_table vol_table;
822 	struct amdgpu_device *adev = hwmgr->adev;
823 
824 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
825 	if (data == NULL)
826 		return -ENOMEM;
827 
828 	hwmgr->backend = data;
829 
830 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
831 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
832 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833 
834 	vega10_set_default_registry_data(hwmgr);
835 	data->disable_dpm_mask = 0xff;
836 
837 	/* need to set voltage control types before EVV patching */
838 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
839 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
840 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 
842 	/* VDDCR_SOC */
843 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
844 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
845 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
846 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
847 				&vol_table)) {
848 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
849 					(vol_table.telemetry_offset & 0xff);
850 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
851 		}
852 	} else {
853 		kfree(hwmgr->backend);
854 		hwmgr->backend = NULL;
855 		PP_ASSERT_WITH_CODE(false,
856 				"VDDCR_SOC is not SVID2!",
857 				return -1);
858 	}
859 
860 	/* MVDDC */
861 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
862 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
863 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
864 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
865 				&vol_table)) {
866 			config_telemetry |=
867 					((vol_table.telemetry_slope << 24) & 0xff000000) |
868 					((vol_table.telemetry_offset << 16) & 0xff0000);
869 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
870 		}
871 	}
872 
873 	 /* VDDCI_MEM */
874 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
875 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
876 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
877 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
878 	}
879 
880 	data->config_telemetry = config_telemetry;
881 
882 	vega10_set_features_platform_caps(hwmgr);
883 
884 	vega10_init_dpm_defaults(hwmgr);
885 
886 #ifdef PPLIB_VEGA10_EVV_SUPPORT
887 	/* Get leakage voltage based on leakage ID. */
888 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
889 			"Get EVV Voltage Failed.  Abort Driver loading!",
890 			return -1);
891 #endif
892 
893 	/* Patch our voltage dependency table with actual leakage voltage
894 	 * We need to perform leakage translation before it's used by other functions
895 	 */
896 	vega10_complete_dependency_tables(hwmgr);
897 
898 	/* Parse pptable data read from VBIOS */
899 	vega10_set_private_data_based_on_pptable(hwmgr);
900 
901 	data->is_tlu_enabled = false;
902 
903 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
904 			VEGA10_MAX_HARDWARE_POWERLEVELS;
905 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
906 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
907 
908 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
909 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
910 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
911 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
912 
913 	data->total_active_cus = adev->gfx.cu_info.number;
914 	if (!hwmgr->not_vf)
915 		return result;
916 
917 	/* Setup default Overdrive Fan control settings */
918 	data->odn_fan_table.target_fan_speed =
919 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
920 	data->odn_fan_table.target_temperature =
921 			hwmgr->thermal_controller.
922 			advanceFanControlParameters.ucTargetTemperature;
923 	data->odn_fan_table.min_performance_clock =
924 			hwmgr->thermal_controller.advanceFanControlParameters.
925 			ulMinFanSCLKAcousticLimit;
926 	data->odn_fan_table.min_fan_limit =
927 			hwmgr->thermal_controller.
928 			advanceFanControlParameters.usFanPWMMinLimit *
929 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
930 
931 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
932 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
933 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
934 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
935 			"Mem Channel Index Exceeded maximum!",
936 			return -EINVAL);
937 
938 	return result;
939 }
940 
941 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
942 {
943 	struct vega10_hwmgr *data = hwmgr->backend;
944 
945 	data->low_sclk_interrupt_threshold = 0;
946 
947 	return 0;
948 }
949 
950 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
951 {
952 	struct vega10_hwmgr *data = hwmgr->backend;
953 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
954 
955 	struct pp_atomfwctrl_voltage_table table;
956 	uint8_t i, j;
957 	uint32_t mask = 0;
958 	uint32_t tmp;
959 	int32_t ret = 0;
960 
961 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
962 						VOLTAGE_OBJ_GPIO_LUT, &table);
963 
964 	if (!ret) {
965 		tmp = table.mask_low;
966 		for (i = 0, j = 0; i < 32; i++) {
967 			if (tmp & 1) {
968 				mask |= (uint32_t)(i << (8 * j));
969 				if (++j >= 3)
970 					break;
971 			}
972 			tmp >>= 1;
973 		}
974 	}
975 
976 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
977 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
978 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
979 	return 0;
980 }
981 
982 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
983 {
984 	if (!hwmgr->not_vf)
985 		return 0;
986 
987 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
988 			"Failed to init sclk threshold!",
989 			return -EINVAL);
990 
991 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
992 			"Failed to set up led dpm config!",
993 			return -EINVAL);
994 
995 	smum_send_msg_to_smc_with_parameter(hwmgr,
996 				PPSMC_MSG_NumOfDisplays,
997 				0,
998 				NULL);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * Remove repeated voltage values and create table with unique values.
1005  *
1006  * @hwmgr:      the address of the powerplay hardware manager.
1007  * @vol_table:  the pointer to changing voltage table
1008  * return:      0 in success
1009  */
1010 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1011 		struct pp_atomfwctrl_voltage_table *vol_table)
1012 {
1013 	uint32_t i, j;
1014 	uint16_t vvalue;
1015 	bool found = false;
1016 	struct pp_atomfwctrl_voltage_table *table;
1017 
1018 	PP_ASSERT_WITH_CODE(vol_table,
1019 			"Voltage Table empty.", return -EINVAL);
1020 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1021 			GFP_KERNEL);
1022 
1023 	if (!table)
1024 		return -ENOMEM;
1025 
1026 	table->mask_low = vol_table->mask_low;
1027 	table->phase_delay = vol_table->phase_delay;
1028 
1029 	for (i = 0; i < vol_table->count; i++) {
1030 		vvalue = vol_table->entries[i].value;
1031 		found = false;
1032 
1033 		for (j = 0; j < table->count; j++) {
1034 			if (vvalue == table->entries[j].value) {
1035 				found = true;
1036 				break;
1037 			}
1038 		}
1039 
1040 		if (!found) {
1041 			table->entries[table->count].value = vvalue;
1042 			table->entries[table->count].smio_low =
1043 					vol_table->entries[i].smio_low;
1044 			table->count++;
1045 		}
1046 	}
1047 
1048 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1049 	kfree(table);
1050 
1051 	return 0;
1052 }
1053 
1054 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1055 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1056 		struct pp_atomfwctrl_voltage_table *vol_table)
1057 {
1058 	int i;
1059 
1060 	PP_ASSERT_WITH_CODE(dep_table->count,
1061 			"Voltage Dependency Table empty.",
1062 			return -EINVAL);
1063 
1064 	vol_table->mask_low = 0;
1065 	vol_table->phase_delay = 0;
1066 	vol_table->count = dep_table->count;
1067 
1068 	for (i = 0; i < vol_table->count; i++) {
1069 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1070 		vol_table->entries[i].smio_low = 0;
1071 	}
1072 
1073 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1074 			vol_table),
1075 			"Failed to trim MVDD Table!",
1076 			return -1);
1077 
1078 	return 0;
1079 }
1080 
1081 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1082 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1083 		struct pp_atomfwctrl_voltage_table *vol_table)
1084 {
1085 	uint32_t i;
1086 
1087 	PP_ASSERT_WITH_CODE(dep_table->count,
1088 			"Voltage Dependency Table empty.",
1089 			return -EINVAL);
1090 
1091 	vol_table->mask_low = 0;
1092 	vol_table->phase_delay = 0;
1093 	vol_table->count = dep_table->count;
1094 
1095 	for (i = 0; i < dep_table->count; i++) {
1096 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1097 		vol_table->entries[i].smio_low = 0;
1098 	}
1099 
1100 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1101 			"Failed to trim VDDCI table.",
1102 			return -1);
1103 
1104 	return 0;
1105 }
1106 
1107 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1108 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1109 		struct pp_atomfwctrl_voltage_table *vol_table)
1110 {
1111 	int i;
1112 
1113 	PP_ASSERT_WITH_CODE(dep_table->count,
1114 			"Voltage Dependency Table empty.",
1115 			return -EINVAL);
1116 
1117 	vol_table->mask_low = 0;
1118 	vol_table->phase_delay = 0;
1119 	vol_table->count = dep_table->count;
1120 
1121 	for (i = 0; i < vol_table->count; i++) {
1122 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1123 		vol_table->entries[i].smio_low = 0;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /* ---- Voltage Tables ----
1130  * If the voltage table would be bigger than
1131  * what will fit into the state table on
1132  * the SMC keep only the higher entries.
1133  */
1134 static void vega10_trim_voltage_table_to_fit_state_table(
1135 		struct pp_hwmgr *hwmgr,
1136 		uint32_t max_vol_steps,
1137 		struct pp_atomfwctrl_voltage_table *vol_table)
1138 {
1139 	unsigned int i, diff;
1140 
1141 	if (vol_table->count <= max_vol_steps)
1142 		return;
1143 
1144 	diff = vol_table->count - max_vol_steps;
1145 
1146 	for (i = 0; i < max_vol_steps; i++)
1147 		vol_table->entries[i] = vol_table->entries[i + diff];
1148 
1149 	vol_table->count = max_vol_steps;
1150 }
1151 
1152 /**
1153  * Create Voltage Tables.
1154  *
1155  * @hwmgr:  the address of the powerplay hardware manager.
1156  * return:  always 0
1157  */
1158 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1159 {
1160 	struct vega10_hwmgr *data = hwmgr->backend;
1161 	struct phm_ppt_v2_information *table_info =
1162 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1163 	int result;
1164 
1165 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1166 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1167 		result = vega10_get_mvdd_voltage_table(hwmgr,
1168 				table_info->vdd_dep_on_mclk,
1169 				&(data->mvdd_voltage_table));
1170 		PP_ASSERT_WITH_CODE(!result,
1171 				"Failed to retrieve MVDDC table!",
1172 				return result);
1173 	}
1174 
1175 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1176 		result = vega10_get_vddci_voltage_table(hwmgr,
1177 				table_info->vdd_dep_on_mclk,
1178 				&(data->vddci_voltage_table));
1179 		PP_ASSERT_WITH_CODE(!result,
1180 				"Failed to retrieve VDDCI_MEM table!",
1181 				return result);
1182 	}
1183 
1184 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1185 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1186 		result = vega10_get_vdd_voltage_table(hwmgr,
1187 				table_info->vdd_dep_on_sclk,
1188 				&(data->vddc_voltage_table));
1189 		PP_ASSERT_WITH_CODE(!result,
1190 				"Failed to retrieve VDDCR_SOC table!",
1191 				return result);
1192 	}
1193 
1194 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1195 			"Too many voltage values for VDDC. Trimming to fit state table.",
1196 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1197 					16, &(data->vddc_voltage_table)));
1198 
1199 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1200 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1201 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1202 					16, &(data->vddci_voltage_table)));
1203 
1204 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1205 			"Too many voltage values for MVDD. Trimming to fit state table.",
1206 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1207 					16, &(data->mvdd_voltage_table)));
1208 
1209 
1210 	return 0;
1211 }
1212 
1213 /*
1214  * vega10_init_dpm_state
1215  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1216  *
1217  * @dpm_state: - the address of the DPM Table to initiailize.
1218  * return:   None.
1219  */
1220 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1221 {
1222 	dpm_state->soft_min_level = 0xff;
1223 	dpm_state->soft_max_level = 0xff;
1224 	dpm_state->hard_min_level = 0xff;
1225 	dpm_state->hard_max_level = 0xff;
1226 }
1227 
1228 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1229 		struct vega10_single_dpm_table *dpm_table,
1230 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1231 {
1232 	int i;
1233 
1234 	dpm_table->count = 0;
1235 
1236 	for (i = 0; i < dep_table->count; i++) {
1237 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1238 				dep_table->entries[i].clk) {
1239 			dpm_table->dpm_levels[dpm_table->count].value =
1240 					dep_table->entries[i].clk;
1241 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1242 			dpm_table->count++;
1243 		}
1244 	}
1245 }
1246 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1247 {
1248 	struct vega10_hwmgr *data = hwmgr->backend;
1249 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1250 	struct phm_ppt_v2_information *table_info =
1251 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1252 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1253 			table_info->pcie_table;
1254 	uint32_t i;
1255 
1256 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1257 			"Incorrect number of PCIE States from VBIOS!",
1258 			return -1);
1259 
1260 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1261 		if (data->registry_data.pcieSpeedOverride)
1262 			pcie_table->pcie_gen[i] =
1263 					data->registry_data.pcieSpeedOverride;
1264 		else
1265 			pcie_table->pcie_gen[i] =
1266 					bios_pcie_table->entries[i].gen_speed;
1267 
1268 		if (data->registry_data.pcieLaneOverride)
1269 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1270 					data->registry_data.pcieLaneOverride);
1271 		else
1272 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1273 							bios_pcie_table->entries[i].lane_width);
1274 		if (data->registry_data.pcieClockOverride)
1275 			pcie_table->lclk[i] =
1276 					data->registry_data.pcieClockOverride;
1277 		else
1278 			pcie_table->lclk[i] =
1279 					bios_pcie_table->entries[i].pcie_sclk;
1280 	}
1281 
1282 	pcie_table->count = NUM_LINK_LEVELS;
1283 
1284 	return 0;
1285 }
1286 
1287 /*
1288  * This function is to initialize all DPM state tables
1289  * for SMU based on the dependency table.
1290  * Dynamic state patching function will then trim these
1291  * state tables to the allowed range based
1292  * on the power policy or external client requests,
1293  * such as UVD request, etc.
1294  */
1295 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1296 {
1297 	struct vega10_hwmgr *data = hwmgr->backend;
1298 	struct phm_ppt_v2_information *table_info =
1299 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1300 	struct vega10_single_dpm_table *dpm_table;
1301 	uint32_t i;
1302 
1303 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1304 			table_info->vdd_dep_on_socclk;
1305 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1306 			table_info->vdd_dep_on_sclk;
1307 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1308 			table_info->vdd_dep_on_mclk;
1309 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1310 			table_info->mm_dep_table;
1311 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1312 			table_info->vdd_dep_on_dcefclk;
1313 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1314 			table_info->vdd_dep_on_pixclk;
1315 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1316 			table_info->vdd_dep_on_dispclk;
1317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1318 			table_info->vdd_dep_on_phyclk;
1319 
1320 	PP_ASSERT_WITH_CODE(dep_soc_table,
1321 			"SOCCLK dependency table is missing. This table is mandatory",
1322 			return -EINVAL);
1323 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1324 			"SOCCLK dependency table is empty. This table is mandatory",
1325 			return -EINVAL);
1326 
1327 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1328 			"GFXCLK dependency table is missing. This table is mandatory",
1329 			return -EINVAL);
1330 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1331 			"GFXCLK dependency table is empty. This table is mandatory",
1332 			return -EINVAL);
1333 
1334 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1335 			"MCLK dependency table is missing. This table is mandatory",
1336 			return -EINVAL);
1337 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1338 			"MCLK dependency table has to have is missing. This table is mandatory",
1339 			return -EINVAL);
1340 
1341 	/* Initialize Sclk DPM table based on allow Sclk values */
1342 	dpm_table = &(data->dpm_table.soc_table);
1343 	vega10_setup_default_single_dpm_table(hwmgr,
1344 			dpm_table,
1345 			dep_soc_table);
1346 
1347 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1348 
1349 	dpm_table = &(data->dpm_table.gfx_table);
1350 	vega10_setup_default_single_dpm_table(hwmgr,
1351 			dpm_table,
1352 			dep_gfx_table);
1353 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1354 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1355 					dpm_table->dpm_levels[dpm_table->count-1].value;
1356 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1357 
1358 	/* Initialize Mclk DPM table based on allow Mclk values */
1359 	data->dpm_table.mem_table.count = 0;
1360 	dpm_table = &(data->dpm_table.mem_table);
1361 	vega10_setup_default_single_dpm_table(hwmgr,
1362 			dpm_table,
1363 			dep_mclk_table);
1364 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1365 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1366 					dpm_table->dpm_levels[dpm_table->count-1].value;
1367 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1368 
1369 	data->dpm_table.eclk_table.count = 0;
1370 	dpm_table = &(data->dpm_table.eclk_table);
1371 	for (i = 0; i < dep_mm_table->count; i++) {
1372 		if (i == 0 || dpm_table->dpm_levels
1373 				[dpm_table->count - 1].value <=
1374 						dep_mm_table->entries[i].eclk) {
1375 			dpm_table->dpm_levels[dpm_table->count].value =
1376 					dep_mm_table->entries[i].eclk;
1377 			dpm_table->dpm_levels[dpm_table->count].enabled =
1378 					(i == 0) ? true : false;
1379 			dpm_table->count++;
1380 		}
1381 	}
1382 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1383 
1384 	data->dpm_table.vclk_table.count = 0;
1385 	data->dpm_table.dclk_table.count = 0;
1386 	dpm_table = &(data->dpm_table.vclk_table);
1387 	for (i = 0; i < dep_mm_table->count; i++) {
1388 		if (i == 0 || dpm_table->dpm_levels
1389 				[dpm_table->count - 1].value <=
1390 						dep_mm_table->entries[i].vclk) {
1391 			dpm_table->dpm_levels[dpm_table->count].value =
1392 					dep_mm_table->entries[i].vclk;
1393 			dpm_table->dpm_levels[dpm_table->count].enabled =
1394 					(i == 0) ? true : false;
1395 			dpm_table->count++;
1396 		}
1397 	}
1398 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1399 
1400 	dpm_table = &(data->dpm_table.dclk_table);
1401 	for (i = 0; i < dep_mm_table->count; i++) {
1402 		if (i == 0 || dpm_table->dpm_levels
1403 				[dpm_table->count - 1].value <=
1404 						dep_mm_table->entries[i].dclk) {
1405 			dpm_table->dpm_levels[dpm_table->count].value =
1406 					dep_mm_table->entries[i].dclk;
1407 			dpm_table->dpm_levels[dpm_table->count].enabled =
1408 					(i == 0) ? true : false;
1409 			dpm_table->count++;
1410 		}
1411 	}
1412 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1413 
1414 	/* Assume there is no headless Vega10 for now */
1415 	dpm_table = &(data->dpm_table.dcef_table);
1416 	vega10_setup_default_single_dpm_table(hwmgr,
1417 			dpm_table,
1418 			dep_dcef_table);
1419 
1420 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1421 
1422 	dpm_table = &(data->dpm_table.pixel_table);
1423 	vega10_setup_default_single_dpm_table(hwmgr,
1424 			dpm_table,
1425 			dep_pix_table);
1426 
1427 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1428 
1429 	dpm_table = &(data->dpm_table.display_table);
1430 	vega10_setup_default_single_dpm_table(hwmgr,
1431 			dpm_table,
1432 			dep_disp_table);
1433 
1434 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1435 
1436 	dpm_table = &(data->dpm_table.phy_table);
1437 	vega10_setup_default_single_dpm_table(hwmgr,
1438 			dpm_table,
1439 			dep_phy_table);
1440 
1441 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1442 
1443 	vega10_setup_default_pcie_table(hwmgr);
1444 
1445 	/* Zero out the saved copy of the CUSTOM profile
1446 	 * This will be checked when trying to set the profile
1447 	 * and will require that new values be passed in
1448 	 */
1449 	data->custom_profile_mode[0] = 0;
1450 	data->custom_profile_mode[1] = 0;
1451 	data->custom_profile_mode[2] = 0;
1452 	data->custom_profile_mode[3] = 0;
1453 
1454 	/* save a copy of the default DPM table */
1455 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1456 			sizeof(struct vega10_dpm_table));
1457 
1458 	return 0;
1459 }
1460 
1461 /*
1462  * vega10_populate_ulv_state
1463  * Function to provide parameters for Utral Low Voltage state to SMC.
1464  *
1465  * @hwmgr: - the address of the hardware manager.
1466  * return:   Always 0.
1467  */
1468 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1469 {
1470 	struct vega10_hwmgr *data = hwmgr->backend;
1471 	struct phm_ppt_v2_information *table_info =
1472 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1473 
1474 	data->smc_state_table.pp_table.UlvOffsetVid =
1475 			(uint8_t)table_info->us_ulv_voltage_offset;
1476 
1477 	data->smc_state_table.pp_table.UlvSmnclkDid =
1478 			(uint8_t)(table_info->us_ulv_smnclk_did);
1479 	data->smc_state_table.pp_table.UlvMp1clkDid =
1480 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1481 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1482 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1483 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1484 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1485 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1486 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1487 
1488 	return 0;
1489 }
1490 
1491 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1492 		uint32_t lclock, uint8_t *curr_lclk_did)
1493 {
1494 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1495 
1496 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1497 			hwmgr,
1498 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1499 			lclock, &dividers),
1500 			"Failed to get LCLK clock settings from VBIOS!",
1501 			return -1);
1502 
1503 	*curr_lclk_did = dividers.ulDid;
1504 
1505 	return 0;
1506 }
1507 
1508 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1509 {
1510 	int result = -1;
1511 	struct vega10_hwmgr *data = hwmgr->backend;
1512 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1513 	struct vega10_pcie_table *pcie_table =
1514 			&(data->dpm_table.pcie_table);
1515 	uint32_t i, j;
1516 
1517 	for (i = 0; i < pcie_table->count; i++) {
1518 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1519 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1520 
1521 		result = vega10_populate_single_lclk_level(hwmgr,
1522 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1523 		if (result) {
1524 			pr_info("Populate LClock Level %d Failed!\n", i);
1525 			return result;
1526 		}
1527 	}
1528 
1529 	j = i - 1;
1530 	while (i < NUM_LINK_LEVELS) {
1531 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1532 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1533 
1534 		result = vega10_populate_single_lclk_level(hwmgr,
1535 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1536 		if (result) {
1537 			pr_info("Populate LClock Level %d Failed!\n", i);
1538 			return result;
1539 		}
1540 		i++;
1541 	}
1542 
1543 	return result;
1544 }
1545 
1546 /**
1547  * Populates single SMC GFXSCLK structure using the provided engine clock
1548  *
1549  * @hwmgr:      the address of the hardware manager
1550  * @gfx_clock:  the GFX clock to use to populate the structure.
1551  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1552  * @acg_freq:   ACG frequenty to return (MHz)
1553  */
1554 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1555 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1556 		uint32_t *acg_freq)
1557 {
1558 	struct phm_ppt_v2_information *table_info =
1559 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1560 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1561 	struct vega10_hwmgr *data = hwmgr->backend;
1562 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1563 	uint32_t gfx_max_clock =
1564 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1565 	uint32_t i = 0;
1566 
1567 	if (hwmgr->od_enabled)
1568 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1569 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1570 	else
1571 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1572 
1573 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1574 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1575 			return -EINVAL);
1576 
1577 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1578 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1579 	else {
1580 		for (i = 0; i < dep_on_sclk->count; i++) {
1581 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1582 				break;
1583 		}
1584 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1585 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1586 				return -EINVAL);
1587 	}
1588 
1589 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1590 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1591 			gfx_clock, &dividers),
1592 			"Failed to get GFX Clock settings from VBIOS!",
1593 			return -EINVAL);
1594 
1595 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1596 	current_gfxclk_level->FbMult =
1597 			cpu_to_le32(dividers.ulPll_fb_mult);
1598 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1599 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1600 	current_gfxclk_level->SsFbMult =
1601 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1602 	current_gfxclk_level->SsSlewFrac =
1603 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1604 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1605 
1606 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1607 
1608 	return 0;
1609 }
1610 
1611 /**
1612  * Populates single SMC SOCCLK structure using the provided clock.
1613  *
1614  * @hwmgr:     the address of the hardware manager.
1615  * @soc_clock: the SOC clock to use to populate the structure.
1616  * @current_soc_did:   DFS divider to pass back to caller
1617  * @current_vol_index: index of current VDD to pass back to caller
1618  * return:      0 on success
1619  */
1620 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1621 		uint32_t soc_clock, uint8_t *current_soc_did,
1622 		uint8_t *current_vol_index)
1623 {
1624 	struct vega10_hwmgr *data = hwmgr->backend;
1625 	struct phm_ppt_v2_information *table_info =
1626 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1627 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1628 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1629 	uint32_t i;
1630 
1631 	if (hwmgr->od_enabled) {
1632 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1633 						&data->odn_dpm_table.vdd_dep_on_socclk;
1634 		for (i = 0; i < dep_on_soc->count; i++) {
1635 			if (dep_on_soc->entries[i].clk >= soc_clock)
1636 				break;
1637 		}
1638 	} else {
1639 		dep_on_soc = table_info->vdd_dep_on_socclk;
1640 		for (i = 0; i < dep_on_soc->count; i++) {
1641 			if (dep_on_soc->entries[i].clk == soc_clock)
1642 				break;
1643 		}
1644 	}
1645 
1646 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1647 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1648 			return -EINVAL);
1649 
1650 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1651 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1652 			soc_clock, &dividers),
1653 			"Failed to get SOC Clock settings from VBIOS!",
1654 			return -EINVAL);
1655 
1656 	*current_soc_did = (uint8_t)dividers.ulDid;
1657 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1658 	return 0;
1659 }
1660 
1661 /**
1662  * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1663  *
1664  * @hwmgr:      the address of the hardware manager
1665  */
1666 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1667 {
1668 	struct vega10_hwmgr *data = hwmgr->backend;
1669 	struct phm_ppt_v2_information *table_info =
1670 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1671 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1672 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1673 	int result = 0;
1674 	uint32_t i, j;
1675 
1676 	for (i = 0; i < dpm_table->count; i++) {
1677 		result = vega10_populate_single_gfx_level(hwmgr,
1678 				dpm_table->dpm_levels[i].value,
1679 				&(pp_table->GfxclkLevel[i]),
1680 				&(pp_table->AcgFreqTable[i]));
1681 		if (result)
1682 			return result;
1683 	}
1684 
1685 	j = i - 1;
1686 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1687 		result = vega10_populate_single_gfx_level(hwmgr,
1688 				dpm_table->dpm_levels[j].value,
1689 				&(pp_table->GfxclkLevel[i]),
1690 				&(pp_table->AcgFreqTable[i]));
1691 		if (result)
1692 			return result;
1693 		i++;
1694 	}
1695 
1696 	pp_table->GfxclkSlewRate =
1697 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1698 
1699 	dpm_table = &(data->dpm_table.soc_table);
1700 	for (i = 0; i < dpm_table->count; i++) {
1701 		result = vega10_populate_single_soc_level(hwmgr,
1702 				dpm_table->dpm_levels[i].value,
1703 				&(pp_table->SocclkDid[i]),
1704 				&(pp_table->SocDpmVoltageIndex[i]));
1705 		if (result)
1706 			return result;
1707 	}
1708 
1709 	j = i - 1;
1710 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1711 		result = vega10_populate_single_soc_level(hwmgr,
1712 				dpm_table->dpm_levels[j].value,
1713 				&(pp_table->SocclkDid[i]),
1714 				&(pp_table->SocDpmVoltageIndex[i]));
1715 		if (result)
1716 			return result;
1717 		i++;
1718 	}
1719 
1720 	return result;
1721 }
1722 
1723 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1724 {
1725 	struct vega10_hwmgr *data = hwmgr->backend;
1726 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1727 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1728 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1729 
1730 	uint8_t soc_vid = 0;
1731 	uint32_t i, max_vddc_level;
1732 
1733 	if (hwmgr->od_enabled)
1734 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1735 	else
1736 		vddc_lookup_table = table_info->vddc_lookup_table;
1737 
1738 	max_vddc_level = vddc_lookup_table->count;
1739 	for (i = 0; i < max_vddc_level; i++) {
1740 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1741 		pp_table->SocVid[i] = soc_vid;
1742 	}
1743 	while (i < MAX_REGULAR_DPM_NUMBER) {
1744 		pp_table->SocVid[i] = soc_vid;
1745 		i++;
1746 	}
1747 }
1748 
1749 /*
1750  * Populates single SMC GFXCLK structure using the provided clock.
1751  *
1752  * @hwmgr:     the address of the hardware manager.
1753  * @mem_clock: the memory clock to use to populate the structure.
1754  * return:     0 on success..
1755  */
1756 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1757 		uint32_t mem_clock, uint8_t *current_mem_vid,
1758 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1759 {
1760 	struct vega10_hwmgr *data = hwmgr->backend;
1761 	struct phm_ppt_v2_information *table_info =
1762 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1763 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1764 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1765 	uint32_t mem_max_clock =
1766 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1767 	uint32_t i = 0;
1768 
1769 	if (hwmgr->od_enabled)
1770 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1771 					&data->odn_dpm_table.vdd_dep_on_mclk;
1772 	else
1773 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1774 
1775 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1776 			"Invalid SOC_VDD-UCLK Dependency Table!",
1777 			return -EINVAL);
1778 
1779 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1780 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1781 	} else {
1782 		for (i = 0; i < dep_on_mclk->count; i++) {
1783 			if (dep_on_mclk->entries[i].clk == mem_clock)
1784 				break;
1785 		}
1786 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1787 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1788 				return -EINVAL);
1789 	}
1790 
1791 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1792 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1793 			"Failed to get UCLK settings from VBIOS!",
1794 			return -1);
1795 
1796 	*current_mem_vid =
1797 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1798 	*current_mem_soc_vind =
1799 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1800 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1801 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1802 
1803 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1804 			"Invalid Divider ID!",
1805 			return -EINVAL);
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1812  *
1813  * @hwmgr:  the address of the hardware manager.
1814  * return:   PP_Result_OK on success.
1815  */
1816 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1817 {
1818 	struct vega10_hwmgr *data = hwmgr->backend;
1819 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1820 	struct vega10_single_dpm_table *dpm_table =
1821 			&(data->dpm_table.mem_table);
1822 	int result = 0;
1823 	uint32_t i, j;
1824 
1825 	for (i = 0; i < dpm_table->count; i++) {
1826 		result = vega10_populate_single_memory_level(hwmgr,
1827 				dpm_table->dpm_levels[i].value,
1828 				&(pp_table->MemVid[i]),
1829 				&(pp_table->UclkLevel[i]),
1830 				&(pp_table->MemSocVoltageIndex[i]));
1831 		if (result)
1832 			return result;
1833 	}
1834 
1835 	j = i - 1;
1836 	while (i < NUM_UCLK_DPM_LEVELS) {
1837 		result = vega10_populate_single_memory_level(hwmgr,
1838 				dpm_table->dpm_levels[j].value,
1839 				&(pp_table->MemVid[i]),
1840 				&(pp_table->UclkLevel[i]),
1841 				&(pp_table->MemSocVoltageIndex[i]));
1842 		if (result)
1843 			return result;
1844 		i++;
1845 	}
1846 
1847 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1848 	pp_table->MemoryChannelWidth =
1849 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1850 					channel_number[data->mem_channels]);
1851 
1852 	pp_table->LowestUclkReservedForUlv =
1853 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1854 
1855 	return result;
1856 }
1857 
1858 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1859 		DSPCLK_e disp_clock)
1860 {
1861 	struct vega10_hwmgr *data = hwmgr->backend;
1862 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1863 	struct phm_ppt_v2_information *table_info =
1864 			(struct phm_ppt_v2_information *)
1865 			(hwmgr->pptable);
1866 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1867 	uint32_t i;
1868 	uint16_t clk = 0, vddc = 0;
1869 	uint8_t vid = 0;
1870 
1871 	switch (disp_clock) {
1872 	case DSPCLK_DCEFCLK:
1873 		dep_table = table_info->vdd_dep_on_dcefclk;
1874 		break;
1875 	case DSPCLK_DISPCLK:
1876 		dep_table = table_info->vdd_dep_on_dispclk;
1877 		break;
1878 	case DSPCLK_PIXCLK:
1879 		dep_table = table_info->vdd_dep_on_pixclk;
1880 		break;
1881 	case DSPCLK_PHYCLK:
1882 		dep_table = table_info->vdd_dep_on_phyclk;
1883 		break;
1884 	default:
1885 		return -1;
1886 	}
1887 
1888 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1889 			"Number Of Entries Exceeded maximum!",
1890 			return -1);
1891 
1892 	for (i = 0; i < dep_table->count; i++) {
1893 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1894 		vddc = table_info->vddc_lookup_table->
1895 				entries[dep_table->entries[i].vddInd].us_vdd;
1896 		vid = (uint8_t)convert_to_vid(vddc);
1897 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1898 				cpu_to_le16(clk);
1899 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1900 				cpu_to_le16(vid);
1901 	}
1902 
1903 	while (i < NUM_DSPCLK_LEVELS) {
1904 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1905 				cpu_to_le16(clk);
1906 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1907 				cpu_to_le16(vid);
1908 		i++;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1915 {
1916 	uint32_t i;
1917 
1918 	for (i = 0; i < DSPCLK_COUNT; i++) {
1919 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1920 				"Failed to populate Clock in DisplayClockTable!",
1921 				return -1);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1928 		uint32_t eclock, uint8_t *current_eclk_did,
1929 		uint8_t *current_soc_vol)
1930 {
1931 	struct phm_ppt_v2_information *table_info =
1932 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1933 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1934 			table_info->mm_dep_table;
1935 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1936 	uint32_t i;
1937 
1938 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1939 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1940 			eclock, &dividers),
1941 			"Failed to get ECLK clock settings from VBIOS!",
1942 			return -1);
1943 
1944 	*current_eclk_did = (uint8_t)dividers.ulDid;
1945 
1946 	for (i = 0; i < dep_table->count; i++) {
1947 		if (dep_table->entries[i].eclk == eclock)
1948 			*current_soc_vol = dep_table->entries[i].vddcInd;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1955 {
1956 	struct vega10_hwmgr *data = hwmgr->backend;
1957 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1958 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
1959 	int result = -EINVAL;
1960 	uint32_t i, j;
1961 
1962 	for (i = 0; i < dpm_table->count; i++) {
1963 		result = vega10_populate_single_eclock_level(hwmgr,
1964 				dpm_table->dpm_levels[i].value,
1965 				&(pp_table->EclkDid[i]),
1966 				&(pp_table->VceDpmVoltageIndex[i]));
1967 		if (result)
1968 			return result;
1969 	}
1970 
1971 	j = i - 1;
1972 	while (i < NUM_VCE_DPM_LEVELS) {
1973 		result = vega10_populate_single_eclock_level(hwmgr,
1974 				dpm_table->dpm_levels[j].value,
1975 				&(pp_table->EclkDid[i]),
1976 				&(pp_table->VceDpmVoltageIndex[i]));
1977 		if (result)
1978 			return result;
1979 		i++;
1980 	}
1981 
1982 	return result;
1983 }
1984 
1985 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
1986 		uint32_t vclock, uint8_t *current_vclk_did)
1987 {
1988 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1989 
1990 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1991 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1992 			vclock, &dividers),
1993 			"Failed to get VCLK clock settings from VBIOS!",
1994 			return -EINVAL);
1995 
1996 	*current_vclk_did = (uint8_t)dividers.ulDid;
1997 
1998 	return 0;
1999 }
2000 
2001 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2002 		uint32_t dclock, uint8_t *current_dclk_did)
2003 {
2004 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2005 
2006 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2007 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2008 			dclock, &dividers),
2009 			"Failed to get DCLK clock settings from VBIOS!",
2010 			return -EINVAL);
2011 
2012 	*current_dclk_did = (uint8_t)dividers.ulDid;
2013 
2014 	return 0;
2015 }
2016 
2017 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2018 {
2019 	struct vega10_hwmgr *data = hwmgr->backend;
2020 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2021 	struct vega10_single_dpm_table *vclk_dpm_table =
2022 			&(data->dpm_table.vclk_table);
2023 	struct vega10_single_dpm_table *dclk_dpm_table =
2024 			&(data->dpm_table.dclk_table);
2025 	struct phm_ppt_v2_information *table_info =
2026 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2027 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2028 			table_info->mm_dep_table;
2029 	int result = -EINVAL;
2030 	uint32_t i, j;
2031 
2032 	for (i = 0; i < vclk_dpm_table->count; i++) {
2033 		result = vega10_populate_single_vclock_level(hwmgr,
2034 				vclk_dpm_table->dpm_levels[i].value,
2035 				&(pp_table->VclkDid[i]));
2036 		if (result)
2037 			return result;
2038 	}
2039 
2040 	j = i - 1;
2041 	while (i < NUM_UVD_DPM_LEVELS) {
2042 		result = vega10_populate_single_vclock_level(hwmgr,
2043 				vclk_dpm_table->dpm_levels[j].value,
2044 				&(pp_table->VclkDid[i]));
2045 		if (result)
2046 			return result;
2047 		i++;
2048 	}
2049 
2050 	for (i = 0; i < dclk_dpm_table->count; i++) {
2051 		result = vega10_populate_single_dclock_level(hwmgr,
2052 				dclk_dpm_table->dpm_levels[i].value,
2053 				&(pp_table->DclkDid[i]));
2054 		if (result)
2055 			return result;
2056 	}
2057 
2058 	j = i - 1;
2059 	while (i < NUM_UVD_DPM_LEVELS) {
2060 		result = vega10_populate_single_dclock_level(hwmgr,
2061 				dclk_dpm_table->dpm_levels[j].value,
2062 				&(pp_table->DclkDid[i]));
2063 		if (result)
2064 			return result;
2065 		i++;
2066 	}
2067 
2068 	for (i = 0; i < dep_table->count; i++) {
2069 		if (dep_table->entries[i].vclk ==
2070 				vclk_dpm_table->dpm_levels[i].value &&
2071 			dep_table->entries[i].dclk ==
2072 				dclk_dpm_table->dpm_levels[i].value)
2073 			pp_table->UvdDpmVoltageIndex[i] =
2074 					dep_table->entries[i].vddcInd;
2075 		else
2076 			return -1;
2077 	}
2078 
2079 	j = i - 1;
2080 	while (i < NUM_UVD_DPM_LEVELS) {
2081 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2082 		i++;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2089 {
2090 	struct vega10_hwmgr *data = hwmgr->backend;
2091 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2092 	struct phm_ppt_v2_information *table_info =
2093 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2094 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2095 			table_info->vdd_dep_on_sclk;
2096 	uint32_t i;
2097 
2098 	for (i = 0; i < dep_table->count; i++) {
2099 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2100 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2101 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2108 {
2109 	struct vega10_hwmgr *data = hwmgr->backend;
2110 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2111 	struct phm_ppt_v2_information *table_info =
2112 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2113 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2114 			table_info->vdd_dep_on_sclk;
2115 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2116 	int result = 0;
2117 	uint32_t i;
2118 
2119 	pp_table->MinVoltageVid = (uint8_t)0xff;
2120 	pp_table->MaxVoltageVid = (uint8_t)0;
2121 
2122 	if (data->smu_features[GNLD_AVFS].supported) {
2123 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2124 		if (!result) {
2125 			pp_table->MinVoltageVid = (uint8_t)
2126 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2127 			pp_table->MaxVoltageVid = (uint8_t)
2128 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2129 
2130 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2131 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2132 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2133 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2134 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2135 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2136 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2137 
2138 			pp_table->BtcGbVdroopTableCksOff.a0 =
2139 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2140 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2141 			pp_table->BtcGbVdroopTableCksOff.a1 =
2142 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2143 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2144 			pp_table->BtcGbVdroopTableCksOff.a2 =
2145 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2146 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2147 
2148 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2149 			pp_table->BtcGbVdroopTableCksOn.a0 =
2150 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2151 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2152 			pp_table->BtcGbVdroopTableCksOn.a1 =
2153 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2154 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2155 			pp_table->BtcGbVdroopTableCksOn.a2 =
2156 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2157 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2158 
2159 			pp_table->AvfsGbCksOn.m1 =
2160 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2161 			pp_table->AvfsGbCksOn.m2 =
2162 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2163 			pp_table->AvfsGbCksOn.b =
2164 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2165 			pp_table->AvfsGbCksOn.m1_shift = 24;
2166 			pp_table->AvfsGbCksOn.m2_shift = 12;
2167 			pp_table->AvfsGbCksOn.b_shift = 0;
2168 
2169 			pp_table->OverrideAvfsGbCksOn =
2170 					avfs_params.ucEnableGbFuseTableCkson;
2171 			pp_table->AvfsGbCksOff.m1 =
2172 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2173 			pp_table->AvfsGbCksOff.m2 =
2174 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2175 			pp_table->AvfsGbCksOff.b =
2176 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2177 			pp_table->AvfsGbCksOff.m1_shift = 24;
2178 			pp_table->AvfsGbCksOff.m2_shift = 12;
2179 			pp_table->AvfsGbCksOff.b_shift = 0;
2180 
2181 			for (i = 0; i < dep_table->count; i++)
2182 				pp_table->StaticVoltageOffsetVid[i] =
2183 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2184 
2185 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2186 					data->disp_clk_quad_eqn_a) &&
2187 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2188 					data->disp_clk_quad_eqn_b)) {
2189 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2190 						(int32_t)data->disp_clk_quad_eqn_a;
2191 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2192 						(int32_t)data->disp_clk_quad_eqn_b;
2193 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2194 						(int32_t)data->disp_clk_quad_eqn_c;
2195 			} else {
2196 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2197 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2198 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2199 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2200 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2201 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2202 			}
2203 
2204 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2205 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2206 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2207 
2208 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2209 					data->dcef_clk_quad_eqn_a) &&
2210 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2211 					data->dcef_clk_quad_eqn_b)) {
2212 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2213 						(int32_t)data->dcef_clk_quad_eqn_a;
2214 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2215 						(int32_t)data->dcef_clk_quad_eqn_b;
2216 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2217 						(int32_t)data->dcef_clk_quad_eqn_c;
2218 			} else {
2219 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2220 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2221 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2222 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2223 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2224 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2225 			}
2226 
2227 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2228 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2229 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2230 
2231 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2232 					data->pixel_clk_quad_eqn_a) &&
2233 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2234 					data->pixel_clk_quad_eqn_b)) {
2235 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2236 						(int32_t)data->pixel_clk_quad_eqn_a;
2237 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2238 						(int32_t)data->pixel_clk_quad_eqn_b;
2239 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2240 						(int32_t)data->pixel_clk_quad_eqn_c;
2241 			} else {
2242 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2243 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2244 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2245 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2246 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2247 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2248 			}
2249 
2250 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2251 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2252 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2253 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2254 					data->phy_clk_quad_eqn_a) &&
2255 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2256 					data->phy_clk_quad_eqn_b)) {
2257 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2258 						(int32_t)data->phy_clk_quad_eqn_a;
2259 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2260 						(int32_t)data->phy_clk_quad_eqn_b;
2261 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2262 						(int32_t)data->phy_clk_quad_eqn_c;
2263 			} else {
2264 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2265 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2266 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2267 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2268 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2269 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2270 			}
2271 
2272 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2273 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2274 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2275 
2276 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2277 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2278 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2279 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2280 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2281 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2282 
2283 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2284 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2285 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2286 			pp_table->AcgAvfsGb.m1_shift             = 24;
2287 			pp_table->AcgAvfsGb.m2_shift             = 12;
2288 			pp_table->AcgAvfsGb.b_shift              = 0;
2289 
2290 		} else {
2291 			data->smu_features[GNLD_AVFS].supported = false;
2292 		}
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2299 {
2300 	struct vega10_hwmgr *data = hwmgr->backend;
2301 	uint32_t agc_btc_response;
2302 
2303 	if (data->smu_features[GNLD_ACG].supported) {
2304 		if (0 == vega10_enable_smc_features(hwmgr, true,
2305 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2306 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2307 
2308 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2309 
2310 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2311 
2312 		if (1 == agc_btc_response) {
2313 			if (1 == data->acg_loop_state)
2314 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2315 			else if (2 == data->acg_loop_state)
2316 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2317 			if (0 == vega10_enable_smc_features(hwmgr, true,
2318 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2319 					data->smu_features[GNLD_ACG].enabled = true;
2320 		} else {
2321 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2322 			data->smu_features[GNLD_ACG].enabled = false;
2323 		}
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2330 {
2331 	struct vega10_hwmgr *data = hwmgr->backend;
2332 
2333 	if (data->smu_features[GNLD_ACG].supported &&
2334 	    data->smu_features[GNLD_ACG].enabled)
2335 		if (!vega10_enable_smc_features(hwmgr, false,
2336 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2337 			data->smu_features[GNLD_ACG].enabled = false;
2338 
2339 	return 0;
2340 }
2341 
2342 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2343 {
2344 	struct vega10_hwmgr *data = hwmgr->backend;
2345 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2346 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2347 	int result;
2348 
2349 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2350 	if (!result) {
2351 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2352 		    data->registry_data.regulator_hot_gpio_support) {
2353 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2354 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2355 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2356 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2357 		} else {
2358 			pp_table->VR0HotGpio = 0;
2359 			pp_table->VR0HotPolarity = 0;
2360 			pp_table->VR1HotGpio = 0;
2361 			pp_table->VR1HotPolarity = 0;
2362 		}
2363 
2364 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2365 		    data->registry_data.ac_dc_switch_gpio_support) {
2366 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2367 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2368 		} else {
2369 			pp_table->AcDcGpio = 0;
2370 			pp_table->AcDcPolarity = 0;
2371 		}
2372 	}
2373 
2374 	return result;
2375 }
2376 
2377 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2378 {
2379 	struct vega10_hwmgr *data = hwmgr->backend;
2380 
2381 	if (data->smu_features[GNLD_AVFS].supported) {
2382 		/* Already enabled or disabled */
2383 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2384 			return 0;
2385 
2386 		if (enable) {
2387 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2388 					true,
2389 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2390 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2391 					return -1);
2392 			data->smu_features[GNLD_AVFS].enabled = true;
2393 		} else {
2394 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2395 					false,
2396 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2397 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2398 					return -1);
2399 			data->smu_features[GNLD_AVFS].enabled = false;
2400 		}
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2407 {
2408 	struct vega10_hwmgr *data = hwmgr->backend;
2409 
2410 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2411 		vega10_avfs_enable(hwmgr, false);
2412 	} else if (data->need_update_dpm_table) {
2413 		vega10_avfs_enable(hwmgr, false);
2414 		vega10_avfs_enable(hwmgr, true);
2415 	} else {
2416 		vega10_avfs_enable(hwmgr, true);
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2423 {
2424 	int result = 0;
2425 
2426 	uint64_t serial_number = 0;
2427 	uint32_t top32, bottom32;
2428 	struct phm_fuses_default fuse;
2429 
2430 	struct vega10_hwmgr *data = hwmgr->backend;
2431 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2432 
2433 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2434 
2435 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2436 
2437 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2438 
2439 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2440 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2441 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2442 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2443 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2444 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2445 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2446 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2447 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2448 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2449 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2450 						AVFSFUSETABLE, false);
2451 		PP_ASSERT_WITH_CODE(!result,
2452 			"Failed to upload FuseOVerride!",
2453 			);
2454 	}
2455 
2456 	return result;
2457 }
2458 
2459 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2460 {
2461 	struct vega10_hwmgr *data = hwmgr->backend;
2462 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2463 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2464 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2465 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2466 	uint32_t i;
2467 
2468 	dep_table = table_info->vdd_dep_on_mclk;
2469 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2470 
2471 	for (i = 0; i < dep_table->count; i++) {
2472 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2473 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2474 			return;
2475 		}
2476 	}
2477 
2478 	dep_table = table_info->vdd_dep_on_sclk;
2479 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2480 	for (i = 0; i < dep_table->count; i++) {
2481 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2482 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2483 			return;
2484 		}
2485 	}
2486 }
2487 
2488 /**
2489  * Initializes the SMC table and uploads it
2490  *
2491  * @hwmgr:  the address of the powerplay hardware manager.
2492  * return:  always 0
2493  */
2494 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2495 {
2496 	int result;
2497 	struct vega10_hwmgr *data = hwmgr->backend;
2498 	struct phm_ppt_v2_information *table_info =
2499 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2500 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2501 	struct pp_atomfwctrl_voltage_table voltage_table;
2502 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2503 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2504 
2505 	result = vega10_setup_default_dpm_tables(hwmgr);
2506 	PP_ASSERT_WITH_CODE(!result,
2507 			"Failed to setup default DPM tables!",
2508 			return result);
2509 
2510 	if (!hwmgr->not_vf)
2511 		return 0;
2512 
2513 	/* initialize ODN table */
2514 	if (hwmgr->od_enabled) {
2515 		if (odn_table->max_vddc) {
2516 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2517 			vega10_check_dpm_table_updated(hwmgr);
2518 		} else {
2519 			vega10_odn_initial_default_setting(hwmgr);
2520 		}
2521 	}
2522 
2523 	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2524 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2525 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2526 
2527 	pp_table->GfxDpmVoltageMode =
2528 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2529 	pp_table->SocDpmVoltageMode =
2530 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2531 	pp_table->UclkDpmVoltageMode =
2532 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2533 	pp_table->UvdDpmVoltageMode =
2534 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2535 	pp_table->VceDpmVoltageMode =
2536 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2537 	pp_table->Mp0DpmVoltageMode =
2538 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2539 
2540 	pp_table->DisplayDpmVoltageMode =
2541 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2542 
2543 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2544 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2545 
2546 	if (data->registry_data.ulv_support &&
2547 			table_info->us_ulv_voltage_offset) {
2548 		result = vega10_populate_ulv_state(hwmgr);
2549 		PP_ASSERT_WITH_CODE(!result,
2550 				"Failed to initialize ULV state!",
2551 				return result);
2552 	}
2553 
2554 	result = vega10_populate_smc_link_levels(hwmgr);
2555 	PP_ASSERT_WITH_CODE(!result,
2556 			"Failed to initialize Link Level!",
2557 			return result);
2558 
2559 	result = vega10_populate_all_graphic_levels(hwmgr);
2560 	PP_ASSERT_WITH_CODE(!result,
2561 			"Failed to initialize Graphics Level!",
2562 			return result);
2563 
2564 	result = vega10_populate_all_memory_levels(hwmgr);
2565 	PP_ASSERT_WITH_CODE(!result,
2566 			"Failed to initialize Memory Level!",
2567 			return result);
2568 
2569 	vega10_populate_vddc_soc_levels(hwmgr);
2570 
2571 	result = vega10_populate_all_display_clock_levels(hwmgr);
2572 	PP_ASSERT_WITH_CODE(!result,
2573 			"Failed to initialize Display Level!",
2574 			return result);
2575 
2576 	result = vega10_populate_smc_vce_levels(hwmgr);
2577 	PP_ASSERT_WITH_CODE(!result,
2578 			"Failed to initialize VCE Level!",
2579 			return result);
2580 
2581 	result = vega10_populate_smc_uvd_levels(hwmgr);
2582 	PP_ASSERT_WITH_CODE(!result,
2583 			"Failed to initialize UVD Level!",
2584 			return result);
2585 
2586 	if (data->registry_data.clock_stretcher_support) {
2587 		result = vega10_populate_clock_stretcher_table(hwmgr);
2588 		PP_ASSERT_WITH_CODE(!result,
2589 				"Failed to populate Clock Stretcher Table!",
2590 				return result);
2591 	}
2592 
2593 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2594 	if (!result) {
2595 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2596 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2597 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2598 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2599 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2600 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2601 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2602 
2603 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2604 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2605 
2606 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2607 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2608 		if (0 != boot_up_values.usVddc) {
2609 			smum_send_msg_to_smc_with_parameter(hwmgr,
2610 						PPSMC_MSG_SetFloorSocVoltage,
2611 						(boot_up_values.usVddc * 4),
2612 						NULL);
2613 			data->vbios_boot_state.bsoc_vddc_lock = true;
2614 		} else {
2615 			data->vbios_boot_state.bsoc_vddc_lock = false;
2616 		}
2617 		smum_send_msg_to_smc_with_parameter(hwmgr,
2618 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2619 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2620 				NULL);
2621 	}
2622 
2623 	result = vega10_populate_avfs_parameters(hwmgr);
2624 	PP_ASSERT_WITH_CODE(!result,
2625 			"Failed to initialize AVFS Parameters!",
2626 			return result);
2627 
2628 	result = vega10_populate_gpio_parameters(hwmgr);
2629 	PP_ASSERT_WITH_CODE(!result,
2630 			"Failed to initialize GPIO Parameters!",
2631 			return result);
2632 
2633 	pp_table->GfxclkAverageAlpha = (uint8_t)
2634 			(data->gfxclk_average_alpha);
2635 	pp_table->SocclkAverageAlpha = (uint8_t)
2636 			(data->socclk_average_alpha);
2637 	pp_table->UclkAverageAlpha = (uint8_t)
2638 			(data->uclk_average_alpha);
2639 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2640 			(data->gfx_activity_average_alpha);
2641 
2642 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2643 
2644 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2645 
2646 	PP_ASSERT_WITH_CODE(!result,
2647 			"Failed to upload PPtable!", return result);
2648 
2649 	result = vega10_avfs_enable(hwmgr, true);
2650 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2651 					return result);
2652 	vega10_acg_enable(hwmgr);
2653 
2654 	return 0;
2655 }
2656 
2657 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2658 {
2659 	struct vega10_hwmgr *data = hwmgr->backend;
2660 
2661 	if (data->smu_features[GNLD_THERMAL].supported) {
2662 		if (data->smu_features[GNLD_THERMAL].enabled)
2663 			pr_info("THERMAL Feature Already enabled!");
2664 
2665 		PP_ASSERT_WITH_CODE(
2666 				!vega10_enable_smc_features(hwmgr,
2667 				true,
2668 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2669 				"Enable THERMAL Feature Failed!",
2670 				return -1);
2671 		data->smu_features[GNLD_THERMAL].enabled = true;
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2678 {
2679 	struct vega10_hwmgr *data = hwmgr->backend;
2680 
2681 	if (data->smu_features[GNLD_THERMAL].supported) {
2682 		if (!data->smu_features[GNLD_THERMAL].enabled)
2683 			pr_info("THERMAL Feature Already disabled!");
2684 
2685 		PP_ASSERT_WITH_CODE(
2686 				!vega10_enable_smc_features(hwmgr,
2687 				false,
2688 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2689 				"disable THERMAL Feature Failed!",
2690 				return -1);
2691 		data->smu_features[GNLD_THERMAL].enabled = false;
2692 	}
2693 
2694 	return 0;
2695 }
2696 
2697 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2698 {
2699 	struct vega10_hwmgr *data = hwmgr->backend;
2700 
2701 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2702 		if (data->smu_features[GNLD_VR0HOT].supported) {
2703 			PP_ASSERT_WITH_CODE(
2704 					!vega10_enable_smc_features(hwmgr,
2705 					true,
2706 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2707 					"Attempt to Enable VR0 Hot feature Failed!",
2708 					return -1);
2709 			data->smu_features[GNLD_VR0HOT].enabled = true;
2710 		} else {
2711 			if (data->smu_features[GNLD_VR1HOT].supported) {
2712 				PP_ASSERT_WITH_CODE(
2713 						!vega10_enable_smc_features(hwmgr,
2714 						true,
2715 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2716 						"Attempt to Enable VR0 Hot feature Failed!",
2717 						return -1);
2718 				data->smu_features[GNLD_VR1HOT].enabled = true;
2719 			}
2720 		}
2721 	}
2722 	return 0;
2723 }
2724 
2725 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2726 {
2727 	struct vega10_hwmgr *data = hwmgr->backend;
2728 
2729 	if (data->registry_data.ulv_support) {
2730 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2731 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2732 				"Enable ULV Feature Failed!",
2733 				return -1);
2734 		data->smu_features[GNLD_ULV].enabled = true;
2735 	}
2736 
2737 	return 0;
2738 }
2739 
2740 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2741 {
2742 	struct vega10_hwmgr *data = hwmgr->backend;
2743 
2744 	if (data->registry_data.ulv_support) {
2745 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2746 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2747 				"disable ULV Feature Failed!",
2748 				return -EINVAL);
2749 		data->smu_features[GNLD_ULV].enabled = false;
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2756 {
2757 	struct vega10_hwmgr *data = hwmgr->backend;
2758 
2759 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2760 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2761 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2762 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2763 				return -EINVAL);
2764 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2765 	}
2766 
2767 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2768 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2769 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2770 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2771 				return -EINVAL);
2772 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2773 	}
2774 
2775 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2776 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2777 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2778 				"Attempt to Enable DS_LCLK Feature Failed!",
2779 				return -EINVAL);
2780 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2781 	}
2782 
2783 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2784 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2785 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2786 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2787 				return -EINVAL);
2788 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2789 	}
2790 
2791 	return 0;
2792 }
2793 
2794 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2795 {
2796 	struct vega10_hwmgr *data = hwmgr->backend;
2797 
2798 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2799 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2800 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2801 				"Attempt to disable DS_GFXCLK Feature Failed!",
2802 				return -EINVAL);
2803 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2804 	}
2805 
2806 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2807 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2808 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2809 				"Attempt to disable DS_ Feature Failed!",
2810 				return -EINVAL);
2811 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2812 	}
2813 
2814 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2815 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2817 				"Attempt to disable DS_LCLK Feature Failed!",
2818 				return -EINVAL);
2819 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2820 	}
2821 
2822 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2823 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2824 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2825 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2826 				return -EINVAL);
2827 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2828 	}
2829 
2830 	return 0;
2831 }
2832 
2833 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2834 {
2835 	struct vega10_hwmgr *data = hwmgr->backend;
2836 	uint32_t i, feature_mask = 0;
2837 
2838 	if (!hwmgr->not_vf)
2839 		return 0;
2840 
2841 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2842 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2843 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2844 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2845 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2846 	}
2847 
2848 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2849 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2850 			if (data->smu_features[i].supported) {
2851 				if (data->smu_features[i].enabled) {
2852 					feature_mask |= data->smu_features[i].
2853 							smu_feature_bitmap;
2854 					data->smu_features[i].enabled = false;
2855 				}
2856 			}
2857 		}
2858 	}
2859 
2860 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2861 
2862 	return 0;
2863 }
2864 
2865 /**
2866  * Tell SMC to enabled the supported DPMs.
2867  *
2868  * @hwmgr:   the address of the powerplay hardware manager.
2869  * @bitmap:  bitmap for the features to enabled.
2870  * return:  0 on at least one DPM is successfully enabled.
2871  */
2872 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2873 {
2874 	struct vega10_hwmgr *data = hwmgr->backend;
2875 	uint32_t i, feature_mask = 0;
2876 
2877 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2878 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2879 			if (data->smu_features[i].supported) {
2880 				if (!data->smu_features[i].enabled) {
2881 					feature_mask |= data->smu_features[i].
2882 							smu_feature_bitmap;
2883 					data->smu_features[i].enabled = true;
2884 				}
2885 			}
2886 		}
2887 	}
2888 
2889 	if (vega10_enable_smc_features(hwmgr,
2890 			true, feature_mask)) {
2891 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2892 			if (data->smu_features[i].smu_feature_bitmap &
2893 					feature_mask)
2894 				data->smu_features[i].enabled = false;
2895 		}
2896 	}
2897 
2898 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2899 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2900 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2901 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2902 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2903 	}
2904 
2905 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2906 		smum_send_msg_to_smc_with_parameter(hwmgr,
2907 						PPSMC_MSG_SetFloorSocVoltage, 0,
2908 						NULL);
2909 		data->vbios_boot_state.bsoc_vddc_lock = false;
2910 	}
2911 
2912 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2913 		if (data->smu_features[GNLD_ACDC].supported) {
2914 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2915 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2916 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2917 					return -1);
2918 			data->smu_features[GNLD_ACDC].enabled = true;
2919 		}
2920 	}
2921 
2922 	return 0;
2923 }
2924 
2925 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2926 {
2927 	struct vega10_hwmgr *data = hwmgr->backend;
2928 
2929 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2930 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2931 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2932 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2933 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2934 				"Attempt to Enable PCC Limit feature Failed!",
2935 				return -EINVAL);
2936 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2943 {
2944 	struct vega10_hwmgr *data = hwmgr->backend;
2945 	int tmp_result, result = 0;
2946 
2947 	if (hwmgr->not_vf) {
2948 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2949 
2950 		smum_send_msg_to_smc_with_parameter(hwmgr,
2951 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
2952 			NULL);
2953 
2954 		tmp_result = vega10_construct_voltage_tables(hwmgr);
2955 		PP_ASSERT_WITH_CODE(!tmp_result,
2956 				    "Failed to construct voltage tables!",
2957 				    result = tmp_result);
2958 	}
2959 
2960 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
2961 		tmp_result = vega10_init_smc_table(hwmgr);
2962 		PP_ASSERT_WITH_CODE(!tmp_result,
2963 				    "Failed to initialize SMC table!",
2964 				    result = tmp_result);
2965 	}
2966 
2967 	if (hwmgr->not_vf) {
2968 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
2969 			tmp_result = vega10_enable_thermal_protection(hwmgr);
2970 			PP_ASSERT_WITH_CODE(!tmp_result,
2971 					    "Failed to enable thermal protection!",
2972 					    result = tmp_result);
2973 		}
2974 
2975 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
2976 		PP_ASSERT_WITH_CODE(!tmp_result,
2977 				    "Failed to enable VR hot feature!",
2978 				    result = tmp_result);
2979 
2980 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
2981 		PP_ASSERT_WITH_CODE(!tmp_result,
2982 				    "Failed to enable deep sleep master switch!",
2983 				    result = tmp_result);
2984 	}
2985 
2986 	if (hwmgr->not_vf) {
2987 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
2988 		PP_ASSERT_WITH_CODE(!tmp_result,
2989 				    "Failed to start DPM!", result = tmp_result);
2990 	}
2991 
2992 	if (hwmgr->not_vf) {
2993 		/* enable didt, do not abort if failed didt */
2994 		tmp_result = vega10_enable_didt_config(hwmgr);
2995 		PP_ASSERT(!tmp_result,
2996 			  "Failed to enable didt config!");
2997 	}
2998 
2999 	tmp_result = vega10_enable_power_containment(hwmgr);
3000 	PP_ASSERT_WITH_CODE(!tmp_result,
3001 			    "Failed to enable power containment!",
3002 			    result = tmp_result);
3003 
3004 	if (hwmgr->not_vf) {
3005 		tmp_result = vega10_power_control_set_level(hwmgr);
3006 		PP_ASSERT_WITH_CODE(!tmp_result,
3007 				    "Failed to power control set level!",
3008 				    result = tmp_result);
3009 
3010 		tmp_result = vega10_enable_ulv(hwmgr);
3011 		PP_ASSERT_WITH_CODE(!tmp_result,
3012 				    "Failed to enable ULV!",
3013 				    result = tmp_result);
3014 	}
3015 
3016 	return result;
3017 }
3018 
3019 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3020 {
3021 	return sizeof(struct vega10_power_state);
3022 }
3023 
3024 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3025 		void *state, struct pp_power_state *power_state,
3026 		void *pp_table, uint32_t classification_flag)
3027 {
3028 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3029 	struct vega10_power_state *vega10_power_state =
3030 			cast_phw_vega10_power_state(&(power_state->hardware));
3031 	struct vega10_performance_level *performance_level;
3032 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3033 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3034 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3035 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3036 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3037 			(((unsigned long)powerplay_table) +
3038 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3039 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3040 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3041 			(((unsigned long)powerplay_table) +
3042 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3043 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3044 			(ATOM_Vega10_MCLK_Dependency_Table *)
3045 			(((unsigned long)powerplay_table) +
3046 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3047 
3048 
3049 	/* The following fields are not initialized here:
3050 	 * id orderedList allStatesList
3051 	 */
3052 	power_state->classification.ui_label =
3053 			(le16_to_cpu(state_entry->usClassification) &
3054 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3055 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3056 	power_state->classification.flags = classification_flag;
3057 	/* NOTE: There is a classification2 flag in BIOS
3058 	 * that is not being used right now
3059 	 */
3060 	power_state->classification.temporary_state = false;
3061 	power_state->classification.to_be_deleted = false;
3062 
3063 	power_state->validation.disallowOnDC =
3064 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3065 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3066 
3067 	power_state->display.disableFrameModulation = false;
3068 	power_state->display.limitRefreshrate = false;
3069 	power_state->display.enableVariBright =
3070 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3071 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3072 
3073 	power_state->validation.supportedPowerLevels = 0;
3074 	power_state->uvd_clocks.VCLK = 0;
3075 	power_state->uvd_clocks.DCLK = 0;
3076 	power_state->temperatures.min = 0;
3077 	power_state->temperatures.max = 0;
3078 
3079 	performance_level = &(vega10_power_state->performance_levels
3080 			[vega10_power_state->performance_level_count++]);
3081 
3082 	PP_ASSERT_WITH_CODE(
3083 			(vega10_power_state->performance_level_count <
3084 					NUM_GFXCLK_DPM_LEVELS),
3085 			"Performance levels exceeds SMC limit!",
3086 			return -1);
3087 
3088 	PP_ASSERT_WITH_CODE(
3089 			(vega10_power_state->performance_level_count <=
3090 					hwmgr->platform_descriptor.
3091 					hardwareActivityPerformanceLevels),
3092 			"Performance levels exceeds Driver limit!",
3093 			return -1);
3094 
3095 	/* Performance levels are arranged from low to high. */
3096 	performance_level->soc_clock = socclk_dep_table->entries
3097 			[state_entry->ucSocClockIndexLow].ulClk;
3098 	performance_level->gfx_clock = gfxclk_dep_table->entries
3099 			[state_entry->ucGfxClockIndexLow].ulClk;
3100 	performance_level->mem_clock = mclk_dep_table->entries
3101 			[state_entry->ucMemClockIndexLow].ulMemClk;
3102 
3103 	performance_level = &(vega10_power_state->performance_levels
3104 				[vega10_power_state->performance_level_count++]);
3105 	performance_level->soc_clock = socclk_dep_table->entries
3106 				[state_entry->ucSocClockIndexHigh].ulClk;
3107 	if (gfxclk_dep_table->ucRevId == 0) {
3108 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3109 		 * to level-4 due to the limited 110w-power
3110 		 */
3111 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3112 			performance_level->gfx_clock =
3113 				gfxclk_dep_table->entries[4].ulClk;
3114 		else
3115 			performance_level->gfx_clock = gfxclk_dep_table->entries
3116 				[state_entry->ucGfxClockIndexHigh].ulClk;
3117 	} else if (gfxclk_dep_table->ucRevId == 1) {
3118 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3119 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3120 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3121 		else
3122 			performance_level->gfx_clock =
3123 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3124 	}
3125 
3126 	performance_level->mem_clock = mclk_dep_table->entries
3127 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3128 	return 0;
3129 }
3130 
3131 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3132 		unsigned long entry_index, struct pp_power_state *state)
3133 {
3134 	int result;
3135 	struct vega10_power_state *ps;
3136 
3137 	state->hardware.magic = PhwVega10_Magic;
3138 
3139 	ps = cast_phw_vega10_power_state(&state->hardware);
3140 
3141 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3142 			vega10_get_pp_table_entry_callback_func);
3143 	if (result)
3144 		return result;
3145 
3146 	/*
3147 	 * This is the earliest time we have all the dependency table
3148 	 * and the VBIOS boot state
3149 	 */
3150 	/* set DC compatible flag if this state supports DC */
3151 	if (!state->validation.disallowOnDC)
3152 		ps->dc_compatible = true;
3153 
3154 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3155 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3156 
3157 	return 0;
3158 }
3159 
3160 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3161 	     struct pp_hw_power_state *hw_ps)
3162 {
3163 	return 0;
3164 }
3165 
3166 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3167 				struct pp_power_state  *request_ps,
3168 			const struct pp_power_state *current_ps)
3169 {
3170 	struct amdgpu_device *adev = hwmgr->adev;
3171 	struct vega10_power_state *vega10_ps =
3172 				cast_phw_vega10_power_state(&request_ps->hardware);
3173 	uint32_t sclk;
3174 	uint32_t mclk;
3175 	struct PP_Clocks minimum_clocks = {0};
3176 	bool disable_mclk_switching;
3177 	bool disable_mclk_switching_for_frame_lock;
3178 	bool disable_mclk_switching_for_vr;
3179 	bool force_mclk_high;
3180 	const struct phm_clock_and_voltage_limits *max_limits;
3181 	uint32_t i;
3182 	struct vega10_hwmgr *data = hwmgr->backend;
3183 	struct phm_ppt_v2_information *table_info =
3184 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3185 	int32_t count;
3186 	uint32_t stable_pstate_sclk_dpm_percentage;
3187 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3188 	uint32_t latency;
3189 
3190 	data->battery_state = (PP_StateUILabel_Battery ==
3191 			request_ps->classification.ui_label);
3192 
3193 	if (vega10_ps->performance_level_count != 2)
3194 		pr_info("VI should always have 2 performance levels");
3195 
3196 	max_limits = adev->pm.ac_power ?
3197 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3198 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3199 
3200 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3201 	if (!adev->pm.ac_power) {
3202 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3203 			if (vega10_ps->performance_levels[i].mem_clock >
3204 				max_limits->mclk)
3205 				vega10_ps->performance_levels[i].mem_clock =
3206 						max_limits->mclk;
3207 			if (vega10_ps->performance_levels[i].gfx_clock >
3208 				max_limits->sclk)
3209 				vega10_ps->performance_levels[i].gfx_clock =
3210 						max_limits->sclk;
3211 		}
3212 	}
3213 
3214 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3215 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3216 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3217 
3218 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3219 		stable_pstate_sclk_dpm_percentage =
3220 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3221 		PP_ASSERT_WITH_CODE(
3222 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3223 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3224 			"percent sclk value must range from 1% to 100%, setting default value",
3225 			stable_pstate_sclk_dpm_percentage = 75);
3226 
3227 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3228 		stable_pstate_sclk = (max_limits->sclk *
3229 				stable_pstate_sclk_dpm_percentage) / 100;
3230 
3231 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3232 				count >= 0; count--) {
3233 			if (stable_pstate_sclk >=
3234 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3235 				stable_pstate_sclk =
3236 						table_info->vdd_dep_on_sclk->entries[count].clk;
3237 				break;
3238 			}
3239 		}
3240 
3241 		if (count < 0)
3242 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3243 
3244 		stable_pstate_mclk = max_limits->mclk;
3245 
3246 		minimum_clocks.engineClock = stable_pstate_sclk;
3247 		minimum_clocks.memoryClock = stable_pstate_mclk;
3248 	}
3249 
3250 	disable_mclk_switching_for_frame_lock =
3251 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3252 	disable_mclk_switching_for_vr =
3253 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3254 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3255 
3256 	if (hwmgr->display_config->num_display == 0)
3257 		disable_mclk_switching = false;
3258 	else
3259 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3260 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3261 			disable_mclk_switching_for_frame_lock ||
3262 			disable_mclk_switching_for_vr ||
3263 			force_mclk_high;
3264 
3265 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3266 	mclk = vega10_ps->performance_levels[0].mem_clock;
3267 
3268 	if (sclk < minimum_clocks.engineClock)
3269 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3270 				max_limits->sclk : minimum_clocks.engineClock;
3271 
3272 	if (mclk < minimum_clocks.memoryClock)
3273 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3274 				max_limits->mclk : minimum_clocks.memoryClock;
3275 
3276 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3277 	vega10_ps->performance_levels[0].mem_clock = mclk;
3278 
3279 	if (vega10_ps->performance_levels[1].gfx_clock <
3280 			vega10_ps->performance_levels[0].gfx_clock)
3281 		vega10_ps->performance_levels[0].gfx_clock =
3282 				vega10_ps->performance_levels[1].gfx_clock;
3283 
3284 	if (disable_mclk_switching) {
3285 		/* Set Mclk the max of level 0 and level 1 */
3286 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3287 			mclk = vega10_ps->performance_levels[1].mem_clock;
3288 
3289 		/* Find the lowest MCLK frequency that is within
3290 		 * the tolerable latency defined in DAL
3291 		 */
3292 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3293 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3294 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3295 				(data->mclk_latency_table.entries[i].frequency >=
3296 						vega10_ps->performance_levels[0].mem_clock) &&
3297 				(data->mclk_latency_table.entries[i].frequency <=
3298 						vega10_ps->performance_levels[1].mem_clock))
3299 				mclk = data->mclk_latency_table.entries[i].frequency;
3300 		}
3301 		vega10_ps->performance_levels[0].mem_clock = mclk;
3302 	} else {
3303 		if (vega10_ps->performance_levels[1].mem_clock <
3304 				vega10_ps->performance_levels[0].mem_clock)
3305 			vega10_ps->performance_levels[0].mem_clock =
3306 					vega10_ps->performance_levels[1].mem_clock;
3307 	}
3308 
3309 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3310 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3311 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3312 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3313 		}
3314 	}
3315 
3316 	return 0;
3317 }
3318 
3319 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3320 {
3321 	struct vega10_hwmgr *data = hwmgr->backend;
3322 	const struct phm_set_power_state_input *states =
3323 			(const struct phm_set_power_state_input *)input;
3324 	const struct vega10_power_state *vega10_ps =
3325 			cast_const_phw_vega10_power_state(states->pnew_state);
3326 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3327 	uint32_t sclk = vega10_ps->performance_levels
3328 			[vega10_ps->performance_level_count - 1].gfx_clock;
3329 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3330 	uint32_t mclk = vega10_ps->performance_levels
3331 			[vega10_ps->performance_level_count - 1].mem_clock;
3332 	uint32_t i;
3333 
3334 	for (i = 0; i < sclk_table->count; i++) {
3335 		if (sclk == sclk_table->dpm_levels[i].value)
3336 			break;
3337 	}
3338 
3339 	if (i >= sclk_table->count) {
3340 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3341 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3342 			sclk_table->dpm_levels[i-1].value = sclk;
3343 		}
3344 	}
3345 
3346 	for (i = 0; i < mclk_table->count; i++) {
3347 		if (mclk == mclk_table->dpm_levels[i].value)
3348 			break;
3349 	}
3350 
3351 	if (i >= mclk_table->count) {
3352 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3353 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3354 			mclk_table->dpm_levels[i-1].value = mclk;
3355 		}
3356 	}
3357 
3358 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3359 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3360 
3361 	return 0;
3362 }
3363 
3364 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3365 		struct pp_hwmgr *hwmgr, const void *input)
3366 {
3367 	int result = 0;
3368 	struct vega10_hwmgr *data = hwmgr->backend;
3369 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3370 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3371 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3372 	int count;
3373 
3374 	if (!data->need_update_dpm_table)
3375 		return 0;
3376 
3377 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3378 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3379 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3380 	}
3381 
3382 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3383 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3384 		for (count = 0; count < dpm_table->mem_table.count; count++)
3385 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3386 	}
3387 
3388 	if (data->need_update_dpm_table &
3389 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3390 		result = vega10_populate_all_graphic_levels(hwmgr);
3391 		PP_ASSERT_WITH_CODE((0 == result),
3392 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3393 				return result);
3394 	}
3395 
3396 	if (data->need_update_dpm_table &
3397 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3398 		result = vega10_populate_all_memory_levels(hwmgr);
3399 		PP_ASSERT_WITH_CODE((0 == result),
3400 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3401 				return result);
3402 	}
3403 
3404 	vega10_populate_vddc_soc_levels(hwmgr);
3405 
3406 	return result;
3407 }
3408 
3409 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3410 		struct vega10_single_dpm_table *dpm_table,
3411 		uint32_t low_limit, uint32_t high_limit)
3412 {
3413 	uint32_t i;
3414 
3415 	for (i = 0; i < dpm_table->count; i++) {
3416 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3417 		    (dpm_table->dpm_levels[i].value > high_limit))
3418 			dpm_table->dpm_levels[i].enabled = false;
3419 		else
3420 			dpm_table->dpm_levels[i].enabled = true;
3421 	}
3422 	return 0;
3423 }
3424 
3425 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3426 		struct vega10_single_dpm_table *dpm_table,
3427 		uint32_t low_limit, uint32_t high_limit,
3428 		uint32_t disable_dpm_mask)
3429 {
3430 	uint32_t i;
3431 
3432 	for (i = 0; i < dpm_table->count; i++) {
3433 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3434 		    (dpm_table->dpm_levels[i].value > high_limit))
3435 			dpm_table->dpm_levels[i].enabled = false;
3436 		else if (!((1 << i) & disable_dpm_mask))
3437 			dpm_table->dpm_levels[i].enabled = false;
3438 		else
3439 			dpm_table->dpm_levels[i].enabled = true;
3440 	}
3441 	return 0;
3442 }
3443 
3444 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3445 		const struct vega10_power_state *vega10_ps)
3446 {
3447 	struct vega10_hwmgr *data = hwmgr->backend;
3448 	uint32_t high_limit_count;
3449 
3450 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3451 			"power state did not have any performance level",
3452 			return -1);
3453 
3454 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3455 
3456 	vega10_trim_single_dpm_states(hwmgr,
3457 			&(data->dpm_table.soc_table),
3458 			vega10_ps->performance_levels[0].soc_clock,
3459 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3460 
3461 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3462 			&(data->dpm_table.gfx_table),
3463 			vega10_ps->performance_levels[0].gfx_clock,
3464 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3465 			data->disable_dpm_mask);
3466 
3467 	vega10_trim_single_dpm_states(hwmgr,
3468 			&(data->dpm_table.mem_table),
3469 			vega10_ps->performance_levels[0].mem_clock,
3470 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3471 
3472 	return 0;
3473 }
3474 
3475 static uint32_t vega10_find_lowest_dpm_level(
3476 		struct vega10_single_dpm_table *table)
3477 {
3478 	uint32_t i;
3479 
3480 	for (i = 0; i < table->count; i++) {
3481 		if (table->dpm_levels[i].enabled)
3482 			break;
3483 	}
3484 
3485 	return i;
3486 }
3487 
3488 static uint32_t vega10_find_highest_dpm_level(
3489 		struct vega10_single_dpm_table *table)
3490 {
3491 	uint32_t i = 0;
3492 
3493 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3494 		for (i = table->count; i > 0; i--) {
3495 			if (table->dpm_levels[i - 1].enabled)
3496 				return i - 1;
3497 		}
3498 	} else {
3499 		pr_info("DPM Table Has Too Many Entries!");
3500 		return MAX_REGULAR_DPM_NUMBER - 1;
3501 	}
3502 
3503 	return i;
3504 }
3505 
3506 static void vega10_apply_dal_minimum_voltage_request(
3507 		struct pp_hwmgr *hwmgr)
3508 {
3509 	return;
3510 }
3511 
3512 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3513 {
3514 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3515 	struct phm_ppt_v2_information *table_info =
3516 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3517 
3518 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3519 
3520 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3521 }
3522 
3523 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3524 {
3525 	struct vega10_hwmgr *data = hwmgr->backend;
3526 	uint32_t socclk_idx;
3527 
3528 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3529 
3530 	if (!data->registry_data.sclk_dpm_key_disabled) {
3531 		if (data->smc_state_table.gfx_boot_level !=
3532 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3533 			smum_send_msg_to_smc_with_parameter(hwmgr,
3534 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3535 				data->smc_state_table.gfx_boot_level,
3536 				NULL);
3537 
3538 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3539 					data->smc_state_table.gfx_boot_level;
3540 		}
3541 	}
3542 
3543 	if (!data->registry_data.mclk_dpm_key_disabled) {
3544 		if (data->smc_state_table.mem_boot_level !=
3545 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3546 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3547 			    && hwmgr->not_vf) {
3548 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3549 				smum_send_msg_to_smc_with_parameter(hwmgr,
3550 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3551 						socclk_idx,
3552 						NULL);
3553 			} else {
3554 				smum_send_msg_to_smc_with_parameter(hwmgr,
3555 						PPSMC_MSG_SetSoftMinUclkByIndex,
3556 						data->smc_state_table.mem_boot_level,
3557 						NULL);
3558 			}
3559 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3560 					data->smc_state_table.mem_boot_level;
3561 		}
3562 	}
3563 
3564 	if (!hwmgr->not_vf)
3565 		return 0;
3566 
3567 	if (!data->registry_data.socclk_dpm_key_disabled) {
3568 		if (data->smc_state_table.soc_boot_level !=
3569 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3570 			smum_send_msg_to_smc_with_parameter(hwmgr,
3571 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3572 				data->smc_state_table.soc_boot_level,
3573 				NULL);
3574 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3575 					data->smc_state_table.soc_boot_level;
3576 		}
3577 	}
3578 
3579 	return 0;
3580 }
3581 
3582 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3583 {
3584 	struct vega10_hwmgr *data = hwmgr->backend;
3585 
3586 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3587 
3588 	if (!data->registry_data.sclk_dpm_key_disabled) {
3589 		if (data->smc_state_table.gfx_max_level !=
3590 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3591 			smum_send_msg_to_smc_with_parameter(hwmgr,
3592 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3593 				data->smc_state_table.gfx_max_level,
3594 				NULL);
3595 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3596 					data->smc_state_table.gfx_max_level;
3597 		}
3598 	}
3599 
3600 	if (!data->registry_data.mclk_dpm_key_disabled) {
3601 		if (data->smc_state_table.mem_max_level !=
3602 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3603 			smum_send_msg_to_smc_with_parameter(hwmgr,
3604 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3605 					data->smc_state_table.mem_max_level,
3606 					NULL);
3607 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3608 					data->smc_state_table.mem_max_level;
3609 		}
3610 	}
3611 
3612 	if (!hwmgr->not_vf)
3613 		return 0;
3614 
3615 	if (!data->registry_data.socclk_dpm_key_disabled) {
3616 		if (data->smc_state_table.soc_max_level !=
3617 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3618 			smum_send_msg_to_smc_with_parameter(hwmgr,
3619 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3620 				data->smc_state_table.soc_max_level,
3621 				NULL);
3622 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3623 					data->smc_state_table.soc_max_level;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static int vega10_generate_dpm_level_enable_mask(
3631 		struct pp_hwmgr *hwmgr, const void *input)
3632 {
3633 	struct vega10_hwmgr *data = hwmgr->backend;
3634 	const struct phm_set_power_state_input *states =
3635 			(const struct phm_set_power_state_input *)input;
3636 	const struct vega10_power_state *vega10_ps =
3637 			cast_const_phw_vega10_power_state(states->pnew_state);
3638 	int i;
3639 
3640 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3641 			"Attempt to Trim DPM States Failed!",
3642 			return -1);
3643 
3644 	data->smc_state_table.gfx_boot_level =
3645 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3646 	data->smc_state_table.gfx_max_level =
3647 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3648 	data->smc_state_table.mem_boot_level =
3649 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3650 	data->smc_state_table.mem_max_level =
3651 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3652 	data->smc_state_table.soc_boot_level =
3653 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3654 	data->smc_state_table.soc_max_level =
3655 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3656 
3657 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3658 			"Attempt to upload DPM Bootup Levels Failed!",
3659 			return -1);
3660 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3661 			"Attempt to upload DPM Max Levels Failed!",
3662 			return -1);
3663 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3664 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3665 
3666 
3667 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3668 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3669 
3670 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3671 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3672 
3673 	return 0;
3674 }
3675 
3676 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3677 {
3678 	struct vega10_hwmgr *data = hwmgr->backend;
3679 
3680 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3681 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3682 				enable,
3683 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3684 				"Attempt to Enable/Disable DPM VCE Failed!",
3685 				return -1);
3686 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3687 	}
3688 
3689 	return 0;
3690 }
3691 
3692 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3693 {
3694 	struct vega10_hwmgr *data = hwmgr->backend;
3695 	uint32_t low_sclk_interrupt_threshold = 0;
3696 
3697 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3698 		(data->low_sclk_interrupt_threshold != 0)) {
3699 		low_sclk_interrupt_threshold =
3700 				data->low_sclk_interrupt_threshold;
3701 
3702 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3703 				cpu_to_le32(low_sclk_interrupt_threshold);
3704 
3705 		/* This message will also enable SmcToHost Interrupt */
3706 		smum_send_msg_to_smc_with_parameter(hwmgr,
3707 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3708 				(uint32_t)low_sclk_interrupt_threshold,
3709 				NULL);
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3716 		const void *input)
3717 {
3718 	int tmp_result, result = 0;
3719 	struct vega10_hwmgr *data = hwmgr->backend;
3720 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3721 
3722 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3723 	PP_ASSERT_WITH_CODE(!tmp_result,
3724 			"Failed to find DPM states clocks in DPM table!",
3725 			result = tmp_result);
3726 
3727 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3728 	PP_ASSERT_WITH_CODE(!tmp_result,
3729 			"Failed to populate and upload SCLK MCLK DPM levels!",
3730 			result = tmp_result);
3731 
3732 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3733 	PP_ASSERT_WITH_CODE(!tmp_result,
3734 			"Failed to generate DPM level enabled mask!",
3735 			result = tmp_result);
3736 
3737 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3738 	PP_ASSERT_WITH_CODE(!tmp_result,
3739 			"Failed to update SCLK threshold!",
3740 			result = tmp_result);
3741 
3742 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3743 	PP_ASSERT_WITH_CODE(!result,
3744 			"Failed to upload PPtable!", return result);
3745 
3746 	/*
3747 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3748 	 * That effectively disables AVFS feature.
3749 	 */
3750 	if(hwmgr->hardcode_pp_table != NULL)
3751 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3752 
3753 	vega10_update_avfs(hwmgr);
3754 
3755 	/*
3756 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3757 	 * That will help to keep AVFS disabled.
3758 	 */
3759 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3760 
3761 	return 0;
3762 }
3763 
3764 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3765 {
3766 	struct pp_power_state *ps;
3767 	struct vega10_power_state *vega10_ps;
3768 
3769 	if (hwmgr == NULL)
3770 		return -EINVAL;
3771 
3772 	ps = hwmgr->request_ps;
3773 
3774 	if (ps == NULL)
3775 		return -EINVAL;
3776 
3777 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3778 
3779 	if (low)
3780 		return vega10_ps->performance_levels[0].gfx_clock;
3781 	else
3782 		return vega10_ps->performance_levels
3783 				[vega10_ps->performance_level_count - 1].gfx_clock;
3784 }
3785 
3786 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3787 {
3788 	struct pp_power_state *ps;
3789 	struct vega10_power_state *vega10_ps;
3790 
3791 	if (hwmgr == NULL)
3792 		return -EINVAL;
3793 
3794 	ps = hwmgr->request_ps;
3795 
3796 	if (ps == NULL)
3797 		return -EINVAL;
3798 
3799 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3800 
3801 	if (low)
3802 		return vega10_ps->performance_levels[0].mem_clock;
3803 	else
3804 		return vega10_ps->performance_levels
3805 				[vega10_ps->performance_level_count-1].mem_clock;
3806 }
3807 
3808 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3809 		uint32_t *query)
3810 {
3811 	uint32_t value;
3812 
3813 	if (!query)
3814 		return -EINVAL;
3815 
3816 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3817 
3818 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3819 	*query = value << 8;
3820 
3821 	return 0;
3822 }
3823 
3824 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3825 			      void *value, int *size)
3826 {
3827 	struct amdgpu_device *adev = hwmgr->adev;
3828 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3829 	struct vega10_hwmgr *data = hwmgr->backend;
3830 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3831 	int ret = 0;
3832 	uint32_t val_vid;
3833 
3834 	switch (idx) {
3835 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3836 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3837 		*((uint32_t *)value) = sclk_mhz * 100;
3838 		break;
3839 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3840 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3841 		if (mclk_idx < dpm_table->mem_table.count) {
3842 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3843 			*size = 4;
3844 		} else {
3845 			ret = -EINVAL;
3846 		}
3847 		break;
3848 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3849 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3850 						&activity_percent);
3851 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3852 		*size = 4;
3853 		break;
3854 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3855 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3856 		*size = 4;
3857 		break;
3858 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3859 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3860 		*((uint32_t *)value) = *((uint32_t *)value) *
3861 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3862 		*size = 4;
3863 		break;
3864 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3865 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3866 		*((uint32_t *)value) = *((uint32_t *)value) *
3867 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3868 		*size = 4;
3869 		break;
3870 	case AMDGPU_PP_SENSOR_UVD_POWER:
3871 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3872 		*size = 4;
3873 		break;
3874 	case AMDGPU_PP_SENSOR_VCE_POWER:
3875 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3876 		*size = 4;
3877 		break;
3878 	case AMDGPU_PP_SENSOR_GPU_POWER:
3879 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3880 		break;
3881 	case AMDGPU_PP_SENSOR_VDDGFX:
3882 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3883 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3884 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3885 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3886 		return 0;
3887 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3888 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3889 		if (!ret)
3890 			*size = 8;
3891 		break;
3892 	default:
3893 		ret = -EINVAL;
3894 		break;
3895 	}
3896 
3897 	return ret;
3898 }
3899 
3900 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3901 		bool has_disp)
3902 {
3903 	smum_send_msg_to_smc_with_parameter(hwmgr,
3904 			PPSMC_MSG_SetUclkFastSwitch,
3905 			has_disp ? 1 : 0,
3906 			NULL);
3907 }
3908 
3909 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3910 		struct pp_display_clock_request *clock_req)
3911 {
3912 	int result = 0;
3913 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3914 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3915 	DSPCLK_e clk_select = 0;
3916 	uint32_t clk_request = 0;
3917 
3918 	switch (clk_type) {
3919 	case amd_pp_dcef_clock:
3920 		clk_select = DSPCLK_DCEFCLK;
3921 		break;
3922 	case amd_pp_disp_clock:
3923 		clk_select = DSPCLK_DISPCLK;
3924 		break;
3925 	case amd_pp_pixel_clock:
3926 		clk_select = DSPCLK_PIXCLK;
3927 		break;
3928 	case amd_pp_phy_clock:
3929 		clk_select = DSPCLK_PHYCLK;
3930 		break;
3931 	default:
3932 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3933 		result = -1;
3934 		break;
3935 	}
3936 
3937 	if (!result) {
3938 		clk_request = (clk_freq << 16) | clk_select;
3939 		smum_send_msg_to_smc_with_parameter(hwmgr,
3940 				PPSMC_MSG_RequestDisplayClockByFreq,
3941 				clk_request,
3942 				NULL);
3943 	}
3944 
3945 	return result;
3946 }
3947 
3948 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
3949 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
3950 						uint32_t frequency)
3951 {
3952 	uint8_t count;
3953 	uint8_t i;
3954 
3955 	if (mclk_table == NULL || mclk_table->count == 0)
3956 		return 0;
3957 
3958 	count = (uint8_t)(mclk_table->count);
3959 
3960 	for(i = 0; i < count; i++) {
3961 		if(mclk_table->entries[i].clk >= frequency)
3962 			return i;
3963 	}
3964 
3965 	return i-1;
3966 }
3967 
3968 static int vega10_notify_smc_display_config_after_ps_adjustment(
3969 		struct pp_hwmgr *hwmgr)
3970 {
3971 	struct vega10_hwmgr *data = hwmgr->backend;
3972 	struct vega10_single_dpm_table *dpm_table =
3973 			&data->dpm_table.dcef_table;
3974 	struct phm_ppt_v2_information *table_info =
3975 			(struct phm_ppt_v2_information *)hwmgr->pptable;
3976 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
3977 	uint32_t idx;
3978 	struct PP_Clocks min_clocks = {0};
3979 	uint32_t i;
3980 	struct pp_display_clock_request clock_req;
3981 
3982 	if ((hwmgr->display_config->num_display > 1) &&
3983 	     !hwmgr->display_config->multi_monitor_in_sync &&
3984 	     !hwmgr->display_config->nb_pstate_switch_disable)
3985 		vega10_notify_smc_display_change(hwmgr, false);
3986 	else
3987 		vega10_notify_smc_display_change(hwmgr, true);
3988 
3989 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
3990 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
3991 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3992 
3993 	for (i = 0; i < dpm_table->count; i++) {
3994 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
3995 			break;
3996 	}
3997 
3998 	if (i < dpm_table->count) {
3999 		clock_req.clock_type = amd_pp_dcef_clock;
4000 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4001 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4002 			smum_send_msg_to_smc_with_parameter(
4003 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4004 					min_clocks.dcefClockInSR / 100,
4005 					NULL);
4006 		} else {
4007 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4008 		}
4009 	} else {
4010 		pr_debug("Cannot find requested DCEFCLK!");
4011 	}
4012 
4013 	if (min_clocks.memoryClock != 0) {
4014 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4015 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4016 						NULL);
4017 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4018 	}
4019 
4020 	return 0;
4021 }
4022 
4023 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4024 {
4025 	struct vega10_hwmgr *data = hwmgr->backend;
4026 
4027 	data->smc_state_table.gfx_boot_level =
4028 	data->smc_state_table.gfx_max_level =
4029 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4030 	data->smc_state_table.mem_boot_level =
4031 	data->smc_state_table.mem_max_level =
4032 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4033 
4034 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4035 			"Failed to upload boot level to highest!",
4036 			return -1);
4037 
4038 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4039 			"Failed to upload dpm max level to highest!",
4040 			return -1);
4041 
4042 	return 0;
4043 }
4044 
4045 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4046 {
4047 	struct vega10_hwmgr *data = hwmgr->backend;
4048 
4049 	data->smc_state_table.gfx_boot_level =
4050 	data->smc_state_table.gfx_max_level =
4051 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4052 	data->smc_state_table.mem_boot_level =
4053 	data->smc_state_table.mem_max_level =
4054 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4055 
4056 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4057 			"Failed to upload boot level to highest!",
4058 			return -1);
4059 
4060 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4061 			"Failed to upload dpm max level to highest!",
4062 			return -1);
4063 
4064 	return 0;
4065 
4066 }
4067 
4068 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4069 {
4070 	struct vega10_hwmgr *data = hwmgr->backend;
4071 
4072 	data->smc_state_table.gfx_boot_level =
4073 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4074 	data->smc_state_table.gfx_max_level =
4075 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4076 	data->smc_state_table.mem_boot_level =
4077 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4078 	data->smc_state_table.mem_max_level =
4079 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4080 
4081 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4082 			"Failed to upload DPM Bootup Levels!",
4083 			return -1);
4084 
4085 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4086 			"Failed to upload DPM Max Levels!",
4087 			return -1);
4088 	return 0;
4089 }
4090 
4091 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4092 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4093 {
4094 	struct phm_ppt_v2_information *table_info =
4095 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4096 
4097 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4098 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4099 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4100 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4101 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4102 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4103 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4104 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4105 	}
4106 
4107 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4108 		*sclk_mask = 0;
4109 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4110 		*mclk_mask = 0;
4111 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4112 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4113 		 * to level-4 due to the limited power
4114 		 */
4115 		if (hwmgr->pp_one_vf)
4116 			*sclk_mask = 4;
4117 		else
4118 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4119 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4120 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4121 	}
4122 
4123 	return 0;
4124 }
4125 
4126 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4127 {
4128 	if (!hwmgr->not_vf)
4129 		return;
4130 
4131 	switch (mode) {
4132 	case AMD_FAN_CTRL_NONE:
4133 		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4134 		break;
4135 	case AMD_FAN_CTRL_MANUAL:
4136 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4137 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4138 		break;
4139 	case AMD_FAN_CTRL_AUTO:
4140 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4141 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4142 		break;
4143 	default:
4144 		break;
4145 	}
4146 }
4147 
4148 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4149 		enum pp_clock_type type, uint32_t mask)
4150 {
4151 	struct vega10_hwmgr *data = hwmgr->backend;
4152 
4153 	switch (type) {
4154 	case PP_SCLK:
4155 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4156 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4157 
4158 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4159 			"Failed to upload boot level to lowest!",
4160 			return -EINVAL);
4161 
4162 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4163 			"Failed to upload dpm max level to highest!",
4164 			return -EINVAL);
4165 		break;
4166 
4167 	case PP_MCLK:
4168 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4169 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4170 
4171 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4172 			"Failed to upload boot level to lowest!",
4173 			return -EINVAL);
4174 
4175 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4176 			"Failed to upload dpm max level to highest!",
4177 			return -EINVAL);
4178 
4179 		break;
4180 
4181 	case PP_SOCCLK:
4182 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4183 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4184 
4185 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4186 			"Failed to upload boot level to lowest!",
4187 			return -EINVAL);
4188 
4189 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4190 			"Failed to upload dpm max level to highest!",
4191 			return -EINVAL);
4192 
4193 		break;
4194 
4195 	case PP_DCEFCLK:
4196 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4197 		break;
4198 
4199 	case PP_PCIE:
4200 	default:
4201 		break;
4202 	}
4203 
4204 	return 0;
4205 }
4206 
4207 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4208 				enum amd_dpm_forced_level level)
4209 {
4210 	int ret = 0;
4211 	uint32_t sclk_mask = 0;
4212 	uint32_t mclk_mask = 0;
4213 	uint32_t soc_mask = 0;
4214 
4215 	if (hwmgr->pstate_sclk == 0)
4216 		vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4217 
4218 	switch (level) {
4219 	case AMD_DPM_FORCED_LEVEL_HIGH:
4220 		ret = vega10_force_dpm_highest(hwmgr);
4221 		break;
4222 	case AMD_DPM_FORCED_LEVEL_LOW:
4223 		ret = vega10_force_dpm_lowest(hwmgr);
4224 		break;
4225 	case AMD_DPM_FORCED_LEVEL_AUTO:
4226 		ret = vega10_unforce_dpm_levels(hwmgr);
4227 		break;
4228 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4229 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4230 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4231 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4232 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4233 		if (ret)
4234 			return ret;
4235 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4236 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4237 		break;
4238 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4239 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4240 	default:
4241 		break;
4242 	}
4243 
4244 	if (!hwmgr->not_vf)
4245 		return ret;
4246 
4247 	if (!ret) {
4248 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4249 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4250 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4251 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4252 	}
4253 
4254 	return ret;
4255 }
4256 
4257 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4258 {
4259 	struct vega10_hwmgr *data = hwmgr->backend;
4260 
4261 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4262 		return AMD_FAN_CTRL_MANUAL;
4263 	else
4264 		return AMD_FAN_CTRL_AUTO;
4265 }
4266 
4267 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4268 		struct amd_pp_simple_clock_info *info)
4269 {
4270 	struct phm_ppt_v2_information *table_info =
4271 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4272 	struct phm_clock_and_voltage_limits *max_limits =
4273 			&table_info->max_clock_voltage_on_ac;
4274 
4275 	info->engine_max_clock = max_limits->sclk;
4276 	info->memory_max_clock = max_limits->mclk;
4277 
4278 	return 0;
4279 }
4280 
4281 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4282 		struct pp_clock_levels_with_latency *clocks)
4283 {
4284 	struct phm_ppt_v2_information *table_info =
4285 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4286 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4287 			table_info->vdd_dep_on_sclk;
4288 	uint32_t i;
4289 
4290 	clocks->num_levels = 0;
4291 	for (i = 0; i < dep_table->count; i++) {
4292 		if (dep_table->entries[i].clk) {
4293 			clocks->data[clocks->num_levels].clocks_in_khz =
4294 					dep_table->entries[i].clk * 10;
4295 			clocks->num_levels++;
4296 		}
4297 	}
4298 
4299 }
4300 
4301 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4302 		struct pp_clock_levels_with_latency *clocks)
4303 {
4304 	struct phm_ppt_v2_information *table_info =
4305 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4306 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4307 			table_info->vdd_dep_on_mclk;
4308 	struct vega10_hwmgr *data = hwmgr->backend;
4309 	uint32_t j = 0;
4310 	uint32_t i;
4311 
4312 	for (i = 0; i < dep_table->count; i++) {
4313 		if (dep_table->entries[i].clk) {
4314 
4315 			clocks->data[j].clocks_in_khz =
4316 						dep_table->entries[i].clk * 10;
4317 			data->mclk_latency_table.entries[j].frequency =
4318 							dep_table->entries[i].clk;
4319 			clocks->data[j].latency_in_us =
4320 				data->mclk_latency_table.entries[j].latency = 25;
4321 			j++;
4322 		}
4323 	}
4324 	clocks->num_levels = data->mclk_latency_table.count = j;
4325 }
4326 
4327 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4328 		struct pp_clock_levels_with_latency *clocks)
4329 {
4330 	struct phm_ppt_v2_information *table_info =
4331 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4332 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4333 			table_info->vdd_dep_on_dcefclk;
4334 	uint32_t i;
4335 
4336 	for (i = 0; i < dep_table->count; i++) {
4337 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4338 		clocks->data[i].latency_in_us = 0;
4339 		clocks->num_levels++;
4340 	}
4341 }
4342 
4343 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4344 		struct pp_clock_levels_with_latency *clocks)
4345 {
4346 	struct phm_ppt_v2_information *table_info =
4347 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4348 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4349 			table_info->vdd_dep_on_socclk;
4350 	uint32_t i;
4351 
4352 	for (i = 0; i < dep_table->count; i++) {
4353 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4354 		clocks->data[i].latency_in_us = 0;
4355 		clocks->num_levels++;
4356 	}
4357 }
4358 
4359 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4360 		enum amd_pp_clock_type type,
4361 		struct pp_clock_levels_with_latency *clocks)
4362 {
4363 	switch (type) {
4364 	case amd_pp_sys_clock:
4365 		vega10_get_sclks(hwmgr, clocks);
4366 		break;
4367 	case amd_pp_mem_clock:
4368 		vega10_get_memclocks(hwmgr, clocks);
4369 		break;
4370 	case amd_pp_dcef_clock:
4371 		vega10_get_dcefclocks(hwmgr, clocks);
4372 		break;
4373 	case amd_pp_soc_clock:
4374 		vega10_get_socclocks(hwmgr, clocks);
4375 		break;
4376 	default:
4377 		return -1;
4378 	}
4379 
4380 	return 0;
4381 }
4382 
4383 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4384 		enum amd_pp_clock_type type,
4385 		struct pp_clock_levels_with_voltage *clocks)
4386 {
4387 	struct phm_ppt_v2_information *table_info =
4388 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4389 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4390 	uint32_t i;
4391 
4392 	switch (type) {
4393 	case amd_pp_mem_clock:
4394 		dep_table = table_info->vdd_dep_on_mclk;
4395 		break;
4396 	case amd_pp_dcef_clock:
4397 		dep_table = table_info->vdd_dep_on_dcefclk;
4398 		break;
4399 	case amd_pp_disp_clock:
4400 		dep_table = table_info->vdd_dep_on_dispclk;
4401 		break;
4402 	case amd_pp_pixel_clock:
4403 		dep_table = table_info->vdd_dep_on_pixclk;
4404 		break;
4405 	case amd_pp_phy_clock:
4406 		dep_table = table_info->vdd_dep_on_phyclk;
4407 		break;
4408 	default:
4409 		return -1;
4410 	}
4411 
4412 	for (i = 0; i < dep_table->count; i++) {
4413 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4414 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4415 				entries[dep_table->entries[i].vddInd].us_vdd);
4416 		clocks->num_levels++;
4417 	}
4418 
4419 	if (i < dep_table->count)
4420 		return -1;
4421 
4422 	return 0;
4423 }
4424 
4425 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4426 							void *clock_range)
4427 {
4428 	struct vega10_hwmgr *data = hwmgr->backend;
4429 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4430 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4431 
4432 	if (!data->registry_data.disable_water_mark) {
4433 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4434 		data->water_marks_bitmap = WaterMarksExist;
4435 	}
4436 
4437 	return 0;
4438 }
4439 
4440 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4441 {
4442 	static const char *ppfeature_name[] = {
4443 				"DPM_PREFETCHER",
4444 				"GFXCLK_DPM",
4445 				"UCLK_DPM",
4446 				"SOCCLK_DPM",
4447 				"UVD_DPM",
4448 				"VCE_DPM",
4449 				"ULV",
4450 				"MP0CLK_DPM",
4451 				"LINK_DPM",
4452 				"DCEFCLK_DPM",
4453 				"AVFS",
4454 				"GFXCLK_DS",
4455 				"SOCCLK_DS",
4456 				"LCLK_DS",
4457 				"PPT",
4458 				"TDC",
4459 				"THERMAL",
4460 				"GFX_PER_CU_CG",
4461 				"RM",
4462 				"DCEFCLK_DS",
4463 				"ACDC",
4464 				"VR0HOT",
4465 				"VR1HOT",
4466 				"FW_CTF",
4467 				"LED_DISPLAY",
4468 				"FAN_CONTROL",
4469 				"FAST_PPT",
4470 				"DIDT",
4471 				"ACG",
4472 				"PCC_LIMIT"};
4473 	static const char *output_title[] = {
4474 				"FEATURES",
4475 				"BITMASK",
4476 				"ENABLEMENT"};
4477 	uint64_t features_enabled;
4478 	int i;
4479 	int ret = 0;
4480 	int size = 0;
4481 
4482 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4483 	PP_ASSERT_WITH_CODE(!ret,
4484 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4485 			return ret);
4486 
4487 	size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4488 	size += sprintf(buf + size, "%-19s %-22s %s\n",
4489 				output_title[0],
4490 				output_title[1],
4491 				output_title[2]);
4492 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4493 		size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4494 					ppfeature_name[i],
4495 					1ULL << i,
4496 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4497 	}
4498 
4499 	return size;
4500 }
4501 
4502 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4503 {
4504 	uint64_t features_enabled;
4505 	uint64_t features_to_enable;
4506 	uint64_t features_to_disable;
4507 	int ret = 0;
4508 
4509 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4510 		return -EINVAL;
4511 
4512 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4513 	if (ret)
4514 		return ret;
4515 
4516 	features_to_disable =
4517 		features_enabled & ~new_ppfeature_masks;
4518 	features_to_enable =
4519 		~features_enabled & new_ppfeature_masks;
4520 
4521 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4522 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4523 
4524 	if (features_to_disable) {
4525 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4526 		if (ret)
4527 			return ret;
4528 	}
4529 
4530 	if (features_to_enable) {
4531 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4532 		if (ret)
4533 			return ret;
4534 	}
4535 
4536 	return 0;
4537 }
4538 
4539 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4540 		enum pp_clock_type type, char *buf)
4541 {
4542 	struct vega10_hwmgr *data = hwmgr->backend;
4543 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4544 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4545 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4546 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4547 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4548 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4549 
4550 	int i, now, size = 0, count = 0;
4551 
4552 	switch (type) {
4553 	case PP_SCLK:
4554 		if (data->registry_data.sclk_dpm_key_disabled)
4555 			break;
4556 
4557 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4558 
4559 		if (hwmgr->pp_one_vf &&
4560 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4561 			count = 5;
4562 		else
4563 			count = sclk_table->count;
4564 		for (i = 0; i < count; i++)
4565 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4566 					i, sclk_table->dpm_levels[i].value / 100,
4567 					(i == now) ? "*" : "");
4568 		break;
4569 	case PP_MCLK:
4570 		if (data->registry_data.mclk_dpm_key_disabled)
4571 			break;
4572 
4573 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4574 
4575 		for (i = 0; i < mclk_table->count; i++)
4576 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4577 					i, mclk_table->dpm_levels[i].value / 100,
4578 					(i == now) ? "*" : "");
4579 		break;
4580 	case PP_SOCCLK:
4581 		if (data->registry_data.socclk_dpm_key_disabled)
4582 			break;
4583 
4584 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4585 
4586 		for (i = 0; i < soc_table->count; i++)
4587 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4588 					i, soc_table->dpm_levels[i].value / 100,
4589 					(i == now) ? "*" : "");
4590 		break;
4591 	case PP_DCEFCLK:
4592 		if (data->registry_data.dcefclk_dpm_key_disabled)
4593 			break;
4594 
4595 		smum_send_msg_to_smc_with_parameter(hwmgr,
4596 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4597 
4598 		for (i = 0; i < dcef_table->count; i++)
4599 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4600 					i, dcef_table->dpm_levels[i].value / 100,
4601 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4602 					"*" : "");
4603 		break;
4604 	case PP_PCIE:
4605 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now);
4606 
4607 		for (i = 0; i < pcie_table->count; i++)
4608 			size += sprintf(buf + size, "%d: %s %s\n", i,
4609 					(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
4610 					(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
4611 					(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4612 					(i == now) ? "*" : "");
4613 		break;
4614 	case OD_SCLK:
4615 		if (hwmgr->od_enabled) {
4616 			size = sprintf(buf, "%s:\n", "OD_SCLK");
4617 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4618 			for (i = 0; i < podn_vdd_dep->count; i++)
4619 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4620 					i, podn_vdd_dep->entries[i].clk / 100,
4621 						podn_vdd_dep->entries[i].vddc);
4622 		}
4623 		break;
4624 	case OD_MCLK:
4625 		if (hwmgr->od_enabled) {
4626 			size = sprintf(buf, "%s:\n", "OD_MCLK");
4627 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4628 			for (i = 0; i < podn_vdd_dep->count; i++)
4629 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4630 					i, podn_vdd_dep->entries[i].clk/100,
4631 						podn_vdd_dep->entries[i].vddc);
4632 		}
4633 		break;
4634 	case OD_RANGE:
4635 		if (hwmgr->od_enabled) {
4636 			size = sprintf(buf, "%s:\n", "OD_RANGE");
4637 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4638 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4639 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4640 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4641 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4642 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4643 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4644 				data->odn_dpm_table.min_vddc,
4645 				data->odn_dpm_table.max_vddc);
4646 		}
4647 		break;
4648 	default:
4649 		break;
4650 	}
4651 	return size;
4652 }
4653 
4654 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4655 {
4656 	struct vega10_hwmgr *data = hwmgr->backend;
4657 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4658 	int result = 0;
4659 
4660 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4661 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4662 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4663 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4664 		data->water_marks_bitmap |= WaterMarksLoaded;
4665 	}
4666 
4667 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4668 		smum_send_msg_to_smc_with_parameter(hwmgr,
4669 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4670 			NULL);
4671 	}
4672 
4673 	return result;
4674 }
4675 
4676 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4677 {
4678 	struct vega10_hwmgr *data = hwmgr->backend;
4679 
4680 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4681 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4682 				enable,
4683 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4684 				"Attempt to Enable/Disable DPM UVD Failed!",
4685 				return -1);
4686 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4687 	}
4688 	return 0;
4689 }
4690 
4691 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4692 {
4693 	struct vega10_hwmgr *data = hwmgr->backend;
4694 
4695 	data->vce_power_gated = bgate;
4696 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4697 }
4698 
4699 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4700 {
4701 	struct vega10_hwmgr *data = hwmgr->backend;
4702 
4703 	data->uvd_power_gated = bgate;
4704 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4705 }
4706 
4707 static inline bool vega10_are_power_levels_equal(
4708 				const struct vega10_performance_level *pl1,
4709 				const struct vega10_performance_level *pl2)
4710 {
4711 	return ((pl1->soc_clock == pl2->soc_clock) &&
4712 			(pl1->gfx_clock == pl2->gfx_clock) &&
4713 			(pl1->mem_clock == pl2->mem_clock));
4714 }
4715 
4716 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4717 				const struct pp_hw_power_state *pstate1,
4718 			const struct pp_hw_power_state *pstate2, bool *equal)
4719 {
4720 	const struct vega10_power_state *psa;
4721 	const struct vega10_power_state *psb;
4722 	int i;
4723 
4724 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4725 		return -EINVAL;
4726 
4727 	psa = cast_const_phw_vega10_power_state(pstate1);
4728 	psb = cast_const_phw_vega10_power_state(pstate2);
4729 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4730 	if (psa->performance_level_count != psb->performance_level_count) {
4731 		*equal = false;
4732 		return 0;
4733 	}
4734 
4735 	for (i = 0; i < psa->performance_level_count; i++) {
4736 		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4737 			/* If we have found even one performance level pair that is different the states are different. */
4738 			*equal = false;
4739 			return 0;
4740 		}
4741 	}
4742 
4743 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4744 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4745 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4746 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4747 
4748 	return 0;
4749 }
4750 
4751 static bool
4752 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4753 {
4754 	struct vega10_hwmgr *data = hwmgr->backend;
4755 	bool is_update_required = false;
4756 
4757 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4758 		is_update_required = true;
4759 
4760 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4761 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4762 			is_update_required = true;
4763 	}
4764 
4765 	return is_update_required;
4766 }
4767 
4768 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4769 {
4770 	int tmp_result, result = 0;
4771 
4772 	if (!hwmgr->not_vf)
4773 		return 0;
4774 
4775 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4776 		vega10_disable_thermal_protection(hwmgr);
4777 
4778 	tmp_result = vega10_disable_power_containment(hwmgr);
4779 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4780 			"Failed to disable power containment!", result = tmp_result);
4781 
4782 	tmp_result = vega10_disable_didt_config(hwmgr);
4783 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4784 			"Failed to disable didt config!", result = tmp_result);
4785 
4786 	tmp_result = vega10_avfs_enable(hwmgr, false);
4787 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4788 			"Failed to disable AVFS!", result = tmp_result);
4789 
4790 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4791 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4792 			"Failed to stop DPM!", result = tmp_result);
4793 
4794 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4795 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4796 			"Failed to disable deep sleep!", result = tmp_result);
4797 
4798 	tmp_result = vega10_disable_ulv(hwmgr);
4799 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4800 			"Failed to disable ulv!", result = tmp_result);
4801 
4802 	tmp_result =  vega10_acg_disable(hwmgr);
4803 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4804 			"Failed to disable acg!", result = tmp_result);
4805 
4806 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4807 	return result;
4808 }
4809 
4810 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4811 {
4812 	struct vega10_hwmgr *data = hwmgr->backend;
4813 	int result;
4814 
4815 	result = vega10_disable_dpm_tasks(hwmgr);
4816 	PP_ASSERT_WITH_CODE((0 == result),
4817 			"[disable_dpm_tasks] Failed to disable DPM!",
4818 			);
4819 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
4820 
4821 	return result;
4822 }
4823 
4824 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4825 {
4826 	struct vega10_hwmgr *data = hwmgr->backend;
4827 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4828 	struct vega10_single_dpm_table *golden_sclk_table =
4829 			&(data->golden_dpm_table.gfx_table);
4830 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4831 	int golden_value = golden_sclk_table->dpm_levels
4832 			[golden_sclk_table->count - 1].value;
4833 
4834 	value -= golden_value;
4835 	value = DIV_ROUND_UP(value * 100, golden_value);
4836 
4837 	return value;
4838 }
4839 
4840 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4841 {
4842 	struct vega10_hwmgr *data = hwmgr->backend;
4843 	struct vega10_single_dpm_table *golden_sclk_table =
4844 			&(data->golden_dpm_table.gfx_table);
4845 	struct pp_power_state *ps;
4846 	struct vega10_power_state *vega10_ps;
4847 
4848 	ps = hwmgr->request_ps;
4849 
4850 	if (ps == NULL)
4851 		return -EINVAL;
4852 
4853 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4854 
4855 	vega10_ps->performance_levels
4856 	[vega10_ps->performance_level_count - 1].gfx_clock =
4857 			golden_sclk_table->dpm_levels
4858 			[golden_sclk_table->count - 1].value *
4859 			value / 100 +
4860 			golden_sclk_table->dpm_levels
4861 			[golden_sclk_table->count - 1].value;
4862 
4863 	if (vega10_ps->performance_levels
4864 			[vega10_ps->performance_level_count - 1].gfx_clock >
4865 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4866 		vega10_ps->performance_levels
4867 		[vega10_ps->performance_level_count - 1].gfx_clock =
4868 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
4869 		pr_warn("max sclk supported by vbios is %d\n",
4870 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
4871 	}
4872 	return 0;
4873 }
4874 
4875 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4876 {
4877 	struct vega10_hwmgr *data = hwmgr->backend;
4878 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4879 	struct vega10_single_dpm_table *golden_mclk_table =
4880 			&(data->golden_dpm_table.mem_table);
4881 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4882 	int golden_value = golden_mclk_table->dpm_levels
4883 			[golden_mclk_table->count - 1].value;
4884 
4885 	value -= golden_value;
4886 	value = DIV_ROUND_UP(value * 100, golden_value);
4887 
4888 	return value;
4889 }
4890 
4891 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4892 {
4893 	struct vega10_hwmgr *data = hwmgr->backend;
4894 	struct vega10_single_dpm_table *golden_mclk_table =
4895 			&(data->golden_dpm_table.mem_table);
4896 	struct pp_power_state  *ps;
4897 	struct vega10_power_state  *vega10_ps;
4898 
4899 	ps = hwmgr->request_ps;
4900 
4901 	if (ps == NULL)
4902 		return -EINVAL;
4903 
4904 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4905 
4906 	vega10_ps->performance_levels
4907 	[vega10_ps->performance_level_count - 1].mem_clock =
4908 			golden_mclk_table->dpm_levels
4909 			[golden_mclk_table->count - 1].value *
4910 			value / 100 +
4911 			golden_mclk_table->dpm_levels
4912 			[golden_mclk_table->count - 1].value;
4913 
4914 	if (vega10_ps->performance_levels
4915 			[vega10_ps->performance_level_count - 1].mem_clock >
4916 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4917 		vega10_ps->performance_levels
4918 		[vega10_ps->performance_level_count - 1].mem_clock =
4919 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4920 		pr_warn("max mclk supported by vbios is %d\n",
4921 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4922 	}
4923 
4924 	return 0;
4925 }
4926 
4927 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4928 					uint32_t virtual_addr_low,
4929 					uint32_t virtual_addr_hi,
4930 					uint32_t mc_addr_low,
4931 					uint32_t mc_addr_hi,
4932 					uint32_t size)
4933 {
4934 	smum_send_msg_to_smc_with_parameter(hwmgr,
4935 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4936 					virtual_addr_hi,
4937 					NULL);
4938 	smum_send_msg_to_smc_with_parameter(hwmgr,
4939 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
4940 					virtual_addr_low,
4941 					NULL);
4942 	smum_send_msg_to_smc_with_parameter(hwmgr,
4943 					PPSMC_MSG_DramLogSetDramAddrHigh,
4944 					mc_addr_hi,
4945 					NULL);
4946 
4947 	smum_send_msg_to_smc_with_parameter(hwmgr,
4948 					PPSMC_MSG_DramLogSetDramAddrLow,
4949 					mc_addr_low,
4950 					NULL);
4951 
4952 	smum_send_msg_to_smc_with_parameter(hwmgr,
4953 					PPSMC_MSG_DramLogSetDramSize,
4954 					size,
4955 					NULL);
4956 	return 0;
4957 }
4958 
4959 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
4960 		struct PP_TemperatureRange *thermal_data)
4961 {
4962 	struct vega10_hwmgr *data = hwmgr->backend;
4963 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
4964 
4965 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
4966 
4967 	thermal_data->max = pp_table->TedgeLimit *
4968 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4969 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
4970 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4971 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
4972 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4973 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
4974 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4975 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
4976 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4977 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
4978 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4979 
4980 	return 0;
4981 }
4982 
4983 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
4984 {
4985 	struct vega10_hwmgr *data = hwmgr->backend;
4986 	uint32_t i, size = 0;
4987 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
4988 						{70, 60, 1, 3,},
4989 						{90, 60, 0, 0,},
4990 						{70, 60, 0, 0,},
4991 						{70, 90, 0, 0,},
4992 						{30, 60, 0, 6,},
4993 						};
4994 	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
4995 					"3D_FULL_SCREEN",
4996 					"POWER_SAVING",
4997 					"VIDEO",
4998 					"VR",
4999 					"COMPUTE",
5000 					"CUSTOM"};
5001 	static const char *title[6] = {"NUM",
5002 			"MODE_NAME",
5003 			"BUSY_SET_POINT",
5004 			"FPS",
5005 			"USE_RLC_BUSY",
5006 			"MIN_ACTIVE_LEVEL"};
5007 
5008 	if (!buf)
5009 		return -EINVAL;
5010 
5011 	size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
5012 			title[1], title[2], title[3], title[4], title[5]);
5013 
5014 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5015 		size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
5016 			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5017 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5018 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5019 	size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5020 			profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5021 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5022 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5023 	return size;
5024 }
5025 
5026 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5027 {
5028 	struct vega10_hwmgr *data = hwmgr->backend;
5029 	uint8_t busy_set_point;
5030 	uint8_t FPS;
5031 	uint8_t use_rlc_busy;
5032 	uint8_t min_active_level;
5033 	uint32_t power_profile_mode = input[size];
5034 
5035 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5036 		if (size != 0 && size != 4)
5037 			return -EINVAL;
5038 
5039 		/* If size = 0 and the CUSTOM profile has been set already
5040 		 * then just apply the profile. The copy stored in the hwmgr
5041 		 * is zeroed out on init
5042 		 */
5043 		if (size == 0) {
5044 			if (data->custom_profile_mode[0] != 0)
5045 				goto out;
5046 			else
5047 				return -EINVAL;
5048 		}
5049 
5050 		data->custom_profile_mode[0] = busy_set_point = input[0];
5051 		data->custom_profile_mode[1] = FPS = input[1];
5052 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5053 		data->custom_profile_mode[3] = min_active_level = input[3];
5054 		smum_send_msg_to_smc_with_parameter(hwmgr,
5055 					PPSMC_MSG_SetCustomGfxDpmParameters,
5056 					busy_set_point | FPS<<8 |
5057 					use_rlc_busy << 16 | min_active_level<<24,
5058 					NULL);
5059 	}
5060 
5061 out:
5062 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5063 						1 << power_profile_mode,
5064 						NULL);
5065 	hwmgr->power_profile_mode = power_profile_mode;
5066 
5067 	return 0;
5068 }
5069 
5070 
5071 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5072 					enum PP_OD_DPM_TABLE_COMMAND type,
5073 					uint32_t clk,
5074 					uint32_t voltage)
5075 {
5076 	struct vega10_hwmgr *data = hwmgr->backend;
5077 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5078 	struct vega10_single_dpm_table *golden_table;
5079 
5080 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5081 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5082 		return false;
5083 	}
5084 
5085 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5086 		golden_table = &(data->golden_dpm_table.gfx_table);
5087 		if (golden_table->dpm_levels[0].value > clk ||
5088 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5089 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5090 				golden_table->dpm_levels[0].value/100,
5091 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5092 			return false;
5093 		}
5094 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5095 		golden_table = &(data->golden_dpm_table.mem_table);
5096 		if (golden_table->dpm_levels[0].value > clk ||
5097 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5098 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5099 				golden_table->dpm_levels[0].value/100,
5100 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5101 			return false;
5102 		}
5103 	} else {
5104 		return false;
5105 	}
5106 
5107 	return true;
5108 }
5109 
5110 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5111 {
5112 	struct vega10_hwmgr *data = hwmgr->backend;
5113 	struct pp_power_state *ps = hwmgr->request_ps;
5114 	struct vega10_power_state *vega10_ps;
5115 	struct vega10_single_dpm_table *gfx_dpm_table =
5116 		&data->dpm_table.gfx_table;
5117 	struct vega10_single_dpm_table *soc_dpm_table =
5118 		&data->dpm_table.soc_table;
5119 	struct vega10_single_dpm_table *mem_dpm_table =
5120 		&data->dpm_table.mem_table;
5121 	int max_level;
5122 
5123 	if (!ps)
5124 		return;
5125 
5126 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5127 	max_level = vega10_ps->performance_level_count - 1;
5128 
5129 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5130 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5131 		vega10_ps->performance_levels[max_level].gfx_clock =
5132 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5133 
5134 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5135 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5136 		vega10_ps->performance_levels[max_level].soc_clock =
5137 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5138 
5139 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5140 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5141 		vega10_ps->performance_levels[max_level].mem_clock =
5142 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5143 
5144 	if (!hwmgr->ps)
5145 		return;
5146 
5147 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5148 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5149 	max_level = vega10_ps->performance_level_count - 1;
5150 
5151 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5152 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5153 		vega10_ps->performance_levels[max_level].gfx_clock =
5154 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5155 
5156 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5157 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5158 		vega10_ps->performance_levels[max_level].soc_clock =
5159 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5160 
5161 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5162 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5163 		vega10_ps->performance_levels[max_level].mem_clock =
5164 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5165 }
5166 
5167 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5168 						enum PP_OD_DPM_TABLE_COMMAND type)
5169 {
5170 	struct vega10_hwmgr *data = hwmgr->backend;
5171 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5172 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5173 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5174 
5175 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5176 							&data->odn_dpm_table.vdd_dep_on_socclk;
5177 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5178 
5179 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5180 	uint8_t i, j;
5181 
5182 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5183 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5184 		for (i = 0; i < podn_vdd_dep->count; i++)
5185 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5186 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5187 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5188 		for (i = 0; i < dpm_table->count; i++) {
5189 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5190 				if (od_vddc_lookup_table->entries[j].us_vdd >
5191 					podn_vdd_dep->entries[i].vddc)
5192 					break;
5193 			}
5194 			if (j == od_vddc_lookup_table->count) {
5195 				j = od_vddc_lookup_table->count - 1;
5196 				od_vddc_lookup_table->entries[j].us_vdd =
5197 					podn_vdd_dep->entries[i].vddc;
5198 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5199 			}
5200 			podn_vdd_dep->entries[i].vddInd = j;
5201 		}
5202 		dpm_table = &data->dpm_table.soc_table;
5203 		for (i = 0; i < dep_table->count; i++) {
5204 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5205 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5206 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5207 				for (; (i < dep_table->count) &&
5208 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5209 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5210 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5211 				}
5212 				break;
5213 			} else {
5214 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5215 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5216 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5217 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5218 			}
5219 		}
5220 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5221 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5222 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5223 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5224 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5225 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5226 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5227 		}
5228 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5229 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5230 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5231 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5232 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5233 		}
5234 	}
5235 	vega10_odn_update_power_state(hwmgr);
5236 }
5237 
5238 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5239 					enum PP_OD_DPM_TABLE_COMMAND type,
5240 					long *input, uint32_t size)
5241 {
5242 	struct vega10_hwmgr *data = hwmgr->backend;
5243 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5244 	struct vega10_single_dpm_table *dpm_table;
5245 
5246 	uint32_t input_clk;
5247 	uint32_t input_vol;
5248 	uint32_t input_level;
5249 	uint32_t i;
5250 
5251 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5252 				return -EINVAL);
5253 
5254 	if (!hwmgr->od_enabled) {
5255 		pr_info("OverDrive feature not enabled\n");
5256 		return -EINVAL;
5257 	}
5258 
5259 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5260 		dpm_table = &data->dpm_table.gfx_table;
5261 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5262 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5263 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5264 		dpm_table = &data->dpm_table.mem_table;
5265 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5266 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5267 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5268 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5269 		vega10_odn_initial_default_setting(hwmgr);
5270 		vega10_odn_update_power_state(hwmgr);
5271 		/* force to update all clock tables */
5272 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5273 					      DPMTABLE_UPDATE_MCLK |
5274 					      DPMTABLE_UPDATE_SOCCLK;
5275 		return 0;
5276 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5277 		vega10_check_dpm_table_updated(hwmgr);
5278 		return 0;
5279 	} else {
5280 		return -EINVAL;
5281 	}
5282 
5283 	for (i = 0; i < size; i += 3) {
5284 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5285 			pr_info("invalid clock voltage input\n");
5286 			return 0;
5287 		}
5288 		input_level = input[i];
5289 		input_clk = input[i+1] * 100;
5290 		input_vol = input[i+2];
5291 
5292 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5293 			dpm_table->dpm_levels[input_level].value = input_clk;
5294 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5295 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5296 		} else {
5297 			return -EINVAL;
5298 		}
5299 	}
5300 	vega10_odn_update_soc_table(hwmgr, type);
5301 	return 0;
5302 }
5303 
5304 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5305 				enum pp_mp1_state mp1_state)
5306 {
5307 	uint16_t msg;
5308 	int ret;
5309 
5310 	switch (mp1_state) {
5311 	case PP_MP1_STATE_UNLOAD:
5312 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5313 		break;
5314 	case PP_MP1_STATE_SHUTDOWN:
5315 	case PP_MP1_STATE_RESET:
5316 	case PP_MP1_STATE_NONE:
5317 	default:
5318 		return 0;
5319 	}
5320 
5321 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5322 			    "[PrepareMp1] Failed!",
5323 			    return ret);
5324 
5325 	return 0;
5326 }
5327 
5328 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5329 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5330 				PHM_PerformanceLevel *level)
5331 {
5332 	const struct vega10_power_state *ps;
5333 	uint32_t i;
5334 
5335 	if (level == NULL || hwmgr == NULL || state == NULL)
5336 		return -EINVAL;
5337 
5338 	ps = cast_const_phw_vega10_power_state(state);
5339 
5340 	i = index > ps->performance_level_count - 1 ?
5341 			ps->performance_level_count - 1 : index;
5342 
5343 	level->coreClock = ps->performance_levels[i].gfx_clock;
5344 	level->memory_clock = ps->performance_levels[i].mem_clock;
5345 
5346 	return 0;
5347 }
5348 
5349 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5350 {
5351 	struct vega10_hwmgr *data = hwmgr->backend;
5352 	uint32_t feature_mask = 0;
5353 
5354 	if (disable) {
5355 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5356 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5357 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5358 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5359 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5360 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5361 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5362 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5363 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5364 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5365 	} else {
5366 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5367 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5368 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5369 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5370 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5371 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5372 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5373 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5374 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5375 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5376 	}
5377 
5378 	if (feature_mask)
5379 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5380 				!disable, feature_mask),
5381 				"enable/disable power features for compute performance Failed!",
5382 				return -EINVAL);
5383 
5384 	if (disable) {
5385 		data->smu_features[GNLD_ULV].enabled = false;
5386 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5387 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5388 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5389 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5390 	} else {
5391 		data->smu_features[GNLD_ULV].enabled = true;
5392 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5393 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5394 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5395 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5396 	}
5397 
5398 	return 0;
5399 
5400 }
5401 
5402 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5403 	.backend_init = vega10_hwmgr_backend_init,
5404 	.backend_fini = vega10_hwmgr_backend_fini,
5405 	.asic_setup = vega10_setup_asic_task,
5406 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5407 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5408 	.get_num_of_pp_table_entries =
5409 			vega10_get_number_of_powerplay_table_entries,
5410 	.get_power_state_size = vega10_get_power_state_size,
5411 	.get_pp_table_entry = vega10_get_pp_table_entry,
5412 	.patch_boot_state = vega10_patch_boot_state,
5413 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5414 	.power_state_set = vega10_set_power_state_tasks,
5415 	.get_sclk = vega10_dpm_get_sclk,
5416 	.get_mclk = vega10_dpm_get_mclk,
5417 	.notify_smc_display_config_after_ps_adjustment =
5418 			vega10_notify_smc_display_config_after_ps_adjustment,
5419 	.force_dpm_level = vega10_dpm_force_dpm_level,
5420 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5421 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5422 	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5423 	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5424 	.reset_fan_speed_to_default =
5425 			vega10_fan_ctrl_reset_fan_speed_to_default,
5426 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5427 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5428 	.uninitialize_thermal_controller =
5429 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5430 	.set_fan_control_mode = vega10_set_fan_control_mode,
5431 	.get_fan_control_mode = vega10_get_fan_control_mode,
5432 	.read_sensor = vega10_read_sensor,
5433 	.get_dal_power_level = vega10_get_dal_power_level,
5434 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5435 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5436 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5437 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5438 	.force_clock_level = vega10_force_clock_level,
5439 	.print_clock_levels = vega10_print_clock_levels,
5440 	.display_config_changed = vega10_display_configuration_changed_task,
5441 	.powergate_uvd = vega10_power_gate_uvd,
5442 	.powergate_vce = vega10_power_gate_vce,
5443 	.check_states_equal = vega10_check_states_equal,
5444 	.check_smc_update_required_for_display_configuration =
5445 			vega10_check_smc_update_required_for_display_configuration,
5446 	.power_off_asic = vega10_power_off_asic,
5447 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5448 	.get_sclk_od = vega10_get_sclk_od,
5449 	.set_sclk_od = vega10_set_sclk_od,
5450 	.get_mclk_od = vega10_get_mclk_od,
5451 	.set_mclk_od = vega10_set_mclk_od,
5452 	.avfs_control = vega10_avfs_enable,
5453 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5454 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5455 	.register_irq_handlers = smu9_register_irq_handlers,
5456 	.start_thermal_controller = vega10_start_thermal_controller,
5457 	.get_power_profile_mode = vega10_get_power_profile_mode,
5458 	.set_power_profile_mode = vega10_set_power_profile_mode,
5459 	.set_power_limit = vega10_set_power_limit,
5460 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5461 	.get_performance_level = vega10_get_performance_level,
5462 	.get_asic_baco_capability = smu9_baco_get_capability,
5463 	.get_asic_baco_state = smu9_baco_get_state,
5464 	.set_asic_baco_state = vega10_baco_set_state,
5465 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5466 	.get_ppfeature_status = vega10_get_ppfeature_status,
5467 	.set_ppfeature_status = vega10_set_ppfeature_status,
5468 	.set_mp1_state = vega10_set_mp1_state,
5469 	.disable_power_features_for_compute_performance =
5470 			vega10_disable_power_features_for_compute_performance,
5471 };
5472 
5473 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5474 {
5475 	struct amdgpu_device *adev = hwmgr->adev;
5476 
5477 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5478 	hwmgr->pptable_func = &vega10_pptable_funcs;
5479 	if (amdgpu_passthrough(adev))
5480 		return vega10_baco_set_cap(hwmgr);
5481 
5482 	return 0;
5483 }
5484