1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 
30 #include "hwmgr.h"
31 #include "amd_powerplay.h"
32 #include "hardwaremanager.h"
33 #include "ppatomfwctrl.h"
34 #include "atomfirmware.h"
35 #include "cgs_common.h"
36 #include "vega10_powertune.h"
37 #include "smu9.h"
38 #include "smu9_driver_if.h"
39 #include "vega10_inc.h"
40 #include "soc15_common.h"
41 #include "pppcielanes.h"
42 #include "vega10_hwmgr.h"
43 #include "vega10_smumgr.h"
44 #include "vega10_processpptables.h"
45 #include "vega10_pptable.h"
46 #include "vega10_thermal.h"
47 #include "pp_debug.h"
48 #include "amd_pcie_helpers.h"
49 #include "ppinterrupt.h"
50 #include "pp_overdriver.h"
51 #include "pp_thermal.h"
52 #include "vega10_baco.h"
53 
54 #include "smuio/smuio_9_0_offset.h"
55 #include "smuio/smuio_9_0_sh_mask.h"
56 
57 #define HBM_MEMORY_CHANNEL_WIDTH    128
58 
59 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
60 
61 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
62 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
63 
64 //DF_CS_AON0_DramBaseAddress0
65 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
66 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
67 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
68 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
69 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
70 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
71 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
72 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
73 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
74 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
75 
76 typedef enum {
77 	CLK_SMNCLK = 0,
78 	CLK_SOCCLK,
79 	CLK_MP0CLK,
80 	CLK_MP1CLK,
81 	CLK_LCLK,
82 	CLK_DCEFCLK,
83 	CLK_VCLK,
84 	CLK_DCLK,
85 	CLK_ECLK,
86 	CLK_UCLK,
87 	CLK_GFXCLK,
88 	CLK_COUNT,
89 } CLOCK_ID_e;
90 
91 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
92 
93 static struct vega10_power_state *cast_phw_vega10_power_state(
94 				  struct pp_hw_power_state *hw_ps)
95 {
96 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
97 				"Invalid Powerstate Type!",
98 				 return NULL;);
99 
100 	return (struct vega10_power_state *)hw_ps;
101 }
102 
103 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
104 				 const struct pp_hw_power_state *hw_ps)
105 {
106 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
107 				"Invalid Powerstate Type!",
108 				 return NULL;);
109 
110 	return (const struct vega10_power_state *)hw_ps;
111 }
112 
113 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
114 {
115 	struct vega10_hwmgr *data = hwmgr->backend;
116 
117 	data->registry_data.sclk_dpm_key_disabled =
118 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
119 	data->registry_data.socclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
121 	data->registry_data.mclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
123 	data->registry_data.pcie_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
125 
126 	data->registry_data.dcefclk_dpm_key_disabled =
127 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
128 
129 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
130 		data->registry_data.power_containment_support = 1;
131 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
132 		data->registry_data.enable_tdc_limit_feature = 1;
133 	}
134 
135 	data->registry_data.clock_stretcher_support =
136 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
137 
138 	data->registry_data.ulv_support =
139 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
140 
141 	data->registry_data.sclk_deep_sleep_support =
142 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
143 
144 	data->registry_data.disable_water_mark = 0;
145 
146 	data->registry_data.fan_control_support = 1;
147 	data->registry_data.thermal_support = 1;
148 	data->registry_data.fw_ctf_enabled = 1;
149 
150 	data->registry_data.avfs_support =
151 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
152 	data->registry_data.led_dpm_enabled = 1;
153 
154 	data->registry_data.vr0hot_enabled = 1;
155 	data->registry_data.vr1hot_enabled = 1;
156 	data->registry_data.regulator_hot_gpio_support = 1;
157 
158 	data->registry_data.didt_support = 1;
159 	if (data->registry_data.didt_support) {
160 		data->registry_data.didt_mode = 6;
161 		data->registry_data.sq_ramping_support = 1;
162 		data->registry_data.db_ramping_support = 0;
163 		data->registry_data.td_ramping_support = 0;
164 		data->registry_data.tcp_ramping_support = 0;
165 		data->registry_data.dbr_ramping_support = 0;
166 		data->registry_data.edc_didt_support = 1;
167 		data->registry_data.gc_didt_support = 0;
168 		data->registry_data.psm_didt_support = 0;
169 	}
170 
171 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
172 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
173 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
174 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 
185 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
186 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
187 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
188 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
189 }
190 
191 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
192 {
193 	struct vega10_hwmgr *data = hwmgr->backend;
194 	struct phm_ppt_v2_information *table_info =
195 			(struct phm_ppt_v2_information *)hwmgr->pptable;
196 	struct amdgpu_device *adev = hwmgr->adev;
197 
198 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
199 			PHM_PlatformCaps_SclkDeepSleep);
200 
201 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
202 			PHM_PlatformCaps_DynamicPatchPowerState);
203 
204 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
205 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
206 				PHM_PlatformCaps_ControlVDDCI);
207 
208 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
209 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
210 
211 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
212 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
213 				PHM_PlatformCaps_UVDPowerGating);
214 
215 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
216 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
217 				PHM_PlatformCaps_VCEPowerGating);
218 
219 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
220 			PHM_PlatformCaps_UnTabledHardwareInterface);
221 
222 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
223 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
224 
225 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
226 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
227 
228 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
229 				PHM_PlatformCaps_DynamicPowerManagement);
230 
231 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
232 			PHM_PlatformCaps_SMC);
233 
234 	/* power tune caps */
235 	/* assume disabled */
236 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
237 			PHM_PlatformCaps_PowerContainment);
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_DiDtSupport);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_SQRamping);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_DBRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_TDRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TCPRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_DBRRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DiDtEDCEnable);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_GCEDC);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_PSM);
256 
257 	if (data->registry_data.didt_support) {
258 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
259 		if (data->registry_data.sq_ramping_support)
260 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
261 		if (data->registry_data.db_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
263 		if (data->registry_data.td_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
265 		if (data->registry_data.tcp_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
267 		if (data->registry_data.dbr_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
269 		if (data->registry_data.edc_didt_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
271 		if (data->registry_data.gc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
273 		if (data->registry_data.psm_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
275 	}
276 
277 	if (data->registry_data.power_containment_support)
278 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
279 				PHM_PlatformCaps_PowerContainment);
280 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 			PHM_PlatformCaps_CAC);
282 
283 	if (table_info->tdp_table->usClockStretchAmount &&
284 			data->registry_data.clock_stretcher_support)
285 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
286 				PHM_PlatformCaps_ClockStretcher);
287 
288 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
289 			PHM_PlatformCaps_RegulatorHot);
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_AutomaticDCTransition);
292 
293 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
294 			PHM_PlatformCaps_UVDDPM);
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_VCEDPM);
297 
298 	return 0;
299 }
300 
301 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
302 {
303 	struct vega10_hwmgr *data = hwmgr->backend;
304 	struct phm_ppt_v2_information *table_info =
305 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
306 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
307 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
308 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
309 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
310 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
311 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
312 	uint32_t i;
313 	int result;
314 
315 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
316 	if (!result) {
317 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
318 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
319 	}
320 
321 	od_lookup_table = &odn_table->vddc_lookup_table;
322 	vddc_lookup_table = table_info->vddc_lookup_table;
323 
324 	for (i = 0; i < vddc_lookup_table->count; i++)
325 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
326 
327 	od_lookup_table->count = vddc_lookup_table->count;
328 
329 	dep_table[0] = table_info->vdd_dep_on_sclk;
330 	dep_table[1] = table_info->vdd_dep_on_mclk;
331 	dep_table[2] = table_info->vdd_dep_on_socclk;
332 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
333 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
334 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
335 
336 	for (i = 0; i < 3; i++)
337 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
338 
339 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
340 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
341 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
342 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
343 
344 	i = od_table[2]->count - 1;
345 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
346 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
347 					od_table[2]->entries[i].clk;
348 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
349 					odn_table->max_vddc :
350 					od_table[2]->entries[i].vddc;
351 
352 	return 0;
353 }
354 
355 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
356 {
357 	struct vega10_hwmgr *data = hwmgr->backend;
358 	int i;
359 	uint32_t sub_vendor_id, hw_revision;
360 	uint32_t top32, bottom32;
361 	struct amdgpu_device *adev = hwmgr->adev;
362 
363 	vega10_initialize_power_tune_defaults(hwmgr);
364 
365 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
366 		data->smu_features[i].smu_feature_id = 0xffff;
367 		data->smu_features[i].smu_feature_bitmap = 1 << i;
368 		data->smu_features[i].enabled = false;
369 		data->smu_features[i].supported = false;
370 	}
371 
372 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
373 			FEATURE_DPM_PREFETCHER_BIT;
374 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
375 			FEATURE_DPM_GFXCLK_BIT;
376 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
377 			FEATURE_DPM_UCLK_BIT;
378 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
379 			FEATURE_DPM_SOCCLK_BIT;
380 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
381 			FEATURE_DPM_UVD_BIT;
382 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
383 			FEATURE_DPM_VCE_BIT;
384 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
385 			FEATURE_DPM_MP0CLK_BIT;
386 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
387 			FEATURE_DPM_LINK_BIT;
388 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
389 			FEATURE_DPM_DCEFCLK_BIT;
390 	data->smu_features[GNLD_ULV].smu_feature_id =
391 			FEATURE_ULV_BIT;
392 	data->smu_features[GNLD_AVFS].smu_feature_id =
393 			FEATURE_AVFS_BIT;
394 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
395 			FEATURE_DS_GFXCLK_BIT;
396 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
397 			FEATURE_DS_SOCCLK_BIT;
398 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
399 			FEATURE_DS_LCLK_BIT;
400 	data->smu_features[GNLD_PPT].smu_feature_id =
401 			FEATURE_PPT_BIT;
402 	data->smu_features[GNLD_TDC].smu_feature_id =
403 			FEATURE_TDC_BIT;
404 	data->smu_features[GNLD_THERMAL].smu_feature_id =
405 			FEATURE_THERMAL_BIT;
406 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
407 			FEATURE_GFX_PER_CU_CG_BIT;
408 	data->smu_features[GNLD_RM].smu_feature_id =
409 			FEATURE_RM_BIT;
410 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
411 			FEATURE_DS_DCEFCLK_BIT;
412 	data->smu_features[GNLD_ACDC].smu_feature_id =
413 			FEATURE_ACDC_BIT;
414 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
415 			FEATURE_VR0HOT_BIT;
416 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
417 			FEATURE_VR1HOT_BIT;
418 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
419 			FEATURE_FW_CTF_BIT;
420 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
421 			FEATURE_LED_DISPLAY_BIT;
422 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
423 			FEATURE_FAN_CONTROL_BIT;
424 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
425 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
426 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
427 
428 	if (!data->registry_data.prefetcher_dpm_key_disabled)
429 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
430 
431 	if (!data->registry_data.sclk_dpm_key_disabled)
432 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
433 
434 	if (!data->registry_data.mclk_dpm_key_disabled)
435 		data->smu_features[GNLD_DPM_UCLK].supported = true;
436 
437 	if (!data->registry_data.socclk_dpm_key_disabled)
438 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
439 
440 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
441 		data->smu_features[GNLD_DPM_UVD].supported = true;
442 
443 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
444 		data->smu_features[GNLD_DPM_VCE].supported = true;
445 
446 	if (!data->registry_data.pcie_dpm_key_disabled)
447 		data->smu_features[GNLD_DPM_LINK].supported = true;
448 
449 	if (!data->registry_data.dcefclk_dpm_key_disabled)
450 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
451 
452 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
453 	    data->registry_data.sclk_deep_sleep_support) {
454 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
455 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
456 		data->smu_features[GNLD_DS_LCLK].supported = true;
457 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
458 	}
459 
460 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
461 		data->smu_features[GNLD_PPT].supported = true;
462 
463 	if (data->registry_data.enable_tdc_limit_feature)
464 		data->smu_features[GNLD_TDC].supported = true;
465 
466 	if (data->registry_data.thermal_support)
467 		data->smu_features[GNLD_THERMAL].supported = true;
468 
469 	if (data->registry_data.fan_control_support)
470 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
471 
472 	if (data->registry_data.fw_ctf_enabled)
473 		data->smu_features[GNLD_FW_CTF].supported = true;
474 
475 	if (data->registry_data.avfs_support)
476 		data->smu_features[GNLD_AVFS].supported = true;
477 
478 	if (data->registry_data.led_dpm_enabled)
479 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
480 
481 	if (data->registry_data.vr1hot_enabled)
482 		data->smu_features[GNLD_VR1HOT].supported = true;
483 
484 	if (data->registry_data.vr0hot_enabled)
485 		data->smu_features[GNLD_VR0HOT].supported = true;
486 
487 	smum_send_msg_to_smc(hwmgr,
488 			PPSMC_MSG_GetSmuVersion,
489 			&hwmgr->smu_version);
490 		/* ACG firmware has major version 5 */
491 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
492 		data->smu_features[GNLD_ACG].supported = true;
493 	if (data->registry_data.didt_support)
494 		data->smu_features[GNLD_DIDT].supported = true;
495 
496 	hw_revision = adev->pdev->revision;
497 	sub_vendor_id = adev->pdev->subsystem_vendor;
498 
499 	if ((hwmgr->chip_id == 0x6862 ||
500 		hwmgr->chip_id == 0x6861 ||
501 		hwmgr->chip_id == 0x6868) &&
502 		(hw_revision == 0) &&
503 		(sub_vendor_id != 0x1002))
504 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
505 
506 	/* Get the SN to turn into a Unique ID */
507 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
508 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
509 
510 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
511 }
512 
513 #ifdef PPLIB_VEGA10_EVV_SUPPORT
514 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
515 	phm_ppt_v1_voltage_lookup_table *lookup_table,
516 	uint16_t virtual_voltage_id, int32_t *socclk)
517 {
518 	uint8_t entry_id;
519 	uint8_t voltage_id;
520 	struct phm_ppt_v2_information *table_info =
521 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
522 
523 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
524 			"Lookup table is empty",
525 			return -EINVAL);
526 
527 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
528 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
529 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
530 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
531 			break;
532 	}
533 
534 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
535 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
536 			return -EINVAL);
537 
538 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
539 
540 	return 0;
541 }
542 
543 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
544 /**
545 * Get Leakage VDDC based on leakage ID.
546 *
547 * @param    hwmgr  the address of the powerplay hardware manager.
548 * @return   always 0.
549 */
550 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
551 {
552 	struct vega10_hwmgr *data = hwmgr->backend;
553 	uint16_t vv_id;
554 	uint32_t vddc = 0;
555 	uint16_t i, j;
556 	uint32_t sclk = 0;
557 	struct phm_ppt_v2_information *table_info =
558 			(struct phm_ppt_v2_information *)hwmgr->pptable;
559 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
560 			table_info->vdd_dep_on_socclk;
561 	int result;
562 
563 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
564 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
565 
566 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
567 				table_info->vddc_lookup_table, vv_id, &sclk)) {
568 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
569 				for (j = 1; j < socclk_table->count; j++) {
570 					if (socclk_table->entries[j].clk == sclk &&
571 							socclk_table->entries[j].cks_enable == 0) {
572 						sclk += 5000;
573 						break;
574 					}
575 				}
576 			}
577 
578 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
579 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
580 					"Error retrieving EVV voltage value!",
581 					continue);
582 
583 
584 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
585 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
586 					"Invalid VDDC value", result = -EINVAL;);
587 
588 			/* the voltage should not be zero nor equal to leakage ID */
589 			if (vddc != 0 && vddc != vv_id) {
590 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
591 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
592 				data->vddc_leakage.count++;
593 			}
594 		}
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * Change virtual leakage voltage to actual value.
602  *
603  * @param     hwmgr  the address of the powerplay hardware manager.
604  * @param     pointer to changing voltage
605  * @param     pointer to leakage table
606  */
607 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
608 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
609 {
610 	uint32_t index;
611 
612 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
613 	for (index = 0; index < leakage_table->count; index++) {
614 		/* if this voltage matches a leakage voltage ID */
615 		/* patch with actual leakage voltage */
616 		if (leakage_table->leakage_id[index] == *voltage) {
617 			*voltage = leakage_table->actual_voltage[index];
618 			break;
619 		}
620 	}
621 
622 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
623 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
624 }
625 
626 /**
627 * Patch voltage lookup table by EVV leakages.
628 *
629 * @param     hwmgr  the address of the powerplay hardware manager.
630 * @param     pointer to voltage lookup table
631 * @param     pointer to leakage table
632 * @return     always 0
633 */
634 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
635 		phm_ppt_v1_voltage_lookup_table *lookup_table,
636 		struct vega10_leakage_voltage *leakage_table)
637 {
638 	uint32_t i;
639 
640 	for (i = 0; i < lookup_table->count; i++)
641 		vega10_patch_with_vdd_leakage(hwmgr,
642 				&lookup_table->entries[i].us_vdd, leakage_table);
643 
644 	return 0;
645 }
646 
647 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
648 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
649 		uint16_t *vddc)
650 {
651 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
652 
653 	return 0;
654 }
655 #endif
656 
657 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
658 		struct pp_hwmgr *hwmgr)
659 {
660 	uint8_t entry_id, voltage_id;
661 	unsigned i;
662 	struct phm_ppt_v2_information *table_info =
663 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
664 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
665 			table_info->mm_dep_table;
666 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
667 			table_info->vdd_dep_on_mclk;
668 
669 	for (i = 0; i < 6; i++) {
670 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
671 		switch (i) {
672 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
673 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
674 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
675 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
676 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
677 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
678 		}
679 
680 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
681 			voltage_id = vdt->entries[entry_id].vddInd;
682 			vdt->entries[entry_id].vddc =
683 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
684 		}
685 	}
686 
687 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
688 		voltage_id = mm_table->entries[entry_id].vddcInd;
689 		mm_table->entries[entry_id].vddc =
690 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
691 	}
692 
693 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
694 		voltage_id = mclk_table->entries[entry_id].vddInd;
695 		mclk_table->entries[entry_id].vddc =
696 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
697 		voltage_id = mclk_table->entries[entry_id].vddciInd;
698 		mclk_table->entries[entry_id].vddci =
699 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
700 		voltage_id = mclk_table->entries[entry_id].mvddInd;
701 		mclk_table->entries[entry_id].mvdd =
702 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
703 	}
704 
705 
706 	return 0;
707 
708 }
709 
710 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
711 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
712 {
713 	uint32_t table_size, i, j;
714 
715 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
716 		"Lookup table is empty", return -EINVAL);
717 
718 	table_size = lookup_table->count;
719 
720 	/* Sorting voltages */
721 	for (i = 0; i < table_size - 1; i++) {
722 		for (j = i + 1; j > 0; j--) {
723 			if (lookup_table->entries[j].us_vdd <
724 					lookup_table->entries[j - 1].us_vdd) {
725 				swap(lookup_table->entries[j - 1],
726 				     lookup_table->entries[j]);
727 			}
728 		}
729 	}
730 
731 	return 0;
732 }
733 
734 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
735 {
736 	int result = 0;
737 	int tmp_result;
738 	struct phm_ppt_v2_information *table_info =
739 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
740 #ifdef PPLIB_VEGA10_EVV_SUPPORT
741 	struct vega10_hwmgr *data = hwmgr->backend;
742 
743 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
744 			table_info->vddc_lookup_table, &(data->vddc_leakage));
745 	if (tmp_result)
746 		result = tmp_result;
747 
748 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
749 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
750 	if (tmp_result)
751 		result = tmp_result;
752 #endif
753 
754 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
755 	if (tmp_result)
756 		result = tmp_result;
757 
758 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
759 	if (tmp_result)
760 		result = tmp_result;
761 
762 	return result;
763 }
764 
765 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
766 {
767 	struct phm_ppt_v2_information *table_info =
768 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
769 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
770 			table_info->vdd_dep_on_socclk;
771 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
772 			table_info->vdd_dep_on_mclk;
773 
774 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
775 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
776 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
777 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
778 
779 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
780 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
781 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
782 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
783 
784 	table_info->max_clock_voltage_on_ac.sclk =
785 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
786 	table_info->max_clock_voltage_on_ac.mclk =
787 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
788 	table_info->max_clock_voltage_on_ac.vddc =
789 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
790 	table_info->max_clock_voltage_on_ac.vddci =
791 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
792 
793 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
794 		table_info->max_clock_voltage_on_ac.sclk;
795 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
796 		table_info->max_clock_voltage_on_ac.mclk;
797 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
798 		table_info->max_clock_voltage_on_ac.vddc;
799 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
800 		table_info->max_clock_voltage_on_ac.vddci;
801 
802 	return 0;
803 }
804 
805 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
806 {
807 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
808 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
809 
810 	kfree(hwmgr->backend);
811 	hwmgr->backend = NULL;
812 
813 	return 0;
814 }
815 
816 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
817 {
818 	int result = 0;
819 	struct vega10_hwmgr *data;
820 	uint32_t config_telemetry = 0;
821 	struct pp_atomfwctrl_voltage_table vol_table;
822 	struct amdgpu_device *adev = hwmgr->adev;
823 
824 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
825 	if (data == NULL)
826 		return -ENOMEM;
827 
828 	hwmgr->backend = data;
829 
830 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
831 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
832 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833 
834 	vega10_set_default_registry_data(hwmgr);
835 	data->disable_dpm_mask = 0xff;
836 
837 	/* need to set voltage control types before EVV patching */
838 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
839 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
840 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 
842 	/* VDDCR_SOC */
843 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
844 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
845 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
846 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
847 				&vol_table)) {
848 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
849 					(vol_table.telemetry_offset & 0xff);
850 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
851 		}
852 	} else {
853 		kfree(hwmgr->backend);
854 		hwmgr->backend = NULL;
855 		PP_ASSERT_WITH_CODE(false,
856 				"VDDCR_SOC is not SVID2!",
857 				return -1);
858 	}
859 
860 	/* MVDDC */
861 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
862 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
863 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
864 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
865 				&vol_table)) {
866 			config_telemetry |=
867 					((vol_table.telemetry_slope << 24) & 0xff000000) |
868 					((vol_table.telemetry_offset << 16) & 0xff0000);
869 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
870 		}
871 	}
872 
873 	 /* VDDCI_MEM */
874 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
875 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
876 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
877 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
878 	}
879 
880 	data->config_telemetry = config_telemetry;
881 
882 	vega10_set_features_platform_caps(hwmgr);
883 
884 	vega10_init_dpm_defaults(hwmgr);
885 
886 #ifdef PPLIB_VEGA10_EVV_SUPPORT
887 	/* Get leakage voltage based on leakage ID. */
888 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
889 			"Get EVV Voltage Failed.  Abort Driver loading!",
890 			return -1);
891 #endif
892 
893 	/* Patch our voltage dependency table with actual leakage voltage
894 	 * We need to perform leakage translation before it's used by other functions
895 	 */
896 	vega10_complete_dependency_tables(hwmgr);
897 
898 	/* Parse pptable data read from VBIOS */
899 	vega10_set_private_data_based_on_pptable(hwmgr);
900 
901 	data->is_tlu_enabled = false;
902 
903 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
904 			VEGA10_MAX_HARDWARE_POWERLEVELS;
905 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
906 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
907 
908 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
909 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
910 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
911 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
912 
913 	data->total_active_cus = adev->gfx.cu_info.number;
914 	if (!hwmgr->not_vf)
915 		return result;
916 
917 	/* Setup default Overdrive Fan control settings */
918 	data->odn_fan_table.target_fan_speed =
919 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
920 	data->odn_fan_table.target_temperature =
921 			hwmgr->thermal_controller.
922 			advanceFanControlParameters.ucTargetTemperature;
923 	data->odn_fan_table.min_performance_clock =
924 			hwmgr->thermal_controller.advanceFanControlParameters.
925 			ulMinFanSCLKAcousticLimit;
926 	data->odn_fan_table.min_fan_limit =
927 			hwmgr->thermal_controller.
928 			advanceFanControlParameters.usFanPWMMinLimit *
929 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
930 
931 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
932 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
933 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
934 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
935 			"Mem Channel Index Exceeded maximum!",
936 			return -EINVAL);
937 
938 	return result;
939 }
940 
941 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
942 {
943 	struct vega10_hwmgr *data = hwmgr->backend;
944 
945 	data->low_sclk_interrupt_threshold = 0;
946 
947 	return 0;
948 }
949 
950 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
951 {
952 	struct vega10_hwmgr *data = hwmgr->backend;
953 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
954 
955 	struct pp_atomfwctrl_voltage_table table;
956 	uint8_t i, j;
957 	uint32_t mask = 0;
958 	uint32_t tmp;
959 	int32_t ret = 0;
960 
961 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
962 						VOLTAGE_OBJ_GPIO_LUT, &table);
963 
964 	if (!ret) {
965 		tmp = table.mask_low;
966 		for (i = 0, j = 0; i < 32; i++) {
967 			if (tmp & 1) {
968 				mask |= (uint32_t)(i << (8 * j));
969 				if (++j >= 3)
970 					break;
971 			}
972 			tmp >>= 1;
973 		}
974 	}
975 
976 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
977 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
978 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
979 	return 0;
980 }
981 
982 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
983 {
984 	if (!hwmgr->not_vf)
985 		return 0;
986 
987 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
988 			"Failed to init sclk threshold!",
989 			return -EINVAL);
990 
991 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
992 			"Failed to set up led dpm config!",
993 			return -EINVAL);
994 
995 	smum_send_msg_to_smc_with_parameter(hwmgr,
996 				PPSMC_MSG_NumOfDisplays,
997 				0,
998 				NULL);
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004 * Remove repeated voltage values and create table with unique values.
1005 *
1006 * @param    hwmgr  the address of the powerplay hardware manager.
1007 * @param    vol_table  the pointer to changing voltage table
1008 * @return    0 in success
1009 */
1010 
1011 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1012 		struct pp_atomfwctrl_voltage_table *vol_table)
1013 {
1014 	uint32_t i, j;
1015 	uint16_t vvalue;
1016 	bool found = false;
1017 	struct pp_atomfwctrl_voltage_table *table;
1018 
1019 	PP_ASSERT_WITH_CODE(vol_table,
1020 			"Voltage Table empty.", return -EINVAL);
1021 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1022 			GFP_KERNEL);
1023 
1024 	if (!table)
1025 		return -ENOMEM;
1026 
1027 	table->mask_low = vol_table->mask_low;
1028 	table->phase_delay = vol_table->phase_delay;
1029 
1030 	for (i = 0; i < vol_table->count; i++) {
1031 		vvalue = vol_table->entries[i].value;
1032 		found = false;
1033 
1034 		for (j = 0; j < table->count; j++) {
1035 			if (vvalue == table->entries[j].value) {
1036 				found = true;
1037 				break;
1038 			}
1039 		}
1040 
1041 		if (!found) {
1042 			table->entries[table->count].value = vvalue;
1043 			table->entries[table->count].smio_low =
1044 					vol_table->entries[i].smio_low;
1045 			table->count++;
1046 		}
1047 	}
1048 
1049 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1050 	kfree(table);
1051 
1052 	return 0;
1053 }
1054 
1055 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1056 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1057 		struct pp_atomfwctrl_voltage_table *vol_table)
1058 {
1059 	int i;
1060 
1061 	PP_ASSERT_WITH_CODE(dep_table->count,
1062 			"Voltage Dependency Table empty.",
1063 			return -EINVAL);
1064 
1065 	vol_table->mask_low = 0;
1066 	vol_table->phase_delay = 0;
1067 	vol_table->count = dep_table->count;
1068 
1069 	for (i = 0; i < vol_table->count; i++) {
1070 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1071 		vol_table->entries[i].smio_low = 0;
1072 	}
1073 
1074 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1075 			vol_table),
1076 			"Failed to trim MVDD Table!",
1077 			return -1);
1078 
1079 	return 0;
1080 }
1081 
1082 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1083 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1084 		struct pp_atomfwctrl_voltage_table *vol_table)
1085 {
1086 	uint32_t i;
1087 
1088 	PP_ASSERT_WITH_CODE(dep_table->count,
1089 			"Voltage Dependency Table empty.",
1090 			return -EINVAL);
1091 
1092 	vol_table->mask_low = 0;
1093 	vol_table->phase_delay = 0;
1094 	vol_table->count = dep_table->count;
1095 
1096 	for (i = 0; i < dep_table->count; i++) {
1097 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1098 		vol_table->entries[i].smio_low = 0;
1099 	}
1100 
1101 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1102 			"Failed to trim VDDCI table.",
1103 			return -1);
1104 
1105 	return 0;
1106 }
1107 
1108 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1109 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1110 		struct pp_atomfwctrl_voltage_table *vol_table)
1111 {
1112 	int i;
1113 
1114 	PP_ASSERT_WITH_CODE(dep_table->count,
1115 			"Voltage Dependency Table empty.",
1116 			return -EINVAL);
1117 
1118 	vol_table->mask_low = 0;
1119 	vol_table->phase_delay = 0;
1120 	vol_table->count = dep_table->count;
1121 
1122 	for (i = 0; i < vol_table->count; i++) {
1123 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1124 		vol_table->entries[i].smio_low = 0;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* ---- Voltage Tables ----
1131  * If the voltage table would be bigger than
1132  * what will fit into the state table on
1133  * the SMC keep only the higher entries.
1134  */
1135 static void vega10_trim_voltage_table_to_fit_state_table(
1136 		struct pp_hwmgr *hwmgr,
1137 		uint32_t max_vol_steps,
1138 		struct pp_atomfwctrl_voltage_table *vol_table)
1139 {
1140 	unsigned int i, diff;
1141 
1142 	if (vol_table->count <= max_vol_steps)
1143 		return;
1144 
1145 	diff = vol_table->count - max_vol_steps;
1146 
1147 	for (i = 0; i < max_vol_steps; i++)
1148 		vol_table->entries[i] = vol_table->entries[i + diff];
1149 
1150 	vol_table->count = max_vol_steps;
1151 }
1152 
1153 /**
1154 * Create Voltage Tables.
1155 *
1156 * @param    hwmgr  the address of the powerplay hardware manager.
1157 * @return   always 0
1158 */
1159 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1160 {
1161 	struct vega10_hwmgr *data = hwmgr->backend;
1162 	struct phm_ppt_v2_information *table_info =
1163 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1164 	int result;
1165 
1166 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1167 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1168 		result = vega10_get_mvdd_voltage_table(hwmgr,
1169 				table_info->vdd_dep_on_mclk,
1170 				&(data->mvdd_voltage_table));
1171 		PP_ASSERT_WITH_CODE(!result,
1172 				"Failed to retrieve MVDDC table!",
1173 				return result);
1174 	}
1175 
1176 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1177 		result = vega10_get_vddci_voltage_table(hwmgr,
1178 				table_info->vdd_dep_on_mclk,
1179 				&(data->vddci_voltage_table));
1180 		PP_ASSERT_WITH_CODE(!result,
1181 				"Failed to retrieve VDDCI_MEM table!",
1182 				return result);
1183 	}
1184 
1185 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1186 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1187 		result = vega10_get_vdd_voltage_table(hwmgr,
1188 				table_info->vdd_dep_on_sclk,
1189 				&(data->vddc_voltage_table));
1190 		PP_ASSERT_WITH_CODE(!result,
1191 				"Failed to retrieve VDDCR_SOC table!",
1192 				return result);
1193 	}
1194 
1195 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1196 			"Too many voltage values for VDDC. Trimming to fit state table.",
1197 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1198 					16, &(data->vddc_voltage_table)));
1199 
1200 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1201 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1202 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1203 					16, &(data->vddci_voltage_table)));
1204 
1205 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1206 			"Too many voltage values for MVDD. Trimming to fit state table.",
1207 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1208 					16, &(data->mvdd_voltage_table)));
1209 
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * @fn vega10_init_dpm_state
1216  * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1217  *
1218  * @param    dpm_state - the address of the DPM Table to initiailize.
1219  * @return   None.
1220  */
1221 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1222 {
1223 	dpm_state->soft_min_level = 0xff;
1224 	dpm_state->soft_max_level = 0xff;
1225 	dpm_state->hard_min_level = 0xff;
1226 	dpm_state->hard_max_level = 0xff;
1227 }
1228 
1229 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1230 		struct vega10_single_dpm_table *dpm_table,
1231 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1232 {
1233 	int i;
1234 
1235 	dpm_table->count = 0;
1236 
1237 	for (i = 0; i < dep_table->count; i++) {
1238 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1239 				dep_table->entries[i].clk) {
1240 			dpm_table->dpm_levels[dpm_table->count].value =
1241 					dep_table->entries[i].clk;
1242 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1243 			dpm_table->count++;
1244 		}
1245 	}
1246 }
1247 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1248 {
1249 	struct vega10_hwmgr *data = hwmgr->backend;
1250 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1251 	struct phm_ppt_v2_information *table_info =
1252 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1253 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1254 			table_info->pcie_table;
1255 	uint32_t i;
1256 
1257 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1258 			"Incorrect number of PCIE States from VBIOS!",
1259 			return -1);
1260 
1261 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1262 		if (data->registry_data.pcieSpeedOverride)
1263 			pcie_table->pcie_gen[i] =
1264 					data->registry_data.pcieSpeedOverride;
1265 		else
1266 			pcie_table->pcie_gen[i] =
1267 					bios_pcie_table->entries[i].gen_speed;
1268 
1269 		if (data->registry_data.pcieLaneOverride)
1270 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1271 					data->registry_data.pcieLaneOverride);
1272 		else
1273 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1274 							bios_pcie_table->entries[i].lane_width);
1275 		if (data->registry_data.pcieClockOverride)
1276 			pcie_table->lclk[i] =
1277 					data->registry_data.pcieClockOverride;
1278 		else
1279 			pcie_table->lclk[i] =
1280 					bios_pcie_table->entries[i].pcie_sclk;
1281 	}
1282 
1283 	pcie_table->count = NUM_LINK_LEVELS;
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * This function is to initialize all DPM state tables
1290  * for SMU based on the dependency table.
1291  * Dynamic state patching function will then trim these
1292  * state tables to the allowed range based
1293  * on the power policy or external client requests,
1294  * such as UVD request, etc.
1295  */
1296 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1297 {
1298 	struct vega10_hwmgr *data = hwmgr->backend;
1299 	struct phm_ppt_v2_information *table_info =
1300 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1301 	struct vega10_single_dpm_table *dpm_table;
1302 	uint32_t i;
1303 
1304 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1305 			table_info->vdd_dep_on_socclk;
1306 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1307 			table_info->vdd_dep_on_sclk;
1308 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1309 			table_info->vdd_dep_on_mclk;
1310 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1311 			table_info->mm_dep_table;
1312 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1313 			table_info->vdd_dep_on_dcefclk;
1314 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1315 			table_info->vdd_dep_on_pixclk;
1316 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1317 			table_info->vdd_dep_on_dispclk;
1318 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1319 			table_info->vdd_dep_on_phyclk;
1320 
1321 	PP_ASSERT_WITH_CODE(dep_soc_table,
1322 			"SOCCLK dependency table is missing. This table is mandatory",
1323 			return -EINVAL);
1324 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1325 			"SOCCLK dependency table is empty. This table is mandatory",
1326 			return -EINVAL);
1327 
1328 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1329 			"GFXCLK dependency table is missing. This table is mandatory",
1330 			return -EINVAL);
1331 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1332 			"GFXCLK dependency table is empty. This table is mandatory",
1333 			return -EINVAL);
1334 
1335 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1336 			"MCLK dependency table is missing. This table is mandatory",
1337 			return -EINVAL);
1338 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1339 			"MCLK dependency table has to have is missing. This table is mandatory",
1340 			return -EINVAL);
1341 
1342 	/* Initialize Sclk DPM table based on allow Sclk values */
1343 	dpm_table = &(data->dpm_table.soc_table);
1344 	vega10_setup_default_single_dpm_table(hwmgr,
1345 			dpm_table,
1346 			dep_soc_table);
1347 
1348 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1349 
1350 	dpm_table = &(data->dpm_table.gfx_table);
1351 	vega10_setup_default_single_dpm_table(hwmgr,
1352 			dpm_table,
1353 			dep_gfx_table);
1354 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1355 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1356 					dpm_table->dpm_levels[dpm_table->count-1].value;
1357 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1358 
1359 	/* Initialize Mclk DPM table based on allow Mclk values */
1360 	data->dpm_table.mem_table.count = 0;
1361 	dpm_table = &(data->dpm_table.mem_table);
1362 	vega10_setup_default_single_dpm_table(hwmgr,
1363 			dpm_table,
1364 			dep_mclk_table);
1365 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1366 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1367 					dpm_table->dpm_levels[dpm_table->count-1].value;
1368 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1369 
1370 	data->dpm_table.eclk_table.count = 0;
1371 	dpm_table = &(data->dpm_table.eclk_table);
1372 	for (i = 0; i < dep_mm_table->count; i++) {
1373 		if (i == 0 || dpm_table->dpm_levels
1374 				[dpm_table->count - 1].value <=
1375 						dep_mm_table->entries[i].eclk) {
1376 			dpm_table->dpm_levels[dpm_table->count].value =
1377 					dep_mm_table->entries[i].eclk;
1378 			dpm_table->dpm_levels[dpm_table->count].enabled =
1379 					(i == 0) ? true : false;
1380 			dpm_table->count++;
1381 		}
1382 	}
1383 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1384 
1385 	data->dpm_table.vclk_table.count = 0;
1386 	data->dpm_table.dclk_table.count = 0;
1387 	dpm_table = &(data->dpm_table.vclk_table);
1388 	for (i = 0; i < dep_mm_table->count; i++) {
1389 		if (i == 0 || dpm_table->dpm_levels
1390 				[dpm_table->count - 1].value <=
1391 						dep_mm_table->entries[i].vclk) {
1392 			dpm_table->dpm_levels[dpm_table->count].value =
1393 					dep_mm_table->entries[i].vclk;
1394 			dpm_table->dpm_levels[dpm_table->count].enabled =
1395 					(i == 0) ? true : false;
1396 			dpm_table->count++;
1397 		}
1398 	}
1399 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1400 
1401 	dpm_table = &(data->dpm_table.dclk_table);
1402 	for (i = 0; i < dep_mm_table->count; i++) {
1403 		if (i == 0 || dpm_table->dpm_levels
1404 				[dpm_table->count - 1].value <=
1405 						dep_mm_table->entries[i].dclk) {
1406 			dpm_table->dpm_levels[dpm_table->count].value =
1407 					dep_mm_table->entries[i].dclk;
1408 			dpm_table->dpm_levels[dpm_table->count].enabled =
1409 					(i == 0) ? true : false;
1410 			dpm_table->count++;
1411 		}
1412 	}
1413 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1414 
1415 	/* Assume there is no headless Vega10 for now */
1416 	dpm_table = &(data->dpm_table.dcef_table);
1417 	vega10_setup_default_single_dpm_table(hwmgr,
1418 			dpm_table,
1419 			dep_dcef_table);
1420 
1421 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1422 
1423 	dpm_table = &(data->dpm_table.pixel_table);
1424 	vega10_setup_default_single_dpm_table(hwmgr,
1425 			dpm_table,
1426 			dep_pix_table);
1427 
1428 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1429 
1430 	dpm_table = &(data->dpm_table.display_table);
1431 	vega10_setup_default_single_dpm_table(hwmgr,
1432 			dpm_table,
1433 			dep_disp_table);
1434 
1435 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1436 
1437 	dpm_table = &(data->dpm_table.phy_table);
1438 	vega10_setup_default_single_dpm_table(hwmgr,
1439 			dpm_table,
1440 			dep_phy_table);
1441 
1442 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1443 
1444 	vega10_setup_default_pcie_table(hwmgr);
1445 
1446 	/* Zero out the saved copy of the CUSTOM profile
1447 	 * This will be checked when trying to set the profile
1448 	 * and will require that new values be passed in
1449 	 */
1450 	data->custom_profile_mode[0] = 0;
1451 	data->custom_profile_mode[1] = 0;
1452 	data->custom_profile_mode[2] = 0;
1453 	data->custom_profile_mode[3] = 0;
1454 
1455 	/* save a copy of the default DPM table */
1456 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1457 			sizeof(struct vega10_dpm_table));
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * @fn vega10_populate_ulv_state
1464  * @brief Function to provide parameters for Utral Low Voltage state to SMC.
1465  *
1466  * @param    hwmgr - the address of the hardware manager.
1467  * @return   Always 0.
1468  */
1469 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1470 {
1471 	struct vega10_hwmgr *data = hwmgr->backend;
1472 	struct phm_ppt_v2_information *table_info =
1473 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1474 
1475 	data->smc_state_table.pp_table.UlvOffsetVid =
1476 			(uint8_t)table_info->us_ulv_voltage_offset;
1477 
1478 	data->smc_state_table.pp_table.UlvSmnclkDid =
1479 			(uint8_t)(table_info->us_ulv_smnclk_did);
1480 	data->smc_state_table.pp_table.UlvMp1clkDid =
1481 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1482 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1483 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1484 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1485 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1486 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1487 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1488 
1489 	return 0;
1490 }
1491 
1492 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1493 		uint32_t lclock, uint8_t *curr_lclk_did)
1494 {
1495 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1496 
1497 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1498 			hwmgr,
1499 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1500 			lclock, &dividers),
1501 			"Failed to get LCLK clock settings from VBIOS!",
1502 			return -1);
1503 
1504 	*curr_lclk_did = dividers.ulDid;
1505 
1506 	return 0;
1507 }
1508 
1509 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1510 {
1511 	int result = -1;
1512 	struct vega10_hwmgr *data = hwmgr->backend;
1513 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1514 	struct vega10_pcie_table *pcie_table =
1515 			&(data->dpm_table.pcie_table);
1516 	uint32_t i, j;
1517 
1518 	for (i = 0; i < pcie_table->count; i++) {
1519 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1520 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1521 
1522 		result = vega10_populate_single_lclk_level(hwmgr,
1523 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1524 		if (result) {
1525 			pr_info("Populate LClock Level %d Failed!\n", i);
1526 			return result;
1527 		}
1528 	}
1529 
1530 	j = i - 1;
1531 	while (i < NUM_LINK_LEVELS) {
1532 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1533 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1534 
1535 		result = vega10_populate_single_lclk_level(hwmgr,
1536 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1537 		if (result) {
1538 			pr_info("Populate LClock Level %d Failed!\n", i);
1539 			return result;
1540 		}
1541 		i++;
1542 	}
1543 
1544 	return result;
1545 }
1546 
1547 /**
1548 * Populates single SMC GFXSCLK structure using the provided engine clock
1549 *
1550 * @param    hwmgr      the address of the hardware manager
1551 * @param    gfx_clock  the GFX clock to use to populate the structure.
1552 * @param    current_gfxclk_level  location in PPTable for the SMC GFXCLK structure.
1553 */
1554 
1555 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1556 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1557 		uint32_t *acg_freq)
1558 {
1559 	struct phm_ppt_v2_information *table_info =
1560 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1561 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1562 	struct vega10_hwmgr *data = hwmgr->backend;
1563 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1564 	uint32_t gfx_max_clock =
1565 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1566 	uint32_t i = 0;
1567 
1568 	if (hwmgr->od_enabled)
1569 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1570 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1571 	else
1572 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1573 
1574 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1575 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1576 			return -EINVAL);
1577 
1578 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1579 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1580 	else {
1581 		for (i = 0; i < dep_on_sclk->count; i++) {
1582 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1583 				break;
1584 		}
1585 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1586 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1587 				return -EINVAL);
1588 	}
1589 
1590 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1591 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1592 			gfx_clock, &dividers),
1593 			"Failed to get GFX Clock settings from VBIOS!",
1594 			return -EINVAL);
1595 
1596 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1597 	current_gfxclk_level->FbMult =
1598 			cpu_to_le32(dividers.ulPll_fb_mult);
1599 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1600 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1601 	current_gfxclk_level->SsFbMult =
1602 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1603 	current_gfxclk_level->SsSlewFrac =
1604 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1605 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1606 
1607 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1608 
1609 	return 0;
1610 }
1611 
1612 /**
1613  * @brief Populates single SMC SOCCLK structure using the provided clock.
1614  *
1615  * @param    hwmgr - the address of the hardware manager.
1616  * @param    soc_clock - the SOC clock to use to populate the structure.
1617  * @param    current_socclk_level - location in PPTable for the SMC SOCCLK structure.
1618  * @return   0 on success..
1619  */
1620 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1621 		uint32_t soc_clock, uint8_t *current_soc_did,
1622 		uint8_t *current_vol_index)
1623 {
1624 	struct vega10_hwmgr *data = hwmgr->backend;
1625 	struct phm_ppt_v2_information *table_info =
1626 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1627 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1628 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1629 	uint32_t i;
1630 
1631 	if (hwmgr->od_enabled) {
1632 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1633 						&data->odn_dpm_table.vdd_dep_on_socclk;
1634 		for (i = 0; i < dep_on_soc->count; i++) {
1635 			if (dep_on_soc->entries[i].clk >= soc_clock)
1636 				break;
1637 		}
1638 	} else {
1639 		dep_on_soc = table_info->vdd_dep_on_socclk;
1640 		for (i = 0; i < dep_on_soc->count; i++) {
1641 			if (dep_on_soc->entries[i].clk == soc_clock)
1642 				break;
1643 		}
1644 	}
1645 
1646 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1647 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1648 			return -EINVAL);
1649 
1650 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1651 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1652 			soc_clock, &dividers),
1653 			"Failed to get SOC Clock settings from VBIOS!",
1654 			return -EINVAL);
1655 
1656 	*current_soc_did = (uint8_t)dividers.ulDid;
1657 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1658 	return 0;
1659 }
1660 
1661 /**
1662 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1663 *
1664 * @param    hwmgr      the address of the hardware manager
1665 */
1666 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1667 {
1668 	struct vega10_hwmgr *data = hwmgr->backend;
1669 	struct phm_ppt_v2_information *table_info =
1670 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1671 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1672 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1673 	int result = 0;
1674 	uint32_t i, j;
1675 
1676 	for (i = 0; i < dpm_table->count; i++) {
1677 		result = vega10_populate_single_gfx_level(hwmgr,
1678 				dpm_table->dpm_levels[i].value,
1679 				&(pp_table->GfxclkLevel[i]),
1680 				&(pp_table->AcgFreqTable[i]));
1681 		if (result)
1682 			return result;
1683 	}
1684 
1685 	j = i - 1;
1686 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1687 		result = vega10_populate_single_gfx_level(hwmgr,
1688 				dpm_table->dpm_levels[j].value,
1689 				&(pp_table->GfxclkLevel[i]),
1690 				&(pp_table->AcgFreqTable[i]));
1691 		if (result)
1692 			return result;
1693 		i++;
1694 	}
1695 
1696 	pp_table->GfxclkSlewRate =
1697 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1698 
1699 	dpm_table = &(data->dpm_table.soc_table);
1700 	for (i = 0; i < dpm_table->count; i++) {
1701 		result = vega10_populate_single_soc_level(hwmgr,
1702 				dpm_table->dpm_levels[i].value,
1703 				&(pp_table->SocclkDid[i]),
1704 				&(pp_table->SocDpmVoltageIndex[i]));
1705 		if (result)
1706 			return result;
1707 	}
1708 
1709 	j = i - 1;
1710 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1711 		result = vega10_populate_single_soc_level(hwmgr,
1712 				dpm_table->dpm_levels[j].value,
1713 				&(pp_table->SocclkDid[i]),
1714 				&(pp_table->SocDpmVoltageIndex[i]));
1715 		if (result)
1716 			return result;
1717 		i++;
1718 	}
1719 
1720 	return result;
1721 }
1722 
1723 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1724 {
1725 	struct vega10_hwmgr *data = hwmgr->backend;
1726 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1727 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1728 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1729 
1730 	uint8_t soc_vid = 0;
1731 	uint32_t i, max_vddc_level;
1732 
1733 	if (hwmgr->od_enabled)
1734 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1735 	else
1736 		vddc_lookup_table = table_info->vddc_lookup_table;
1737 
1738 	max_vddc_level = vddc_lookup_table->count;
1739 	for (i = 0; i < max_vddc_level; i++) {
1740 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1741 		pp_table->SocVid[i] = soc_vid;
1742 	}
1743 	while (i < MAX_REGULAR_DPM_NUMBER) {
1744 		pp_table->SocVid[i] = soc_vid;
1745 		i++;
1746 	}
1747 }
1748 
1749 /**
1750  * @brief Populates single SMC GFXCLK structure using the provided clock.
1751  *
1752  * @param    hwmgr - the address of the hardware manager.
1753  * @param    mem_clock - the memory clock to use to populate the structure.
1754  * @return   0 on success..
1755  */
1756 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1757 		uint32_t mem_clock, uint8_t *current_mem_vid,
1758 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1759 {
1760 	struct vega10_hwmgr *data = hwmgr->backend;
1761 	struct phm_ppt_v2_information *table_info =
1762 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1763 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1764 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1765 	uint32_t mem_max_clock =
1766 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1767 	uint32_t i = 0;
1768 
1769 	if (hwmgr->od_enabled)
1770 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1771 					&data->odn_dpm_table.vdd_dep_on_mclk;
1772 	else
1773 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1774 
1775 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1776 			"Invalid SOC_VDD-UCLK Dependency Table!",
1777 			return -EINVAL);
1778 
1779 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1780 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1781 	} else {
1782 		for (i = 0; i < dep_on_mclk->count; i++) {
1783 			if (dep_on_mclk->entries[i].clk == mem_clock)
1784 				break;
1785 		}
1786 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1787 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1788 				return -EINVAL);
1789 	}
1790 
1791 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1792 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1793 			"Failed to get UCLK settings from VBIOS!",
1794 			return -1);
1795 
1796 	*current_mem_vid =
1797 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1798 	*current_mem_soc_vind =
1799 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1800 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1801 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1802 
1803 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1804 			"Invalid Divider ID!",
1805 			return -EINVAL);
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states.
1812  *
1813  * @param    pHwMgr - the address of the hardware manager.
1814  * @return   PP_Result_OK on success.
1815  */
1816 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1817 {
1818 	struct vega10_hwmgr *data = hwmgr->backend;
1819 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1820 	struct vega10_single_dpm_table *dpm_table =
1821 			&(data->dpm_table.mem_table);
1822 	int result = 0;
1823 	uint32_t i, j;
1824 
1825 	for (i = 0; i < dpm_table->count; i++) {
1826 		result = vega10_populate_single_memory_level(hwmgr,
1827 				dpm_table->dpm_levels[i].value,
1828 				&(pp_table->MemVid[i]),
1829 				&(pp_table->UclkLevel[i]),
1830 				&(pp_table->MemSocVoltageIndex[i]));
1831 		if (result)
1832 			return result;
1833 	}
1834 
1835 	j = i - 1;
1836 	while (i < NUM_UCLK_DPM_LEVELS) {
1837 		result = vega10_populate_single_memory_level(hwmgr,
1838 				dpm_table->dpm_levels[j].value,
1839 				&(pp_table->MemVid[i]),
1840 				&(pp_table->UclkLevel[i]),
1841 				&(pp_table->MemSocVoltageIndex[i]));
1842 		if (result)
1843 			return result;
1844 		i++;
1845 	}
1846 
1847 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1848 	pp_table->MemoryChannelWidth =
1849 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1850 					channel_number[data->mem_channels]);
1851 
1852 	pp_table->LowestUclkReservedForUlv =
1853 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1854 
1855 	return result;
1856 }
1857 
1858 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1859 		DSPCLK_e disp_clock)
1860 {
1861 	struct vega10_hwmgr *data = hwmgr->backend;
1862 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1863 	struct phm_ppt_v2_information *table_info =
1864 			(struct phm_ppt_v2_information *)
1865 			(hwmgr->pptable);
1866 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1867 	uint32_t i;
1868 	uint16_t clk = 0, vddc = 0;
1869 	uint8_t vid = 0;
1870 
1871 	switch (disp_clock) {
1872 	case DSPCLK_DCEFCLK:
1873 		dep_table = table_info->vdd_dep_on_dcefclk;
1874 		break;
1875 	case DSPCLK_DISPCLK:
1876 		dep_table = table_info->vdd_dep_on_dispclk;
1877 		break;
1878 	case DSPCLK_PIXCLK:
1879 		dep_table = table_info->vdd_dep_on_pixclk;
1880 		break;
1881 	case DSPCLK_PHYCLK:
1882 		dep_table = table_info->vdd_dep_on_phyclk;
1883 		break;
1884 	default:
1885 		return -1;
1886 	}
1887 
1888 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1889 			"Number Of Entries Exceeded maximum!",
1890 			return -1);
1891 
1892 	for (i = 0; i < dep_table->count; i++) {
1893 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1894 		vddc = table_info->vddc_lookup_table->
1895 				entries[dep_table->entries[i].vddInd].us_vdd;
1896 		vid = (uint8_t)convert_to_vid(vddc);
1897 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1898 				cpu_to_le16(clk);
1899 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1900 				cpu_to_le16(vid);
1901 	}
1902 
1903 	while (i < NUM_DSPCLK_LEVELS) {
1904 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1905 				cpu_to_le16(clk);
1906 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1907 				cpu_to_le16(vid);
1908 		i++;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1915 {
1916 	uint32_t i;
1917 
1918 	for (i = 0; i < DSPCLK_COUNT; i++) {
1919 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1920 				"Failed to populate Clock in DisplayClockTable!",
1921 				return -1);
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1928 		uint32_t eclock, uint8_t *current_eclk_did,
1929 		uint8_t *current_soc_vol)
1930 {
1931 	struct phm_ppt_v2_information *table_info =
1932 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1933 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1934 			table_info->mm_dep_table;
1935 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1936 	uint32_t i;
1937 
1938 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1939 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1940 			eclock, &dividers),
1941 			"Failed to get ECLK clock settings from VBIOS!",
1942 			return -1);
1943 
1944 	*current_eclk_did = (uint8_t)dividers.ulDid;
1945 
1946 	for (i = 0; i < dep_table->count; i++) {
1947 		if (dep_table->entries[i].eclk == eclock)
1948 			*current_soc_vol = dep_table->entries[i].vddcInd;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
1955 {
1956 	struct vega10_hwmgr *data = hwmgr->backend;
1957 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1958 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
1959 	int result = -EINVAL;
1960 	uint32_t i, j;
1961 
1962 	for (i = 0; i < dpm_table->count; i++) {
1963 		result = vega10_populate_single_eclock_level(hwmgr,
1964 				dpm_table->dpm_levels[i].value,
1965 				&(pp_table->EclkDid[i]),
1966 				&(pp_table->VceDpmVoltageIndex[i]));
1967 		if (result)
1968 			return result;
1969 	}
1970 
1971 	j = i - 1;
1972 	while (i < NUM_VCE_DPM_LEVELS) {
1973 		result = vega10_populate_single_eclock_level(hwmgr,
1974 				dpm_table->dpm_levels[j].value,
1975 				&(pp_table->EclkDid[i]),
1976 				&(pp_table->VceDpmVoltageIndex[i]));
1977 		if (result)
1978 			return result;
1979 		i++;
1980 	}
1981 
1982 	return result;
1983 }
1984 
1985 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
1986 		uint32_t vclock, uint8_t *current_vclk_did)
1987 {
1988 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1989 
1990 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1991 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1992 			vclock, &dividers),
1993 			"Failed to get VCLK clock settings from VBIOS!",
1994 			return -EINVAL);
1995 
1996 	*current_vclk_did = (uint8_t)dividers.ulDid;
1997 
1998 	return 0;
1999 }
2000 
2001 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2002 		uint32_t dclock, uint8_t *current_dclk_did)
2003 {
2004 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2005 
2006 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2007 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2008 			dclock, &dividers),
2009 			"Failed to get DCLK clock settings from VBIOS!",
2010 			return -EINVAL);
2011 
2012 	*current_dclk_did = (uint8_t)dividers.ulDid;
2013 
2014 	return 0;
2015 }
2016 
2017 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2018 {
2019 	struct vega10_hwmgr *data = hwmgr->backend;
2020 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2021 	struct vega10_single_dpm_table *vclk_dpm_table =
2022 			&(data->dpm_table.vclk_table);
2023 	struct vega10_single_dpm_table *dclk_dpm_table =
2024 			&(data->dpm_table.dclk_table);
2025 	struct phm_ppt_v2_information *table_info =
2026 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2027 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2028 			table_info->mm_dep_table;
2029 	int result = -EINVAL;
2030 	uint32_t i, j;
2031 
2032 	for (i = 0; i < vclk_dpm_table->count; i++) {
2033 		result = vega10_populate_single_vclock_level(hwmgr,
2034 				vclk_dpm_table->dpm_levels[i].value,
2035 				&(pp_table->VclkDid[i]));
2036 		if (result)
2037 			return result;
2038 	}
2039 
2040 	j = i - 1;
2041 	while (i < NUM_UVD_DPM_LEVELS) {
2042 		result = vega10_populate_single_vclock_level(hwmgr,
2043 				vclk_dpm_table->dpm_levels[j].value,
2044 				&(pp_table->VclkDid[i]));
2045 		if (result)
2046 			return result;
2047 		i++;
2048 	}
2049 
2050 	for (i = 0; i < dclk_dpm_table->count; i++) {
2051 		result = vega10_populate_single_dclock_level(hwmgr,
2052 				dclk_dpm_table->dpm_levels[i].value,
2053 				&(pp_table->DclkDid[i]));
2054 		if (result)
2055 			return result;
2056 	}
2057 
2058 	j = i - 1;
2059 	while (i < NUM_UVD_DPM_LEVELS) {
2060 		result = vega10_populate_single_dclock_level(hwmgr,
2061 				dclk_dpm_table->dpm_levels[j].value,
2062 				&(pp_table->DclkDid[i]));
2063 		if (result)
2064 			return result;
2065 		i++;
2066 	}
2067 
2068 	for (i = 0; i < dep_table->count; i++) {
2069 		if (dep_table->entries[i].vclk ==
2070 				vclk_dpm_table->dpm_levels[i].value &&
2071 			dep_table->entries[i].dclk ==
2072 				dclk_dpm_table->dpm_levels[i].value)
2073 			pp_table->UvdDpmVoltageIndex[i] =
2074 					dep_table->entries[i].vddcInd;
2075 		else
2076 			return -1;
2077 	}
2078 
2079 	j = i - 1;
2080 	while (i < NUM_UVD_DPM_LEVELS) {
2081 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2082 		i++;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2089 {
2090 	struct vega10_hwmgr *data = hwmgr->backend;
2091 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2092 	struct phm_ppt_v2_information *table_info =
2093 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2094 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2095 			table_info->vdd_dep_on_sclk;
2096 	uint32_t i;
2097 
2098 	for (i = 0; i < dep_table->count; i++) {
2099 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2100 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2101 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2102 	}
2103 
2104 	return 0;
2105 }
2106 
2107 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2108 {
2109 	struct vega10_hwmgr *data = hwmgr->backend;
2110 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2111 	struct phm_ppt_v2_information *table_info =
2112 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2113 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2114 			table_info->vdd_dep_on_sclk;
2115 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2116 	int result = 0;
2117 	uint32_t i;
2118 
2119 	pp_table->MinVoltageVid = (uint8_t)0xff;
2120 	pp_table->MaxVoltageVid = (uint8_t)0;
2121 
2122 	if (data->smu_features[GNLD_AVFS].supported) {
2123 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2124 		if (!result) {
2125 			pp_table->MinVoltageVid = (uint8_t)
2126 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2127 			pp_table->MaxVoltageVid = (uint8_t)
2128 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2129 
2130 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2131 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2132 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2133 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2134 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2135 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2136 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2137 
2138 			pp_table->BtcGbVdroopTableCksOff.a0 =
2139 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2140 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2141 			pp_table->BtcGbVdroopTableCksOff.a1 =
2142 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2143 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2144 			pp_table->BtcGbVdroopTableCksOff.a2 =
2145 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2146 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2147 
2148 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2149 			pp_table->BtcGbVdroopTableCksOn.a0 =
2150 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2151 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2152 			pp_table->BtcGbVdroopTableCksOn.a1 =
2153 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2154 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2155 			pp_table->BtcGbVdroopTableCksOn.a2 =
2156 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2157 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2158 
2159 			pp_table->AvfsGbCksOn.m1 =
2160 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2161 			pp_table->AvfsGbCksOn.m2 =
2162 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2163 			pp_table->AvfsGbCksOn.b =
2164 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2165 			pp_table->AvfsGbCksOn.m1_shift = 24;
2166 			pp_table->AvfsGbCksOn.m2_shift = 12;
2167 			pp_table->AvfsGbCksOn.b_shift = 0;
2168 
2169 			pp_table->OverrideAvfsGbCksOn =
2170 					avfs_params.ucEnableGbFuseTableCkson;
2171 			pp_table->AvfsGbCksOff.m1 =
2172 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2173 			pp_table->AvfsGbCksOff.m2 =
2174 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2175 			pp_table->AvfsGbCksOff.b =
2176 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2177 			pp_table->AvfsGbCksOff.m1_shift = 24;
2178 			pp_table->AvfsGbCksOff.m2_shift = 12;
2179 			pp_table->AvfsGbCksOff.b_shift = 0;
2180 
2181 			for (i = 0; i < dep_table->count; i++)
2182 				pp_table->StaticVoltageOffsetVid[i] =
2183 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2184 
2185 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2186 					data->disp_clk_quad_eqn_a) &&
2187 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2188 					data->disp_clk_quad_eqn_b)) {
2189 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2190 						(int32_t)data->disp_clk_quad_eqn_a;
2191 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2192 						(int32_t)data->disp_clk_quad_eqn_b;
2193 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2194 						(int32_t)data->disp_clk_quad_eqn_c;
2195 			} else {
2196 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2197 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2198 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2199 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2200 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2201 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2202 			}
2203 
2204 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2205 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2206 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2207 
2208 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2209 					data->dcef_clk_quad_eqn_a) &&
2210 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2211 					data->dcef_clk_quad_eqn_b)) {
2212 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2213 						(int32_t)data->dcef_clk_quad_eqn_a;
2214 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2215 						(int32_t)data->dcef_clk_quad_eqn_b;
2216 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2217 						(int32_t)data->dcef_clk_quad_eqn_c;
2218 			} else {
2219 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2220 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2221 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2222 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2223 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2224 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2225 			}
2226 
2227 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2228 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2229 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2230 
2231 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2232 					data->pixel_clk_quad_eqn_a) &&
2233 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2234 					data->pixel_clk_quad_eqn_b)) {
2235 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2236 						(int32_t)data->pixel_clk_quad_eqn_a;
2237 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2238 						(int32_t)data->pixel_clk_quad_eqn_b;
2239 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2240 						(int32_t)data->pixel_clk_quad_eqn_c;
2241 			} else {
2242 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2243 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2244 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2245 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2246 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2247 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2248 			}
2249 
2250 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2251 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2252 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2253 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2254 					data->phy_clk_quad_eqn_a) &&
2255 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2256 					data->phy_clk_quad_eqn_b)) {
2257 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2258 						(int32_t)data->phy_clk_quad_eqn_a;
2259 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2260 						(int32_t)data->phy_clk_quad_eqn_b;
2261 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2262 						(int32_t)data->phy_clk_quad_eqn_c;
2263 			} else {
2264 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2265 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2266 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2267 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2268 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2269 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2270 			}
2271 
2272 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2273 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2274 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2275 
2276 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2277 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2278 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2279 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2280 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2281 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2282 
2283 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2284 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2285 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2286 			pp_table->AcgAvfsGb.m1_shift             = 24;
2287 			pp_table->AcgAvfsGb.m2_shift             = 12;
2288 			pp_table->AcgAvfsGb.b_shift              = 0;
2289 
2290 		} else {
2291 			data->smu_features[GNLD_AVFS].supported = false;
2292 		}
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2299 {
2300 	struct vega10_hwmgr *data = hwmgr->backend;
2301 	uint32_t agc_btc_response;
2302 
2303 	if (data->smu_features[GNLD_ACG].supported) {
2304 		if (0 == vega10_enable_smc_features(hwmgr, true,
2305 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2306 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2307 
2308 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2309 
2310 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2311 
2312 		if (1 == agc_btc_response) {
2313 			if (1 == data->acg_loop_state)
2314 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2315 			else if (2 == data->acg_loop_state)
2316 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2317 			if (0 == vega10_enable_smc_features(hwmgr, true,
2318 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2319 					data->smu_features[GNLD_ACG].enabled = true;
2320 		} else {
2321 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2322 			data->smu_features[GNLD_ACG].enabled = false;
2323 		}
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2330 {
2331 	struct vega10_hwmgr *data = hwmgr->backend;
2332 
2333 	if (data->smu_features[GNLD_ACG].supported &&
2334 	    data->smu_features[GNLD_ACG].enabled)
2335 		if (!vega10_enable_smc_features(hwmgr, false,
2336 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2337 			data->smu_features[GNLD_ACG].enabled = false;
2338 
2339 	return 0;
2340 }
2341 
2342 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2343 {
2344 	struct vega10_hwmgr *data = hwmgr->backend;
2345 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2346 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2347 	int result;
2348 
2349 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2350 	if (!result) {
2351 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2352 		    data->registry_data.regulator_hot_gpio_support) {
2353 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2354 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2355 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2356 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2357 		} else {
2358 			pp_table->VR0HotGpio = 0;
2359 			pp_table->VR0HotPolarity = 0;
2360 			pp_table->VR1HotGpio = 0;
2361 			pp_table->VR1HotPolarity = 0;
2362 		}
2363 
2364 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2365 		    data->registry_data.ac_dc_switch_gpio_support) {
2366 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2367 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2368 		} else {
2369 			pp_table->AcDcGpio = 0;
2370 			pp_table->AcDcPolarity = 0;
2371 		}
2372 	}
2373 
2374 	return result;
2375 }
2376 
2377 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2378 {
2379 	struct vega10_hwmgr *data = hwmgr->backend;
2380 
2381 	if (data->smu_features[GNLD_AVFS].supported) {
2382 		/* Already enabled or disabled */
2383 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2384 			return 0;
2385 
2386 		if (enable) {
2387 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2388 					true,
2389 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2390 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2391 					return -1);
2392 			data->smu_features[GNLD_AVFS].enabled = true;
2393 		} else {
2394 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2395 					false,
2396 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2397 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2398 					return -1);
2399 			data->smu_features[GNLD_AVFS].enabled = false;
2400 		}
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2407 {
2408 	struct vega10_hwmgr *data = hwmgr->backend;
2409 
2410 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2411 		vega10_avfs_enable(hwmgr, false);
2412 	} else if (data->need_update_dpm_table) {
2413 		vega10_avfs_enable(hwmgr, false);
2414 		vega10_avfs_enable(hwmgr, true);
2415 	} else {
2416 		vega10_avfs_enable(hwmgr, true);
2417 	}
2418 
2419 	return 0;
2420 }
2421 
2422 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2423 {
2424 	int result = 0;
2425 
2426 	uint64_t serial_number = 0;
2427 	uint32_t top32, bottom32;
2428 	struct phm_fuses_default fuse;
2429 
2430 	struct vega10_hwmgr *data = hwmgr->backend;
2431 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2432 
2433 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2434 
2435 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2436 
2437 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2438 
2439 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2440 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2441 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2442 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2443 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2444 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2445 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2446 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2447 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2448 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2449 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2450 						AVFSFUSETABLE, false);
2451 		PP_ASSERT_WITH_CODE(!result,
2452 			"Failed to upload FuseOVerride!",
2453 			);
2454 	}
2455 
2456 	return result;
2457 }
2458 
2459 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2460 {
2461 	struct vega10_hwmgr *data = hwmgr->backend;
2462 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2463 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2464 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2465 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2466 	uint32_t i;
2467 
2468 	dep_table = table_info->vdd_dep_on_mclk;
2469 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2470 
2471 	for (i = 0; i < dep_table->count; i++) {
2472 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2473 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2474 			return;
2475 		}
2476 	}
2477 
2478 	dep_table = table_info->vdd_dep_on_sclk;
2479 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2480 	for (i = 0; i < dep_table->count; i++) {
2481 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2482 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2483 			return;
2484 		}
2485 	}
2486 }
2487 
2488 /**
2489 * Initializes the SMC table and uploads it
2490 *
2491 * @param    hwmgr  the address of the powerplay hardware manager.
2492 * @param    pInput  the pointer to input data (PowerState)
2493 * @return   always 0
2494 */
2495 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2496 {
2497 	int result;
2498 	struct vega10_hwmgr *data = hwmgr->backend;
2499 	struct phm_ppt_v2_information *table_info =
2500 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2501 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2502 	struct pp_atomfwctrl_voltage_table voltage_table;
2503 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2504 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2505 
2506 	result = vega10_setup_default_dpm_tables(hwmgr);
2507 	PP_ASSERT_WITH_CODE(!result,
2508 			"Failed to setup default DPM tables!",
2509 			return result);
2510 
2511 	if (!hwmgr->not_vf)
2512 		return 0;
2513 
2514 	/* initialize ODN table */
2515 	if (hwmgr->od_enabled) {
2516 		if (odn_table->max_vddc) {
2517 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2518 			vega10_check_dpm_table_updated(hwmgr);
2519 		} else {
2520 			vega10_odn_initial_default_setting(hwmgr);
2521 		}
2522 	}
2523 
2524 	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2525 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2526 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2527 
2528 	pp_table->GfxDpmVoltageMode =
2529 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2530 	pp_table->SocDpmVoltageMode =
2531 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2532 	pp_table->UclkDpmVoltageMode =
2533 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2534 	pp_table->UvdDpmVoltageMode =
2535 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2536 	pp_table->VceDpmVoltageMode =
2537 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2538 	pp_table->Mp0DpmVoltageMode =
2539 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2540 
2541 	pp_table->DisplayDpmVoltageMode =
2542 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2543 
2544 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2545 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2546 
2547 	if (data->registry_data.ulv_support &&
2548 			table_info->us_ulv_voltage_offset) {
2549 		result = vega10_populate_ulv_state(hwmgr);
2550 		PP_ASSERT_WITH_CODE(!result,
2551 				"Failed to initialize ULV state!",
2552 				return result);
2553 	}
2554 
2555 	result = vega10_populate_smc_link_levels(hwmgr);
2556 	PP_ASSERT_WITH_CODE(!result,
2557 			"Failed to initialize Link Level!",
2558 			return result);
2559 
2560 	result = vega10_populate_all_graphic_levels(hwmgr);
2561 	PP_ASSERT_WITH_CODE(!result,
2562 			"Failed to initialize Graphics Level!",
2563 			return result);
2564 
2565 	result = vega10_populate_all_memory_levels(hwmgr);
2566 	PP_ASSERT_WITH_CODE(!result,
2567 			"Failed to initialize Memory Level!",
2568 			return result);
2569 
2570 	vega10_populate_vddc_soc_levels(hwmgr);
2571 
2572 	result = vega10_populate_all_display_clock_levels(hwmgr);
2573 	PP_ASSERT_WITH_CODE(!result,
2574 			"Failed to initialize Display Level!",
2575 			return result);
2576 
2577 	result = vega10_populate_smc_vce_levels(hwmgr);
2578 	PP_ASSERT_WITH_CODE(!result,
2579 			"Failed to initialize VCE Level!",
2580 			return result);
2581 
2582 	result = vega10_populate_smc_uvd_levels(hwmgr);
2583 	PP_ASSERT_WITH_CODE(!result,
2584 			"Failed to initialize UVD Level!",
2585 			return result);
2586 
2587 	if (data->registry_data.clock_stretcher_support) {
2588 		result = vega10_populate_clock_stretcher_table(hwmgr);
2589 		PP_ASSERT_WITH_CODE(!result,
2590 				"Failed to populate Clock Stretcher Table!",
2591 				return result);
2592 	}
2593 
2594 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2595 	if (!result) {
2596 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2597 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2598 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2599 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2600 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2601 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2602 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2603 
2604 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2605 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2606 
2607 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2608 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2609 		if (0 != boot_up_values.usVddc) {
2610 			smum_send_msg_to_smc_with_parameter(hwmgr,
2611 						PPSMC_MSG_SetFloorSocVoltage,
2612 						(boot_up_values.usVddc * 4),
2613 						NULL);
2614 			data->vbios_boot_state.bsoc_vddc_lock = true;
2615 		} else {
2616 			data->vbios_boot_state.bsoc_vddc_lock = false;
2617 		}
2618 		smum_send_msg_to_smc_with_parameter(hwmgr,
2619 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2620 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2621 				NULL);
2622 	}
2623 
2624 	result = vega10_populate_avfs_parameters(hwmgr);
2625 	PP_ASSERT_WITH_CODE(!result,
2626 			"Failed to initialize AVFS Parameters!",
2627 			return result);
2628 
2629 	result = vega10_populate_gpio_parameters(hwmgr);
2630 	PP_ASSERT_WITH_CODE(!result,
2631 			"Failed to initialize GPIO Parameters!",
2632 			return result);
2633 
2634 	pp_table->GfxclkAverageAlpha = (uint8_t)
2635 			(data->gfxclk_average_alpha);
2636 	pp_table->SocclkAverageAlpha = (uint8_t)
2637 			(data->socclk_average_alpha);
2638 	pp_table->UclkAverageAlpha = (uint8_t)
2639 			(data->uclk_average_alpha);
2640 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2641 			(data->gfx_activity_average_alpha);
2642 
2643 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2644 
2645 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2646 
2647 	PP_ASSERT_WITH_CODE(!result,
2648 			"Failed to upload PPtable!", return result);
2649 
2650 	result = vega10_avfs_enable(hwmgr, true);
2651 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2652 					return result);
2653 	vega10_acg_enable(hwmgr);
2654 
2655 	return 0;
2656 }
2657 
2658 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2659 {
2660 	struct vega10_hwmgr *data = hwmgr->backend;
2661 
2662 	if (data->smu_features[GNLD_THERMAL].supported) {
2663 		if (data->smu_features[GNLD_THERMAL].enabled)
2664 			pr_info("THERMAL Feature Already enabled!");
2665 
2666 		PP_ASSERT_WITH_CODE(
2667 				!vega10_enable_smc_features(hwmgr,
2668 				true,
2669 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2670 				"Enable THERMAL Feature Failed!",
2671 				return -1);
2672 		data->smu_features[GNLD_THERMAL].enabled = true;
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2679 {
2680 	struct vega10_hwmgr *data = hwmgr->backend;
2681 
2682 	if (data->smu_features[GNLD_THERMAL].supported) {
2683 		if (!data->smu_features[GNLD_THERMAL].enabled)
2684 			pr_info("THERMAL Feature Already disabled!");
2685 
2686 		PP_ASSERT_WITH_CODE(
2687 				!vega10_enable_smc_features(hwmgr,
2688 				false,
2689 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2690 				"disable THERMAL Feature Failed!",
2691 				return -1);
2692 		data->smu_features[GNLD_THERMAL].enabled = false;
2693 	}
2694 
2695 	return 0;
2696 }
2697 
2698 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2699 {
2700 	struct vega10_hwmgr *data = hwmgr->backend;
2701 
2702 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2703 		if (data->smu_features[GNLD_VR0HOT].supported) {
2704 			PP_ASSERT_WITH_CODE(
2705 					!vega10_enable_smc_features(hwmgr,
2706 					true,
2707 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2708 					"Attempt to Enable VR0 Hot feature Failed!",
2709 					return -1);
2710 			data->smu_features[GNLD_VR0HOT].enabled = true;
2711 		} else {
2712 			if (data->smu_features[GNLD_VR1HOT].supported) {
2713 				PP_ASSERT_WITH_CODE(
2714 						!vega10_enable_smc_features(hwmgr,
2715 						true,
2716 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2717 						"Attempt to Enable VR0 Hot feature Failed!",
2718 						return -1);
2719 				data->smu_features[GNLD_VR1HOT].enabled = true;
2720 			}
2721 		}
2722 	}
2723 	return 0;
2724 }
2725 
2726 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2727 {
2728 	struct vega10_hwmgr *data = hwmgr->backend;
2729 
2730 	if (data->registry_data.ulv_support) {
2731 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2732 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2733 				"Enable ULV Feature Failed!",
2734 				return -1);
2735 		data->smu_features[GNLD_ULV].enabled = true;
2736 	}
2737 
2738 	return 0;
2739 }
2740 
2741 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2742 {
2743 	struct vega10_hwmgr *data = hwmgr->backend;
2744 
2745 	if (data->registry_data.ulv_support) {
2746 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2747 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2748 				"disable ULV Feature Failed!",
2749 				return -EINVAL);
2750 		data->smu_features[GNLD_ULV].enabled = false;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2757 {
2758 	struct vega10_hwmgr *data = hwmgr->backend;
2759 
2760 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2761 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2762 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2763 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2764 				return -EINVAL);
2765 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2766 	}
2767 
2768 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2769 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2770 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2771 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2772 				return -EINVAL);
2773 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2774 	}
2775 
2776 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2777 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2778 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2779 				"Attempt to Enable DS_LCLK Feature Failed!",
2780 				return -EINVAL);
2781 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2782 	}
2783 
2784 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2785 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2786 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2787 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2788 				return -EINVAL);
2789 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2796 {
2797 	struct vega10_hwmgr *data = hwmgr->backend;
2798 
2799 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2800 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2801 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2802 				"Attempt to disable DS_GFXCLK Feature Failed!",
2803 				return -EINVAL);
2804 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2805 	}
2806 
2807 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2808 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2809 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2810 				"Attempt to disable DS_ Feature Failed!",
2811 				return -EINVAL);
2812 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2813 	}
2814 
2815 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2816 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2817 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2818 				"Attempt to disable DS_LCLK Feature Failed!",
2819 				return -EINVAL);
2820 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2821 	}
2822 
2823 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2824 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2825 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2826 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2827 				return -EINVAL);
2828 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2835 {
2836 	struct vega10_hwmgr *data = hwmgr->backend;
2837 	uint32_t i, feature_mask = 0;
2838 
2839 	if (!hwmgr->not_vf)
2840 		return 0;
2841 
2842 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2843 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2844 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2845 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2846 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2847 	}
2848 
2849 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2850 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2851 			if (data->smu_features[i].supported) {
2852 				if (data->smu_features[i].enabled) {
2853 					feature_mask |= data->smu_features[i].
2854 							smu_feature_bitmap;
2855 					data->smu_features[i].enabled = false;
2856 				}
2857 			}
2858 		}
2859 	}
2860 
2861 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2862 
2863 	return 0;
2864 }
2865 
2866 /**
2867  * @brief Tell SMC to enabled the supported DPMs.
2868  *
2869  * @param    hwmgr - the address of the powerplay hardware manager.
2870  * @Param    bitmap - bitmap for the features to enabled.
2871  * @return   0 on at least one DPM is successfully enabled.
2872  */
2873 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2874 {
2875 	struct vega10_hwmgr *data = hwmgr->backend;
2876 	uint32_t i, feature_mask = 0;
2877 
2878 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2879 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2880 			if (data->smu_features[i].supported) {
2881 				if (!data->smu_features[i].enabled) {
2882 					feature_mask |= data->smu_features[i].
2883 							smu_feature_bitmap;
2884 					data->smu_features[i].enabled = true;
2885 				}
2886 			}
2887 		}
2888 	}
2889 
2890 	if (vega10_enable_smc_features(hwmgr,
2891 			true, feature_mask)) {
2892 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2893 			if (data->smu_features[i].smu_feature_bitmap &
2894 					feature_mask)
2895 				data->smu_features[i].enabled = false;
2896 		}
2897 	}
2898 
2899 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2900 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2901 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2902 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2903 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2904 	}
2905 
2906 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2907 		smum_send_msg_to_smc_with_parameter(hwmgr,
2908 						PPSMC_MSG_SetFloorSocVoltage, 0,
2909 						NULL);
2910 		data->vbios_boot_state.bsoc_vddc_lock = false;
2911 	}
2912 
2913 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2914 		if (data->smu_features[GNLD_ACDC].supported) {
2915 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2916 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2917 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2918 					return -1);
2919 			data->smu_features[GNLD_ACDC].enabled = true;
2920 		}
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2927 {
2928 	struct vega10_hwmgr *data = hwmgr->backend;
2929 
2930 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2931 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2932 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
2933 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2934 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
2935 				"Attempt to Enable PCC Limit feature Failed!",
2936 				return -EINVAL);
2937 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
2938 	}
2939 
2940 	return 0;
2941 }
2942 
2943 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2944 {
2945 	struct vega10_hwmgr *data = hwmgr->backend;
2946 	int tmp_result, result = 0;
2947 
2948 	if (hwmgr->not_vf) {
2949 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
2950 
2951 		smum_send_msg_to_smc_with_parameter(hwmgr,
2952 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
2953 			NULL);
2954 
2955 		tmp_result = vega10_construct_voltage_tables(hwmgr);
2956 		PP_ASSERT_WITH_CODE(!tmp_result,
2957 				    "Failed to construct voltage tables!",
2958 				    result = tmp_result);
2959 	}
2960 
2961 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
2962 		tmp_result = vega10_init_smc_table(hwmgr);
2963 		PP_ASSERT_WITH_CODE(!tmp_result,
2964 				    "Failed to initialize SMC table!",
2965 				    result = tmp_result);
2966 	}
2967 
2968 	if (hwmgr->not_vf) {
2969 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
2970 			tmp_result = vega10_enable_thermal_protection(hwmgr);
2971 			PP_ASSERT_WITH_CODE(!tmp_result,
2972 					    "Failed to enable thermal protection!",
2973 					    result = tmp_result);
2974 		}
2975 
2976 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
2977 		PP_ASSERT_WITH_CODE(!tmp_result,
2978 				    "Failed to enable VR hot feature!",
2979 				    result = tmp_result);
2980 
2981 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
2982 		PP_ASSERT_WITH_CODE(!tmp_result,
2983 				    "Failed to enable deep sleep master switch!",
2984 				    result = tmp_result);
2985 	}
2986 
2987 	if (hwmgr->not_vf) {
2988 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
2989 		PP_ASSERT_WITH_CODE(!tmp_result,
2990 				    "Failed to start DPM!", result = tmp_result);
2991 	}
2992 
2993 	if (hwmgr->not_vf) {
2994 		/* enable didt, do not abort if failed didt */
2995 		tmp_result = vega10_enable_didt_config(hwmgr);
2996 		PP_ASSERT(!tmp_result,
2997 			  "Failed to enable didt config!");
2998 	}
2999 
3000 	tmp_result = vega10_enable_power_containment(hwmgr);
3001 	PP_ASSERT_WITH_CODE(!tmp_result,
3002 			    "Failed to enable power containment!",
3003 			    result = tmp_result);
3004 
3005 	if (hwmgr->not_vf) {
3006 		tmp_result = vega10_power_control_set_level(hwmgr);
3007 		PP_ASSERT_WITH_CODE(!tmp_result,
3008 				    "Failed to power control set level!",
3009 				    result = tmp_result);
3010 
3011 		tmp_result = vega10_enable_ulv(hwmgr);
3012 		PP_ASSERT_WITH_CODE(!tmp_result,
3013 				    "Failed to enable ULV!",
3014 				    result = tmp_result);
3015 	}
3016 
3017 	return result;
3018 }
3019 
3020 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3021 {
3022 	return sizeof(struct vega10_power_state);
3023 }
3024 
3025 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3026 		void *state, struct pp_power_state *power_state,
3027 		void *pp_table, uint32_t classification_flag)
3028 {
3029 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3030 	struct vega10_power_state *vega10_power_state =
3031 			cast_phw_vega10_power_state(&(power_state->hardware));
3032 	struct vega10_performance_level *performance_level;
3033 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3034 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3035 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3036 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3037 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3038 			(((unsigned long)powerplay_table) +
3039 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3040 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3041 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3042 			(((unsigned long)powerplay_table) +
3043 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3044 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3045 			(ATOM_Vega10_MCLK_Dependency_Table *)
3046 			(((unsigned long)powerplay_table) +
3047 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3048 
3049 
3050 	/* The following fields are not initialized here:
3051 	 * id orderedList allStatesList
3052 	 */
3053 	power_state->classification.ui_label =
3054 			(le16_to_cpu(state_entry->usClassification) &
3055 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3056 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3057 	power_state->classification.flags = classification_flag;
3058 	/* NOTE: There is a classification2 flag in BIOS
3059 	 * that is not being used right now
3060 	 */
3061 	power_state->classification.temporary_state = false;
3062 	power_state->classification.to_be_deleted = false;
3063 
3064 	power_state->validation.disallowOnDC =
3065 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3066 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3067 
3068 	power_state->display.disableFrameModulation = false;
3069 	power_state->display.limitRefreshrate = false;
3070 	power_state->display.enableVariBright =
3071 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3072 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3073 
3074 	power_state->validation.supportedPowerLevels = 0;
3075 	power_state->uvd_clocks.VCLK = 0;
3076 	power_state->uvd_clocks.DCLK = 0;
3077 	power_state->temperatures.min = 0;
3078 	power_state->temperatures.max = 0;
3079 
3080 	performance_level = &(vega10_power_state->performance_levels
3081 			[vega10_power_state->performance_level_count++]);
3082 
3083 	PP_ASSERT_WITH_CODE(
3084 			(vega10_power_state->performance_level_count <
3085 					NUM_GFXCLK_DPM_LEVELS),
3086 			"Performance levels exceeds SMC limit!",
3087 			return -1);
3088 
3089 	PP_ASSERT_WITH_CODE(
3090 			(vega10_power_state->performance_level_count <=
3091 					hwmgr->platform_descriptor.
3092 					hardwareActivityPerformanceLevels),
3093 			"Performance levels exceeds Driver limit!",
3094 			return -1);
3095 
3096 	/* Performance levels are arranged from low to high. */
3097 	performance_level->soc_clock = socclk_dep_table->entries
3098 			[state_entry->ucSocClockIndexLow].ulClk;
3099 	performance_level->gfx_clock = gfxclk_dep_table->entries
3100 			[state_entry->ucGfxClockIndexLow].ulClk;
3101 	performance_level->mem_clock = mclk_dep_table->entries
3102 			[state_entry->ucMemClockIndexLow].ulMemClk;
3103 
3104 	performance_level = &(vega10_power_state->performance_levels
3105 				[vega10_power_state->performance_level_count++]);
3106 	performance_level->soc_clock = socclk_dep_table->entries
3107 				[state_entry->ucSocClockIndexHigh].ulClk;
3108 	if (gfxclk_dep_table->ucRevId == 0) {
3109 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3110 		 * to level-4 due to the limited 110w-power
3111 		 */
3112 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3113 			performance_level->gfx_clock =
3114 				gfxclk_dep_table->entries[4].ulClk;
3115 		else
3116 			performance_level->gfx_clock = gfxclk_dep_table->entries
3117 				[state_entry->ucGfxClockIndexHigh].ulClk;
3118 	} else if (gfxclk_dep_table->ucRevId == 1) {
3119 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3120 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3121 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3122 		else
3123 			performance_level->gfx_clock =
3124 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3125 	}
3126 
3127 	performance_level->mem_clock = mclk_dep_table->entries
3128 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3129 	return 0;
3130 }
3131 
3132 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3133 		unsigned long entry_index, struct pp_power_state *state)
3134 {
3135 	int result;
3136 	struct vega10_power_state *ps;
3137 
3138 	state->hardware.magic = PhwVega10_Magic;
3139 
3140 	ps = cast_phw_vega10_power_state(&state->hardware);
3141 
3142 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3143 			vega10_get_pp_table_entry_callback_func);
3144 
3145 	/*
3146 	 * This is the earliest time we have all the dependency table
3147 	 * and the VBIOS boot state
3148 	 */
3149 	/* set DC compatible flag if this state supports DC */
3150 	if (!state->validation.disallowOnDC)
3151 		ps->dc_compatible = true;
3152 
3153 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3154 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3155 
3156 	return 0;
3157 }
3158 
3159 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3160 	     struct pp_hw_power_state *hw_ps)
3161 {
3162 	return 0;
3163 }
3164 
3165 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3166 				struct pp_power_state  *request_ps,
3167 			const struct pp_power_state *current_ps)
3168 {
3169 	struct amdgpu_device *adev = hwmgr->adev;
3170 	struct vega10_power_state *vega10_ps =
3171 				cast_phw_vega10_power_state(&request_ps->hardware);
3172 	uint32_t sclk;
3173 	uint32_t mclk;
3174 	struct PP_Clocks minimum_clocks = {0};
3175 	bool disable_mclk_switching;
3176 	bool disable_mclk_switching_for_frame_lock;
3177 	bool disable_mclk_switching_for_vr;
3178 	bool force_mclk_high;
3179 	const struct phm_clock_and_voltage_limits *max_limits;
3180 	uint32_t i;
3181 	struct vega10_hwmgr *data = hwmgr->backend;
3182 	struct phm_ppt_v2_information *table_info =
3183 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3184 	int32_t count;
3185 	uint32_t stable_pstate_sclk_dpm_percentage;
3186 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3187 	uint32_t latency;
3188 
3189 	data->battery_state = (PP_StateUILabel_Battery ==
3190 			request_ps->classification.ui_label);
3191 
3192 	if (vega10_ps->performance_level_count != 2)
3193 		pr_info("VI should always have 2 performance levels");
3194 
3195 	max_limits = adev->pm.ac_power ?
3196 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3197 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3198 
3199 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3200 	if (!adev->pm.ac_power) {
3201 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3202 			if (vega10_ps->performance_levels[i].mem_clock >
3203 				max_limits->mclk)
3204 				vega10_ps->performance_levels[i].mem_clock =
3205 						max_limits->mclk;
3206 			if (vega10_ps->performance_levels[i].gfx_clock >
3207 				max_limits->sclk)
3208 				vega10_ps->performance_levels[i].gfx_clock =
3209 						max_limits->sclk;
3210 		}
3211 	}
3212 
3213 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3214 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3215 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3216 
3217 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3218 		stable_pstate_sclk_dpm_percentage =
3219 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3220 		PP_ASSERT_WITH_CODE(
3221 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3222 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3223 			"percent sclk value must range from 1% to 100%, setting default value",
3224 			stable_pstate_sclk_dpm_percentage = 75);
3225 
3226 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3227 		stable_pstate_sclk = (max_limits->sclk *
3228 				stable_pstate_sclk_dpm_percentage) / 100;
3229 
3230 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3231 				count >= 0; count--) {
3232 			if (stable_pstate_sclk >=
3233 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3234 				stable_pstate_sclk =
3235 						table_info->vdd_dep_on_sclk->entries[count].clk;
3236 				break;
3237 			}
3238 		}
3239 
3240 		if (count < 0)
3241 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3242 
3243 		stable_pstate_mclk = max_limits->mclk;
3244 
3245 		minimum_clocks.engineClock = stable_pstate_sclk;
3246 		minimum_clocks.memoryClock = stable_pstate_mclk;
3247 	}
3248 
3249 	disable_mclk_switching_for_frame_lock =
3250 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3251 	disable_mclk_switching_for_vr =
3252 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3253 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3254 
3255 	if (hwmgr->display_config->num_display == 0)
3256 		disable_mclk_switching = false;
3257 	else
3258 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3259 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3260 			disable_mclk_switching_for_frame_lock ||
3261 			disable_mclk_switching_for_vr ||
3262 			force_mclk_high;
3263 
3264 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3265 	mclk = vega10_ps->performance_levels[0].mem_clock;
3266 
3267 	if (sclk < minimum_clocks.engineClock)
3268 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3269 				max_limits->sclk : minimum_clocks.engineClock;
3270 
3271 	if (mclk < minimum_clocks.memoryClock)
3272 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3273 				max_limits->mclk : minimum_clocks.memoryClock;
3274 
3275 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3276 	vega10_ps->performance_levels[0].mem_clock = mclk;
3277 
3278 	if (vega10_ps->performance_levels[1].gfx_clock <
3279 			vega10_ps->performance_levels[0].gfx_clock)
3280 		vega10_ps->performance_levels[0].gfx_clock =
3281 				vega10_ps->performance_levels[1].gfx_clock;
3282 
3283 	if (disable_mclk_switching) {
3284 		/* Set Mclk the max of level 0 and level 1 */
3285 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3286 			mclk = vega10_ps->performance_levels[1].mem_clock;
3287 
3288 		/* Find the lowest MCLK frequency that is within
3289 		 * the tolerable latency defined in DAL
3290 		 */
3291 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3292 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3293 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3294 				(data->mclk_latency_table.entries[i].frequency >=
3295 						vega10_ps->performance_levels[0].mem_clock) &&
3296 				(data->mclk_latency_table.entries[i].frequency <=
3297 						vega10_ps->performance_levels[1].mem_clock))
3298 				mclk = data->mclk_latency_table.entries[i].frequency;
3299 		}
3300 		vega10_ps->performance_levels[0].mem_clock = mclk;
3301 	} else {
3302 		if (vega10_ps->performance_levels[1].mem_clock <
3303 				vega10_ps->performance_levels[0].mem_clock)
3304 			vega10_ps->performance_levels[0].mem_clock =
3305 					vega10_ps->performance_levels[1].mem_clock;
3306 	}
3307 
3308 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3309 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3310 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3311 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3312 		}
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3319 {
3320 	struct vega10_hwmgr *data = hwmgr->backend;
3321 	const struct phm_set_power_state_input *states =
3322 			(const struct phm_set_power_state_input *)input;
3323 	const struct vega10_power_state *vega10_ps =
3324 			cast_const_phw_vega10_power_state(states->pnew_state);
3325 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3326 	uint32_t sclk = vega10_ps->performance_levels
3327 			[vega10_ps->performance_level_count - 1].gfx_clock;
3328 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3329 	uint32_t mclk = vega10_ps->performance_levels
3330 			[vega10_ps->performance_level_count - 1].mem_clock;
3331 	uint32_t i;
3332 
3333 	for (i = 0; i < sclk_table->count; i++) {
3334 		if (sclk == sclk_table->dpm_levels[i].value)
3335 			break;
3336 	}
3337 
3338 	if (i >= sclk_table->count) {
3339 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3340 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3341 			sclk_table->dpm_levels[i-1].value = sclk;
3342 		}
3343 	}
3344 
3345 	for (i = 0; i < mclk_table->count; i++) {
3346 		if (mclk == mclk_table->dpm_levels[i].value)
3347 			break;
3348 	}
3349 
3350 	if (i >= mclk_table->count) {
3351 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3352 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3353 			mclk_table->dpm_levels[i-1].value = mclk;
3354 		}
3355 	}
3356 
3357 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3358 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3359 
3360 	return 0;
3361 }
3362 
3363 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3364 		struct pp_hwmgr *hwmgr, const void *input)
3365 {
3366 	int result = 0;
3367 	struct vega10_hwmgr *data = hwmgr->backend;
3368 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3369 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3370 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3371 	int count;
3372 
3373 	if (!data->need_update_dpm_table)
3374 		return 0;
3375 
3376 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3377 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3378 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3379 	}
3380 
3381 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3382 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3383 		for (count = 0; count < dpm_table->mem_table.count; count++)
3384 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3385 	}
3386 
3387 	if (data->need_update_dpm_table &
3388 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3389 		result = vega10_populate_all_graphic_levels(hwmgr);
3390 		PP_ASSERT_WITH_CODE((0 == result),
3391 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3392 				return result);
3393 	}
3394 
3395 	if (data->need_update_dpm_table &
3396 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3397 		result = vega10_populate_all_memory_levels(hwmgr);
3398 		PP_ASSERT_WITH_CODE((0 == result),
3399 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3400 				return result);
3401 	}
3402 
3403 	vega10_populate_vddc_soc_levels(hwmgr);
3404 
3405 	return result;
3406 }
3407 
3408 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3409 		struct vega10_single_dpm_table *dpm_table,
3410 		uint32_t low_limit, uint32_t high_limit)
3411 {
3412 	uint32_t i;
3413 
3414 	for (i = 0; i < dpm_table->count; i++) {
3415 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3416 		    (dpm_table->dpm_levels[i].value > high_limit))
3417 			dpm_table->dpm_levels[i].enabled = false;
3418 		else
3419 			dpm_table->dpm_levels[i].enabled = true;
3420 	}
3421 	return 0;
3422 }
3423 
3424 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3425 		struct vega10_single_dpm_table *dpm_table,
3426 		uint32_t low_limit, uint32_t high_limit,
3427 		uint32_t disable_dpm_mask)
3428 {
3429 	uint32_t i;
3430 
3431 	for (i = 0; i < dpm_table->count; i++) {
3432 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3433 		    (dpm_table->dpm_levels[i].value > high_limit))
3434 			dpm_table->dpm_levels[i].enabled = false;
3435 		else if (!((1 << i) & disable_dpm_mask))
3436 			dpm_table->dpm_levels[i].enabled = false;
3437 		else
3438 			dpm_table->dpm_levels[i].enabled = true;
3439 	}
3440 	return 0;
3441 }
3442 
3443 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3444 		const struct vega10_power_state *vega10_ps)
3445 {
3446 	struct vega10_hwmgr *data = hwmgr->backend;
3447 	uint32_t high_limit_count;
3448 
3449 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3450 			"power state did not have any performance level",
3451 			return -1);
3452 
3453 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3454 
3455 	vega10_trim_single_dpm_states(hwmgr,
3456 			&(data->dpm_table.soc_table),
3457 			vega10_ps->performance_levels[0].soc_clock,
3458 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3459 
3460 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3461 			&(data->dpm_table.gfx_table),
3462 			vega10_ps->performance_levels[0].gfx_clock,
3463 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3464 			data->disable_dpm_mask);
3465 
3466 	vega10_trim_single_dpm_states(hwmgr,
3467 			&(data->dpm_table.mem_table),
3468 			vega10_ps->performance_levels[0].mem_clock,
3469 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3470 
3471 	return 0;
3472 }
3473 
3474 static uint32_t vega10_find_lowest_dpm_level(
3475 		struct vega10_single_dpm_table *table)
3476 {
3477 	uint32_t i;
3478 
3479 	for (i = 0; i < table->count; i++) {
3480 		if (table->dpm_levels[i].enabled)
3481 			break;
3482 	}
3483 
3484 	return i;
3485 }
3486 
3487 static uint32_t vega10_find_highest_dpm_level(
3488 		struct vega10_single_dpm_table *table)
3489 {
3490 	uint32_t i = 0;
3491 
3492 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3493 		for (i = table->count; i > 0; i--) {
3494 			if (table->dpm_levels[i - 1].enabled)
3495 				return i - 1;
3496 		}
3497 	} else {
3498 		pr_info("DPM Table Has Too Many Entries!");
3499 		return MAX_REGULAR_DPM_NUMBER - 1;
3500 	}
3501 
3502 	return i;
3503 }
3504 
3505 static void vega10_apply_dal_minimum_voltage_request(
3506 		struct pp_hwmgr *hwmgr)
3507 {
3508 	return;
3509 }
3510 
3511 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3512 {
3513 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3514 	struct phm_ppt_v2_information *table_info =
3515 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3516 
3517 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3518 
3519 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3520 }
3521 
3522 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3523 {
3524 	struct vega10_hwmgr *data = hwmgr->backend;
3525 	uint32_t socclk_idx;
3526 
3527 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3528 
3529 	if (!data->registry_data.sclk_dpm_key_disabled) {
3530 		if (data->smc_state_table.gfx_boot_level !=
3531 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3532 			smum_send_msg_to_smc_with_parameter(hwmgr,
3533 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3534 				data->smc_state_table.gfx_boot_level,
3535 				NULL);
3536 
3537 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3538 					data->smc_state_table.gfx_boot_level;
3539 		}
3540 	}
3541 
3542 	if (!data->registry_data.mclk_dpm_key_disabled) {
3543 		if (data->smc_state_table.mem_boot_level !=
3544 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3545 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3546 			    && hwmgr->not_vf) {
3547 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3548 				smum_send_msg_to_smc_with_parameter(hwmgr,
3549 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3550 						socclk_idx,
3551 						NULL);
3552 			} else {
3553 				smum_send_msg_to_smc_with_parameter(hwmgr,
3554 						PPSMC_MSG_SetSoftMinUclkByIndex,
3555 						data->smc_state_table.mem_boot_level,
3556 						NULL);
3557 			}
3558 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3559 					data->smc_state_table.mem_boot_level;
3560 		}
3561 	}
3562 
3563 	if (!hwmgr->not_vf)
3564 		return 0;
3565 
3566 	if (!data->registry_data.socclk_dpm_key_disabled) {
3567 		if (data->smc_state_table.soc_boot_level !=
3568 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3569 			smum_send_msg_to_smc_with_parameter(hwmgr,
3570 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3571 				data->smc_state_table.soc_boot_level,
3572 				NULL);
3573 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3574 					data->smc_state_table.soc_boot_level;
3575 		}
3576 	}
3577 
3578 	return 0;
3579 }
3580 
3581 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3582 {
3583 	struct vega10_hwmgr *data = hwmgr->backend;
3584 
3585 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3586 
3587 	if (!data->registry_data.sclk_dpm_key_disabled) {
3588 		if (data->smc_state_table.gfx_max_level !=
3589 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3590 			smum_send_msg_to_smc_with_parameter(hwmgr,
3591 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3592 				data->smc_state_table.gfx_max_level,
3593 				NULL);
3594 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3595 					data->smc_state_table.gfx_max_level;
3596 		}
3597 	}
3598 
3599 	if (!data->registry_data.mclk_dpm_key_disabled) {
3600 		if (data->smc_state_table.mem_max_level !=
3601 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3602 			smum_send_msg_to_smc_with_parameter(hwmgr,
3603 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3604 					data->smc_state_table.mem_max_level,
3605 					NULL);
3606 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3607 					data->smc_state_table.mem_max_level;
3608 		}
3609 	}
3610 
3611 	if (!hwmgr->not_vf)
3612 		return 0;
3613 
3614 	if (!data->registry_data.socclk_dpm_key_disabled) {
3615 		if (data->smc_state_table.soc_max_level !=
3616 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3617 			smum_send_msg_to_smc_with_parameter(hwmgr,
3618 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3619 				data->smc_state_table.soc_max_level,
3620 				NULL);
3621 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3622 					data->smc_state_table.soc_max_level;
3623 		}
3624 	}
3625 
3626 	return 0;
3627 }
3628 
3629 static int vega10_generate_dpm_level_enable_mask(
3630 		struct pp_hwmgr *hwmgr, const void *input)
3631 {
3632 	struct vega10_hwmgr *data = hwmgr->backend;
3633 	const struct phm_set_power_state_input *states =
3634 			(const struct phm_set_power_state_input *)input;
3635 	const struct vega10_power_state *vega10_ps =
3636 			cast_const_phw_vega10_power_state(states->pnew_state);
3637 	int i;
3638 
3639 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3640 			"Attempt to Trim DPM States Failed!",
3641 			return -1);
3642 
3643 	data->smc_state_table.gfx_boot_level =
3644 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3645 	data->smc_state_table.gfx_max_level =
3646 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3647 	data->smc_state_table.mem_boot_level =
3648 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3649 	data->smc_state_table.mem_max_level =
3650 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3651 	data->smc_state_table.soc_boot_level =
3652 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3653 	data->smc_state_table.soc_max_level =
3654 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3655 
3656 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3657 			"Attempt to upload DPM Bootup Levels Failed!",
3658 			return -1);
3659 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3660 			"Attempt to upload DPM Max Levels Failed!",
3661 			return -1);
3662 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3663 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3664 
3665 
3666 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3667 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3668 
3669 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3670 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3671 
3672 	return 0;
3673 }
3674 
3675 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3676 {
3677 	struct vega10_hwmgr *data = hwmgr->backend;
3678 
3679 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3680 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3681 				enable,
3682 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3683 				"Attempt to Enable/Disable DPM VCE Failed!",
3684 				return -1);
3685 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3686 	}
3687 
3688 	return 0;
3689 }
3690 
3691 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3692 {
3693 	struct vega10_hwmgr *data = hwmgr->backend;
3694 	uint32_t low_sclk_interrupt_threshold = 0;
3695 
3696 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3697 		(data->low_sclk_interrupt_threshold != 0)) {
3698 		low_sclk_interrupt_threshold =
3699 				data->low_sclk_interrupt_threshold;
3700 
3701 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3702 				cpu_to_le32(low_sclk_interrupt_threshold);
3703 
3704 		/* This message will also enable SmcToHost Interrupt */
3705 		smum_send_msg_to_smc_with_parameter(hwmgr,
3706 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3707 				(uint32_t)low_sclk_interrupt_threshold,
3708 				NULL);
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3715 		const void *input)
3716 {
3717 	int tmp_result, result = 0;
3718 	struct vega10_hwmgr *data = hwmgr->backend;
3719 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3720 
3721 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3722 	PP_ASSERT_WITH_CODE(!tmp_result,
3723 			"Failed to find DPM states clocks in DPM table!",
3724 			result = tmp_result);
3725 
3726 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3727 	PP_ASSERT_WITH_CODE(!tmp_result,
3728 			"Failed to populate and upload SCLK MCLK DPM levels!",
3729 			result = tmp_result);
3730 
3731 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3732 	PP_ASSERT_WITH_CODE(!tmp_result,
3733 			"Failed to generate DPM level enabled mask!",
3734 			result = tmp_result);
3735 
3736 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3737 	PP_ASSERT_WITH_CODE(!tmp_result,
3738 			"Failed to update SCLK threshold!",
3739 			result = tmp_result);
3740 
3741 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3742 	PP_ASSERT_WITH_CODE(!result,
3743 			"Failed to upload PPtable!", return result);
3744 
3745 	/*
3746 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3747 	 * That effectively disables AVFS feature.
3748 	 */
3749 	if(hwmgr->hardcode_pp_table != NULL)
3750 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3751 
3752 	vega10_update_avfs(hwmgr);
3753 
3754 	/*
3755 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3756 	 * That will help to keep AVFS disabled.
3757 	 */
3758 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3759 
3760 	return 0;
3761 }
3762 
3763 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3764 {
3765 	struct pp_power_state *ps;
3766 	struct vega10_power_state *vega10_ps;
3767 
3768 	if (hwmgr == NULL)
3769 		return -EINVAL;
3770 
3771 	ps = hwmgr->request_ps;
3772 
3773 	if (ps == NULL)
3774 		return -EINVAL;
3775 
3776 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3777 
3778 	if (low)
3779 		return vega10_ps->performance_levels[0].gfx_clock;
3780 	else
3781 		return vega10_ps->performance_levels
3782 				[vega10_ps->performance_level_count - 1].gfx_clock;
3783 }
3784 
3785 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3786 {
3787 	struct pp_power_state *ps;
3788 	struct vega10_power_state *vega10_ps;
3789 
3790 	if (hwmgr == NULL)
3791 		return -EINVAL;
3792 
3793 	ps = hwmgr->request_ps;
3794 
3795 	if (ps == NULL)
3796 		return -EINVAL;
3797 
3798 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3799 
3800 	if (low)
3801 		return vega10_ps->performance_levels[0].mem_clock;
3802 	else
3803 		return vega10_ps->performance_levels
3804 				[vega10_ps->performance_level_count-1].mem_clock;
3805 }
3806 
3807 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3808 		uint32_t *query)
3809 {
3810 	uint32_t value;
3811 
3812 	if (!query)
3813 		return -EINVAL;
3814 
3815 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3816 
3817 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3818 	*query = value << 8;
3819 
3820 	return 0;
3821 }
3822 
3823 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3824 			      void *value, int *size)
3825 {
3826 	struct amdgpu_device *adev = hwmgr->adev;
3827 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3828 	struct vega10_hwmgr *data = hwmgr->backend;
3829 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3830 	int ret = 0;
3831 	uint32_t val_vid;
3832 
3833 	switch (idx) {
3834 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3835 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3836 		*((uint32_t *)value) = sclk_mhz * 100;
3837 		break;
3838 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3839 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3840 		if (mclk_idx < dpm_table->mem_table.count) {
3841 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3842 			*size = 4;
3843 		} else {
3844 			ret = -EINVAL;
3845 		}
3846 		break;
3847 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3848 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3849 						&activity_percent);
3850 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3851 		*size = 4;
3852 		break;
3853 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3854 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3855 		*size = 4;
3856 		break;
3857 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3858 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3859 		*((uint32_t *)value) = *((uint32_t *)value) *
3860 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3861 		*size = 4;
3862 		break;
3863 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3864 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3865 		*((uint32_t *)value) = *((uint32_t *)value) *
3866 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3867 		*size = 4;
3868 		break;
3869 	case AMDGPU_PP_SENSOR_UVD_POWER:
3870 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3871 		*size = 4;
3872 		break;
3873 	case AMDGPU_PP_SENSOR_VCE_POWER:
3874 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3875 		*size = 4;
3876 		break;
3877 	case AMDGPU_PP_SENSOR_GPU_POWER:
3878 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3879 		break;
3880 	case AMDGPU_PP_SENSOR_VDDGFX:
3881 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3882 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3883 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3884 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3885 		return 0;
3886 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3887 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3888 		if (!ret)
3889 			*size = 8;
3890 		break;
3891 	default:
3892 		ret = -EINVAL;
3893 		break;
3894 	}
3895 
3896 	return ret;
3897 }
3898 
3899 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3900 		bool has_disp)
3901 {
3902 	smum_send_msg_to_smc_with_parameter(hwmgr,
3903 			PPSMC_MSG_SetUclkFastSwitch,
3904 			has_disp ? 1 : 0,
3905 			NULL);
3906 }
3907 
3908 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
3909 		struct pp_display_clock_request *clock_req)
3910 {
3911 	int result = 0;
3912 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
3913 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
3914 	DSPCLK_e clk_select = 0;
3915 	uint32_t clk_request = 0;
3916 
3917 	switch (clk_type) {
3918 	case amd_pp_dcef_clock:
3919 		clk_select = DSPCLK_DCEFCLK;
3920 		break;
3921 	case amd_pp_disp_clock:
3922 		clk_select = DSPCLK_DISPCLK;
3923 		break;
3924 	case amd_pp_pixel_clock:
3925 		clk_select = DSPCLK_PIXCLK;
3926 		break;
3927 	case amd_pp_phy_clock:
3928 		clk_select = DSPCLK_PHYCLK;
3929 		break;
3930 	default:
3931 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
3932 		result = -1;
3933 		break;
3934 	}
3935 
3936 	if (!result) {
3937 		clk_request = (clk_freq << 16) | clk_select;
3938 		smum_send_msg_to_smc_with_parameter(hwmgr,
3939 				PPSMC_MSG_RequestDisplayClockByFreq,
3940 				clk_request,
3941 				NULL);
3942 	}
3943 
3944 	return result;
3945 }
3946 
3947 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
3948 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
3949 						uint32_t frequency)
3950 {
3951 	uint8_t count;
3952 	uint8_t i;
3953 
3954 	if (mclk_table == NULL || mclk_table->count == 0)
3955 		return 0;
3956 
3957 	count = (uint8_t)(mclk_table->count);
3958 
3959 	for(i = 0; i < count; i++) {
3960 		if(mclk_table->entries[i].clk >= frequency)
3961 			return i;
3962 	}
3963 
3964 	return i-1;
3965 }
3966 
3967 static int vega10_notify_smc_display_config_after_ps_adjustment(
3968 		struct pp_hwmgr *hwmgr)
3969 {
3970 	struct vega10_hwmgr *data = hwmgr->backend;
3971 	struct vega10_single_dpm_table *dpm_table =
3972 			&data->dpm_table.dcef_table;
3973 	struct phm_ppt_v2_information *table_info =
3974 			(struct phm_ppt_v2_information *)hwmgr->pptable;
3975 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
3976 	uint32_t idx;
3977 	struct PP_Clocks min_clocks = {0};
3978 	uint32_t i;
3979 	struct pp_display_clock_request clock_req;
3980 
3981 	if ((hwmgr->display_config->num_display > 1) &&
3982 	     !hwmgr->display_config->multi_monitor_in_sync &&
3983 	     !hwmgr->display_config->nb_pstate_switch_disable)
3984 		vega10_notify_smc_display_change(hwmgr, false);
3985 	else
3986 		vega10_notify_smc_display_change(hwmgr, true);
3987 
3988 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
3989 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
3990 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3991 
3992 	for (i = 0; i < dpm_table->count; i++) {
3993 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
3994 			break;
3995 	}
3996 
3997 	if (i < dpm_table->count) {
3998 		clock_req.clock_type = amd_pp_dcef_clock;
3999 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4000 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4001 			smum_send_msg_to_smc_with_parameter(
4002 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4003 					min_clocks.dcefClockInSR / 100,
4004 					NULL);
4005 		} else {
4006 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4007 		}
4008 	} else {
4009 		pr_debug("Cannot find requested DCEFCLK!");
4010 	}
4011 
4012 	if (min_clocks.memoryClock != 0) {
4013 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4014 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4015 						NULL);
4016 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4017 	}
4018 
4019 	return 0;
4020 }
4021 
4022 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4023 {
4024 	struct vega10_hwmgr *data = hwmgr->backend;
4025 
4026 	data->smc_state_table.gfx_boot_level =
4027 	data->smc_state_table.gfx_max_level =
4028 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4029 	data->smc_state_table.mem_boot_level =
4030 	data->smc_state_table.mem_max_level =
4031 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4032 
4033 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4034 			"Failed to upload boot level to highest!",
4035 			return -1);
4036 
4037 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4038 			"Failed to upload dpm max level to highest!",
4039 			return -1);
4040 
4041 	return 0;
4042 }
4043 
4044 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4045 {
4046 	struct vega10_hwmgr *data = hwmgr->backend;
4047 
4048 	data->smc_state_table.gfx_boot_level =
4049 	data->smc_state_table.gfx_max_level =
4050 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4051 	data->smc_state_table.mem_boot_level =
4052 	data->smc_state_table.mem_max_level =
4053 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4054 
4055 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4056 			"Failed to upload boot level to highest!",
4057 			return -1);
4058 
4059 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4060 			"Failed to upload dpm max level to highest!",
4061 			return -1);
4062 
4063 	return 0;
4064 
4065 }
4066 
4067 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4068 {
4069 	struct vega10_hwmgr *data = hwmgr->backend;
4070 
4071 	data->smc_state_table.gfx_boot_level =
4072 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4073 	data->smc_state_table.gfx_max_level =
4074 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4075 	data->smc_state_table.mem_boot_level =
4076 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4077 	data->smc_state_table.mem_max_level =
4078 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4079 
4080 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4081 			"Failed to upload DPM Bootup Levels!",
4082 			return -1);
4083 
4084 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4085 			"Failed to upload DPM Max Levels!",
4086 			return -1);
4087 	return 0;
4088 }
4089 
4090 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4091 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4092 {
4093 	struct phm_ppt_v2_information *table_info =
4094 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4095 
4096 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4097 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4098 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4099 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4100 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4101 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4102 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
4103 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
4104 	}
4105 
4106 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4107 		*sclk_mask = 0;
4108 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4109 		*mclk_mask = 0;
4110 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4111 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4112 		 * to level-4 due to the limited power
4113 		 */
4114 		if (hwmgr->pp_one_vf)
4115 			*sclk_mask = 4;
4116 		else
4117 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4118 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4119 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4126 {
4127 	if (!hwmgr->not_vf)
4128 		return;
4129 
4130 	switch (mode) {
4131 	case AMD_FAN_CTRL_NONE:
4132 		vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4133 		break;
4134 	case AMD_FAN_CTRL_MANUAL:
4135 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4136 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4137 		break;
4138 	case AMD_FAN_CTRL_AUTO:
4139 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4140 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4141 		break;
4142 	default:
4143 		break;
4144 	}
4145 }
4146 
4147 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4148 		enum pp_clock_type type, uint32_t mask)
4149 {
4150 	struct vega10_hwmgr *data = hwmgr->backend;
4151 
4152 	switch (type) {
4153 	case PP_SCLK:
4154 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4155 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4156 
4157 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4158 			"Failed to upload boot level to lowest!",
4159 			return -EINVAL);
4160 
4161 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4162 			"Failed to upload dpm max level to highest!",
4163 			return -EINVAL);
4164 		break;
4165 
4166 	case PP_MCLK:
4167 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4168 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4169 
4170 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4171 			"Failed to upload boot level to lowest!",
4172 			return -EINVAL);
4173 
4174 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4175 			"Failed to upload dpm max level to highest!",
4176 			return -EINVAL);
4177 
4178 		break;
4179 
4180 	case PP_SOCCLK:
4181 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4182 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4183 
4184 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4185 			"Failed to upload boot level to lowest!",
4186 			return -EINVAL);
4187 
4188 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4189 			"Failed to upload dpm max level to highest!",
4190 			return -EINVAL);
4191 
4192 		break;
4193 
4194 	case PP_DCEFCLK:
4195 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4196 		break;
4197 
4198 	case PP_PCIE:
4199 	default:
4200 		break;
4201 	}
4202 
4203 	return 0;
4204 }
4205 
4206 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4207 				enum amd_dpm_forced_level level)
4208 {
4209 	int ret = 0;
4210 	uint32_t sclk_mask = 0;
4211 	uint32_t mclk_mask = 0;
4212 	uint32_t soc_mask = 0;
4213 
4214 	if (hwmgr->pstate_sclk == 0)
4215 		vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4216 
4217 	switch (level) {
4218 	case AMD_DPM_FORCED_LEVEL_HIGH:
4219 		ret = vega10_force_dpm_highest(hwmgr);
4220 		break;
4221 	case AMD_DPM_FORCED_LEVEL_LOW:
4222 		ret = vega10_force_dpm_lowest(hwmgr);
4223 		break;
4224 	case AMD_DPM_FORCED_LEVEL_AUTO:
4225 		ret = vega10_unforce_dpm_levels(hwmgr);
4226 		break;
4227 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4228 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4229 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4230 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4231 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4232 		if (ret)
4233 			return ret;
4234 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4235 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4236 		break;
4237 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4238 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4239 	default:
4240 		break;
4241 	}
4242 
4243 	if (!hwmgr->not_vf)
4244 		return ret;
4245 
4246 	if (!ret) {
4247 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4248 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4249 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4250 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4251 	}
4252 
4253 	return ret;
4254 }
4255 
4256 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4257 {
4258 	struct vega10_hwmgr *data = hwmgr->backend;
4259 
4260 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4261 		return AMD_FAN_CTRL_MANUAL;
4262 	else
4263 		return AMD_FAN_CTRL_AUTO;
4264 }
4265 
4266 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4267 		struct amd_pp_simple_clock_info *info)
4268 {
4269 	struct phm_ppt_v2_information *table_info =
4270 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4271 	struct phm_clock_and_voltage_limits *max_limits =
4272 			&table_info->max_clock_voltage_on_ac;
4273 
4274 	info->engine_max_clock = max_limits->sclk;
4275 	info->memory_max_clock = max_limits->mclk;
4276 
4277 	return 0;
4278 }
4279 
4280 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4281 		struct pp_clock_levels_with_latency *clocks)
4282 {
4283 	struct phm_ppt_v2_information *table_info =
4284 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4285 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4286 			table_info->vdd_dep_on_sclk;
4287 	uint32_t i;
4288 
4289 	clocks->num_levels = 0;
4290 	for (i = 0; i < dep_table->count; i++) {
4291 		if (dep_table->entries[i].clk) {
4292 			clocks->data[clocks->num_levels].clocks_in_khz =
4293 					dep_table->entries[i].clk * 10;
4294 			clocks->num_levels++;
4295 		}
4296 	}
4297 
4298 }
4299 
4300 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4301 		struct pp_clock_levels_with_latency *clocks)
4302 {
4303 	struct phm_ppt_v2_information *table_info =
4304 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4305 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4306 			table_info->vdd_dep_on_mclk;
4307 	struct vega10_hwmgr *data = hwmgr->backend;
4308 	uint32_t j = 0;
4309 	uint32_t i;
4310 
4311 	for (i = 0; i < dep_table->count; i++) {
4312 		if (dep_table->entries[i].clk) {
4313 
4314 			clocks->data[j].clocks_in_khz =
4315 						dep_table->entries[i].clk * 10;
4316 			data->mclk_latency_table.entries[j].frequency =
4317 							dep_table->entries[i].clk;
4318 			clocks->data[j].latency_in_us =
4319 				data->mclk_latency_table.entries[j].latency = 25;
4320 			j++;
4321 		}
4322 	}
4323 	clocks->num_levels = data->mclk_latency_table.count = j;
4324 }
4325 
4326 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4327 		struct pp_clock_levels_with_latency *clocks)
4328 {
4329 	struct phm_ppt_v2_information *table_info =
4330 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4331 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4332 			table_info->vdd_dep_on_dcefclk;
4333 	uint32_t i;
4334 
4335 	for (i = 0; i < dep_table->count; i++) {
4336 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4337 		clocks->data[i].latency_in_us = 0;
4338 		clocks->num_levels++;
4339 	}
4340 }
4341 
4342 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4343 		struct pp_clock_levels_with_latency *clocks)
4344 {
4345 	struct phm_ppt_v2_information *table_info =
4346 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4347 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4348 			table_info->vdd_dep_on_socclk;
4349 	uint32_t i;
4350 
4351 	for (i = 0; i < dep_table->count; i++) {
4352 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4353 		clocks->data[i].latency_in_us = 0;
4354 		clocks->num_levels++;
4355 	}
4356 }
4357 
4358 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4359 		enum amd_pp_clock_type type,
4360 		struct pp_clock_levels_with_latency *clocks)
4361 {
4362 	switch (type) {
4363 	case amd_pp_sys_clock:
4364 		vega10_get_sclks(hwmgr, clocks);
4365 		break;
4366 	case amd_pp_mem_clock:
4367 		vega10_get_memclocks(hwmgr, clocks);
4368 		break;
4369 	case amd_pp_dcef_clock:
4370 		vega10_get_dcefclocks(hwmgr, clocks);
4371 		break;
4372 	case amd_pp_soc_clock:
4373 		vega10_get_socclocks(hwmgr, clocks);
4374 		break;
4375 	default:
4376 		return -1;
4377 	}
4378 
4379 	return 0;
4380 }
4381 
4382 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4383 		enum amd_pp_clock_type type,
4384 		struct pp_clock_levels_with_voltage *clocks)
4385 {
4386 	struct phm_ppt_v2_information *table_info =
4387 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4388 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4389 	uint32_t i;
4390 
4391 	switch (type) {
4392 	case amd_pp_mem_clock:
4393 		dep_table = table_info->vdd_dep_on_mclk;
4394 		break;
4395 	case amd_pp_dcef_clock:
4396 		dep_table = table_info->vdd_dep_on_dcefclk;
4397 		break;
4398 	case amd_pp_disp_clock:
4399 		dep_table = table_info->vdd_dep_on_dispclk;
4400 		break;
4401 	case amd_pp_pixel_clock:
4402 		dep_table = table_info->vdd_dep_on_pixclk;
4403 		break;
4404 	case amd_pp_phy_clock:
4405 		dep_table = table_info->vdd_dep_on_phyclk;
4406 		break;
4407 	default:
4408 		return -1;
4409 	}
4410 
4411 	for (i = 0; i < dep_table->count; i++) {
4412 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4413 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4414 				entries[dep_table->entries[i].vddInd].us_vdd);
4415 		clocks->num_levels++;
4416 	}
4417 
4418 	if (i < dep_table->count)
4419 		return -1;
4420 
4421 	return 0;
4422 }
4423 
4424 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4425 							void *clock_range)
4426 {
4427 	struct vega10_hwmgr *data = hwmgr->backend;
4428 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4429 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4430 
4431 	if (!data->registry_data.disable_water_mark) {
4432 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4433 		data->water_marks_bitmap = WaterMarksExist;
4434 	}
4435 
4436 	return 0;
4437 }
4438 
4439 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4440 {
4441 	static const char *ppfeature_name[] = {
4442 				"DPM_PREFETCHER",
4443 				"GFXCLK_DPM",
4444 				"UCLK_DPM",
4445 				"SOCCLK_DPM",
4446 				"UVD_DPM",
4447 				"VCE_DPM",
4448 				"ULV",
4449 				"MP0CLK_DPM",
4450 				"LINK_DPM",
4451 				"DCEFCLK_DPM",
4452 				"AVFS",
4453 				"GFXCLK_DS",
4454 				"SOCCLK_DS",
4455 				"LCLK_DS",
4456 				"PPT",
4457 				"TDC",
4458 				"THERMAL",
4459 				"GFX_PER_CU_CG",
4460 				"RM",
4461 				"DCEFCLK_DS",
4462 				"ACDC",
4463 				"VR0HOT",
4464 				"VR1HOT",
4465 				"FW_CTF",
4466 				"LED_DISPLAY",
4467 				"FAN_CONTROL",
4468 				"FAST_PPT",
4469 				"DIDT",
4470 				"ACG",
4471 				"PCC_LIMIT"};
4472 	static const char *output_title[] = {
4473 				"FEATURES",
4474 				"BITMASK",
4475 				"ENABLEMENT"};
4476 	uint64_t features_enabled;
4477 	int i;
4478 	int ret = 0;
4479 	int size = 0;
4480 
4481 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4482 	PP_ASSERT_WITH_CODE(!ret,
4483 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4484 			return ret);
4485 
4486 	size += sprintf(buf + size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4487 	size += sprintf(buf + size, "%-19s %-22s %s\n",
4488 				output_title[0],
4489 				output_title[1],
4490 				output_title[2]);
4491 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4492 		size += sprintf(buf + size, "%-19s 0x%016llx %6s\n",
4493 					ppfeature_name[i],
4494 					1ULL << i,
4495 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4496 	}
4497 
4498 	return size;
4499 }
4500 
4501 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4502 {
4503 	uint64_t features_enabled;
4504 	uint64_t features_to_enable;
4505 	uint64_t features_to_disable;
4506 	int ret = 0;
4507 
4508 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4509 		return -EINVAL;
4510 
4511 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4512 	if (ret)
4513 		return ret;
4514 
4515 	features_to_disable =
4516 		features_enabled & ~new_ppfeature_masks;
4517 	features_to_enable =
4518 		~features_enabled & new_ppfeature_masks;
4519 
4520 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4521 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4522 
4523 	if (features_to_disable) {
4524 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4525 		if (ret)
4526 			return ret;
4527 	}
4528 
4529 	if (features_to_enable) {
4530 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4531 		if (ret)
4532 			return ret;
4533 	}
4534 
4535 	return 0;
4536 }
4537 
4538 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4539 		enum pp_clock_type type, char *buf)
4540 {
4541 	struct vega10_hwmgr *data = hwmgr->backend;
4542 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4543 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4544 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4545 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4546 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
4547 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4548 
4549 	int i, now, size = 0, count = 0;
4550 
4551 	switch (type) {
4552 	case PP_SCLK:
4553 		if (data->registry_data.sclk_dpm_key_disabled)
4554 			break;
4555 
4556 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4557 
4558 		if (hwmgr->pp_one_vf &&
4559 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4560 			count = 5;
4561 		else
4562 			count = sclk_table->count;
4563 		for (i = 0; i < count; i++)
4564 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4565 					i, sclk_table->dpm_levels[i].value / 100,
4566 					(i == now) ? "*" : "");
4567 		break;
4568 	case PP_MCLK:
4569 		if (data->registry_data.mclk_dpm_key_disabled)
4570 			break;
4571 
4572 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4573 
4574 		for (i = 0; i < mclk_table->count; i++)
4575 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4576 					i, mclk_table->dpm_levels[i].value / 100,
4577 					(i == now) ? "*" : "");
4578 		break;
4579 	case PP_SOCCLK:
4580 		if (data->registry_data.socclk_dpm_key_disabled)
4581 			break;
4582 
4583 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4584 
4585 		for (i = 0; i < soc_table->count; i++)
4586 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4587 					i, soc_table->dpm_levels[i].value / 100,
4588 					(i == now) ? "*" : "");
4589 		break;
4590 	case PP_DCEFCLK:
4591 		if (data->registry_data.dcefclk_dpm_key_disabled)
4592 			break;
4593 
4594 		smum_send_msg_to_smc_with_parameter(hwmgr,
4595 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4596 
4597 		for (i = 0; i < dcef_table->count; i++)
4598 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4599 					i, dcef_table->dpm_levels[i].value / 100,
4600 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4601 					"*" : "");
4602 		break;
4603 	case PP_PCIE:
4604 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex, &now);
4605 
4606 		for (i = 0; i < pcie_table->count; i++)
4607 			size += sprintf(buf + size, "%d: %s %s\n", i,
4608 					(pcie_table->pcie_gen[i] == 0) ? "2.5GT/s, x1" :
4609 					(pcie_table->pcie_gen[i] == 1) ? "5.0GT/s, x16" :
4610 					(pcie_table->pcie_gen[i] == 2) ? "8.0GT/s, x16" : "",
4611 					(i == now) ? "*" : "");
4612 		break;
4613 	case OD_SCLK:
4614 		if (hwmgr->od_enabled) {
4615 			size = sprintf(buf, "%s:\n", "OD_SCLK");
4616 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4617 			for (i = 0; i < podn_vdd_dep->count; i++)
4618 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4619 					i, podn_vdd_dep->entries[i].clk / 100,
4620 						podn_vdd_dep->entries[i].vddc);
4621 		}
4622 		break;
4623 	case OD_MCLK:
4624 		if (hwmgr->od_enabled) {
4625 			size = sprintf(buf, "%s:\n", "OD_MCLK");
4626 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4627 			for (i = 0; i < podn_vdd_dep->count; i++)
4628 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4629 					i, podn_vdd_dep->entries[i].clk/100,
4630 						podn_vdd_dep->entries[i].vddc);
4631 		}
4632 		break;
4633 	case OD_RANGE:
4634 		if (hwmgr->od_enabled) {
4635 			size = sprintf(buf, "%s:\n", "OD_RANGE");
4636 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4637 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4638 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4639 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4640 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4641 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4642 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4643 				data->odn_dpm_table.min_vddc,
4644 				data->odn_dpm_table.max_vddc);
4645 		}
4646 		break;
4647 	default:
4648 		break;
4649 	}
4650 	return size;
4651 }
4652 
4653 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4654 {
4655 	struct vega10_hwmgr *data = hwmgr->backend;
4656 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4657 	int result = 0;
4658 
4659 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4660 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4661 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4662 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4663 		data->water_marks_bitmap |= WaterMarksLoaded;
4664 	}
4665 
4666 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4667 		smum_send_msg_to_smc_with_parameter(hwmgr,
4668 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4669 			NULL);
4670 	}
4671 
4672 	return result;
4673 }
4674 
4675 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4676 {
4677 	struct vega10_hwmgr *data = hwmgr->backend;
4678 
4679 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4680 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4681 				enable,
4682 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4683 				"Attempt to Enable/Disable DPM UVD Failed!",
4684 				return -1);
4685 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4686 	}
4687 	return 0;
4688 }
4689 
4690 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4691 {
4692 	struct vega10_hwmgr *data = hwmgr->backend;
4693 
4694 	data->vce_power_gated = bgate;
4695 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4696 }
4697 
4698 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4699 {
4700 	struct vega10_hwmgr *data = hwmgr->backend;
4701 
4702 	data->uvd_power_gated = bgate;
4703 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4704 }
4705 
4706 static inline bool vega10_are_power_levels_equal(
4707 				const struct vega10_performance_level *pl1,
4708 				const struct vega10_performance_level *pl2)
4709 {
4710 	return ((pl1->soc_clock == pl2->soc_clock) &&
4711 			(pl1->gfx_clock == pl2->gfx_clock) &&
4712 			(pl1->mem_clock == pl2->mem_clock));
4713 }
4714 
4715 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4716 				const struct pp_hw_power_state *pstate1,
4717 			const struct pp_hw_power_state *pstate2, bool *equal)
4718 {
4719 	const struct vega10_power_state *psa;
4720 	const struct vega10_power_state *psb;
4721 	int i;
4722 
4723 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4724 		return -EINVAL;
4725 
4726 	psa = cast_const_phw_vega10_power_state(pstate1);
4727 	psb = cast_const_phw_vega10_power_state(pstate2);
4728 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4729 	if (psa->performance_level_count != psb->performance_level_count) {
4730 		*equal = false;
4731 		return 0;
4732 	}
4733 
4734 	for (i = 0; i < psa->performance_level_count; i++) {
4735 		if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4736 			/* If we have found even one performance level pair that is different the states are different. */
4737 			*equal = false;
4738 			return 0;
4739 		}
4740 	}
4741 
4742 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4743 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4744 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4745 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4746 
4747 	return 0;
4748 }
4749 
4750 static bool
4751 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4752 {
4753 	struct vega10_hwmgr *data = hwmgr->backend;
4754 	bool is_update_required = false;
4755 
4756 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4757 		is_update_required = true;
4758 
4759 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
4760 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
4761 			is_update_required = true;
4762 	}
4763 
4764 	return is_update_required;
4765 }
4766 
4767 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
4768 {
4769 	int tmp_result, result = 0;
4770 
4771 	if (!hwmgr->not_vf)
4772 		return 0;
4773 
4774 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
4775 		vega10_disable_thermal_protection(hwmgr);
4776 
4777 	tmp_result = vega10_disable_power_containment(hwmgr);
4778 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4779 			"Failed to disable power containment!", result = tmp_result);
4780 
4781 	tmp_result = vega10_disable_didt_config(hwmgr);
4782 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4783 			"Failed to disable didt config!", result = tmp_result);
4784 
4785 	tmp_result = vega10_avfs_enable(hwmgr, false);
4786 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4787 			"Failed to disable AVFS!", result = tmp_result);
4788 
4789 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
4790 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4791 			"Failed to stop DPM!", result = tmp_result);
4792 
4793 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
4794 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4795 			"Failed to disable deep sleep!", result = tmp_result);
4796 
4797 	tmp_result = vega10_disable_ulv(hwmgr);
4798 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4799 			"Failed to disable ulv!", result = tmp_result);
4800 
4801 	tmp_result =  vega10_acg_disable(hwmgr);
4802 	PP_ASSERT_WITH_CODE((tmp_result == 0),
4803 			"Failed to disable acg!", result = tmp_result);
4804 
4805 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
4806 	return result;
4807 }
4808 
4809 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
4810 {
4811 	struct vega10_hwmgr *data = hwmgr->backend;
4812 	int result;
4813 
4814 	result = vega10_disable_dpm_tasks(hwmgr);
4815 	PP_ASSERT_WITH_CODE((0 == result),
4816 			"[disable_dpm_tasks] Failed to disable DPM!",
4817 			);
4818 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
4819 
4820 	return result;
4821 }
4822 
4823 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
4824 {
4825 	struct vega10_hwmgr *data = hwmgr->backend;
4826 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4827 	struct vega10_single_dpm_table *golden_sclk_table =
4828 			&(data->golden_dpm_table.gfx_table);
4829 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4830 	int golden_value = golden_sclk_table->dpm_levels
4831 			[golden_sclk_table->count - 1].value;
4832 
4833 	value -= golden_value;
4834 	value = DIV_ROUND_UP(value * 100, golden_value);
4835 
4836 	return value;
4837 }
4838 
4839 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4840 {
4841 	struct vega10_hwmgr *data = hwmgr->backend;
4842 	struct vega10_single_dpm_table *golden_sclk_table =
4843 			&(data->golden_dpm_table.gfx_table);
4844 	struct pp_power_state *ps;
4845 	struct vega10_power_state *vega10_ps;
4846 
4847 	ps = hwmgr->request_ps;
4848 
4849 	if (ps == NULL)
4850 		return -EINVAL;
4851 
4852 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4853 
4854 	vega10_ps->performance_levels
4855 	[vega10_ps->performance_level_count - 1].gfx_clock =
4856 			golden_sclk_table->dpm_levels
4857 			[golden_sclk_table->count - 1].value *
4858 			value / 100 +
4859 			golden_sclk_table->dpm_levels
4860 			[golden_sclk_table->count - 1].value;
4861 
4862 	if (vega10_ps->performance_levels
4863 			[vega10_ps->performance_level_count - 1].gfx_clock >
4864 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
4865 		vega10_ps->performance_levels
4866 		[vega10_ps->performance_level_count - 1].gfx_clock =
4867 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
4868 		pr_warn("max sclk supported by vbios is %d\n",
4869 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
4870 	}
4871 	return 0;
4872 }
4873 
4874 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
4875 {
4876 	struct vega10_hwmgr *data = hwmgr->backend;
4877 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4878 	struct vega10_single_dpm_table *golden_mclk_table =
4879 			&(data->golden_dpm_table.mem_table);
4880 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4881 	int golden_value = golden_mclk_table->dpm_levels
4882 			[golden_mclk_table->count - 1].value;
4883 
4884 	value -= golden_value;
4885 	value = DIV_ROUND_UP(value * 100, golden_value);
4886 
4887 	return value;
4888 }
4889 
4890 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4891 {
4892 	struct vega10_hwmgr *data = hwmgr->backend;
4893 	struct vega10_single_dpm_table *golden_mclk_table =
4894 			&(data->golden_dpm_table.mem_table);
4895 	struct pp_power_state  *ps;
4896 	struct vega10_power_state  *vega10_ps;
4897 
4898 	ps = hwmgr->request_ps;
4899 
4900 	if (ps == NULL)
4901 		return -EINVAL;
4902 
4903 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
4904 
4905 	vega10_ps->performance_levels
4906 	[vega10_ps->performance_level_count - 1].mem_clock =
4907 			golden_mclk_table->dpm_levels
4908 			[golden_mclk_table->count - 1].value *
4909 			value / 100 +
4910 			golden_mclk_table->dpm_levels
4911 			[golden_mclk_table->count - 1].value;
4912 
4913 	if (vega10_ps->performance_levels
4914 			[vega10_ps->performance_level_count - 1].mem_clock >
4915 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
4916 		vega10_ps->performance_levels
4917 		[vega10_ps->performance_level_count - 1].mem_clock =
4918 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
4919 		pr_warn("max mclk supported by vbios is %d\n",
4920 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
4921 	}
4922 
4923 	return 0;
4924 }
4925 
4926 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4927 					uint32_t virtual_addr_low,
4928 					uint32_t virtual_addr_hi,
4929 					uint32_t mc_addr_low,
4930 					uint32_t mc_addr_hi,
4931 					uint32_t size)
4932 {
4933 	smum_send_msg_to_smc_with_parameter(hwmgr,
4934 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
4935 					virtual_addr_hi,
4936 					NULL);
4937 	smum_send_msg_to_smc_with_parameter(hwmgr,
4938 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
4939 					virtual_addr_low,
4940 					NULL);
4941 	smum_send_msg_to_smc_with_parameter(hwmgr,
4942 					PPSMC_MSG_DramLogSetDramAddrHigh,
4943 					mc_addr_hi,
4944 					NULL);
4945 
4946 	smum_send_msg_to_smc_with_parameter(hwmgr,
4947 					PPSMC_MSG_DramLogSetDramAddrLow,
4948 					mc_addr_low,
4949 					NULL);
4950 
4951 	smum_send_msg_to_smc_with_parameter(hwmgr,
4952 					PPSMC_MSG_DramLogSetDramSize,
4953 					size,
4954 					NULL);
4955 	return 0;
4956 }
4957 
4958 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
4959 		struct PP_TemperatureRange *thermal_data)
4960 {
4961 	struct vega10_hwmgr *data = hwmgr->backend;
4962 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
4963 
4964 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
4965 
4966 	thermal_data->max = pp_table->TedgeLimit *
4967 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4968 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
4969 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4970 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
4971 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4972 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
4973 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4974 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
4975 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4976 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
4977 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4978 
4979 	return 0;
4980 }
4981 
4982 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
4983 {
4984 	struct vega10_hwmgr *data = hwmgr->backend;
4985 	uint32_t i, size = 0;
4986 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
4987 						{70, 60, 1, 3,},
4988 						{90, 60, 0, 0,},
4989 						{70, 60, 0, 0,},
4990 						{70, 90, 0, 0,},
4991 						{30, 60, 0, 6,},
4992 						};
4993 	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
4994 					"3D_FULL_SCREEN",
4995 					"POWER_SAVING",
4996 					"VIDEO",
4997 					"VR",
4998 					"COMPUTE",
4999 					"CUSTOM"};
5000 	static const char *title[6] = {"NUM",
5001 			"MODE_NAME",
5002 			"BUSY_SET_POINT",
5003 			"FPS",
5004 			"USE_RLC_BUSY",
5005 			"MIN_ACTIVE_LEVEL"};
5006 
5007 	if (!buf)
5008 		return -EINVAL;
5009 
5010 	size += sprintf(buf + size, "%s %16s %s %s %s %s\n",title[0],
5011 			title[1], title[2], title[3], title[4], title[5]);
5012 
5013 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5014 		size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n",
5015 			i, profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5016 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5017 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5018 	size += sprintf(buf + size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5019 			profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5020 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5021 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5022 	return size;
5023 }
5024 
5025 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5026 {
5027 	struct vega10_hwmgr *data = hwmgr->backend;
5028 	uint8_t busy_set_point;
5029 	uint8_t FPS;
5030 	uint8_t use_rlc_busy;
5031 	uint8_t min_active_level;
5032 	uint32_t power_profile_mode = input[size];
5033 
5034 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5035 		if (size != 0 && size != 4)
5036 			return -EINVAL;
5037 
5038 		/* If size = 0 and the CUSTOM profile has been set already
5039 		 * then just apply the profile. The copy stored in the hwmgr
5040 		 * is zeroed out on init
5041 		 */
5042 		if (size == 0) {
5043 			if (data->custom_profile_mode[0] != 0)
5044 				goto out;
5045 			else
5046 				return -EINVAL;
5047 		}
5048 
5049 		data->custom_profile_mode[0] = busy_set_point = input[0];
5050 		data->custom_profile_mode[1] = FPS = input[1];
5051 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5052 		data->custom_profile_mode[3] = min_active_level = input[3];
5053 		smum_send_msg_to_smc_with_parameter(hwmgr,
5054 					PPSMC_MSG_SetCustomGfxDpmParameters,
5055 					busy_set_point | FPS<<8 |
5056 					use_rlc_busy << 16 | min_active_level<<24,
5057 					NULL);
5058 	}
5059 
5060 out:
5061 	smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5062 						1 << power_profile_mode,
5063 						NULL);
5064 	hwmgr->power_profile_mode = power_profile_mode;
5065 
5066 	return 0;
5067 }
5068 
5069 
5070 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5071 					enum PP_OD_DPM_TABLE_COMMAND type,
5072 					uint32_t clk,
5073 					uint32_t voltage)
5074 {
5075 	struct vega10_hwmgr *data = hwmgr->backend;
5076 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5077 	struct vega10_single_dpm_table *golden_table;
5078 
5079 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5080 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5081 		return false;
5082 	}
5083 
5084 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5085 		golden_table = &(data->golden_dpm_table.gfx_table);
5086 		if (golden_table->dpm_levels[0].value > clk ||
5087 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5088 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5089 				golden_table->dpm_levels[0].value/100,
5090 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5091 			return false;
5092 		}
5093 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5094 		golden_table = &(data->golden_dpm_table.mem_table);
5095 		if (golden_table->dpm_levels[0].value > clk ||
5096 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5097 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5098 				golden_table->dpm_levels[0].value/100,
5099 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5100 			return false;
5101 		}
5102 	} else {
5103 		return false;
5104 	}
5105 
5106 	return true;
5107 }
5108 
5109 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5110 {
5111 	struct vega10_hwmgr *data = hwmgr->backend;
5112 	struct pp_power_state *ps = hwmgr->request_ps;
5113 	struct vega10_power_state *vega10_ps;
5114 	struct vega10_single_dpm_table *gfx_dpm_table =
5115 		&data->dpm_table.gfx_table;
5116 	struct vega10_single_dpm_table *soc_dpm_table =
5117 		&data->dpm_table.soc_table;
5118 	struct vega10_single_dpm_table *mem_dpm_table =
5119 		&data->dpm_table.mem_table;
5120 	int max_level;
5121 
5122 	if (!ps)
5123 		return;
5124 
5125 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5126 	max_level = vega10_ps->performance_level_count - 1;
5127 
5128 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5129 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5130 		vega10_ps->performance_levels[max_level].gfx_clock =
5131 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5132 
5133 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5134 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5135 		vega10_ps->performance_levels[max_level].soc_clock =
5136 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5137 
5138 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5139 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5140 		vega10_ps->performance_levels[max_level].mem_clock =
5141 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5142 
5143 	if (!hwmgr->ps)
5144 		return;
5145 
5146 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5147 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5148 	max_level = vega10_ps->performance_level_count - 1;
5149 
5150 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5151 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5152 		vega10_ps->performance_levels[max_level].gfx_clock =
5153 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5154 
5155 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5156 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5157 		vega10_ps->performance_levels[max_level].soc_clock =
5158 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5159 
5160 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5161 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5162 		vega10_ps->performance_levels[max_level].mem_clock =
5163 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5164 }
5165 
5166 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5167 						enum PP_OD_DPM_TABLE_COMMAND type)
5168 {
5169 	struct vega10_hwmgr *data = hwmgr->backend;
5170 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5171 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5172 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5173 
5174 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5175 							&data->odn_dpm_table.vdd_dep_on_socclk;
5176 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5177 
5178 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5179 	uint8_t i, j;
5180 
5181 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5182 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5183 		for (i = 0; i < podn_vdd_dep->count; i++)
5184 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5185 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5186 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5187 		for (i = 0; i < dpm_table->count; i++) {
5188 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5189 				if (od_vddc_lookup_table->entries[j].us_vdd >
5190 					podn_vdd_dep->entries[i].vddc)
5191 					break;
5192 			}
5193 			if (j == od_vddc_lookup_table->count) {
5194 				j = od_vddc_lookup_table->count - 1;
5195 				od_vddc_lookup_table->entries[j].us_vdd =
5196 					podn_vdd_dep->entries[i].vddc;
5197 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5198 			}
5199 			podn_vdd_dep->entries[i].vddInd = j;
5200 		}
5201 		dpm_table = &data->dpm_table.soc_table;
5202 		for (i = 0; i < dep_table->count; i++) {
5203 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5204 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5205 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5206 				for (; (i < dep_table->count) &&
5207 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5208 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5209 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5210 				}
5211 				break;
5212 			} else {
5213 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5214 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5215 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5216 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5217 			}
5218 		}
5219 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5220 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5221 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5222 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5223 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5224 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5225 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5226 		}
5227 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5228 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5229 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5230 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5231 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5232 		}
5233 	}
5234 	vega10_odn_update_power_state(hwmgr);
5235 }
5236 
5237 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5238 					enum PP_OD_DPM_TABLE_COMMAND type,
5239 					long *input, uint32_t size)
5240 {
5241 	struct vega10_hwmgr *data = hwmgr->backend;
5242 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5243 	struct vega10_single_dpm_table *dpm_table;
5244 
5245 	uint32_t input_clk;
5246 	uint32_t input_vol;
5247 	uint32_t input_level;
5248 	uint32_t i;
5249 
5250 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5251 				return -EINVAL);
5252 
5253 	if (!hwmgr->od_enabled) {
5254 		pr_info("OverDrive feature not enabled\n");
5255 		return -EINVAL;
5256 	}
5257 
5258 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5259 		dpm_table = &data->dpm_table.gfx_table;
5260 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5261 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5262 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5263 		dpm_table = &data->dpm_table.mem_table;
5264 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5265 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5266 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5267 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5268 		vega10_odn_initial_default_setting(hwmgr);
5269 		vega10_odn_update_power_state(hwmgr);
5270 		/* force to update all clock tables */
5271 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5272 					      DPMTABLE_UPDATE_MCLK |
5273 					      DPMTABLE_UPDATE_SOCCLK;
5274 		return 0;
5275 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5276 		vega10_check_dpm_table_updated(hwmgr);
5277 		return 0;
5278 	} else {
5279 		return -EINVAL;
5280 	}
5281 
5282 	for (i = 0; i < size; i += 3) {
5283 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5284 			pr_info("invalid clock voltage input\n");
5285 			return 0;
5286 		}
5287 		input_level = input[i];
5288 		input_clk = input[i+1] * 100;
5289 		input_vol = input[i+2];
5290 
5291 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5292 			dpm_table->dpm_levels[input_level].value = input_clk;
5293 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5294 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5295 		} else {
5296 			return -EINVAL;
5297 		}
5298 	}
5299 	vega10_odn_update_soc_table(hwmgr, type);
5300 	return 0;
5301 }
5302 
5303 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5304 				enum pp_mp1_state mp1_state)
5305 {
5306 	uint16_t msg;
5307 	int ret;
5308 
5309 	switch (mp1_state) {
5310 	case PP_MP1_STATE_UNLOAD:
5311 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5312 		break;
5313 	case PP_MP1_STATE_SHUTDOWN:
5314 	case PP_MP1_STATE_RESET:
5315 	case PP_MP1_STATE_NONE:
5316 	default:
5317 		return 0;
5318 	}
5319 
5320 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5321 			    "[PrepareMp1] Failed!",
5322 			    return ret);
5323 
5324 	return 0;
5325 }
5326 
5327 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5328 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5329 				PHM_PerformanceLevel *level)
5330 {
5331 	const struct vega10_power_state *ps;
5332 	uint32_t i;
5333 
5334 	if (level == NULL || hwmgr == NULL || state == NULL)
5335 		return -EINVAL;
5336 
5337 	ps = cast_const_phw_vega10_power_state(state);
5338 
5339 	i = index > ps->performance_level_count - 1 ?
5340 			ps->performance_level_count - 1 : index;
5341 
5342 	level->coreClock = ps->performance_levels[i].gfx_clock;
5343 	level->memory_clock = ps->performance_levels[i].mem_clock;
5344 
5345 	return 0;
5346 }
5347 
5348 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5349 {
5350 	struct vega10_hwmgr *data = hwmgr->backend;
5351 	uint32_t feature_mask = 0;
5352 
5353 	if (disable) {
5354 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5355 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5356 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5357 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5358 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5359 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5360 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5361 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5362 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5363 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5364 	} else {
5365 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5366 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5367 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5368 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5369 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5370 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5371 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5372 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5373 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5374 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5375 	}
5376 
5377 	if (feature_mask)
5378 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5379 				!disable, feature_mask),
5380 				"enable/disable power features for compute performance Failed!",
5381 				return -EINVAL);
5382 
5383 	if (disable) {
5384 		data->smu_features[GNLD_ULV].enabled = false;
5385 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5386 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5387 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5388 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5389 	} else {
5390 		data->smu_features[GNLD_ULV].enabled = true;
5391 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5392 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5393 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5394 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5395 	}
5396 
5397 	return 0;
5398 
5399 }
5400 
5401 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5402 	.backend_init = vega10_hwmgr_backend_init,
5403 	.backend_fini = vega10_hwmgr_backend_fini,
5404 	.asic_setup = vega10_setup_asic_task,
5405 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5406 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5407 	.get_num_of_pp_table_entries =
5408 			vega10_get_number_of_powerplay_table_entries,
5409 	.get_power_state_size = vega10_get_power_state_size,
5410 	.get_pp_table_entry = vega10_get_pp_table_entry,
5411 	.patch_boot_state = vega10_patch_boot_state,
5412 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5413 	.power_state_set = vega10_set_power_state_tasks,
5414 	.get_sclk = vega10_dpm_get_sclk,
5415 	.get_mclk = vega10_dpm_get_mclk,
5416 	.notify_smc_display_config_after_ps_adjustment =
5417 			vega10_notify_smc_display_config_after_ps_adjustment,
5418 	.force_dpm_level = vega10_dpm_force_dpm_level,
5419 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5420 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5421 	.get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent,
5422 	.set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent,
5423 	.reset_fan_speed_to_default =
5424 			vega10_fan_ctrl_reset_fan_speed_to_default,
5425 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5426 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5427 	.uninitialize_thermal_controller =
5428 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5429 	.set_fan_control_mode = vega10_set_fan_control_mode,
5430 	.get_fan_control_mode = vega10_get_fan_control_mode,
5431 	.read_sensor = vega10_read_sensor,
5432 	.get_dal_power_level = vega10_get_dal_power_level,
5433 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5434 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5435 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5436 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5437 	.force_clock_level = vega10_force_clock_level,
5438 	.print_clock_levels = vega10_print_clock_levels,
5439 	.display_config_changed = vega10_display_configuration_changed_task,
5440 	.powergate_uvd = vega10_power_gate_uvd,
5441 	.powergate_vce = vega10_power_gate_vce,
5442 	.check_states_equal = vega10_check_states_equal,
5443 	.check_smc_update_required_for_display_configuration =
5444 			vega10_check_smc_update_required_for_display_configuration,
5445 	.power_off_asic = vega10_power_off_asic,
5446 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5447 	.get_sclk_od = vega10_get_sclk_od,
5448 	.set_sclk_od = vega10_set_sclk_od,
5449 	.get_mclk_od = vega10_get_mclk_od,
5450 	.set_mclk_od = vega10_set_mclk_od,
5451 	.avfs_control = vega10_avfs_enable,
5452 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5453 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5454 	.register_irq_handlers = smu9_register_irq_handlers,
5455 	.start_thermal_controller = vega10_start_thermal_controller,
5456 	.get_power_profile_mode = vega10_get_power_profile_mode,
5457 	.set_power_profile_mode = vega10_set_power_profile_mode,
5458 	.set_power_limit = vega10_set_power_limit,
5459 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5460 	.get_performance_level = vega10_get_performance_level,
5461 	.get_asic_baco_capability = smu9_baco_get_capability,
5462 	.get_asic_baco_state = smu9_baco_get_state,
5463 	.set_asic_baco_state = vega10_baco_set_state,
5464 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5465 	.get_ppfeature_status = vega10_get_ppfeature_status,
5466 	.set_ppfeature_status = vega10_set_ppfeature_status,
5467 	.set_mp1_state = vega10_set_mp1_state,
5468 	.disable_power_features_for_compute_performance =
5469 			vega10_disable_power_features_for_compute_performance,
5470 };
5471 
5472 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5473 {
5474 	struct amdgpu_device *adev = hwmgr->adev;
5475 
5476 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5477 	hwmgr->pptable_func = &vega10_pptable_funcs;
5478 	if (amdgpu_passthrough(adev))
5479 		return vega10_baco_set_cap(hwmgr);
5480 
5481 	return 0;
5482 }
5483