xref: /openbmc/linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/vega10_hwmgr.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 
29 #include "hwmgr.h"
30 #include "amd_powerplay.h"
31 #include "hardwaremanager.h"
32 #include "ppatomfwctrl.h"
33 #include "atomfirmware.h"
34 #include "cgs_common.h"
35 #include "vega10_powertune.h"
36 #include "smu9.h"
37 #include "smu9_driver_if.h"
38 #include "vega10_inc.h"
39 #include "soc15_common.h"
40 #include "pppcielanes.h"
41 #include "vega10_hwmgr.h"
42 #include "vega10_smumgr.h"
43 #include "vega10_processpptables.h"
44 #include "vega10_pptable.h"
45 #include "vega10_thermal.h"
46 #include "pp_debug.h"
47 #include "amd_pcie_helpers.h"
48 #include "ppinterrupt.h"
49 #include "pp_overdriver.h"
50 #include "pp_thermal.h"
51 #include "vega10_baco.h"
52 
53 #include "smuio/smuio_9_0_offset.h"
54 #include "smuio/smuio_9_0_sh_mask.h"
55 
56 #define smnPCIE_LC_SPEED_CNTL			0x11140290
57 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
58 
59 #define HBM_MEMORY_CHANNEL_WIDTH    128
60 
61 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
62 
63 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
64 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
65 
66 //DF_CS_AON0_DramBaseAddress0
67 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
68 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
69 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
70 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
71 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
72 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
73 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
74 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
75 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
76 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
77 
78 typedef enum {
79 	CLK_SMNCLK = 0,
80 	CLK_SOCCLK,
81 	CLK_MP0CLK,
82 	CLK_MP1CLK,
83 	CLK_LCLK,
84 	CLK_DCEFCLK,
85 	CLK_VCLK,
86 	CLK_DCLK,
87 	CLK_ECLK,
88 	CLK_UCLK,
89 	CLK_GFXCLK,
90 	CLK_COUNT,
91 } CLOCK_ID_e;
92 
93 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
94 
95 static struct vega10_power_state *cast_phw_vega10_power_state(
96 				  struct pp_hw_power_state *hw_ps)
97 {
98 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
99 				"Invalid Powerstate Type!",
100 				 return NULL;);
101 
102 	return (struct vega10_power_state *)hw_ps;
103 }
104 
105 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
106 				 const struct pp_hw_power_state *hw_ps)
107 {
108 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
109 				"Invalid Powerstate Type!",
110 				 return NULL;);
111 
112 	return (const struct vega10_power_state *)hw_ps;
113 }
114 
115 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
116 {
117 	struct vega10_hwmgr *data = hwmgr->backend;
118 
119 	data->registry_data.sclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
121 	data->registry_data.socclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
123 	data->registry_data.mclk_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
125 	data->registry_data.pcie_dpm_key_disabled =
126 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
127 
128 	data->registry_data.dcefclk_dpm_key_disabled =
129 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
130 
131 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
132 		data->registry_data.power_containment_support = 1;
133 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
134 		data->registry_data.enable_tdc_limit_feature = 1;
135 	}
136 
137 	data->registry_data.clock_stretcher_support =
138 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
139 
140 	data->registry_data.ulv_support =
141 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
142 
143 	data->registry_data.sclk_deep_sleep_support =
144 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
145 
146 	data->registry_data.disable_water_mark = 0;
147 
148 	data->registry_data.fan_control_support = 1;
149 	data->registry_data.thermal_support = 1;
150 	data->registry_data.fw_ctf_enabled = 1;
151 
152 	data->registry_data.avfs_support =
153 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
154 	data->registry_data.led_dpm_enabled = 1;
155 
156 	data->registry_data.vr0hot_enabled = 1;
157 	data->registry_data.vr1hot_enabled = 1;
158 	data->registry_data.regulator_hot_gpio_support = 1;
159 
160 	data->registry_data.didt_support = 1;
161 	if (data->registry_data.didt_support) {
162 		data->registry_data.didt_mode = 6;
163 		data->registry_data.sq_ramping_support = 1;
164 		data->registry_data.db_ramping_support = 0;
165 		data->registry_data.td_ramping_support = 0;
166 		data->registry_data.tcp_ramping_support = 0;
167 		data->registry_data.dbr_ramping_support = 0;
168 		data->registry_data.edc_didt_support = 1;
169 		data->registry_data.gc_didt_support = 0;
170 		data->registry_data.psm_didt_support = 0;
171 	}
172 
173 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
174 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
185 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
186 
187 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
188 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
189 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
190 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
191 }
192 
193 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
194 {
195 	struct vega10_hwmgr *data = hwmgr->backend;
196 	struct phm_ppt_v2_information *table_info =
197 			(struct phm_ppt_v2_information *)hwmgr->pptable;
198 	struct amdgpu_device *adev = hwmgr->adev;
199 
200 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
201 			PHM_PlatformCaps_SclkDeepSleep);
202 
203 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
204 			PHM_PlatformCaps_DynamicPatchPowerState);
205 
206 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
207 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
208 				PHM_PlatformCaps_ControlVDDCI);
209 
210 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
211 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
212 
213 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
214 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
215 				PHM_PlatformCaps_UVDPowerGating);
216 
217 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
218 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
219 				PHM_PlatformCaps_VCEPowerGating);
220 
221 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
222 			PHM_PlatformCaps_UnTabledHardwareInterface);
223 
224 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
225 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
226 
227 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
228 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
229 
230 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
231 				PHM_PlatformCaps_DynamicPowerManagement);
232 
233 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
234 			PHM_PlatformCaps_SMC);
235 
236 	/* power tune caps */
237 	/* assume disabled */
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_PowerContainment);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_DiDtSupport);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_SQRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_DBRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TDRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_TCPRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DBRRamping);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_DiDtEDCEnable);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_GCEDC);
256 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
257 			PHM_PlatformCaps_PSM);
258 
259 	if (data->registry_data.didt_support) {
260 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
261 		if (data->registry_data.sq_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
263 		if (data->registry_data.db_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
265 		if (data->registry_data.td_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
267 		if (data->registry_data.tcp_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
269 		if (data->registry_data.dbr_ramping_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
271 		if (data->registry_data.edc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
273 		if (data->registry_data.gc_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
275 		if (data->registry_data.psm_didt_support)
276 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
277 	}
278 
279 	if (data->registry_data.power_containment_support)
280 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 				PHM_PlatformCaps_PowerContainment);
282 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
283 			PHM_PlatformCaps_CAC);
284 
285 	if (table_info->tdp_table->usClockStretchAmount &&
286 			data->registry_data.clock_stretcher_support)
287 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
288 				PHM_PlatformCaps_ClockStretcher);
289 
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_RegulatorHot);
292 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
293 			PHM_PlatformCaps_AutomaticDCTransition);
294 
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_UVDDPM);
297 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
298 			PHM_PlatformCaps_VCEDPM);
299 
300 	return 0;
301 }
302 
303 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
304 {
305 	struct vega10_hwmgr *data = hwmgr->backend;
306 	struct phm_ppt_v2_information *table_info =
307 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
308 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
309 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
310 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
311 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
312 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
313 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
314 	uint32_t i;
315 	int result;
316 
317 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
318 	if (!result) {
319 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
320 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
321 	}
322 
323 	od_lookup_table = &odn_table->vddc_lookup_table;
324 	vddc_lookup_table = table_info->vddc_lookup_table;
325 
326 	for (i = 0; i < vddc_lookup_table->count; i++)
327 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
328 
329 	od_lookup_table->count = vddc_lookup_table->count;
330 
331 	dep_table[0] = table_info->vdd_dep_on_sclk;
332 	dep_table[1] = table_info->vdd_dep_on_mclk;
333 	dep_table[2] = table_info->vdd_dep_on_socclk;
334 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
335 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
336 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
337 
338 	for (i = 0; i < 3; i++)
339 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
340 
341 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
342 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
343 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
344 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
345 
346 	i = od_table[2]->count - 1;
347 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
348 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
349 					od_table[2]->entries[i].clk;
350 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
351 					odn_table->max_vddc :
352 					od_table[2]->entries[i].vddc;
353 
354 	return 0;
355 }
356 
357 static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
358 {
359 	struct vega10_hwmgr *data = hwmgr->backend;
360 	int i;
361 	uint32_t sub_vendor_id, hw_revision;
362 	uint32_t top32, bottom32;
363 	struct amdgpu_device *adev = hwmgr->adev;
364 
365 	vega10_initialize_power_tune_defaults(hwmgr);
366 
367 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
368 		data->smu_features[i].smu_feature_id = 0xffff;
369 		data->smu_features[i].smu_feature_bitmap = 1 << i;
370 		data->smu_features[i].enabled = false;
371 		data->smu_features[i].supported = false;
372 	}
373 
374 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
375 			FEATURE_DPM_PREFETCHER_BIT;
376 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
377 			FEATURE_DPM_GFXCLK_BIT;
378 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
379 			FEATURE_DPM_UCLK_BIT;
380 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
381 			FEATURE_DPM_SOCCLK_BIT;
382 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
383 			FEATURE_DPM_UVD_BIT;
384 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
385 			FEATURE_DPM_VCE_BIT;
386 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
387 			FEATURE_DPM_MP0CLK_BIT;
388 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
389 			FEATURE_DPM_LINK_BIT;
390 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
391 			FEATURE_DPM_DCEFCLK_BIT;
392 	data->smu_features[GNLD_ULV].smu_feature_id =
393 			FEATURE_ULV_BIT;
394 	data->smu_features[GNLD_AVFS].smu_feature_id =
395 			FEATURE_AVFS_BIT;
396 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
397 			FEATURE_DS_GFXCLK_BIT;
398 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
399 			FEATURE_DS_SOCCLK_BIT;
400 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
401 			FEATURE_DS_LCLK_BIT;
402 	data->smu_features[GNLD_PPT].smu_feature_id =
403 			FEATURE_PPT_BIT;
404 	data->smu_features[GNLD_TDC].smu_feature_id =
405 			FEATURE_TDC_BIT;
406 	data->smu_features[GNLD_THERMAL].smu_feature_id =
407 			FEATURE_THERMAL_BIT;
408 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
409 			FEATURE_GFX_PER_CU_CG_BIT;
410 	data->smu_features[GNLD_RM].smu_feature_id =
411 			FEATURE_RM_BIT;
412 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
413 			FEATURE_DS_DCEFCLK_BIT;
414 	data->smu_features[GNLD_ACDC].smu_feature_id =
415 			FEATURE_ACDC_BIT;
416 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
417 			FEATURE_VR0HOT_BIT;
418 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
419 			FEATURE_VR1HOT_BIT;
420 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
421 			FEATURE_FW_CTF_BIT;
422 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
423 			FEATURE_LED_DISPLAY_BIT;
424 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
425 			FEATURE_FAN_CONTROL_BIT;
426 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
427 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
428 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
429 
430 	if (!data->registry_data.prefetcher_dpm_key_disabled)
431 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
432 
433 	if (!data->registry_data.sclk_dpm_key_disabled)
434 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
435 
436 	if (!data->registry_data.mclk_dpm_key_disabled)
437 		data->smu_features[GNLD_DPM_UCLK].supported = true;
438 
439 	if (!data->registry_data.socclk_dpm_key_disabled)
440 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
441 
442 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
443 		data->smu_features[GNLD_DPM_UVD].supported = true;
444 
445 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
446 		data->smu_features[GNLD_DPM_VCE].supported = true;
447 
448 	data->smu_features[GNLD_DPM_LINK].supported = true;
449 
450 	if (!data->registry_data.dcefclk_dpm_key_disabled)
451 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
452 
453 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
454 	    data->registry_data.sclk_deep_sleep_support) {
455 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
456 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
457 		data->smu_features[GNLD_DS_LCLK].supported = true;
458 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
459 	}
460 
461 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
462 		data->smu_features[GNLD_PPT].supported = true;
463 
464 	if (data->registry_data.enable_tdc_limit_feature)
465 		data->smu_features[GNLD_TDC].supported = true;
466 
467 	if (data->registry_data.thermal_support)
468 		data->smu_features[GNLD_THERMAL].supported = true;
469 
470 	if (data->registry_data.fan_control_support)
471 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
472 
473 	if (data->registry_data.fw_ctf_enabled)
474 		data->smu_features[GNLD_FW_CTF].supported = true;
475 
476 	if (data->registry_data.avfs_support)
477 		data->smu_features[GNLD_AVFS].supported = true;
478 
479 	if (data->registry_data.led_dpm_enabled)
480 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
481 
482 	if (data->registry_data.vr1hot_enabled)
483 		data->smu_features[GNLD_VR1HOT].supported = true;
484 
485 	if (data->registry_data.vr0hot_enabled)
486 		data->smu_features[GNLD_VR0HOT].supported = true;
487 
488 	smum_send_msg_to_smc(hwmgr,
489 			PPSMC_MSG_GetSmuVersion,
490 			&hwmgr->smu_version);
491 		/* ACG firmware has major version 5 */
492 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
493 		data->smu_features[GNLD_ACG].supported = true;
494 	if (data->registry_data.didt_support)
495 		data->smu_features[GNLD_DIDT].supported = true;
496 
497 	hw_revision = adev->pdev->revision;
498 	sub_vendor_id = adev->pdev->subsystem_vendor;
499 
500 	if ((hwmgr->chip_id == 0x6862 ||
501 		hwmgr->chip_id == 0x6861 ||
502 		hwmgr->chip_id == 0x6868) &&
503 		(hw_revision == 0) &&
504 		(sub_vendor_id != 0x1002))
505 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
506 
507 	/* Get the SN to turn into a Unique ID */
508 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
509 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
510 
511 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
512 }
513 
514 #ifdef PPLIB_VEGA10_EVV_SUPPORT
515 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
516 	phm_ppt_v1_voltage_lookup_table *lookup_table,
517 	uint16_t virtual_voltage_id, int32_t *socclk)
518 {
519 	uint8_t entry_id;
520 	uint8_t voltage_id;
521 	struct phm_ppt_v2_information *table_info =
522 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
523 
524 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
525 			"Lookup table is empty",
526 			return -EINVAL);
527 
528 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
529 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
530 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
531 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
532 			break;
533 	}
534 
535 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
536 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
537 			return -EINVAL);
538 
539 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
540 
541 	return 0;
542 }
543 
544 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
545 /**
546  * vega10_get_evv_voltages - Get Leakage VDDC based on leakage ID.
547  *
548  * @hwmgr:  the address of the powerplay hardware manager.
549  * return:  always 0.
550  */
551 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
552 {
553 	struct vega10_hwmgr *data = hwmgr->backend;
554 	uint16_t vv_id;
555 	uint32_t vddc = 0;
556 	uint16_t i, j;
557 	uint32_t sclk = 0;
558 	struct phm_ppt_v2_information *table_info =
559 			(struct phm_ppt_v2_information *)hwmgr->pptable;
560 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
561 			table_info->vdd_dep_on_socclk;
562 	int result;
563 
564 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
565 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
566 
567 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
568 				table_info->vddc_lookup_table, vv_id, &sclk)) {
569 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
570 				for (j = 1; j < socclk_table->count; j++) {
571 					if (socclk_table->entries[j].clk == sclk &&
572 							socclk_table->entries[j].cks_enable == 0) {
573 						sclk += 5000;
574 						break;
575 					}
576 				}
577 			}
578 
579 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
580 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
581 					"Error retrieving EVV voltage value!",
582 					continue);
583 
584 
585 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
586 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
587 					"Invalid VDDC value", result = -EINVAL;);
588 
589 			/* the voltage should not be zero nor equal to leakage ID */
590 			if (vddc != 0 && vddc != vv_id) {
591 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
592 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
593 				data->vddc_leakage.count++;
594 			}
595 		}
596 	}
597 
598 	return 0;
599 }
600 
601 /**
602  * vega10_patch_with_vdd_leakage - Change virtual leakage voltage to actual value.
603  *
604  * @hwmgr:         the address of the powerplay hardware manager.
605  * @voltage:       pointer to changing voltage
606  * @leakage_table: pointer to leakage table
607  */
608 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
609 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
610 {
611 	uint32_t index;
612 
613 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
614 	for (index = 0; index < leakage_table->count; index++) {
615 		/* if this voltage matches a leakage voltage ID */
616 		/* patch with actual leakage voltage */
617 		if (leakage_table->leakage_id[index] == *voltage) {
618 			*voltage = leakage_table->actual_voltage[index];
619 			break;
620 		}
621 	}
622 
623 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
624 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
625 }
626 
627 /**
628  * vega10_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
629  *
630  * @hwmgr:         the address of the powerplay hardware manager.
631  * @lookup_table:  pointer to voltage lookup table
632  * @leakage_table: pointer to leakage table
633  * return:         always 0
634  */
635 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
636 		phm_ppt_v1_voltage_lookup_table *lookup_table,
637 		struct vega10_leakage_voltage *leakage_table)
638 {
639 	uint32_t i;
640 
641 	for (i = 0; i < lookup_table->count; i++)
642 		vega10_patch_with_vdd_leakage(hwmgr,
643 				&lookup_table->entries[i].us_vdd, leakage_table);
644 
645 	return 0;
646 }
647 
648 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
649 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
650 		uint16_t *vddc)
651 {
652 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
653 
654 	return 0;
655 }
656 #endif
657 
658 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
659 		struct pp_hwmgr *hwmgr)
660 {
661 	uint8_t entry_id, voltage_id;
662 	unsigned i;
663 	struct phm_ppt_v2_information *table_info =
664 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
665 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
666 			table_info->mm_dep_table;
667 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
668 			table_info->vdd_dep_on_mclk;
669 
670 	for (i = 0; i < 6; i++) {
671 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
672 		switch (i) {
673 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
674 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
675 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
676 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
677 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
678 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
679 		}
680 
681 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
682 			voltage_id = vdt->entries[entry_id].vddInd;
683 			vdt->entries[entry_id].vddc =
684 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
685 		}
686 	}
687 
688 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
689 		voltage_id = mm_table->entries[entry_id].vddcInd;
690 		mm_table->entries[entry_id].vddc =
691 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
692 	}
693 
694 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
695 		voltage_id = mclk_table->entries[entry_id].vddInd;
696 		mclk_table->entries[entry_id].vddc =
697 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
698 		voltage_id = mclk_table->entries[entry_id].vddciInd;
699 		mclk_table->entries[entry_id].vddci =
700 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
701 		voltage_id = mclk_table->entries[entry_id].mvddInd;
702 		mclk_table->entries[entry_id].mvdd =
703 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
704 	}
705 
706 
707 	return 0;
708 
709 }
710 
711 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
712 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
713 {
714 	uint32_t table_size, i, j;
715 
716 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
717 		"Lookup table is empty", return -EINVAL);
718 
719 	table_size = lookup_table->count;
720 
721 	/* Sorting voltages */
722 	for (i = 0; i < table_size - 1; i++) {
723 		for (j = i + 1; j > 0; j--) {
724 			if (lookup_table->entries[j].us_vdd <
725 					lookup_table->entries[j - 1].us_vdd) {
726 				swap(lookup_table->entries[j - 1],
727 				     lookup_table->entries[j]);
728 			}
729 		}
730 	}
731 
732 	return 0;
733 }
734 
735 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
736 {
737 	int result = 0;
738 	int tmp_result;
739 	struct phm_ppt_v2_information *table_info =
740 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
741 #ifdef PPLIB_VEGA10_EVV_SUPPORT
742 	struct vega10_hwmgr *data = hwmgr->backend;
743 
744 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
745 			table_info->vddc_lookup_table, &(data->vddc_leakage));
746 	if (tmp_result)
747 		result = tmp_result;
748 
749 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
750 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
751 	if (tmp_result)
752 		result = tmp_result;
753 #endif
754 
755 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
756 	if (tmp_result)
757 		result = tmp_result;
758 
759 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
760 	if (tmp_result)
761 		result = tmp_result;
762 
763 	return result;
764 }
765 
766 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
767 {
768 	struct phm_ppt_v2_information *table_info =
769 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
770 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
771 			table_info->vdd_dep_on_socclk;
772 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
773 			table_info->vdd_dep_on_mclk;
774 
775 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
776 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
777 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
778 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
779 
780 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
781 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
782 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
783 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
784 
785 	table_info->max_clock_voltage_on_ac.sclk =
786 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
787 	table_info->max_clock_voltage_on_ac.mclk =
788 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
789 	table_info->max_clock_voltage_on_ac.vddc =
790 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
791 	table_info->max_clock_voltage_on_ac.vddci =
792 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
793 
794 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
795 		table_info->max_clock_voltage_on_ac.sclk;
796 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
797 		table_info->max_clock_voltage_on_ac.mclk;
798 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
799 		table_info->max_clock_voltage_on_ac.vddc;
800 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
801 		table_info->max_clock_voltage_on_ac.vddci;
802 
803 	return 0;
804 }
805 
806 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
807 {
808 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
809 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
810 
811 	kfree(hwmgr->backend);
812 	hwmgr->backend = NULL;
813 
814 	return 0;
815 }
816 
817 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
818 {
819 	int result = 0;
820 	struct vega10_hwmgr *data;
821 	uint32_t config_telemetry = 0;
822 	struct pp_atomfwctrl_voltage_table vol_table;
823 	struct amdgpu_device *adev = hwmgr->adev;
824 
825 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
826 	if (data == NULL)
827 		return -ENOMEM;
828 
829 	hwmgr->backend = data;
830 
831 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
832 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
833 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
834 
835 	vega10_set_default_registry_data(hwmgr);
836 	data->disable_dpm_mask = 0xff;
837 
838 	/* need to set voltage control types before EVV patching */
839 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
840 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
841 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
842 
843 	/* VDDCR_SOC */
844 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
845 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
846 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
847 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
848 				&vol_table)) {
849 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
850 					(vol_table.telemetry_offset & 0xff);
851 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
852 		}
853 	} else {
854 		kfree(hwmgr->backend);
855 		hwmgr->backend = NULL;
856 		PP_ASSERT_WITH_CODE(false,
857 				"VDDCR_SOC is not SVID2!",
858 				return -1);
859 	}
860 
861 	/* MVDDC */
862 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
863 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
864 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
865 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
866 				&vol_table)) {
867 			config_telemetry |=
868 					((vol_table.telemetry_slope << 24) & 0xff000000) |
869 					((vol_table.telemetry_offset << 16) & 0xff0000);
870 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
871 		}
872 	}
873 
874 	 /* VDDCI_MEM */
875 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
876 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
877 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
878 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
879 	}
880 
881 	data->config_telemetry = config_telemetry;
882 
883 	vega10_set_features_platform_caps(hwmgr);
884 
885 	vega10_init_dpm_defaults(hwmgr);
886 
887 #ifdef PPLIB_VEGA10_EVV_SUPPORT
888 	/* Get leakage voltage based on leakage ID. */
889 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
890 			"Get EVV Voltage Failed.  Abort Driver loading!",
891 			return -1);
892 #endif
893 
894 	/* Patch our voltage dependency table with actual leakage voltage
895 	 * We need to perform leakage translation before it's used by other functions
896 	 */
897 	vega10_complete_dependency_tables(hwmgr);
898 
899 	/* Parse pptable data read from VBIOS */
900 	vega10_set_private_data_based_on_pptable(hwmgr);
901 
902 	data->is_tlu_enabled = false;
903 
904 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
905 			VEGA10_MAX_HARDWARE_POWERLEVELS;
906 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
907 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
908 
909 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
910 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
911 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
912 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
913 
914 	data->total_active_cus = adev->gfx.cu_info.number;
915 	if (!hwmgr->not_vf)
916 		return result;
917 
918 	/* Setup default Overdrive Fan control settings */
919 	data->odn_fan_table.target_fan_speed =
920 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
921 	data->odn_fan_table.target_temperature =
922 			hwmgr->thermal_controller.
923 			advanceFanControlParameters.ucTargetTemperature;
924 	data->odn_fan_table.min_performance_clock =
925 			hwmgr->thermal_controller.advanceFanControlParameters.
926 			ulMinFanSCLKAcousticLimit;
927 	data->odn_fan_table.min_fan_limit =
928 			hwmgr->thermal_controller.
929 			advanceFanControlParameters.usFanPWMMinLimit *
930 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
931 
932 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
933 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
934 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
935 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
936 			"Mem Channel Index Exceeded maximum!",
937 			return -EINVAL);
938 
939 	return result;
940 }
941 
942 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
943 {
944 	struct vega10_hwmgr *data = hwmgr->backend;
945 
946 	data->low_sclk_interrupt_threshold = 0;
947 
948 	return 0;
949 }
950 
951 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
952 {
953 	struct vega10_hwmgr *data = hwmgr->backend;
954 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
955 
956 	struct pp_atomfwctrl_voltage_table table;
957 	uint8_t i, j;
958 	uint32_t mask = 0;
959 	uint32_t tmp;
960 	int32_t ret = 0;
961 
962 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
963 						VOLTAGE_OBJ_GPIO_LUT, &table);
964 
965 	if (!ret) {
966 		tmp = table.mask_low;
967 		for (i = 0, j = 0; i < 32; i++) {
968 			if (tmp & 1) {
969 				mask |= (uint32_t)(i << (8 * j));
970 				if (++j >= 3)
971 					break;
972 			}
973 			tmp >>= 1;
974 		}
975 	}
976 
977 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
978 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
979 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
980 	return 0;
981 }
982 
983 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
984 {
985 	if (!hwmgr->not_vf)
986 		return 0;
987 
988 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
989 			"Failed to init sclk threshold!",
990 			return -EINVAL);
991 
992 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
993 			"Failed to set up led dpm config!",
994 			return -EINVAL);
995 
996 	smum_send_msg_to_smc_with_parameter(hwmgr,
997 				PPSMC_MSG_NumOfDisplays,
998 				0,
999 				NULL);
1000 
1001 	return 0;
1002 }
1003 
1004 /**
1005  * vega10_trim_voltage_table - Remove repeated voltage values and create table with unique values.
1006  *
1007  * @hwmgr:      the address of the powerplay hardware manager.
1008  * @vol_table:  the pointer to changing voltage table
1009  * return:      0 in success
1010  */
1011 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1012 		struct pp_atomfwctrl_voltage_table *vol_table)
1013 {
1014 	uint32_t i, j;
1015 	uint16_t vvalue;
1016 	bool found = false;
1017 	struct pp_atomfwctrl_voltage_table *table;
1018 
1019 	PP_ASSERT_WITH_CODE(vol_table,
1020 			"Voltage Table empty.", return -EINVAL);
1021 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1022 			GFP_KERNEL);
1023 
1024 	if (!table)
1025 		return -ENOMEM;
1026 
1027 	table->mask_low = vol_table->mask_low;
1028 	table->phase_delay = vol_table->phase_delay;
1029 
1030 	for (i = 0; i < vol_table->count; i++) {
1031 		vvalue = vol_table->entries[i].value;
1032 		found = false;
1033 
1034 		for (j = 0; j < table->count; j++) {
1035 			if (vvalue == table->entries[j].value) {
1036 				found = true;
1037 				break;
1038 			}
1039 		}
1040 
1041 		if (!found) {
1042 			table->entries[table->count].value = vvalue;
1043 			table->entries[table->count].smio_low =
1044 					vol_table->entries[i].smio_low;
1045 			table->count++;
1046 		}
1047 	}
1048 
1049 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1050 	kfree(table);
1051 
1052 	return 0;
1053 }
1054 
1055 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1056 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1057 		struct pp_atomfwctrl_voltage_table *vol_table)
1058 {
1059 	int i;
1060 
1061 	PP_ASSERT_WITH_CODE(dep_table->count,
1062 			"Voltage Dependency Table empty.",
1063 			return -EINVAL);
1064 
1065 	vol_table->mask_low = 0;
1066 	vol_table->phase_delay = 0;
1067 	vol_table->count = dep_table->count;
1068 
1069 	for (i = 0; i < vol_table->count; i++) {
1070 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1071 		vol_table->entries[i].smio_low = 0;
1072 	}
1073 
1074 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1075 			vol_table),
1076 			"Failed to trim MVDD Table!",
1077 			return -1);
1078 
1079 	return 0;
1080 }
1081 
1082 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1083 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1084 		struct pp_atomfwctrl_voltage_table *vol_table)
1085 {
1086 	uint32_t i;
1087 
1088 	PP_ASSERT_WITH_CODE(dep_table->count,
1089 			"Voltage Dependency Table empty.",
1090 			return -EINVAL);
1091 
1092 	vol_table->mask_low = 0;
1093 	vol_table->phase_delay = 0;
1094 	vol_table->count = dep_table->count;
1095 
1096 	for (i = 0; i < dep_table->count; i++) {
1097 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1098 		vol_table->entries[i].smio_low = 0;
1099 	}
1100 
1101 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1102 			"Failed to trim VDDCI table.",
1103 			return -1);
1104 
1105 	return 0;
1106 }
1107 
1108 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1109 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1110 		struct pp_atomfwctrl_voltage_table *vol_table)
1111 {
1112 	int i;
1113 
1114 	PP_ASSERT_WITH_CODE(dep_table->count,
1115 			"Voltage Dependency Table empty.",
1116 			return -EINVAL);
1117 
1118 	vol_table->mask_low = 0;
1119 	vol_table->phase_delay = 0;
1120 	vol_table->count = dep_table->count;
1121 
1122 	for (i = 0; i < vol_table->count; i++) {
1123 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1124 		vol_table->entries[i].smio_low = 0;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /* ---- Voltage Tables ----
1131  * If the voltage table would be bigger than
1132  * what will fit into the state table on
1133  * the SMC keep only the higher entries.
1134  */
1135 static void vega10_trim_voltage_table_to_fit_state_table(
1136 		struct pp_hwmgr *hwmgr,
1137 		uint32_t max_vol_steps,
1138 		struct pp_atomfwctrl_voltage_table *vol_table)
1139 {
1140 	unsigned int i, diff;
1141 
1142 	if (vol_table->count <= max_vol_steps)
1143 		return;
1144 
1145 	diff = vol_table->count - max_vol_steps;
1146 
1147 	for (i = 0; i < max_vol_steps; i++)
1148 		vol_table->entries[i] = vol_table->entries[i + diff];
1149 
1150 	vol_table->count = max_vol_steps;
1151 }
1152 
1153 /**
1154  * vega10_construct_voltage_tables - Create Voltage Tables.
1155  *
1156  * @hwmgr:  the address of the powerplay hardware manager.
1157  * return:  always 0
1158  */
1159 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1160 {
1161 	struct vega10_hwmgr *data = hwmgr->backend;
1162 	struct phm_ppt_v2_information *table_info =
1163 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1164 	int result;
1165 
1166 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1167 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1168 		result = vega10_get_mvdd_voltage_table(hwmgr,
1169 				table_info->vdd_dep_on_mclk,
1170 				&(data->mvdd_voltage_table));
1171 		PP_ASSERT_WITH_CODE(!result,
1172 				"Failed to retrieve MVDDC table!",
1173 				return result);
1174 	}
1175 
1176 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1177 		result = vega10_get_vddci_voltage_table(hwmgr,
1178 				table_info->vdd_dep_on_mclk,
1179 				&(data->vddci_voltage_table));
1180 		PP_ASSERT_WITH_CODE(!result,
1181 				"Failed to retrieve VDDCI_MEM table!",
1182 				return result);
1183 	}
1184 
1185 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1186 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1187 		result = vega10_get_vdd_voltage_table(hwmgr,
1188 				table_info->vdd_dep_on_sclk,
1189 				&(data->vddc_voltage_table));
1190 		PP_ASSERT_WITH_CODE(!result,
1191 				"Failed to retrieve VDDCR_SOC table!",
1192 				return result);
1193 	}
1194 
1195 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1196 			"Too many voltage values for VDDC. Trimming to fit state table.",
1197 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1198 					16, &(data->vddc_voltage_table)));
1199 
1200 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1201 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1202 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1203 					16, &(data->vddci_voltage_table)));
1204 
1205 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1206 			"Too many voltage values for MVDD. Trimming to fit state table.",
1207 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1208 					16, &(data->mvdd_voltage_table)));
1209 
1210 
1211 	return 0;
1212 }
1213 
1214 /*
1215  * vega10_init_dpm_state
1216  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1217  *
1218  * @dpm_state: - the address of the DPM Table to initiailize.
1219  * return:   None.
1220  */
1221 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1222 {
1223 	dpm_state->soft_min_level = 0xff;
1224 	dpm_state->soft_max_level = 0xff;
1225 	dpm_state->hard_min_level = 0xff;
1226 	dpm_state->hard_max_level = 0xff;
1227 }
1228 
1229 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1230 		struct vega10_single_dpm_table *dpm_table,
1231 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1232 {
1233 	int i;
1234 
1235 	dpm_table->count = 0;
1236 
1237 	for (i = 0; i < dep_table->count; i++) {
1238 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1239 				dep_table->entries[i].clk) {
1240 			dpm_table->dpm_levels[dpm_table->count].value =
1241 					dep_table->entries[i].clk;
1242 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1243 			dpm_table->count++;
1244 		}
1245 	}
1246 }
1247 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1248 {
1249 	struct vega10_hwmgr *data = hwmgr->backend;
1250 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1251 	struct phm_ppt_v2_information *table_info =
1252 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1253 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1254 			table_info->pcie_table;
1255 	uint32_t i;
1256 
1257 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1258 			"Incorrect number of PCIE States from VBIOS!",
1259 			return -1);
1260 
1261 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1262 		if (data->registry_data.pcieSpeedOverride)
1263 			pcie_table->pcie_gen[i] =
1264 					data->registry_data.pcieSpeedOverride;
1265 		else
1266 			pcie_table->pcie_gen[i] =
1267 					bios_pcie_table->entries[i].gen_speed;
1268 
1269 		if (data->registry_data.pcieLaneOverride)
1270 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1271 					data->registry_data.pcieLaneOverride);
1272 		else
1273 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1274 							bios_pcie_table->entries[i].lane_width);
1275 		if (data->registry_data.pcieClockOverride)
1276 			pcie_table->lclk[i] =
1277 					data->registry_data.pcieClockOverride;
1278 		else
1279 			pcie_table->lclk[i] =
1280 					bios_pcie_table->entries[i].pcie_sclk;
1281 	}
1282 
1283 	pcie_table->count = NUM_LINK_LEVELS;
1284 
1285 	return 0;
1286 }
1287 
1288 /*
1289  * This function is to initialize all DPM state tables
1290  * for SMU based on the dependency table.
1291  * Dynamic state patching function will then trim these
1292  * state tables to the allowed range based
1293  * on the power policy or external client requests,
1294  * such as UVD request, etc.
1295  */
1296 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1297 {
1298 	struct vega10_hwmgr *data = hwmgr->backend;
1299 	struct phm_ppt_v2_information *table_info =
1300 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1301 	struct vega10_single_dpm_table *dpm_table;
1302 	uint32_t i;
1303 
1304 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1305 			table_info->vdd_dep_on_socclk;
1306 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1307 			table_info->vdd_dep_on_sclk;
1308 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1309 			table_info->vdd_dep_on_mclk;
1310 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1311 			table_info->mm_dep_table;
1312 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1313 			table_info->vdd_dep_on_dcefclk;
1314 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1315 			table_info->vdd_dep_on_pixclk;
1316 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1317 			table_info->vdd_dep_on_dispclk;
1318 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1319 			table_info->vdd_dep_on_phyclk;
1320 
1321 	PP_ASSERT_WITH_CODE(dep_soc_table,
1322 			"SOCCLK dependency table is missing. This table is mandatory",
1323 			return -EINVAL);
1324 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1325 			"SOCCLK dependency table is empty. This table is mandatory",
1326 			return -EINVAL);
1327 
1328 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1329 			"GFXCLK dependency table is missing. This table is mandatory",
1330 			return -EINVAL);
1331 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1332 			"GFXCLK dependency table is empty. This table is mandatory",
1333 			return -EINVAL);
1334 
1335 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1336 			"MCLK dependency table is missing. This table is mandatory",
1337 			return -EINVAL);
1338 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1339 			"MCLK dependency table has to have is missing. This table is mandatory",
1340 			return -EINVAL);
1341 
1342 	/* Initialize Sclk DPM table based on allow Sclk values */
1343 	dpm_table = &(data->dpm_table.soc_table);
1344 	vega10_setup_default_single_dpm_table(hwmgr,
1345 			dpm_table,
1346 			dep_soc_table);
1347 
1348 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1349 
1350 	dpm_table = &(data->dpm_table.gfx_table);
1351 	vega10_setup_default_single_dpm_table(hwmgr,
1352 			dpm_table,
1353 			dep_gfx_table);
1354 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1355 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1356 					dpm_table->dpm_levels[dpm_table->count-1].value;
1357 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1358 
1359 	/* Initialize Mclk DPM table based on allow Mclk values */
1360 	data->dpm_table.mem_table.count = 0;
1361 	dpm_table = &(data->dpm_table.mem_table);
1362 	vega10_setup_default_single_dpm_table(hwmgr,
1363 			dpm_table,
1364 			dep_mclk_table);
1365 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1366 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1367 					dpm_table->dpm_levels[dpm_table->count-1].value;
1368 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1369 
1370 	data->dpm_table.eclk_table.count = 0;
1371 	dpm_table = &(data->dpm_table.eclk_table);
1372 	for (i = 0; i < dep_mm_table->count; i++) {
1373 		if (i == 0 || dpm_table->dpm_levels
1374 				[dpm_table->count - 1].value <=
1375 						dep_mm_table->entries[i].eclk) {
1376 			dpm_table->dpm_levels[dpm_table->count].value =
1377 					dep_mm_table->entries[i].eclk;
1378 			dpm_table->dpm_levels[dpm_table->count].enabled =
1379 					(i == 0) ? true : false;
1380 			dpm_table->count++;
1381 		}
1382 	}
1383 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1384 
1385 	data->dpm_table.vclk_table.count = 0;
1386 	data->dpm_table.dclk_table.count = 0;
1387 	dpm_table = &(data->dpm_table.vclk_table);
1388 	for (i = 0; i < dep_mm_table->count; i++) {
1389 		if (i == 0 || dpm_table->dpm_levels
1390 				[dpm_table->count - 1].value <=
1391 						dep_mm_table->entries[i].vclk) {
1392 			dpm_table->dpm_levels[dpm_table->count].value =
1393 					dep_mm_table->entries[i].vclk;
1394 			dpm_table->dpm_levels[dpm_table->count].enabled =
1395 					(i == 0) ? true : false;
1396 			dpm_table->count++;
1397 		}
1398 	}
1399 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1400 
1401 	dpm_table = &(data->dpm_table.dclk_table);
1402 	for (i = 0; i < dep_mm_table->count; i++) {
1403 		if (i == 0 || dpm_table->dpm_levels
1404 				[dpm_table->count - 1].value <=
1405 						dep_mm_table->entries[i].dclk) {
1406 			dpm_table->dpm_levels[dpm_table->count].value =
1407 					dep_mm_table->entries[i].dclk;
1408 			dpm_table->dpm_levels[dpm_table->count].enabled =
1409 					(i == 0) ? true : false;
1410 			dpm_table->count++;
1411 		}
1412 	}
1413 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1414 
1415 	/* Assume there is no headless Vega10 for now */
1416 	dpm_table = &(data->dpm_table.dcef_table);
1417 	vega10_setup_default_single_dpm_table(hwmgr,
1418 			dpm_table,
1419 			dep_dcef_table);
1420 
1421 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1422 
1423 	dpm_table = &(data->dpm_table.pixel_table);
1424 	vega10_setup_default_single_dpm_table(hwmgr,
1425 			dpm_table,
1426 			dep_pix_table);
1427 
1428 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1429 
1430 	dpm_table = &(data->dpm_table.display_table);
1431 	vega10_setup_default_single_dpm_table(hwmgr,
1432 			dpm_table,
1433 			dep_disp_table);
1434 
1435 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1436 
1437 	dpm_table = &(data->dpm_table.phy_table);
1438 	vega10_setup_default_single_dpm_table(hwmgr,
1439 			dpm_table,
1440 			dep_phy_table);
1441 
1442 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1443 
1444 	vega10_setup_default_pcie_table(hwmgr);
1445 
1446 	/* Zero out the saved copy of the CUSTOM profile
1447 	 * This will be checked when trying to set the profile
1448 	 * and will require that new values be passed in
1449 	 */
1450 	data->custom_profile_mode[0] = 0;
1451 	data->custom_profile_mode[1] = 0;
1452 	data->custom_profile_mode[2] = 0;
1453 	data->custom_profile_mode[3] = 0;
1454 
1455 	/* save a copy of the default DPM table */
1456 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1457 			sizeof(struct vega10_dpm_table));
1458 
1459 	return 0;
1460 }
1461 
1462 /*
1463  * vega10_populate_ulv_state
1464  * Function to provide parameters for Utral Low Voltage state to SMC.
1465  *
1466  * @hwmgr: - the address of the hardware manager.
1467  * return:   Always 0.
1468  */
1469 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1470 {
1471 	struct vega10_hwmgr *data = hwmgr->backend;
1472 	struct phm_ppt_v2_information *table_info =
1473 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1474 
1475 	data->smc_state_table.pp_table.UlvOffsetVid =
1476 			(uint8_t)table_info->us_ulv_voltage_offset;
1477 
1478 	data->smc_state_table.pp_table.UlvSmnclkDid =
1479 			(uint8_t)(table_info->us_ulv_smnclk_did);
1480 	data->smc_state_table.pp_table.UlvMp1clkDid =
1481 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1482 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1483 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1484 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1485 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1486 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1487 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1488 
1489 	return 0;
1490 }
1491 
1492 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1493 		uint32_t lclock, uint8_t *curr_lclk_did)
1494 {
1495 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1496 
1497 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1498 			hwmgr,
1499 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1500 			lclock, &dividers),
1501 			"Failed to get LCLK clock settings from VBIOS!",
1502 			return -1);
1503 
1504 	*curr_lclk_did = dividers.ulDid;
1505 
1506 	return 0;
1507 }
1508 
1509 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr)
1510 {
1511 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
1512 	struct vega10_hwmgr *data =
1513 			(struct vega10_hwmgr *)(hwmgr->backend);
1514 	uint32_t pcie_gen = 0, pcie_width = 0;
1515 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1516 	int i;
1517 
1518 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1519 		pcie_gen = 3;
1520 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1521 		pcie_gen = 2;
1522 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1523 		pcie_gen = 1;
1524 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1525 		pcie_gen = 0;
1526 
1527 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1528 		pcie_width = 6;
1529 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1530 		pcie_width = 5;
1531 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1532 		pcie_width = 4;
1533 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1534 		pcie_width = 3;
1535 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1536 		pcie_width = 2;
1537 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1538 		pcie_width = 1;
1539 
1540 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1541 		if (pp_table->PcieGenSpeed[i] > pcie_gen)
1542 			pp_table->PcieGenSpeed[i] = pcie_gen;
1543 
1544 		if (pp_table->PcieLaneCount[i] > pcie_width)
1545 			pp_table->PcieLaneCount[i] = pcie_width;
1546 	}
1547 
1548 	if (data->registry_data.pcie_dpm_key_disabled) {
1549 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
1550 			pp_table->PcieGenSpeed[i] = pcie_gen;
1551 			pp_table->PcieLaneCount[i] = pcie_width;
1552 		}
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1559 {
1560 	int result = -1;
1561 	struct vega10_hwmgr *data = hwmgr->backend;
1562 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1563 	struct vega10_pcie_table *pcie_table =
1564 			&(data->dpm_table.pcie_table);
1565 	uint32_t i, j;
1566 
1567 	for (i = 0; i < pcie_table->count; i++) {
1568 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1569 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1570 
1571 		result = vega10_populate_single_lclk_level(hwmgr,
1572 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1573 		if (result) {
1574 			pr_info("Populate LClock Level %d Failed!\n", i);
1575 			return result;
1576 		}
1577 	}
1578 
1579 	j = i - 1;
1580 	while (i < NUM_LINK_LEVELS) {
1581 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1582 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1583 
1584 		result = vega10_populate_single_lclk_level(hwmgr,
1585 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1586 		if (result) {
1587 			pr_info("Populate LClock Level %d Failed!\n", i);
1588 			return result;
1589 		}
1590 		i++;
1591 	}
1592 
1593 	return result;
1594 }
1595 
1596 /**
1597  * vega10_populate_single_gfx_level - Populates single SMC GFXSCLK structure
1598  *                                    using the provided engine clock
1599  *
1600  * @hwmgr:      the address of the hardware manager
1601  * @gfx_clock:  the GFX clock to use to populate the structure.
1602  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1603  * @acg_freq:   ACG frequenty to return (MHz)
1604  */
1605 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1606 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1607 		uint32_t *acg_freq)
1608 {
1609 	struct phm_ppt_v2_information *table_info =
1610 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1611 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1612 	struct vega10_hwmgr *data = hwmgr->backend;
1613 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1614 	uint32_t gfx_max_clock =
1615 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1616 	uint32_t i = 0;
1617 
1618 	if (hwmgr->od_enabled)
1619 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1620 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1621 	else
1622 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1623 
1624 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1625 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1626 			return -EINVAL);
1627 
1628 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1629 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1630 	else {
1631 		for (i = 0; i < dep_on_sclk->count; i++) {
1632 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1633 				break;
1634 		}
1635 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1636 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1637 				return -EINVAL);
1638 	}
1639 
1640 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1641 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1642 			gfx_clock, &dividers),
1643 			"Failed to get GFX Clock settings from VBIOS!",
1644 			return -EINVAL);
1645 
1646 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1647 	current_gfxclk_level->FbMult =
1648 			cpu_to_le32(dividers.ulPll_fb_mult);
1649 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1650 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1651 	current_gfxclk_level->SsFbMult =
1652 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1653 	current_gfxclk_level->SsSlewFrac =
1654 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1655 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1656 
1657 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1658 
1659 	return 0;
1660 }
1661 
1662 /**
1663  * vega10_populate_single_soc_level - Populates single SMC SOCCLK structure
1664  *                                    using the provided clock.
1665  *
1666  * @hwmgr:     the address of the hardware manager.
1667  * @soc_clock: the SOC clock to use to populate the structure.
1668  * @current_soc_did:   DFS divider to pass back to caller
1669  * @current_vol_index: index of current VDD to pass back to caller
1670  * return:      0 on success
1671  */
1672 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1673 		uint32_t soc_clock, uint8_t *current_soc_did,
1674 		uint8_t *current_vol_index)
1675 {
1676 	struct vega10_hwmgr *data = hwmgr->backend;
1677 	struct phm_ppt_v2_information *table_info =
1678 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1679 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1680 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1681 	uint32_t i;
1682 
1683 	if (hwmgr->od_enabled) {
1684 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1685 						&data->odn_dpm_table.vdd_dep_on_socclk;
1686 		for (i = 0; i < dep_on_soc->count; i++) {
1687 			if (dep_on_soc->entries[i].clk >= soc_clock)
1688 				break;
1689 		}
1690 	} else {
1691 		dep_on_soc = table_info->vdd_dep_on_socclk;
1692 		for (i = 0; i < dep_on_soc->count; i++) {
1693 			if (dep_on_soc->entries[i].clk == soc_clock)
1694 				break;
1695 		}
1696 	}
1697 
1698 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1699 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1700 			return -EINVAL);
1701 
1702 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1703 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1704 			soc_clock, &dividers),
1705 			"Failed to get SOC Clock settings from VBIOS!",
1706 			return -EINVAL);
1707 
1708 	*current_soc_did = (uint8_t)dividers.ulDid;
1709 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1710 	return 0;
1711 }
1712 
1713 /**
1714  * vega10_populate_all_graphic_levels - Populates all SMC SCLK levels' structure
1715  *                                      based on the trimmed allowed dpm engine clock states
1716  *
1717  * @hwmgr:      the address of the hardware manager
1718  */
1719 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1720 {
1721 	struct vega10_hwmgr *data = hwmgr->backend;
1722 	struct phm_ppt_v2_information *table_info =
1723 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1724 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1725 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1726 	int result = 0;
1727 	uint32_t i, j;
1728 
1729 	for (i = 0; i < dpm_table->count; i++) {
1730 		result = vega10_populate_single_gfx_level(hwmgr,
1731 				dpm_table->dpm_levels[i].value,
1732 				&(pp_table->GfxclkLevel[i]),
1733 				&(pp_table->AcgFreqTable[i]));
1734 		if (result)
1735 			return result;
1736 	}
1737 
1738 	j = i - 1;
1739 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1740 		result = vega10_populate_single_gfx_level(hwmgr,
1741 				dpm_table->dpm_levels[j].value,
1742 				&(pp_table->GfxclkLevel[i]),
1743 				&(pp_table->AcgFreqTable[i]));
1744 		if (result)
1745 			return result;
1746 		i++;
1747 	}
1748 
1749 	pp_table->GfxclkSlewRate =
1750 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1751 
1752 	dpm_table = &(data->dpm_table.soc_table);
1753 	for (i = 0; i < dpm_table->count; i++) {
1754 		result = vega10_populate_single_soc_level(hwmgr,
1755 				dpm_table->dpm_levels[i].value,
1756 				&(pp_table->SocclkDid[i]),
1757 				&(pp_table->SocDpmVoltageIndex[i]));
1758 		if (result)
1759 			return result;
1760 	}
1761 
1762 	j = i - 1;
1763 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1764 		result = vega10_populate_single_soc_level(hwmgr,
1765 				dpm_table->dpm_levels[j].value,
1766 				&(pp_table->SocclkDid[i]),
1767 				&(pp_table->SocDpmVoltageIndex[i]));
1768 		if (result)
1769 			return result;
1770 		i++;
1771 	}
1772 
1773 	return result;
1774 }
1775 
1776 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1777 {
1778 	struct vega10_hwmgr *data = hwmgr->backend;
1779 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1780 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1781 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1782 
1783 	uint8_t soc_vid = 0;
1784 	uint32_t i, max_vddc_level;
1785 
1786 	if (hwmgr->od_enabled)
1787 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1788 	else
1789 		vddc_lookup_table = table_info->vddc_lookup_table;
1790 
1791 	max_vddc_level = vddc_lookup_table->count;
1792 	for (i = 0; i < max_vddc_level; i++) {
1793 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1794 		pp_table->SocVid[i] = soc_vid;
1795 	}
1796 	while (i < MAX_REGULAR_DPM_NUMBER) {
1797 		pp_table->SocVid[i] = soc_vid;
1798 		i++;
1799 	}
1800 }
1801 
1802 /*
1803  * Populates single SMC GFXCLK structure using the provided clock.
1804  *
1805  * @hwmgr:     the address of the hardware manager.
1806  * @mem_clock: the memory clock to use to populate the structure.
1807  * return:     0 on success..
1808  */
1809 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1810 		uint32_t mem_clock, uint8_t *current_mem_vid,
1811 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1812 {
1813 	struct vega10_hwmgr *data = hwmgr->backend;
1814 	struct phm_ppt_v2_information *table_info =
1815 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1816 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1817 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1818 	uint32_t mem_max_clock =
1819 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1820 	uint32_t i = 0;
1821 
1822 	if (hwmgr->od_enabled)
1823 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1824 					&data->odn_dpm_table.vdd_dep_on_mclk;
1825 	else
1826 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1827 
1828 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1829 			"Invalid SOC_VDD-UCLK Dependency Table!",
1830 			return -EINVAL);
1831 
1832 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1833 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1834 	} else {
1835 		for (i = 0; i < dep_on_mclk->count; i++) {
1836 			if (dep_on_mclk->entries[i].clk == mem_clock)
1837 				break;
1838 		}
1839 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1840 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1841 				return -EINVAL);
1842 	}
1843 
1844 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1845 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1846 			"Failed to get UCLK settings from VBIOS!",
1847 			return -1);
1848 
1849 	*current_mem_vid =
1850 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1851 	*current_mem_soc_vind =
1852 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1853 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1854 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1855 
1856 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1857 			"Invalid Divider ID!",
1858 			return -EINVAL);
1859 
1860 	return 0;
1861 }
1862 
1863 /**
1864  * vega10_populate_all_memory_levels - Populates all SMC MCLK levels' structure
1865  *                                     based on the trimmed allowed dpm memory clock states.
1866  *
1867  * @hwmgr:  the address of the hardware manager.
1868  * return:   PP_Result_OK on success.
1869  */
1870 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1871 {
1872 	struct vega10_hwmgr *data = hwmgr->backend;
1873 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1874 	struct vega10_single_dpm_table *dpm_table =
1875 			&(data->dpm_table.mem_table);
1876 	int result = 0;
1877 	uint32_t i, j;
1878 
1879 	for (i = 0; i < dpm_table->count; i++) {
1880 		result = vega10_populate_single_memory_level(hwmgr,
1881 				dpm_table->dpm_levels[i].value,
1882 				&(pp_table->MemVid[i]),
1883 				&(pp_table->UclkLevel[i]),
1884 				&(pp_table->MemSocVoltageIndex[i]));
1885 		if (result)
1886 			return result;
1887 	}
1888 
1889 	j = i - 1;
1890 	while (i < NUM_UCLK_DPM_LEVELS) {
1891 		result = vega10_populate_single_memory_level(hwmgr,
1892 				dpm_table->dpm_levels[j].value,
1893 				&(pp_table->MemVid[i]),
1894 				&(pp_table->UclkLevel[i]),
1895 				&(pp_table->MemSocVoltageIndex[i]));
1896 		if (result)
1897 			return result;
1898 		i++;
1899 	}
1900 
1901 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1902 	pp_table->MemoryChannelWidth =
1903 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1904 					channel_number[data->mem_channels]);
1905 
1906 	pp_table->LowestUclkReservedForUlv =
1907 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1908 
1909 	return result;
1910 }
1911 
1912 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1913 		DSPCLK_e disp_clock)
1914 {
1915 	struct vega10_hwmgr *data = hwmgr->backend;
1916 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1917 	struct phm_ppt_v2_information *table_info =
1918 			(struct phm_ppt_v2_information *)
1919 			(hwmgr->pptable);
1920 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1921 	uint32_t i;
1922 	uint16_t clk = 0, vddc = 0;
1923 	uint8_t vid = 0;
1924 
1925 	switch (disp_clock) {
1926 	case DSPCLK_DCEFCLK:
1927 		dep_table = table_info->vdd_dep_on_dcefclk;
1928 		break;
1929 	case DSPCLK_DISPCLK:
1930 		dep_table = table_info->vdd_dep_on_dispclk;
1931 		break;
1932 	case DSPCLK_PIXCLK:
1933 		dep_table = table_info->vdd_dep_on_pixclk;
1934 		break;
1935 	case DSPCLK_PHYCLK:
1936 		dep_table = table_info->vdd_dep_on_phyclk;
1937 		break;
1938 	default:
1939 		return -1;
1940 	}
1941 
1942 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1943 			"Number Of Entries Exceeded maximum!",
1944 			return -1);
1945 
1946 	for (i = 0; i < dep_table->count; i++) {
1947 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1948 		vddc = table_info->vddc_lookup_table->
1949 				entries[dep_table->entries[i].vddInd].us_vdd;
1950 		vid = (uint8_t)convert_to_vid(vddc);
1951 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1952 				cpu_to_le16(clk);
1953 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1954 				cpu_to_le16(vid);
1955 	}
1956 
1957 	while (i < NUM_DSPCLK_LEVELS) {
1958 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1959 				cpu_to_le16(clk);
1960 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1961 				cpu_to_le16(vid);
1962 		i++;
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1969 {
1970 	uint32_t i;
1971 
1972 	for (i = 0; i < DSPCLK_COUNT; i++) {
1973 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1974 				"Failed to populate Clock in DisplayClockTable!",
1975 				return -1);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1982 		uint32_t eclock, uint8_t *current_eclk_did,
1983 		uint8_t *current_soc_vol)
1984 {
1985 	struct phm_ppt_v2_information *table_info =
1986 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1987 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1988 			table_info->mm_dep_table;
1989 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1990 	uint32_t i;
1991 
1992 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1993 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1994 			eclock, &dividers),
1995 			"Failed to get ECLK clock settings from VBIOS!",
1996 			return -1);
1997 
1998 	*current_eclk_did = (uint8_t)dividers.ulDid;
1999 
2000 	for (i = 0; i < dep_table->count; i++) {
2001 		if (dep_table->entries[i].eclk == eclock)
2002 			*current_soc_vol = dep_table->entries[i].vddcInd;
2003 	}
2004 
2005 	return 0;
2006 }
2007 
2008 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
2009 {
2010 	struct vega10_hwmgr *data = hwmgr->backend;
2011 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2012 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
2013 	int result = -EINVAL;
2014 	uint32_t i, j;
2015 
2016 	for (i = 0; i < dpm_table->count; i++) {
2017 		result = vega10_populate_single_eclock_level(hwmgr,
2018 				dpm_table->dpm_levels[i].value,
2019 				&(pp_table->EclkDid[i]),
2020 				&(pp_table->VceDpmVoltageIndex[i]));
2021 		if (result)
2022 			return result;
2023 	}
2024 
2025 	j = i - 1;
2026 	while (i < NUM_VCE_DPM_LEVELS) {
2027 		result = vega10_populate_single_eclock_level(hwmgr,
2028 				dpm_table->dpm_levels[j].value,
2029 				&(pp_table->EclkDid[i]),
2030 				&(pp_table->VceDpmVoltageIndex[i]));
2031 		if (result)
2032 			return result;
2033 		i++;
2034 	}
2035 
2036 	return result;
2037 }
2038 
2039 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
2040 		uint32_t vclock, uint8_t *current_vclk_did)
2041 {
2042 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2043 
2044 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2045 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2046 			vclock, &dividers),
2047 			"Failed to get VCLK clock settings from VBIOS!",
2048 			return -EINVAL);
2049 
2050 	*current_vclk_did = (uint8_t)dividers.ulDid;
2051 
2052 	return 0;
2053 }
2054 
2055 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2056 		uint32_t dclock, uint8_t *current_dclk_did)
2057 {
2058 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2059 
2060 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2061 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2062 			dclock, &dividers),
2063 			"Failed to get DCLK clock settings from VBIOS!",
2064 			return -EINVAL);
2065 
2066 	*current_dclk_did = (uint8_t)dividers.ulDid;
2067 
2068 	return 0;
2069 }
2070 
2071 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2072 {
2073 	struct vega10_hwmgr *data = hwmgr->backend;
2074 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2075 	struct vega10_single_dpm_table *vclk_dpm_table =
2076 			&(data->dpm_table.vclk_table);
2077 	struct vega10_single_dpm_table *dclk_dpm_table =
2078 			&(data->dpm_table.dclk_table);
2079 	struct phm_ppt_v2_information *table_info =
2080 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2081 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2082 			table_info->mm_dep_table;
2083 	int result = -EINVAL;
2084 	uint32_t i, j;
2085 
2086 	for (i = 0; i < vclk_dpm_table->count; i++) {
2087 		result = vega10_populate_single_vclock_level(hwmgr,
2088 				vclk_dpm_table->dpm_levels[i].value,
2089 				&(pp_table->VclkDid[i]));
2090 		if (result)
2091 			return result;
2092 	}
2093 
2094 	j = i - 1;
2095 	while (i < NUM_UVD_DPM_LEVELS) {
2096 		result = vega10_populate_single_vclock_level(hwmgr,
2097 				vclk_dpm_table->dpm_levels[j].value,
2098 				&(pp_table->VclkDid[i]));
2099 		if (result)
2100 			return result;
2101 		i++;
2102 	}
2103 
2104 	for (i = 0; i < dclk_dpm_table->count; i++) {
2105 		result = vega10_populate_single_dclock_level(hwmgr,
2106 				dclk_dpm_table->dpm_levels[i].value,
2107 				&(pp_table->DclkDid[i]));
2108 		if (result)
2109 			return result;
2110 	}
2111 
2112 	j = i - 1;
2113 	while (i < NUM_UVD_DPM_LEVELS) {
2114 		result = vega10_populate_single_dclock_level(hwmgr,
2115 				dclk_dpm_table->dpm_levels[j].value,
2116 				&(pp_table->DclkDid[i]));
2117 		if (result)
2118 			return result;
2119 		i++;
2120 	}
2121 
2122 	for (i = 0; i < dep_table->count; i++) {
2123 		if (dep_table->entries[i].vclk ==
2124 				vclk_dpm_table->dpm_levels[i].value &&
2125 			dep_table->entries[i].dclk ==
2126 				dclk_dpm_table->dpm_levels[i].value)
2127 			pp_table->UvdDpmVoltageIndex[i] =
2128 					dep_table->entries[i].vddcInd;
2129 		else
2130 			return -1;
2131 	}
2132 
2133 	j = i - 1;
2134 	while (i < NUM_UVD_DPM_LEVELS) {
2135 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2136 		i++;
2137 	}
2138 
2139 	return 0;
2140 }
2141 
2142 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2143 {
2144 	struct vega10_hwmgr *data = hwmgr->backend;
2145 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2146 	struct phm_ppt_v2_information *table_info =
2147 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2148 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2149 			table_info->vdd_dep_on_sclk;
2150 	uint32_t i;
2151 
2152 	for (i = 0; i < dep_table->count; i++) {
2153 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2154 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2155 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2162 {
2163 	struct vega10_hwmgr *data = hwmgr->backend;
2164 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2165 	struct phm_ppt_v2_information *table_info =
2166 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2167 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2168 			table_info->vdd_dep_on_sclk;
2169 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2170 	int result = 0;
2171 	uint32_t i;
2172 
2173 	pp_table->MinVoltageVid = (uint8_t)0xff;
2174 	pp_table->MaxVoltageVid = (uint8_t)0;
2175 
2176 	if (data->smu_features[GNLD_AVFS].supported) {
2177 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2178 		if (!result) {
2179 			pp_table->MinVoltageVid = (uint8_t)
2180 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2181 			pp_table->MaxVoltageVid = (uint8_t)
2182 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2183 
2184 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2185 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2186 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2187 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2188 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2189 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2190 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2191 
2192 			pp_table->BtcGbVdroopTableCksOff.a0 =
2193 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2194 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2195 			pp_table->BtcGbVdroopTableCksOff.a1 =
2196 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2197 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2198 			pp_table->BtcGbVdroopTableCksOff.a2 =
2199 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2200 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2201 
2202 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2203 			pp_table->BtcGbVdroopTableCksOn.a0 =
2204 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2205 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2206 			pp_table->BtcGbVdroopTableCksOn.a1 =
2207 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2208 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2209 			pp_table->BtcGbVdroopTableCksOn.a2 =
2210 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2211 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2212 
2213 			pp_table->AvfsGbCksOn.m1 =
2214 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2215 			pp_table->AvfsGbCksOn.m2 =
2216 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2217 			pp_table->AvfsGbCksOn.b =
2218 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2219 			pp_table->AvfsGbCksOn.m1_shift = 24;
2220 			pp_table->AvfsGbCksOn.m2_shift = 12;
2221 			pp_table->AvfsGbCksOn.b_shift = 0;
2222 
2223 			pp_table->OverrideAvfsGbCksOn =
2224 					avfs_params.ucEnableGbFuseTableCkson;
2225 			pp_table->AvfsGbCksOff.m1 =
2226 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2227 			pp_table->AvfsGbCksOff.m2 =
2228 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2229 			pp_table->AvfsGbCksOff.b =
2230 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2231 			pp_table->AvfsGbCksOff.m1_shift = 24;
2232 			pp_table->AvfsGbCksOff.m2_shift = 12;
2233 			pp_table->AvfsGbCksOff.b_shift = 0;
2234 
2235 			for (i = 0; i < dep_table->count; i++)
2236 				pp_table->StaticVoltageOffsetVid[i] =
2237 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2238 
2239 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2240 					data->disp_clk_quad_eqn_a) &&
2241 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2242 					data->disp_clk_quad_eqn_b)) {
2243 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2244 						(int32_t)data->disp_clk_quad_eqn_a;
2245 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2246 						(int32_t)data->disp_clk_quad_eqn_b;
2247 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2248 						(int32_t)data->disp_clk_quad_eqn_c;
2249 			} else {
2250 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2251 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2252 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2253 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2254 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2255 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2256 			}
2257 
2258 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2259 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2260 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2261 
2262 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2263 					data->dcef_clk_quad_eqn_a) &&
2264 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2265 					data->dcef_clk_quad_eqn_b)) {
2266 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2267 						(int32_t)data->dcef_clk_quad_eqn_a;
2268 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2269 						(int32_t)data->dcef_clk_quad_eqn_b;
2270 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2271 						(int32_t)data->dcef_clk_quad_eqn_c;
2272 			} else {
2273 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2274 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2275 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2276 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2277 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2278 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2279 			}
2280 
2281 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2282 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2283 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2284 
2285 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2286 					data->pixel_clk_quad_eqn_a) &&
2287 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2288 					data->pixel_clk_quad_eqn_b)) {
2289 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2290 						(int32_t)data->pixel_clk_quad_eqn_a;
2291 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2292 						(int32_t)data->pixel_clk_quad_eqn_b;
2293 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2294 						(int32_t)data->pixel_clk_quad_eqn_c;
2295 			} else {
2296 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2297 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2298 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2299 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2300 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2301 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2302 			}
2303 
2304 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2305 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2306 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2307 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2308 					data->phy_clk_quad_eqn_a) &&
2309 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2310 					data->phy_clk_quad_eqn_b)) {
2311 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2312 						(int32_t)data->phy_clk_quad_eqn_a;
2313 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2314 						(int32_t)data->phy_clk_quad_eqn_b;
2315 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2316 						(int32_t)data->phy_clk_quad_eqn_c;
2317 			} else {
2318 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2319 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2320 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2321 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2322 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2323 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2324 			}
2325 
2326 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2327 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2328 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2329 
2330 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2331 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2332 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2333 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2334 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2335 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2336 
2337 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2338 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2339 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2340 			pp_table->AcgAvfsGb.m1_shift             = 24;
2341 			pp_table->AcgAvfsGb.m2_shift             = 12;
2342 			pp_table->AcgAvfsGb.b_shift              = 0;
2343 
2344 		} else {
2345 			data->smu_features[GNLD_AVFS].supported = false;
2346 		}
2347 	}
2348 
2349 	return 0;
2350 }
2351 
2352 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2353 {
2354 	struct vega10_hwmgr *data = hwmgr->backend;
2355 	uint32_t agc_btc_response;
2356 
2357 	if (data->smu_features[GNLD_ACG].supported) {
2358 		if (0 == vega10_enable_smc_features(hwmgr, true,
2359 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2360 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2361 
2362 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2363 
2364 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2365 
2366 		if (1 == agc_btc_response) {
2367 			if (1 == data->acg_loop_state)
2368 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2369 			else if (2 == data->acg_loop_state)
2370 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2371 			if (0 == vega10_enable_smc_features(hwmgr, true,
2372 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2373 					data->smu_features[GNLD_ACG].enabled = true;
2374 		} else {
2375 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2376 			data->smu_features[GNLD_ACG].enabled = false;
2377 		}
2378 	}
2379 
2380 	return 0;
2381 }
2382 
2383 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2384 {
2385 	struct vega10_hwmgr *data = hwmgr->backend;
2386 
2387 	if (data->smu_features[GNLD_ACG].supported &&
2388 	    data->smu_features[GNLD_ACG].enabled)
2389 		if (!vega10_enable_smc_features(hwmgr, false,
2390 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2391 			data->smu_features[GNLD_ACG].enabled = false;
2392 
2393 	return 0;
2394 }
2395 
2396 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2397 {
2398 	struct vega10_hwmgr *data = hwmgr->backend;
2399 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2400 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2401 	int result;
2402 
2403 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2404 	if (!result) {
2405 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2406 		    data->registry_data.regulator_hot_gpio_support) {
2407 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2408 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2409 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2410 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2411 		} else {
2412 			pp_table->VR0HotGpio = 0;
2413 			pp_table->VR0HotPolarity = 0;
2414 			pp_table->VR1HotGpio = 0;
2415 			pp_table->VR1HotPolarity = 0;
2416 		}
2417 
2418 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2419 		    data->registry_data.ac_dc_switch_gpio_support) {
2420 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2421 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2422 		} else {
2423 			pp_table->AcDcGpio = 0;
2424 			pp_table->AcDcPolarity = 0;
2425 		}
2426 	}
2427 
2428 	return result;
2429 }
2430 
2431 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2432 {
2433 	struct vega10_hwmgr *data = hwmgr->backend;
2434 
2435 	if (data->smu_features[GNLD_AVFS].supported) {
2436 		/* Already enabled or disabled */
2437 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2438 			return 0;
2439 
2440 		if (enable) {
2441 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2442 					true,
2443 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2444 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2445 					return -1);
2446 			data->smu_features[GNLD_AVFS].enabled = true;
2447 		} else {
2448 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2449 					false,
2450 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2451 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2452 					return -1);
2453 			data->smu_features[GNLD_AVFS].enabled = false;
2454 		}
2455 	}
2456 
2457 	return 0;
2458 }
2459 
2460 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2461 {
2462 	struct vega10_hwmgr *data = hwmgr->backend;
2463 
2464 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2465 		vega10_avfs_enable(hwmgr, false);
2466 	} else if (data->need_update_dpm_table) {
2467 		vega10_avfs_enable(hwmgr, false);
2468 		vega10_avfs_enable(hwmgr, true);
2469 	} else {
2470 		vega10_avfs_enable(hwmgr, true);
2471 	}
2472 
2473 	return 0;
2474 }
2475 
2476 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2477 {
2478 	int result = 0;
2479 
2480 	uint64_t serial_number = 0;
2481 	uint32_t top32, bottom32;
2482 	struct phm_fuses_default fuse;
2483 
2484 	struct vega10_hwmgr *data = hwmgr->backend;
2485 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2486 
2487 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2488 
2489 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2490 
2491 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2492 
2493 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2494 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2495 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2496 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2497 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2498 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2499 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2500 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2501 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2502 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2503 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2504 						AVFSFUSETABLE, false);
2505 		PP_ASSERT_WITH_CODE(!result,
2506 			"Failed to upload FuseOVerride!",
2507 			);
2508 	}
2509 
2510 	return result;
2511 }
2512 
2513 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2514 {
2515 	struct vega10_hwmgr *data = hwmgr->backend;
2516 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2517 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2518 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2519 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2520 	uint32_t i;
2521 
2522 	dep_table = table_info->vdd_dep_on_mclk;
2523 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2524 
2525 	for (i = 0; i < dep_table->count; i++) {
2526 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2527 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2528 			return;
2529 		}
2530 	}
2531 
2532 	dep_table = table_info->vdd_dep_on_sclk;
2533 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2534 	for (i = 0; i < dep_table->count; i++) {
2535 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2536 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2537 			return;
2538 		}
2539 	}
2540 }
2541 
2542 /**
2543  * vega10_init_smc_table - Initializes the SMC table and uploads it
2544  *
2545  * @hwmgr:  the address of the powerplay hardware manager.
2546  * return:  always 0
2547  */
2548 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2549 {
2550 	int result;
2551 	struct vega10_hwmgr *data = hwmgr->backend;
2552 	struct phm_ppt_v2_information *table_info =
2553 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2554 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2555 	struct pp_atomfwctrl_voltage_table voltage_table;
2556 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2557 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2558 
2559 	result = vega10_setup_default_dpm_tables(hwmgr);
2560 	PP_ASSERT_WITH_CODE(!result,
2561 			"Failed to setup default DPM tables!",
2562 			return result);
2563 
2564 	if (!hwmgr->not_vf)
2565 		return 0;
2566 
2567 	/* initialize ODN table */
2568 	if (hwmgr->od_enabled) {
2569 		if (odn_table->max_vddc) {
2570 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2571 			vega10_check_dpm_table_updated(hwmgr);
2572 		} else {
2573 			vega10_odn_initial_default_setting(hwmgr);
2574 		}
2575 	}
2576 
2577 	pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2578 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2579 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2580 
2581 	pp_table->GfxDpmVoltageMode =
2582 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2583 	pp_table->SocDpmVoltageMode =
2584 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2585 	pp_table->UclkDpmVoltageMode =
2586 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2587 	pp_table->UvdDpmVoltageMode =
2588 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2589 	pp_table->VceDpmVoltageMode =
2590 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2591 	pp_table->Mp0DpmVoltageMode =
2592 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2593 
2594 	pp_table->DisplayDpmVoltageMode =
2595 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2596 
2597 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2598 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2599 
2600 	if (data->registry_data.ulv_support &&
2601 			table_info->us_ulv_voltage_offset) {
2602 		result = vega10_populate_ulv_state(hwmgr);
2603 		PP_ASSERT_WITH_CODE(!result,
2604 				"Failed to initialize ULV state!",
2605 				return result);
2606 	}
2607 
2608 	result = vega10_populate_smc_link_levels(hwmgr);
2609 	PP_ASSERT_WITH_CODE(!result,
2610 			"Failed to initialize Link Level!",
2611 			return result);
2612 
2613 	result = vega10_override_pcie_parameters(hwmgr);
2614 	PP_ASSERT_WITH_CODE(!result,
2615 			"Failed to override pcie parameters!",
2616 			return result);
2617 
2618 	result = vega10_populate_all_graphic_levels(hwmgr);
2619 	PP_ASSERT_WITH_CODE(!result,
2620 			"Failed to initialize Graphics Level!",
2621 			return result);
2622 
2623 	result = vega10_populate_all_memory_levels(hwmgr);
2624 	PP_ASSERT_WITH_CODE(!result,
2625 			"Failed to initialize Memory Level!",
2626 			return result);
2627 
2628 	vega10_populate_vddc_soc_levels(hwmgr);
2629 
2630 	result = vega10_populate_all_display_clock_levels(hwmgr);
2631 	PP_ASSERT_WITH_CODE(!result,
2632 			"Failed to initialize Display Level!",
2633 			return result);
2634 
2635 	result = vega10_populate_smc_vce_levels(hwmgr);
2636 	PP_ASSERT_WITH_CODE(!result,
2637 			"Failed to initialize VCE Level!",
2638 			return result);
2639 
2640 	result = vega10_populate_smc_uvd_levels(hwmgr);
2641 	PP_ASSERT_WITH_CODE(!result,
2642 			"Failed to initialize UVD Level!",
2643 			return result);
2644 
2645 	if (data->registry_data.clock_stretcher_support) {
2646 		result = vega10_populate_clock_stretcher_table(hwmgr);
2647 		PP_ASSERT_WITH_CODE(!result,
2648 				"Failed to populate Clock Stretcher Table!",
2649 				return result);
2650 	}
2651 
2652 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2653 	if (!result) {
2654 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2655 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2656 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2657 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2658 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2659 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2660 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2661 
2662 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2663 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2664 
2665 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2666 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2667 		if (0 != boot_up_values.usVddc) {
2668 			smum_send_msg_to_smc_with_parameter(hwmgr,
2669 						PPSMC_MSG_SetFloorSocVoltage,
2670 						(boot_up_values.usVddc * 4),
2671 						NULL);
2672 			data->vbios_boot_state.bsoc_vddc_lock = true;
2673 		} else {
2674 			data->vbios_boot_state.bsoc_vddc_lock = false;
2675 		}
2676 		smum_send_msg_to_smc_with_parameter(hwmgr,
2677 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2678 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2679 				NULL);
2680 	}
2681 
2682 	result = vega10_populate_avfs_parameters(hwmgr);
2683 	PP_ASSERT_WITH_CODE(!result,
2684 			"Failed to initialize AVFS Parameters!",
2685 			return result);
2686 
2687 	result = vega10_populate_gpio_parameters(hwmgr);
2688 	PP_ASSERT_WITH_CODE(!result,
2689 			"Failed to initialize GPIO Parameters!",
2690 			return result);
2691 
2692 	pp_table->GfxclkAverageAlpha = (uint8_t)
2693 			(data->gfxclk_average_alpha);
2694 	pp_table->SocclkAverageAlpha = (uint8_t)
2695 			(data->socclk_average_alpha);
2696 	pp_table->UclkAverageAlpha = (uint8_t)
2697 			(data->uclk_average_alpha);
2698 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2699 			(data->gfx_activity_average_alpha);
2700 
2701 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2702 
2703 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2704 
2705 	PP_ASSERT_WITH_CODE(!result,
2706 			"Failed to upload PPtable!", return result);
2707 
2708 	result = vega10_avfs_enable(hwmgr, true);
2709 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2710 					return result);
2711 	vega10_acg_enable(hwmgr);
2712 
2713 	return 0;
2714 }
2715 
2716 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2717 {
2718 	struct vega10_hwmgr *data = hwmgr->backend;
2719 
2720 	if (data->smu_features[GNLD_THERMAL].supported) {
2721 		if (data->smu_features[GNLD_THERMAL].enabled)
2722 			pr_info("THERMAL Feature Already enabled!");
2723 
2724 		PP_ASSERT_WITH_CODE(
2725 				!vega10_enable_smc_features(hwmgr,
2726 				true,
2727 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2728 				"Enable THERMAL Feature Failed!",
2729 				return -1);
2730 		data->smu_features[GNLD_THERMAL].enabled = true;
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2737 {
2738 	struct vega10_hwmgr *data = hwmgr->backend;
2739 
2740 	if (data->smu_features[GNLD_THERMAL].supported) {
2741 		if (!data->smu_features[GNLD_THERMAL].enabled)
2742 			pr_info("THERMAL Feature Already disabled!");
2743 
2744 		PP_ASSERT_WITH_CODE(
2745 				!vega10_enable_smc_features(hwmgr,
2746 				false,
2747 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2748 				"disable THERMAL Feature Failed!",
2749 				return -1);
2750 		data->smu_features[GNLD_THERMAL].enabled = false;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2757 {
2758 	struct vega10_hwmgr *data = hwmgr->backend;
2759 
2760 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2761 		if (data->smu_features[GNLD_VR0HOT].supported) {
2762 			PP_ASSERT_WITH_CODE(
2763 					!vega10_enable_smc_features(hwmgr,
2764 					true,
2765 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2766 					"Attempt to Enable VR0 Hot feature Failed!",
2767 					return -1);
2768 			data->smu_features[GNLD_VR0HOT].enabled = true;
2769 		} else {
2770 			if (data->smu_features[GNLD_VR1HOT].supported) {
2771 				PP_ASSERT_WITH_CODE(
2772 						!vega10_enable_smc_features(hwmgr,
2773 						true,
2774 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2775 						"Attempt to Enable VR0 Hot feature Failed!",
2776 						return -1);
2777 				data->smu_features[GNLD_VR1HOT].enabled = true;
2778 			}
2779 		}
2780 	}
2781 	return 0;
2782 }
2783 
2784 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2785 {
2786 	struct vega10_hwmgr *data = hwmgr->backend;
2787 
2788 	if (data->registry_data.ulv_support) {
2789 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2790 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2791 				"Enable ULV Feature Failed!",
2792 				return -1);
2793 		data->smu_features[GNLD_ULV].enabled = true;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2800 {
2801 	struct vega10_hwmgr *data = hwmgr->backend;
2802 
2803 	if (data->registry_data.ulv_support) {
2804 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2805 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2806 				"disable ULV Feature Failed!",
2807 				return -EINVAL);
2808 		data->smu_features[GNLD_ULV].enabled = false;
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2815 {
2816 	struct vega10_hwmgr *data = hwmgr->backend;
2817 
2818 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2819 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2820 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2821 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2822 				return -EINVAL);
2823 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2824 	}
2825 
2826 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2827 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2828 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2829 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2830 				return -EINVAL);
2831 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2832 	}
2833 
2834 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2835 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2836 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2837 				"Attempt to Enable DS_LCLK Feature Failed!",
2838 				return -EINVAL);
2839 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2840 	}
2841 
2842 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2843 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2844 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2845 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2846 				return -EINVAL);
2847 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2854 {
2855 	struct vega10_hwmgr *data = hwmgr->backend;
2856 
2857 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2858 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2859 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2860 				"Attempt to disable DS_GFXCLK Feature Failed!",
2861 				return -EINVAL);
2862 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2863 	}
2864 
2865 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2866 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2867 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2868 				"Attempt to disable DS_ Feature Failed!",
2869 				return -EINVAL);
2870 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2871 	}
2872 
2873 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2874 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2875 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2876 				"Attempt to disable DS_LCLK Feature Failed!",
2877 				return -EINVAL);
2878 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2879 	}
2880 
2881 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2882 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2883 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2884 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2885 				return -EINVAL);
2886 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2893 {
2894 	struct vega10_hwmgr *data = hwmgr->backend;
2895 	uint32_t i, feature_mask = 0;
2896 
2897 	if (!hwmgr->not_vf)
2898 		return 0;
2899 
2900 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2901 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2902 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2903 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2904 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2905 	}
2906 
2907 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2908 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2909 			if (data->smu_features[i].supported) {
2910 				if (data->smu_features[i].enabled) {
2911 					feature_mask |= data->smu_features[i].
2912 							smu_feature_bitmap;
2913 					data->smu_features[i].enabled = false;
2914 				}
2915 			}
2916 		}
2917 	}
2918 
2919 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2920 
2921 	return 0;
2922 }
2923 
2924 /**
2925  * vega10_start_dpm - Tell SMC to enabled the supported DPMs.
2926  *
2927  * @hwmgr:   the address of the powerplay hardware manager.
2928  * @bitmap:  bitmap for the features to enabled.
2929  * return:  0 on at least one DPM is successfully enabled.
2930  */
2931 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2932 {
2933 	struct vega10_hwmgr *data = hwmgr->backend;
2934 	uint32_t i, feature_mask = 0;
2935 
2936 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2937 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2938 			if (data->smu_features[i].supported) {
2939 				if (!data->smu_features[i].enabled) {
2940 					feature_mask |= data->smu_features[i].
2941 							smu_feature_bitmap;
2942 					data->smu_features[i].enabled = true;
2943 				}
2944 			}
2945 		}
2946 	}
2947 
2948 	if (vega10_enable_smc_features(hwmgr,
2949 			true, feature_mask)) {
2950 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2951 			if (data->smu_features[i].smu_feature_bitmap &
2952 					feature_mask)
2953 				data->smu_features[i].enabled = false;
2954 		}
2955 	}
2956 
2957 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2958 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2959 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2960 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2961 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2962 	}
2963 
2964 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2965 		smum_send_msg_to_smc_with_parameter(hwmgr,
2966 						PPSMC_MSG_SetFloorSocVoltage, 0,
2967 						NULL);
2968 		data->vbios_boot_state.bsoc_vddc_lock = false;
2969 	}
2970 
2971 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2972 		if (data->smu_features[GNLD_ACDC].supported) {
2973 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2974 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2975 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2976 					return -1);
2977 			data->smu_features[GNLD_ACDC].enabled = true;
2978 		}
2979 	}
2980 
2981 	if (data->registry_data.pcie_dpm_key_disabled) {
2982 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2983 				false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap),
2984 		"Attempt to Disable Link DPM feature Failed!", return -EINVAL);
2985 		data->smu_features[GNLD_DPM_LINK].enabled = false;
2986 		data->smu_features[GNLD_DPM_LINK].supported = false;
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 
2993 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
2994 {
2995 	struct vega10_hwmgr *data = hwmgr->backend;
2996 
2997 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
2998 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
2999 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
3000 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3001 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
3002 				"Attempt to Enable PCC Limit feature Failed!",
3003 				return -EINVAL);
3004 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
3005 	}
3006 
3007 	return 0;
3008 }
3009 
3010 static void vega10_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
3011 {
3012 	struct phm_ppt_v2_information *table_info =
3013 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3014 
3015 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
3016 	    table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
3017 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
3018 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
3019 	} else {
3020 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3021 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[0].clk;
3022 	}
3023 
3024 	hwmgr->pstate_sclk_peak = table_info->vdd_dep_on_sclk->entries[table_info->vdd_dep_on_sclk->count - 1].clk;
3025 	hwmgr->pstate_mclk_peak = table_info->vdd_dep_on_mclk->entries[table_info->vdd_dep_on_mclk->count - 1].clk;
3026 
3027 	/* make sure the output is in Mhz */
3028 	hwmgr->pstate_sclk /= 100;
3029 	hwmgr->pstate_mclk /= 100;
3030 	hwmgr->pstate_sclk_peak /= 100;
3031 	hwmgr->pstate_mclk_peak /= 100;
3032 }
3033 
3034 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3035 {
3036 	struct vega10_hwmgr *data = hwmgr->backend;
3037 	int tmp_result, result = 0;
3038 
3039 	if (hwmgr->not_vf) {
3040 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
3041 
3042 		smum_send_msg_to_smc_with_parameter(hwmgr,
3043 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
3044 			NULL);
3045 
3046 		tmp_result = vega10_construct_voltage_tables(hwmgr);
3047 		PP_ASSERT_WITH_CODE(!tmp_result,
3048 				    "Failed to construct voltage tables!",
3049 				    result = tmp_result);
3050 	}
3051 
3052 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
3053 		tmp_result = vega10_init_smc_table(hwmgr);
3054 		PP_ASSERT_WITH_CODE(!tmp_result,
3055 				    "Failed to initialize SMC table!",
3056 				    result = tmp_result);
3057 	}
3058 
3059 	if (hwmgr->not_vf) {
3060 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
3061 			tmp_result = vega10_enable_thermal_protection(hwmgr);
3062 			PP_ASSERT_WITH_CODE(!tmp_result,
3063 					    "Failed to enable thermal protection!",
3064 					    result = tmp_result);
3065 		}
3066 
3067 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
3068 		PP_ASSERT_WITH_CODE(!tmp_result,
3069 				    "Failed to enable VR hot feature!",
3070 				    result = tmp_result);
3071 
3072 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
3073 		PP_ASSERT_WITH_CODE(!tmp_result,
3074 				    "Failed to enable deep sleep master switch!",
3075 				    result = tmp_result);
3076 	}
3077 
3078 	if (hwmgr->not_vf) {
3079 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
3080 		PP_ASSERT_WITH_CODE(!tmp_result,
3081 				    "Failed to start DPM!", result = tmp_result);
3082 	}
3083 
3084 	if (hwmgr->not_vf) {
3085 		/* enable didt, do not abort if failed didt */
3086 		tmp_result = vega10_enable_didt_config(hwmgr);
3087 		PP_ASSERT(!tmp_result,
3088 			  "Failed to enable didt config!");
3089 	}
3090 
3091 	tmp_result = vega10_enable_power_containment(hwmgr);
3092 	PP_ASSERT_WITH_CODE(!tmp_result,
3093 			    "Failed to enable power containment!",
3094 			    result = tmp_result);
3095 
3096 	if (hwmgr->not_vf) {
3097 		tmp_result = vega10_power_control_set_level(hwmgr);
3098 		PP_ASSERT_WITH_CODE(!tmp_result,
3099 				    "Failed to power control set level!",
3100 				    result = tmp_result);
3101 
3102 		tmp_result = vega10_enable_ulv(hwmgr);
3103 		PP_ASSERT_WITH_CODE(!tmp_result,
3104 				    "Failed to enable ULV!",
3105 				    result = tmp_result);
3106 	}
3107 
3108 	vega10_populate_umdpstate_clocks(hwmgr);
3109 
3110 	return result;
3111 }
3112 
3113 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3114 {
3115 	return sizeof(struct vega10_power_state);
3116 }
3117 
3118 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3119 		void *state, struct pp_power_state *power_state,
3120 		void *pp_table, uint32_t classification_flag)
3121 {
3122 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3123 	struct vega10_power_state *vega10_ps =
3124 			cast_phw_vega10_power_state(&(power_state->hardware));
3125 	struct vega10_performance_level *performance_level;
3126 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3127 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3128 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3129 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3130 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3131 			(((unsigned long)powerplay_table) +
3132 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3133 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3134 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3135 			(((unsigned long)powerplay_table) +
3136 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3137 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3138 			(ATOM_Vega10_MCLK_Dependency_Table *)
3139 			(((unsigned long)powerplay_table) +
3140 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3141 
3142 
3143 	/* The following fields are not initialized here:
3144 	 * id orderedList allStatesList
3145 	 */
3146 	power_state->classification.ui_label =
3147 			(le16_to_cpu(state_entry->usClassification) &
3148 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3149 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3150 	power_state->classification.flags = classification_flag;
3151 	/* NOTE: There is a classification2 flag in BIOS
3152 	 * that is not being used right now
3153 	 */
3154 	power_state->classification.temporary_state = false;
3155 	power_state->classification.to_be_deleted = false;
3156 
3157 	power_state->validation.disallowOnDC =
3158 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3159 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3160 
3161 	power_state->display.disableFrameModulation = false;
3162 	power_state->display.limitRefreshrate = false;
3163 	power_state->display.enableVariBright =
3164 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3165 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3166 
3167 	power_state->validation.supportedPowerLevels = 0;
3168 	power_state->uvd_clocks.VCLK = 0;
3169 	power_state->uvd_clocks.DCLK = 0;
3170 	power_state->temperatures.min = 0;
3171 	power_state->temperatures.max = 0;
3172 
3173 	performance_level = &(vega10_ps->performance_levels
3174 			[vega10_ps->performance_level_count++]);
3175 
3176 	PP_ASSERT_WITH_CODE(
3177 			(vega10_ps->performance_level_count <
3178 					NUM_GFXCLK_DPM_LEVELS),
3179 			"Performance levels exceeds SMC limit!",
3180 			return -1);
3181 
3182 	PP_ASSERT_WITH_CODE(
3183 			(vega10_ps->performance_level_count <
3184 					hwmgr->platform_descriptor.
3185 					hardwareActivityPerformanceLevels),
3186 			"Performance levels exceeds Driver limit!",
3187 			return -1);
3188 
3189 	/* Performance levels are arranged from low to high. */
3190 	performance_level->soc_clock = socclk_dep_table->entries
3191 			[state_entry->ucSocClockIndexLow].ulClk;
3192 	performance_level->gfx_clock = gfxclk_dep_table->entries
3193 			[state_entry->ucGfxClockIndexLow].ulClk;
3194 	performance_level->mem_clock = mclk_dep_table->entries
3195 			[state_entry->ucMemClockIndexLow].ulMemClk;
3196 
3197 	performance_level = &(vega10_ps->performance_levels
3198 				[vega10_ps->performance_level_count++]);
3199 	performance_level->soc_clock = socclk_dep_table->entries
3200 				[state_entry->ucSocClockIndexHigh].ulClk;
3201 	if (gfxclk_dep_table->ucRevId == 0) {
3202 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3203 		 * to level-4 due to the limited 110w-power
3204 		 */
3205 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3206 			performance_level->gfx_clock =
3207 				gfxclk_dep_table->entries[4].ulClk;
3208 		else
3209 			performance_level->gfx_clock = gfxclk_dep_table->entries
3210 				[state_entry->ucGfxClockIndexHigh].ulClk;
3211 	} else if (gfxclk_dep_table->ucRevId == 1) {
3212 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3213 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3214 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3215 		else
3216 			performance_level->gfx_clock =
3217 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3218 	}
3219 
3220 	performance_level->mem_clock = mclk_dep_table->entries
3221 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3222 	return 0;
3223 }
3224 
3225 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3226 		unsigned long entry_index, struct pp_power_state *state)
3227 {
3228 	int result;
3229 	struct vega10_power_state *vega10_ps;
3230 
3231 	state->hardware.magic = PhwVega10_Magic;
3232 
3233 	vega10_ps = cast_phw_vega10_power_state(&state->hardware);
3234 
3235 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3236 			vega10_get_pp_table_entry_callback_func);
3237 	if (result)
3238 		return result;
3239 
3240 	/*
3241 	 * This is the earliest time we have all the dependency table
3242 	 * and the VBIOS boot state
3243 	 */
3244 	/* set DC compatible flag if this state supports DC */
3245 	if (!state->validation.disallowOnDC)
3246 		vega10_ps->dc_compatible = true;
3247 
3248 	vega10_ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3249 	vega10_ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3250 
3251 	return 0;
3252 }
3253 
3254 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3255 	     struct pp_hw_power_state *hw_ps)
3256 {
3257 	return 0;
3258 }
3259 
3260 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3261 				struct pp_power_state  *request_ps,
3262 			const struct pp_power_state *current_ps)
3263 {
3264 	struct amdgpu_device *adev = hwmgr->adev;
3265 	struct vega10_power_state *vega10_ps =
3266 				cast_phw_vega10_power_state(&request_ps->hardware);
3267 	uint32_t sclk;
3268 	uint32_t mclk;
3269 	struct PP_Clocks minimum_clocks = {0};
3270 	bool disable_mclk_switching;
3271 	bool disable_mclk_switching_for_frame_lock;
3272 	bool disable_mclk_switching_for_vr;
3273 	bool force_mclk_high;
3274 	const struct phm_clock_and_voltage_limits *max_limits;
3275 	uint32_t i;
3276 	struct vega10_hwmgr *data = hwmgr->backend;
3277 	struct phm_ppt_v2_information *table_info =
3278 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3279 	int32_t count;
3280 	uint32_t stable_pstate_sclk_dpm_percentage;
3281 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3282 	uint32_t latency;
3283 
3284 	data->battery_state = (PP_StateUILabel_Battery ==
3285 			request_ps->classification.ui_label);
3286 
3287 	if (vega10_ps->performance_level_count != 2)
3288 		pr_info("VI should always have 2 performance levels");
3289 
3290 	max_limits = adev->pm.ac_power ?
3291 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3292 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3293 
3294 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3295 	if (!adev->pm.ac_power) {
3296 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3297 			if (vega10_ps->performance_levels[i].mem_clock >
3298 				max_limits->mclk)
3299 				vega10_ps->performance_levels[i].mem_clock =
3300 						max_limits->mclk;
3301 			if (vega10_ps->performance_levels[i].gfx_clock >
3302 				max_limits->sclk)
3303 				vega10_ps->performance_levels[i].gfx_clock =
3304 						max_limits->sclk;
3305 		}
3306 	}
3307 
3308 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3309 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3310 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3311 
3312 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3313 		stable_pstate_sclk_dpm_percentage =
3314 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3315 		PP_ASSERT_WITH_CODE(
3316 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3317 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3318 			"percent sclk value must range from 1% to 100%, setting default value",
3319 			stable_pstate_sclk_dpm_percentage = 75);
3320 
3321 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3322 		stable_pstate_sclk = (max_limits->sclk *
3323 				stable_pstate_sclk_dpm_percentage) / 100;
3324 
3325 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3326 				count >= 0; count--) {
3327 			if (stable_pstate_sclk >=
3328 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3329 				stable_pstate_sclk =
3330 						table_info->vdd_dep_on_sclk->entries[count].clk;
3331 				break;
3332 			}
3333 		}
3334 
3335 		if (count < 0)
3336 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3337 
3338 		stable_pstate_mclk = max_limits->mclk;
3339 
3340 		minimum_clocks.engineClock = stable_pstate_sclk;
3341 		minimum_clocks.memoryClock = stable_pstate_mclk;
3342 	}
3343 
3344 	disable_mclk_switching_for_frame_lock =
3345 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3346 	disable_mclk_switching_for_vr =
3347 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3348 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3349 
3350 	if (hwmgr->display_config->num_display == 0)
3351 		disable_mclk_switching = false;
3352 	else
3353 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3354 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3355 			disable_mclk_switching_for_frame_lock ||
3356 			disable_mclk_switching_for_vr ||
3357 			force_mclk_high;
3358 
3359 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3360 	mclk = vega10_ps->performance_levels[0].mem_clock;
3361 
3362 	if (sclk < minimum_clocks.engineClock)
3363 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3364 				max_limits->sclk : minimum_clocks.engineClock;
3365 
3366 	if (mclk < minimum_clocks.memoryClock)
3367 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3368 				max_limits->mclk : minimum_clocks.memoryClock;
3369 
3370 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3371 	vega10_ps->performance_levels[0].mem_clock = mclk;
3372 
3373 	if (vega10_ps->performance_levels[1].gfx_clock <
3374 			vega10_ps->performance_levels[0].gfx_clock)
3375 		vega10_ps->performance_levels[0].gfx_clock =
3376 				vega10_ps->performance_levels[1].gfx_clock;
3377 
3378 	if (disable_mclk_switching) {
3379 		/* Set Mclk the max of level 0 and level 1 */
3380 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3381 			mclk = vega10_ps->performance_levels[1].mem_clock;
3382 
3383 		/* Find the lowest MCLK frequency that is within
3384 		 * the tolerable latency defined in DAL
3385 		 */
3386 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3387 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3388 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3389 				(data->mclk_latency_table.entries[i].frequency >=
3390 						vega10_ps->performance_levels[0].mem_clock) &&
3391 				(data->mclk_latency_table.entries[i].frequency <=
3392 						vega10_ps->performance_levels[1].mem_clock))
3393 				mclk = data->mclk_latency_table.entries[i].frequency;
3394 		}
3395 		vega10_ps->performance_levels[0].mem_clock = mclk;
3396 	} else {
3397 		if (vega10_ps->performance_levels[1].mem_clock <
3398 				vega10_ps->performance_levels[0].mem_clock)
3399 			vega10_ps->performance_levels[0].mem_clock =
3400 					vega10_ps->performance_levels[1].mem_clock;
3401 	}
3402 
3403 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3404 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3405 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3406 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3407 		}
3408 	}
3409 
3410 	return 0;
3411 }
3412 
3413 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3414 {
3415 	struct vega10_hwmgr *data = hwmgr->backend;
3416 	const struct phm_set_power_state_input *states =
3417 			(const struct phm_set_power_state_input *)input;
3418 	const struct vega10_power_state *vega10_ps =
3419 			cast_const_phw_vega10_power_state(states->pnew_state);
3420 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3421 	uint32_t sclk = vega10_ps->performance_levels
3422 			[vega10_ps->performance_level_count - 1].gfx_clock;
3423 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3424 	uint32_t mclk = vega10_ps->performance_levels
3425 			[vega10_ps->performance_level_count - 1].mem_clock;
3426 	uint32_t i;
3427 
3428 	for (i = 0; i < sclk_table->count; i++) {
3429 		if (sclk == sclk_table->dpm_levels[i].value)
3430 			break;
3431 	}
3432 
3433 	if (i >= sclk_table->count) {
3434 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3435 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3436 			sclk_table->dpm_levels[i-1].value = sclk;
3437 		}
3438 	}
3439 
3440 	for (i = 0; i < mclk_table->count; i++) {
3441 		if (mclk == mclk_table->dpm_levels[i].value)
3442 			break;
3443 	}
3444 
3445 	if (i >= mclk_table->count) {
3446 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3447 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3448 			mclk_table->dpm_levels[i-1].value = mclk;
3449 		}
3450 	}
3451 
3452 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3453 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3454 
3455 	return 0;
3456 }
3457 
3458 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3459 		struct pp_hwmgr *hwmgr, const void *input)
3460 {
3461 	int result = 0;
3462 	struct vega10_hwmgr *data = hwmgr->backend;
3463 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3464 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3465 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3466 	int count;
3467 
3468 	if (!data->need_update_dpm_table)
3469 		return 0;
3470 
3471 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3472 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3473 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3474 	}
3475 
3476 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3477 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3478 		for (count = 0; count < dpm_table->mem_table.count; count++)
3479 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3480 	}
3481 
3482 	if (data->need_update_dpm_table &
3483 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3484 		result = vega10_populate_all_graphic_levels(hwmgr);
3485 		PP_ASSERT_WITH_CODE((0 == result),
3486 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3487 				return result);
3488 	}
3489 
3490 	if (data->need_update_dpm_table &
3491 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3492 		result = vega10_populate_all_memory_levels(hwmgr);
3493 		PP_ASSERT_WITH_CODE((0 == result),
3494 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3495 				return result);
3496 	}
3497 
3498 	vega10_populate_vddc_soc_levels(hwmgr);
3499 
3500 	return result;
3501 }
3502 
3503 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3504 		struct vega10_single_dpm_table *dpm_table,
3505 		uint32_t low_limit, uint32_t high_limit)
3506 {
3507 	uint32_t i;
3508 
3509 	for (i = 0; i < dpm_table->count; i++) {
3510 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3511 		    (dpm_table->dpm_levels[i].value > high_limit))
3512 			dpm_table->dpm_levels[i].enabled = false;
3513 		else
3514 			dpm_table->dpm_levels[i].enabled = true;
3515 	}
3516 	return 0;
3517 }
3518 
3519 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3520 		struct vega10_single_dpm_table *dpm_table,
3521 		uint32_t low_limit, uint32_t high_limit,
3522 		uint32_t disable_dpm_mask)
3523 {
3524 	uint32_t i;
3525 
3526 	for (i = 0; i < dpm_table->count; i++) {
3527 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3528 		    (dpm_table->dpm_levels[i].value > high_limit))
3529 			dpm_table->dpm_levels[i].enabled = false;
3530 		else if (!((1 << i) & disable_dpm_mask))
3531 			dpm_table->dpm_levels[i].enabled = false;
3532 		else
3533 			dpm_table->dpm_levels[i].enabled = true;
3534 	}
3535 	return 0;
3536 }
3537 
3538 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3539 		const struct vega10_power_state *vega10_ps)
3540 {
3541 	struct vega10_hwmgr *data = hwmgr->backend;
3542 	uint32_t high_limit_count;
3543 
3544 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3545 			"power state did not have any performance level",
3546 			return -1);
3547 
3548 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3549 
3550 	vega10_trim_single_dpm_states(hwmgr,
3551 			&(data->dpm_table.soc_table),
3552 			vega10_ps->performance_levels[0].soc_clock,
3553 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3554 
3555 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3556 			&(data->dpm_table.gfx_table),
3557 			vega10_ps->performance_levels[0].gfx_clock,
3558 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3559 			data->disable_dpm_mask);
3560 
3561 	vega10_trim_single_dpm_states(hwmgr,
3562 			&(data->dpm_table.mem_table),
3563 			vega10_ps->performance_levels[0].mem_clock,
3564 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3565 
3566 	return 0;
3567 }
3568 
3569 static uint32_t vega10_find_lowest_dpm_level(
3570 		struct vega10_single_dpm_table *table)
3571 {
3572 	uint32_t i;
3573 
3574 	for (i = 0; i < table->count; i++) {
3575 		if (table->dpm_levels[i].enabled)
3576 			break;
3577 	}
3578 
3579 	return i;
3580 }
3581 
3582 static uint32_t vega10_find_highest_dpm_level(
3583 		struct vega10_single_dpm_table *table)
3584 {
3585 	uint32_t i = 0;
3586 
3587 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3588 		for (i = table->count; i > 0; i--) {
3589 			if (table->dpm_levels[i - 1].enabled)
3590 				return i - 1;
3591 		}
3592 	} else {
3593 		pr_info("DPM Table Has Too Many Entries!");
3594 		return MAX_REGULAR_DPM_NUMBER - 1;
3595 	}
3596 
3597 	return i;
3598 }
3599 
3600 static void vega10_apply_dal_minimum_voltage_request(
3601 		struct pp_hwmgr *hwmgr)
3602 {
3603 	return;
3604 }
3605 
3606 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3607 {
3608 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3609 	struct phm_ppt_v2_information *table_info =
3610 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3611 
3612 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3613 
3614 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3615 }
3616 
3617 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3618 {
3619 	struct vega10_hwmgr *data = hwmgr->backend;
3620 	uint32_t socclk_idx;
3621 
3622 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3623 
3624 	if (!data->registry_data.sclk_dpm_key_disabled) {
3625 		if (data->smc_state_table.gfx_boot_level !=
3626 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3627 			smum_send_msg_to_smc_with_parameter(hwmgr,
3628 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3629 				data->smc_state_table.gfx_boot_level,
3630 				NULL);
3631 
3632 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3633 					data->smc_state_table.gfx_boot_level;
3634 		}
3635 	}
3636 
3637 	if (!data->registry_data.mclk_dpm_key_disabled) {
3638 		if (data->smc_state_table.mem_boot_level !=
3639 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3640 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3641 			    && hwmgr->not_vf) {
3642 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3643 				smum_send_msg_to_smc_with_parameter(hwmgr,
3644 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3645 						socclk_idx,
3646 						NULL);
3647 			} else {
3648 				smum_send_msg_to_smc_with_parameter(hwmgr,
3649 						PPSMC_MSG_SetSoftMinUclkByIndex,
3650 						data->smc_state_table.mem_boot_level,
3651 						NULL);
3652 			}
3653 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3654 					data->smc_state_table.mem_boot_level;
3655 		}
3656 	}
3657 
3658 	if (!hwmgr->not_vf)
3659 		return 0;
3660 
3661 	if (!data->registry_data.socclk_dpm_key_disabled) {
3662 		if (data->smc_state_table.soc_boot_level !=
3663 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3664 			smum_send_msg_to_smc_with_parameter(hwmgr,
3665 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3666 				data->smc_state_table.soc_boot_level,
3667 				NULL);
3668 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3669 					data->smc_state_table.soc_boot_level;
3670 		}
3671 	}
3672 
3673 	return 0;
3674 }
3675 
3676 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3677 {
3678 	struct vega10_hwmgr *data = hwmgr->backend;
3679 
3680 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3681 
3682 	if (!data->registry_data.sclk_dpm_key_disabled) {
3683 		if (data->smc_state_table.gfx_max_level !=
3684 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3685 			smum_send_msg_to_smc_with_parameter(hwmgr,
3686 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3687 				data->smc_state_table.gfx_max_level,
3688 				NULL);
3689 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3690 					data->smc_state_table.gfx_max_level;
3691 		}
3692 	}
3693 
3694 	if (!data->registry_data.mclk_dpm_key_disabled) {
3695 		if (data->smc_state_table.mem_max_level !=
3696 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3697 			smum_send_msg_to_smc_with_parameter(hwmgr,
3698 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3699 					data->smc_state_table.mem_max_level,
3700 					NULL);
3701 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3702 					data->smc_state_table.mem_max_level;
3703 		}
3704 	}
3705 
3706 	if (!hwmgr->not_vf)
3707 		return 0;
3708 
3709 	if (!data->registry_data.socclk_dpm_key_disabled) {
3710 		if (data->smc_state_table.soc_max_level !=
3711 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3712 			smum_send_msg_to_smc_with_parameter(hwmgr,
3713 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3714 				data->smc_state_table.soc_max_level,
3715 				NULL);
3716 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3717 					data->smc_state_table.soc_max_level;
3718 		}
3719 	}
3720 
3721 	return 0;
3722 }
3723 
3724 static int vega10_generate_dpm_level_enable_mask(
3725 		struct pp_hwmgr *hwmgr, const void *input)
3726 {
3727 	struct vega10_hwmgr *data = hwmgr->backend;
3728 	const struct phm_set_power_state_input *states =
3729 			(const struct phm_set_power_state_input *)input;
3730 	const struct vega10_power_state *vega10_ps =
3731 			cast_const_phw_vega10_power_state(states->pnew_state);
3732 	int i;
3733 
3734 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3735 			"Attempt to Trim DPM States Failed!",
3736 			return -1);
3737 
3738 	data->smc_state_table.gfx_boot_level =
3739 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3740 	data->smc_state_table.gfx_max_level =
3741 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3742 	data->smc_state_table.mem_boot_level =
3743 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3744 	data->smc_state_table.mem_max_level =
3745 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3746 	data->smc_state_table.soc_boot_level =
3747 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3748 	data->smc_state_table.soc_max_level =
3749 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3750 
3751 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3752 			"Attempt to upload DPM Bootup Levels Failed!",
3753 			return -1);
3754 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3755 			"Attempt to upload DPM Max Levels Failed!",
3756 			return -1);
3757 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3758 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3759 
3760 
3761 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3762 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3763 
3764 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3765 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3766 
3767 	return 0;
3768 }
3769 
3770 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3771 {
3772 	struct vega10_hwmgr *data = hwmgr->backend;
3773 
3774 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3775 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3776 				enable,
3777 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3778 				"Attempt to Enable/Disable DPM VCE Failed!",
3779 				return -1);
3780 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3781 	}
3782 
3783 	return 0;
3784 }
3785 
3786 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3787 {
3788 	struct vega10_hwmgr *data = hwmgr->backend;
3789 	uint32_t low_sclk_interrupt_threshold = 0;
3790 
3791 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3792 		(data->low_sclk_interrupt_threshold != 0)) {
3793 		low_sclk_interrupt_threshold =
3794 				data->low_sclk_interrupt_threshold;
3795 
3796 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3797 				cpu_to_le32(low_sclk_interrupt_threshold);
3798 
3799 		/* This message will also enable SmcToHost Interrupt */
3800 		smum_send_msg_to_smc_with_parameter(hwmgr,
3801 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3802 				(uint32_t)low_sclk_interrupt_threshold,
3803 				NULL);
3804 	}
3805 
3806 	return 0;
3807 }
3808 
3809 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3810 		const void *input)
3811 {
3812 	int tmp_result, result = 0;
3813 	struct vega10_hwmgr *data = hwmgr->backend;
3814 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3815 
3816 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3817 	PP_ASSERT_WITH_CODE(!tmp_result,
3818 			"Failed to find DPM states clocks in DPM table!",
3819 			result = tmp_result);
3820 
3821 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3822 	PP_ASSERT_WITH_CODE(!tmp_result,
3823 			"Failed to populate and upload SCLK MCLK DPM levels!",
3824 			result = tmp_result);
3825 
3826 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3827 	PP_ASSERT_WITH_CODE(!tmp_result,
3828 			"Failed to generate DPM level enabled mask!",
3829 			result = tmp_result);
3830 
3831 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3832 	PP_ASSERT_WITH_CODE(!tmp_result,
3833 			"Failed to update SCLK threshold!",
3834 			result = tmp_result);
3835 
3836 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3837 	PP_ASSERT_WITH_CODE(!result,
3838 			"Failed to upload PPtable!", return result);
3839 
3840 	/*
3841 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3842 	 * That effectively disables AVFS feature.
3843 	 */
3844 	if(hwmgr->hardcode_pp_table != NULL)
3845 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3846 
3847 	vega10_update_avfs(hwmgr);
3848 
3849 	/*
3850 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3851 	 * That will help to keep AVFS disabled.
3852 	 */
3853 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3854 
3855 	return 0;
3856 }
3857 
3858 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3859 {
3860 	struct pp_power_state *ps;
3861 	struct vega10_power_state *vega10_ps;
3862 
3863 	if (hwmgr == NULL)
3864 		return -EINVAL;
3865 
3866 	ps = hwmgr->request_ps;
3867 
3868 	if (ps == NULL)
3869 		return -EINVAL;
3870 
3871 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3872 
3873 	if (low)
3874 		return vega10_ps->performance_levels[0].gfx_clock;
3875 	else
3876 		return vega10_ps->performance_levels
3877 				[vega10_ps->performance_level_count - 1].gfx_clock;
3878 }
3879 
3880 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3881 {
3882 	struct pp_power_state *ps;
3883 	struct vega10_power_state *vega10_ps;
3884 
3885 	if (hwmgr == NULL)
3886 		return -EINVAL;
3887 
3888 	ps = hwmgr->request_ps;
3889 
3890 	if (ps == NULL)
3891 		return -EINVAL;
3892 
3893 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3894 
3895 	if (low)
3896 		return vega10_ps->performance_levels[0].mem_clock;
3897 	else
3898 		return vega10_ps->performance_levels
3899 				[vega10_ps->performance_level_count-1].mem_clock;
3900 }
3901 
3902 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3903 		uint32_t *query)
3904 {
3905 	uint32_t value;
3906 
3907 	if (!query)
3908 		return -EINVAL;
3909 
3910 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3911 
3912 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3913 	*query = value << 8;
3914 
3915 	return 0;
3916 }
3917 
3918 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3919 			      void *value, int *size)
3920 {
3921 	struct amdgpu_device *adev = hwmgr->adev;
3922 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3923 	struct vega10_hwmgr *data = hwmgr->backend;
3924 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3925 	int ret = 0;
3926 	uint32_t val_vid;
3927 
3928 	switch (idx) {
3929 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3930 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3931 		*((uint32_t *)value) = sclk_mhz * 100;
3932 		break;
3933 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3934 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3935 		if (mclk_idx < dpm_table->mem_table.count) {
3936 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3937 			*size = 4;
3938 		} else {
3939 			ret = -EINVAL;
3940 		}
3941 		break;
3942 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3943 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3944 						&activity_percent);
3945 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3946 		*size = 4;
3947 		break;
3948 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3949 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3950 		*size = 4;
3951 		break;
3952 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3953 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3954 		*((uint32_t *)value) = *((uint32_t *)value) *
3955 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3956 		*size = 4;
3957 		break;
3958 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3959 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3960 		*((uint32_t *)value) = *((uint32_t *)value) *
3961 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3962 		*size = 4;
3963 		break;
3964 	case AMDGPU_PP_SENSOR_UVD_POWER:
3965 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3966 		*size = 4;
3967 		break;
3968 	case AMDGPU_PP_SENSOR_VCE_POWER:
3969 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3970 		*size = 4;
3971 		break;
3972 	case AMDGPU_PP_SENSOR_GPU_POWER:
3973 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3974 		break;
3975 	case AMDGPU_PP_SENSOR_VDDGFX:
3976 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
3977 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
3978 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
3979 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
3980 		return 0;
3981 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
3982 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
3983 		if (!ret)
3984 			*size = 8;
3985 		break;
3986 	default:
3987 		ret = -EOPNOTSUPP;
3988 		break;
3989 	}
3990 
3991 	return ret;
3992 }
3993 
3994 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
3995 		bool has_disp)
3996 {
3997 	smum_send_msg_to_smc_with_parameter(hwmgr,
3998 			PPSMC_MSG_SetUclkFastSwitch,
3999 			has_disp ? 1 : 0,
4000 			NULL);
4001 }
4002 
4003 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
4004 		struct pp_display_clock_request *clock_req)
4005 {
4006 	int result = 0;
4007 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
4008 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
4009 	DSPCLK_e clk_select = 0;
4010 	uint32_t clk_request = 0;
4011 
4012 	switch (clk_type) {
4013 	case amd_pp_dcef_clock:
4014 		clk_select = DSPCLK_DCEFCLK;
4015 		break;
4016 	case amd_pp_disp_clock:
4017 		clk_select = DSPCLK_DISPCLK;
4018 		break;
4019 	case amd_pp_pixel_clock:
4020 		clk_select = DSPCLK_PIXCLK;
4021 		break;
4022 	case amd_pp_phy_clock:
4023 		clk_select = DSPCLK_PHYCLK;
4024 		break;
4025 	default:
4026 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
4027 		result = -1;
4028 		break;
4029 	}
4030 
4031 	if (!result) {
4032 		clk_request = (clk_freq << 16) | clk_select;
4033 		smum_send_msg_to_smc_with_parameter(hwmgr,
4034 				PPSMC_MSG_RequestDisplayClockByFreq,
4035 				clk_request,
4036 				NULL);
4037 	}
4038 
4039 	return result;
4040 }
4041 
4042 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
4043 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
4044 						uint32_t frequency)
4045 {
4046 	uint8_t count;
4047 	uint8_t i;
4048 
4049 	if (mclk_table == NULL || mclk_table->count == 0)
4050 		return 0;
4051 
4052 	count = (uint8_t)(mclk_table->count);
4053 
4054 	for(i = 0; i < count; i++) {
4055 		if(mclk_table->entries[i].clk >= frequency)
4056 			return i;
4057 	}
4058 
4059 	return i-1;
4060 }
4061 
4062 static int vega10_notify_smc_display_config_after_ps_adjustment(
4063 		struct pp_hwmgr *hwmgr)
4064 {
4065 	struct vega10_hwmgr *data = hwmgr->backend;
4066 	struct vega10_single_dpm_table *dpm_table =
4067 			&data->dpm_table.dcef_table;
4068 	struct phm_ppt_v2_information *table_info =
4069 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4070 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
4071 	uint32_t idx;
4072 	struct PP_Clocks min_clocks = {0};
4073 	uint32_t i;
4074 	struct pp_display_clock_request clock_req;
4075 
4076 	if ((hwmgr->display_config->num_display > 1) &&
4077 	     !hwmgr->display_config->multi_monitor_in_sync &&
4078 	     !hwmgr->display_config->nb_pstate_switch_disable)
4079 		vega10_notify_smc_display_change(hwmgr, false);
4080 	else
4081 		vega10_notify_smc_display_change(hwmgr, true);
4082 
4083 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
4084 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
4085 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
4086 
4087 	for (i = 0; i < dpm_table->count; i++) {
4088 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
4089 			break;
4090 	}
4091 
4092 	if (i < dpm_table->count) {
4093 		clock_req.clock_type = amd_pp_dcef_clock;
4094 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4095 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4096 			smum_send_msg_to_smc_with_parameter(
4097 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4098 					min_clocks.dcefClockInSR / 100,
4099 					NULL);
4100 		} else {
4101 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4102 		}
4103 	} else {
4104 		pr_debug("Cannot find requested DCEFCLK!");
4105 	}
4106 
4107 	if (min_clocks.memoryClock != 0) {
4108 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4109 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4110 						NULL);
4111 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4112 	}
4113 
4114 	return 0;
4115 }
4116 
4117 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4118 {
4119 	struct vega10_hwmgr *data = hwmgr->backend;
4120 
4121 	data->smc_state_table.gfx_boot_level =
4122 	data->smc_state_table.gfx_max_level =
4123 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4124 	data->smc_state_table.mem_boot_level =
4125 	data->smc_state_table.mem_max_level =
4126 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4127 
4128 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4129 			"Failed to upload boot level to highest!",
4130 			return -1);
4131 
4132 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4133 			"Failed to upload dpm max level to highest!",
4134 			return -1);
4135 
4136 	return 0;
4137 }
4138 
4139 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4140 {
4141 	struct vega10_hwmgr *data = hwmgr->backend;
4142 
4143 	data->smc_state_table.gfx_boot_level =
4144 	data->smc_state_table.gfx_max_level =
4145 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4146 	data->smc_state_table.mem_boot_level =
4147 	data->smc_state_table.mem_max_level =
4148 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4149 
4150 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4151 			"Failed to upload boot level to highest!",
4152 			return -1);
4153 
4154 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4155 			"Failed to upload dpm max level to highest!",
4156 			return -1);
4157 
4158 	return 0;
4159 
4160 }
4161 
4162 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4163 {
4164 	struct vega10_hwmgr *data = hwmgr->backend;
4165 
4166 	data->smc_state_table.gfx_boot_level =
4167 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4168 	data->smc_state_table.gfx_max_level =
4169 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4170 	data->smc_state_table.mem_boot_level =
4171 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4172 	data->smc_state_table.mem_max_level =
4173 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4174 
4175 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4176 			"Failed to upload DPM Bootup Levels!",
4177 			return -1);
4178 
4179 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4180 			"Failed to upload DPM Max Levels!",
4181 			return -1);
4182 	return 0;
4183 }
4184 
4185 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4186 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4187 {
4188 	struct phm_ppt_v2_information *table_info =
4189 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4190 
4191 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4192 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4193 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4194 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4195 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4196 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4197 	}
4198 
4199 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4200 		*sclk_mask = 0;
4201 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4202 		*mclk_mask = 0;
4203 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4204 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4205 		 * to level-4 due to the limited power
4206 		 */
4207 		if (hwmgr->pp_one_vf)
4208 			*sclk_mask = 4;
4209 		else
4210 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4211 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4212 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4213 	}
4214 
4215 	return 0;
4216 }
4217 
4218 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4219 {
4220 	if (!hwmgr->not_vf)
4221 		return;
4222 
4223 	switch (mode) {
4224 	case AMD_FAN_CTRL_NONE:
4225 		vega10_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
4226 		break;
4227 	case AMD_FAN_CTRL_MANUAL:
4228 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4229 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4230 		break;
4231 	case AMD_FAN_CTRL_AUTO:
4232 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4233 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4234 		break;
4235 	default:
4236 		break;
4237 	}
4238 }
4239 
4240 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4241 		enum pp_clock_type type, uint32_t mask)
4242 {
4243 	struct vega10_hwmgr *data = hwmgr->backend;
4244 
4245 	switch (type) {
4246 	case PP_SCLK:
4247 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4248 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4249 
4250 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4251 			"Failed to upload boot level to lowest!",
4252 			return -EINVAL);
4253 
4254 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4255 			"Failed to upload dpm max level to highest!",
4256 			return -EINVAL);
4257 		break;
4258 
4259 	case PP_MCLK:
4260 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4261 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4262 
4263 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4264 			"Failed to upload boot level to lowest!",
4265 			return -EINVAL);
4266 
4267 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4268 			"Failed to upload dpm max level to highest!",
4269 			return -EINVAL);
4270 
4271 		break;
4272 
4273 	case PP_SOCCLK:
4274 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4275 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4276 
4277 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4278 			"Failed to upload boot level to lowest!",
4279 			return -EINVAL);
4280 
4281 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4282 			"Failed to upload dpm max level to highest!",
4283 			return -EINVAL);
4284 
4285 		break;
4286 
4287 	case PP_DCEFCLK:
4288 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4289 		break;
4290 
4291 	case PP_PCIE:
4292 	default:
4293 		break;
4294 	}
4295 
4296 	return 0;
4297 }
4298 
4299 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4300 				enum amd_dpm_forced_level level)
4301 {
4302 	int ret = 0;
4303 	uint32_t sclk_mask = 0;
4304 	uint32_t mclk_mask = 0;
4305 	uint32_t soc_mask = 0;
4306 
4307 	switch (level) {
4308 	case AMD_DPM_FORCED_LEVEL_HIGH:
4309 		ret = vega10_force_dpm_highest(hwmgr);
4310 		break;
4311 	case AMD_DPM_FORCED_LEVEL_LOW:
4312 		ret = vega10_force_dpm_lowest(hwmgr);
4313 		break;
4314 	case AMD_DPM_FORCED_LEVEL_AUTO:
4315 		ret = vega10_unforce_dpm_levels(hwmgr);
4316 		break;
4317 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4318 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4319 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4320 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4321 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4322 		if (ret)
4323 			return ret;
4324 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4325 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4326 		break;
4327 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4328 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4329 	default:
4330 		break;
4331 	}
4332 
4333 	if (!hwmgr->not_vf)
4334 		return ret;
4335 
4336 	if (!ret) {
4337 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4338 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4339 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4340 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4341 	}
4342 
4343 	return ret;
4344 }
4345 
4346 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4347 {
4348 	struct vega10_hwmgr *data = hwmgr->backend;
4349 
4350 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4351 		return AMD_FAN_CTRL_MANUAL;
4352 	else
4353 		return AMD_FAN_CTRL_AUTO;
4354 }
4355 
4356 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4357 		struct amd_pp_simple_clock_info *info)
4358 {
4359 	struct phm_ppt_v2_information *table_info =
4360 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4361 	struct phm_clock_and_voltage_limits *max_limits =
4362 			&table_info->max_clock_voltage_on_ac;
4363 
4364 	info->engine_max_clock = max_limits->sclk;
4365 	info->memory_max_clock = max_limits->mclk;
4366 
4367 	return 0;
4368 }
4369 
4370 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4371 		struct pp_clock_levels_with_latency *clocks)
4372 {
4373 	struct phm_ppt_v2_information *table_info =
4374 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4375 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4376 			table_info->vdd_dep_on_sclk;
4377 	uint32_t i;
4378 
4379 	clocks->num_levels = 0;
4380 	for (i = 0; i < dep_table->count; i++) {
4381 		if (dep_table->entries[i].clk) {
4382 			clocks->data[clocks->num_levels].clocks_in_khz =
4383 					dep_table->entries[i].clk * 10;
4384 			clocks->num_levels++;
4385 		}
4386 	}
4387 
4388 }
4389 
4390 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4391 		struct pp_clock_levels_with_latency *clocks)
4392 {
4393 	struct phm_ppt_v2_information *table_info =
4394 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4395 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4396 			table_info->vdd_dep_on_mclk;
4397 	struct vega10_hwmgr *data = hwmgr->backend;
4398 	uint32_t j = 0;
4399 	uint32_t i;
4400 
4401 	for (i = 0; i < dep_table->count; i++) {
4402 		if (dep_table->entries[i].clk) {
4403 
4404 			clocks->data[j].clocks_in_khz =
4405 						dep_table->entries[i].clk * 10;
4406 			data->mclk_latency_table.entries[j].frequency =
4407 							dep_table->entries[i].clk;
4408 			clocks->data[j].latency_in_us =
4409 				data->mclk_latency_table.entries[j].latency = 25;
4410 			j++;
4411 		}
4412 	}
4413 	clocks->num_levels = data->mclk_latency_table.count = j;
4414 }
4415 
4416 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4417 		struct pp_clock_levels_with_latency *clocks)
4418 {
4419 	struct phm_ppt_v2_information *table_info =
4420 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4421 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4422 			table_info->vdd_dep_on_dcefclk;
4423 	uint32_t i;
4424 
4425 	for (i = 0; i < dep_table->count; i++) {
4426 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4427 		clocks->data[i].latency_in_us = 0;
4428 		clocks->num_levels++;
4429 	}
4430 }
4431 
4432 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4433 		struct pp_clock_levels_with_latency *clocks)
4434 {
4435 	struct phm_ppt_v2_information *table_info =
4436 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4437 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4438 			table_info->vdd_dep_on_socclk;
4439 	uint32_t i;
4440 
4441 	for (i = 0; i < dep_table->count; i++) {
4442 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4443 		clocks->data[i].latency_in_us = 0;
4444 		clocks->num_levels++;
4445 	}
4446 }
4447 
4448 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4449 		enum amd_pp_clock_type type,
4450 		struct pp_clock_levels_with_latency *clocks)
4451 {
4452 	switch (type) {
4453 	case amd_pp_sys_clock:
4454 		vega10_get_sclks(hwmgr, clocks);
4455 		break;
4456 	case amd_pp_mem_clock:
4457 		vega10_get_memclocks(hwmgr, clocks);
4458 		break;
4459 	case amd_pp_dcef_clock:
4460 		vega10_get_dcefclocks(hwmgr, clocks);
4461 		break;
4462 	case amd_pp_soc_clock:
4463 		vega10_get_socclocks(hwmgr, clocks);
4464 		break;
4465 	default:
4466 		return -1;
4467 	}
4468 
4469 	return 0;
4470 }
4471 
4472 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4473 		enum amd_pp_clock_type type,
4474 		struct pp_clock_levels_with_voltage *clocks)
4475 {
4476 	struct phm_ppt_v2_information *table_info =
4477 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4478 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4479 	uint32_t i;
4480 
4481 	switch (type) {
4482 	case amd_pp_mem_clock:
4483 		dep_table = table_info->vdd_dep_on_mclk;
4484 		break;
4485 	case amd_pp_dcef_clock:
4486 		dep_table = table_info->vdd_dep_on_dcefclk;
4487 		break;
4488 	case amd_pp_disp_clock:
4489 		dep_table = table_info->vdd_dep_on_dispclk;
4490 		break;
4491 	case amd_pp_pixel_clock:
4492 		dep_table = table_info->vdd_dep_on_pixclk;
4493 		break;
4494 	case amd_pp_phy_clock:
4495 		dep_table = table_info->vdd_dep_on_phyclk;
4496 		break;
4497 	default:
4498 		return -1;
4499 	}
4500 
4501 	for (i = 0; i < dep_table->count; i++) {
4502 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4503 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4504 				entries[dep_table->entries[i].vddInd].us_vdd);
4505 		clocks->num_levels++;
4506 	}
4507 
4508 	if (i < dep_table->count)
4509 		return -1;
4510 
4511 	return 0;
4512 }
4513 
4514 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4515 							void *clock_range)
4516 {
4517 	struct vega10_hwmgr *data = hwmgr->backend;
4518 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4519 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4520 
4521 	if (!data->registry_data.disable_water_mark) {
4522 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4523 		data->water_marks_bitmap = WaterMarksExist;
4524 	}
4525 
4526 	return 0;
4527 }
4528 
4529 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4530 {
4531 	static const char *ppfeature_name[] = {
4532 				"DPM_PREFETCHER",
4533 				"GFXCLK_DPM",
4534 				"UCLK_DPM",
4535 				"SOCCLK_DPM",
4536 				"UVD_DPM",
4537 				"VCE_DPM",
4538 				"ULV",
4539 				"MP0CLK_DPM",
4540 				"LINK_DPM",
4541 				"DCEFCLK_DPM",
4542 				"AVFS",
4543 				"GFXCLK_DS",
4544 				"SOCCLK_DS",
4545 				"LCLK_DS",
4546 				"PPT",
4547 				"TDC",
4548 				"THERMAL",
4549 				"GFX_PER_CU_CG",
4550 				"RM",
4551 				"DCEFCLK_DS",
4552 				"ACDC",
4553 				"VR0HOT",
4554 				"VR1HOT",
4555 				"FW_CTF",
4556 				"LED_DISPLAY",
4557 				"FAN_CONTROL",
4558 				"FAST_PPT",
4559 				"DIDT",
4560 				"ACG",
4561 				"PCC_LIMIT"};
4562 	static const char *output_title[] = {
4563 				"FEATURES",
4564 				"BITMASK",
4565 				"ENABLEMENT"};
4566 	uint64_t features_enabled;
4567 	int i;
4568 	int ret = 0;
4569 	int size = 0;
4570 
4571 	phm_get_sysfs_buf(&buf, &size);
4572 
4573 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4574 	PP_ASSERT_WITH_CODE(!ret,
4575 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4576 			return ret);
4577 
4578 	size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4579 	size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n",
4580 				output_title[0],
4581 				output_title[1],
4582 				output_title[2]);
4583 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4584 		size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n",
4585 					ppfeature_name[i],
4586 					1ULL << i,
4587 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4588 	}
4589 
4590 	return size;
4591 }
4592 
4593 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4594 {
4595 	uint64_t features_enabled;
4596 	uint64_t features_to_enable;
4597 	uint64_t features_to_disable;
4598 	int ret = 0;
4599 
4600 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4601 		return -EINVAL;
4602 
4603 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4604 	if (ret)
4605 		return ret;
4606 
4607 	features_to_disable =
4608 		features_enabled & ~new_ppfeature_masks;
4609 	features_to_enable =
4610 		~features_enabled & new_ppfeature_masks;
4611 
4612 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4613 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4614 
4615 	if (features_to_disable) {
4616 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4617 		if (ret)
4618 			return ret;
4619 	}
4620 
4621 	if (features_to_enable) {
4622 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4623 		if (ret)
4624 			return ret;
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr)
4631 {
4632 	struct amdgpu_device *adev = hwmgr->adev;
4633 
4634 	return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
4635 		PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
4636 		>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
4637 }
4638 
4639 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr)
4640 {
4641 	struct amdgpu_device *adev = hwmgr->adev;
4642 
4643 	return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
4644 		PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
4645 		>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
4646 }
4647 
4648 static int vega10_emit_clock_levels(struct pp_hwmgr *hwmgr,
4649 				    enum pp_clock_type type, char *buf, int *offset)
4650 {
4651 	struct vega10_hwmgr *data = hwmgr->backend;
4652 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4653 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4654 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4655 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4656 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4657 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4658 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4659 
4660 	uint32_t i, now, count = 0;
4661 	int ret = 0;
4662 
4663 	switch (type) {
4664 	case PP_SCLK:
4665 		if (data->registry_data.sclk_dpm_key_disabled)
4666 			return -EOPNOTSUPP;
4667 
4668 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4669 		if (unlikely(ret != 0))
4670 			return ret;
4671 
4672 		if (hwmgr->pp_one_vf &&
4673 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4674 			count = 5;
4675 		else
4676 			count = sclk_table->count;
4677 		for (i = 0; i < count; i++)
4678 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4679 					i, sclk_table->dpm_levels[i].value / 100,
4680 					(i == now) ? "*" : "");
4681 		break;
4682 	case PP_MCLK:
4683 		if (data->registry_data.mclk_dpm_key_disabled)
4684 			return -EOPNOTSUPP;
4685 
4686 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4687 		if (unlikely(ret != 0))
4688 			return ret;
4689 
4690 		for (i = 0; i < mclk_table->count; i++)
4691 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4692 					i, mclk_table->dpm_levels[i].value / 100,
4693 					(i == now) ? "*" : "");
4694 		break;
4695 	case PP_SOCCLK:
4696 		if (data->registry_data.socclk_dpm_key_disabled)
4697 			return -EOPNOTSUPP;
4698 
4699 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4700 		if (unlikely(ret != 0))
4701 			return ret;
4702 
4703 		for (i = 0; i < soc_table->count; i++)
4704 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4705 					i, soc_table->dpm_levels[i].value / 100,
4706 					(i == now) ? "*" : "");
4707 		break;
4708 	case PP_DCEFCLK:
4709 		if (data->registry_data.dcefclk_dpm_key_disabled)
4710 			return -EOPNOTSUPP;
4711 
4712 		ret = smum_send_msg_to_smc_with_parameter(hwmgr,
4713 							  PPSMC_MSG_GetClockFreqMHz,
4714 							  CLK_DCEFCLK, &now);
4715 		if (unlikely(ret != 0))
4716 			return ret;
4717 
4718 		for (i = 0; i < dcef_table->count; i++)
4719 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4720 					i, dcef_table->dpm_levels[i].value / 100,
4721 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4722 					"*" : "");
4723 		break;
4724 	case PP_PCIE:
4725 		current_gen_speed =
4726 			vega10_get_current_pcie_link_speed_level(hwmgr);
4727 		current_lane_width =
4728 			vega10_get_current_pcie_link_width_level(hwmgr);
4729 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4730 			gen_speed = pptable->PcieGenSpeed[i];
4731 			lane_width = pptable->PcieLaneCount[i];
4732 
4733 			*offset += sysfs_emit_at(buf, *offset, "%d: %s %s %s\n", i,
4734 					(gen_speed == 0) ? "2.5GT/s," :
4735 					(gen_speed == 1) ? "5.0GT/s," :
4736 					(gen_speed == 2) ? "8.0GT/s," :
4737 					(gen_speed == 3) ? "16.0GT/s," : "",
4738 					(lane_width == 1) ? "x1" :
4739 					(lane_width == 2) ? "x2" :
4740 					(lane_width == 3) ? "x4" :
4741 					(lane_width == 4) ? "x8" :
4742 					(lane_width == 5) ? "x12" :
4743 					(lane_width == 6) ? "x16" : "",
4744 					(current_gen_speed == gen_speed) &&
4745 					(current_lane_width == lane_width) ?
4746 					"*" : "");
4747 		}
4748 		break;
4749 
4750 	case OD_SCLK:
4751 		if (!hwmgr->od_enabled)
4752 			return -EOPNOTSUPP;
4753 
4754 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_SCLK");
4755 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4756 		for (i = 0; i < podn_vdd_dep->count; i++)
4757 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4758 						 i, podn_vdd_dep->entries[i].clk / 100,
4759 						 podn_vdd_dep->entries[i].vddc);
4760 		break;
4761 	case OD_MCLK:
4762 		if (!hwmgr->od_enabled)
4763 			return -EOPNOTSUPP;
4764 
4765 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_MCLK");
4766 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4767 		for (i = 0; i < podn_vdd_dep->count; i++)
4768 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4769 						 i, podn_vdd_dep->entries[i].clk/100,
4770 						 podn_vdd_dep->entries[i].vddc);
4771 		break;
4772 	case OD_RANGE:
4773 		if (!hwmgr->od_enabled)
4774 			return -EOPNOTSUPP;
4775 
4776 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_RANGE");
4777 		*offset += sysfs_emit_at(buf, *offset, "SCLK: %7uMHz %10uMHz\n",
4778 					 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4779 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4780 		*offset += sysfs_emit_at(buf, *offset, "MCLK: %7uMHz %10uMHz\n",
4781 					 data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4782 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4783 		*offset += sysfs_emit_at(buf, *offset, "VDDC: %7umV %11umV\n",
4784 					 data->odn_dpm_table.min_vddc,
4785 					 data->odn_dpm_table.max_vddc);
4786 		break;
4787 	default:
4788 		ret = -ENOENT;
4789 		break;
4790 	}
4791 	return ret;
4792 }
4793 
4794 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4795 		enum pp_clock_type type, char *buf)
4796 {
4797 	struct vega10_hwmgr *data = hwmgr->backend;
4798 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4799 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4800 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4801 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4802 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4803 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4804 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4805 
4806 	int i, now, size = 0, count = 0;
4807 
4808 	switch (type) {
4809 	case PP_SCLK:
4810 		if (data->registry_data.sclk_dpm_key_disabled)
4811 			break;
4812 
4813 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4814 
4815 		if (hwmgr->pp_one_vf &&
4816 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4817 			count = 5;
4818 		else
4819 			count = sclk_table->count;
4820 		for (i = 0; i < count; i++)
4821 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4822 					i, sclk_table->dpm_levels[i].value / 100,
4823 					(i == now) ? "*" : "");
4824 		break;
4825 	case PP_MCLK:
4826 		if (data->registry_data.mclk_dpm_key_disabled)
4827 			break;
4828 
4829 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4830 
4831 		for (i = 0; i < mclk_table->count; i++)
4832 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4833 					i, mclk_table->dpm_levels[i].value / 100,
4834 					(i == now) ? "*" : "");
4835 		break;
4836 	case PP_SOCCLK:
4837 		if (data->registry_data.socclk_dpm_key_disabled)
4838 			break;
4839 
4840 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4841 
4842 		for (i = 0; i < soc_table->count; i++)
4843 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4844 					i, soc_table->dpm_levels[i].value / 100,
4845 					(i == now) ? "*" : "");
4846 		break;
4847 	case PP_DCEFCLK:
4848 		if (data->registry_data.dcefclk_dpm_key_disabled)
4849 			break;
4850 
4851 		smum_send_msg_to_smc_with_parameter(hwmgr,
4852 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4853 
4854 		for (i = 0; i < dcef_table->count; i++)
4855 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4856 					i, dcef_table->dpm_levels[i].value / 100,
4857 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4858 					"*" : "");
4859 		break;
4860 	case PP_PCIE:
4861 		current_gen_speed =
4862 			vega10_get_current_pcie_link_speed_level(hwmgr);
4863 		current_lane_width =
4864 			vega10_get_current_pcie_link_width_level(hwmgr);
4865 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4866 			gen_speed = pptable->PcieGenSpeed[i];
4867 			lane_width = pptable->PcieLaneCount[i];
4868 
4869 			size += sprintf(buf + size, "%d: %s %s %s\n", i,
4870 					(gen_speed == 0) ? "2.5GT/s," :
4871 					(gen_speed == 1) ? "5.0GT/s," :
4872 					(gen_speed == 2) ? "8.0GT/s," :
4873 					(gen_speed == 3) ? "16.0GT/s," : "",
4874 					(lane_width == 1) ? "x1" :
4875 					(lane_width == 2) ? "x2" :
4876 					(lane_width == 3) ? "x4" :
4877 					(lane_width == 4) ? "x8" :
4878 					(lane_width == 5) ? "x12" :
4879 					(lane_width == 6) ? "x16" : "",
4880 					(current_gen_speed == gen_speed) &&
4881 					(current_lane_width == lane_width) ?
4882 					"*" : "");
4883 		}
4884 		break;
4885 
4886 	case OD_SCLK:
4887 		if (hwmgr->od_enabled) {
4888 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
4889 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4890 			for (i = 0; i < podn_vdd_dep->count; i++)
4891 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4892 					i, podn_vdd_dep->entries[i].clk / 100,
4893 						podn_vdd_dep->entries[i].vddc);
4894 		}
4895 		break;
4896 	case OD_MCLK:
4897 		if (hwmgr->od_enabled) {
4898 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
4899 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4900 			for (i = 0; i < podn_vdd_dep->count; i++)
4901 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4902 					i, podn_vdd_dep->entries[i].clk/100,
4903 						podn_vdd_dep->entries[i].vddc);
4904 		}
4905 		break;
4906 	case OD_RANGE:
4907 		if (hwmgr->od_enabled) {
4908 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
4909 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4910 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4911 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4912 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4913 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4914 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4915 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4916 				data->odn_dpm_table.min_vddc,
4917 				data->odn_dpm_table.max_vddc);
4918 		}
4919 		break;
4920 	default:
4921 		break;
4922 	}
4923 	return size;
4924 }
4925 
4926 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4927 {
4928 	struct vega10_hwmgr *data = hwmgr->backend;
4929 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4930 	int result = 0;
4931 
4932 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4933 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4934 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4935 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4936 		data->water_marks_bitmap |= WaterMarksLoaded;
4937 	}
4938 
4939 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4940 		smum_send_msg_to_smc_with_parameter(hwmgr,
4941 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4942 			NULL);
4943 	}
4944 
4945 	return result;
4946 }
4947 
4948 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4949 {
4950 	struct vega10_hwmgr *data = hwmgr->backend;
4951 
4952 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4953 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4954 				enable,
4955 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4956 				"Attempt to Enable/Disable DPM UVD Failed!",
4957 				return -1);
4958 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4959 	}
4960 	return 0;
4961 }
4962 
4963 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4964 {
4965 	struct vega10_hwmgr *data = hwmgr->backend;
4966 
4967 	data->vce_power_gated = bgate;
4968 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
4969 }
4970 
4971 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
4972 {
4973 	struct vega10_hwmgr *data = hwmgr->backend;
4974 
4975 	data->uvd_power_gated = bgate;
4976 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
4977 }
4978 
4979 static inline bool vega10_are_power_levels_equal(
4980 				const struct vega10_performance_level *pl1,
4981 				const struct vega10_performance_level *pl2)
4982 {
4983 	return ((pl1->soc_clock == pl2->soc_clock) &&
4984 			(pl1->gfx_clock == pl2->gfx_clock) &&
4985 			(pl1->mem_clock == pl2->mem_clock));
4986 }
4987 
4988 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
4989 				const struct pp_hw_power_state *pstate1,
4990 			const struct pp_hw_power_state *pstate2, bool *equal)
4991 {
4992 	const struct vega10_power_state *vega10_psa;
4993 	const struct vega10_power_state *vega10_psb;
4994 	int i;
4995 
4996 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4997 		return -EINVAL;
4998 
4999 	vega10_psa = cast_const_phw_vega10_power_state(pstate1);
5000 	vega10_psb = cast_const_phw_vega10_power_state(pstate2);
5001 
5002 	/* If the two states don't even have the same number of performance levels
5003 	 * they cannot be the same state.
5004 	 */
5005 	if (vega10_psa->performance_level_count != vega10_psb->performance_level_count) {
5006 		*equal = false;
5007 		return 0;
5008 	}
5009 
5010 	for (i = 0; i < vega10_psa->performance_level_count; i++) {
5011 		if (!vega10_are_power_levels_equal(&(vega10_psa->performance_levels[i]),
5012 						   &(vega10_psb->performance_levels[i]))) {
5013 			/* If we have found even one performance level pair
5014 			 * that is different the states are different.
5015 			 */
5016 			*equal = false;
5017 			return 0;
5018 		}
5019 	}
5020 
5021 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5022 	*equal = ((vega10_psa->uvd_clks.vclk == vega10_psb->uvd_clks.vclk) &&
5023 		  (vega10_psa->uvd_clks.dclk == vega10_psb->uvd_clks.dclk));
5024 	*equal &= ((vega10_psa->vce_clks.evclk == vega10_psb->vce_clks.evclk) &&
5025 		   (vega10_psa->vce_clks.ecclk == vega10_psb->vce_clks.ecclk));
5026 	*equal &= (vega10_psa->sclk_threshold == vega10_psb->sclk_threshold);
5027 
5028 	return 0;
5029 }
5030 
5031 static bool
5032 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5033 {
5034 	struct vega10_hwmgr *data = hwmgr->backend;
5035 	bool is_update_required = false;
5036 
5037 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
5038 		is_update_required = true;
5039 
5040 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
5041 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
5042 			is_update_required = true;
5043 	}
5044 
5045 	return is_update_required;
5046 }
5047 
5048 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
5049 {
5050 	int tmp_result, result = 0;
5051 
5052 	if (!hwmgr->not_vf)
5053 		return 0;
5054 
5055 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
5056 		vega10_disable_thermal_protection(hwmgr);
5057 
5058 	tmp_result = vega10_disable_power_containment(hwmgr);
5059 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5060 			"Failed to disable power containment!", result = tmp_result);
5061 
5062 	tmp_result = vega10_disable_didt_config(hwmgr);
5063 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5064 			"Failed to disable didt config!", result = tmp_result);
5065 
5066 	tmp_result = vega10_avfs_enable(hwmgr, false);
5067 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5068 			"Failed to disable AVFS!", result = tmp_result);
5069 
5070 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
5071 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5072 			"Failed to stop DPM!", result = tmp_result);
5073 
5074 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
5075 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5076 			"Failed to disable deep sleep!", result = tmp_result);
5077 
5078 	tmp_result = vega10_disable_ulv(hwmgr);
5079 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5080 			"Failed to disable ulv!", result = tmp_result);
5081 
5082 	tmp_result =  vega10_acg_disable(hwmgr);
5083 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5084 			"Failed to disable acg!", result = tmp_result);
5085 
5086 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
5087 	return result;
5088 }
5089 
5090 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
5091 {
5092 	struct vega10_hwmgr *data = hwmgr->backend;
5093 	int result;
5094 
5095 	result = vega10_disable_dpm_tasks(hwmgr);
5096 	PP_ASSERT_WITH_CODE((0 == result),
5097 			"[disable_dpm_tasks] Failed to disable DPM!",
5098 			);
5099 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
5100 
5101 	return result;
5102 }
5103 
5104 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
5105 {
5106 	struct vega10_hwmgr *data = hwmgr->backend;
5107 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
5108 	struct vega10_single_dpm_table *golden_sclk_table =
5109 			&(data->golden_dpm_table.gfx_table);
5110 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5111 	int golden_value = golden_sclk_table->dpm_levels
5112 			[golden_sclk_table->count - 1].value;
5113 
5114 	value -= golden_value;
5115 	value = DIV_ROUND_UP(value * 100, golden_value);
5116 
5117 	return value;
5118 }
5119 
5120 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5121 {
5122 	struct vega10_hwmgr *data = hwmgr->backend;
5123 	struct vega10_single_dpm_table *golden_sclk_table =
5124 			&(data->golden_dpm_table.gfx_table);
5125 	struct pp_power_state *ps;
5126 	struct vega10_power_state *vega10_ps;
5127 
5128 	ps = hwmgr->request_ps;
5129 
5130 	if (ps == NULL)
5131 		return -EINVAL;
5132 
5133 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5134 
5135 	vega10_ps->performance_levels
5136 	[vega10_ps->performance_level_count - 1].gfx_clock =
5137 			golden_sclk_table->dpm_levels
5138 			[golden_sclk_table->count - 1].value *
5139 			value / 100 +
5140 			golden_sclk_table->dpm_levels
5141 			[golden_sclk_table->count - 1].value;
5142 
5143 	if (vega10_ps->performance_levels
5144 			[vega10_ps->performance_level_count - 1].gfx_clock >
5145 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
5146 		vega10_ps->performance_levels
5147 		[vega10_ps->performance_level_count - 1].gfx_clock =
5148 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
5149 		pr_warn("max sclk supported by vbios is %d\n",
5150 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
5151 	}
5152 	return 0;
5153 }
5154 
5155 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
5156 {
5157 	struct vega10_hwmgr *data = hwmgr->backend;
5158 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
5159 	struct vega10_single_dpm_table *golden_mclk_table =
5160 			&(data->golden_dpm_table.mem_table);
5161 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5162 	int golden_value = golden_mclk_table->dpm_levels
5163 			[golden_mclk_table->count - 1].value;
5164 
5165 	value -= golden_value;
5166 	value = DIV_ROUND_UP(value * 100, golden_value);
5167 
5168 	return value;
5169 }
5170 
5171 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5172 {
5173 	struct vega10_hwmgr *data = hwmgr->backend;
5174 	struct vega10_single_dpm_table *golden_mclk_table =
5175 			&(data->golden_dpm_table.mem_table);
5176 	struct pp_power_state  *ps;
5177 	struct vega10_power_state  *vega10_ps;
5178 
5179 	ps = hwmgr->request_ps;
5180 
5181 	if (ps == NULL)
5182 		return -EINVAL;
5183 
5184 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5185 
5186 	vega10_ps->performance_levels
5187 	[vega10_ps->performance_level_count - 1].mem_clock =
5188 			golden_mclk_table->dpm_levels
5189 			[golden_mclk_table->count - 1].value *
5190 			value / 100 +
5191 			golden_mclk_table->dpm_levels
5192 			[golden_mclk_table->count - 1].value;
5193 
5194 	if (vega10_ps->performance_levels
5195 			[vega10_ps->performance_level_count - 1].mem_clock >
5196 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
5197 		vega10_ps->performance_levels
5198 		[vega10_ps->performance_level_count - 1].mem_clock =
5199 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
5200 		pr_warn("max mclk supported by vbios is %d\n",
5201 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
5202 	}
5203 
5204 	return 0;
5205 }
5206 
5207 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5208 					uint32_t virtual_addr_low,
5209 					uint32_t virtual_addr_hi,
5210 					uint32_t mc_addr_low,
5211 					uint32_t mc_addr_hi,
5212 					uint32_t size)
5213 {
5214 	smum_send_msg_to_smc_with_parameter(hwmgr,
5215 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
5216 					virtual_addr_hi,
5217 					NULL);
5218 	smum_send_msg_to_smc_with_parameter(hwmgr,
5219 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
5220 					virtual_addr_low,
5221 					NULL);
5222 	smum_send_msg_to_smc_with_parameter(hwmgr,
5223 					PPSMC_MSG_DramLogSetDramAddrHigh,
5224 					mc_addr_hi,
5225 					NULL);
5226 
5227 	smum_send_msg_to_smc_with_parameter(hwmgr,
5228 					PPSMC_MSG_DramLogSetDramAddrLow,
5229 					mc_addr_low,
5230 					NULL);
5231 
5232 	smum_send_msg_to_smc_with_parameter(hwmgr,
5233 					PPSMC_MSG_DramLogSetDramSize,
5234 					size,
5235 					NULL);
5236 	return 0;
5237 }
5238 
5239 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5240 		struct PP_TemperatureRange *thermal_data)
5241 {
5242 	struct vega10_hwmgr *data = hwmgr->backend;
5243 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
5244 	struct phm_ppt_v2_information *pp_table_info =
5245 		(struct phm_ppt_v2_information *)(hwmgr->pptable);
5246 	struct phm_tdp_table *tdp_table = pp_table_info->tdp_table;
5247 
5248 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
5249 
5250 	thermal_data->max = pp_table->TedgeLimit *
5251 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5252 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
5253 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5254 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
5255 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5256 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
5257 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5258 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
5259 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5260 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
5261 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5262 
5263 	if (tdp_table->usSoftwareShutdownTemp > pp_table->ThotspotLimit &&
5264 	    tdp_table->usSoftwareShutdownTemp < VEGA10_THERMAL_MAXIMUM_ALERT_TEMP)
5265 		thermal_data->sw_ctf_threshold = tdp_table->usSoftwareShutdownTemp;
5266 	else
5267 		thermal_data->sw_ctf_threshold = VEGA10_THERMAL_MAXIMUM_ALERT_TEMP;
5268 	thermal_data->sw_ctf_threshold *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5269 
5270 	return 0;
5271 }
5272 
5273 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5274 {
5275 	struct vega10_hwmgr *data = hwmgr->backend;
5276 	uint32_t i, size = 0;
5277 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
5278 						{70, 60, 1, 3,},
5279 						{90, 60, 0, 0,},
5280 						{70, 60, 0, 0,},
5281 						{70, 90, 0, 0,},
5282 						{30, 60, 0, 6,},
5283 						};
5284 	static const char *title[6] = {"NUM",
5285 			"MODE_NAME",
5286 			"BUSY_SET_POINT",
5287 			"FPS",
5288 			"USE_RLC_BUSY",
5289 			"MIN_ACTIVE_LEVEL"};
5290 
5291 	if (!buf)
5292 		return -EINVAL;
5293 
5294 	phm_get_sysfs_buf(&buf, &size);
5295 
5296 	size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n",title[0],
5297 			title[1], title[2], title[3], title[4], title[5]);
5298 
5299 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5300 		size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n",
5301 			i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5302 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5303 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5304 
5305 	size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5306 			amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5307 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5308 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5309 	return size;
5310 }
5311 
5312 static bool vega10_get_power_profile_mode_quirks(struct pp_hwmgr *hwmgr)
5313 {
5314 	struct amdgpu_device *adev = hwmgr->adev;
5315 
5316 	return (adev->pdev->device == 0x6860);
5317 }
5318 
5319 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5320 {
5321 	struct vega10_hwmgr *data = hwmgr->backend;
5322 	uint8_t busy_set_point;
5323 	uint8_t FPS;
5324 	uint8_t use_rlc_busy;
5325 	uint8_t min_active_level;
5326 	uint32_t power_profile_mode = input[size];
5327 
5328 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5329 		if (size != 0 && size != 4)
5330 			return -EINVAL;
5331 
5332 		/* If size = 0 and the CUSTOM profile has been set already
5333 		 * then just apply the profile. The copy stored in the hwmgr
5334 		 * is zeroed out on init
5335 		 */
5336 		if (size == 0) {
5337 			if (data->custom_profile_mode[0] != 0)
5338 				goto out;
5339 			else
5340 				return -EINVAL;
5341 		}
5342 
5343 		data->custom_profile_mode[0] = busy_set_point = input[0];
5344 		data->custom_profile_mode[1] = FPS = input[1];
5345 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5346 		data->custom_profile_mode[3] = min_active_level = input[3];
5347 		smum_send_msg_to_smc_with_parameter(hwmgr,
5348 					PPSMC_MSG_SetCustomGfxDpmParameters,
5349 					busy_set_point | FPS<<8 |
5350 					use_rlc_busy << 16 | min_active_level<<24,
5351 					NULL);
5352 	}
5353 
5354 out:
5355 	if (vega10_get_power_profile_mode_quirks(hwmgr))
5356 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5357 						1 << power_profile_mode,
5358 						NULL);
5359 	else
5360 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5361 						(!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1),
5362 						NULL);
5363 
5364 	hwmgr->power_profile_mode = power_profile_mode;
5365 
5366 	return 0;
5367 }
5368 
5369 
5370 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5371 					enum PP_OD_DPM_TABLE_COMMAND type,
5372 					uint32_t clk,
5373 					uint32_t voltage)
5374 {
5375 	struct vega10_hwmgr *data = hwmgr->backend;
5376 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5377 	struct vega10_single_dpm_table *golden_table;
5378 
5379 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5380 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5381 		return false;
5382 	}
5383 
5384 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5385 		golden_table = &(data->golden_dpm_table.gfx_table);
5386 		if (golden_table->dpm_levels[0].value > clk ||
5387 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5388 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5389 				golden_table->dpm_levels[0].value/100,
5390 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5391 			return false;
5392 		}
5393 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5394 		golden_table = &(data->golden_dpm_table.mem_table);
5395 		if (golden_table->dpm_levels[0].value > clk ||
5396 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5397 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5398 				golden_table->dpm_levels[0].value/100,
5399 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5400 			return false;
5401 		}
5402 	} else {
5403 		return false;
5404 	}
5405 
5406 	return true;
5407 }
5408 
5409 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5410 {
5411 	struct vega10_hwmgr *data = hwmgr->backend;
5412 	struct pp_power_state *ps = hwmgr->request_ps;
5413 	struct vega10_power_state *vega10_ps;
5414 	struct vega10_single_dpm_table *gfx_dpm_table =
5415 		&data->dpm_table.gfx_table;
5416 	struct vega10_single_dpm_table *soc_dpm_table =
5417 		&data->dpm_table.soc_table;
5418 	struct vega10_single_dpm_table *mem_dpm_table =
5419 		&data->dpm_table.mem_table;
5420 	int max_level;
5421 
5422 	if (!ps)
5423 		return;
5424 
5425 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5426 	max_level = vega10_ps->performance_level_count - 1;
5427 
5428 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5429 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5430 		vega10_ps->performance_levels[max_level].gfx_clock =
5431 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5432 
5433 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5434 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5435 		vega10_ps->performance_levels[max_level].soc_clock =
5436 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5437 
5438 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5439 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5440 		vega10_ps->performance_levels[max_level].mem_clock =
5441 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5442 
5443 	if (!hwmgr->ps)
5444 		return;
5445 
5446 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5447 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5448 	max_level = vega10_ps->performance_level_count - 1;
5449 
5450 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5451 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5452 		vega10_ps->performance_levels[max_level].gfx_clock =
5453 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5454 
5455 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5456 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5457 		vega10_ps->performance_levels[max_level].soc_clock =
5458 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5459 
5460 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5461 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5462 		vega10_ps->performance_levels[max_level].mem_clock =
5463 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5464 }
5465 
5466 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5467 						enum PP_OD_DPM_TABLE_COMMAND type)
5468 {
5469 	struct vega10_hwmgr *data = hwmgr->backend;
5470 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5471 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5472 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5473 
5474 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5475 							&data->odn_dpm_table.vdd_dep_on_socclk;
5476 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5477 
5478 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5479 	uint8_t i, j;
5480 
5481 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5482 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5483 		for (i = 0; i < podn_vdd_dep->count; i++)
5484 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5485 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5486 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5487 		for (i = 0; i < dpm_table->count; i++) {
5488 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5489 				if (od_vddc_lookup_table->entries[j].us_vdd >
5490 					podn_vdd_dep->entries[i].vddc)
5491 					break;
5492 			}
5493 			if (j == od_vddc_lookup_table->count) {
5494 				j = od_vddc_lookup_table->count - 1;
5495 				od_vddc_lookup_table->entries[j].us_vdd =
5496 					podn_vdd_dep->entries[i].vddc;
5497 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5498 			}
5499 			podn_vdd_dep->entries[i].vddInd = j;
5500 		}
5501 		dpm_table = &data->dpm_table.soc_table;
5502 		for (i = 0; i < dep_table->count; i++) {
5503 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5504 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5505 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5506 				for (; (i < dep_table->count) &&
5507 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5508 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5509 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5510 				}
5511 				break;
5512 			} else {
5513 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5514 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5515 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5516 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5517 			}
5518 		}
5519 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5520 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5521 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5522 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5523 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5524 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5525 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5526 		}
5527 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5528 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5529 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5530 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5531 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5532 		}
5533 	}
5534 	vega10_odn_update_power_state(hwmgr);
5535 }
5536 
5537 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5538 					enum PP_OD_DPM_TABLE_COMMAND type,
5539 					long *input, uint32_t size)
5540 {
5541 	struct vega10_hwmgr *data = hwmgr->backend;
5542 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5543 	struct vega10_single_dpm_table *dpm_table;
5544 
5545 	uint32_t input_clk;
5546 	uint32_t input_vol;
5547 	uint32_t input_level;
5548 	uint32_t i;
5549 
5550 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5551 				return -EINVAL);
5552 
5553 	if (!hwmgr->od_enabled) {
5554 		pr_info("OverDrive feature not enabled\n");
5555 		return -EINVAL;
5556 	}
5557 
5558 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5559 		dpm_table = &data->dpm_table.gfx_table;
5560 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5561 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5562 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5563 		dpm_table = &data->dpm_table.mem_table;
5564 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5565 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5566 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5567 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5568 		vega10_odn_initial_default_setting(hwmgr);
5569 		vega10_odn_update_power_state(hwmgr);
5570 		/* force to update all clock tables */
5571 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5572 					      DPMTABLE_UPDATE_MCLK |
5573 					      DPMTABLE_UPDATE_SOCCLK;
5574 		return 0;
5575 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5576 		vega10_check_dpm_table_updated(hwmgr);
5577 		return 0;
5578 	} else {
5579 		return -EINVAL;
5580 	}
5581 
5582 	for (i = 0; i < size; i += 3) {
5583 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5584 			pr_info("invalid clock voltage input\n");
5585 			return 0;
5586 		}
5587 		input_level = input[i];
5588 		input_clk = input[i+1] * 100;
5589 		input_vol = input[i+2];
5590 
5591 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5592 			dpm_table->dpm_levels[input_level].value = input_clk;
5593 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5594 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5595 		} else {
5596 			return -EINVAL;
5597 		}
5598 	}
5599 	vega10_odn_update_soc_table(hwmgr, type);
5600 	return 0;
5601 }
5602 
5603 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5604 				enum pp_mp1_state mp1_state)
5605 {
5606 	uint16_t msg;
5607 	int ret;
5608 
5609 	switch (mp1_state) {
5610 	case PP_MP1_STATE_UNLOAD:
5611 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5612 		break;
5613 	case PP_MP1_STATE_SHUTDOWN:
5614 	case PP_MP1_STATE_RESET:
5615 	case PP_MP1_STATE_NONE:
5616 	default:
5617 		return 0;
5618 	}
5619 
5620 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5621 			    "[PrepareMp1] Failed!",
5622 			    return ret);
5623 
5624 	return 0;
5625 }
5626 
5627 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5628 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5629 				PHM_PerformanceLevel *level)
5630 {
5631 	const struct vega10_power_state *vega10_ps;
5632 	uint32_t i;
5633 
5634 	if (level == NULL || hwmgr == NULL || state == NULL)
5635 		return -EINVAL;
5636 
5637 	vega10_ps = cast_const_phw_vega10_power_state(state);
5638 
5639 	i = index > vega10_ps->performance_level_count - 1 ?
5640 			vega10_ps->performance_level_count - 1 : index;
5641 
5642 	level->coreClock = vega10_ps->performance_levels[i].gfx_clock;
5643 	level->memory_clock = vega10_ps->performance_levels[i].mem_clock;
5644 
5645 	return 0;
5646 }
5647 
5648 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5649 {
5650 	struct vega10_hwmgr *data = hwmgr->backend;
5651 	uint32_t feature_mask = 0;
5652 
5653 	if (disable) {
5654 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5655 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5656 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5657 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5658 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5659 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5660 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5661 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5662 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5663 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5664 	} else {
5665 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5666 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5667 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5668 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5669 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5670 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5671 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5672 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5673 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5674 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5675 	}
5676 
5677 	if (feature_mask)
5678 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5679 				!disable, feature_mask),
5680 				"enable/disable power features for compute performance Failed!",
5681 				return -EINVAL);
5682 
5683 	if (disable) {
5684 		data->smu_features[GNLD_ULV].enabled = false;
5685 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5686 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5687 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5688 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5689 	} else {
5690 		data->smu_features[GNLD_ULV].enabled = true;
5691 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5692 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5693 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5694 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5695 	}
5696 
5697 	return 0;
5698 
5699 }
5700 
5701 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5702 	.backend_init = vega10_hwmgr_backend_init,
5703 	.backend_fini = vega10_hwmgr_backend_fini,
5704 	.asic_setup = vega10_setup_asic_task,
5705 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5706 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5707 	.get_num_of_pp_table_entries =
5708 			vega10_get_number_of_powerplay_table_entries,
5709 	.get_power_state_size = vega10_get_power_state_size,
5710 	.get_pp_table_entry = vega10_get_pp_table_entry,
5711 	.patch_boot_state = vega10_patch_boot_state,
5712 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5713 	.power_state_set = vega10_set_power_state_tasks,
5714 	.get_sclk = vega10_dpm_get_sclk,
5715 	.get_mclk = vega10_dpm_get_mclk,
5716 	.notify_smc_display_config_after_ps_adjustment =
5717 			vega10_notify_smc_display_config_after_ps_adjustment,
5718 	.force_dpm_level = vega10_dpm_force_dpm_level,
5719 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5720 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5721 	.get_fan_speed_pwm = vega10_fan_ctrl_get_fan_speed_pwm,
5722 	.set_fan_speed_pwm = vega10_fan_ctrl_set_fan_speed_pwm,
5723 	.reset_fan_speed_to_default =
5724 			vega10_fan_ctrl_reset_fan_speed_to_default,
5725 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5726 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5727 	.uninitialize_thermal_controller =
5728 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5729 	.set_fan_control_mode = vega10_set_fan_control_mode,
5730 	.get_fan_control_mode = vega10_get_fan_control_mode,
5731 	.read_sensor = vega10_read_sensor,
5732 	.get_dal_power_level = vega10_get_dal_power_level,
5733 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5734 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5735 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5736 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5737 	.force_clock_level = vega10_force_clock_level,
5738 	.emit_clock_levels = vega10_emit_clock_levels,
5739 	.print_clock_levels = vega10_print_clock_levels,
5740 	.display_config_changed = vega10_display_configuration_changed_task,
5741 	.powergate_uvd = vega10_power_gate_uvd,
5742 	.powergate_vce = vega10_power_gate_vce,
5743 	.check_states_equal = vega10_check_states_equal,
5744 	.check_smc_update_required_for_display_configuration =
5745 			vega10_check_smc_update_required_for_display_configuration,
5746 	.power_off_asic = vega10_power_off_asic,
5747 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5748 	.get_sclk_od = vega10_get_sclk_od,
5749 	.set_sclk_od = vega10_set_sclk_od,
5750 	.get_mclk_od = vega10_get_mclk_od,
5751 	.set_mclk_od = vega10_set_mclk_od,
5752 	.avfs_control = vega10_avfs_enable,
5753 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5754 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5755 	.register_irq_handlers = smu9_register_irq_handlers,
5756 	.start_thermal_controller = vega10_start_thermal_controller,
5757 	.get_power_profile_mode = vega10_get_power_profile_mode,
5758 	.set_power_profile_mode = vega10_set_power_profile_mode,
5759 	.set_power_limit = vega10_set_power_limit,
5760 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5761 	.get_performance_level = vega10_get_performance_level,
5762 	.get_asic_baco_capability = smu9_baco_get_capability,
5763 	.get_asic_baco_state = smu9_baco_get_state,
5764 	.set_asic_baco_state = vega10_baco_set_state,
5765 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5766 	.get_ppfeature_status = vega10_get_ppfeature_status,
5767 	.set_ppfeature_status = vega10_set_ppfeature_status,
5768 	.set_mp1_state = vega10_set_mp1_state,
5769 	.disable_power_features_for_compute_performance =
5770 			vega10_disable_power_features_for_compute_performance,
5771 };
5772 
5773 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5774 {
5775 	struct amdgpu_device *adev = hwmgr->adev;
5776 
5777 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5778 	hwmgr->pptable_func = &vega10_pptable_funcs;
5779 	if (amdgpu_passthrough(adev))
5780 		return vega10_baco_set_cap(hwmgr);
5781 
5782 	return 0;
5783 }
5784