1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 
29 #include "hwmgr.h"
30 #include "amd_powerplay.h"
31 #include "hardwaremanager.h"
32 #include "ppatomfwctrl.h"
33 #include "atomfirmware.h"
34 #include "cgs_common.h"
35 #include "vega10_powertune.h"
36 #include "smu9.h"
37 #include "smu9_driver_if.h"
38 #include "vega10_inc.h"
39 #include "soc15_common.h"
40 #include "pppcielanes.h"
41 #include "vega10_hwmgr.h"
42 #include "vega10_smumgr.h"
43 #include "vega10_processpptables.h"
44 #include "vega10_pptable.h"
45 #include "vega10_thermal.h"
46 #include "pp_debug.h"
47 #include "amd_pcie_helpers.h"
48 #include "ppinterrupt.h"
49 #include "pp_overdriver.h"
50 #include "pp_thermal.h"
51 #include "vega10_baco.h"
52 
53 #include "smuio/smuio_9_0_offset.h"
54 #include "smuio/smuio_9_0_sh_mask.h"
55 
56 #define smnPCIE_LC_SPEED_CNTL			0x11140290
57 #define smnPCIE_LC_LINK_WIDTH_CNTL		0x11140288
58 
59 #define HBM_MEMORY_CHANNEL_WIDTH    128
60 
61 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2};
62 
63 #define mmDF_CS_AON0_DramBaseAddress0                                                                  0x0044
64 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX                                                         0
65 
66 //DF_CS_AON0_DramBaseAddress0
67 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT                                                        0x0
68 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT                                                    0x1
69 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT                                                      0x4
70 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT                                                      0x8
71 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT                                                      0xc
72 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK                                                          0x00000001L
73 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK                                                      0x00000002L
74 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK                                                        0x000000F0L
75 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK                                                        0x00000700L
76 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK                                                        0xFFFFF000L
77 
78 typedef enum {
79 	CLK_SMNCLK = 0,
80 	CLK_SOCCLK,
81 	CLK_MP0CLK,
82 	CLK_MP1CLK,
83 	CLK_LCLK,
84 	CLK_DCEFCLK,
85 	CLK_VCLK,
86 	CLK_DCLK,
87 	CLK_ECLK,
88 	CLK_UCLK,
89 	CLK_GFXCLK,
90 	CLK_COUNT,
91 } CLOCK_ID_e;
92 
93 static const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic);
94 
95 static struct vega10_power_state *cast_phw_vega10_power_state(
96 				  struct pp_hw_power_state *hw_ps)
97 {
98 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
99 				"Invalid Powerstate Type!",
100 				 return NULL;);
101 
102 	return (struct vega10_power_state *)hw_ps;
103 }
104 
105 static const struct vega10_power_state *cast_const_phw_vega10_power_state(
106 				 const struct pp_hw_power_state *hw_ps)
107 {
108 	PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic),
109 				"Invalid Powerstate Type!",
110 				 return NULL;);
111 
112 	return (const struct vega10_power_state *)hw_ps;
113 }
114 
115 static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr)
116 {
117 	struct vega10_hwmgr *data = hwmgr->backend;
118 
119 	data->registry_data.sclk_dpm_key_disabled =
120 			hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
121 	data->registry_data.socclk_dpm_key_disabled =
122 			hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true;
123 	data->registry_data.mclk_dpm_key_disabled =
124 			hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
125 	data->registry_data.pcie_dpm_key_disabled =
126 			hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
127 
128 	data->registry_data.dcefclk_dpm_key_disabled =
129 			hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true;
130 
131 	if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) {
132 		data->registry_data.power_containment_support = 1;
133 		data->registry_data.enable_pkg_pwr_tracking_feature = 1;
134 		data->registry_data.enable_tdc_limit_feature = 1;
135 	}
136 
137 	data->registry_data.clock_stretcher_support =
138 			hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false;
139 
140 	data->registry_data.ulv_support =
141 			hwmgr->feature_mask & PP_ULV_MASK ? true : false;
142 
143 	data->registry_data.sclk_deep_sleep_support =
144 			hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false;
145 
146 	data->registry_data.disable_water_mark = 0;
147 
148 	data->registry_data.fan_control_support = 1;
149 	data->registry_data.thermal_support = 1;
150 	data->registry_data.fw_ctf_enabled = 1;
151 
152 	data->registry_data.avfs_support =
153 		hwmgr->feature_mask & PP_AVFS_MASK ? true : false;
154 	data->registry_data.led_dpm_enabled = 1;
155 
156 	data->registry_data.vr0hot_enabled = 1;
157 	data->registry_data.vr1hot_enabled = 1;
158 	data->registry_data.regulator_hot_gpio_support = 1;
159 
160 	data->registry_data.didt_support = 1;
161 	if (data->registry_data.didt_support) {
162 		data->registry_data.didt_mode = 6;
163 		data->registry_data.sq_ramping_support = 1;
164 		data->registry_data.db_ramping_support = 0;
165 		data->registry_data.td_ramping_support = 0;
166 		data->registry_data.tcp_ramping_support = 0;
167 		data->registry_data.dbr_ramping_support = 0;
168 		data->registry_data.edc_didt_support = 1;
169 		data->registry_data.gc_didt_support = 0;
170 		data->registry_data.psm_didt_support = 0;
171 	}
172 
173 	data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT;
174 	data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
175 	data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
176 	data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
177 	data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
178 	data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
179 	data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
180 	data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
181 	data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
182 	data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
183 	data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
184 	data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
185 	data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT;
186 
187 	data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT;
188 	data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT;
189 	data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT;
190 	data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT;
191 }
192 
193 static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
194 {
195 	struct vega10_hwmgr *data = hwmgr->backend;
196 	struct phm_ppt_v2_information *table_info =
197 			(struct phm_ppt_v2_information *)hwmgr->pptable;
198 	struct amdgpu_device *adev = hwmgr->adev;
199 
200 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
201 			PHM_PlatformCaps_SclkDeepSleep);
202 
203 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
204 			PHM_PlatformCaps_DynamicPatchPowerState);
205 
206 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE)
207 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
208 				PHM_PlatformCaps_ControlVDDCI);
209 
210 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
211 			PHM_PlatformCaps_EnableSMU7ThermalManagement);
212 
213 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
214 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
215 				PHM_PlatformCaps_UVDPowerGating);
216 
217 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
218 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
219 				PHM_PlatformCaps_VCEPowerGating);
220 
221 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
222 			PHM_PlatformCaps_UnTabledHardwareInterface);
223 
224 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
225 			PHM_PlatformCaps_FanSpeedInTableIsRPM);
226 
227 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
228 			PHM_PlatformCaps_ODFuzzyFanControlSupport);
229 
230 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
231 				PHM_PlatformCaps_DynamicPowerManagement);
232 
233 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
234 			PHM_PlatformCaps_SMC);
235 
236 	/* power tune caps */
237 	/* assume disabled */
238 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
239 			PHM_PlatformCaps_PowerContainment);
240 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
241 			PHM_PlatformCaps_DiDtSupport);
242 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
243 			PHM_PlatformCaps_SQRamping);
244 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
245 			PHM_PlatformCaps_DBRamping);
246 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
247 			PHM_PlatformCaps_TDRamping);
248 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
249 			PHM_PlatformCaps_TCPRamping);
250 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
251 			PHM_PlatformCaps_DBRRamping);
252 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
253 			PHM_PlatformCaps_DiDtEDCEnable);
254 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
255 			PHM_PlatformCaps_GCEDC);
256 	phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
257 			PHM_PlatformCaps_PSM);
258 
259 	if (data->registry_data.didt_support) {
260 		phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport);
261 		if (data->registry_data.sq_ramping_support)
262 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping);
263 		if (data->registry_data.db_ramping_support)
264 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping);
265 		if (data->registry_data.td_ramping_support)
266 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping);
267 		if (data->registry_data.tcp_ramping_support)
268 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping);
269 		if (data->registry_data.dbr_ramping_support)
270 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping);
271 		if (data->registry_data.edc_didt_support)
272 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable);
273 		if (data->registry_data.gc_didt_support)
274 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC);
275 		if (data->registry_data.psm_didt_support)
276 			phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM);
277 	}
278 
279 	if (data->registry_data.power_containment_support)
280 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
281 				PHM_PlatformCaps_PowerContainment);
282 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
283 			PHM_PlatformCaps_CAC);
284 
285 	if (table_info->tdp_table->usClockStretchAmount &&
286 			data->registry_data.clock_stretcher_support)
287 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
288 				PHM_PlatformCaps_ClockStretcher);
289 
290 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
291 			PHM_PlatformCaps_RegulatorHot);
292 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
293 			PHM_PlatformCaps_AutomaticDCTransition);
294 
295 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
296 			PHM_PlatformCaps_UVDDPM);
297 	phm_cap_set(hwmgr->platform_descriptor.platformCaps,
298 			PHM_PlatformCaps_VCEDPM);
299 
300 	return 0;
301 }
302 
303 static int vega10_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
304 {
305 	struct vega10_hwmgr *data = hwmgr->backend;
306 	struct phm_ppt_v2_information *table_info =
307 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
308 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
309 	struct vega10_odn_vddc_lookup_table *od_lookup_table;
310 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
311 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table[3];
312 	struct phm_ppt_v1_clock_voltage_dependency_table *od_table[3];
313 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
314 	uint32_t i;
315 	int result;
316 
317 	result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
318 	if (!result) {
319 		data->odn_dpm_table.max_vddc = avfs_params.ulMaxVddc;
320 		data->odn_dpm_table.min_vddc = avfs_params.ulMinVddc;
321 	}
322 
323 	od_lookup_table = &odn_table->vddc_lookup_table;
324 	vddc_lookup_table = table_info->vddc_lookup_table;
325 
326 	for (i = 0; i < vddc_lookup_table->count; i++)
327 		od_lookup_table->entries[i].us_vdd = vddc_lookup_table->entries[i].us_vdd;
328 
329 	od_lookup_table->count = vddc_lookup_table->count;
330 
331 	dep_table[0] = table_info->vdd_dep_on_sclk;
332 	dep_table[1] = table_info->vdd_dep_on_mclk;
333 	dep_table[2] = table_info->vdd_dep_on_socclk;
334 	od_table[0] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_sclk;
335 	od_table[1] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_mclk;
336 	od_table[2] = (struct phm_ppt_v1_clock_voltage_dependency_table *)&odn_table->vdd_dep_on_socclk;
337 
338 	for (i = 0; i < 3; i++)
339 		smu_get_voltage_dependency_table_ppt_v1(dep_table[i], od_table[i]);
340 
341 	if (odn_table->max_vddc == 0 || odn_table->max_vddc > 2000)
342 		odn_table->max_vddc = dep_table[0]->entries[dep_table[0]->count - 1].vddc;
343 	if (odn_table->min_vddc == 0 || odn_table->min_vddc > 2000)
344 		odn_table->min_vddc = dep_table[0]->entries[0].vddc;
345 
346 	i = od_table[2]->count - 1;
347 	od_table[2]->entries[i].clk = hwmgr->platform_descriptor.overdriveLimit.memoryClock > od_table[2]->entries[i].clk ?
348 					hwmgr->platform_descriptor.overdriveLimit.memoryClock :
349 					od_table[2]->entries[i].clk;
350 	od_table[2]->entries[i].vddc = odn_table->max_vddc > od_table[2]->entries[i].vddc ?
351 					odn_table->max_vddc :
352 					od_table[2]->entries[i].vddc;
353 
354 	return 0;
355 }
356 
357 static int vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
358 {
359 	struct vega10_hwmgr *data = hwmgr->backend;
360 	uint32_t sub_vendor_id, hw_revision;
361 	uint32_t top32, bottom32;
362 	struct amdgpu_device *adev = hwmgr->adev;
363 	int ret, i;
364 
365 	vega10_initialize_power_tune_defaults(hwmgr);
366 
367 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
368 		data->smu_features[i].smu_feature_id = 0xffff;
369 		data->smu_features[i].smu_feature_bitmap = 1 << i;
370 		data->smu_features[i].enabled = false;
371 		data->smu_features[i].supported = false;
372 	}
373 
374 	data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id =
375 			FEATURE_DPM_PREFETCHER_BIT;
376 	data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id =
377 			FEATURE_DPM_GFXCLK_BIT;
378 	data->smu_features[GNLD_DPM_UCLK].smu_feature_id =
379 			FEATURE_DPM_UCLK_BIT;
380 	data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id =
381 			FEATURE_DPM_SOCCLK_BIT;
382 	data->smu_features[GNLD_DPM_UVD].smu_feature_id =
383 			FEATURE_DPM_UVD_BIT;
384 	data->smu_features[GNLD_DPM_VCE].smu_feature_id =
385 			FEATURE_DPM_VCE_BIT;
386 	data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id =
387 			FEATURE_DPM_MP0CLK_BIT;
388 	data->smu_features[GNLD_DPM_LINK].smu_feature_id =
389 			FEATURE_DPM_LINK_BIT;
390 	data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id =
391 			FEATURE_DPM_DCEFCLK_BIT;
392 	data->smu_features[GNLD_ULV].smu_feature_id =
393 			FEATURE_ULV_BIT;
394 	data->smu_features[GNLD_AVFS].smu_feature_id =
395 			FEATURE_AVFS_BIT;
396 	data->smu_features[GNLD_DS_GFXCLK].smu_feature_id =
397 			FEATURE_DS_GFXCLK_BIT;
398 	data->smu_features[GNLD_DS_SOCCLK].smu_feature_id =
399 			FEATURE_DS_SOCCLK_BIT;
400 	data->smu_features[GNLD_DS_LCLK].smu_feature_id =
401 			FEATURE_DS_LCLK_BIT;
402 	data->smu_features[GNLD_PPT].smu_feature_id =
403 			FEATURE_PPT_BIT;
404 	data->smu_features[GNLD_TDC].smu_feature_id =
405 			FEATURE_TDC_BIT;
406 	data->smu_features[GNLD_THERMAL].smu_feature_id =
407 			FEATURE_THERMAL_BIT;
408 	data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id =
409 			FEATURE_GFX_PER_CU_CG_BIT;
410 	data->smu_features[GNLD_RM].smu_feature_id =
411 			FEATURE_RM_BIT;
412 	data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id =
413 			FEATURE_DS_DCEFCLK_BIT;
414 	data->smu_features[GNLD_ACDC].smu_feature_id =
415 			FEATURE_ACDC_BIT;
416 	data->smu_features[GNLD_VR0HOT].smu_feature_id =
417 			FEATURE_VR0HOT_BIT;
418 	data->smu_features[GNLD_VR1HOT].smu_feature_id =
419 			FEATURE_VR1HOT_BIT;
420 	data->smu_features[GNLD_FW_CTF].smu_feature_id =
421 			FEATURE_FW_CTF_BIT;
422 	data->smu_features[GNLD_LED_DISPLAY].smu_feature_id =
423 			FEATURE_LED_DISPLAY_BIT;
424 	data->smu_features[GNLD_FAN_CONTROL].smu_feature_id =
425 			FEATURE_FAN_CONTROL_BIT;
426 	data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT;
427 	data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT;
428 	data->smu_features[GNLD_PCC_LIMIT].smu_feature_id = FEATURE_PCC_LIMIT_CONTROL_BIT;
429 
430 	if (!data->registry_data.prefetcher_dpm_key_disabled)
431 		data->smu_features[GNLD_DPM_PREFETCHER].supported = true;
432 
433 	if (!data->registry_data.sclk_dpm_key_disabled)
434 		data->smu_features[GNLD_DPM_GFXCLK].supported = true;
435 
436 	if (!data->registry_data.mclk_dpm_key_disabled)
437 		data->smu_features[GNLD_DPM_UCLK].supported = true;
438 
439 	if (!data->registry_data.socclk_dpm_key_disabled)
440 		data->smu_features[GNLD_DPM_SOCCLK].supported = true;
441 
442 	if (PP_CAP(PHM_PlatformCaps_UVDDPM))
443 		data->smu_features[GNLD_DPM_UVD].supported = true;
444 
445 	if (PP_CAP(PHM_PlatformCaps_VCEDPM))
446 		data->smu_features[GNLD_DPM_VCE].supported = true;
447 
448 	data->smu_features[GNLD_DPM_LINK].supported = true;
449 
450 	if (!data->registry_data.dcefclk_dpm_key_disabled)
451 		data->smu_features[GNLD_DPM_DCEFCLK].supported = true;
452 
453 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) &&
454 	    data->registry_data.sclk_deep_sleep_support) {
455 		data->smu_features[GNLD_DS_GFXCLK].supported = true;
456 		data->smu_features[GNLD_DS_SOCCLK].supported = true;
457 		data->smu_features[GNLD_DS_LCLK].supported = true;
458 		data->smu_features[GNLD_DS_DCEFCLK].supported = true;
459 	}
460 
461 	if (data->registry_data.enable_pkg_pwr_tracking_feature)
462 		data->smu_features[GNLD_PPT].supported = true;
463 
464 	if (data->registry_data.enable_tdc_limit_feature)
465 		data->smu_features[GNLD_TDC].supported = true;
466 
467 	if (data->registry_data.thermal_support)
468 		data->smu_features[GNLD_THERMAL].supported = true;
469 
470 	if (data->registry_data.fan_control_support)
471 		data->smu_features[GNLD_FAN_CONTROL].supported = true;
472 
473 	if (data->registry_data.fw_ctf_enabled)
474 		data->smu_features[GNLD_FW_CTF].supported = true;
475 
476 	if (data->registry_data.avfs_support)
477 		data->smu_features[GNLD_AVFS].supported = true;
478 
479 	if (data->registry_data.led_dpm_enabled)
480 		data->smu_features[GNLD_LED_DISPLAY].supported = true;
481 
482 	if (data->registry_data.vr1hot_enabled)
483 		data->smu_features[GNLD_VR1HOT].supported = true;
484 
485 	if (data->registry_data.vr0hot_enabled)
486 		data->smu_features[GNLD_VR0HOT].supported = true;
487 
488 	ret = smum_send_msg_to_smc(hwmgr,
489 			PPSMC_MSG_GetSmuVersion,
490 			&hwmgr->smu_version);
491 	if (ret)
492 		return ret;
493 
494 		/* ACG firmware has major version 5 */
495 	if ((hwmgr->smu_version & 0xff000000) == 0x5000000)
496 		data->smu_features[GNLD_ACG].supported = true;
497 	if (data->registry_data.didt_support)
498 		data->smu_features[GNLD_DIDT].supported = true;
499 
500 	hw_revision = adev->pdev->revision;
501 	sub_vendor_id = adev->pdev->subsystem_vendor;
502 
503 	if ((hwmgr->chip_id == 0x6862 ||
504 		hwmgr->chip_id == 0x6861 ||
505 		hwmgr->chip_id == 0x6868) &&
506 		(hw_revision == 0) &&
507 		(sub_vendor_id != 0x1002))
508 		data->smu_features[GNLD_PCC_LIMIT].supported = true;
509 
510 	/* Get the SN to turn into a Unique ID */
511 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
512 	if (ret)
513 		return ret;
514 
515 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
516 	if (ret)
517 		return ret;
518 
519 	adev->unique_id = ((uint64_t)bottom32 << 32) | top32;
520 	return 0;
521 }
522 
523 #ifdef PPLIB_VEGA10_EVV_SUPPORT
524 static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
525 	phm_ppt_v1_voltage_lookup_table *lookup_table,
526 	uint16_t virtual_voltage_id, int32_t *socclk)
527 {
528 	uint8_t entry_id;
529 	uint8_t voltage_id;
530 	struct phm_ppt_v2_information *table_info =
531 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
532 
533 	PP_ASSERT_WITH_CODE(lookup_table->count != 0,
534 			"Lookup table is empty",
535 			return -EINVAL);
536 
537 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */
538 	for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
539 		voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd;
540 		if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
541 			break;
542 	}
543 
544 	PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count,
545 			"Can't find requested voltage id in vdd_dep_on_socclk table!",
546 			return -EINVAL);
547 
548 	*socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk;
549 
550 	return 0;
551 }
552 
553 #define ATOM_VIRTUAL_VOLTAGE_ID0             0xff01
554 /**
555  * vega10_get_evv_voltages - Get Leakage VDDC based on leakage ID.
556  *
557  * @hwmgr:  the address of the powerplay hardware manager.
558  * return:  always 0.
559  */
560 static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr)
561 {
562 	struct vega10_hwmgr *data = hwmgr->backend;
563 	uint16_t vv_id;
564 	uint32_t vddc = 0;
565 	uint16_t i, j;
566 	uint32_t sclk = 0;
567 	struct phm_ppt_v2_information *table_info =
568 			(struct phm_ppt_v2_information *)hwmgr->pptable;
569 	struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table =
570 			table_info->vdd_dep_on_socclk;
571 	int result;
572 
573 	for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) {
574 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
575 
576 		if (!vega10_get_socclk_for_voltage_evv(hwmgr,
577 				table_info->vddc_lookup_table, vv_id, &sclk)) {
578 			if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) {
579 				for (j = 1; j < socclk_table->count; j++) {
580 					if (socclk_table->entries[j].clk == sclk &&
581 							socclk_table->entries[j].cks_enable == 0) {
582 						sclk += 5000;
583 						break;
584 					}
585 				}
586 			}
587 
588 			PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
589 					VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
590 					"Error retrieving EVV voltage value!",
591 					continue);
592 
593 
594 			/* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
595 			PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
596 					"Invalid VDDC value", result = -EINVAL;);
597 
598 			/* the voltage should not be zero nor equal to leakage ID */
599 			if (vddc != 0 && vddc != vv_id) {
600 				data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
601 				data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
602 				data->vddc_leakage.count++;
603 			}
604 		}
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  * vega10_patch_with_vdd_leakage - Change virtual leakage voltage to actual value.
612  *
613  * @hwmgr:         the address of the powerplay hardware manager.
614  * @voltage:       pointer to changing voltage
615  * @leakage_table: pointer to leakage table
616  */
617 static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
618 		uint16_t *voltage, struct vega10_leakage_voltage *leakage_table)
619 {
620 	uint32_t index;
621 
622 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
623 	for (index = 0; index < leakage_table->count; index++) {
624 		/* if this voltage matches a leakage voltage ID */
625 		/* patch with actual leakage voltage */
626 		if (leakage_table->leakage_id[index] == *voltage) {
627 			*voltage = leakage_table->actual_voltage[index];
628 			break;
629 		}
630 	}
631 
632 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
633 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
634 }
635 
636 /**
637  * vega10_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
638  *
639  * @hwmgr:         the address of the powerplay hardware manager.
640  * @lookup_table:  pointer to voltage lookup table
641  * @leakage_table: pointer to leakage table
642  * return:         always 0
643  */
644 static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
645 		phm_ppt_v1_voltage_lookup_table *lookup_table,
646 		struct vega10_leakage_voltage *leakage_table)
647 {
648 	uint32_t i;
649 
650 	for (i = 0; i < lookup_table->count; i++)
651 		vega10_patch_with_vdd_leakage(hwmgr,
652 				&lookup_table->entries[i].us_vdd, leakage_table);
653 
654 	return 0;
655 }
656 
657 static int vega10_patch_clock_voltage_limits_with_vddc_leakage(
658 		struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table,
659 		uint16_t *vddc)
660 {
661 	vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
662 
663 	return 0;
664 }
665 #endif
666 
667 static int vega10_patch_voltage_dependency_tables_with_lookup_table(
668 		struct pp_hwmgr *hwmgr)
669 {
670 	uint8_t entry_id, voltage_id;
671 	unsigned i;
672 	struct phm_ppt_v2_information *table_info =
673 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
674 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
675 			table_info->mm_dep_table;
676 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
677 			table_info->vdd_dep_on_mclk;
678 
679 	for (i = 0; i < 6; i++) {
680 		struct phm_ppt_v1_clock_voltage_dependency_table *vdt;
681 		switch (i) {
682 			case 0: vdt = table_info->vdd_dep_on_socclk; break;
683 			case 1: vdt = table_info->vdd_dep_on_sclk; break;
684 			case 2: vdt = table_info->vdd_dep_on_dcefclk; break;
685 			case 3: vdt = table_info->vdd_dep_on_pixclk; break;
686 			case 4: vdt = table_info->vdd_dep_on_dispclk; break;
687 			case 5: vdt = table_info->vdd_dep_on_phyclk; break;
688 		}
689 
690 		for (entry_id = 0; entry_id < vdt->count; entry_id++) {
691 			voltage_id = vdt->entries[entry_id].vddInd;
692 			vdt->entries[entry_id].vddc =
693 					table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
694 		}
695 	}
696 
697 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
698 		voltage_id = mm_table->entries[entry_id].vddcInd;
699 		mm_table->entries[entry_id].vddc =
700 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
701 	}
702 
703 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
704 		voltage_id = mclk_table->entries[entry_id].vddInd;
705 		mclk_table->entries[entry_id].vddc =
706 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
707 		voltage_id = mclk_table->entries[entry_id].vddciInd;
708 		mclk_table->entries[entry_id].vddci =
709 				table_info->vddci_lookup_table->entries[voltage_id].us_vdd;
710 		voltage_id = mclk_table->entries[entry_id].mvddInd;
711 		mclk_table->entries[entry_id].mvdd =
712 				table_info->vddmem_lookup_table->entries[voltage_id].us_vdd;
713 	}
714 
715 
716 	return 0;
717 
718 }
719 
720 static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr,
721 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
722 {
723 	uint32_t table_size, i, j;
724 
725 	PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count,
726 		"Lookup table is empty", return -EINVAL);
727 
728 	table_size = lookup_table->count;
729 
730 	/* Sorting voltages */
731 	for (i = 0; i < table_size - 1; i++) {
732 		for (j = i + 1; j > 0; j--) {
733 			if (lookup_table->entries[j].us_vdd <
734 					lookup_table->entries[j - 1].us_vdd) {
735 				swap(lookup_table->entries[j - 1],
736 				     lookup_table->entries[j]);
737 			}
738 		}
739 	}
740 
741 	return 0;
742 }
743 
744 static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
745 {
746 	int result = 0;
747 	int tmp_result;
748 	struct phm_ppt_v2_information *table_info =
749 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
750 #ifdef PPLIB_VEGA10_EVV_SUPPORT
751 	struct vega10_hwmgr *data = hwmgr->backend;
752 
753 	tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr,
754 			table_info->vddc_lookup_table, &(data->vddc_leakage));
755 	if (tmp_result)
756 		result = tmp_result;
757 
758 	tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
759 			&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
760 	if (tmp_result)
761 		result = tmp_result;
762 #endif
763 
764 	tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
765 	if (tmp_result)
766 		result = tmp_result;
767 
768 	tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
769 	if (tmp_result)
770 		result = tmp_result;
771 
772 	return result;
773 }
774 
775 static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
776 {
777 	struct phm_ppt_v2_information *table_info =
778 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
779 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
780 			table_info->vdd_dep_on_socclk;
781 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
782 			table_info->vdd_dep_on_mclk;
783 
784 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table,
785 		"VDD dependency on SCLK table is missing. This table is mandatory", return -EINVAL);
786 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
787 		"VDD dependency on SCLK table is empty. This table is mandatory", return -EINVAL);
788 
789 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table,
790 		"VDD dependency on MCLK table is missing.  This table is mandatory", return -EINVAL);
791 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
792 		"VDD dependency on MCLK table is empty.  This table is mandatory", return -EINVAL);
793 
794 	table_info->max_clock_voltage_on_ac.sclk =
795 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
796 	table_info->max_clock_voltage_on_ac.mclk =
797 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
798 	table_info->max_clock_voltage_on_ac.vddc =
799 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
800 	table_info->max_clock_voltage_on_ac.vddci =
801 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
802 
803 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
804 		table_info->max_clock_voltage_on_ac.sclk;
805 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
806 		table_info->max_clock_voltage_on_ac.mclk;
807 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
808 		table_info->max_clock_voltage_on_ac.vddc;
809 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
810 		table_info->max_clock_voltage_on_ac.vddci;
811 
812 	return 0;
813 }
814 
815 static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
816 {
817 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
818 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
819 
820 	kfree(hwmgr->backend);
821 	hwmgr->backend = NULL;
822 
823 	return 0;
824 }
825 
826 static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
827 {
828 	int result = 0;
829 	struct vega10_hwmgr *data;
830 	uint32_t config_telemetry = 0;
831 	struct pp_atomfwctrl_voltage_table vol_table;
832 	struct amdgpu_device *adev = hwmgr->adev;
833 
834 	data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL);
835 	if (data == NULL)
836 		return -ENOMEM;
837 
838 	hwmgr->backend = data;
839 
840 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
841 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
842 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
843 
844 	vega10_set_default_registry_data(hwmgr);
845 	data->disable_dpm_mask = 0xff;
846 
847 	/* need to set voltage control types before EVV patching */
848 	data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE;
849 	data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE;
850 	data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE;
851 
852 	/* VDDCR_SOC */
853 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
854 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) {
855 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
856 				VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2,
857 				&vol_table)) {
858 			config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) |
859 					(vol_table.telemetry_offset & 0xff);
860 			data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
861 		}
862 	} else {
863 		kfree(hwmgr->backend);
864 		hwmgr->backend = NULL;
865 		PP_ASSERT_WITH_CODE(false,
866 				"VDDCR_SOC is not SVID2!",
867 				return -1);
868 	}
869 
870 	/* MVDDC */
871 	if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
872 			VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) {
873 		if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr,
874 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2,
875 				&vol_table)) {
876 			config_telemetry |=
877 					((vol_table.telemetry_slope << 24) & 0xff000000) |
878 					((vol_table.telemetry_offset << 16) & 0xff0000);
879 			data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2;
880 		}
881 	}
882 
883 	 /* VDDCI_MEM */
884 	if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) {
885 		if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr,
886 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
887 			data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO;
888 	}
889 
890 	data->config_telemetry = config_telemetry;
891 
892 	vega10_set_features_platform_caps(hwmgr);
893 
894 	result = vega10_init_dpm_defaults(hwmgr);
895 	if (result)
896 		return result;
897 
898 #ifdef PPLIB_VEGA10_EVV_SUPPORT
899 	/* Get leakage voltage based on leakage ID. */
900 	PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr),
901 			"Get EVV Voltage Failed.  Abort Driver loading!",
902 			return -1);
903 #endif
904 
905 	/* Patch our voltage dependency table with actual leakage voltage
906 	 * We need to perform leakage translation before it's used by other functions
907 	 */
908 	vega10_complete_dependency_tables(hwmgr);
909 
910 	/* Parse pptable data read from VBIOS */
911 	vega10_set_private_data_based_on_pptable(hwmgr);
912 
913 	data->is_tlu_enabled = false;
914 
915 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
916 			VEGA10_MAX_HARDWARE_POWERLEVELS;
917 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
918 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
919 
920 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
921 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
922 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
923 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
924 
925 	data->total_active_cus = adev->gfx.cu_info.number;
926 	if (!hwmgr->not_vf)
927 		return result;
928 
929 	/* Setup default Overdrive Fan control settings */
930 	data->odn_fan_table.target_fan_speed =
931 			hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM;
932 	data->odn_fan_table.target_temperature =
933 			hwmgr->thermal_controller.
934 			advanceFanControlParameters.ucTargetTemperature;
935 	data->odn_fan_table.min_performance_clock =
936 			hwmgr->thermal_controller.advanceFanControlParameters.
937 			ulMinFanSCLKAcousticLimit;
938 	data->odn_fan_table.min_fan_limit =
939 			hwmgr->thermal_controller.
940 			advanceFanControlParameters.usFanPWMMinLimit *
941 			hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100;
942 
943 	data->mem_channels = (RREG32_SOC15(DF, 0, mmDF_CS_AON0_DramBaseAddress0) &
944 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >>
945 			DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT;
946 	PP_ASSERT_WITH_CODE(data->mem_channels < ARRAY_SIZE(channel_number),
947 			"Mem Channel Index Exceeded maximum!",
948 			return -EINVAL);
949 
950 	return result;
951 }
952 
953 static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
954 {
955 	struct vega10_hwmgr *data = hwmgr->backend;
956 
957 	data->low_sclk_interrupt_threshold = 0;
958 
959 	return 0;
960 }
961 
962 static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr)
963 {
964 	struct vega10_hwmgr *data = hwmgr->backend;
965 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
966 
967 	struct pp_atomfwctrl_voltage_table table;
968 	uint8_t i, j;
969 	uint32_t mask = 0;
970 	uint32_t tmp;
971 	int32_t ret = 0;
972 
973 	ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM,
974 						VOLTAGE_OBJ_GPIO_LUT, &table);
975 
976 	if (!ret) {
977 		tmp = table.mask_low;
978 		for (i = 0, j = 0; i < 32; i++) {
979 			if (tmp & 1) {
980 				mask |= (uint32_t)(i << (8 * j));
981 				if (++j >= 3)
982 					break;
983 			}
984 			tmp >>= 1;
985 		}
986 	}
987 
988 	pp_table->LedPin0 = (uint8_t)(mask & 0xff);
989 	pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff);
990 	pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff);
991 	return 0;
992 }
993 
994 static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr)
995 {
996 	if (!hwmgr->not_vf)
997 		return 0;
998 
999 	PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr),
1000 			"Failed to init sclk threshold!",
1001 			return -EINVAL);
1002 
1003 	PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr),
1004 			"Failed to set up led dpm config!",
1005 			return -EINVAL);
1006 
1007 	smum_send_msg_to_smc_with_parameter(hwmgr,
1008 				PPSMC_MSG_NumOfDisplays,
1009 				0,
1010 				NULL);
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * vega10_trim_voltage_table - Remove repeated voltage values and create table with unique values.
1017  *
1018  * @hwmgr:      the address of the powerplay hardware manager.
1019  * @vol_table:  the pointer to changing voltage table
1020  * return:      0 in success
1021  */
1022 static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr,
1023 		struct pp_atomfwctrl_voltage_table *vol_table)
1024 {
1025 	uint32_t i, j;
1026 	uint16_t vvalue;
1027 	bool found = false;
1028 	struct pp_atomfwctrl_voltage_table *table;
1029 
1030 	PP_ASSERT_WITH_CODE(vol_table,
1031 			"Voltage Table empty.", return -EINVAL);
1032 	table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table),
1033 			GFP_KERNEL);
1034 
1035 	if (!table)
1036 		return -ENOMEM;
1037 
1038 	table->mask_low = vol_table->mask_low;
1039 	table->phase_delay = vol_table->phase_delay;
1040 
1041 	for (i = 0; i < vol_table->count; i++) {
1042 		vvalue = vol_table->entries[i].value;
1043 		found = false;
1044 
1045 		for (j = 0; j < table->count; j++) {
1046 			if (vvalue == table->entries[j].value) {
1047 				found = true;
1048 				break;
1049 			}
1050 		}
1051 
1052 		if (!found) {
1053 			table->entries[table->count].value = vvalue;
1054 			table->entries[table->count].smio_low =
1055 					vol_table->entries[i].smio_low;
1056 			table->count++;
1057 		}
1058 	}
1059 
1060 	memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table));
1061 	kfree(table);
1062 
1063 	return 0;
1064 }
1065 
1066 static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
1067 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1068 		struct pp_atomfwctrl_voltage_table *vol_table)
1069 {
1070 	int i;
1071 
1072 	PP_ASSERT_WITH_CODE(dep_table->count,
1073 			"Voltage Dependency Table empty.",
1074 			return -EINVAL);
1075 
1076 	vol_table->mask_low = 0;
1077 	vol_table->phase_delay = 0;
1078 	vol_table->count = dep_table->count;
1079 
1080 	for (i = 0; i < vol_table->count; i++) {
1081 		vol_table->entries[i].value = dep_table->entries[i].mvdd;
1082 		vol_table->entries[i].smio_low = 0;
1083 	}
1084 
1085 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr,
1086 			vol_table),
1087 			"Failed to trim MVDD Table!",
1088 			return -1);
1089 
1090 	return 0;
1091 }
1092 
1093 static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr,
1094 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1095 		struct pp_atomfwctrl_voltage_table *vol_table)
1096 {
1097 	uint32_t i;
1098 
1099 	PP_ASSERT_WITH_CODE(dep_table->count,
1100 			"Voltage Dependency Table empty.",
1101 			return -EINVAL);
1102 
1103 	vol_table->mask_low = 0;
1104 	vol_table->phase_delay = 0;
1105 	vol_table->count = dep_table->count;
1106 
1107 	for (i = 0; i < dep_table->count; i++) {
1108 		vol_table->entries[i].value = dep_table->entries[i].vddci;
1109 		vol_table->entries[i].smio_low = 0;
1110 	}
1111 
1112 	PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table),
1113 			"Failed to trim VDDCI table.",
1114 			return -1);
1115 
1116 	return 0;
1117 }
1118 
1119 static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1120 		phm_ppt_v1_clock_voltage_dependency_table *dep_table,
1121 		struct pp_atomfwctrl_voltage_table *vol_table)
1122 {
1123 	int i;
1124 
1125 	PP_ASSERT_WITH_CODE(dep_table->count,
1126 			"Voltage Dependency Table empty.",
1127 			return -EINVAL);
1128 
1129 	vol_table->mask_low = 0;
1130 	vol_table->phase_delay = 0;
1131 	vol_table->count = dep_table->count;
1132 
1133 	for (i = 0; i < vol_table->count; i++) {
1134 		vol_table->entries[i].value = dep_table->entries[i].vddc;
1135 		vol_table->entries[i].smio_low = 0;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 /* ---- Voltage Tables ----
1142  * If the voltage table would be bigger than
1143  * what will fit into the state table on
1144  * the SMC keep only the higher entries.
1145  */
1146 static void vega10_trim_voltage_table_to_fit_state_table(
1147 		struct pp_hwmgr *hwmgr,
1148 		uint32_t max_vol_steps,
1149 		struct pp_atomfwctrl_voltage_table *vol_table)
1150 {
1151 	unsigned int i, diff;
1152 
1153 	if (vol_table->count <= max_vol_steps)
1154 		return;
1155 
1156 	diff = vol_table->count - max_vol_steps;
1157 
1158 	for (i = 0; i < max_vol_steps; i++)
1159 		vol_table->entries[i] = vol_table->entries[i + diff];
1160 
1161 	vol_table->count = max_vol_steps;
1162 }
1163 
1164 /**
1165  * vega10_construct_voltage_tables - Create Voltage Tables.
1166  *
1167  * @hwmgr:  the address of the powerplay hardware manager.
1168  * return:  always 0
1169  */
1170 static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1171 {
1172 	struct vega10_hwmgr *data = hwmgr->backend;
1173 	struct phm_ppt_v2_information *table_info =
1174 			(struct phm_ppt_v2_information *)hwmgr->pptable;
1175 	int result;
1176 
1177 	if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1178 			data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1179 		result = vega10_get_mvdd_voltage_table(hwmgr,
1180 				table_info->vdd_dep_on_mclk,
1181 				&(data->mvdd_voltage_table));
1182 		PP_ASSERT_WITH_CODE(!result,
1183 				"Failed to retrieve MVDDC table!",
1184 				return result);
1185 	}
1186 
1187 	if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1188 		result = vega10_get_vddci_voltage_table(hwmgr,
1189 				table_info->vdd_dep_on_mclk,
1190 				&(data->vddci_voltage_table));
1191 		PP_ASSERT_WITH_CODE(!result,
1192 				"Failed to retrieve VDDCI_MEM table!",
1193 				return result);
1194 	}
1195 
1196 	if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 ||
1197 			data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) {
1198 		result = vega10_get_vdd_voltage_table(hwmgr,
1199 				table_info->vdd_dep_on_sclk,
1200 				&(data->vddc_voltage_table));
1201 		PP_ASSERT_WITH_CODE(!result,
1202 				"Failed to retrieve VDDCR_SOC table!",
1203 				return result);
1204 	}
1205 
1206 	PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16,
1207 			"Too many voltage values for VDDC. Trimming to fit state table.",
1208 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1209 					16, &(data->vddc_voltage_table)));
1210 
1211 	PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16,
1212 			"Too many voltage values for VDDCI. Trimming to fit state table.",
1213 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1214 					16, &(data->vddci_voltage_table)));
1215 
1216 	PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16,
1217 			"Too many voltage values for MVDD. Trimming to fit state table.",
1218 			vega10_trim_voltage_table_to_fit_state_table(hwmgr,
1219 					16, &(data->mvdd_voltage_table)));
1220 
1221 
1222 	return 0;
1223 }
1224 
1225 /*
1226  * vega10_init_dpm_state
1227  * Function to initialize all Soft Min/Max and Hard Min/Max to 0xff.
1228  *
1229  * @dpm_state: - the address of the DPM Table to initiailize.
1230  * return:   None.
1231  */
1232 static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state)
1233 {
1234 	dpm_state->soft_min_level = 0xff;
1235 	dpm_state->soft_max_level = 0xff;
1236 	dpm_state->hard_min_level = 0xff;
1237 	dpm_state->hard_max_level = 0xff;
1238 }
1239 
1240 static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr,
1241 		struct vega10_single_dpm_table *dpm_table,
1242 		struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
1243 {
1244 	int i;
1245 
1246 	dpm_table->count = 0;
1247 
1248 	for (i = 0; i < dep_table->count; i++) {
1249 		if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <=
1250 				dep_table->entries[i].clk) {
1251 			dpm_table->dpm_levels[dpm_table->count].value =
1252 					dep_table->entries[i].clk;
1253 			dpm_table->dpm_levels[dpm_table->count].enabled = true;
1254 			dpm_table->count++;
1255 		}
1256 	}
1257 }
1258 static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1259 {
1260 	struct vega10_hwmgr *data = hwmgr->backend;
1261 	struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table);
1262 	struct phm_ppt_v2_information *table_info =
1263 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1264 	struct phm_ppt_v1_pcie_table *bios_pcie_table =
1265 			table_info->pcie_table;
1266 	uint32_t i;
1267 
1268 	PP_ASSERT_WITH_CODE(bios_pcie_table->count,
1269 			"Incorrect number of PCIE States from VBIOS!",
1270 			return -1);
1271 
1272 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1273 		if (data->registry_data.pcieSpeedOverride)
1274 			pcie_table->pcie_gen[i] =
1275 					data->registry_data.pcieSpeedOverride;
1276 		else
1277 			pcie_table->pcie_gen[i] =
1278 					bios_pcie_table->entries[i].gen_speed;
1279 
1280 		if (data->registry_data.pcieLaneOverride)
1281 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1282 					data->registry_data.pcieLaneOverride);
1283 		else
1284 			pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width(
1285 							bios_pcie_table->entries[i].lane_width);
1286 		if (data->registry_data.pcieClockOverride)
1287 			pcie_table->lclk[i] =
1288 					data->registry_data.pcieClockOverride;
1289 		else
1290 			pcie_table->lclk[i] =
1291 					bios_pcie_table->entries[i].pcie_sclk;
1292 	}
1293 
1294 	pcie_table->count = NUM_LINK_LEVELS;
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * This function is to initialize all DPM state tables
1301  * for SMU based on the dependency table.
1302  * Dynamic state patching function will then trim these
1303  * state tables to the allowed range based
1304  * on the power policy or external client requests,
1305  * such as UVD request, etc.
1306  */
1307 static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1308 {
1309 	struct vega10_hwmgr *data = hwmgr->backend;
1310 	struct phm_ppt_v2_information *table_info =
1311 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1312 	struct vega10_single_dpm_table *dpm_table;
1313 	uint32_t i;
1314 
1315 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table =
1316 			table_info->vdd_dep_on_socclk;
1317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table =
1318 			table_info->vdd_dep_on_sclk;
1319 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1320 			table_info->vdd_dep_on_mclk;
1321 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table =
1322 			table_info->mm_dep_table;
1323 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table =
1324 			table_info->vdd_dep_on_dcefclk;
1325 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table =
1326 			table_info->vdd_dep_on_pixclk;
1327 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table =
1328 			table_info->vdd_dep_on_dispclk;
1329 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table =
1330 			table_info->vdd_dep_on_phyclk;
1331 
1332 	PP_ASSERT_WITH_CODE(dep_soc_table,
1333 			"SOCCLK dependency table is missing. This table is mandatory",
1334 			return -EINVAL);
1335 	PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1,
1336 			"SOCCLK dependency table is empty. This table is mandatory",
1337 			return -EINVAL);
1338 
1339 	PP_ASSERT_WITH_CODE(dep_gfx_table,
1340 			"GFXCLK dependency table is missing. This table is mandatory",
1341 			return -EINVAL);
1342 	PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1,
1343 			"GFXCLK dependency table is empty. This table is mandatory",
1344 			return -EINVAL);
1345 
1346 	PP_ASSERT_WITH_CODE(dep_mclk_table,
1347 			"MCLK dependency table is missing. This table is mandatory",
1348 			return -EINVAL);
1349 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1350 			"MCLK dependency table has to have is missing. This table is mandatory",
1351 			return -EINVAL);
1352 
1353 	/* Initialize Sclk DPM table based on allow Sclk values */
1354 	dpm_table = &(data->dpm_table.soc_table);
1355 	vega10_setup_default_single_dpm_table(hwmgr,
1356 			dpm_table,
1357 			dep_soc_table);
1358 
1359 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1360 
1361 	dpm_table = &(data->dpm_table.gfx_table);
1362 	vega10_setup_default_single_dpm_table(hwmgr,
1363 			dpm_table,
1364 			dep_gfx_table);
1365 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
1366 		hwmgr->platform_descriptor.overdriveLimit.engineClock =
1367 					dpm_table->dpm_levels[dpm_table->count-1].value;
1368 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1369 
1370 	/* Initialize Mclk DPM table based on allow Mclk values */
1371 	data->dpm_table.mem_table.count = 0;
1372 	dpm_table = &(data->dpm_table.mem_table);
1373 	vega10_setup_default_single_dpm_table(hwmgr,
1374 			dpm_table,
1375 			dep_mclk_table);
1376 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
1377 		hwmgr->platform_descriptor.overdriveLimit.memoryClock =
1378 					dpm_table->dpm_levels[dpm_table->count-1].value;
1379 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1380 
1381 	data->dpm_table.eclk_table.count = 0;
1382 	dpm_table = &(data->dpm_table.eclk_table);
1383 	for (i = 0; i < dep_mm_table->count; i++) {
1384 		if (i == 0 || dpm_table->dpm_levels
1385 				[dpm_table->count - 1].value <=
1386 						dep_mm_table->entries[i].eclk) {
1387 			dpm_table->dpm_levels[dpm_table->count].value =
1388 					dep_mm_table->entries[i].eclk;
1389 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1390 			dpm_table->count++;
1391 		}
1392 	}
1393 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1394 
1395 	data->dpm_table.vclk_table.count = 0;
1396 	data->dpm_table.dclk_table.count = 0;
1397 	dpm_table = &(data->dpm_table.vclk_table);
1398 	for (i = 0; i < dep_mm_table->count; i++) {
1399 		if (i == 0 || dpm_table->dpm_levels
1400 				[dpm_table->count - 1].value <=
1401 						dep_mm_table->entries[i].vclk) {
1402 			dpm_table->dpm_levels[dpm_table->count].value =
1403 					dep_mm_table->entries[i].vclk;
1404 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1405 			dpm_table->count++;
1406 		}
1407 	}
1408 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1409 
1410 	dpm_table = &(data->dpm_table.dclk_table);
1411 	for (i = 0; i < dep_mm_table->count; i++) {
1412 		if (i == 0 || dpm_table->dpm_levels
1413 				[dpm_table->count - 1].value <=
1414 						dep_mm_table->entries[i].dclk) {
1415 			dpm_table->dpm_levels[dpm_table->count].value =
1416 					dep_mm_table->entries[i].dclk;
1417 			dpm_table->dpm_levels[dpm_table->count].enabled = i == 0;
1418 			dpm_table->count++;
1419 		}
1420 	}
1421 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1422 
1423 	/* Assume there is no headless Vega10 for now */
1424 	dpm_table = &(data->dpm_table.dcef_table);
1425 	vega10_setup_default_single_dpm_table(hwmgr,
1426 			dpm_table,
1427 			dep_dcef_table);
1428 
1429 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1430 
1431 	dpm_table = &(data->dpm_table.pixel_table);
1432 	vega10_setup_default_single_dpm_table(hwmgr,
1433 			dpm_table,
1434 			dep_pix_table);
1435 
1436 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1437 
1438 	dpm_table = &(data->dpm_table.display_table);
1439 	vega10_setup_default_single_dpm_table(hwmgr,
1440 			dpm_table,
1441 			dep_disp_table);
1442 
1443 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1444 
1445 	dpm_table = &(data->dpm_table.phy_table);
1446 	vega10_setup_default_single_dpm_table(hwmgr,
1447 			dpm_table,
1448 			dep_phy_table);
1449 
1450 	vega10_init_dpm_state(&(dpm_table->dpm_state));
1451 
1452 	vega10_setup_default_pcie_table(hwmgr);
1453 
1454 	/* Zero out the saved copy of the CUSTOM profile
1455 	 * This will be checked when trying to set the profile
1456 	 * and will require that new values be passed in
1457 	 */
1458 	data->custom_profile_mode[0] = 0;
1459 	data->custom_profile_mode[1] = 0;
1460 	data->custom_profile_mode[2] = 0;
1461 	data->custom_profile_mode[3] = 0;
1462 
1463 	/* save a copy of the default DPM table */
1464 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1465 			sizeof(struct vega10_dpm_table));
1466 
1467 	return 0;
1468 }
1469 
1470 /*
1471  * vega10_populate_ulv_state
1472  * Function to provide parameters for Utral Low Voltage state to SMC.
1473  *
1474  * @hwmgr: - the address of the hardware manager.
1475  * return:   Always 0.
1476  */
1477 static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr)
1478 {
1479 	struct vega10_hwmgr *data = hwmgr->backend;
1480 	struct phm_ppt_v2_information *table_info =
1481 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1482 
1483 	data->smc_state_table.pp_table.UlvOffsetVid =
1484 			(uint8_t)table_info->us_ulv_voltage_offset;
1485 
1486 	data->smc_state_table.pp_table.UlvSmnclkDid =
1487 			(uint8_t)(table_info->us_ulv_smnclk_did);
1488 	data->smc_state_table.pp_table.UlvMp1clkDid =
1489 			(uint8_t)(table_info->us_ulv_mp1clk_did);
1490 	data->smc_state_table.pp_table.UlvGfxclkBypass =
1491 			(uint8_t)(table_info->us_ulv_gfxclk_bypass);
1492 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 =
1493 			(uint8_t)(data->vddc_voltage_table.psi0_enable);
1494 	data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 =
1495 			(uint8_t)(data->vddc_voltage_table.psi1_enable);
1496 
1497 	return 0;
1498 }
1499 
1500 static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr,
1501 		uint32_t lclock, uint8_t *curr_lclk_did)
1502 {
1503 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1504 
1505 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1506 			hwmgr,
1507 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1508 			lclock, &dividers),
1509 			"Failed to get LCLK clock settings from VBIOS!",
1510 			return -1);
1511 
1512 	*curr_lclk_did = dividers.ulDid;
1513 
1514 	return 0;
1515 }
1516 
1517 static int vega10_override_pcie_parameters(struct pp_hwmgr *hwmgr)
1518 {
1519 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
1520 	struct vega10_hwmgr *data =
1521 			(struct vega10_hwmgr *)(hwmgr->backend);
1522 	uint32_t pcie_gen = 0, pcie_width = 0;
1523 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1524 	int i;
1525 
1526 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4)
1527 		pcie_gen = 3;
1528 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
1529 		pcie_gen = 2;
1530 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2)
1531 		pcie_gen = 1;
1532 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1)
1533 		pcie_gen = 0;
1534 
1535 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
1536 		pcie_width = 6;
1537 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
1538 		pcie_width = 5;
1539 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
1540 		pcie_width = 4;
1541 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
1542 		pcie_width = 3;
1543 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
1544 		pcie_width = 2;
1545 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
1546 		pcie_width = 1;
1547 
1548 	for (i = 0; i < NUM_LINK_LEVELS; i++) {
1549 		if (pp_table->PcieGenSpeed[i] > pcie_gen)
1550 			pp_table->PcieGenSpeed[i] = pcie_gen;
1551 
1552 		if (pp_table->PcieLaneCount[i] > pcie_width)
1553 			pp_table->PcieLaneCount[i] = pcie_width;
1554 	}
1555 
1556 	if (data->registry_data.pcie_dpm_key_disabled) {
1557 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
1558 			pp_table->PcieGenSpeed[i] = pcie_gen;
1559 			pp_table->PcieLaneCount[i] = pcie_width;
1560 		}
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr)
1567 {
1568 	int result = -1;
1569 	struct vega10_hwmgr *data = hwmgr->backend;
1570 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1571 	struct vega10_pcie_table *pcie_table =
1572 			&(data->dpm_table.pcie_table);
1573 	uint32_t i, j;
1574 
1575 	for (i = 0; i < pcie_table->count; i++) {
1576 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i];
1577 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i];
1578 
1579 		result = vega10_populate_single_lclk_level(hwmgr,
1580 				pcie_table->lclk[i], &(pp_table->LclkDid[i]));
1581 		if (result) {
1582 			pr_info("Populate LClock Level %d Failed!\n", i);
1583 			return result;
1584 		}
1585 	}
1586 
1587 	j = i - 1;
1588 	while (i < NUM_LINK_LEVELS) {
1589 		pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j];
1590 		pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j];
1591 
1592 		result = vega10_populate_single_lclk_level(hwmgr,
1593 				pcie_table->lclk[j], &(pp_table->LclkDid[i]));
1594 		if (result) {
1595 			pr_info("Populate LClock Level %d Failed!\n", i);
1596 			return result;
1597 		}
1598 		i++;
1599 	}
1600 
1601 	return result;
1602 }
1603 
1604 /**
1605  * vega10_populate_single_gfx_level - Populates single SMC GFXSCLK structure
1606  *                                    using the provided engine clock
1607  *
1608  * @hwmgr:      the address of the hardware manager
1609  * @gfx_clock:  the GFX clock to use to populate the structure.
1610  * @current_gfxclk_level:  location in PPTable for the SMC GFXCLK structure.
1611  * @acg_freq:   ACG frequenty to return (MHz)
1612  */
1613 static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr,
1614 		uint32_t gfx_clock, PllSetting_t *current_gfxclk_level,
1615 		uint32_t *acg_freq)
1616 {
1617 	struct phm_ppt_v2_information *table_info =
1618 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1619 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk;
1620 	struct vega10_hwmgr *data = hwmgr->backend;
1621 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1622 	uint32_t gfx_max_clock =
1623 			hwmgr->platform_descriptor.overdriveLimit.engineClock;
1624 	uint32_t i = 0;
1625 
1626 	if (hwmgr->od_enabled)
1627 		dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1628 						&(data->odn_dpm_table.vdd_dep_on_sclk);
1629 	else
1630 		dep_on_sclk = table_info->vdd_dep_on_sclk;
1631 
1632 	PP_ASSERT_WITH_CODE(dep_on_sclk,
1633 			"Invalid SOC_VDD-GFX_CLK Dependency Table!",
1634 			return -EINVAL);
1635 
1636 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK)
1637 		gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock;
1638 	else {
1639 		for (i = 0; i < dep_on_sclk->count; i++) {
1640 			if (dep_on_sclk->entries[i].clk == gfx_clock)
1641 				break;
1642 		}
1643 		PP_ASSERT_WITH_CODE(dep_on_sclk->count > i,
1644 				"Cannot find gfx_clk in SOC_VDD-GFX_CLK!",
1645 				return -EINVAL);
1646 	}
1647 
1648 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1649 			COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK,
1650 			gfx_clock, &dividers),
1651 			"Failed to get GFX Clock settings from VBIOS!",
1652 			return -EINVAL);
1653 
1654 	/* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */
1655 	current_gfxclk_level->FbMult =
1656 			cpu_to_le32(dividers.ulPll_fb_mult);
1657 	/* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */
1658 	current_gfxclk_level->SsOn = dividers.ucPll_ss_enable;
1659 	current_gfxclk_level->SsFbMult =
1660 			cpu_to_le32(dividers.ulPll_ss_fbsmult);
1661 	current_gfxclk_level->SsSlewFrac =
1662 			cpu_to_le16(dividers.usPll_ss_slew_frac);
1663 	current_gfxclk_level->Did = (uint8_t)(dividers.ulDid);
1664 
1665 	*acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */
1666 
1667 	return 0;
1668 }
1669 
1670 /**
1671  * vega10_populate_single_soc_level - Populates single SMC SOCCLK structure
1672  *                                    using the provided clock.
1673  *
1674  * @hwmgr:     the address of the hardware manager.
1675  * @soc_clock: the SOC clock to use to populate the structure.
1676  * @current_soc_did:   DFS divider to pass back to caller
1677  * @current_vol_index: index of current VDD to pass back to caller
1678  * return:      0 on success
1679  */
1680 static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr,
1681 		uint32_t soc_clock, uint8_t *current_soc_did,
1682 		uint8_t *current_vol_index)
1683 {
1684 	struct vega10_hwmgr *data = hwmgr->backend;
1685 	struct phm_ppt_v2_information *table_info =
1686 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1687 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc;
1688 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1689 	uint32_t i;
1690 
1691 	if (hwmgr->od_enabled) {
1692 		dep_on_soc = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1693 						&data->odn_dpm_table.vdd_dep_on_socclk;
1694 		for (i = 0; i < dep_on_soc->count; i++) {
1695 			if (dep_on_soc->entries[i].clk >= soc_clock)
1696 				break;
1697 		}
1698 	} else {
1699 		dep_on_soc = table_info->vdd_dep_on_socclk;
1700 		for (i = 0; i < dep_on_soc->count; i++) {
1701 			if (dep_on_soc->entries[i].clk == soc_clock)
1702 				break;
1703 		}
1704 	}
1705 
1706 	PP_ASSERT_WITH_CODE(dep_on_soc->count > i,
1707 			"Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table",
1708 			return -EINVAL);
1709 
1710 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
1711 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
1712 			soc_clock, &dividers),
1713 			"Failed to get SOC Clock settings from VBIOS!",
1714 			return -EINVAL);
1715 
1716 	*current_soc_did = (uint8_t)dividers.ulDid;
1717 	*current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd);
1718 	return 0;
1719 }
1720 
1721 /**
1722  * vega10_populate_all_graphic_levels - Populates all SMC SCLK levels' structure
1723  *                                      based on the trimmed allowed dpm engine clock states
1724  *
1725  * @hwmgr:      the address of the hardware manager
1726  */
1727 static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1728 {
1729 	struct vega10_hwmgr *data = hwmgr->backend;
1730 	struct phm_ppt_v2_information *table_info =
1731 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1732 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1733 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table);
1734 	int result = 0;
1735 	uint32_t i, j;
1736 
1737 	for (i = 0; i < dpm_table->count; i++) {
1738 		result = vega10_populate_single_gfx_level(hwmgr,
1739 				dpm_table->dpm_levels[i].value,
1740 				&(pp_table->GfxclkLevel[i]),
1741 				&(pp_table->AcgFreqTable[i]));
1742 		if (result)
1743 			return result;
1744 	}
1745 
1746 	j = i - 1;
1747 	while (i < NUM_GFXCLK_DPM_LEVELS) {
1748 		result = vega10_populate_single_gfx_level(hwmgr,
1749 				dpm_table->dpm_levels[j].value,
1750 				&(pp_table->GfxclkLevel[i]),
1751 				&(pp_table->AcgFreqTable[i]));
1752 		if (result)
1753 			return result;
1754 		i++;
1755 	}
1756 
1757 	pp_table->GfxclkSlewRate =
1758 			cpu_to_le16(table_info->us_gfxclk_slew_rate);
1759 
1760 	dpm_table = &(data->dpm_table.soc_table);
1761 	for (i = 0; i < dpm_table->count; i++) {
1762 		result = vega10_populate_single_soc_level(hwmgr,
1763 				dpm_table->dpm_levels[i].value,
1764 				&(pp_table->SocclkDid[i]),
1765 				&(pp_table->SocDpmVoltageIndex[i]));
1766 		if (result)
1767 			return result;
1768 	}
1769 
1770 	j = i - 1;
1771 	while (i < NUM_SOCCLK_DPM_LEVELS) {
1772 		result = vega10_populate_single_soc_level(hwmgr,
1773 				dpm_table->dpm_levels[j].value,
1774 				&(pp_table->SocclkDid[i]),
1775 				&(pp_table->SocDpmVoltageIndex[i]));
1776 		if (result)
1777 			return result;
1778 		i++;
1779 	}
1780 
1781 	return result;
1782 }
1783 
1784 static void vega10_populate_vddc_soc_levels(struct pp_hwmgr *hwmgr)
1785 {
1786 	struct vega10_hwmgr *data = hwmgr->backend;
1787 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1788 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
1789 	struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table;
1790 
1791 	uint8_t soc_vid = 0;
1792 	uint32_t i, max_vddc_level;
1793 
1794 	if (hwmgr->od_enabled)
1795 		vddc_lookup_table = (struct phm_ppt_v1_voltage_lookup_table *)&data->odn_dpm_table.vddc_lookup_table;
1796 	else
1797 		vddc_lookup_table = table_info->vddc_lookup_table;
1798 
1799 	max_vddc_level = vddc_lookup_table->count;
1800 	for (i = 0; i < max_vddc_level; i++) {
1801 		soc_vid = (uint8_t)convert_to_vid(vddc_lookup_table->entries[i].us_vdd);
1802 		pp_table->SocVid[i] = soc_vid;
1803 	}
1804 	while (i < MAX_REGULAR_DPM_NUMBER) {
1805 		pp_table->SocVid[i] = soc_vid;
1806 		i++;
1807 	}
1808 }
1809 
1810 /*
1811  * Populates single SMC GFXCLK structure using the provided clock.
1812  *
1813  * @hwmgr:     the address of the hardware manager.
1814  * @mem_clock: the memory clock to use to populate the structure.
1815  * return:     0 on success..
1816  */
1817 static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1818 		uint32_t mem_clock, uint8_t *current_mem_vid,
1819 		PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind)
1820 {
1821 	struct vega10_hwmgr *data = hwmgr->backend;
1822 	struct phm_ppt_v2_information *table_info =
1823 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1824 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk;
1825 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1826 	uint32_t mem_max_clock =
1827 			hwmgr->platform_descriptor.overdriveLimit.memoryClock;
1828 	uint32_t i = 0;
1829 
1830 	if (hwmgr->od_enabled)
1831 		dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *)
1832 					&data->odn_dpm_table.vdd_dep_on_mclk;
1833 	else
1834 		dep_on_mclk = table_info->vdd_dep_on_mclk;
1835 
1836 	PP_ASSERT_WITH_CODE(dep_on_mclk,
1837 			"Invalid SOC_VDD-UCLK Dependency Table!",
1838 			return -EINVAL);
1839 
1840 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
1841 		mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock;
1842 	} else {
1843 		for (i = 0; i < dep_on_mclk->count; i++) {
1844 			if (dep_on_mclk->entries[i].clk == mem_clock)
1845 				break;
1846 		}
1847 		PP_ASSERT_WITH_CODE(dep_on_mclk->count > i,
1848 				"Cannot find UCLK in SOC_VDD-UCLK Dependency Table!",
1849 				return -EINVAL);
1850 	}
1851 
1852 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(
1853 			hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, &dividers),
1854 			"Failed to get UCLK settings from VBIOS!",
1855 			return -1);
1856 
1857 	*current_mem_vid =
1858 			(uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd));
1859 	*current_mem_soc_vind =
1860 			(uint8_t)(dep_on_mclk->entries[i].vddInd);
1861 	current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult);
1862 	current_memclk_level->Did = (uint8_t)(dividers.ulDid);
1863 
1864 	PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1,
1865 			"Invalid Divider ID!",
1866 			return -EINVAL);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * vega10_populate_all_memory_levels - Populates all SMC MCLK levels' structure
1873  *                                     based on the trimmed allowed dpm memory clock states.
1874  *
1875  * @hwmgr:  the address of the hardware manager.
1876  * return:   PP_Result_OK on success.
1877  */
1878 static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1879 {
1880 	struct vega10_hwmgr *data = hwmgr->backend;
1881 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1882 	struct vega10_single_dpm_table *dpm_table =
1883 			&(data->dpm_table.mem_table);
1884 	int result = 0;
1885 	uint32_t i, j;
1886 
1887 	for (i = 0; i < dpm_table->count; i++) {
1888 		result = vega10_populate_single_memory_level(hwmgr,
1889 				dpm_table->dpm_levels[i].value,
1890 				&(pp_table->MemVid[i]),
1891 				&(pp_table->UclkLevel[i]),
1892 				&(pp_table->MemSocVoltageIndex[i]));
1893 		if (result)
1894 			return result;
1895 	}
1896 
1897 	j = i - 1;
1898 	while (i < NUM_UCLK_DPM_LEVELS) {
1899 		result = vega10_populate_single_memory_level(hwmgr,
1900 				dpm_table->dpm_levels[j].value,
1901 				&(pp_table->MemVid[i]),
1902 				&(pp_table->UclkLevel[i]),
1903 				&(pp_table->MemSocVoltageIndex[i]));
1904 		if (result)
1905 			return result;
1906 		i++;
1907 	}
1908 
1909 	pp_table->NumMemoryChannels = (uint16_t)(data->mem_channels);
1910 	pp_table->MemoryChannelWidth =
1911 			(uint16_t)(HBM_MEMORY_CHANNEL_WIDTH *
1912 					channel_number[data->mem_channels]);
1913 
1914 	pp_table->LowestUclkReservedForUlv =
1915 			(uint8_t)(data->lowest_uclk_reserved_for_ulv);
1916 
1917 	return result;
1918 }
1919 
1920 static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr,
1921 		DSPCLK_e disp_clock)
1922 {
1923 	struct vega10_hwmgr *data = hwmgr->backend;
1924 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
1925 	struct phm_ppt_v2_information *table_info =
1926 			(struct phm_ppt_v2_information *)
1927 			(hwmgr->pptable);
1928 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1929 	uint32_t i;
1930 	uint16_t clk = 0, vddc = 0;
1931 	uint8_t vid = 0;
1932 
1933 	switch (disp_clock) {
1934 	case DSPCLK_DCEFCLK:
1935 		dep_table = table_info->vdd_dep_on_dcefclk;
1936 		break;
1937 	case DSPCLK_DISPCLK:
1938 		dep_table = table_info->vdd_dep_on_dispclk;
1939 		break;
1940 	case DSPCLK_PIXCLK:
1941 		dep_table = table_info->vdd_dep_on_pixclk;
1942 		break;
1943 	case DSPCLK_PHYCLK:
1944 		dep_table = table_info->vdd_dep_on_phyclk;
1945 		break;
1946 	default:
1947 		return -1;
1948 	}
1949 
1950 	PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS,
1951 			"Number Of Entries Exceeded maximum!",
1952 			return -1);
1953 
1954 	for (i = 0; i < dep_table->count; i++) {
1955 		clk = (uint16_t)(dep_table->entries[i].clk / 100);
1956 		vddc = table_info->vddc_lookup_table->
1957 				entries[dep_table->entries[i].vddInd].us_vdd;
1958 		vid = (uint8_t)convert_to_vid(vddc);
1959 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1960 				cpu_to_le16(clk);
1961 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1962 				cpu_to_le16(vid);
1963 	}
1964 
1965 	while (i < NUM_DSPCLK_LEVELS) {
1966 		pp_table->DisplayClockTable[disp_clock][i].Freq =
1967 				cpu_to_le16(clk);
1968 		pp_table->DisplayClockTable[disp_clock][i].Vid =
1969 				cpu_to_le16(vid);
1970 		i++;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr)
1977 {
1978 	uint32_t i;
1979 
1980 	for (i = 0; i < DSPCLK_COUNT; i++) {
1981 		PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i),
1982 				"Failed to populate Clock in DisplayClockTable!",
1983 				return -1);
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr,
1990 		uint32_t eclock, uint8_t *current_eclk_did,
1991 		uint8_t *current_soc_vol)
1992 {
1993 	struct phm_ppt_v2_information *table_info =
1994 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
1995 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
1996 			table_info->mm_dep_table;
1997 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
1998 	uint32_t i;
1999 
2000 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2001 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2002 			eclock, &dividers),
2003 			"Failed to get ECLK clock settings from VBIOS!",
2004 			return -1);
2005 
2006 	*current_eclk_did = (uint8_t)dividers.ulDid;
2007 
2008 	for (i = 0; i < dep_table->count; i++) {
2009 		if (dep_table->entries[i].eclk == eclock)
2010 			*current_soc_vol = dep_table->entries[i].vddcInd;
2011 	}
2012 
2013 	return 0;
2014 }
2015 
2016 static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr)
2017 {
2018 	struct vega10_hwmgr *data = hwmgr->backend;
2019 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2020 	struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table);
2021 	int result = -EINVAL;
2022 	uint32_t i, j;
2023 
2024 	for (i = 0; i < dpm_table->count; i++) {
2025 		result = vega10_populate_single_eclock_level(hwmgr,
2026 				dpm_table->dpm_levels[i].value,
2027 				&(pp_table->EclkDid[i]),
2028 				&(pp_table->VceDpmVoltageIndex[i]));
2029 		if (result)
2030 			return result;
2031 	}
2032 
2033 	j = i - 1;
2034 	while (i < NUM_VCE_DPM_LEVELS) {
2035 		result = vega10_populate_single_eclock_level(hwmgr,
2036 				dpm_table->dpm_levels[j].value,
2037 				&(pp_table->EclkDid[i]),
2038 				&(pp_table->VceDpmVoltageIndex[i]));
2039 		if (result)
2040 			return result;
2041 		i++;
2042 	}
2043 
2044 	return result;
2045 }
2046 
2047 static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr,
2048 		uint32_t vclock, uint8_t *current_vclk_did)
2049 {
2050 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2051 
2052 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2053 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2054 			vclock, &dividers),
2055 			"Failed to get VCLK clock settings from VBIOS!",
2056 			return -EINVAL);
2057 
2058 	*current_vclk_did = (uint8_t)dividers.ulDid;
2059 
2060 	return 0;
2061 }
2062 
2063 static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr,
2064 		uint32_t dclock, uint8_t *current_dclk_did)
2065 {
2066 	struct pp_atomfwctrl_clock_dividers_soc15 dividers;
2067 
2068 	PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr,
2069 			COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK,
2070 			dclock, &dividers),
2071 			"Failed to get DCLK clock settings from VBIOS!",
2072 			return -EINVAL);
2073 
2074 	*current_dclk_did = (uint8_t)dividers.ulDid;
2075 
2076 	return 0;
2077 }
2078 
2079 static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr)
2080 {
2081 	struct vega10_hwmgr *data = hwmgr->backend;
2082 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2083 	struct vega10_single_dpm_table *vclk_dpm_table =
2084 			&(data->dpm_table.vclk_table);
2085 	struct vega10_single_dpm_table *dclk_dpm_table =
2086 			&(data->dpm_table.dclk_table);
2087 	struct phm_ppt_v2_information *table_info =
2088 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2089 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table =
2090 			table_info->mm_dep_table;
2091 	int result = -EINVAL;
2092 	uint32_t i, j;
2093 
2094 	for (i = 0; i < vclk_dpm_table->count; i++) {
2095 		result = vega10_populate_single_vclock_level(hwmgr,
2096 				vclk_dpm_table->dpm_levels[i].value,
2097 				&(pp_table->VclkDid[i]));
2098 		if (result)
2099 			return result;
2100 	}
2101 
2102 	j = i - 1;
2103 	while (i < NUM_UVD_DPM_LEVELS) {
2104 		result = vega10_populate_single_vclock_level(hwmgr,
2105 				vclk_dpm_table->dpm_levels[j].value,
2106 				&(pp_table->VclkDid[i]));
2107 		if (result)
2108 			return result;
2109 		i++;
2110 	}
2111 
2112 	for (i = 0; i < dclk_dpm_table->count; i++) {
2113 		result = vega10_populate_single_dclock_level(hwmgr,
2114 				dclk_dpm_table->dpm_levels[i].value,
2115 				&(pp_table->DclkDid[i]));
2116 		if (result)
2117 			return result;
2118 	}
2119 
2120 	j = i - 1;
2121 	while (i < NUM_UVD_DPM_LEVELS) {
2122 		result = vega10_populate_single_dclock_level(hwmgr,
2123 				dclk_dpm_table->dpm_levels[j].value,
2124 				&(pp_table->DclkDid[i]));
2125 		if (result)
2126 			return result;
2127 		i++;
2128 	}
2129 
2130 	for (i = 0; i < dep_table->count; i++) {
2131 		if (dep_table->entries[i].vclk ==
2132 				vclk_dpm_table->dpm_levels[i].value &&
2133 			dep_table->entries[i].dclk ==
2134 				dclk_dpm_table->dpm_levels[i].value)
2135 			pp_table->UvdDpmVoltageIndex[i] =
2136 					dep_table->entries[i].vddcInd;
2137 		else
2138 			return -1;
2139 	}
2140 
2141 	j = i - 1;
2142 	while (i < NUM_UVD_DPM_LEVELS) {
2143 		pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd;
2144 		i++;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr)
2151 {
2152 	struct vega10_hwmgr *data = hwmgr->backend;
2153 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2154 	struct phm_ppt_v2_information *table_info =
2155 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2156 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2157 			table_info->vdd_dep_on_sclk;
2158 	uint32_t i;
2159 
2160 	for (i = 0; i < dep_table->count; i++) {
2161 		pp_table->CksEnable[i] = dep_table->entries[i].cks_enable;
2162 		pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset
2163 				* VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
2170 {
2171 	struct vega10_hwmgr *data = hwmgr->backend;
2172 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2173 	struct phm_ppt_v2_information *table_info =
2174 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2175 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
2176 			table_info->vdd_dep_on_sclk;
2177 	struct pp_atomfwctrl_avfs_parameters avfs_params = {0};
2178 	int result = 0;
2179 	uint32_t i;
2180 
2181 	pp_table->MinVoltageVid = (uint8_t)0xff;
2182 	pp_table->MaxVoltageVid = (uint8_t)0;
2183 
2184 	if (data->smu_features[GNLD_AVFS].supported) {
2185 		result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params);
2186 		if (!result) {
2187 			pp_table->MinVoltageVid = (uint8_t)
2188 					convert_to_vid((uint16_t)(avfs_params.ulMinVddc));
2189 			pp_table->MaxVoltageVid = (uint8_t)
2190 					convert_to_vid((uint16_t)(avfs_params.ulMaxVddc));
2191 
2192 			pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0);
2193 			pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1);
2194 			pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2);
2195 			pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2196 			pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean);
2197 			pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma);
2198 			pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor);
2199 
2200 			pp_table->BtcGbVdroopTableCksOff.a0 =
2201 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0);
2202 			pp_table->BtcGbVdroopTableCksOff.a0_shift = 20;
2203 			pp_table->BtcGbVdroopTableCksOff.a1 =
2204 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1);
2205 			pp_table->BtcGbVdroopTableCksOff.a1_shift = 20;
2206 			pp_table->BtcGbVdroopTableCksOff.a2 =
2207 					cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2);
2208 			pp_table->BtcGbVdroopTableCksOff.a2_shift = 20;
2209 
2210 			pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson;
2211 			pp_table->BtcGbVdroopTableCksOn.a0 =
2212 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0);
2213 			pp_table->BtcGbVdroopTableCksOn.a0_shift = 20;
2214 			pp_table->BtcGbVdroopTableCksOn.a1 =
2215 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1);
2216 			pp_table->BtcGbVdroopTableCksOn.a1_shift = 20;
2217 			pp_table->BtcGbVdroopTableCksOn.a2 =
2218 					cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2);
2219 			pp_table->BtcGbVdroopTableCksOn.a2_shift = 20;
2220 
2221 			pp_table->AvfsGbCksOn.m1 =
2222 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM1);
2223 			pp_table->AvfsGbCksOn.m2 =
2224 					cpu_to_le32(avfs_params.ulGbFuseTableCksonM2);
2225 			pp_table->AvfsGbCksOn.b =
2226 					cpu_to_le32(avfs_params.ulGbFuseTableCksonB);
2227 			pp_table->AvfsGbCksOn.m1_shift = 24;
2228 			pp_table->AvfsGbCksOn.m2_shift = 12;
2229 			pp_table->AvfsGbCksOn.b_shift = 0;
2230 
2231 			pp_table->OverrideAvfsGbCksOn =
2232 					avfs_params.ucEnableGbFuseTableCkson;
2233 			pp_table->AvfsGbCksOff.m1 =
2234 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1);
2235 			pp_table->AvfsGbCksOff.m2 =
2236 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2);
2237 			pp_table->AvfsGbCksOff.b =
2238 					cpu_to_le32(avfs_params.ulGbFuseTableCksoffB);
2239 			pp_table->AvfsGbCksOff.m1_shift = 24;
2240 			pp_table->AvfsGbCksOff.m2_shift = 12;
2241 			pp_table->AvfsGbCksOff.b_shift = 0;
2242 
2243 			for (i = 0; i < dep_table->count; i++)
2244 				pp_table->StaticVoltageOffsetVid[i] =
2245 						convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset));
2246 
2247 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2248 					data->disp_clk_quad_eqn_a) &&
2249 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2250 					data->disp_clk_quad_eqn_b)) {
2251 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2252 						(int32_t)data->disp_clk_quad_eqn_a;
2253 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2254 						(int32_t)data->disp_clk_quad_eqn_b;
2255 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2256 						(int32_t)data->disp_clk_quad_eqn_c;
2257 			} else {
2258 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 =
2259 						(int32_t)avfs_params.ulDispclk2GfxclkM1;
2260 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 =
2261 						(int32_t)avfs_params.ulDispclk2GfxclkM2;
2262 				pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b =
2263 						(int32_t)avfs_params.ulDispclk2GfxclkB;
2264 			}
2265 
2266 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24;
2267 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12;
2268 			pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12;
2269 
2270 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2271 					data->dcef_clk_quad_eqn_a) &&
2272 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2273 					data->dcef_clk_quad_eqn_b)) {
2274 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2275 						(int32_t)data->dcef_clk_quad_eqn_a;
2276 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2277 						(int32_t)data->dcef_clk_quad_eqn_b;
2278 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2279 						(int32_t)data->dcef_clk_quad_eqn_c;
2280 			} else {
2281 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 =
2282 						(int32_t)avfs_params.ulDcefclk2GfxclkM1;
2283 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 =
2284 						(int32_t)avfs_params.ulDcefclk2GfxclkM2;
2285 				pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b =
2286 						(int32_t)avfs_params.ulDcefclk2GfxclkB;
2287 			}
2288 
2289 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24;
2290 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12;
2291 			pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12;
2292 
2293 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2294 					data->pixel_clk_quad_eqn_a) &&
2295 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2296 					data->pixel_clk_quad_eqn_b)) {
2297 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2298 						(int32_t)data->pixel_clk_quad_eqn_a;
2299 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2300 						(int32_t)data->pixel_clk_quad_eqn_b;
2301 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2302 						(int32_t)data->pixel_clk_quad_eqn_c;
2303 			} else {
2304 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 =
2305 						(int32_t)avfs_params.ulPixelclk2GfxclkM1;
2306 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 =
2307 						(int32_t)avfs_params.ulPixelclk2GfxclkM2;
2308 				pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b =
2309 						(int32_t)avfs_params.ulPixelclk2GfxclkB;
2310 			}
2311 
2312 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24;
2313 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12;
2314 			pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12;
2315 			if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2316 					data->phy_clk_quad_eqn_a) &&
2317 				(PPREGKEY_VEGA10QUADRATICEQUATION_DFLT !=
2318 					data->phy_clk_quad_eqn_b)) {
2319 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2320 						(int32_t)data->phy_clk_quad_eqn_a;
2321 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2322 						(int32_t)data->phy_clk_quad_eqn_b;
2323 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2324 						(int32_t)data->phy_clk_quad_eqn_c;
2325 			} else {
2326 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 =
2327 						(int32_t)avfs_params.ulPhyclk2GfxclkM1;
2328 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 =
2329 						(int32_t)avfs_params.ulPhyclk2GfxclkM2;
2330 				pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b =
2331 						(int32_t)avfs_params.ulPhyclk2GfxclkB;
2332 			}
2333 
2334 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24;
2335 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12;
2336 			pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12;
2337 
2338 			pp_table->AcgBtcGbVdroopTable.a0       = avfs_params.ulAcgGbVdroopTableA0;
2339 			pp_table->AcgBtcGbVdroopTable.a0_shift = 20;
2340 			pp_table->AcgBtcGbVdroopTable.a1       = avfs_params.ulAcgGbVdroopTableA1;
2341 			pp_table->AcgBtcGbVdroopTable.a1_shift = 20;
2342 			pp_table->AcgBtcGbVdroopTable.a2       = avfs_params.ulAcgGbVdroopTableA2;
2343 			pp_table->AcgBtcGbVdroopTable.a2_shift = 20;
2344 
2345 			pp_table->AcgAvfsGb.m1                   = avfs_params.ulAcgGbFuseTableM1;
2346 			pp_table->AcgAvfsGb.m2                   = avfs_params.ulAcgGbFuseTableM2;
2347 			pp_table->AcgAvfsGb.b                    = avfs_params.ulAcgGbFuseTableB;
2348 			pp_table->AcgAvfsGb.m1_shift             = 24;
2349 			pp_table->AcgAvfsGb.m2_shift             = 12;
2350 			pp_table->AcgAvfsGb.b_shift              = 0;
2351 
2352 		} else {
2353 			data->smu_features[GNLD_AVFS].supported = false;
2354 		}
2355 	}
2356 
2357 	return 0;
2358 }
2359 
2360 static int vega10_acg_enable(struct pp_hwmgr *hwmgr)
2361 {
2362 	struct vega10_hwmgr *data = hwmgr->backend;
2363 	uint32_t agc_btc_response;
2364 
2365 	if (data->smu_features[GNLD_ACG].supported) {
2366 		if (0 == vega10_enable_smc_features(hwmgr, true,
2367 					data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap))
2368 			data->smu_features[GNLD_DPM_PREFETCHER].enabled = true;
2369 
2370 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg, NULL);
2371 
2372 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc, &agc_btc_response);
2373 
2374 		if (1 == agc_btc_response) {
2375 			if (1 == data->acg_loop_state)
2376 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop, NULL);
2377 			else if (2 == data->acg_loop_state)
2378 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop, NULL);
2379 			if (0 == vega10_enable_smc_features(hwmgr, true,
2380 				data->smu_features[GNLD_ACG].smu_feature_bitmap))
2381 					data->smu_features[GNLD_ACG].enabled = true;
2382 		} else {
2383 			pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n");
2384 			data->smu_features[GNLD_ACG].enabled = false;
2385 		}
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 static int vega10_acg_disable(struct pp_hwmgr *hwmgr)
2392 {
2393 	struct vega10_hwmgr *data = hwmgr->backend;
2394 
2395 	if (data->smu_features[GNLD_ACG].supported &&
2396 	    data->smu_features[GNLD_ACG].enabled)
2397 		if (!vega10_enable_smc_features(hwmgr, false,
2398 			data->smu_features[GNLD_ACG].smu_feature_bitmap))
2399 			data->smu_features[GNLD_ACG].enabled = false;
2400 
2401 	return 0;
2402 }
2403 
2404 static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr)
2405 {
2406 	struct vega10_hwmgr *data = hwmgr->backend;
2407 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2408 	struct pp_atomfwctrl_gpio_parameters gpio_params = {0};
2409 	int result;
2410 
2411 	result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params);
2412 	if (!result) {
2413 		if (PP_CAP(PHM_PlatformCaps_RegulatorHot) &&
2414 		    data->registry_data.regulator_hot_gpio_support) {
2415 			pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio;
2416 			pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity;
2417 			pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio;
2418 			pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity;
2419 		} else {
2420 			pp_table->VR0HotGpio = 0;
2421 			pp_table->VR0HotPolarity = 0;
2422 			pp_table->VR1HotGpio = 0;
2423 			pp_table->VR1HotPolarity = 0;
2424 		}
2425 
2426 		if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) &&
2427 		    data->registry_data.ac_dc_switch_gpio_support) {
2428 			pp_table->AcDcGpio = gpio_params.ucAcDcGpio;
2429 			pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity;
2430 		} else {
2431 			pp_table->AcDcGpio = 0;
2432 			pp_table->AcDcPolarity = 0;
2433 		}
2434 	}
2435 
2436 	return result;
2437 }
2438 
2439 static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable)
2440 {
2441 	struct vega10_hwmgr *data = hwmgr->backend;
2442 
2443 	if (data->smu_features[GNLD_AVFS].supported) {
2444 		/* Already enabled or disabled */
2445 		if (!(enable ^ data->smu_features[GNLD_AVFS].enabled))
2446 			return 0;
2447 
2448 		if (enable) {
2449 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2450 					true,
2451 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2452 					"[avfs_control] Attempt to Enable AVFS feature Failed!",
2453 					return -1);
2454 			data->smu_features[GNLD_AVFS].enabled = true;
2455 		} else {
2456 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2457 					false,
2458 					data->smu_features[GNLD_AVFS].smu_feature_bitmap),
2459 					"[avfs_control] Attempt to Disable AVFS feature Failed!",
2460 					return -1);
2461 			data->smu_features[GNLD_AVFS].enabled = false;
2462 		}
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 static int vega10_update_avfs(struct pp_hwmgr *hwmgr)
2469 {
2470 	struct vega10_hwmgr *data = hwmgr->backend;
2471 
2472 	if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
2473 		vega10_avfs_enable(hwmgr, false);
2474 	} else if (data->need_update_dpm_table) {
2475 		vega10_avfs_enable(hwmgr, false);
2476 		vega10_avfs_enable(hwmgr, true);
2477 	} else {
2478 		vega10_avfs_enable(hwmgr, true);
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr)
2485 {
2486 	int result = 0;
2487 
2488 	uint64_t serial_number = 0;
2489 	uint32_t top32, bottom32;
2490 	struct phm_fuses_default fuse;
2491 
2492 	struct vega10_hwmgr *data = hwmgr->backend;
2493 	AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table);
2494 
2495 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32, &top32);
2496 
2497 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32, &bottom32);
2498 
2499 	serial_number = ((uint64_t)bottom32 << 32) | top32;
2500 
2501 	if (pp_override_get_default_fuse_value(serial_number, &fuse) == 0) {
2502 		avfs_fuse_table->VFT0_b  = fuse.VFT0_b;
2503 		avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1;
2504 		avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2;
2505 		avfs_fuse_table->VFT1_b  = fuse.VFT1_b;
2506 		avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1;
2507 		avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2;
2508 		avfs_fuse_table->VFT2_b  = fuse.VFT2_b;
2509 		avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1;
2510 		avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2;
2511 		result = smum_smc_table_manager(hwmgr,  (uint8_t *)avfs_fuse_table,
2512 						AVFSFUSETABLE, false);
2513 		PP_ASSERT_WITH_CODE(!result,
2514 			"Failed to upload FuseOVerride!",
2515 			);
2516 	}
2517 
2518 	return result;
2519 }
2520 
2521 static void vega10_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
2522 {
2523 	struct vega10_hwmgr *data = hwmgr->backend;
2524 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2525 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
2526 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
2527 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
2528 	uint32_t i;
2529 
2530 	dep_table = table_info->vdd_dep_on_mclk;
2531 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_mclk);
2532 
2533 	for (i = 0; i < dep_table->count; i++) {
2534 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2535 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
2536 			return;
2537 		}
2538 	}
2539 
2540 	dep_table = table_info->vdd_dep_on_sclk;
2541 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dep_on_sclk);
2542 	for (i = 0; i < dep_table->count; i++) {
2543 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
2544 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
2545 			return;
2546 		}
2547 	}
2548 }
2549 
2550 /**
2551  * vega10_init_smc_table - Initializes the SMC table and uploads it
2552  *
2553  * @hwmgr:  the address of the powerplay hardware manager.
2554  * return:  always 0
2555  */
2556 static int vega10_init_smc_table(struct pp_hwmgr *hwmgr)
2557 {
2558 	int result;
2559 	struct vega10_hwmgr *data = hwmgr->backend;
2560 	struct phm_ppt_v2_information *table_info =
2561 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
2562 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
2563 	struct pp_atomfwctrl_voltage_table voltage_table;
2564 	struct pp_atomfwctrl_bios_boot_up_values boot_up_values;
2565 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
2566 
2567 	result = vega10_setup_default_dpm_tables(hwmgr);
2568 	PP_ASSERT_WITH_CODE(!result,
2569 			"Failed to setup default DPM tables!",
2570 			return result);
2571 
2572 	if (!hwmgr->not_vf)
2573 		return 0;
2574 
2575 	/* initialize ODN table */
2576 	if (hwmgr->od_enabled) {
2577 		if (odn_table->max_vddc) {
2578 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
2579 			vega10_check_dpm_table_updated(hwmgr);
2580 		} else {
2581 			vega10_odn_initial_default_setting(hwmgr);
2582 		}
2583 	}
2584 
2585 	result = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC,
2586 			VOLTAGE_OBJ_SVID2,  &voltage_table);
2587 	PP_ASSERT_WITH_CODE(!result,
2588 			"Failed to get voltage table!",
2589 			return result);
2590 	pp_table->MaxVidStep = voltage_table.max_vid_step;
2591 
2592 	pp_table->GfxDpmVoltageMode =
2593 			(uint8_t)(table_info->uc_gfx_dpm_voltage_mode);
2594 	pp_table->SocDpmVoltageMode =
2595 			(uint8_t)(table_info->uc_soc_dpm_voltage_mode);
2596 	pp_table->UclkDpmVoltageMode =
2597 			(uint8_t)(table_info->uc_uclk_dpm_voltage_mode);
2598 	pp_table->UvdDpmVoltageMode =
2599 			(uint8_t)(table_info->uc_uvd_dpm_voltage_mode);
2600 	pp_table->VceDpmVoltageMode =
2601 			(uint8_t)(table_info->uc_vce_dpm_voltage_mode);
2602 	pp_table->Mp0DpmVoltageMode =
2603 			(uint8_t)(table_info->uc_mp0_dpm_voltage_mode);
2604 
2605 	pp_table->DisplayDpmVoltageMode =
2606 			(uint8_t)(table_info->uc_dcef_dpm_voltage_mode);
2607 
2608 	data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable;
2609 	data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable;
2610 
2611 	if (data->registry_data.ulv_support &&
2612 			table_info->us_ulv_voltage_offset) {
2613 		result = vega10_populate_ulv_state(hwmgr);
2614 		PP_ASSERT_WITH_CODE(!result,
2615 				"Failed to initialize ULV state!",
2616 				return result);
2617 	}
2618 
2619 	result = vega10_populate_smc_link_levels(hwmgr);
2620 	PP_ASSERT_WITH_CODE(!result,
2621 			"Failed to initialize Link Level!",
2622 			return result);
2623 
2624 	result = vega10_override_pcie_parameters(hwmgr);
2625 	PP_ASSERT_WITH_CODE(!result,
2626 			"Failed to override pcie parameters!",
2627 			return result);
2628 
2629 	result = vega10_populate_all_graphic_levels(hwmgr);
2630 	PP_ASSERT_WITH_CODE(!result,
2631 			"Failed to initialize Graphics Level!",
2632 			return result);
2633 
2634 	result = vega10_populate_all_memory_levels(hwmgr);
2635 	PP_ASSERT_WITH_CODE(!result,
2636 			"Failed to initialize Memory Level!",
2637 			return result);
2638 
2639 	vega10_populate_vddc_soc_levels(hwmgr);
2640 
2641 	result = vega10_populate_all_display_clock_levels(hwmgr);
2642 	PP_ASSERT_WITH_CODE(!result,
2643 			"Failed to initialize Display Level!",
2644 			return result);
2645 
2646 	result = vega10_populate_smc_vce_levels(hwmgr);
2647 	PP_ASSERT_WITH_CODE(!result,
2648 			"Failed to initialize VCE Level!",
2649 			return result);
2650 
2651 	result = vega10_populate_smc_uvd_levels(hwmgr);
2652 	PP_ASSERT_WITH_CODE(!result,
2653 			"Failed to initialize UVD Level!",
2654 			return result);
2655 
2656 	if (data->registry_data.clock_stretcher_support) {
2657 		result = vega10_populate_clock_stretcher_table(hwmgr);
2658 		PP_ASSERT_WITH_CODE(!result,
2659 				"Failed to populate Clock Stretcher Table!",
2660 				return result);
2661 	}
2662 
2663 	result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values);
2664 	if (!result) {
2665 		data->vbios_boot_state.vddc     = boot_up_values.usVddc;
2666 		data->vbios_boot_state.vddci    = boot_up_values.usVddci;
2667 		data->vbios_boot_state.mvddc    = boot_up_values.usMvddc;
2668 		data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk;
2669 		data->vbios_boot_state.mem_clock = boot_up_values.ulUClk;
2670 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2671 				SMU9_SYSPLL0_SOCCLK_ID, 0, &boot_up_values.ulSocClk);
2672 
2673 		pp_atomfwctrl_get_clk_information_by_clkid(hwmgr,
2674 				SMU9_SYSPLL0_DCEFCLK_ID, 0, &boot_up_values.ulDCEFClk);
2675 
2676 		data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk;
2677 		data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk;
2678 		if (0 != boot_up_values.usVddc) {
2679 			smum_send_msg_to_smc_with_parameter(hwmgr,
2680 						PPSMC_MSG_SetFloorSocVoltage,
2681 						(boot_up_values.usVddc * 4),
2682 						NULL);
2683 			data->vbios_boot_state.bsoc_vddc_lock = true;
2684 		} else {
2685 			data->vbios_boot_state.bsoc_vddc_lock = false;
2686 		}
2687 		smum_send_msg_to_smc_with_parameter(hwmgr,
2688 				PPSMC_MSG_SetMinDeepSleepDcefclk,
2689 			(uint32_t)(data->vbios_boot_state.dcef_clock / 100),
2690 				NULL);
2691 	}
2692 
2693 	result = vega10_populate_avfs_parameters(hwmgr);
2694 	PP_ASSERT_WITH_CODE(!result,
2695 			"Failed to initialize AVFS Parameters!",
2696 			return result);
2697 
2698 	result = vega10_populate_gpio_parameters(hwmgr);
2699 	PP_ASSERT_WITH_CODE(!result,
2700 			"Failed to initialize GPIO Parameters!",
2701 			return result);
2702 
2703 	pp_table->GfxclkAverageAlpha = (uint8_t)
2704 			(data->gfxclk_average_alpha);
2705 	pp_table->SocclkAverageAlpha = (uint8_t)
2706 			(data->socclk_average_alpha);
2707 	pp_table->UclkAverageAlpha = (uint8_t)
2708 			(data->uclk_average_alpha);
2709 	pp_table->GfxActivityAverageAlpha = (uint8_t)
2710 			(data->gfx_activity_average_alpha);
2711 
2712 	vega10_populate_and_upload_avfs_fuse_override(hwmgr);
2713 
2714 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
2715 
2716 	PP_ASSERT_WITH_CODE(!result,
2717 			"Failed to upload PPtable!", return result);
2718 
2719 	result = vega10_avfs_enable(hwmgr, true);
2720 	PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!",
2721 					return result);
2722 	vega10_acg_enable(hwmgr);
2723 
2724 	return 0;
2725 }
2726 
2727 static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr)
2728 {
2729 	struct vega10_hwmgr *data = hwmgr->backend;
2730 
2731 	if (data->smu_features[GNLD_THERMAL].supported) {
2732 		if (data->smu_features[GNLD_THERMAL].enabled)
2733 			pr_info("THERMAL Feature Already enabled!");
2734 
2735 		PP_ASSERT_WITH_CODE(
2736 				!vega10_enable_smc_features(hwmgr,
2737 				true,
2738 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2739 				"Enable THERMAL Feature Failed!",
2740 				return -1);
2741 		data->smu_features[GNLD_THERMAL].enabled = true;
2742 	}
2743 
2744 	return 0;
2745 }
2746 
2747 static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr)
2748 {
2749 	struct vega10_hwmgr *data = hwmgr->backend;
2750 
2751 	if (data->smu_features[GNLD_THERMAL].supported) {
2752 		if (!data->smu_features[GNLD_THERMAL].enabled)
2753 			pr_info("THERMAL Feature Already disabled!");
2754 
2755 		PP_ASSERT_WITH_CODE(
2756 				!vega10_enable_smc_features(hwmgr,
2757 				false,
2758 				data->smu_features[GNLD_THERMAL].smu_feature_bitmap),
2759 				"disable THERMAL Feature Failed!",
2760 				return -1);
2761 		data->smu_features[GNLD_THERMAL].enabled = false;
2762 	}
2763 
2764 	return 0;
2765 }
2766 
2767 static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr)
2768 {
2769 	struct vega10_hwmgr *data = hwmgr->backend;
2770 
2771 	if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) {
2772 		if (data->smu_features[GNLD_VR0HOT].supported) {
2773 			PP_ASSERT_WITH_CODE(
2774 					!vega10_enable_smc_features(hwmgr,
2775 					true,
2776 					data->smu_features[GNLD_VR0HOT].smu_feature_bitmap),
2777 					"Attempt to Enable VR0 Hot feature Failed!",
2778 					return -1);
2779 			data->smu_features[GNLD_VR0HOT].enabled = true;
2780 		} else {
2781 			if (data->smu_features[GNLD_VR1HOT].supported) {
2782 				PP_ASSERT_WITH_CODE(
2783 						!vega10_enable_smc_features(hwmgr,
2784 						true,
2785 						data->smu_features[GNLD_VR1HOT].smu_feature_bitmap),
2786 						"Attempt to Enable VR0 Hot feature Failed!",
2787 						return -1);
2788 				data->smu_features[GNLD_VR1HOT].enabled = true;
2789 			}
2790 		}
2791 	}
2792 	return 0;
2793 }
2794 
2795 static int vega10_enable_ulv(struct pp_hwmgr *hwmgr)
2796 {
2797 	struct vega10_hwmgr *data = hwmgr->backend;
2798 
2799 	if (data->registry_data.ulv_support) {
2800 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2801 				true, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2802 				"Enable ULV Feature Failed!",
2803 				return -1);
2804 		data->smu_features[GNLD_ULV].enabled = true;
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 static int vega10_disable_ulv(struct pp_hwmgr *hwmgr)
2811 {
2812 	struct vega10_hwmgr *data = hwmgr->backend;
2813 
2814 	if (data->registry_data.ulv_support) {
2815 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2816 				false, data->smu_features[GNLD_ULV].smu_feature_bitmap),
2817 				"disable ULV Feature Failed!",
2818 				return -EINVAL);
2819 		data->smu_features[GNLD_ULV].enabled = false;
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2826 {
2827 	struct vega10_hwmgr *data = hwmgr->backend;
2828 
2829 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2830 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2831 				true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2832 				"Attempt to Enable DS_GFXCLK Feature Failed!",
2833 				return -EINVAL);
2834 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
2835 	}
2836 
2837 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2838 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2839 				true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2840 				"Attempt to Enable DS_SOCCLK Feature Failed!",
2841 				return -EINVAL);
2842 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
2843 	}
2844 
2845 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2846 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2847 				true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2848 				"Attempt to Enable DS_LCLK Feature Failed!",
2849 				return -EINVAL);
2850 		data->smu_features[GNLD_DS_LCLK].enabled = true;
2851 	}
2852 
2853 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2854 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2855 				true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2856 				"Attempt to Enable DS_DCEFCLK Feature Failed!",
2857 				return -EINVAL);
2858 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
2859 	}
2860 
2861 	return 0;
2862 }
2863 
2864 static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2865 {
2866 	struct vega10_hwmgr *data = hwmgr->backend;
2867 
2868 	if (data->smu_features[GNLD_DS_GFXCLK].supported) {
2869 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2870 				false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap),
2871 				"Attempt to disable DS_GFXCLK Feature Failed!",
2872 				return -EINVAL);
2873 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
2874 	}
2875 
2876 	if (data->smu_features[GNLD_DS_SOCCLK].supported) {
2877 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2878 				false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap),
2879 				"Attempt to disable DS_ Feature Failed!",
2880 				return -EINVAL);
2881 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
2882 	}
2883 
2884 	if (data->smu_features[GNLD_DS_LCLK].supported) {
2885 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2886 				false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap),
2887 				"Attempt to disable DS_LCLK Feature Failed!",
2888 				return -EINVAL);
2889 		data->smu_features[GNLD_DS_LCLK].enabled = false;
2890 	}
2891 
2892 	if (data->smu_features[GNLD_DS_DCEFCLK].supported) {
2893 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2894 				false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap),
2895 				"Attempt to disable DS_DCEFCLK Feature Failed!",
2896 				return -EINVAL);
2897 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2904 {
2905 	struct vega10_hwmgr *data = hwmgr->backend;
2906 	uint32_t i, feature_mask = 0;
2907 
2908 	if (!hwmgr->not_vf)
2909 		return 0;
2910 
2911 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2912 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2913 				false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2914 		"Attempt to disable LED DPM feature failed!", return -EINVAL);
2915 		data->smu_features[GNLD_LED_DISPLAY].enabled = false;
2916 	}
2917 
2918 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2919 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2920 			if (data->smu_features[i].supported) {
2921 				if (data->smu_features[i].enabled) {
2922 					feature_mask |= data->smu_features[i].
2923 							smu_feature_bitmap;
2924 					data->smu_features[i].enabled = false;
2925 				}
2926 			}
2927 		}
2928 	}
2929 
2930 	vega10_enable_smc_features(hwmgr, false, feature_mask);
2931 
2932 	return 0;
2933 }
2934 
2935 /**
2936  * vega10_start_dpm - Tell SMC to enabled the supported DPMs.
2937  *
2938  * @hwmgr:   the address of the powerplay hardware manager.
2939  * @bitmap:  bitmap for the features to enabled.
2940  * return:  0 on at least one DPM is successfully enabled.
2941  */
2942 static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap)
2943 {
2944 	struct vega10_hwmgr *data = hwmgr->backend;
2945 	uint32_t i, feature_mask = 0;
2946 
2947 	for (i = 0; i < GNLD_DPM_MAX; i++) {
2948 		if (data->smu_features[i].smu_feature_bitmap & bitmap) {
2949 			if (data->smu_features[i].supported) {
2950 				if (!data->smu_features[i].enabled) {
2951 					feature_mask |= data->smu_features[i].
2952 							smu_feature_bitmap;
2953 					data->smu_features[i].enabled = true;
2954 				}
2955 			}
2956 		}
2957 	}
2958 
2959 	if (vega10_enable_smc_features(hwmgr,
2960 			true, feature_mask)) {
2961 		for (i = 0; i < GNLD_DPM_MAX; i++) {
2962 			if (data->smu_features[i].smu_feature_bitmap &
2963 					feature_mask)
2964 				data->smu_features[i].enabled = false;
2965 		}
2966 	}
2967 
2968 	if(data->smu_features[GNLD_LED_DISPLAY].supported == true){
2969 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2970 				true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap),
2971 		"Attempt to Enable LED DPM feature Failed!", return -EINVAL);
2972 		data->smu_features[GNLD_LED_DISPLAY].enabled = true;
2973 	}
2974 
2975 	if (data->vbios_boot_state.bsoc_vddc_lock) {
2976 		smum_send_msg_to_smc_with_parameter(hwmgr,
2977 						PPSMC_MSG_SetFloorSocVoltage, 0,
2978 						NULL);
2979 		data->vbios_boot_state.bsoc_vddc_lock = false;
2980 	}
2981 
2982 	if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) {
2983 		if (data->smu_features[GNLD_ACDC].supported) {
2984 			PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2985 					true, data->smu_features[GNLD_ACDC].smu_feature_bitmap),
2986 					"Attempt to Enable DS_GFXCLK Feature Failed!",
2987 					return -1);
2988 			data->smu_features[GNLD_ACDC].enabled = true;
2989 		}
2990 	}
2991 
2992 	if (data->registry_data.pcie_dpm_key_disabled) {
2993 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
2994 				false, data->smu_features[GNLD_DPM_LINK].smu_feature_bitmap),
2995 		"Attempt to Disable Link DPM feature Failed!", return -EINVAL);
2996 		data->smu_features[GNLD_DPM_LINK].enabled = false;
2997 		data->smu_features[GNLD_DPM_LINK].supported = false;
2998 	}
2999 
3000 	return 0;
3001 }
3002 
3003 
3004 static int vega10_enable_disable_PCC_limit_feature(struct pp_hwmgr *hwmgr, bool enable)
3005 {
3006 	struct vega10_hwmgr *data = hwmgr->backend;
3007 
3008 	if (data->smu_features[GNLD_PCC_LIMIT].supported) {
3009 		if (enable == data->smu_features[GNLD_PCC_LIMIT].enabled)
3010 			pr_info("GNLD_PCC_LIMIT has been %s \n", enable ? "enabled" : "disabled");
3011 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3012 				enable, data->smu_features[GNLD_PCC_LIMIT].smu_feature_bitmap),
3013 				"Attempt to Enable PCC Limit feature Failed!",
3014 				return -EINVAL);
3015 		data->smu_features[GNLD_PCC_LIMIT].enabled = enable;
3016 	}
3017 
3018 	return 0;
3019 }
3020 
3021 static void vega10_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
3022 {
3023 	struct phm_ppt_v2_information *table_info =
3024 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3025 
3026 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
3027 	    table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
3028 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[VEGA10_UMD_PSTATE_GFXCLK_LEVEL].clk;
3029 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[VEGA10_UMD_PSTATE_MCLK_LEVEL].clk;
3030 	} else {
3031 		hwmgr->pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3032 		hwmgr->pstate_mclk = table_info->vdd_dep_on_mclk->entries[0].clk;
3033 	}
3034 
3035 	hwmgr->pstate_sclk_peak = table_info->vdd_dep_on_sclk->entries[table_info->vdd_dep_on_sclk->count - 1].clk;
3036 	hwmgr->pstate_mclk_peak = table_info->vdd_dep_on_mclk->entries[table_info->vdd_dep_on_mclk->count - 1].clk;
3037 
3038 	/* make sure the output is in Mhz */
3039 	hwmgr->pstate_sclk /= 100;
3040 	hwmgr->pstate_mclk /= 100;
3041 	hwmgr->pstate_sclk_peak /= 100;
3042 	hwmgr->pstate_mclk_peak /= 100;
3043 }
3044 
3045 static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3046 {
3047 	struct vega10_hwmgr *data = hwmgr->backend;
3048 	int tmp_result, result = 0;
3049 
3050 	if (hwmgr->not_vf) {
3051 		vega10_enable_disable_PCC_limit_feature(hwmgr, true);
3052 
3053 		smum_send_msg_to_smc_with_parameter(hwmgr,
3054 			PPSMC_MSG_ConfigureTelemetry, data->config_telemetry,
3055 			NULL);
3056 
3057 		tmp_result = vega10_construct_voltage_tables(hwmgr);
3058 		PP_ASSERT_WITH_CODE(!tmp_result,
3059 				    "Failed to construct voltage tables!",
3060 				    result = tmp_result);
3061 	}
3062 
3063 	if (hwmgr->not_vf || hwmgr->pp_one_vf) {
3064 		tmp_result = vega10_init_smc_table(hwmgr);
3065 		PP_ASSERT_WITH_CODE(!tmp_result,
3066 				    "Failed to initialize SMC table!",
3067 				    result = tmp_result);
3068 	}
3069 
3070 	if (hwmgr->not_vf) {
3071 		if (PP_CAP(PHM_PlatformCaps_ThermalController)) {
3072 			tmp_result = vega10_enable_thermal_protection(hwmgr);
3073 			PP_ASSERT_WITH_CODE(!tmp_result,
3074 					    "Failed to enable thermal protection!",
3075 					    result = tmp_result);
3076 		}
3077 
3078 		tmp_result = vega10_enable_vrhot_feature(hwmgr);
3079 		PP_ASSERT_WITH_CODE(!tmp_result,
3080 				    "Failed to enable VR hot feature!",
3081 				    result = tmp_result);
3082 
3083 		tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr);
3084 		PP_ASSERT_WITH_CODE(!tmp_result,
3085 				    "Failed to enable deep sleep master switch!",
3086 				    result = tmp_result);
3087 	}
3088 
3089 	if (hwmgr->not_vf) {
3090 		tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES);
3091 		PP_ASSERT_WITH_CODE(!tmp_result,
3092 				    "Failed to start DPM!", result = tmp_result);
3093 	}
3094 
3095 	if (hwmgr->not_vf) {
3096 		/* enable didt, do not abort if failed didt */
3097 		tmp_result = vega10_enable_didt_config(hwmgr);
3098 		PP_ASSERT(!tmp_result,
3099 			  "Failed to enable didt config!");
3100 	}
3101 
3102 	tmp_result = vega10_enable_power_containment(hwmgr);
3103 	PP_ASSERT_WITH_CODE(!tmp_result,
3104 			    "Failed to enable power containment!",
3105 			    result = tmp_result);
3106 
3107 	if (hwmgr->not_vf) {
3108 		tmp_result = vega10_power_control_set_level(hwmgr);
3109 		PP_ASSERT_WITH_CODE(!tmp_result,
3110 				    "Failed to power control set level!",
3111 				    result = tmp_result);
3112 
3113 		tmp_result = vega10_enable_ulv(hwmgr);
3114 		PP_ASSERT_WITH_CODE(!tmp_result,
3115 				    "Failed to enable ULV!",
3116 				    result = tmp_result);
3117 	}
3118 
3119 	vega10_populate_umdpstate_clocks(hwmgr);
3120 
3121 	return result;
3122 }
3123 
3124 static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr)
3125 {
3126 	return sizeof(struct vega10_power_state);
3127 }
3128 
3129 static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3130 		void *state, struct pp_power_state *power_state,
3131 		void *pp_table, uint32_t classification_flag)
3132 {
3133 	ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2;
3134 	struct vega10_power_state *vega10_ps =
3135 			cast_phw_vega10_power_state(&(power_state->hardware));
3136 	struct vega10_performance_level *performance_level;
3137 	ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state;
3138 	ATOM_Vega10_POWERPLAYTABLE *powerplay_table =
3139 			(ATOM_Vega10_POWERPLAYTABLE *)pp_table;
3140 	ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table =
3141 			(ATOM_Vega10_SOCCLK_Dependency_Table *)
3142 			(((unsigned long)powerplay_table) +
3143 			le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset));
3144 	ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table =
3145 			(ATOM_Vega10_GFXCLK_Dependency_Table *)
3146 			(((unsigned long)powerplay_table) +
3147 			le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset));
3148 	ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table =
3149 			(ATOM_Vega10_MCLK_Dependency_Table *)
3150 			(((unsigned long)powerplay_table) +
3151 			le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3152 
3153 
3154 	/* The following fields are not initialized here:
3155 	 * id orderedList allStatesList
3156 	 */
3157 	power_state->classification.ui_label =
3158 			(le16_to_cpu(state_entry->usClassification) &
3159 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3160 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3161 	power_state->classification.flags = classification_flag;
3162 	/* NOTE: There is a classification2 flag in BIOS
3163 	 * that is not being used right now
3164 	 */
3165 	power_state->classification.temporary_state = false;
3166 	power_state->classification.to_be_deleted = false;
3167 
3168 	power_state->validation.disallowOnDC =
3169 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3170 					ATOM_Vega10_DISALLOW_ON_DC) != 0);
3171 
3172 	power_state->display.disableFrameModulation = false;
3173 	power_state->display.limitRefreshrate = false;
3174 	power_state->display.enableVariBright =
3175 			((le32_to_cpu(state_entry->ulCapsAndSettings) &
3176 					ATOM_Vega10_ENABLE_VARIBRIGHT) != 0);
3177 
3178 	power_state->validation.supportedPowerLevels = 0;
3179 	power_state->uvd_clocks.VCLK = 0;
3180 	power_state->uvd_clocks.DCLK = 0;
3181 	power_state->temperatures.min = 0;
3182 	power_state->temperatures.max = 0;
3183 
3184 	performance_level = &(vega10_ps->performance_levels
3185 			[vega10_ps->performance_level_count++]);
3186 
3187 	PP_ASSERT_WITH_CODE(
3188 			(vega10_ps->performance_level_count <
3189 					NUM_GFXCLK_DPM_LEVELS),
3190 			"Performance levels exceeds SMC limit!",
3191 			return -1);
3192 
3193 	PP_ASSERT_WITH_CODE(
3194 			(vega10_ps->performance_level_count <
3195 					hwmgr->platform_descriptor.
3196 					hardwareActivityPerformanceLevels),
3197 			"Performance levels exceeds Driver limit!",
3198 			return -1);
3199 
3200 	/* Performance levels are arranged from low to high. */
3201 	performance_level->soc_clock = socclk_dep_table->entries
3202 			[state_entry->ucSocClockIndexLow].ulClk;
3203 	performance_level->gfx_clock = gfxclk_dep_table->entries
3204 			[state_entry->ucGfxClockIndexLow].ulClk;
3205 	performance_level->mem_clock = mclk_dep_table->entries
3206 			[state_entry->ucMemClockIndexLow].ulMemClk;
3207 
3208 	performance_level = &(vega10_ps->performance_levels
3209 				[vega10_ps->performance_level_count++]);
3210 	performance_level->soc_clock = socclk_dep_table->entries
3211 				[state_entry->ucSocClockIndexHigh].ulClk;
3212 	if (gfxclk_dep_table->ucRevId == 0) {
3213 		/* under vega10 pp one vf mode, the gfx clk dpm need be lower
3214 		 * to level-4 due to the limited 110w-power
3215 		 */
3216 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3217 			performance_level->gfx_clock =
3218 				gfxclk_dep_table->entries[4].ulClk;
3219 		else
3220 			performance_level->gfx_clock = gfxclk_dep_table->entries
3221 				[state_entry->ucGfxClockIndexHigh].ulClk;
3222 	} else if (gfxclk_dep_table->ucRevId == 1) {
3223 		patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries;
3224 		if (hwmgr->pp_one_vf && (state_entry->ucGfxClockIndexHigh > 0))
3225 			performance_level->gfx_clock = patom_record_V2[4].ulClk;
3226 		else
3227 			performance_level->gfx_clock =
3228 				patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk;
3229 	}
3230 
3231 	performance_level->mem_clock = mclk_dep_table->entries
3232 			[state_entry->ucMemClockIndexHigh].ulMemClk;
3233 	return 0;
3234 }
3235 
3236 static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3237 		unsigned long entry_index, struct pp_power_state *state)
3238 {
3239 	int result;
3240 	struct vega10_power_state *vega10_ps;
3241 
3242 	state->hardware.magic = PhwVega10_Magic;
3243 
3244 	vega10_ps = cast_phw_vega10_power_state(&state->hardware);
3245 
3246 	result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state,
3247 			vega10_get_pp_table_entry_callback_func);
3248 	if (result)
3249 		return result;
3250 
3251 	/*
3252 	 * This is the earliest time we have all the dependency table
3253 	 * and the VBIOS boot state
3254 	 */
3255 	/* set DC compatible flag if this state supports DC */
3256 	if (!state->validation.disallowOnDC)
3257 		vega10_ps->dc_compatible = true;
3258 
3259 	vega10_ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3260 	vega10_ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3261 
3262 	return 0;
3263 }
3264 
3265 static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr,
3266 	     struct pp_hw_power_state *hw_ps)
3267 {
3268 	return 0;
3269 }
3270 
3271 static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3272 				struct pp_power_state  *request_ps,
3273 			const struct pp_power_state *current_ps)
3274 {
3275 	struct amdgpu_device *adev = hwmgr->adev;
3276 	struct vega10_power_state *vega10_ps;
3277 	uint32_t sclk;
3278 	uint32_t mclk;
3279 	struct PP_Clocks minimum_clocks = {0};
3280 	bool disable_mclk_switching;
3281 	bool disable_mclk_switching_for_frame_lock;
3282 	bool disable_mclk_switching_for_vr;
3283 	bool force_mclk_high;
3284 	const struct phm_clock_and_voltage_limits *max_limits;
3285 	uint32_t i;
3286 	struct vega10_hwmgr *data = hwmgr->backend;
3287 	struct phm_ppt_v2_information *table_info =
3288 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3289 	int32_t count;
3290 	uint32_t stable_pstate_sclk_dpm_percentage;
3291 	uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3292 	uint32_t latency;
3293 
3294 	vega10_ps = cast_phw_vega10_power_state(&request_ps->hardware);
3295 	if (!vega10_ps)
3296 		return -EINVAL;
3297 
3298 	data->battery_state = (PP_StateUILabel_Battery ==
3299 			request_ps->classification.ui_label);
3300 
3301 	if (vega10_ps->performance_level_count != 2)
3302 		pr_info("VI should always have 2 performance levels");
3303 
3304 	max_limits = adev->pm.ac_power ?
3305 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3306 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3307 
3308 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3309 	if (!adev->pm.ac_power) {
3310 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3311 			if (vega10_ps->performance_levels[i].mem_clock >
3312 				max_limits->mclk)
3313 				vega10_ps->performance_levels[i].mem_clock =
3314 						max_limits->mclk;
3315 			if (vega10_ps->performance_levels[i].gfx_clock >
3316 				max_limits->sclk)
3317 				vega10_ps->performance_levels[i].gfx_clock =
3318 						max_limits->sclk;
3319 		}
3320 	}
3321 
3322 	/* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3323 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3324 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3325 
3326 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3327 		stable_pstate_sclk_dpm_percentage =
3328 			data->registry_data.stable_pstate_sclk_dpm_percentage;
3329 		PP_ASSERT_WITH_CODE(
3330 			data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 &&
3331 			data->registry_data.stable_pstate_sclk_dpm_percentage <= 100,
3332 			"percent sclk value must range from 1% to 100%, setting default value",
3333 			stable_pstate_sclk_dpm_percentage = 75);
3334 
3335 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3336 		stable_pstate_sclk = (max_limits->sclk *
3337 				stable_pstate_sclk_dpm_percentage) / 100;
3338 
3339 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3340 				count >= 0; count--) {
3341 			if (stable_pstate_sclk >=
3342 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3343 				stable_pstate_sclk =
3344 						table_info->vdd_dep_on_sclk->entries[count].clk;
3345 				break;
3346 			}
3347 		}
3348 
3349 		if (count < 0)
3350 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3351 
3352 		stable_pstate_mclk = max_limits->mclk;
3353 
3354 		minimum_clocks.engineClock = stable_pstate_sclk;
3355 		minimum_clocks.memoryClock = stable_pstate_mclk;
3356 	}
3357 
3358 	disable_mclk_switching_for_frame_lock =
3359 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3360 	disable_mclk_switching_for_vr =
3361 		PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR);
3362 	force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh);
3363 
3364 	if (hwmgr->display_config->num_display == 0)
3365 		disable_mclk_switching = false;
3366 	else
3367 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
3368 					  !hwmgr->display_config->multi_monitor_in_sync) ||
3369 			disable_mclk_switching_for_frame_lock ||
3370 			disable_mclk_switching_for_vr ||
3371 			force_mclk_high;
3372 
3373 	sclk = vega10_ps->performance_levels[0].gfx_clock;
3374 	mclk = vega10_ps->performance_levels[0].mem_clock;
3375 
3376 	if (sclk < minimum_clocks.engineClock)
3377 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3378 				max_limits->sclk : minimum_clocks.engineClock;
3379 
3380 	if (mclk < minimum_clocks.memoryClock)
3381 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3382 				max_limits->mclk : minimum_clocks.memoryClock;
3383 
3384 	vega10_ps->performance_levels[0].gfx_clock = sclk;
3385 	vega10_ps->performance_levels[0].mem_clock = mclk;
3386 
3387 	if (vega10_ps->performance_levels[1].gfx_clock <
3388 			vega10_ps->performance_levels[0].gfx_clock)
3389 		vega10_ps->performance_levels[0].gfx_clock =
3390 				vega10_ps->performance_levels[1].gfx_clock;
3391 
3392 	if (disable_mclk_switching) {
3393 		/* Set Mclk the max of level 0 and level 1 */
3394 		if (mclk < vega10_ps->performance_levels[1].mem_clock)
3395 			mclk = vega10_ps->performance_levels[1].mem_clock;
3396 
3397 		/* Find the lowest MCLK frequency that is within
3398 		 * the tolerable latency defined in DAL
3399 		 */
3400 		latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3401 		for (i = 0; i < data->mclk_latency_table.count; i++) {
3402 			if ((data->mclk_latency_table.entries[i].latency <= latency) &&
3403 				(data->mclk_latency_table.entries[i].frequency >=
3404 						vega10_ps->performance_levels[0].mem_clock) &&
3405 				(data->mclk_latency_table.entries[i].frequency <=
3406 						vega10_ps->performance_levels[1].mem_clock))
3407 				mclk = data->mclk_latency_table.entries[i].frequency;
3408 		}
3409 		vega10_ps->performance_levels[0].mem_clock = mclk;
3410 	} else {
3411 		if (vega10_ps->performance_levels[1].mem_clock <
3412 				vega10_ps->performance_levels[0].mem_clock)
3413 			vega10_ps->performance_levels[0].mem_clock =
3414 					vega10_ps->performance_levels[1].mem_clock;
3415 	}
3416 
3417 	if (PP_CAP(PHM_PlatformCaps_StablePState)) {
3418 		for (i = 0; i < vega10_ps->performance_level_count; i++) {
3419 			vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk;
3420 			vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk;
3421 		}
3422 	}
3423 
3424 	return 0;
3425 }
3426 
3427 static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3428 {
3429 	struct vega10_hwmgr *data = hwmgr->backend;
3430 	const struct phm_set_power_state_input *states =
3431 			(const struct phm_set_power_state_input *)input;
3432 	const struct vega10_power_state *vega10_ps =
3433 			cast_const_phw_vega10_power_state(states->pnew_state);
3434 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
3435 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
3436 	uint32_t sclk, mclk;
3437 	uint32_t i;
3438 
3439 	if (vega10_ps == NULL)
3440 		return -EINVAL;
3441 	sclk = vega10_ps->performance_levels
3442 			[vega10_ps->performance_level_count - 1].gfx_clock;
3443 	mclk = vega10_ps->performance_levels
3444 			[vega10_ps->performance_level_count - 1].mem_clock;
3445 
3446 	for (i = 0; i < sclk_table->count; i++) {
3447 		if (sclk == sclk_table->dpm_levels[i].value)
3448 			break;
3449 	}
3450 
3451 	if (i >= sclk_table->count) {
3452 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3453 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3454 			sclk_table->dpm_levels[i-1].value = sclk;
3455 		}
3456 	}
3457 
3458 	for (i = 0; i < mclk_table->count; i++) {
3459 		if (mclk == mclk_table->dpm_levels[i].value)
3460 			break;
3461 	}
3462 
3463 	if (i >= mclk_table->count) {
3464 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3465 			data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3466 			mclk_table->dpm_levels[i-1].value = mclk;
3467 		}
3468 	}
3469 
3470 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3471 		data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK;
3472 
3473 	return 0;
3474 }
3475 
3476 static int vega10_populate_and_upload_sclk_mclk_dpm_levels(
3477 		struct pp_hwmgr *hwmgr, const void *input)
3478 {
3479 	int result = 0;
3480 	struct vega10_hwmgr *data = hwmgr->backend;
3481 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3482 	struct vega10_odn_dpm_table *odn_table = &data->odn_dpm_table;
3483 	struct vega10_odn_clock_voltage_dependency_table *odn_clk_table = &odn_table->vdd_dep_on_sclk;
3484 	int count;
3485 
3486 	if (!data->need_update_dpm_table)
3487 		return 0;
3488 
3489 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3490 		for (count = 0; count < dpm_table->gfx_table.count; count++)
3491 			dpm_table->gfx_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3492 	}
3493 
3494 	odn_clk_table = &odn_table->vdd_dep_on_mclk;
3495 	if (hwmgr->od_enabled && data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3496 		for (count = 0; count < dpm_table->mem_table.count; count++)
3497 			dpm_table->mem_table.dpm_levels[count].value = odn_clk_table->entries[count].clk;
3498 	}
3499 
3500 	if (data->need_update_dpm_table &
3501 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK | DPMTABLE_UPDATE_SOCCLK)) {
3502 		result = vega10_populate_all_graphic_levels(hwmgr);
3503 		PP_ASSERT_WITH_CODE((0 == result),
3504 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3505 				return result);
3506 	}
3507 
3508 	if (data->need_update_dpm_table &
3509 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
3510 		result = vega10_populate_all_memory_levels(hwmgr);
3511 		PP_ASSERT_WITH_CODE((0 == result),
3512 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3513 				return result);
3514 	}
3515 
3516 	vega10_populate_vddc_soc_levels(hwmgr);
3517 
3518 	return result;
3519 }
3520 
3521 static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3522 		struct vega10_single_dpm_table *dpm_table,
3523 		uint32_t low_limit, uint32_t high_limit)
3524 {
3525 	uint32_t i;
3526 
3527 	for (i = 0; i < dpm_table->count; i++) {
3528 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3529 		    (dpm_table->dpm_levels[i].value > high_limit))
3530 			dpm_table->dpm_levels[i].enabled = false;
3531 		else
3532 			dpm_table->dpm_levels[i].enabled = true;
3533 	}
3534 	return 0;
3535 }
3536 
3537 static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr,
3538 		struct vega10_single_dpm_table *dpm_table,
3539 		uint32_t low_limit, uint32_t high_limit,
3540 		uint32_t disable_dpm_mask)
3541 {
3542 	uint32_t i;
3543 
3544 	for (i = 0; i < dpm_table->count; i++) {
3545 		if ((dpm_table->dpm_levels[i].value < low_limit) ||
3546 		    (dpm_table->dpm_levels[i].value > high_limit))
3547 			dpm_table->dpm_levels[i].enabled = false;
3548 		else if (!((1 << i) & disable_dpm_mask))
3549 			dpm_table->dpm_levels[i].enabled = false;
3550 		else
3551 			dpm_table->dpm_levels[i].enabled = true;
3552 	}
3553 	return 0;
3554 }
3555 
3556 static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr,
3557 		const struct vega10_power_state *vega10_ps)
3558 {
3559 	struct vega10_hwmgr *data = hwmgr->backend;
3560 	uint32_t high_limit_count;
3561 
3562 	PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1),
3563 			"power state did not have any performance level",
3564 			return -1);
3565 
3566 	high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1;
3567 
3568 	vega10_trim_single_dpm_states(hwmgr,
3569 			&(data->dpm_table.soc_table),
3570 			vega10_ps->performance_levels[0].soc_clock,
3571 			vega10_ps->performance_levels[high_limit_count].soc_clock);
3572 
3573 	vega10_trim_single_dpm_states_with_mask(hwmgr,
3574 			&(data->dpm_table.gfx_table),
3575 			vega10_ps->performance_levels[0].gfx_clock,
3576 			vega10_ps->performance_levels[high_limit_count].gfx_clock,
3577 			data->disable_dpm_mask);
3578 
3579 	vega10_trim_single_dpm_states(hwmgr,
3580 			&(data->dpm_table.mem_table),
3581 			vega10_ps->performance_levels[0].mem_clock,
3582 			vega10_ps->performance_levels[high_limit_count].mem_clock);
3583 
3584 	return 0;
3585 }
3586 
3587 static uint32_t vega10_find_lowest_dpm_level(
3588 		struct vega10_single_dpm_table *table)
3589 {
3590 	uint32_t i;
3591 
3592 	for (i = 0; i < table->count; i++) {
3593 		if (table->dpm_levels[i].enabled)
3594 			break;
3595 	}
3596 
3597 	return i;
3598 }
3599 
3600 static uint32_t vega10_find_highest_dpm_level(
3601 		struct vega10_single_dpm_table *table)
3602 {
3603 	uint32_t i = 0;
3604 
3605 	if (table->count <= MAX_REGULAR_DPM_NUMBER) {
3606 		for (i = table->count; i > 0; i--) {
3607 			if (table->dpm_levels[i - 1].enabled)
3608 				return i - 1;
3609 		}
3610 	} else {
3611 		pr_info("DPM Table Has Too Many Entries!");
3612 		return MAX_REGULAR_DPM_NUMBER - 1;
3613 	}
3614 
3615 	return i;
3616 }
3617 
3618 static void vega10_apply_dal_minimum_voltage_request(
3619 		struct pp_hwmgr *hwmgr)
3620 {
3621 	return;
3622 }
3623 
3624 static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr)
3625 {
3626 	struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk;
3627 	struct phm_ppt_v2_information *table_info =
3628 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
3629 
3630 	vdd_dep_table_on_mclk  = table_info->vdd_dep_on_mclk;
3631 
3632 	return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1;
3633 }
3634 
3635 static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr)
3636 {
3637 	struct vega10_hwmgr *data = hwmgr->backend;
3638 	uint32_t socclk_idx;
3639 
3640 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3641 
3642 	if (!data->registry_data.sclk_dpm_key_disabled) {
3643 		if (data->smc_state_table.gfx_boot_level !=
3644 				data->dpm_table.gfx_table.dpm_state.soft_min_level) {
3645 			smum_send_msg_to_smc_with_parameter(hwmgr,
3646 				PPSMC_MSG_SetSoftMinGfxclkByIndex,
3647 				data->smc_state_table.gfx_boot_level,
3648 				NULL);
3649 
3650 			data->dpm_table.gfx_table.dpm_state.soft_min_level =
3651 					data->smc_state_table.gfx_boot_level;
3652 		}
3653 	}
3654 
3655 	if (!data->registry_data.mclk_dpm_key_disabled) {
3656 		if (data->smc_state_table.mem_boot_level !=
3657 				data->dpm_table.mem_table.dpm_state.soft_min_level) {
3658 			if ((data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1)
3659 			    && hwmgr->not_vf) {
3660 				socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr);
3661 				smum_send_msg_to_smc_with_parameter(hwmgr,
3662 						PPSMC_MSG_SetSoftMinSocclkByIndex,
3663 						socclk_idx,
3664 						NULL);
3665 			} else {
3666 				smum_send_msg_to_smc_with_parameter(hwmgr,
3667 						PPSMC_MSG_SetSoftMinUclkByIndex,
3668 						data->smc_state_table.mem_boot_level,
3669 						NULL);
3670 			}
3671 			data->dpm_table.mem_table.dpm_state.soft_min_level =
3672 					data->smc_state_table.mem_boot_level;
3673 		}
3674 	}
3675 
3676 	if (!hwmgr->not_vf)
3677 		return 0;
3678 
3679 	if (!data->registry_data.socclk_dpm_key_disabled) {
3680 		if (data->smc_state_table.soc_boot_level !=
3681 				data->dpm_table.soc_table.dpm_state.soft_min_level) {
3682 			smum_send_msg_to_smc_with_parameter(hwmgr,
3683 				PPSMC_MSG_SetSoftMinSocclkByIndex,
3684 				data->smc_state_table.soc_boot_level,
3685 				NULL);
3686 			data->dpm_table.soc_table.dpm_state.soft_min_level =
3687 					data->smc_state_table.soc_boot_level;
3688 		}
3689 	}
3690 
3691 	return 0;
3692 }
3693 
3694 static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr)
3695 {
3696 	struct vega10_hwmgr *data = hwmgr->backend;
3697 
3698 	vega10_apply_dal_minimum_voltage_request(hwmgr);
3699 
3700 	if (!data->registry_data.sclk_dpm_key_disabled) {
3701 		if (data->smc_state_table.gfx_max_level !=
3702 			data->dpm_table.gfx_table.dpm_state.soft_max_level) {
3703 			smum_send_msg_to_smc_with_parameter(hwmgr,
3704 				PPSMC_MSG_SetSoftMaxGfxclkByIndex,
3705 				data->smc_state_table.gfx_max_level,
3706 				NULL);
3707 			data->dpm_table.gfx_table.dpm_state.soft_max_level =
3708 					data->smc_state_table.gfx_max_level;
3709 		}
3710 	}
3711 
3712 	if (!data->registry_data.mclk_dpm_key_disabled) {
3713 		if (data->smc_state_table.mem_max_level !=
3714 			data->dpm_table.mem_table.dpm_state.soft_max_level) {
3715 			smum_send_msg_to_smc_with_parameter(hwmgr,
3716 					PPSMC_MSG_SetSoftMaxUclkByIndex,
3717 					data->smc_state_table.mem_max_level,
3718 					NULL);
3719 			data->dpm_table.mem_table.dpm_state.soft_max_level =
3720 					data->smc_state_table.mem_max_level;
3721 		}
3722 	}
3723 
3724 	if (!hwmgr->not_vf)
3725 		return 0;
3726 
3727 	if (!data->registry_data.socclk_dpm_key_disabled) {
3728 		if (data->smc_state_table.soc_max_level !=
3729 			data->dpm_table.soc_table.dpm_state.soft_max_level) {
3730 			smum_send_msg_to_smc_with_parameter(hwmgr,
3731 				PPSMC_MSG_SetSoftMaxSocclkByIndex,
3732 				data->smc_state_table.soc_max_level,
3733 				NULL);
3734 			data->dpm_table.soc_table.dpm_state.soft_max_level =
3735 					data->smc_state_table.soc_max_level;
3736 		}
3737 	}
3738 
3739 	return 0;
3740 }
3741 
3742 static int vega10_generate_dpm_level_enable_mask(
3743 		struct pp_hwmgr *hwmgr, const void *input)
3744 {
3745 	struct vega10_hwmgr *data = hwmgr->backend;
3746 	const struct phm_set_power_state_input *states =
3747 			(const struct phm_set_power_state_input *)input;
3748 	const struct vega10_power_state *vega10_ps =
3749 			cast_const_phw_vega10_power_state(states->pnew_state);
3750 	int i;
3751 
3752 	if (vega10_ps == NULL)
3753 		return -EINVAL;
3754 
3755 	PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps),
3756 			"Attempt to Trim DPM States Failed!",
3757 			return -1);
3758 
3759 	data->smc_state_table.gfx_boot_level =
3760 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
3761 	data->smc_state_table.gfx_max_level =
3762 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
3763 	data->smc_state_table.mem_boot_level =
3764 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
3765 	data->smc_state_table.mem_max_level =
3766 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
3767 	data->smc_state_table.soc_boot_level =
3768 			vega10_find_lowest_dpm_level(&(data->dpm_table.soc_table));
3769 	data->smc_state_table.soc_max_level =
3770 			vega10_find_highest_dpm_level(&(data->dpm_table.soc_table));
3771 
3772 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
3773 			"Attempt to upload DPM Bootup Levels Failed!",
3774 			return -1);
3775 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
3776 			"Attempt to upload DPM Max Levels Failed!",
3777 			return -1);
3778 	for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++)
3779 		data->dpm_table.gfx_table.dpm_levels[i].enabled = true;
3780 
3781 
3782 	for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++)
3783 		data->dpm_table.mem_table.dpm_levels[i].enabled = true;
3784 
3785 	for (i = data->smc_state_table.soc_boot_level; i < data->smc_state_table.soc_max_level; i++)
3786 		data->dpm_table.soc_table.dpm_levels[i].enabled = true;
3787 
3788 	return 0;
3789 }
3790 
3791 int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
3792 {
3793 	struct vega10_hwmgr *data = hwmgr->backend;
3794 
3795 	if (data->smu_features[GNLD_DPM_VCE].supported) {
3796 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
3797 				enable,
3798 				data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap),
3799 				"Attempt to Enable/Disable DPM VCE Failed!",
3800 				return -1);
3801 		data->smu_features[GNLD_DPM_VCE].enabled = enable;
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
3808 {
3809 	struct vega10_hwmgr *data = hwmgr->backend;
3810 	uint32_t low_sclk_interrupt_threshold = 0;
3811 
3812 	if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) &&
3813 		(data->low_sclk_interrupt_threshold != 0)) {
3814 		low_sclk_interrupt_threshold =
3815 				data->low_sclk_interrupt_threshold;
3816 
3817 		data->smc_state_table.pp_table.LowGfxclkInterruptThreshold =
3818 				cpu_to_le32(low_sclk_interrupt_threshold);
3819 
3820 		/* This message will also enable SmcToHost Interrupt */
3821 		smum_send_msg_to_smc_with_parameter(hwmgr,
3822 				PPSMC_MSG_SetLowGfxclkInterruptThreshold,
3823 				(uint32_t)low_sclk_interrupt_threshold,
3824 				NULL);
3825 	}
3826 
3827 	return 0;
3828 }
3829 
3830 static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr,
3831 		const void *input)
3832 {
3833 	int tmp_result, result = 0;
3834 	struct vega10_hwmgr *data = hwmgr->backend;
3835 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
3836 
3837 	tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3838 	PP_ASSERT_WITH_CODE(!tmp_result,
3839 			"Failed to find DPM states clocks in DPM table!",
3840 			result = tmp_result);
3841 
3842 	tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3843 	PP_ASSERT_WITH_CODE(!tmp_result,
3844 			"Failed to populate and upload SCLK MCLK DPM levels!",
3845 			result = tmp_result);
3846 
3847 	tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input);
3848 	PP_ASSERT_WITH_CODE(!tmp_result,
3849 			"Failed to generate DPM level enabled mask!",
3850 			result = tmp_result);
3851 
3852 	tmp_result = vega10_update_sclk_threshold(hwmgr);
3853 	PP_ASSERT_WITH_CODE(!tmp_result,
3854 			"Failed to update SCLK threshold!",
3855 			result = tmp_result);
3856 
3857 	result = smum_smc_table_manager(hwmgr, (uint8_t *)pp_table, PPTABLE, false);
3858 	PP_ASSERT_WITH_CODE(!result,
3859 			"Failed to upload PPtable!", return result);
3860 
3861 	/*
3862 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
3863 	 * That effectively disables AVFS feature.
3864 	 */
3865 	if(hwmgr->hardcode_pp_table != NULL)
3866 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
3867 
3868 	vega10_update_avfs(hwmgr);
3869 
3870 	/*
3871 	 * Clear all OD flags except DPMTABLE_OD_UPDATE_VDDC.
3872 	 * That will help to keep AVFS disabled.
3873 	 */
3874 	data->need_update_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3875 
3876 	return 0;
3877 }
3878 
3879 static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3880 {
3881 	struct pp_power_state *ps;
3882 	struct vega10_power_state *vega10_ps;
3883 
3884 	if (hwmgr == NULL)
3885 		return -EINVAL;
3886 
3887 	ps = hwmgr->request_ps;
3888 
3889 	if (ps == NULL)
3890 		return -EINVAL;
3891 
3892 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3893 
3894 	if (low)
3895 		return vega10_ps->performance_levels[0].gfx_clock;
3896 	else
3897 		return vega10_ps->performance_levels
3898 				[vega10_ps->performance_level_count - 1].gfx_clock;
3899 }
3900 
3901 static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3902 {
3903 	struct pp_power_state *ps;
3904 	struct vega10_power_state *vega10_ps;
3905 
3906 	if (hwmgr == NULL)
3907 		return -EINVAL;
3908 
3909 	ps = hwmgr->request_ps;
3910 
3911 	if (ps == NULL)
3912 		return -EINVAL;
3913 
3914 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
3915 
3916 	if (low)
3917 		return vega10_ps->performance_levels[0].mem_clock;
3918 	else
3919 		return vega10_ps->performance_levels
3920 				[vega10_ps->performance_level_count-1].mem_clock;
3921 }
3922 
3923 static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr,
3924 		uint32_t *query)
3925 {
3926 	uint32_t value;
3927 	int ret;
3928 
3929 	if (!query)
3930 		return -EINVAL;
3931 
3932 	ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr, &value);
3933 	if (ret)
3934 		return ret;
3935 
3936 	/* SMC returning actual watts, keep consistent with legacy asics, low 8 bit as 8 fractional bits */
3937 	*query = value << 8;
3938 
3939 	return 0;
3940 }
3941 
3942 static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3943 			      void *value, int *size)
3944 {
3945 	struct amdgpu_device *adev = hwmgr->adev;
3946 	uint32_t sclk_mhz, mclk_idx, activity_percent = 0;
3947 	struct vega10_hwmgr *data = hwmgr->backend;
3948 	struct vega10_dpm_table *dpm_table = &data->dpm_table;
3949 	int ret = 0;
3950 	uint32_t val_vid;
3951 
3952 	switch (idx) {
3953 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3954 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetAverageGfxclkActualFrequency, &sclk_mhz);
3955 		*((uint32_t *)value) = sclk_mhz * 100;
3956 		break;
3957 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3958 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &mclk_idx);
3959 		if (mclk_idx < dpm_table->mem_table.count) {
3960 			*((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value;
3961 			*size = 4;
3962 		} else {
3963 			ret = -EINVAL;
3964 		}
3965 		break;
3966 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3967 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0,
3968 						&activity_percent);
3969 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3970 		*size = 4;
3971 		break;
3972 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3973 		*((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr);
3974 		*size = 4;
3975 		break;
3976 	case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
3977 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHotspot, (uint32_t *)value);
3978 		*((uint32_t *)value) = *((uint32_t *)value) *
3979 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3980 		*size = 4;
3981 		break;
3982 	case AMDGPU_PP_SENSOR_MEM_TEMP:
3983 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetTemperatureHBM, (uint32_t *)value);
3984 		*((uint32_t *)value) = *((uint32_t *)value) *
3985 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
3986 		*size = 4;
3987 		break;
3988 	case AMDGPU_PP_SENSOR_UVD_POWER:
3989 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3990 		*size = 4;
3991 		break;
3992 	case AMDGPU_PP_SENSOR_VCE_POWER:
3993 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3994 		*size = 4;
3995 		break;
3996 	case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
3997 		ret = vega10_get_gpu_power(hwmgr, (uint32_t *)value);
3998 		break;
3999 	case AMDGPU_PP_SENSOR_VDDGFX:
4000 		val_vid = (RREG32_SOC15(SMUIO, 0, mmSMUSVI0_PLANE0_CURRENTVID) &
4001 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID_MASK) >>
4002 			SMUSVI0_PLANE0_CURRENTVID__CURRENT_SVI0_PLANE0_VID__SHIFT;
4003 		*((uint32_t *)value) = (uint32_t)convert_to_vddc((uint8_t)val_vid);
4004 		return 0;
4005 	case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
4006 		ret = vega10_get_enabled_smc_features(hwmgr, (uint64_t *)value);
4007 		if (!ret)
4008 			*size = 8;
4009 		break;
4010 	default:
4011 		ret = -EOPNOTSUPP;
4012 		break;
4013 	}
4014 
4015 	return ret;
4016 }
4017 
4018 static void vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr,
4019 		bool has_disp)
4020 {
4021 	smum_send_msg_to_smc_with_parameter(hwmgr,
4022 			PPSMC_MSG_SetUclkFastSwitch,
4023 			has_disp ? 1 : 0,
4024 			NULL);
4025 }
4026 
4027 static int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr,
4028 		struct pp_display_clock_request *clock_req)
4029 {
4030 	int result = 0;
4031 	enum amd_pp_clock_type clk_type = clock_req->clock_type;
4032 	uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000;
4033 	DSPCLK_e clk_select = 0;
4034 	uint32_t clk_request = 0;
4035 
4036 	switch (clk_type) {
4037 	case amd_pp_dcef_clock:
4038 		clk_select = DSPCLK_DCEFCLK;
4039 		break;
4040 	case amd_pp_disp_clock:
4041 		clk_select = DSPCLK_DISPCLK;
4042 		break;
4043 	case amd_pp_pixel_clock:
4044 		clk_select = DSPCLK_PIXCLK;
4045 		break;
4046 	case amd_pp_phy_clock:
4047 		clk_select = DSPCLK_PHYCLK;
4048 		break;
4049 	default:
4050 		pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!");
4051 		result = -1;
4052 		break;
4053 	}
4054 
4055 	if (!result) {
4056 		clk_request = (clk_freq << 16) | clk_select;
4057 		smum_send_msg_to_smc_with_parameter(hwmgr,
4058 				PPSMC_MSG_RequestDisplayClockByFreq,
4059 				clk_request,
4060 				NULL);
4061 	}
4062 
4063 	return result;
4064 }
4065 
4066 static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr,
4067 			struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table,
4068 						uint32_t frequency)
4069 {
4070 	uint8_t count;
4071 	uint8_t i;
4072 
4073 	if (mclk_table == NULL || mclk_table->count == 0)
4074 		return 0;
4075 
4076 	count = (uint8_t)(mclk_table->count);
4077 
4078 	for(i = 0; i < count; i++) {
4079 		if(mclk_table->entries[i].clk >= frequency)
4080 			return i;
4081 	}
4082 
4083 	return i-1;
4084 }
4085 
4086 static int vega10_notify_smc_display_config_after_ps_adjustment(
4087 		struct pp_hwmgr *hwmgr)
4088 {
4089 	struct vega10_hwmgr *data = hwmgr->backend;
4090 	struct vega10_single_dpm_table *dpm_table =
4091 			&data->dpm_table.dcef_table;
4092 	struct phm_ppt_v2_information *table_info =
4093 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4094 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk;
4095 	uint32_t idx;
4096 	struct PP_Clocks min_clocks = {0};
4097 	uint32_t i;
4098 	struct pp_display_clock_request clock_req;
4099 
4100 	if ((hwmgr->display_config->num_display > 1) &&
4101 	     !hwmgr->display_config->multi_monitor_in_sync &&
4102 	     !hwmgr->display_config->nb_pstate_switch_disable)
4103 		vega10_notify_smc_display_change(hwmgr, false);
4104 	else
4105 		vega10_notify_smc_display_change(hwmgr, true);
4106 
4107 	min_clocks.dcefClock = hwmgr->display_config->min_dcef_set_clk;
4108 	min_clocks.dcefClockInSR = hwmgr->display_config->min_dcef_deep_sleep_set_clk;
4109 	min_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
4110 
4111 	for (i = 0; i < dpm_table->count; i++) {
4112 		if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock)
4113 			break;
4114 	}
4115 
4116 	if (i < dpm_table->count) {
4117 		clock_req.clock_type = amd_pp_dcef_clock;
4118 		clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value * 10;
4119 		if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) {
4120 			smum_send_msg_to_smc_with_parameter(
4121 					hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk,
4122 					min_clocks.dcefClockInSR / 100,
4123 					NULL);
4124 		} else {
4125 			pr_info("Attempt to set Hard Min for DCEFCLK Failed!");
4126 		}
4127 	} else {
4128 		pr_debug("Cannot find requested DCEFCLK!");
4129 	}
4130 
4131 	if (min_clocks.memoryClock != 0) {
4132 		idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock);
4133 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx,
4134 						NULL);
4135 		data->dpm_table.mem_table.dpm_state.soft_min_level= idx;
4136 	}
4137 
4138 	return 0;
4139 }
4140 
4141 static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr)
4142 {
4143 	struct vega10_hwmgr *data = hwmgr->backend;
4144 
4145 	data->smc_state_table.gfx_boot_level =
4146 	data->smc_state_table.gfx_max_level =
4147 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4148 	data->smc_state_table.mem_boot_level =
4149 	data->smc_state_table.mem_max_level =
4150 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4151 
4152 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4153 			"Failed to upload boot level to highest!",
4154 			return -1);
4155 
4156 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4157 			"Failed to upload dpm max level to highest!",
4158 			return -1);
4159 
4160 	return 0;
4161 }
4162 
4163 static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
4164 {
4165 	struct vega10_hwmgr *data = hwmgr->backend;
4166 
4167 	data->smc_state_table.gfx_boot_level =
4168 	data->smc_state_table.gfx_max_level =
4169 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4170 	data->smc_state_table.mem_boot_level =
4171 	data->smc_state_table.mem_max_level =
4172 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4173 
4174 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4175 			"Failed to upload boot level to highest!",
4176 			return -1);
4177 
4178 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4179 			"Failed to upload dpm max level to highest!",
4180 			return -1);
4181 
4182 	return 0;
4183 
4184 }
4185 
4186 static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
4187 {
4188 	struct vega10_hwmgr *data = hwmgr->backend;
4189 
4190 	data->smc_state_table.gfx_boot_level =
4191 			vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table));
4192 	data->smc_state_table.gfx_max_level =
4193 			vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table));
4194 	data->smc_state_table.mem_boot_level =
4195 			vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table));
4196 	data->smc_state_table.mem_max_level =
4197 			vega10_find_highest_dpm_level(&(data->dpm_table.mem_table));
4198 
4199 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4200 			"Failed to upload DPM Bootup Levels!",
4201 			return -1);
4202 
4203 	PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4204 			"Failed to upload DPM Max Levels!",
4205 			return -1);
4206 	return 0;
4207 }
4208 
4209 static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
4210 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask)
4211 {
4212 	struct phm_ppt_v2_information *table_info =
4213 			(struct phm_ppt_v2_information *)(hwmgr->pptable);
4214 
4215 	if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL &&
4216 		table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL &&
4217 		table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) {
4218 		*sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL;
4219 		*soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL;
4220 		*mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL;
4221 	}
4222 
4223 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
4224 		*sclk_mask = 0;
4225 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) {
4226 		*mclk_mask = 0;
4227 	} else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) {
4228 		/* under vega10  pp one vf mode, the gfx clk dpm need be lower
4229 		 * to level-4 due to the limited power
4230 		 */
4231 		if (hwmgr->pp_one_vf)
4232 			*sclk_mask = 4;
4233 		else
4234 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
4235 		*soc_mask = table_info->vdd_dep_on_socclk->count - 1;
4236 		*mclk_mask = table_info->vdd_dep_on_mclk->count - 1;
4237 	}
4238 
4239 	return 0;
4240 }
4241 
4242 static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4243 {
4244 	if (!hwmgr->not_vf)
4245 		return;
4246 
4247 	switch (mode) {
4248 	case AMD_FAN_CTRL_NONE:
4249 		vega10_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
4250 		break;
4251 	case AMD_FAN_CTRL_MANUAL:
4252 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4253 			vega10_fan_ctrl_stop_smc_fan_control(hwmgr);
4254 		break;
4255 	case AMD_FAN_CTRL_AUTO:
4256 		if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl))
4257 			vega10_fan_ctrl_start_smc_fan_control(hwmgr);
4258 		break;
4259 	default:
4260 		break;
4261 	}
4262 }
4263 
4264 static int vega10_force_clock_level(struct pp_hwmgr *hwmgr,
4265 		enum pp_clock_type type, uint32_t mask)
4266 {
4267 	struct vega10_hwmgr *data = hwmgr->backend;
4268 
4269 	switch (type) {
4270 	case PP_SCLK:
4271 		data->smc_state_table.gfx_boot_level = mask ? (ffs(mask) - 1) : 0;
4272 		data->smc_state_table.gfx_max_level = mask ? (fls(mask) - 1) : 0;
4273 
4274 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4275 			"Failed to upload boot level to lowest!",
4276 			return -EINVAL);
4277 
4278 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4279 			"Failed to upload dpm max level to highest!",
4280 			return -EINVAL);
4281 		break;
4282 
4283 	case PP_MCLK:
4284 		data->smc_state_table.mem_boot_level = mask ? (ffs(mask) - 1) : 0;
4285 		data->smc_state_table.mem_max_level = mask ? (fls(mask) - 1) : 0;
4286 
4287 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4288 			"Failed to upload boot level to lowest!",
4289 			return -EINVAL);
4290 
4291 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4292 			"Failed to upload dpm max level to highest!",
4293 			return -EINVAL);
4294 
4295 		break;
4296 
4297 	case PP_SOCCLK:
4298 		data->smc_state_table.soc_boot_level = mask ? (ffs(mask) - 1) : 0;
4299 		data->smc_state_table.soc_max_level = mask ? (fls(mask) - 1) : 0;
4300 
4301 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr),
4302 			"Failed to upload boot level to lowest!",
4303 			return -EINVAL);
4304 
4305 		PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr),
4306 			"Failed to upload dpm max level to highest!",
4307 			return -EINVAL);
4308 
4309 		break;
4310 
4311 	case PP_DCEFCLK:
4312 		pr_info("Setting DCEFCLK min/max dpm level is not supported!\n");
4313 		break;
4314 
4315 	case PP_PCIE:
4316 	default:
4317 		break;
4318 	}
4319 
4320 	return 0;
4321 }
4322 
4323 static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
4324 				enum amd_dpm_forced_level level)
4325 {
4326 	int ret = 0;
4327 	uint32_t sclk_mask = 0;
4328 	uint32_t mclk_mask = 0;
4329 	uint32_t soc_mask = 0;
4330 
4331 	switch (level) {
4332 	case AMD_DPM_FORCED_LEVEL_HIGH:
4333 		ret = vega10_force_dpm_highest(hwmgr);
4334 		break;
4335 	case AMD_DPM_FORCED_LEVEL_LOW:
4336 		ret = vega10_force_dpm_lowest(hwmgr);
4337 		break;
4338 	case AMD_DPM_FORCED_LEVEL_AUTO:
4339 		ret = vega10_unforce_dpm_levels(hwmgr);
4340 		break;
4341 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
4342 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
4343 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
4344 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
4345 		ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask);
4346 		if (ret)
4347 			return ret;
4348 		vega10_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
4349 		vega10_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
4350 		break;
4351 	case AMD_DPM_FORCED_LEVEL_MANUAL:
4352 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
4353 	default:
4354 		break;
4355 	}
4356 
4357 	if (!hwmgr->not_vf)
4358 		return ret;
4359 
4360 	if (!ret) {
4361 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4362 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE);
4363 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
4364 			vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO);
4365 	}
4366 
4367 	return ret;
4368 }
4369 
4370 static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4371 {
4372 	struct vega10_hwmgr *data = hwmgr->backend;
4373 
4374 	if (data->smu_features[GNLD_FAN_CONTROL].enabled == false)
4375 		return AMD_FAN_CTRL_MANUAL;
4376 	else
4377 		return AMD_FAN_CTRL_AUTO;
4378 }
4379 
4380 static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr,
4381 		struct amd_pp_simple_clock_info *info)
4382 {
4383 	struct phm_ppt_v2_information *table_info =
4384 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4385 	struct phm_clock_and_voltage_limits *max_limits =
4386 			&table_info->max_clock_voltage_on_ac;
4387 
4388 	info->engine_max_clock = max_limits->sclk;
4389 	info->memory_max_clock = max_limits->mclk;
4390 
4391 	return 0;
4392 }
4393 
4394 static void vega10_get_sclks(struct pp_hwmgr *hwmgr,
4395 		struct pp_clock_levels_with_latency *clocks)
4396 {
4397 	struct phm_ppt_v2_information *table_info =
4398 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4399 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4400 			table_info->vdd_dep_on_sclk;
4401 	uint32_t i;
4402 
4403 	clocks->num_levels = 0;
4404 	for (i = 0; i < dep_table->count; i++) {
4405 		if (dep_table->entries[i].clk) {
4406 			clocks->data[clocks->num_levels].clocks_in_khz =
4407 					dep_table->entries[i].clk * 10;
4408 			clocks->num_levels++;
4409 		}
4410 	}
4411 
4412 }
4413 
4414 static void vega10_get_memclocks(struct pp_hwmgr *hwmgr,
4415 		struct pp_clock_levels_with_latency *clocks)
4416 {
4417 	struct phm_ppt_v2_information *table_info =
4418 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4419 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4420 			table_info->vdd_dep_on_mclk;
4421 	struct vega10_hwmgr *data = hwmgr->backend;
4422 	uint32_t j = 0;
4423 	uint32_t i;
4424 
4425 	for (i = 0; i < dep_table->count; i++) {
4426 		if (dep_table->entries[i].clk) {
4427 
4428 			clocks->data[j].clocks_in_khz =
4429 						dep_table->entries[i].clk * 10;
4430 			data->mclk_latency_table.entries[j].frequency =
4431 							dep_table->entries[i].clk;
4432 			clocks->data[j].latency_in_us =
4433 				data->mclk_latency_table.entries[j].latency = 25;
4434 			j++;
4435 		}
4436 	}
4437 	clocks->num_levels = data->mclk_latency_table.count = j;
4438 }
4439 
4440 static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr,
4441 		struct pp_clock_levels_with_latency *clocks)
4442 {
4443 	struct phm_ppt_v2_information *table_info =
4444 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4445 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4446 			table_info->vdd_dep_on_dcefclk;
4447 	uint32_t i;
4448 
4449 	for (i = 0; i < dep_table->count; i++) {
4450 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4451 		clocks->data[i].latency_in_us = 0;
4452 		clocks->num_levels++;
4453 	}
4454 }
4455 
4456 static void vega10_get_socclocks(struct pp_hwmgr *hwmgr,
4457 		struct pp_clock_levels_with_latency *clocks)
4458 {
4459 	struct phm_ppt_v2_information *table_info =
4460 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4461 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table =
4462 			table_info->vdd_dep_on_socclk;
4463 	uint32_t i;
4464 
4465 	for (i = 0; i < dep_table->count; i++) {
4466 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk * 10;
4467 		clocks->data[i].latency_in_us = 0;
4468 		clocks->num_levels++;
4469 	}
4470 }
4471 
4472 static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
4473 		enum amd_pp_clock_type type,
4474 		struct pp_clock_levels_with_latency *clocks)
4475 {
4476 	switch (type) {
4477 	case amd_pp_sys_clock:
4478 		vega10_get_sclks(hwmgr, clocks);
4479 		break;
4480 	case amd_pp_mem_clock:
4481 		vega10_get_memclocks(hwmgr, clocks);
4482 		break;
4483 	case amd_pp_dcef_clock:
4484 		vega10_get_dcefclocks(hwmgr, clocks);
4485 		break;
4486 	case amd_pp_soc_clock:
4487 		vega10_get_socclocks(hwmgr, clocks);
4488 		break;
4489 	default:
4490 		return -1;
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr,
4497 		enum amd_pp_clock_type type,
4498 		struct pp_clock_levels_with_voltage *clocks)
4499 {
4500 	struct phm_ppt_v2_information *table_info =
4501 			(struct phm_ppt_v2_information *)hwmgr->pptable;
4502 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
4503 	uint32_t i;
4504 
4505 	switch (type) {
4506 	case amd_pp_mem_clock:
4507 		dep_table = table_info->vdd_dep_on_mclk;
4508 		break;
4509 	case amd_pp_dcef_clock:
4510 		dep_table = table_info->vdd_dep_on_dcefclk;
4511 		break;
4512 	case amd_pp_disp_clock:
4513 		dep_table = table_info->vdd_dep_on_dispclk;
4514 		break;
4515 	case amd_pp_pixel_clock:
4516 		dep_table = table_info->vdd_dep_on_pixclk;
4517 		break;
4518 	case amd_pp_phy_clock:
4519 		dep_table = table_info->vdd_dep_on_phyclk;
4520 		break;
4521 	default:
4522 		return -1;
4523 	}
4524 
4525 	for (i = 0; i < dep_table->count; i++) {
4526 		clocks->data[i].clocks_in_khz = dep_table->entries[i].clk  * 10;
4527 		clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table->
4528 				entries[dep_table->entries[i].vddInd].us_vdd);
4529 		clocks->num_levels++;
4530 	}
4531 
4532 	if (i < dep_table->count)
4533 		return -1;
4534 
4535 	return 0;
4536 }
4537 
4538 static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
4539 							void *clock_range)
4540 {
4541 	struct vega10_hwmgr *data = hwmgr->backend;
4542 	struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges = clock_range;
4543 	Watermarks_t *table = &(data->smc_state_table.water_marks_table);
4544 
4545 	if (!data->registry_data.disable_water_mark) {
4546 		smu_set_watermarks_for_clocks_ranges(table, wm_with_clock_ranges);
4547 		data->water_marks_bitmap = WaterMarksExist;
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 static int vega10_get_ppfeature_status(struct pp_hwmgr *hwmgr, char *buf)
4554 {
4555 	static const char *ppfeature_name[] = {
4556 				"DPM_PREFETCHER",
4557 				"GFXCLK_DPM",
4558 				"UCLK_DPM",
4559 				"SOCCLK_DPM",
4560 				"UVD_DPM",
4561 				"VCE_DPM",
4562 				"ULV",
4563 				"MP0CLK_DPM",
4564 				"LINK_DPM",
4565 				"DCEFCLK_DPM",
4566 				"AVFS",
4567 				"GFXCLK_DS",
4568 				"SOCCLK_DS",
4569 				"LCLK_DS",
4570 				"PPT",
4571 				"TDC",
4572 				"THERMAL",
4573 				"GFX_PER_CU_CG",
4574 				"RM",
4575 				"DCEFCLK_DS",
4576 				"ACDC",
4577 				"VR0HOT",
4578 				"VR1HOT",
4579 				"FW_CTF",
4580 				"LED_DISPLAY",
4581 				"FAN_CONTROL",
4582 				"FAST_PPT",
4583 				"DIDT",
4584 				"ACG",
4585 				"PCC_LIMIT"};
4586 	static const char *output_title[] = {
4587 				"FEATURES",
4588 				"BITMASK",
4589 				"ENABLEMENT"};
4590 	uint64_t features_enabled;
4591 	int i;
4592 	int ret = 0;
4593 	int size = 0;
4594 
4595 	phm_get_sysfs_buf(&buf, &size);
4596 
4597 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4598 	PP_ASSERT_WITH_CODE(!ret,
4599 			"[EnableAllSmuFeatures] Failed to get enabled smc features!",
4600 			return ret);
4601 
4602 	size += sysfs_emit_at(buf, size, "Current ppfeatures: 0x%016llx\n", features_enabled);
4603 	size += sysfs_emit_at(buf, size, "%-19s %-22s %s\n",
4604 				output_title[0],
4605 				output_title[1],
4606 				output_title[2]);
4607 	for (i = 0; i < GNLD_FEATURES_MAX; i++) {
4608 		size += sysfs_emit_at(buf, size, "%-19s 0x%016llx %6s\n",
4609 					ppfeature_name[i],
4610 					1ULL << i,
4611 					(features_enabled & (1ULL << i)) ? "Y" : "N");
4612 	}
4613 
4614 	return size;
4615 }
4616 
4617 static int vega10_set_ppfeature_status(struct pp_hwmgr *hwmgr, uint64_t new_ppfeature_masks)
4618 {
4619 	uint64_t features_enabled;
4620 	uint64_t features_to_enable;
4621 	uint64_t features_to_disable;
4622 	int ret = 0;
4623 
4624 	if (new_ppfeature_masks >= (1ULL << GNLD_FEATURES_MAX))
4625 		return -EINVAL;
4626 
4627 	ret = vega10_get_enabled_smc_features(hwmgr, &features_enabled);
4628 	if (ret)
4629 		return ret;
4630 
4631 	features_to_disable =
4632 		features_enabled & ~new_ppfeature_masks;
4633 	features_to_enable =
4634 		~features_enabled & new_ppfeature_masks;
4635 
4636 	pr_debug("features_to_disable 0x%llx\n", features_to_disable);
4637 	pr_debug("features_to_enable 0x%llx\n", features_to_enable);
4638 
4639 	if (features_to_disable) {
4640 		ret = vega10_enable_smc_features(hwmgr, false, features_to_disable);
4641 		if (ret)
4642 			return ret;
4643 	}
4644 
4645 	if (features_to_enable) {
4646 		ret = vega10_enable_smc_features(hwmgr, true, features_to_enable);
4647 		if (ret)
4648 			return ret;
4649 	}
4650 
4651 	return 0;
4652 }
4653 
4654 static int vega10_get_current_pcie_link_width_level(struct pp_hwmgr *hwmgr)
4655 {
4656 	struct amdgpu_device *adev = hwmgr->adev;
4657 
4658 	return (RREG32_PCIE(smnPCIE_LC_LINK_WIDTH_CNTL) &
4659 		PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD_MASK)
4660 		>> PCIE_LC_LINK_WIDTH_CNTL__LC_LINK_WIDTH_RD__SHIFT;
4661 }
4662 
4663 static int vega10_get_current_pcie_link_speed_level(struct pp_hwmgr *hwmgr)
4664 {
4665 	struct amdgpu_device *adev = hwmgr->adev;
4666 
4667 	return (RREG32_PCIE(smnPCIE_LC_SPEED_CNTL) &
4668 		PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE_MASK)
4669 		>> PSWUSP0_PCIE_LC_SPEED_CNTL__LC_CURRENT_DATA_RATE__SHIFT;
4670 }
4671 
4672 static int vega10_emit_clock_levels(struct pp_hwmgr *hwmgr,
4673 				    enum pp_clock_type type, char *buf, int *offset)
4674 {
4675 	struct vega10_hwmgr *data = hwmgr->backend;
4676 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4677 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4678 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4679 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4680 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4681 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4682 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4683 
4684 	uint32_t i, now, count = 0;
4685 	int ret = 0;
4686 
4687 	switch (type) {
4688 	case PP_SCLK:
4689 		if (data->registry_data.sclk_dpm_key_disabled)
4690 			return -EOPNOTSUPP;
4691 
4692 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4693 		if (unlikely(ret != 0))
4694 			return ret;
4695 
4696 		if (hwmgr->pp_one_vf &&
4697 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4698 			count = 5;
4699 		else
4700 			count = sclk_table->count;
4701 		for (i = 0; i < count; i++)
4702 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4703 					i, sclk_table->dpm_levels[i].value / 100,
4704 					(i == now) ? "*" : "");
4705 		break;
4706 	case PP_MCLK:
4707 		if (data->registry_data.mclk_dpm_key_disabled)
4708 			return -EOPNOTSUPP;
4709 
4710 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4711 		if (unlikely(ret != 0))
4712 			return ret;
4713 
4714 		for (i = 0; i < mclk_table->count; i++)
4715 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4716 					i, mclk_table->dpm_levels[i].value / 100,
4717 					(i == now) ? "*" : "");
4718 		break;
4719 	case PP_SOCCLK:
4720 		if (data->registry_data.socclk_dpm_key_disabled)
4721 			return -EOPNOTSUPP;
4722 
4723 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4724 		if (unlikely(ret != 0))
4725 			return ret;
4726 
4727 		for (i = 0; i < soc_table->count; i++)
4728 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4729 					i, soc_table->dpm_levels[i].value / 100,
4730 					(i == now) ? "*" : "");
4731 		break;
4732 	case PP_DCEFCLK:
4733 		if (data->registry_data.dcefclk_dpm_key_disabled)
4734 			return -EOPNOTSUPP;
4735 
4736 		ret = smum_send_msg_to_smc_with_parameter(hwmgr,
4737 							  PPSMC_MSG_GetClockFreqMHz,
4738 							  CLK_DCEFCLK, &now);
4739 		if (unlikely(ret != 0))
4740 			return ret;
4741 
4742 		for (i = 0; i < dcef_table->count; i++)
4743 			*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
4744 					i, dcef_table->dpm_levels[i].value / 100,
4745 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4746 					"*" : "");
4747 		break;
4748 	case PP_PCIE:
4749 		current_gen_speed =
4750 			vega10_get_current_pcie_link_speed_level(hwmgr);
4751 		current_lane_width =
4752 			vega10_get_current_pcie_link_width_level(hwmgr);
4753 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4754 			gen_speed = pptable->PcieGenSpeed[i];
4755 			lane_width = pptable->PcieLaneCount[i];
4756 
4757 			*offset += sysfs_emit_at(buf, *offset, "%d: %s %s %s\n", i,
4758 					(gen_speed == 0) ? "2.5GT/s," :
4759 					(gen_speed == 1) ? "5.0GT/s," :
4760 					(gen_speed == 2) ? "8.0GT/s," :
4761 					(gen_speed == 3) ? "16.0GT/s," : "",
4762 					(lane_width == 1) ? "x1" :
4763 					(lane_width == 2) ? "x2" :
4764 					(lane_width == 3) ? "x4" :
4765 					(lane_width == 4) ? "x8" :
4766 					(lane_width == 5) ? "x12" :
4767 					(lane_width == 6) ? "x16" : "",
4768 					(current_gen_speed == gen_speed) &&
4769 					(current_lane_width == lane_width) ?
4770 					"*" : "");
4771 		}
4772 		break;
4773 
4774 	case OD_SCLK:
4775 		if (!hwmgr->od_enabled)
4776 			return -EOPNOTSUPP;
4777 
4778 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_SCLK");
4779 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4780 		for (i = 0; i < podn_vdd_dep->count; i++)
4781 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4782 						 i, podn_vdd_dep->entries[i].clk / 100,
4783 						 podn_vdd_dep->entries[i].vddc);
4784 		break;
4785 	case OD_MCLK:
4786 		if (!hwmgr->od_enabled)
4787 			return -EOPNOTSUPP;
4788 
4789 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_MCLK");
4790 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4791 		for (i = 0; i < podn_vdd_dep->count; i++)
4792 			*offset += sysfs_emit_at(buf, *offset, "%d: %10uMhz %10umV\n",
4793 						 i, podn_vdd_dep->entries[i].clk/100,
4794 						 podn_vdd_dep->entries[i].vddc);
4795 		break;
4796 	case OD_RANGE:
4797 		if (!hwmgr->od_enabled)
4798 			return -EOPNOTSUPP;
4799 
4800 		*offset += sysfs_emit_at(buf, *offset, "%s:\n", "OD_RANGE");
4801 		*offset += sysfs_emit_at(buf, *offset, "SCLK: %7uMHz %10uMHz\n",
4802 					 data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4803 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4804 		*offset += sysfs_emit_at(buf, *offset, "MCLK: %7uMHz %10uMHz\n",
4805 					 data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4806 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4807 		*offset += sysfs_emit_at(buf, *offset, "VDDC: %7umV %11umV\n",
4808 					 data->odn_dpm_table.min_vddc,
4809 					 data->odn_dpm_table.max_vddc);
4810 		break;
4811 	default:
4812 		ret = -ENOENT;
4813 		break;
4814 	}
4815 	return ret;
4816 }
4817 
4818 static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr,
4819 		enum pp_clock_type type, char *buf)
4820 {
4821 	struct vega10_hwmgr *data = hwmgr->backend;
4822 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
4823 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
4824 	struct vega10_single_dpm_table *soc_table = &(data->dpm_table.soc_table);
4825 	struct vega10_single_dpm_table *dcef_table = &(data->dpm_table.dcef_table);
4826 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep = NULL;
4827 	uint32_t gen_speed, lane_width, current_gen_speed, current_lane_width;
4828 	PPTable_t *pptable = &(data->smc_state_table.pp_table);
4829 
4830 	int i, ret, now,  size = 0, count = 0;
4831 
4832 	switch (type) {
4833 	case PP_SCLK:
4834 		if (data->registry_data.sclk_dpm_key_disabled)
4835 			break;
4836 
4837 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex, &now);
4838 		if (ret)
4839 			break;
4840 
4841 		if (hwmgr->pp_one_vf &&
4842 		    (hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK))
4843 			count = 5;
4844 		else
4845 			count = sclk_table->count;
4846 		for (i = 0; i < count; i++)
4847 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4848 					i, sclk_table->dpm_levels[i].value / 100,
4849 					(i == now) ? "*" : "");
4850 		break;
4851 	case PP_MCLK:
4852 		if (data->registry_data.mclk_dpm_key_disabled)
4853 			break;
4854 
4855 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex, &now);
4856 		if (ret)
4857 			break;
4858 
4859 		for (i = 0; i < mclk_table->count; i++)
4860 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4861 					i, mclk_table->dpm_levels[i].value / 100,
4862 					(i == now) ? "*" : "");
4863 		break;
4864 	case PP_SOCCLK:
4865 		if (data->registry_data.socclk_dpm_key_disabled)
4866 			break;
4867 
4868 		ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentSocclkIndex, &now);
4869 		if (ret)
4870 			break;
4871 
4872 		for (i = 0; i < soc_table->count; i++)
4873 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4874 					i, soc_table->dpm_levels[i].value / 100,
4875 					(i == now) ? "*" : "");
4876 		break;
4877 	case PP_DCEFCLK:
4878 		if (data->registry_data.dcefclk_dpm_key_disabled)
4879 			break;
4880 
4881 		ret = smum_send_msg_to_smc_with_parameter(hwmgr,
4882 				PPSMC_MSG_GetClockFreqMHz, CLK_DCEFCLK, &now);
4883 		if (ret)
4884 			break;
4885 
4886 		for (i = 0; i < dcef_table->count; i++)
4887 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4888 					i, dcef_table->dpm_levels[i].value / 100,
4889 					(dcef_table->dpm_levels[i].value / 100 == now) ?
4890 					"*" : "");
4891 		break;
4892 	case PP_PCIE:
4893 		current_gen_speed =
4894 			vega10_get_current_pcie_link_speed_level(hwmgr);
4895 		current_lane_width =
4896 			vega10_get_current_pcie_link_width_level(hwmgr);
4897 		for (i = 0; i < NUM_LINK_LEVELS; i++) {
4898 			gen_speed = pptable->PcieGenSpeed[i];
4899 			lane_width = pptable->PcieLaneCount[i];
4900 
4901 			size += sprintf(buf + size, "%d: %s %s %s\n", i,
4902 					(gen_speed == 0) ? "2.5GT/s," :
4903 					(gen_speed == 1) ? "5.0GT/s," :
4904 					(gen_speed == 2) ? "8.0GT/s," :
4905 					(gen_speed == 3) ? "16.0GT/s," : "",
4906 					(lane_width == 1) ? "x1" :
4907 					(lane_width == 2) ? "x2" :
4908 					(lane_width == 3) ? "x4" :
4909 					(lane_width == 4) ? "x8" :
4910 					(lane_width == 5) ? "x12" :
4911 					(lane_width == 6) ? "x16" : "",
4912 					(current_gen_speed == gen_speed) &&
4913 					(current_lane_width == lane_width) ?
4914 					"*" : "");
4915 		}
4916 		break;
4917 
4918 	case OD_SCLK:
4919 		if (hwmgr->od_enabled) {
4920 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
4921 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
4922 			for (i = 0; i < podn_vdd_dep->count; i++)
4923 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4924 					i, podn_vdd_dep->entries[i].clk / 100,
4925 						podn_vdd_dep->entries[i].vddc);
4926 		}
4927 		break;
4928 	case OD_MCLK:
4929 		if (hwmgr->od_enabled) {
4930 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
4931 			podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
4932 			for (i = 0; i < podn_vdd_dep->count; i++)
4933 				size += sprintf(buf + size, "%d: %10uMhz %10umV\n",
4934 					i, podn_vdd_dep->entries[i].clk/100,
4935 						podn_vdd_dep->entries[i].vddc);
4936 		}
4937 		break;
4938 	case OD_RANGE:
4939 		if (hwmgr->od_enabled) {
4940 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
4941 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4942 				data->golden_dpm_table.gfx_table.dpm_levels[0].value/100,
4943 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4944 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4945 				data->golden_dpm_table.mem_table.dpm_levels[0].value/100,
4946 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4947 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4948 				data->odn_dpm_table.min_vddc,
4949 				data->odn_dpm_table.max_vddc);
4950 		}
4951 		break;
4952 	default:
4953 		break;
4954 	}
4955 	return size;
4956 }
4957 
4958 static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4959 {
4960 	struct vega10_hwmgr *data = hwmgr->backend;
4961 	Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table);
4962 	int result = 0;
4963 
4964 	if ((data->water_marks_bitmap & WaterMarksExist) &&
4965 			!(data->water_marks_bitmap & WaterMarksLoaded)) {
4966 		result = smum_smc_table_manager(hwmgr, (uint8_t *)wm_table, WMTABLE, false);
4967 		PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return -EINVAL);
4968 		data->water_marks_bitmap |= WaterMarksLoaded;
4969 	}
4970 
4971 	if (data->water_marks_bitmap & WaterMarksLoaded) {
4972 		smum_send_msg_to_smc_with_parameter(hwmgr,
4973 			PPSMC_MSG_NumOfDisplays, hwmgr->display_config->num_display,
4974 			NULL);
4975 	}
4976 
4977 	return result;
4978 }
4979 
4980 static int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4981 {
4982 	struct vega10_hwmgr *data = hwmgr->backend;
4983 
4984 	if (data->smu_features[GNLD_DPM_UVD].supported) {
4985 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
4986 				enable,
4987 				data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap),
4988 				"Attempt to Enable/Disable DPM UVD Failed!",
4989 				return -1);
4990 		data->smu_features[GNLD_DPM_UVD].enabled = enable;
4991 	}
4992 	return 0;
4993 }
4994 
4995 static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate)
4996 {
4997 	struct vega10_hwmgr *data = hwmgr->backend;
4998 
4999 	data->vce_power_gated = bgate;
5000 	vega10_enable_disable_vce_dpm(hwmgr, !bgate);
5001 }
5002 
5003 static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate)
5004 {
5005 	struct vega10_hwmgr *data = hwmgr->backend;
5006 
5007 	data->uvd_power_gated = bgate;
5008 	vega10_enable_disable_uvd_dpm(hwmgr, !bgate);
5009 }
5010 
5011 static inline bool vega10_are_power_levels_equal(
5012 				const struct vega10_performance_level *pl1,
5013 				const struct vega10_performance_level *pl2)
5014 {
5015 	return ((pl1->soc_clock == pl2->soc_clock) &&
5016 			(pl1->gfx_clock == pl2->gfx_clock) &&
5017 			(pl1->mem_clock == pl2->mem_clock));
5018 }
5019 
5020 static int vega10_check_states_equal(struct pp_hwmgr *hwmgr,
5021 				const struct pp_hw_power_state *pstate1,
5022 			const struct pp_hw_power_state *pstate2, bool *equal)
5023 {
5024 	const struct vega10_power_state *vega10_psa;
5025 	const struct vega10_power_state *vega10_psb;
5026 	int i;
5027 
5028 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
5029 		return -EINVAL;
5030 
5031 	vega10_psa = cast_const_phw_vega10_power_state(pstate1);
5032 	vega10_psb = cast_const_phw_vega10_power_state(pstate2);
5033 	if (vega10_psa == NULL || vega10_psb == NULL)
5034 		return -EINVAL;
5035 
5036 	/* If the two states don't even have the same number of performance levels
5037 	 * they cannot be the same state.
5038 	 */
5039 	if (vega10_psa->performance_level_count != vega10_psb->performance_level_count) {
5040 		*equal = false;
5041 		return 0;
5042 	}
5043 
5044 	for (i = 0; i < vega10_psa->performance_level_count; i++) {
5045 		if (!vega10_are_power_levels_equal(&(vega10_psa->performance_levels[i]),
5046 						   &(vega10_psb->performance_levels[i]))) {
5047 			/* If we have found even one performance level pair
5048 			 * that is different the states are different.
5049 			 */
5050 			*equal = false;
5051 			return 0;
5052 		}
5053 	}
5054 
5055 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5056 	*equal = ((vega10_psa->uvd_clks.vclk == vega10_psb->uvd_clks.vclk) &&
5057 		  (vega10_psa->uvd_clks.dclk == vega10_psb->uvd_clks.dclk));
5058 	*equal &= ((vega10_psa->vce_clks.evclk == vega10_psb->vce_clks.evclk) &&
5059 		   (vega10_psa->vce_clks.ecclk == vega10_psb->vce_clks.ecclk));
5060 	*equal &= (vega10_psa->sclk_threshold == vega10_psb->sclk_threshold);
5061 
5062 	return 0;
5063 }
5064 
5065 static bool
5066 vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5067 {
5068 	struct vega10_hwmgr *data = hwmgr->backend;
5069 	bool is_update_required = false;
5070 
5071 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
5072 		is_update_required = true;
5073 
5074 	if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) {
5075 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr)
5076 			is_update_required = true;
5077 	}
5078 
5079 	return is_update_required;
5080 }
5081 
5082 static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
5083 {
5084 	int tmp_result, result = 0;
5085 
5086 	if (!hwmgr->not_vf)
5087 		return 0;
5088 
5089 	if (PP_CAP(PHM_PlatformCaps_ThermalController))
5090 		vega10_disable_thermal_protection(hwmgr);
5091 
5092 	tmp_result = vega10_disable_power_containment(hwmgr);
5093 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5094 			"Failed to disable power containment!", result = tmp_result);
5095 
5096 	tmp_result = vega10_disable_didt_config(hwmgr);
5097 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5098 			"Failed to disable didt config!", result = tmp_result);
5099 
5100 	tmp_result = vega10_avfs_enable(hwmgr, false);
5101 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5102 			"Failed to disable AVFS!", result = tmp_result);
5103 
5104 	tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES);
5105 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5106 			"Failed to stop DPM!", result = tmp_result);
5107 
5108 	tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr);
5109 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5110 			"Failed to disable deep sleep!", result = tmp_result);
5111 
5112 	tmp_result = vega10_disable_ulv(hwmgr);
5113 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5114 			"Failed to disable ulv!", result = tmp_result);
5115 
5116 	tmp_result =  vega10_acg_disable(hwmgr);
5117 	PP_ASSERT_WITH_CODE((tmp_result == 0),
5118 			"Failed to disable acg!", result = tmp_result);
5119 
5120 	vega10_enable_disable_PCC_limit_feature(hwmgr, false);
5121 	return result;
5122 }
5123 
5124 static int vega10_power_off_asic(struct pp_hwmgr *hwmgr)
5125 {
5126 	struct vega10_hwmgr *data = hwmgr->backend;
5127 	int result;
5128 
5129 	result = vega10_disable_dpm_tasks(hwmgr);
5130 	PP_ASSERT_WITH_CODE((0 == result),
5131 			"[disable_dpm_tasks] Failed to disable DPM!",
5132 			);
5133 	data->water_marks_bitmap &= ~(WaterMarksLoaded);
5134 
5135 	return result;
5136 }
5137 
5138 static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr)
5139 {
5140 	struct vega10_hwmgr *data = hwmgr->backend;
5141 	struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table);
5142 	struct vega10_single_dpm_table *golden_sclk_table =
5143 			&(data->golden_dpm_table.gfx_table);
5144 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5145 	int golden_value = golden_sclk_table->dpm_levels
5146 			[golden_sclk_table->count - 1].value;
5147 
5148 	value -= golden_value;
5149 	value = DIV_ROUND_UP(value * 100, golden_value);
5150 
5151 	return value;
5152 }
5153 
5154 static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5155 {
5156 	struct vega10_hwmgr *data = hwmgr->backend;
5157 	struct vega10_single_dpm_table *golden_sclk_table =
5158 			&(data->golden_dpm_table.gfx_table);
5159 	struct pp_power_state *ps;
5160 	struct vega10_power_state *vega10_ps;
5161 
5162 	ps = hwmgr->request_ps;
5163 
5164 	if (ps == NULL)
5165 		return -EINVAL;
5166 
5167 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5168 	if (vega10_ps == NULL)
5169 		return -EINVAL;
5170 
5171 	vega10_ps->performance_levels
5172 	[vega10_ps->performance_level_count - 1].gfx_clock =
5173 			golden_sclk_table->dpm_levels
5174 			[golden_sclk_table->count - 1].value *
5175 			value / 100 +
5176 			golden_sclk_table->dpm_levels
5177 			[golden_sclk_table->count - 1].value;
5178 
5179 	if (vega10_ps->performance_levels
5180 			[vega10_ps->performance_level_count - 1].gfx_clock >
5181 			hwmgr->platform_descriptor.overdriveLimit.engineClock) {
5182 		vega10_ps->performance_levels
5183 		[vega10_ps->performance_level_count - 1].gfx_clock =
5184 				hwmgr->platform_descriptor.overdriveLimit.engineClock;
5185 		pr_warn("max sclk supported by vbios is %d\n",
5186 				hwmgr->platform_descriptor.overdriveLimit.engineClock);
5187 	}
5188 	return 0;
5189 }
5190 
5191 static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr)
5192 {
5193 	struct vega10_hwmgr *data = hwmgr->backend;
5194 	struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table);
5195 	struct vega10_single_dpm_table *golden_mclk_table =
5196 			&(data->golden_dpm_table.mem_table);
5197 	int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5198 	int golden_value = golden_mclk_table->dpm_levels
5199 			[golden_mclk_table->count - 1].value;
5200 
5201 	value -= golden_value;
5202 	value = DIV_ROUND_UP(value * 100, golden_value);
5203 
5204 	return value;
5205 }
5206 
5207 static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5208 {
5209 	struct vega10_hwmgr *data = hwmgr->backend;
5210 	struct vega10_single_dpm_table *golden_mclk_table =
5211 			&(data->golden_dpm_table.mem_table);
5212 	struct pp_power_state  *ps;
5213 	struct vega10_power_state  *vega10_ps;
5214 
5215 	ps = hwmgr->request_ps;
5216 
5217 	if (ps == NULL)
5218 		return -EINVAL;
5219 
5220 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5221 	if (vega10_ps == NULL)
5222 		return -EINVAL;
5223 
5224 	vega10_ps->performance_levels
5225 	[vega10_ps->performance_level_count - 1].mem_clock =
5226 			golden_mclk_table->dpm_levels
5227 			[golden_mclk_table->count - 1].value *
5228 			value / 100 +
5229 			golden_mclk_table->dpm_levels
5230 			[golden_mclk_table->count - 1].value;
5231 
5232 	if (vega10_ps->performance_levels
5233 			[vega10_ps->performance_level_count - 1].mem_clock >
5234 			hwmgr->platform_descriptor.overdriveLimit.memoryClock) {
5235 		vega10_ps->performance_levels
5236 		[vega10_ps->performance_level_count - 1].mem_clock =
5237 				hwmgr->platform_descriptor.overdriveLimit.memoryClock;
5238 		pr_warn("max mclk supported by vbios is %d\n",
5239 				hwmgr->platform_descriptor.overdriveLimit.memoryClock);
5240 	}
5241 
5242 	return 0;
5243 }
5244 
5245 static int vega10_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5246 					uint32_t virtual_addr_low,
5247 					uint32_t virtual_addr_hi,
5248 					uint32_t mc_addr_low,
5249 					uint32_t mc_addr_hi,
5250 					uint32_t size)
5251 {
5252 	smum_send_msg_to_smc_with_parameter(hwmgr,
5253 					PPSMC_MSG_SetSystemVirtualDramAddrHigh,
5254 					virtual_addr_hi,
5255 					NULL);
5256 	smum_send_msg_to_smc_with_parameter(hwmgr,
5257 					PPSMC_MSG_SetSystemVirtualDramAddrLow,
5258 					virtual_addr_low,
5259 					NULL);
5260 	smum_send_msg_to_smc_with_parameter(hwmgr,
5261 					PPSMC_MSG_DramLogSetDramAddrHigh,
5262 					mc_addr_hi,
5263 					NULL);
5264 
5265 	smum_send_msg_to_smc_with_parameter(hwmgr,
5266 					PPSMC_MSG_DramLogSetDramAddrLow,
5267 					mc_addr_low,
5268 					NULL);
5269 
5270 	smum_send_msg_to_smc_with_parameter(hwmgr,
5271 					PPSMC_MSG_DramLogSetDramSize,
5272 					size,
5273 					NULL);
5274 	return 0;
5275 }
5276 
5277 static int vega10_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5278 		struct PP_TemperatureRange *thermal_data)
5279 {
5280 	struct vega10_hwmgr *data = hwmgr->backend;
5281 	PPTable_t *pp_table = &(data->smc_state_table.pp_table);
5282 	struct phm_ppt_v2_information *pp_table_info =
5283 		(struct phm_ppt_v2_information *)(hwmgr->pptable);
5284 	struct phm_tdp_table *tdp_table = pp_table_info->tdp_table;
5285 
5286 	memcpy(thermal_data, &SMU7ThermalWithDelayPolicy[0], sizeof(struct PP_TemperatureRange));
5287 
5288 	thermal_data->max = pp_table->TedgeLimit *
5289 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5290 	thermal_data->edge_emergency_max = (pp_table->TedgeLimit + CTF_OFFSET_EDGE) *
5291 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5292 	thermal_data->hotspot_crit_max = pp_table->ThotspotLimit *
5293 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5294 	thermal_data->hotspot_emergency_max = (pp_table->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
5295 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5296 	thermal_data->mem_crit_max = pp_table->ThbmLimit *
5297 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5298 	thermal_data->mem_emergency_max = (pp_table->ThbmLimit + CTF_OFFSET_HBM)*
5299 		PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5300 
5301 	if (tdp_table->usSoftwareShutdownTemp > pp_table->ThotspotLimit &&
5302 	    tdp_table->usSoftwareShutdownTemp < VEGA10_THERMAL_MAXIMUM_ALERT_TEMP)
5303 		thermal_data->sw_ctf_threshold = tdp_table->usSoftwareShutdownTemp;
5304 	else
5305 		thermal_data->sw_ctf_threshold = VEGA10_THERMAL_MAXIMUM_ALERT_TEMP;
5306 	thermal_data->sw_ctf_threshold *= PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5307 
5308 	return 0;
5309 }
5310 
5311 static int vega10_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5312 {
5313 	struct vega10_hwmgr *data = hwmgr->backend;
5314 	uint32_t i, size = 0;
5315 	static const uint8_t profile_mode_setting[6][4] = {{70, 60, 0, 0,},
5316 						{70, 60, 1, 3,},
5317 						{90, 60, 0, 0,},
5318 						{70, 60, 0, 0,},
5319 						{70, 90, 0, 0,},
5320 						{30, 60, 0, 6,},
5321 						};
5322 	static const char *title[6] = {"NUM",
5323 			"MODE_NAME",
5324 			"BUSY_SET_POINT",
5325 			"FPS",
5326 			"USE_RLC_BUSY",
5327 			"MIN_ACTIVE_LEVEL"};
5328 
5329 	if (!buf)
5330 		return -EINVAL;
5331 
5332 	phm_get_sysfs_buf(&buf, &size);
5333 
5334 	size += sysfs_emit_at(buf, size, "%s %16s %s %s %s %s\n",title[0],
5335 			title[1], title[2], title[3], title[4], title[5]);
5336 
5337 	for (i = 0; i < PP_SMC_POWER_PROFILE_CUSTOM; i++)
5338 		size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n",
5339 			i, amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5340 			profile_mode_setting[i][0], profile_mode_setting[i][1],
5341 			profile_mode_setting[i][2], profile_mode_setting[i][3]);
5342 
5343 	size += sysfs_emit_at(buf, size, "%3d %14s%s: %14d %3d %10d %14d\n", i,
5344 			amdgpu_pp_profile_name[i], (i == hwmgr->power_profile_mode) ? "*" : " ",
5345 			data->custom_profile_mode[0], data->custom_profile_mode[1],
5346 			data->custom_profile_mode[2], data->custom_profile_mode[3]);
5347 	return size;
5348 }
5349 
5350 static bool vega10_get_power_profile_mode_quirks(struct pp_hwmgr *hwmgr)
5351 {
5352 	struct amdgpu_device *adev = hwmgr->adev;
5353 
5354 	return (adev->pdev->device == 0x6860);
5355 }
5356 
5357 static int vega10_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5358 {
5359 	struct vega10_hwmgr *data = hwmgr->backend;
5360 	uint8_t busy_set_point;
5361 	uint8_t FPS;
5362 	uint8_t use_rlc_busy;
5363 	uint8_t min_active_level;
5364 	uint32_t power_profile_mode = input[size];
5365 
5366 	if (power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
5367 		if (size != 0 && size != 4)
5368 			return -EINVAL;
5369 
5370 		/* If size = 0 and the CUSTOM profile has been set already
5371 		 * then just apply the profile. The copy stored in the hwmgr
5372 		 * is zeroed out on init
5373 		 */
5374 		if (size == 0) {
5375 			if (data->custom_profile_mode[0] != 0)
5376 				goto out;
5377 			else
5378 				return -EINVAL;
5379 		}
5380 
5381 		data->custom_profile_mode[0] = busy_set_point = input[0];
5382 		data->custom_profile_mode[1] = FPS = input[1];
5383 		data->custom_profile_mode[2] = use_rlc_busy = input[2];
5384 		data->custom_profile_mode[3] = min_active_level = input[3];
5385 		smum_send_msg_to_smc_with_parameter(hwmgr,
5386 					PPSMC_MSG_SetCustomGfxDpmParameters,
5387 					busy_set_point | FPS<<8 |
5388 					use_rlc_busy << 16 | min_active_level<<24,
5389 					NULL);
5390 	}
5391 
5392 out:
5393 	if (vega10_get_power_profile_mode_quirks(hwmgr))
5394 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5395 						1 << power_profile_mode,
5396 						NULL);
5397 	else
5398 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetWorkloadMask,
5399 						(!power_profile_mode) ? 0 : 1 << (power_profile_mode - 1),
5400 						NULL);
5401 
5402 	hwmgr->power_profile_mode = power_profile_mode;
5403 
5404 	return 0;
5405 }
5406 
5407 
5408 static bool vega10_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5409 					enum PP_OD_DPM_TABLE_COMMAND type,
5410 					uint32_t clk,
5411 					uint32_t voltage)
5412 {
5413 	struct vega10_hwmgr *data = hwmgr->backend;
5414 	struct vega10_odn_dpm_table *odn_table = &(data->odn_dpm_table);
5415 	struct vega10_single_dpm_table *golden_table;
5416 
5417 	if (voltage < odn_table->min_vddc || voltage > odn_table->max_vddc) {
5418 		pr_info("OD voltage is out of range [%d - %d] mV\n", odn_table->min_vddc, odn_table->max_vddc);
5419 		return false;
5420 	}
5421 
5422 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5423 		golden_table = &(data->golden_dpm_table.gfx_table);
5424 		if (golden_table->dpm_levels[0].value > clk ||
5425 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5426 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5427 				golden_table->dpm_levels[0].value/100,
5428 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5429 			return false;
5430 		}
5431 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5432 		golden_table = &(data->golden_dpm_table.mem_table);
5433 		if (golden_table->dpm_levels[0].value > clk ||
5434 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5435 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5436 				golden_table->dpm_levels[0].value/100,
5437 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5438 			return false;
5439 		}
5440 	} else {
5441 		return false;
5442 	}
5443 
5444 	return true;
5445 }
5446 
5447 static void vega10_odn_update_power_state(struct pp_hwmgr *hwmgr)
5448 {
5449 	struct vega10_hwmgr *data = hwmgr->backend;
5450 	struct pp_power_state *ps = hwmgr->request_ps;
5451 	struct vega10_power_state *vega10_ps;
5452 	struct vega10_single_dpm_table *gfx_dpm_table =
5453 		&data->dpm_table.gfx_table;
5454 	struct vega10_single_dpm_table *soc_dpm_table =
5455 		&data->dpm_table.soc_table;
5456 	struct vega10_single_dpm_table *mem_dpm_table =
5457 		&data->dpm_table.mem_table;
5458 	int max_level;
5459 
5460 	if (!ps)
5461 		return;
5462 
5463 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5464 	if (vega10_ps == NULL)
5465 		return;
5466 
5467 	max_level = vega10_ps->performance_level_count - 1;
5468 
5469 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5470 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5471 		vega10_ps->performance_levels[max_level].gfx_clock =
5472 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5473 
5474 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5475 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5476 		vega10_ps->performance_levels[max_level].soc_clock =
5477 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5478 
5479 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5480 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5481 		vega10_ps->performance_levels[max_level].mem_clock =
5482 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5483 
5484 	if (!hwmgr->ps)
5485 		return;
5486 
5487 	ps = (struct pp_power_state *)((unsigned long)(hwmgr->ps) + hwmgr->ps_size * (hwmgr->num_ps - 1));
5488 	vega10_ps = cast_phw_vega10_power_state(&ps->hardware);
5489 	if (vega10_ps == NULL)
5490 		return;
5491 
5492 	max_level = vega10_ps->performance_level_count - 1;
5493 
5494 	if (vega10_ps->performance_levels[max_level].gfx_clock !=
5495 	    gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value)
5496 		vega10_ps->performance_levels[max_level].gfx_clock =
5497 			gfx_dpm_table->dpm_levels[gfx_dpm_table->count - 1].value;
5498 
5499 	if (vega10_ps->performance_levels[max_level].soc_clock !=
5500 	    soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value)
5501 		vega10_ps->performance_levels[max_level].soc_clock =
5502 			soc_dpm_table->dpm_levels[soc_dpm_table->count - 1].value;
5503 
5504 	if (vega10_ps->performance_levels[max_level].mem_clock !=
5505 	    mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value)
5506 		vega10_ps->performance_levels[max_level].mem_clock =
5507 			mem_dpm_table->dpm_levels[mem_dpm_table->count - 1].value;
5508 }
5509 
5510 static void vega10_odn_update_soc_table(struct pp_hwmgr *hwmgr,
5511 						enum PP_OD_DPM_TABLE_COMMAND type)
5512 {
5513 	struct vega10_hwmgr *data = hwmgr->backend;
5514 	struct phm_ppt_v2_information *table_info = hwmgr->pptable;
5515 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk;
5516 	struct vega10_single_dpm_table *dpm_table = &data->golden_dpm_table.mem_table;
5517 
5518 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_on_socclk =
5519 							&data->odn_dpm_table.vdd_dep_on_socclk;
5520 	struct vega10_odn_vddc_lookup_table *od_vddc_lookup_table = &data->odn_dpm_table.vddc_lookup_table;
5521 
5522 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep;
5523 	uint8_t i, j;
5524 
5525 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5526 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_sclk;
5527 		for (i = 0; i < podn_vdd_dep->count; i++)
5528 			od_vddc_lookup_table->entries[i].us_vdd = podn_vdd_dep->entries[i].vddc;
5529 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5530 		podn_vdd_dep = &data->odn_dpm_table.vdd_dep_on_mclk;
5531 		for (i = 0; i < dpm_table->count; i++) {
5532 			for (j = 0; j < od_vddc_lookup_table->count; j++) {
5533 				if (od_vddc_lookup_table->entries[j].us_vdd >
5534 					podn_vdd_dep->entries[i].vddc)
5535 					break;
5536 			}
5537 			if (j == od_vddc_lookup_table->count) {
5538 				j = od_vddc_lookup_table->count - 1;
5539 				od_vddc_lookup_table->entries[j].us_vdd =
5540 					podn_vdd_dep->entries[i].vddc;
5541 				data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
5542 			}
5543 			podn_vdd_dep->entries[i].vddInd = j;
5544 		}
5545 		dpm_table = &data->dpm_table.soc_table;
5546 		for (i = 0; i < dep_table->count; i++) {
5547 			if (dep_table->entries[i].vddInd == podn_vdd_dep->entries[podn_vdd_dep->count-1].vddInd &&
5548 					dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count-1].clk) {
5549 				data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5550 				for (; (i < dep_table->count) &&
5551 				       (dep_table->entries[i].clk < podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk); i++) {
5552 					podn_vdd_dep_on_socclk->entries[i].clk = podn_vdd_dep->entries[podn_vdd_dep->count-1].clk;
5553 					dpm_table->dpm_levels[i].value = podn_vdd_dep_on_socclk->entries[i].clk;
5554 				}
5555 				break;
5556 			} else {
5557 				dpm_table->dpm_levels[i].value = dep_table->entries[i].clk;
5558 				podn_vdd_dep_on_socclk->entries[i].vddc = dep_table->entries[i].vddc;
5559 				podn_vdd_dep_on_socclk->entries[i].vddInd = dep_table->entries[i].vddInd;
5560 				podn_vdd_dep_on_socclk->entries[i].clk = dep_table->entries[i].clk;
5561 			}
5562 		}
5563 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk <
5564 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk) {
5565 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5566 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].clk =
5567 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5568 			dpm_table->dpm_levels[podn_vdd_dep_on_socclk->count - 1].value =
5569 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].clk;
5570 		}
5571 		if (podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd <
5572 					podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd) {
5573 			data->need_update_dpm_table |= DPMTABLE_UPDATE_SOCCLK;
5574 			podn_vdd_dep_on_socclk->entries[podn_vdd_dep_on_socclk->count - 1].vddInd =
5575 				podn_vdd_dep->entries[podn_vdd_dep->count - 1].vddInd;
5576 		}
5577 	}
5578 	vega10_odn_update_power_state(hwmgr);
5579 }
5580 
5581 static int vega10_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5582 					enum PP_OD_DPM_TABLE_COMMAND type,
5583 					long *input, uint32_t size)
5584 {
5585 	struct vega10_hwmgr *data = hwmgr->backend;
5586 	struct vega10_odn_clock_voltage_dependency_table *podn_vdd_dep_table;
5587 	struct vega10_single_dpm_table *dpm_table;
5588 
5589 	uint32_t input_clk;
5590 	uint32_t input_vol;
5591 	uint32_t input_level;
5592 	uint32_t i;
5593 
5594 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5595 				return -EINVAL);
5596 
5597 	if (!hwmgr->od_enabled) {
5598 		pr_info("OverDrive feature not enabled\n");
5599 		return -EINVAL;
5600 	}
5601 
5602 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5603 		dpm_table = &data->dpm_table.gfx_table;
5604 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_sclk;
5605 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
5606 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5607 		dpm_table = &data->dpm_table.mem_table;
5608 		podn_vdd_dep_table = &data->odn_dpm_table.vdd_dep_on_mclk;
5609 		data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
5610 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5611 		memcpy(&(data->dpm_table), &(data->golden_dpm_table), sizeof(struct vega10_dpm_table));
5612 		vega10_odn_initial_default_setting(hwmgr);
5613 		vega10_odn_update_power_state(hwmgr);
5614 		/* force to update all clock tables */
5615 		data->need_update_dpm_table = DPMTABLE_UPDATE_SCLK |
5616 					      DPMTABLE_UPDATE_MCLK |
5617 					      DPMTABLE_UPDATE_SOCCLK;
5618 		return 0;
5619 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5620 		vega10_check_dpm_table_updated(hwmgr);
5621 		return 0;
5622 	} else {
5623 		return -EINVAL;
5624 	}
5625 
5626 	for (i = 0; i < size; i += 3) {
5627 		if (i + 3 > size || input[i] >= podn_vdd_dep_table->count) {
5628 			pr_info("invalid clock voltage input\n");
5629 			return 0;
5630 		}
5631 		input_level = input[i];
5632 		input_clk = input[i+1] * 100;
5633 		input_vol = input[i+2];
5634 
5635 		if (vega10_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5636 			dpm_table->dpm_levels[input_level].value = input_clk;
5637 			podn_vdd_dep_table->entries[input_level].clk = input_clk;
5638 			podn_vdd_dep_table->entries[input_level].vddc = input_vol;
5639 		} else {
5640 			return -EINVAL;
5641 		}
5642 	}
5643 	vega10_odn_update_soc_table(hwmgr, type);
5644 	return 0;
5645 }
5646 
5647 static int vega10_set_mp1_state(struct pp_hwmgr *hwmgr,
5648 				enum pp_mp1_state mp1_state)
5649 {
5650 	uint16_t msg;
5651 	int ret;
5652 
5653 	switch (mp1_state) {
5654 	case PP_MP1_STATE_UNLOAD:
5655 		msg = PPSMC_MSG_PrepareMp1ForUnload;
5656 		break;
5657 	case PP_MP1_STATE_SHUTDOWN:
5658 	case PP_MP1_STATE_RESET:
5659 	case PP_MP1_STATE_NONE:
5660 	default:
5661 		return 0;
5662 	}
5663 
5664 	PP_ASSERT_WITH_CODE((ret = smum_send_msg_to_smc(hwmgr, msg, NULL)) == 0,
5665 			    "[PrepareMp1] Failed!",
5666 			    return ret);
5667 
5668 	return 0;
5669 }
5670 
5671 static int vega10_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5672 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5673 				PHM_PerformanceLevel *level)
5674 {
5675 	const struct vega10_power_state *vega10_ps;
5676 	uint32_t i;
5677 
5678 	if (level == NULL || hwmgr == NULL || state == NULL)
5679 		return -EINVAL;
5680 
5681 	vega10_ps = cast_const_phw_vega10_power_state(state);
5682 	if (vega10_ps == NULL)
5683 		return -EINVAL;
5684 
5685 	i = index > vega10_ps->performance_level_count - 1 ?
5686 			vega10_ps->performance_level_count - 1 : index;
5687 
5688 	level->coreClock = vega10_ps->performance_levels[i].gfx_clock;
5689 	level->memory_clock = vega10_ps->performance_levels[i].mem_clock;
5690 
5691 	return 0;
5692 }
5693 
5694 static int vega10_disable_power_features_for_compute_performance(struct pp_hwmgr *hwmgr, bool disable)
5695 {
5696 	struct vega10_hwmgr *data = hwmgr->backend;
5697 	uint32_t feature_mask = 0;
5698 
5699 	if (disable) {
5700 		feature_mask |= data->smu_features[GNLD_ULV].enabled ?
5701 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5702 		feature_mask |= data->smu_features[GNLD_DS_GFXCLK].enabled ?
5703 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5704 		feature_mask |= data->smu_features[GNLD_DS_SOCCLK].enabled ?
5705 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5706 		feature_mask |= data->smu_features[GNLD_DS_LCLK].enabled ?
5707 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5708 		feature_mask |= data->smu_features[GNLD_DS_DCEFCLK].enabled ?
5709 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5710 	} else {
5711 		feature_mask |= (!data->smu_features[GNLD_ULV].enabled) ?
5712 			data->smu_features[GNLD_ULV].smu_feature_bitmap : 0;
5713 		feature_mask |= (!data->smu_features[GNLD_DS_GFXCLK].enabled) ?
5714 			data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap : 0;
5715 		feature_mask |= (!data->smu_features[GNLD_DS_SOCCLK].enabled) ?
5716 			data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap : 0;
5717 		feature_mask |= (!data->smu_features[GNLD_DS_LCLK].enabled) ?
5718 			data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap : 0;
5719 		feature_mask |= (!data->smu_features[GNLD_DS_DCEFCLK].enabled) ?
5720 			data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap : 0;
5721 	}
5722 
5723 	if (feature_mask)
5724 		PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr,
5725 				!disable, feature_mask),
5726 				"enable/disable power features for compute performance Failed!",
5727 				return -EINVAL);
5728 
5729 	if (disable) {
5730 		data->smu_features[GNLD_ULV].enabled = false;
5731 		data->smu_features[GNLD_DS_GFXCLK].enabled = false;
5732 		data->smu_features[GNLD_DS_SOCCLK].enabled = false;
5733 		data->smu_features[GNLD_DS_LCLK].enabled = false;
5734 		data->smu_features[GNLD_DS_DCEFCLK].enabled = false;
5735 	} else {
5736 		data->smu_features[GNLD_ULV].enabled = true;
5737 		data->smu_features[GNLD_DS_GFXCLK].enabled = true;
5738 		data->smu_features[GNLD_DS_SOCCLK].enabled = true;
5739 		data->smu_features[GNLD_DS_LCLK].enabled = true;
5740 		data->smu_features[GNLD_DS_DCEFCLK].enabled = true;
5741 	}
5742 
5743 	return 0;
5744 
5745 }
5746 
5747 static const struct pp_hwmgr_func vega10_hwmgr_funcs = {
5748 	.backend_init = vega10_hwmgr_backend_init,
5749 	.backend_fini = vega10_hwmgr_backend_fini,
5750 	.asic_setup = vega10_setup_asic_task,
5751 	.dynamic_state_management_enable = vega10_enable_dpm_tasks,
5752 	.dynamic_state_management_disable = vega10_disable_dpm_tasks,
5753 	.get_num_of_pp_table_entries =
5754 			vega10_get_number_of_powerplay_table_entries,
5755 	.get_power_state_size = vega10_get_power_state_size,
5756 	.get_pp_table_entry = vega10_get_pp_table_entry,
5757 	.patch_boot_state = vega10_patch_boot_state,
5758 	.apply_state_adjust_rules = vega10_apply_state_adjust_rules,
5759 	.power_state_set = vega10_set_power_state_tasks,
5760 	.get_sclk = vega10_dpm_get_sclk,
5761 	.get_mclk = vega10_dpm_get_mclk,
5762 	.notify_smc_display_config_after_ps_adjustment =
5763 			vega10_notify_smc_display_config_after_ps_adjustment,
5764 	.force_dpm_level = vega10_dpm_force_dpm_level,
5765 	.stop_thermal_controller = vega10_thermal_stop_thermal_controller,
5766 	.get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info,
5767 	.get_fan_speed_pwm = vega10_fan_ctrl_get_fan_speed_pwm,
5768 	.set_fan_speed_pwm = vega10_fan_ctrl_set_fan_speed_pwm,
5769 	.reset_fan_speed_to_default =
5770 			vega10_fan_ctrl_reset_fan_speed_to_default,
5771 	.get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm,
5772 	.set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm,
5773 	.uninitialize_thermal_controller =
5774 			vega10_thermal_ctrl_uninitialize_thermal_controller,
5775 	.set_fan_control_mode = vega10_set_fan_control_mode,
5776 	.get_fan_control_mode = vega10_get_fan_control_mode,
5777 	.read_sensor = vega10_read_sensor,
5778 	.get_dal_power_level = vega10_get_dal_power_level,
5779 	.get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency,
5780 	.get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage,
5781 	.set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges,
5782 	.display_clock_voltage_request = vega10_display_clock_voltage_request,
5783 	.force_clock_level = vega10_force_clock_level,
5784 	.emit_clock_levels = vega10_emit_clock_levels,
5785 	.print_clock_levels = vega10_print_clock_levels,
5786 	.display_config_changed = vega10_display_configuration_changed_task,
5787 	.powergate_uvd = vega10_power_gate_uvd,
5788 	.powergate_vce = vega10_power_gate_vce,
5789 	.check_states_equal = vega10_check_states_equal,
5790 	.check_smc_update_required_for_display_configuration =
5791 			vega10_check_smc_update_required_for_display_configuration,
5792 	.power_off_asic = vega10_power_off_asic,
5793 	.disable_smc_firmware_ctf = vega10_thermal_disable_alert,
5794 	.get_sclk_od = vega10_get_sclk_od,
5795 	.set_sclk_od = vega10_set_sclk_od,
5796 	.get_mclk_od = vega10_get_mclk_od,
5797 	.set_mclk_od = vega10_set_mclk_od,
5798 	.avfs_control = vega10_avfs_enable,
5799 	.notify_cac_buffer_info = vega10_notify_cac_buffer_info,
5800 	.get_thermal_temperature_range = vega10_get_thermal_temperature_range,
5801 	.register_irq_handlers = smu9_register_irq_handlers,
5802 	.start_thermal_controller = vega10_start_thermal_controller,
5803 	.get_power_profile_mode = vega10_get_power_profile_mode,
5804 	.set_power_profile_mode = vega10_set_power_profile_mode,
5805 	.set_power_limit = vega10_set_power_limit,
5806 	.odn_edit_dpm_table = vega10_odn_edit_dpm_table,
5807 	.get_performance_level = vega10_get_performance_level,
5808 	.get_asic_baco_capability = smu9_baco_get_capability,
5809 	.get_asic_baco_state = smu9_baco_get_state,
5810 	.set_asic_baco_state = vega10_baco_set_state,
5811 	.enable_mgpu_fan_boost = vega10_enable_mgpu_fan_boost,
5812 	.get_ppfeature_status = vega10_get_ppfeature_status,
5813 	.set_ppfeature_status = vega10_set_ppfeature_status,
5814 	.set_mp1_state = vega10_set_mp1_state,
5815 	.disable_power_features_for_compute_performance =
5816 			vega10_disable_power_features_for_compute_performance,
5817 };
5818 
5819 int vega10_hwmgr_init(struct pp_hwmgr *hwmgr)
5820 {
5821 	struct amdgpu_device *adev = hwmgr->adev;
5822 
5823 	hwmgr->hwmgr_func = &vega10_hwmgr_funcs;
5824 	hwmgr->pptable_func = &vega10_pptable_funcs;
5825 	if (amdgpu_passthrough(adev))
5826 		return vega10_baco_set_cap(hwmgr);
5827 
5828 	return 0;
5829 }
5830