xref: /openbmc/linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu7_hwmgr.c (revision ff8444011fe5790bae9309f278d660b4c3ddc029)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #if IS_ENABLED(CONFIG_X86_64)
30 #include <asm/intel-family.h>
31 #endif
32 #include <drm/amdgpu_drm.h>
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "pptable_v1_0.h"
36 #include "pppcielanes.h"
37 #include "amd_pcie_helpers.h"
38 #include "hardwaremanager.h"
39 #include "process_pptables_v1_0.h"
40 #include "cgs_common.h"
41 
42 #include "smu7_common.h"
43 
44 #include "hwmgr.h"
45 #include "smu7_hwmgr.h"
46 #include "smu_ucode_xfer_vi.h"
47 #include "smu7_powertune.h"
48 #include "smu7_dyn_defaults.h"
49 #include "smu7_thermal.h"
50 #include "smu7_clockpowergating.h"
51 #include "processpptables.h"
52 #include "pp_thermal.h"
53 #include "smu7_baco.h"
54 #include "smu7_smumgr.h"
55 #include "polaris10_smumgr.h"
56 
57 #include "ivsrcid/ivsrcid_vislands30.h"
58 
59 #define MC_CG_ARB_FREQ_F0           0x0a
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 #define MC_CG_ARB_FREQ_F2           0x0c
62 #define MC_CG_ARB_FREQ_F3           0x0d
63 
64 #define MC_CG_SEQ_DRAMCONF_S0       0x05
65 #define MC_CG_SEQ_DRAMCONF_S1       0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
67 #define MC_CG_SEQ_YCLK_RESUME       0x0a
68 
69 #define SMC_CG_IND_START            0xc0030000
70 #define SMC_CG_IND_END              0xc0040000
71 
72 #define MEM_FREQ_LOW_LATENCY        25000
73 #define MEM_FREQ_HIGH_LATENCY       80000
74 
75 #define MEM_LATENCY_HIGH            45
76 #define MEM_LATENCY_LOW             35
77 #define MEM_LATENCY_ERR             0xFFFF
78 
79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
80 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
81 #define MC_SEQ_MISC0_GDDR5_VALUE 5
82 
83 #define PCIE_BUS_CLK                10000
84 #define TCLK                        (PCIE_BUS_CLK / 10)
85 
86 static struct profile_mode_setting smu7_profiling[7] = {
87 					 {0, 0, 0, 0, 0, 0, 0, 0},
88 					 {1, 0, 100, 30, 1, 0, 100, 10},
89 					 {1, 10, 0, 30, 0, 0, 0, 0},
90 					 {0, 0, 0, 0, 1, 10, 16, 31},
91 					 {1, 0, 11, 50, 1, 0, 100, 10},
92 					 {1, 0, 5, 30, 0, 0, 0, 0},
93 					 {0, 0, 0, 0, 0, 0, 0, 0},
94 };
95 
96 #define PPSMC_MSG_SetVBITimeout_VEGAM    ((uint16_t) 0x310)
97 
98 #define ixPWR_SVI2_PLANE1_LOAD                     0xC0200280
99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK                    0x00000020L
100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK                 0x00000040L
101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT                  0x00000005
102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT               0x00000006
103 
104 #define STRAP_EVV_REVISION_MSB		2211
105 #define STRAP_EVV_REVISION_LSB		2208
106 
107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
108 enum DPM_EVENT_SRC {
109 	DPM_EVENT_SRC_ANALOG = 0,
110 	DPM_EVENT_SRC_EXTERNAL = 1,
111 	DPM_EVENT_SRC_DIGITAL = 2,
112 	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
113 	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
114 };
115 
116 #define ixDIDT_SQ_EDC_CTRL                         0x0013
117 #define ixDIDT_SQ_EDC_THRESHOLD                    0x0014
118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2            0x0015
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4            0x0016
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6            0x0017
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7              0x0018
122 
123 #define ixDIDT_TD_EDC_CTRL                         0x0053
124 #define ixDIDT_TD_EDC_THRESHOLD                    0x0054
125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2            0x0055
126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4            0x0056
127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6            0x0057
128 #define ixDIDT_TD_EDC_STALL_PATTERN_7              0x0058
129 
130 #define ixDIDT_TCP_EDC_CTRL                        0x0073
131 #define ixDIDT_TCP_EDC_THRESHOLD                   0x0074
132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2           0x0075
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4           0x0076
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6           0x0077
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7             0x0078
136 
137 #define ixDIDT_DB_EDC_CTRL                         0x0033
138 #define ixDIDT_DB_EDC_THRESHOLD                    0x0034
139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2            0x0035
140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4            0x0036
141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6            0x0037
142 #define ixDIDT_DB_EDC_STALL_PATTERN_7              0x0038
143 
144 uint32_t DIDTEDCConfig_P12[] = {
145     ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
146     ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
147     ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
148     ixDIDT_SQ_EDC_STALL_PATTERN_7,
149     ixDIDT_SQ_EDC_THRESHOLD,
150     ixDIDT_SQ_EDC_CTRL,
151     ixDIDT_TD_EDC_STALL_PATTERN_1_2,
152     ixDIDT_TD_EDC_STALL_PATTERN_3_4,
153     ixDIDT_TD_EDC_STALL_PATTERN_5_6,
154     ixDIDT_TD_EDC_STALL_PATTERN_7,
155     ixDIDT_TD_EDC_THRESHOLD,
156     ixDIDT_TD_EDC_CTRL,
157     ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
158     ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
159     ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
160     ixDIDT_TCP_EDC_STALL_PATTERN_7,
161     ixDIDT_TCP_EDC_THRESHOLD,
162     ixDIDT_TCP_EDC_CTRL,
163     ixDIDT_DB_EDC_STALL_PATTERN_1_2,
164     ixDIDT_DB_EDC_STALL_PATTERN_3_4,
165     ixDIDT_DB_EDC_STALL_PATTERN_5_6,
166     ixDIDT_DB_EDC_STALL_PATTERN_7,
167     ixDIDT_DB_EDC_THRESHOLD,
168     ixDIDT_DB_EDC_CTRL,
169     0xFFFFFFFF // End of list
170 };
171 
172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
174 		enum pp_clock_type type, uint32_t mask);
175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
176 
177 static struct smu7_power_state *cast_phw_smu7_power_state(
178 				  struct pp_hw_power_state *hw_ps)
179 {
180 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
181 				"Invalid Powerstate Type!",
182 				 return NULL);
183 
184 	return (struct smu7_power_state *)hw_ps;
185 }
186 
187 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
188 				 const struct pp_hw_power_state *hw_ps)
189 {
190 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
191 				"Invalid Powerstate Type!",
192 				 return NULL);
193 
194 	return (const struct smu7_power_state *)hw_ps;
195 }
196 
197 /**
198  * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
199  *
200  * @hwmgr:  the address of the powerplay hardware manager.
201  * Return:   always 0
202  */
203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
204 {
205 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
206 
207 	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
208 
209 	return 0;
210 }
211 
212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
213 {
214 	uint32_t speedCntl = 0;
215 
216 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
217 	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
218 			ixPCIE_LC_SPEED_CNTL);
219 	return((uint16_t)PHM_GET_FIELD(speedCntl,
220 			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
221 }
222 
223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
224 {
225 	uint32_t link_width;
226 
227 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
228 	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
229 			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
230 
231 	PP_ASSERT_WITH_CODE((7 >= link_width),
232 			"Invalid PCIe lane width!", return 0);
233 
234 	return decode_pcie_lane_width(link_width);
235 }
236 
237 /**
238  * smu7_enable_smc_voltage_controller - Enable voltage control
239  *
240  * @hwmgr:  the address of the powerplay hardware manager.
241  * Return:   always PP_Result_OK
242  */
243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
244 {
245 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
246 	    hwmgr->chip_id <= CHIP_VEGAM) {
247 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
248 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
249 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
250 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
251 	}
252 
253 	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
254 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
255 
256 	return 0;
257 }
258 
259 /**
260  * smu7_voltage_control - Checks if we want to support voltage control
261  *
262  * @hwmgr:  the address of the powerplay hardware manager.
263  */
264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
265 {
266 	const struct smu7_hwmgr *data =
267 			(const struct smu7_hwmgr *)(hwmgr->backend);
268 
269 	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
270 }
271 
272 /**
273  * smu7_enable_voltage_control - Enable voltage control
274  *
275  * @hwmgr:  the address of the powerplay hardware manager.
276  * Return:   always 0
277  */
278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
279 {
280 	/* enable voltage control */
281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
282 			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
283 
284 	return 0;
285 }
286 
287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
288 		struct phm_clock_voltage_dependency_table *voltage_dependency_table
289 		)
290 {
291 	uint32_t i;
292 
293 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
294 			"Voltage Dependency Table empty.", return -EINVAL;);
295 
296 	voltage_table->mask_low = 0;
297 	voltage_table->phase_delay = 0;
298 	voltage_table->count = voltage_dependency_table->count;
299 
300 	for (i = 0; i < voltage_dependency_table->count; i++) {
301 		voltage_table->entries[i].value =
302 			voltage_dependency_table->entries[i].v;
303 		voltage_table->entries[i].smio_low = 0;
304 	}
305 
306 	return 0;
307 }
308 
309 
310 /**
311  * smu7_construct_voltage_tables - Create Voltage Tables.
312  *
313  * @hwmgr:  the address of the powerplay hardware manager.
314  * Return:   always 0
315  */
316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
317 {
318 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
319 	struct phm_ppt_v1_information *table_info =
320 			(struct phm_ppt_v1_information *)hwmgr->pptable;
321 	int result = 0;
322 	uint32_t tmp;
323 
324 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
325 		result = atomctrl_get_voltage_table_v3(hwmgr,
326 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
327 				&(data->mvdd_voltage_table));
328 		PP_ASSERT_WITH_CODE((0 == result),
329 				"Failed to retrieve MVDD table.",
330 				return result);
331 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
332 		if (hwmgr->pp_table_version == PP_TABLE_V1)
333 			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
334 					table_info->vdd_dep_on_mclk);
335 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
336 			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
337 					hwmgr->dyn_state.mvdd_dependency_on_mclk);
338 
339 		PP_ASSERT_WITH_CODE((0 == result),
340 				"Failed to retrieve SVI2 MVDD table from dependency table.",
341 				return result;);
342 	}
343 
344 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
345 		result = atomctrl_get_voltage_table_v3(hwmgr,
346 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
347 				&(data->vddci_voltage_table));
348 		PP_ASSERT_WITH_CODE((0 == result),
349 				"Failed to retrieve VDDCI table.",
350 				return result);
351 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
352 		if (hwmgr->pp_table_version == PP_TABLE_V1)
353 			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
354 					table_info->vdd_dep_on_mclk);
355 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
356 			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
357 					hwmgr->dyn_state.vddci_dependency_on_mclk);
358 		PP_ASSERT_WITH_CODE((0 == result),
359 				"Failed to retrieve SVI2 VDDCI table from dependency table.",
360 				return result);
361 	}
362 
363 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
364 		/* VDDGFX has only SVI2 voltage control */
365 		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
366 					table_info->vddgfx_lookup_table);
367 		PP_ASSERT_WITH_CODE((0 == result),
368 			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
369 	}
370 
371 
372 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
373 		result = atomctrl_get_voltage_table_v3(hwmgr,
374 					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
375 					&data->vddc_voltage_table);
376 		PP_ASSERT_WITH_CODE((0 == result),
377 			"Failed to retrieve VDDC table.", return result;);
378 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
379 
380 		if (hwmgr->pp_table_version == PP_TABLE_V0)
381 			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
382 					hwmgr->dyn_state.vddc_dependency_on_mclk);
383 		else if (hwmgr->pp_table_version == PP_TABLE_V1)
384 			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
385 				table_info->vddc_lookup_table);
386 
387 		PP_ASSERT_WITH_CODE((0 == result),
388 			"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
389 	}
390 
391 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
392 	PP_ASSERT_WITH_CODE(
393 			(data->vddc_voltage_table.count <= tmp),
394 		"Too many voltage values for VDDC. Trimming to fit state table.",
395 			phm_trim_voltage_table_to_fit_state_table(tmp,
396 						&(data->vddc_voltage_table)));
397 
398 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
399 	PP_ASSERT_WITH_CODE(
400 			(data->vddgfx_voltage_table.count <= tmp),
401 		"Too many voltage values for VDDC. Trimming to fit state table.",
402 			phm_trim_voltage_table_to_fit_state_table(tmp,
403 						&(data->vddgfx_voltage_table)));
404 
405 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
406 	PP_ASSERT_WITH_CODE(
407 			(data->vddci_voltage_table.count <= tmp),
408 		"Too many voltage values for VDDCI. Trimming to fit state table.",
409 			phm_trim_voltage_table_to_fit_state_table(tmp,
410 					&(data->vddci_voltage_table)));
411 
412 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
413 	PP_ASSERT_WITH_CODE(
414 			(data->mvdd_voltage_table.count <= tmp),
415 		"Too many voltage values for MVDD. Trimming to fit state table.",
416 			phm_trim_voltage_table_to_fit_state_table(tmp,
417 						&(data->mvdd_voltage_table)));
418 
419 	return 0;
420 }
421 
422 /**
423  * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
424  *
425  * @hwmgr:  the address of the powerplay hardware manager.
426  * Return:   always 0
427  */
428 static int smu7_program_static_screen_threshold_parameters(
429 							struct pp_hwmgr *hwmgr)
430 {
431 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
432 
433 	/* Set static screen threshold unit */
434 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
435 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
436 			data->static_screen_threshold_unit);
437 	/* Set static screen threshold */
438 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
439 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
440 			data->static_screen_threshold);
441 
442 	return 0;
443 }
444 
445 /**
446  * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
447  *
448  * @hwmgr:  the address of the powerplay hardware manager.
449  * Return:   always  0
450  */
451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
452 {
453 	uint32_t display_gap =
454 			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
455 					ixCG_DISPLAY_GAP_CNTL);
456 
457 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
458 			DISP_GAP, DISPLAY_GAP_IGNORE);
459 
460 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
461 			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
462 
463 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
464 			ixCG_DISPLAY_GAP_CNTL, display_gap);
465 
466 	return 0;
467 }
468 
469 /**
470  * smu7_program_voting_clients - Programs activity state transition voting clients
471  *
472  * @hwmgr:  the address of the powerplay hardware manager.
473  * Return:   always  0
474  */
475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
476 {
477 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 	int i;
479 
480 	/* Clear reset for voting clients before enabling DPM */
481 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
482 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
483 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
484 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
485 
486 	for (i = 0; i < 8; i++)
487 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
488 					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
489 					data->voting_rights_clients[i]);
490 	return 0;
491 }
492 
493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
494 {
495 	int i;
496 
497 	/* Reset voting clients before disabling DPM */
498 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
499 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
500 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
501 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
502 
503 	for (i = 0; i < 8; i++)
504 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
506 
507 	return 0;
508 }
509 
510 /* Copy one arb setting to another and then switch the active set.
511  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
512  */
513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
514 		uint32_t arb_src, uint32_t arb_dest)
515 {
516 	uint32_t mc_arb_dram_timing;
517 	uint32_t mc_arb_dram_timing2;
518 	uint32_t burst_time;
519 	uint32_t mc_cg_config;
520 
521 	switch (arb_src) {
522 	case MC_CG_ARB_FREQ_F0:
523 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
524 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
525 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
526 		break;
527 	case MC_CG_ARB_FREQ_F1:
528 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
529 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
530 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
531 		break;
532 	default:
533 		return -EINVAL;
534 	}
535 
536 	switch (arb_dest) {
537 	case MC_CG_ARB_FREQ_F0:
538 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
539 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
540 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
541 		break;
542 	case MC_CG_ARB_FREQ_F1:
543 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
544 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
545 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
546 		break;
547 	default:
548 		return -EINVAL;
549 	}
550 
551 	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
552 	mc_cg_config |= 0x0000000F;
553 	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
554 	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
555 
556 	return 0;
557 }
558 
559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
560 {
561 	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
562 }
563 
564 /**
565  * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
566  *
567  * @hwmgr:  the address of the powerplay hardware manager.
568  * Return:   always 0
569  * This function is to be called from the SetPowerState table.
570  */
571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
572 {
573 	return smu7_copy_and_switch_arb_sets(hwmgr,
574 			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
575 }
576 
577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
578 {
579 	uint32_t tmp;
580 
581 	tmp = (cgs_read_ind_register(hwmgr->device,
582 			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
583 			0x0000ff00) >> 8;
584 
585 	if (tmp == MC_CG_ARB_FREQ_F0)
586 		return 0;
587 
588 	return smu7_copy_and_switch_arb_sets(hwmgr,
589 			tmp, MC_CG_ARB_FREQ_F0);
590 }
591 
592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
593 {
594 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
595 	uint16_t pcie_gen = 0;
596 
597 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
598 	    adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
599 		pcie_gen = 3;
600 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
601 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
602 		pcie_gen = 2;
603 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
604 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
605 		pcie_gen = 1;
606 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
607 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
608 		pcie_gen = 0;
609 
610 	return pcie_gen;
611 }
612 
613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
614 {
615 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
616 	uint16_t pcie_width = 0;
617 
618 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
619 		pcie_width = 16;
620 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
621 		pcie_width = 12;
622 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
623 		pcie_width = 8;
624 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
625 		pcie_width = 4;
626 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
627 		pcie_width = 2;
628 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
629 		pcie_width = 1;
630 
631 	return pcie_width;
632 }
633 
634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
635 {
636 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
637 
638 	struct phm_ppt_v1_information *table_info =
639 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
640 	struct phm_ppt_v1_pcie_table *pcie_table = NULL;
641 
642 	uint32_t i, max_entry;
643 	uint32_t tmp;
644 
645 	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
646 			data->use_pcie_power_saving_levels), "No pcie performance levels!",
647 			return -EINVAL);
648 
649 	if (table_info != NULL)
650 		pcie_table = table_info->pcie_table;
651 
652 	if (data->use_pcie_performance_levels &&
653 			!data->use_pcie_power_saving_levels) {
654 		data->pcie_gen_power_saving = data->pcie_gen_performance;
655 		data->pcie_lane_power_saving = data->pcie_lane_performance;
656 	} else if (!data->use_pcie_performance_levels &&
657 			data->use_pcie_power_saving_levels) {
658 		data->pcie_gen_performance = data->pcie_gen_power_saving;
659 		data->pcie_lane_performance = data->pcie_lane_power_saving;
660 	}
661 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
662 	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
663 					tmp,
664 					MAX_REGULAR_DPM_NUMBER);
665 
666 	if (pcie_table != NULL) {
667 		/* max_entry is used to make sure we reserve one PCIE level
668 		 * for boot level (fix for A+A PSPP issue).
669 		 * If PCIE table from PPTable have ULV entry + 8 entries,
670 		 * then ignore the last entry.*/
671 		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
672 		for (i = 1; i < max_entry; i++) {
673 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
674 					get_pcie_gen_support(data->pcie_gen_cap,
675 							pcie_table->entries[i].gen_speed),
676 					get_pcie_lane_support(data->pcie_lane_cap,
677 							pcie_table->entries[i].lane_width));
678 		}
679 		data->dpm_table.pcie_speed_table.count = max_entry - 1;
680 		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
681 	} else {
682 		/* Hardcode Pcie Table */
683 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
684 				get_pcie_gen_support(data->pcie_gen_cap,
685 						PP_Min_PCIEGen),
686 				get_pcie_lane_support(data->pcie_lane_cap,
687 						PP_Max_PCIELane));
688 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
689 				get_pcie_gen_support(data->pcie_gen_cap,
690 						PP_Min_PCIEGen),
691 				get_pcie_lane_support(data->pcie_lane_cap,
692 						PP_Max_PCIELane));
693 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
694 				get_pcie_gen_support(data->pcie_gen_cap,
695 						PP_Max_PCIEGen),
696 				get_pcie_lane_support(data->pcie_lane_cap,
697 						PP_Max_PCIELane));
698 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
699 				get_pcie_gen_support(data->pcie_gen_cap,
700 						PP_Max_PCIEGen),
701 				get_pcie_lane_support(data->pcie_lane_cap,
702 						PP_Max_PCIELane));
703 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
704 				get_pcie_gen_support(data->pcie_gen_cap,
705 						PP_Max_PCIEGen),
706 				get_pcie_lane_support(data->pcie_lane_cap,
707 						PP_Max_PCIELane));
708 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
709 				get_pcie_gen_support(data->pcie_gen_cap,
710 						PP_Max_PCIEGen),
711 				get_pcie_lane_support(data->pcie_lane_cap,
712 						PP_Max_PCIELane));
713 
714 		data->dpm_table.pcie_speed_table.count = 6;
715 	}
716 	/* Populate last level for boot PCIE level, but do not increment count. */
717 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
718 		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
719 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
720 				get_pcie_gen_support(data->pcie_gen_cap,
721 						PP_Max_PCIEGen),
722 				data->vbios_boot_state.pcie_lane_bootup_value);
723 	} else {
724 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
725 			data->dpm_table.pcie_speed_table.count,
726 			get_pcie_gen_support(data->pcie_gen_cap,
727 					PP_Min_PCIEGen),
728 			get_pcie_lane_support(data->pcie_lane_cap,
729 					PP_Max_PCIELane));
730 
731 		if (data->pcie_dpm_key_disabled)
732 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
733 				data->dpm_table.pcie_speed_table.count,
734 				smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
735 	}
736 	return 0;
737 }
738 
739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
740 {
741 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
742 
743 	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
744 
745 	phm_reset_single_dpm_table(
746 			&data->dpm_table.sclk_table,
747 				smum_get_mac_definition(hwmgr,
748 					SMU_MAX_LEVELS_GRAPHICS),
749 					MAX_REGULAR_DPM_NUMBER);
750 	phm_reset_single_dpm_table(
751 			&data->dpm_table.mclk_table,
752 			smum_get_mac_definition(hwmgr,
753 				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
754 
755 	phm_reset_single_dpm_table(
756 			&data->dpm_table.vddc_table,
757 				smum_get_mac_definition(hwmgr,
758 					SMU_MAX_LEVELS_VDDC),
759 					MAX_REGULAR_DPM_NUMBER);
760 	phm_reset_single_dpm_table(
761 			&data->dpm_table.vddci_table,
762 			smum_get_mac_definition(hwmgr,
763 				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
764 
765 	phm_reset_single_dpm_table(
766 			&data->dpm_table.mvdd_table,
767 				smum_get_mac_definition(hwmgr,
768 					SMU_MAX_LEVELS_MVDD),
769 					MAX_REGULAR_DPM_NUMBER);
770 	return 0;
771 }
772 /*
773  * This function is to initialize all DPM state tables
774  * for SMU7 based on the dependency table.
775  * Dynamic state patching function will then trim these
776  * state tables to the allowed range based
777  * on the power policy or external client requests,
778  * such as UVD request, etc.
779  */
780 
781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
782 {
783 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
784 	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
785 		hwmgr->dyn_state.vddc_dependency_on_sclk;
786 	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
787 		hwmgr->dyn_state.vddc_dependency_on_mclk;
788 	struct phm_cac_leakage_table *std_voltage_table =
789 		hwmgr->dyn_state.cac_leakage_table;
790 	uint32_t i;
791 
792 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
793 		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
794 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
795 		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
796 
797 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
798 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
799 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
800 		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
801 
802 
803 	/* Initialize Sclk DPM table based on allow Sclk values*/
804 	data->dpm_table.sclk_table.count = 0;
805 
806 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
807 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
808 				allowed_vdd_sclk_table->entries[i].clk) {
809 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
810 				allowed_vdd_sclk_table->entries[i].clk;
811 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
812 			data->dpm_table.sclk_table.count++;
813 		}
814 	}
815 
816 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
817 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
818 	/* Initialize Mclk DPM table based on allow Mclk values */
819 	data->dpm_table.mclk_table.count = 0;
820 	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
821 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
822 			allowed_vdd_mclk_table->entries[i].clk) {
823 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
824 				allowed_vdd_mclk_table->entries[i].clk;
825 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
826 			data->dpm_table.mclk_table.count++;
827 		}
828 	}
829 
830 	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
831 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
832 		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
833 		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
834 		/* param1 is for corresponding std voltage */
835 		data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
836 	}
837 
838 	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
839 	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
840 
841 	if (NULL != allowed_vdd_mclk_table) {
842 		/* Initialize Vddci DPM table based on allow Mclk values */
843 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
844 			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
845 			data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
846 		}
847 		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
848 	}
849 
850 	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
851 
852 	if (NULL != allowed_vdd_mclk_table) {
853 		/*
854 		 * Initialize MVDD DPM table based on allow Mclk
855 		 * values
856 		 */
857 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
858 			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
859 			data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
860 		}
861 		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
862 	}
863 
864 	return 0;
865 }
866 
867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
868 {
869 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
870 	struct phm_ppt_v1_information *table_info =
871 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
872 	uint32_t i;
873 
874 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
875 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
876 
877 	if (table_info == NULL)
878 		return -EINVAL;
879 
880 	dep_sclk_table = table_info->vdd_dep_on_sclk;
881 	dep_mclk_table = table_info->vdd_dep_on_mclk;
882 
883 	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
884 			"SCLK dependency table is missing.",
885 			return -EINVAL);
886 	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
887 			"SCLK dependency table count is 0.",
888 			return -EINVAL);
889 
890 	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
891 			"MCLK dependency table is missing.",
892 			return -EINVAL);
893 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
894 			"MCLK dependency table count is 0",
895 			return -EINVAL);
896 
897 	/* Initialize Sclk DPM table based on allow Sclk values */
898 	data->dpm_table.sclk_table.count = 0;
899 	for (i = 0; i < dep_sclk_table->count; i++) {
900 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
901 						dep_sclk_table->entries[i].clk) {
902 
903 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
904 					dep_sclk_table->entries[i].clk;
905 
906 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
907 					i == 0;
908 			data->dpm_table.sclk_table.count++;
909 		}
910 	}
911 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
912 		hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
913 	/* Initialize Mclk DPM table based on allow Mclk values */
914 	data->dpm_table.mclk_table.count = 0;
915 	for (i = 0; i < dep_mclk_table->count; i++) {
916 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
917 				[data->dpm_table.mclk_table.count - 1].value !=
918 						dep_mclk_table->entries[i].clk) {
919 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
920 							dep_mclk_table->entries[i].clk;
921 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
922 							i == 0;
923 			data->dpm_table.mclk_table.count++;
924 		}
925 	}
926 
927 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
928 		hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
929 	return 0;
930 }
931 
932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
933 {
934 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
935 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
936 	struct phm_ppt_v1_information *table_info =
937 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
938 	uint32_t i;
939 
940 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
941 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
942 	struct phm_odn_performance_level *entries;
943 
944 	if (table_info == NULL)
945 		return -EINVAL;
946 
947 	dep_sclk_table = table_info->vdd_dep_on_sclk;
948 	dep_mclk_table = table_info->vdd_dep_on_mclk;
949 
950 	odn_table->odn_core_clock_dpm_levels.num_of_pl =
951 						data->golden_dpm_table.sclk_table.count;
952 	entries = odn_table->odn_core_clock_dpm_levels.entries;
953 	for (i = 0; i < data->golden_dpm_table.sclk_table.count; i++) {
954 		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
955 		entries[i].enabled = true;
956 		entries[i].vddc = dep_sclk_table->entries[i].vddc;
957 	}
958 
959 	smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
960 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
961 
962 	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
963 						data->golden_dpm_table.mclk_table.count;
964 	entries = odn_table->odn_memory_clock_dpm_levels.entries;
965 	for (i = 0; i < data->golden_dpm_table.mclk_table.count; i++) {
966 		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
967 		entries[i].enabled = true;
968 		entries[i].vddc = dep_mclk_table->entries[i].vddc;
969 	}
970 
971 	smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
972 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
973 
974 	return 0;
975 }
976 
977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
978 {
979 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
980 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
981 	struct phm_ppt_v1_information *table_info =
982 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
983 	uint32_t min_vddc = 0;
984 	uint32_t max_vddc = 0;
985 
986 	if (!table_info)
987 		return;
988 
989 	dep_sclk_table = table_info->vdd_dep_on_sclk;
990 
991 	atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
992 
993 	if (min_vddc == 0 || min_vddc > 2000
994 		|| min_vddc > dep_sclk_table->entries[0].vddc)
995 		min_vddc = dep_sclk_table->entries[0].vddc;
996 
997 	if (max_vddc == 0 || max_vddc > 2000
998 		|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
999 		max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1000 
1001 	data->odn_dpm_table.min_vddc = min_vddc;
1002 	data->odn_dpm_table.max_vddc = max_vddc;
1003 }
1004 
1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1006 {
1007 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1009 	struct phm_ppt_v1_information *table_info =
1010 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 	uint32_t i;
1012 
1013 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1014 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1015 
1016 	if (table_info == NULL)
1017 		return;
1018 
1019 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1020 		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1021 					data->dpm_table.sclk_table.dpm_levels[i].value) {
1022 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1023 			break;
1024 		}
1025 	}
1026 
1027 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1028 		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1029 					data->dpm_table.mclk_table.dpm_levels[i].value) {
1030 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1031 			break;
1032 		}
1033 	}
1034 
1035 	dep_table = table_info->vdd_dep_on_mclk;
1036 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1037 
1038 	for (i = 0; i < dep_table->count; i++) {
1039 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1040 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1041 			return;
1042 		}
1043 	}
1044 
1045 	dep_table = table_info->vdd_dep_on_sclk;
1046 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1047 	for (i = 0; i < dep_table->count; i++) {
1048 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1049 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1050 			return;
1051 		}
1052 	}
1053 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1054 		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1055 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1056 	}
1057 }
1058 
1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1060 {
1061 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1062 
1063 	smu7_reset_dpm_tables(hwmgr);
1064 
1065 	if (hwmgr->pp_table_version == PP_TABLE_V1)
1066 		smu7_setup_dpm_tables_v1(hwmgr);
1067 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
1068 		smu7_setup_dpm_tables_v0(hwmgr);
1069 
1070 	smu7_setup_default_pcie_table(hwmgr);
1071 
1072 	/* save a copy of the default DPM table */
1073 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1074 			sizeof(struct smu7_dpm_table));
1075 
1076 	/* initialize ODN table */
1077 	if (hwmgr->od_enabled) {
1078 		if (data->odn_dpm_table.max_vddc) {
1079 			smu7_check_dpm_table_updated(hwmgr);
1080 		} else {
1081 			smu7_setup_voltage_range_from_vbios(hwmgr);
1082 			smu7_odn_initial_default_setting(hwmgr);
1083 		}
1084 	}
1085 	return 0;
1086 }
1087 
1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1089 {
1090 
1091 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1092 			PHM_PlatformCaps_RegulatorHot))
1093 		return smum_send_msg_to_smc(hwmgr,
1094 				PPSMC_MSG_EnableVRHotGPIOInterrupt,
1095 				NULL);
1096 
1097 	return 0;
1098 }
1099 
1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1101 {
1102 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1103 			SCLK_PWRMGT_OFF, 0);
1104 	return 0;
1105 }
1106 
1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1108 {
1109 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1110 
1111 	if (data->ulv_supported)
1112 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1113 
1114 	return 0;
1115 }
1116 
1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1118 {
1119 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1120 
1121 	if (data->ulv_supported)
1122 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1123 
1124 	return 0;
1125 }
1126 
1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1128 {
1129 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1130 			PHM_PlatformCaps_SclkDeepSleep)) {
1131 		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1132 			PP_ASSERT_WITH_CODE(false,
1133 					"Attempt to enable Master Deep Sleep switch failed!",
1134 					return -EINVAL);
1135 	} else {
1136 		if (smum_send_msg_to_smc(hwmgr,
1137 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1138 				NULL)) {
1139 			PP_ASSERT_WITH_CODE(false,
1140 					"Attempt to disable Master Deep Sleep switch failed!",
1141 					return -EINVAL);
1142 		}
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1149 {
1150 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1151 			PHM_PlatformCaps_SclkDeepSleep)) {
1152 		if (smum_send_msg_to_smc(hwmgr,
1153 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1154 				NULL)) {
1155 			PP_ASSERT_WITH_CODE(false,
1156 					"Attempt to disable Master Deep Sleep switch failed!",
1157 					return -EINVAL);
1158 		}
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1165 {
1166 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1167 	uint32_t soft_register_value = 0;
1168 	uint32_t handshake_disables_offset = data->soft_regs_start
1169 				+ smum_get_offsetof(hwmgr,
1170 					SMU_SoftRegisters, HandshakeDisables);
1171 
1172 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1173 				CGS_IND_REG__SMC, handshake_disables_offset);
1174 	soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1175 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1176 			handshake_disables_offset, soft_register_value);
1177 	return 0;
1178 }
1179 
1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1181 {
1182 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1183 	uint32_t soft_register_value = 0;
1184 	uint32_t handshake_disables_offset = data->soft_regs_start
1185 				+ smum_get_offsetof(hwmgr,
1186 					SMU_SoftRegisters, HandshakeDisables);
1187 
1188 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1189 				CGS_IND_REG__SMC, handshake_disables_offset);
1190 	soft_register_value |= smum_get_mac_definition(hwmgr,
1191 					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1192 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 			handshake_disables_offset, soft_register_value);
1194 	return 0;
1195 }
1196 
1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200 
1201 	/* enable SCLK dpm */
1202 	if (!data->sclk_dpm_key_disabled) {
1203 		if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1204 		    hwmgr->chip_id <= CHIP_VEGAM)
1205 			smu7_disable_sclk_vce_handshake(hwmgr);
1206 
1207 		PP_ASSERT_WITH_CODE(
1208 		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1209 		"Failed to enable SCLK DPM during DPM Start Function!",
1210 		return -EINVAL);
1211 	}
1212 
1213 	/* enable MCLK dpm */
1214 	if (0 == data->mclk_dpm_key_disabled) {
1215 		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1216 			smu7_disable_handshake_uvd(hwmgr);
1217 
1218 		PP_ASSERT_WITH_CODE(
1219 				(0 == smum_send_msg_to_smc(hwmgr,
1220 						PPSMC_MSG_MCLKDPM_Enable,
1221 						NULL)),
1222 				"Failed to enable MCLK DPM during DPM Start Function!",
1223 				return -EINVAL);
1224 
1225 		if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1226 		    (hwmgr->chip_id == CHIP_POLARIS10) ||
1227 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
1228 		    (hwmgr->chip_id == CHIP_POLARIS12) ||
1229 		    (hwmgr->chip_id == CHIP_TONGA) ||
1230 		    (hwmgr->chip_id == CHIP_TOPAZ))
1231 			PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1232 
1233 
1234 		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1235 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1236 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1237 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1238 			udelay(10);
1239 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1240 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1241 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1242 		} else {
1243 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1244 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1245 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1246 			udelay(10);
1247 			if (hwmgr->chip_id == CHIP_VEGAM) {
1248 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1249 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1250 			} else {
1251 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1252 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1253 			}
1254 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1255 		}
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1262 {
1263 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1264 
1265 	/*enable general power management */
1266 
1267 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1268 			GLOBAL_PWRMGT_EN, 1);
1269 
1270 	/* enable sclk deep sleep */
1271 
1272 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1273 			DYNAMIC_PM_EN, 1);
1274 
1275 	/* prepare for PCIE DPM */
1276 
1277 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1278 			data->soft_regs_start +
1279 			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1280 						VoltageChangeTimeout), 0x1000);
1281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1282 			SWRST_COMMAND_1, RESETLC, 0x0);
1283 
1284 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1285 		cgs_write_register(hwmgr->device, 0x1488,
1286 			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1287 
1288 	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1289 		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1290 		return -EINVAL;
1291 	}
1292 
1293 	/* enable PCIE dpm */
1294 	if (0 == data->pcie_dpm_key_disabled) {
1295 		PP_ASSERT_WITH_CODE(
1296 				(0 == smum_send_msg_to_smc(hwmgr,
1297 						PPSMC_MSG_PCIeDPM_Enable,
1298 						NULL)),
1299 				"Failed to enable pcie DPM during DPM Start Function!",
1300 				return -EINVAL);
1301 	} else {
1302 		PP_ASSERT_WITH_CODE(
1303 				(0 == smum_send_msg_to_smc(hwmgr,
1304 						PPSMC_MSG_PCIeDPM_Disable,
1305 						NULL)),
1306 				"Failed to disable pcie DPM during DPM Start Function!",
1307 				return -EINVAL);
1308 	}
1309 
1310 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1311 				PHM_PlatformCaps_Falcon_QuickTransition)) {
1312 		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1313 				PPSMC_MSG_EnableACDCGPIOInterrupt,
1314 				NULL)),
1315 				"Failed to enable AC DC GPIO Interrupt!",
1316 				);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1323 {
1324 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1325 
1326 	/* disable SCLK dpm */
1327 	if (!data->sclk_dpm_key_disabled) {
1328 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1329 				"Trying to disable SCLK DPM when DPM is disabled",
1330 				return 0);
1331 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1332 	}
1333 
1334 	/* disable MCLK dpm */
1335 	if (!data->mclk_dpm_key_disabled) {
1336 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1337 				"Trying to disable MCLK DPM when DPM is disabled",
1338 				return 0);
1339 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1346 {
1347 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348 
1349 	/* disable general power management */
1350 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1351 			GLOBAL_PWRMGT_EN, 0);
1352 	/* disable sclk deep sleep */
1353 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1354 			DYNAMIC_PM_EN, 0);
1355 
1356 	/* disable PCIE dpm */
1357 	if (!data->pcie_dpm_key_disabled) {
1358 		PP_ASSERT_WITH_CODE(
1359 				(smum_send_msg_to_smc(hwmgr,
1360 						PPSMC_MSG_PCIeDPM_Disable,
1361 						NULL) == 0),
1362 				"Failed to disable pcie DPM during DPM Stop Function!",
1363 				return -EINVAL);
1364 	}
1365 
1366 	smu7_disable_sclk_mclk_dpm(hwmgr);
1367 
1368 	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1369 			"Trying to disable voltage DPM when DPM is disabled",
1370 			return 0);
1371 
1372 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1373 
1374 	return 0;
1375 }
1376 
1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1378 {
1379 	bool protection;
1380 	enum DPM_EVENT_SRC src;
1381 
1382 	switch (sources) {
1383 	default:
1384 		pr_err("Unknown throttling event sources.");
1385 		fallthrough;
1386 	case 0:
1387 		protection = false;
1388 		/* src is unused */
1389 		break;
1390 	case (1 << PHM_AutoThrottleSource_Thermal):
1391 		protection = true;
1392 		src = DPM_EVENT_SRC_DIGITAL;
1393 		break;
1394 	case (1 << PHM_AutoThrottleSource_External):
1395 		protection = true;
1396 		src = DPM_EVENT_SRC_EXTERNAL;
1397 		break;
1398 	case (1 << PHM_AutoThrottleSource_External) |
1399 			(1 << PHM_AutoThrottleSource_Thermal):
1400 		protection = true;
1401 		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1402 		break;
1403 	}
1404 	/* Order matters - don't enable thermal protection for the wrong source. */
1405 	if (protection) {
1406 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1407 				DPM_EVENT_SRC, src);
1408 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1409 				THERMAL_PROTECTION_DIS,
1410 				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1411 						PHM_PlatformCaps_ThermalController));
1412 	} else
1413 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1414 				THERMAL_PROTECTION_DIS, 1);
1415 }
1416 
1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1418 		PHM_AutoThrottleSource source)
1419 {
1420 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1421 
1422 	if (!(data->active_auto_throttle_sources & (1 << source))) {
1423 		data->active_auto_throttle_sources |= 1 << source;
1424 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1425 	}
1426 	return 0;
1427 }
1428 
1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1430 {
1431 	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1432 }
1433 
1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1435 		PHM_AutoThrottleSource source)
1436 {
1437 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438 
1439 	if (data->active_auto_throttle_sources & (1 << source)) {
1440 		data->active_auto_throttle_sources &= ~(1 << source);
1441 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1442 	}
1443 	return 0;
1444 }
1445 
1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1447 {
1448 	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1449 }
1450 
1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1452 {
1453 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1454 	data->pcie_performance_request = true;
1455 
1456 	return 0;
1457 }
1458 
1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1460 					   uint32_t *cac_config_regs,
1461 					   AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1462 {
1463 	uint32_t data, i = 0;
1464 
1465 	while (cac_config_regs[i] != 0xFFFFFFFF) {
1466 		data = edc_leakage_table->DIDT_REG[i];
1467 		cgs_write_ind_register(hwmgr->device,
1468 				       CGS_IND_REG__DIDT,
1469 				       cac_config_regs[i],
1470 				       data);
1471 		i++;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1478 {
1479 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1480 	int ret = 0;
1481 
1482 	if (!data->disable_edc_leakage_controller &&
1483 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1484 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1485 		ret = smu7_program_edc_didt_registers(hwmgr,
1486 						      DIDTEDCConfig_P12,
1487 						      &data->edc_leakage_table);
1488 		if (ret)
1489 			return ret;
1490 
1491 		ret = smum_send_msg_to_smc(hwmgr,
1492 					   (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1493 					   NULL);
1494 	} else {
1495 		ret = smum_send_msg_to_smc(hwmgr,
1496 					   (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1497 					   NULL);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
1504 {
1505 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1506 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
1507 	int32_t tmp_sclk, count, percentage;
1508 
1509 	if (golden_dpm_table->mclk_table.count == 1) {
1510 		percentage = 70;
1511 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value;
1512 	} else {
1513 		percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
1514 				golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1515 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
1516 	}
1517 
1518 	tmp_sclk = hwmgr->pstate_mclk * percentage / 100;
1519 
1520 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
1521 		struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk =
1522 			hwmgr->dyn_state.vddc_dependency_on_sclk;
1523 
1524 		for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) {
1525 			if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) {
1526 				hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk;
1527 				break;
1528 			}
1529 		}
1530 		if (count < 0)
1531 			hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk;
1532 
1533 		hwmgr->pstate_sclk_peak =
1534 			vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk;
1535 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
1536 		struct phm_ppt_v1_information *table_info =
1537 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1538 		struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk =
1539 			table_info->vdd_dep_on_sclk;
1540 
1541 		for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) {
1542 			if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) {
1543 				hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk;
1544 				break;
1545 			}
1546 		}
1547 		if (count < 0)
1548 			hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk;
1549 
1550 		hwmgr->pstate_sclk_peak =
1551 			vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk;
1552 	}
1553 
1554 	hwmgr->pstate_mclk_peak =
1555 		golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1556 
1557 	/* make sure the output is in Mhz */
1558 	hwmgr->pstate_sclk /= 100;
1559 	hwmgr->pstate_mclk /= 100;
1560 	hwmgr->pstate_sclk_peak /= 100;
1561 	hwmgr->pstate_mclk_peak /= 100;
1562 }
1563 
1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1565 {
1566 	int tmp_result = 0;
1567 	int result = 0;
1568 
1569 	if (smu7_voltage_control(hwmgr)) {
1570 		tmp_result = smu7_enable_voltage_control(hwmgr);
1571 		PP_ASSERT_WITH_CODE(tmp_result == 0,
1572 				"Failed to enable voltage control!",
1573 				result = tmp_result);
1574 
1575 		tmp_result = smu7_construct_voltage_tables(hwmgr);
1576 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1577 				"Failed to construct voltage tables!",
1578 				result = tmp_result);
1579 	}
1580 	smum_initialize_mc_reg_table(hwmgr);
1581 
1582 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1583 			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1584 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1585 				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1586 
1587 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1588 			PHM_PlatformCaps_ThermalController))
1589 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1590 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1591 
1592 	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1593 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 			"Failed to program static screen threshold parameters!",
1595 			result = tmp_result);
1596 
1597 	tmp_result = smu7_enable_display_gap(hwmgr);
1598 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1599 			"Failed to enable display gap!", result = tmp_result);
1600 
1601 	tmp_result = smu7_program_voting_clients(hwmgr);
1602 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1603 			"Failed to program voting clients!", result = tmp_result);
1604 
1605 	tmp_result = smum_process_firmware_header(hwmgr);
1606 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1607 			"Failed to process firmware header!", result = tmp_result);
1608 
1609 	if (hwmgr->chip_id != CHIP_VEGAM) {
1610 		tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1611 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1612 				"Failed to initialize switch from ArbF0 to F1!",
1613 				result = tmp_result);
1614 	}
1615 
1616 	result = smu7_setup_default_dpm_tables(hwmgr);
1617 	PP_ASSERT_WITH_CODE(0 == result,
1618 			"Failed to setup default DPM tables!", return result);
1619 
1620 	tmp_result = smum_init_smc_table(hwmgr);
1621 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 			"Failed to initialize SMC table!", result = tmp_result);
1623 
1624 	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1625 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1627 
1628 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1629 	    hwmgr->chip_id <= CHIP_VEGAM) {
1630 		tmp_result = smu7_notify_has_display(hwmgr);
1631 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1632 				"Failed to enable display setting!", result = tmp_result);
1633 	} else {
1634 		smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1635 	}
1636 
1637 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1638 	    hwmgr->chip_id <= CHIP_VEGAM) {
1639 		tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1640 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1641 				"Failed to populate edc leakage registers!", result = tmp_result);
1642 	}
1643 
1644 	tmp_result = smu7_enable_sclk_control(hwmgr);
1645 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1646 			"Failed to enable SCLK control!", result = tmp_result);
1647 
1648 	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1649 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1650 			"Failed to enable voltage control!", result = tmp_result);
1651 
1652 	tmp_result = smu7_enable_ulv(hwmgr);
1653 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1654 			"Failed to enable ULV!", result = tmp_result);
1655 
1656 	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1657 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1658 			"Failed to enable deep sleep master switch!", result = tmp_result);
1659 
1660 	tmp_result = smu7_enable_didt_config(hwmgr);
1661 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1662 			"Failed to enable deep sleep master switch!", result = tmp_result);
1663 
1664 	tmp_result = smu7_start_dpm(hwmgr);
1665 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1666 			"Failed to start DPM!", result = tmp_result);
1667 
1668 	tmp_result = smu7_enable_smc_cac(hwmgr);
1669 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1670 			"Failed to enable SMC CAC!", result = tmp_result);
1671 
1672 	tmp_result = smu7_enable_power_containment(hwmgr);
1673 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1674 			"Failed to enable power containment!", result = tmp_result);
1675 
1676 	tmp_result = smu7_power_control_set_level(hwmgr);
1677 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1678 			"Failed to power control set level!", result = tmp_result);
1679 
1680 	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1681 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1682 			"Failed to enable thermal auto throttle!", result = tmp_result);
1683 
1684 	tmp_result = smu7_pcie_performance_request(hwmgr);
1685 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1686 			"pcie performance request failed!", result = tmp_result);
1687 
1688 	smu7_populate_umdpstate_clocks(hwmgr);
1689 
1690 	return 0;
1691 }
1692 
1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1694 {
1695 	if (!hwmgr->avfs_supported)
1696 		return 0;
1697 
1698 	if (enable) {
1699 		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1700 				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1701 			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1702 					hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1703 					"Failed to enable AVFS!",
1704 					return -EINVAL);
1705 		}
1706 	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1707 			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1708 		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1709 				hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1710 				"Failed to disable AVFS!",
1711 				return -EINVAL);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1718 {
1719 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1720 
1721 	if (!hwmgr->avfs_supported)
1722 		return 0;
1723 
1724 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1725 		smu7_avfs_control(hwmgr, false);
1726 	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1727 		smu7_avfs_control(hwmgr, false);
1728 		smu7_avfs_control(hwmgr, true);
1729 	} else {
1730 		smu7_avfs_control(hwmgr, true);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1737 {
1738 	int tmp_result, result = 0;
1739 
1740 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1741 			PHM_PlatformCaps_ThermalController))
1742 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1743 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1744 
1745 	tmp_result = smu7_disable_power_containment(hwmgr);
1746 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1747 			"Failed to disable power containment!", result = tmp_result);
1748 
1749 	tmp_result = smu7_disable_smc_cac(hwmgr);
1750 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1751 			"Failed to disable SMC CAC!", result = tmp_result);
1752 
1753 	tmp_result = smu7_disable_didt_config(hwmgr);
1754 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1755 			"Failed to disable DIDT!", result = tmp_result);
1756 
1757 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1758 			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1759 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1760 			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1761 
1762 	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1763 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1764 			"Failed to disable thermal auto throttle!", result = tmp_result);
1765 
1766 	tmp_result = smu7_avfs_control(hwmgr, false);
1767 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1768 			"Failed to disable AVFS!", result = tmp_result);
1769 
1770 	tmp_result = smu7_stop_dpm(hwmgr);
1771 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1772 			"Failed to stop DPM!", result = tmp_result);
1773 
1774 	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1775 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1776 			"Failed to disable deep sleep master switch!", result = tmp_result);
1777 
1778 	tmp_result = smu7_disable_ulv(hwmgr);
1779 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1780 			"Failed to disable ULV!", result = tmp_result);
1781 
1782 	tmp_result = smu7_clear_voting_clients(hwmgr);
1783 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1784 			"Failed to clear voting clients!", result = tmp_result);
1785 
1786 	tmp_result = smu7_reset_to_default(hwmgr);
1787 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1788 			"Failed to reset to default!", result = tmp_result);
1789 
1790 	tmp_result = smum_stop_smc(hwmgr);
1791 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1792 			"Failed to stop smc!", result = tmp_result);
1793 
1794 	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1795 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1796 			"Failed to force to switch arbf0!", result = tmp_result);
1797 
1798 	return result;
1799 }
1800 
1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1802 {
1803 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1804 	struct phm_ppt_v1_information *table_info =
1805 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1806 	struct amdgpu_device *adev = hwmgr->adev;
1807 	uint8_t tmp1, tmp2;
1808 	uint16_t tmp3 = 0;
1809 
1810 	data->dll_default_on = false;
1811 	data->mclk_dpm0_activity_target = 0xa;
1812 	data->vddc_vddgfx_delta = 300;
1813 	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1814 	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1815 	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1816 	data->voting_rights_clients[1] = SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1817 	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1818 	data->voting_rights_clients[3] = SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1819 	data->voting_rights_clients[4] = SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1820 	data->voting_rights_clients[5] = SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1821 	data->voting_rights_clients[6] = SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1822 	data->voting_rights_clients[7] = SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1823 
1824 	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1825 	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1826 	data->pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1827 	/* need to set voltage control types before EVV patching */
1828 	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1829 	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1830 	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1831 	data->enable_tdc_limit_feature = true;
1832 	data->enable_pkg_pwr_tracking_feature = true;
1833 	data->force_pcie_gen = PP_PCIEGenInvalid;
1834 	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1835 	data->current_profile_setting.bupdate_sclk = 1;
1836 	data->current_profile_setting.sclk_up_hyst = 0;
1837 	data->current_profile_setting.sclk_down_hyst = 100;
1838 	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1839 	data->current_profile_setting.bupdate_mclk = 1;
1840 	if (hwmgr->chip_id >= CHIP_POLARIS10) {
1841 		if (adev->gmc.vram_width == 256) {
1842 			data->current_profile_setting.mclk_up_hyst = 10;
1843 			data->current_profile_setting.mclk_down_hyst = 60;
1844 			data->current_profile_setting.mclk_activity = 25;
1845 		} else if (adev->gmc.vram_width == 128) {
1846 			data->current_profile_setting.mclk_up_hyst = 5;
1847 			data->current_profile_setting.mclk_down_hyst = 16;
1848 			data->current_profile_setting.mclk_activity = 20;
1849 		} else if (adev->gmc.vram_width == 64) {
1850 			data->current_profile_setting.mclk_up_hyst = 3;
1851 			data->current_profile_setting.mclk_down_hyst = 16;
1852 			data->current_profile_setting.mclk_activity = 20;
1853 		}
1854 	} else {
1855 		data->current_profile_setting.mclk_up_hyst = 0;
1856 		data->current_profile_setting.mclk_down_hyst = 100;
1857 		data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1858 	}
1859 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1860 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1861 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1862 
1863 	if (hwmgr->chip_id  == CHIP_HAWAII) {
1864 		data->thermal_temp_setting.temperature_low = 94500;
1865 		data->thermal_temp_setting.temperature_high = 95000;
1866 		data->thermal_temp_setting.temperature_shutdown = 104000;
1867 	} else {
1868 		data->thermal_temp_setting.temperature_low = 99500;
1869 		data->thermal_temp_setting.temperature_high = 100000;
1870 		data->thermal_temp_setting.temperature_shutdown = 104000;
1871 	}
1872 
1873 	data->fast_watermark_threshold = 100;
1874 	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1875 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1876 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1877 	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1878 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1879 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1880 
1881 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1882 			PHM_PlatformCaps_ControlVDDGFX)) {
1883 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1884 			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1885 			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1886 		}
1887 	}
1888 
1889 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1890 			PHM_PlatformCaps_EnableMVDDControl)) {
1891 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1892 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1893 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1894 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1895 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1896 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1897 	}
1898 
1899 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1900 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1901 			PHM_PlatformCaps_ControlVDDGFX);
1902 
1903 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1904 			PHM_PlatformCaps_ControlVDDCI)) {
1905 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1906 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1907 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1908 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1909 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1910 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1911 	}
1912 
1913 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1914 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1915 				PHM_PlatformCaps_EnableMVDDControl);
1916 
1917 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1918 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1919 				PHM_PlatformCaps_ControlVDDCI);
1920 
1921 	data->vddc_phase_shed_control = 1;
1922 	if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1923 	    ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1924 	    ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1925 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1926 	    ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1927 		if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1928 			atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1929 							&tmp3);
1930 			tmp3 = (tmp3 >> 5) & 0x3;
1931 			data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1932 		}
1933 	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1934 		data->vddc_phase_shed_control = 1;
1935 	}
1936 
1937 	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1938 		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
1939 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1940 					PHM_PlatformCaps_ClockStretcher);
1941 
1942 	data->pcie_gen_performance.max = PP_PCIEGen1;
1943 	data->pcie_gen_performance.min = PP_PCIEGen3;
1944 	data->pcie_gen_power_saving.max = PP_PCIEGen1;
1945 	data->pcie_gen_power_saving.min = PP_PCIEGen3;
1946 	data->pcie_lane_performance.max = 0;
1947 	data->pcie_lane_performance.min = 16;
1948 	data->pcie_lane_power_saving.max = 0;
1949 	data->pcie_lane_power_saving.min = 16;
1950 
1951 
1952 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1953 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1954 			      PHM_PlatformCaps_UVDPowerGating);
1955 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1956 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1957 			      PHM_PlatformCaps_VCEPowerGating);
1958 
1959 	data->disable_edc_leakage_controller = true;
1960 	if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1961 	    ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1962 	    (adev->asic_type == CHIP_POLARIS12) ||
1963 	    (adev->asic_type == CHIP_VEGAM))
1964 		data->disable_edc_leakage_controller = false;
1965 
1966 	if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1967 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1968 			PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1969 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1970 			PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1971 	}
1972 
1973 	if ((adev->pdev->device == 0x699F) &&
1974 	    (adev->pdev->revision == 0xCF)) {
1975 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1976 				PHM_PlatformCaps_PowerContainment);
1977 		data->enable_tdc_limit_feature = false;
1978 		data->enable_pkg_pwr_tracking_feature = false;
1979 		data->disable_edc_leakage_controller = true;
1980 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1981 					PHM_PlatformCaps_ClockStretcher);
1982 	}
1983 }
1984 
1985 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1986 {
1987 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1988 	struct amdgpu_device *adev = hwmgr->adev;
1989 	uint32_t asicrev1, evv_revision, max = 0, min = 0;
1990 
1991 	atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
1992 			&evv_revision);
1993 
1994 	atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
1995 
1996 	if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1997 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
1998 		min = 1200;
1999 		max = 2500;
2000 	} else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
2001 		   ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
2002 		min = 900;
2003 		max = 2100;
2004 	} else if (hwmgr->chip_id == CHIP_POLARIS10) {
2005 		if (adev->pdev->subsystem_vendor == 0x106B) {
2006 			min = 1000;
2007 			max = 2300;
2008 		} else {
2009 			if (evv_revision == 0) {
2010 				min = 1000;
2011 				max = 2300;
2012 			} else if (evv_revision == 1) {
2013 				if (asicrev1 == 326) {
2014 					min = 1200;
2015 					max = 2500;
2016 					/* TODO: PATCH RO in VBIOS */
2017 				} else {
2018 					min = 1200;
2019 					max = 2000;
2020 				}
2021 			} else if (evv_revision == 2) {
2022 				min = 1200;
2023 				max = 2500;
2024 			}
2025 		}
2026 	} else {
2027 		min = 1100;
2028 		max = 2100;
2029 	}
2030 
2031 	data->ro_range_minimum = min;
2032 	data->ro_range_maximum = max;
2033 
2034 	/* TODO: PATCH RO in VBIOS here */
2035 
2036 	return 0;
2037 }
2038 
2039 /**
2040  * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
2041  *
2042  * @hwmgr:  the address of the powerplay hardware manager.
2043  * Return:   always 0
2044  */
2045 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
2046 {
2047 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2048 	uint16_t vv_id;
2049 	uint16_t vddc = 0;
2050 	uint16_t vddgfx = 0;
2051 	uint16_t i, j;
2052 	uint32_t sclk = 0;
2053 	struct phm_ppt_v1_information *table_info =
2054 			(struct phm_ppt_v1_information *)hwmgr->pptable;
2055 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2056 
2057 	if (hwmgr->chip_id == CHIP_POLARIS10 ||
2058 	    hwmgr->chip_id == CHIP_POLARIS11 ||
2059 	    hwmgr->chip_id == CHIP_POLARIS12)
2060 		smu7_calculate_ro_range(hwmgr);
2061 
2062 	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2063 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2064 
2065 		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2066 			if ((hwmgr->pp_table_version == PP_TABLE_V1)
2067 			    && !phm_get_sclk_for_voltage_evv(hwmgr,
2068 						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2069 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2070 							PHM_PlatformCaps_ClockStretcher)) {
2071 					sclk_table = table_info->vdd_dep_on_sclk;
2072 
2073 					for (j = 1; j < sclk_table->count; j++) {
2074 						if (sclk_table->entries[j].clk == sclk &&
2075 								sclk_table->entries[j].cks_enable == 0) {
2076 							sclk += 5000;
2077 							break;
2078 						}
2079 					}
2080 				}
2081 				if (0 == atomctrl_get_voltage_evv_on_sclk
2082 				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2083 				     vv_id, &vddgfx)) {
2084 					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2085 					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2086 
2087 					/* the voltage should not be zero nor equal to leakage ID */
2088 					if (vddgfx != 0 && vddgfx != vv_id) {
2089 						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2090 						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2091 						data->vddcgfx_leakage.count++;
2092 					}
2093 				} else {
2094 					pr_info("Error retrieving EVV voltage value!\n");
2095 				}
2096 			}
2097 		} else {
2098 			if ((hwmgr->pp_table_version == PP_TABLE_V0)
2099 				|| !phm_get_sclk_for_voltage_evv(hwmgr,
2100 					table_info->vddc_lookup_table, vv_id, &sclk)) {
2101 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2102 						PHM_PlatformCaps_ClockStretcher)) {
2103 					if (table_info == NULL)
2104 						return -EINVAL;
2105 					sclk_table = table_info->vdd_dep_on_sclk;
2106 
2107 					for (j = 1; j < sclk_table->count; j++) {
2108 						if (sclk_table->entries[j].clk == sclk &&
2109 								sclk_table->entries[j].cks_enable == 0) {
2110 							sclk += 5000;
2111 							break;
2112 						}
2113 					}
2114 				}
2115 
2116 				if (phm_get_voltage_evv_on_sclk(hwmgr,
2117 							VOLTAGE_TYPE_VDDC,
2118 							sclk, vv_id, &vddc) == 0) {
2119 					if (vddc >= 2000 || vddc == 0)
2120 						return -EINVAL;
2121 				} else {
2122 					pr_debug("failed to retrieving EVV voltage!\n");
2123 					continue;
2124 				}
2125 
2126 				/* the voltage should not be zero nor equal to leakage ID */
2127 				if (vddc != 0 && vddc != vv_id) {
2128 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2129 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2130 					data->vddc_leakage.count++;
2131 				}
2132 			}
2133 		}
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 /**
2140  * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2141  *
2142  * @hwmgr:  the address of the powerplay hardware manager.
2143  * @voltage: pointer to changing voltage
2144  * @leakage_table: pointer to leakage table
2145  */
2146 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2147 		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2148 {
2149 	uint32_t index;
2150 
2151 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2152 	for (index = 0; index < leakage_table->count; index++) {
2153 		/* if this voltage matches a leakage voltage ID */
2154 		/* patch with actual leakage voltage */
2155 		if (leakage_table->leakage_id[index] == *voltage) {
2156 			*voltage = leakage_table->actual_voltage[index];
2157 			break;
2158 		}
2159 	}
2160 
2161 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2162 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2163 }
2164 
2165 /**
2166  * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2167  *
2168  * @hwmgr:  the address of the powerplay hardware manager.
2169  * @lookup_table: pointer to voltage lookup table
2170  * @leakage_table: pointer to leakage table
2171  * Return:     always 0
2172  */
2173 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2174 		phm_ppt_v1_voltage_lookup_table *lookup_table,
2175 		struct smu7_leakage_voltage *leakage_table)
2176 {
2177 	uint32_t i;
2178 
2179 	for (i = 0; i < lookup_table->count; i++)
2180 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2181 				&lookup_table->entries[i].us_vdd, leakage_table);
2182 
2183 	return 0;
2184 }
2185 
2186 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2187 		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2188 		uint16_t *vddc)
2189 {
2190 	struct phm_ppt_v1_information *table_info =
2191 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2192 	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2193 	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2194 			table_info->max_clock_voltage_on_dc.vddc;
2195 	return 0;
2196 }
2197 
2198 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2199 		struct pp_hwmgr *hwmgr)
2200 {
2201 	uint8_t entry_id;
2202 	uint8_t voltage_id;
2203 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2204 	struct phm_ppt_v1_information *table_info =
2205 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2206 
2207 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2208 			table_info->vdd_dep_on_sclk;
2209 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2210 			table_info->vdd_dep_on_mclk;
2211 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2212 			table_info->mm_dep_table;
2213 
2214 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2215 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2216 			voltage_id = sclk_table->entries[entry_id].vddInd;
2217 			sclk_table->entries[entry_id].vddgfx =
2218 				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2219 		}
2220 	} else {
2221 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2222 			voltage_id = sclk_table->entries[entry_id].vddInd;
2223 			sclk_table->entries[entry_id].vddc =
2224 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2225 		}
2226 	}
2227 
2228 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2229 		voltage_id = mclk_table->entries[entry_id].vddInd;
2230 		mclk_table->entries[entry_id].vddc =
2231 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2232 	}
2233 
2234 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2235 		voltage_id = mm_table->entries[entry_id].vddcInd;
2236 		mm_table->entries[entry_id].vddc =
2237 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2238 	}
2239 
2240 	return 0;
2241 
2242 }
2243 
2244 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2245 			phm_ppt_v1_voltage_lookup_table *look_up_table,
2246 			phm_ppt_v1_voltage_lookup_record *record)
2247 {
2248 	uint32_t i;
2249 
2250 	PP_ASSERT_WITH_CODE((NULL != look_up_table),
2251 		"Lookup Table empty.", return -EINVAL);
2252 	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2253 		"Lookup Table empty.", return -EINVAL);
2254 
2255 	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2256 	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2257 		"Lookup Table is full.", return -EINVAL);
2258 
2259 	/* This is to avoid entering duplicate calculated records. */
2260 	for (i = 0; i < look_up_table->count; i++) {
2261 		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2262 			if (look_up_table->entries[i].us_calculated == 1)
2263 				return 0;
2264 			break;
2265 		}
2266 	}
2267 
2268 	look_up_table->entries[i].us_calculated = 1;
2269 	look_up_table->entries[i].us_vdd = record->us_vdd;
2270 	look_up_table->entries[i].us_cac_low = record->us_cac_low;
2271 	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2272 	look_up_table->entries[i].us_cac_high = record->us_cac_high;
2273 	/* Only increment the count when we're appending, not replacing duplicate entry. */
2274 	if (i == look_up_table->count)
2275 		look_up_table->count++;
2276 
2277 	return 0;
2278 }
2279 
2280 
2281 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2282 {
2283 	uint8_t entry_id;
2284 	struct phm_ppt_v1_voltage_lookup_record v_record;
2285 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2286 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2287 
2288 	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2289 	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2290 
2291 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2292 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2293 			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2294 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2295 					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2296 			else
2297 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2298 					sclk_table->entries[entry_id].vdd_offset;
2299 
2300 			sclk_table->entries[entry_id].vddc =
2301 				v_record.us_cac_low = v_record.us_cac_mid =
2302 				v_record.us_cac_high = v_record.us_vdd;
2303 
2304 			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2305 		}
2306 
2307 		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2308 			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2309 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2310 					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2311 			else
2312 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2313 					mclk_table->entries[entry_id].vdd_offset;
2314 
2315 			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2316 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2317 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2318 		}
2319 	}
2320 	return 0;
2321 }
2322 
2323 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2324 {
2325 	uint8_t entry_id;
2326 	struct phm_ppt_v1_voltage_lookup_record v_record;
2327 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2328 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2329 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2330 
2331 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2332 		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2333 			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2334 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2335 					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2336 			else
2337 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2338 					mm_table->entries[entry_id].vddgfx_offset;
2339 
2340 			/* Add the calculated VDDGFX to the VDDGFX lookup table */
2341 			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2342 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2343 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2344 		}
2345 	}
2346 	return 0;
2347 }
2348 
2349 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2350 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2351 {
2352 	uint32_t table_size, i, j;
2353 	table_size = lookup_table->count;
2354 
2355 	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2356 		"Lookup table is empty", return -EINVAL);
2357 
2358 	/* Sorting voltages */
2359 	for (i = 0; i < table_size - 1; i++) {
2360 		for (j = i + 1; j > 0; j--) {
2361 			if (lookup_table->entries[j].us_vdd <
2362 					lookup_table->entries[j - 1].us_vdd) {
2363 				swap(lookup_table->entries[j - 1],
2364 				     lookup_table->entries[j]);
2365 			}
2366 		}
2367 	}
2368 
2369 	return 0;
2370 }
2371 
2372 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2373 {
2374 	int result = 0;
2375 	int tmp_result;
2376 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2377 	struct phm_ppt_v1_information *table_info =
2378 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2379 
2380 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2381 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2382 			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2383 		if (tmp_result != 0)
2384 			result = tmp_result;
2385 
2386 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2387 			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2388 	} else {
2389 
2390 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2391 				table_info->vddc_lookup_table, &(data->vddc_leakage));
2392 		if (tmp_result)
2393 			result = tmp_result;
2394 
2395 		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2396 				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2397 		if (tmp_result)
2398 			result = tmp_result;
2399 	}
2400 
2401 	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2402 	if (tmp_result)
2403 		result = tmp_result;
2404 
2405 	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2406 	if (tmp_result)
2407 		result = tmp_result;
2408 
2409 	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2410 	if (tmp_result)
2411 		result = tmp_result;
2412 
2413 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2414 	if (tmp_result)
2415 		result = tmp_result;
2416 
2417 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2418 	if (tmp_result)
2419 		result = tmp_result;
2420 
2421 	return result;
2422 }
2423 
2424 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2425 {
2426 	struct phm_ppt_v1_information *table_info =
2427 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2428 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2429 						table_info->vdd_dep_on_sclk;
2430 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2431 						table_info->vddc_lookup_table;
2432 	uint16_t highest_voltage;
2433 	uint32_t i;
2434 
2435 	highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2436 
2437 	for (i = 0; i < lookup_table->count; i++) {
2438 		if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2439 		    lookup_table->entries[i].us_vdd > highest_voltage)
2440 			highest_voltage = lookup_table->entries[i].us_vdd;
2441 	}
2442 
2443 	return highest_voltage;
2444 }
2445 
2446 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2447 {
2448 	struct phm_ppt_v1_information *table_info =
2449 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2450 
2451 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2452 						table_info->vdd_dep_on_sclk;
2453 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2454 						table_info->vdd_dep_on_mclk;
2455 
2456 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2457 		"VDD dependency on SCLK table is missing.",
2458 		return -EINVAL);
2459 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2460 		"VDD dependency on SCLK table has to have is missing.",
2461 		return -EINVAL);
2462 
2463 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2464 		"VDD dependency on MCLK table is missing",
2465 		return -EINVAL);
2466 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2467 		"VDD dependency on MCLK table has to have is missing.",
2468 		return -EINVAL);
2469 
2470 	table_info->max_clock_voltage_on_ac.sclk =
2471 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2472 	table_info->max_clock_voltage_on_ac.mclk =
2473 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2474 	if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2475 		table_info->max_clock_voltage_on_ac.vddc =
2476 			smu7_find_highest_vddc(hwmgr);
2477 	else
2478 		table_info->max_clock_voltage_on_ac.vddc =
2479 			allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2480 	table_info->max_clock_voltage_on_ac.vddci =
2481 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2482 
2483 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2484 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2485 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2486 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2487 
2488 	return 0;
2489 }
2490 
2491 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2492 {
2493 	struct phm_ppt_v1_information *table_info =
2494 		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
2495 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2496 	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2497 	uint32_t i;
2498 	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2499 	struct amdgpu_device *adev = hwmgr->adev;
2500 
2501 	if (table_info != NULL) {
2502 		dep_mclk_table = table_info->vdd_dep_on_mclk;
2503 		lookup_table = table_info->vddc_lookup_table;
2504 	} else
2505 		return 0;
2506 
2507 	hw_revision = adev->pdev->revision;
2508 	sub_sys_id = adev->pdev->subsystem_device;
2509 	sub_vendor_id = adev->pdev->subsystem_vendor;
2510 
2511 	if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2512 	    ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2513 	     (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2514 	     (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2515 
2516 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2517 					      CGS_IND_REG__SMC,
2518 					      PWR_CKS_CNTL,
2519 					      CKS_STRETCH_AMOUNT,
2520 					      0x3);
2521 
2522 		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2523 			return 0;
2524 
2525 		for (i = 0; i < lookup_table->count; i++) {
2526 			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2527 				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2528 				return 0;
2529 			}
2530 		}
2531 	}
2532 	return 0;
2533 }
2534 
2535 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2536 {
2537 	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2538 	uint32_t temp_reg;
2539 	struct phm_ppt_v1_information *table_info =
2540 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2541 
2542 
2543 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2544 		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2545 		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2546 		case 0:
2547 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2548 			break;
2549 		case 1:
2550 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2551 			break;
2552 		case 2:
2553 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2554 			break;
2555 		case 3:
2556 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2557 			break;
2558 		case 4:
2559 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2560 			break;
2561 		default:
2562 			break;
2563 		}
2564 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2565 	}
2566 
2567 	if (table_info == NULL)
2568 		return 0;
2569 
2570 	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2571 		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2572 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2573 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2574 
2575 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2576 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2577 
2578 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2579 
2580 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2581 
2582 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2583 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2584 
2585 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2586 
2587 		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2588 								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2589 
2590 		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2591 		table_info->cac_dtp_table->usOperatingTempStep = 1;
2592 		table_info->cac_dtp_table->usOperatingTempHyst = 1;
2593 
2594 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2595 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2596 
2597 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2598 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2599 
2600 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2601 			       table_info->cac_dtp_table->usOperatingTempMinLimit;
2602 
2603 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2604 			       table_info->cac_dtp_table->usOperatingTempMaxLimit;
2605 
2606 		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2607 			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2608 
2609 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2610 			       table_info->cac_dtp_table->usOperatingTempStep;
2611 
2612 		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2613 			       table_info->cac_dtp_table->usTargetOperatingTemp;
2614 		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2615 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2616 					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 /**
2623  * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2624  *
2625  * @hwmgr:  the address of the powerplay hardware manager.
2626  * @voltage: pointer to changing voltage
2627  * @leakage_table: pointer to leakage table
2628  */
2629 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2630 		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2631 {
2632 	uint32_t index;
2633 
2634 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2635 	for (index = 0; index < leakage_table->count; index++) {
2636 		/* if this voltage matches a leakage voltage ID */
2637 		/* patch with actual leakage voltage */
2638 		if (leakage_table->leakage_id[index] == *voltage) {
2639 			*voltage = leakage_table->actual_voltage[index];
2640 			break;
2641 		}
2642 	}
2643 
2644 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2645 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2646 }
2647 
2648 
2649 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2650 			      struct phm_clock_voltage_dependency_table *tab)
2651 {
2652 	uint16_t i;
2653 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2654 
2655 	if (tab)
2656 		for (i = 0; i < tab->count; i++)
2657 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2658 						&data->vddc_leakage);
2659 
2660 	return 0;
2661 }
2662 
2663 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2664 			       struct phm_clock_voltage_dependency_table *tab)
2665 {
2666 	uint16_t i;
2667 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2668 
2669 	if (tab)
2670 		for (i = 0; i < tab->count; i++)
2671 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2672 							&data->vddci_leakage);
2673 
2674 	return 0;
2675 }
2676 
2677 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2678 				  struct phm_vce_clock_voltage_dependency_table *tab)
2679 {
2680 	uint16_t i;
2681 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2682 
2683 	if (tab)
2684 		for (i = 0; i < tab->count; i++)
2685 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2686 							&data->vddc_leakage);
2687 
2688 	return 0;
2689 }
2690 
2691 
2692 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2693 				  struct phm_uvd_clock_voltage_dependency_table *tab)
2694 {
2695 	uint16_t i;
2696 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2697 
2698 	if (tab)
2699 		for (i = 0; i < tab->count; i++)
2700 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2701 							&data->vddc_leakage);
2702 
2703 	return 0;
2704 }
2705 
2706 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2707 					 struct phm_phase_shedding_limits_table *tab)
2708 {
2709 	uint16_t i;
2710 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2711 
2712 	if (tab)
2713 		for (i = 0; i < tab->count; i++)
2714 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2715 							&data->vddc_leakage);
2716 
2717 	return 0;
2718 }
2719 
2720 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2721 				   struct phm_samu_clock_voltage_dependency_table *tab)
2722 {
2723 	uint16_t i;
2724 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2725 
2726 	if (tab)
2727 		for (i = 0; i < tab->count; i++)
2728 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2729 							&data->vddc_leakage);
2730 
2731 	return 0;
2732 }
2733 
2734 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2735 				  struct phm_acp_clock_voltage_dependency_table *tab)
2736 {
2737 	uint16_t i;
2738 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2739 
2740 	if (tab)
2741 		for (i = 0; i < tab->count; i++)
2742 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2743 					&data->vddc_leakage);
2744 
2745 	return 0;
2746 }
2747 
2748 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2749 				  struct phm_clock_and_voltage_limits *tab)
2750 {
2751 	uint32_t vddc, vddci;
2752 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2753 
2754 	if (tab) {
2755 		vddc = tab->vddc;
2756 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2757 						   &data->vddc_leakage);
2758 		tab->vddc = vddc;
2759 		vddci = tab->vddci;
2760 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2761 						   &data->vddci_leakage);
2762 		tab->vddci = vddci;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2769 {
2770 	uint32_t i;
2771 	uint32_t vddc;
2772 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2773 
2774 	if (tab) {
2775 		for (i = 0; i < tab->count; i++) {
2776 			vddc = (uint32_t)(tab->entries[i].Vddc);
2777 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2778 			tab->entries[i].Vddc = (uint16_t)vddc;
2779 		}
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2786 {
2787 	int tmp;
2788 
2789 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2790 	if (tmp)
2791 		return -EINVAL;
2792 
2793 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2794 	if (tmp)
2795 		return -EINVAL;
2796 
2797 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2798 	if (tmp)
2799 		return -EINVAL;
2800 
2801 	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2802 	if (tmp)
2803 		return -EINVAL;
2804 
2805 	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2806 	if (tmp)
2807 		return -EINVAL;
2808 
2809 	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2810 	if (tmp)
2811 		return -EINVAL;
2812 
2813 	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2814 	if (tmp)
2815 		return -EINVAL;
2816 
2817 	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2818 	if (tmp)
2819 		return -EINVAL;
2820 
2821 	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2822 	if (tmp)
2823 		return -EINVAL;
2824 
2825 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2826 	if (tmp)
2827 		return -EINVAL;
2828 
2829 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2830 	if (tmp)
2831 		return -EINVAL;
2832 
2833 	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2834 	if (tmp)
2835 		return -EINVAL;
2836 
2837 	return 0;
2838 }
2839 
2840 
2841 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2842 {
2843 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2844 
2845 	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2846 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2847 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2848 
2849 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2850 		"VDDC dependency on SCLK table is missing. This table is mandatory",
2851 		return -EINVAL);
2852 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2853 		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2854 		return -EINVAL);
2855 
2856 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2857 		"VDDC dependency on MCLK table is missing. This table is mandatory",
2858 		return -EINVAL);
2859 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2860 		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
2861 		return -EINVAL);
2862 
2863 	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2864 	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2865 
2866 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2867 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2868 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2869 		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2870 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2871 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2872 
2873 	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2874 		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2875 		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2876 	}
2877 
2878 	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2879 		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2880 
2881 	return 0;
2882 }
2883 
2884 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2885 {
2886 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2887 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2888 	kfree(hwmgr->backend);
2889 	hwmgr->backend = NULL;
2890 
2891 	return 0;
2892 }
2893 
2894 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2895 {
2896 	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2897 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2898 	int i;
2899 
2900 	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2901 		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2902 			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2903 			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2904 								virtual_voltage_id,
2905 								efuse_voltage_id) == 0) {
2906 				if (vddc != 0 && vddc != virtual_voltage_id) {
2907 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2908 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2909 					data->vddc_leakage.count++;
2910 				}
2911 				if (vddci != 0 && vddci != virtual_voltage_id) {
2912 					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2913 					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2914 					data->vddci_leakage.count++;
2915 				}
2916 			}
2917 		}
2918 	}
2919 	return 0;
2920 }
2921 
2922 #define LEAKAGE_ID_MSB			463
2923 #define LEAKAGE_ID_LSB			454
2924 
2925 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2926 {
2927 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2928 	uint32_t efuse;
2929 	uint16_t offset;
2930 	int ret = 0;
2931 
2932 	if (data->disable_edc_leakage_controller)
2933 		return 0;
2934 
2935 	ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2936 							 &data->edc_hilo_leakage_offset_from_vbios);
2937 	if (ret)
2938 		return ret;
2939 
2940 	if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2941 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2942 		atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2943 		if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2944 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2945 		else
2946 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2947 
2948 		ret = atomctrl_get_edc_leakage_table(hwmgr,
2949 						     &data->edc_leakage_table,
2950 						     offset);
2951 		if (ret)
2952 			return ret;
2953 	}
2954 
2955 	return ret;
2956 }
2957 
2958 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2959 {
2960 	struct amdgpu_device *adev = hwmgr->adev;
2961 	struct smu7_hwmgr *data;
2962 	int result = 0;
2963 
2964 	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2965 	if (data == NULL)
2966 		return -ENOMEM;
2967 
2968 	hwmgr->backend = data;
2969 	smu7_patch_voltage_workaround(hwmgr);
2970 	smu7_init_dpm_defaults(hwmgr);
2971 
2972 	/* Get leakage voltage based on leakage ID. */
2973 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2974 			PHM_PlatformCaps_EVV)) {
2975 		result = smu7_get_evv_voltages(hwmgr);
2976 		if (result) {
2977 			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
2978 			kfree(hwmgr->backend);
2979 			hwmgr->backend = NULL;
2980 			return -EINVAL;
2981 		}
2982 	} else {
2983 		smu7_get_elb_voltages(hwmgr);
2984 	}
2985 
2986 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
2987 		smu7_complete_dependency_tables(hwmgr);
2988 		smu7_set_private_data_based_on_pptable_v1(hwmgr);
2989 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2990 		smu7_patch_dependency_tables_with_leakage(hwmgr);
2991 		smu7_set_private_data_based_on_pptable_v0(hwmgr);
2992 	}
2993 
2994 	/* Initalize Dynamic State Adjustment Rule Settings */
2995 	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2996 
2997 	if (result)
2998 		goto fail;
2999 
3000 	data->is_tlu_enabled = false;
3001 
3002 	hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3003 							SMU7_MAX_HARDWARE_POWERLEVELS;
3004 	hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3005 	hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3006 
3007 	data->pcie_gen_cap = adev->pm.pcie_gen_mask;
3008 	if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3009 		data->pcie_spc_cap = 20;
3010 	else
3011 		data->pcie_spc_cap = 16;
3012 	data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
3013 
3014 	hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3015 	/* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3016 	hwmgr->platform_descriptor.clockStep.engineClock = 500;
3017 	hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3018 	smu7_thermal_parameter_init(hwmgr);
3019 
3020 	result = smu7_update_edc_leakage_table(hwmgr);
3021 	if (result)
3022 		goto fail;
3023 
3024 	return 0;
3025 fail:
3026 	smu7_hwmgr_backend_fini(hwmgr);
3027 	return result;
3028 }
3029 
3030 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
3031 {
3032 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3033 	uint32_t level, tmp;
3034 
3035 	if (!data->pcie_dpm_key_disabled) {
3036 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3037 			level = 0;
3038 			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3039 			while (tmp >>= 1)
3040 				level++;
3041 
3042 			if (level)
3043 				smum_send_msg_to_smc_with_parameter(hwmgr,
3044 						PPSMC_MSG_PCIeDPM_ForceLevel, level,
3045 						NULL);
3046 		}
3047 	}
3048 
3049 	if (!data->sclk_dpm_key_disabled) {
3050 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3051 			level = 0;
3052 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3053 			while (tmp >>= 1)
3054 				level++;
3055 
3056 			if (level)
3057 				smum_send_msg_to_smc_with_parameter(hwmgr,
3058 						PPSMC_MSG_SCLKDPM_SetEnabledMask,
3059 						(1 << level),
3060 						NULL);
3061 		}
3062 	}
3063 
3064 	if (!data->mclk_dpm_key_disabled) {
3065 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3066 			level = 0;
3067 			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3068 			while (tmp >>= 1)
3069 				level++;
3070 
3071 			if (level)
3072 				smum_send_msg_to_smc_with_parameter(hwmgr,
3073 						PPSMC_MSG_MCLKDPM_SetEnabledMask,
3074 						(1 << level),
3075 						NULL);
3076 		}
3077 	}
3078 
3079 	return 0;
3080 }
3081 
3082 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3083 {
3084 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3085 
3086 	if (hwmgr->pp_table_version == PP_TABLE_V1)
3087 		phm_apply_dal_min_voltage_request(hwmgr);
3088 /* TO DO  for v0 iceland and Ci*/
3089 
3090 	if (!data->sclk_dpm_key_disabled) {
3091 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3092 			smum_send_msg_to_smc_with_parameter(hwmgr,
3093 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
3094 					data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3095 					NULL);
3096 	}
3097 
3098 	if (!data->mclk_dpm_key_disabled) {
3099 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3100 			smum_send_msg_to_smc_with_parameter(hwmgr,
3101 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
3102 					data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3103 					NULL);
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3110 {
3111 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3112 
3113 	if (!smum_is_dpm_running(hwmgr))
3114 		return -EINVAL;
3115 
3116 	if (!data->pcie_dpm_key_disabled) {
3117 		smum_send_msg_to_smc(hwmgr,
3118 				PPSMC_MSG_PCIeDPM_UnForceLevel,
3119 				NULL);
3120 	}
3121 
3122 	return smu7_upload_dpm_level_enable_mask(hwmgr);
3123 }
3124 
3125 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3126 {
3127 	struct smu7_hwmgr *data =
3128 			(struct smu7_hwmgr *)(hwmgr->backend);
3129 	uint32_t level;
3130 
3131 	if (!data->sclk_dpm_key_disabled)
3132 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3133 			level = phm_get_lowest_enabled_level(hwmgr,
3134 							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3135 			smum_send_msg_to_smc_with_parameter(hwmgr,
3136 							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
3137 							    (1 << level),
3138 							    NULL);
3139 
3140 	}
3141 
3142 	if (!data->mclk_dpm_key_disabled) {
3143 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3144 			level = phm_get_lowest_enabled_level(hwmgr,
3145 							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3146 			smum_send_msg_to_smc_with_parameter(hwmgr,
3147 							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
3148 							    (1 << level),
3149 							    NULL);
3150 		}
3151 	}
3152 
3153 	if (!data->pcie_dpm_key_disabled) {
3154 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3155 			level = phm_get_lowest_enabled_level(hwmgr,
3156 							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3157 			smum_send_msg_to_smc_with_parameter(hwmgr,
3158 							    PPSMC_MSG_PCIeDPM_ForceLevel,
3159 							    (level),
3160 							    NULL);
3161 		}
3162 	}
3163 
3164 	return 0;
3165 }
3166 
3167 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3168 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3169 {
3170 	uint32_t percentage;
3171 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3172 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3173 	int32_t tmp_mclk;
3174 	int32_t tmp_sclk;
3175 	int32_t count;
3176 
3177 	if (golden_dpm_table->mclk_table.count < 1)
3178 		return -EINVAL;
3179 
3180 	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3181 			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3182 
3183 	if (golden_dpm_table->mclk_table.count == 1) {
3184 		percentage = 70;
3185 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3186 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3187 	} else {
3188 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3189 		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
3190 	}
3191 
3192 	tmp_sclk = tmp_mclk * percentage / 100;
3193 
3194 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3195 		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3196 			count >= 0; count--) {
3197 			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3198 				*sclk_mask = count;
3199 				break;
3200 			}
3201 		}
3202 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3203 			*sclk_mask = 0;
3204 
3205 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3206 			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3207 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3208 		struct phm_ppt_v1_information *table_info =
3209 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
3210 
3211 		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3212 			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3213 				*sclk_mask = count;
3214 				break;
3215 			}
3216 		}
3217 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3218 			*sclk_mask = 0;
3219 
3220 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3221 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3222 	}
3223 
3224 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3225 		*mclk_mask = 0;
3226 	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3227 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3228 
3229 	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3230 
3231 	return 0;
3232 }
3233 
3234 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3235 				enum amd_dpm_forced_level level)
3236 {
3237 	int ret = 0;
3238 	uint32_t sclk_mask = 0;
3239 	uint32_t mclk_mask = 0;
3240 	uint32_t pcie_mask = 0;
3241 
3242 	switch (level) {
3243 	case AMD_DPM_FORCED_LEVEL_HIGH:
3244 		ret = smu7_force_dpm_highest(hwmgr);
3245 		break;
3246 	case AMD_DPM_FORCED_LEVEL_LOW:
3247 		ret = smu7_force_dpm_lowest(hwmgr);
3248 		break;
3249 	case AMD_DPM_FORCED_LEVEL_AUTO:
3250 		ret = smu7_unforce_dpm_levels(hwmgr);
3251 		break;
3252 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3253 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3254 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3255 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3256 		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3257 		if (ret)
3258 			return ret;
3259 		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3260 		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3261 		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3262 		break;
3263 	case AMD_DPM_FORCED_LEVEL_MANUAL:
3264 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3265 	default:
3266 		break;
3267 	}
3268 
3269 	if (!ret) {
3270 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3271 			smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3272 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3273 			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3274 	}
3275 	return ret;
3276 }
3277 
3278 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3279 {
3280 	return sizeof(struct smu7_power_state);
3281 }
3282 
3283 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3284 				 uint32_t vblank_time_us)
3285 {
3286 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3287 	uint32_t switch_limit_us;
3288 
3289 	switch (hwmgr->chip_id) {
3290 	case CHIP_POLARIS10:
3291 	case CHIP_POLARIS11:
3292 	case CHIP_POLARIS12:
3293 		if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3294 			switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3295 		else
3296 			switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3297 		break;
3298 	case CHIP_VEGAM:
3299 		switch_limit_us = 30;
3300 		break;
3301 	default:
3302 		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3303 		break;
3304 	}
3305 
3306 	if (vblank_time_us < switch_limit_us)
3307 		return true;
3308 	else
3309 		return false;
3310 }
3311 
3312 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3313 				struct pp_power_state *request_ps,
3314 			const struct pp_power_state *current_ps)
3315 {
3316 	struct amdgpu_device *adev = hwmgr->adev;
3317 	struct smu7_power_state *smu7_ps;
3318 	uint32_t sclk;
3319 	uint32_t mclk;
3320 	struct PP_Clocks minimum_clocks = {0};
3321 	bool disable_mclk_switching;
3322 	bool disable_mclk_switching_for_frame_lock;
3323 	bool disable_mclk_switching_for_display;
3324 	const struct phm_clock_and_voltage_limits *max_limits;
3325 	uint32_t i;
3326 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3327 	struct phm_ppt_v1_information *table_info =
3328 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3329 	int32_t count;
3330 	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3331 	uint32_t latency;
3332 	bool latency_allowed = false;
3333 
3334 	smu7_ps = cast_phw_smu7_power_state(&request_ps->hardware);
3335 	if (!smu7_ps)
3336 		return -EINVAL;
3337 
3338 	data->battery_state = (PP_StateUILabel_Battery ==
3339 			request_ps->classification.ui_label);
3340 	data->mclk_ignore_signal = false;
3341 
3342 	max_limits = adev->pm.ac_power ?
3343 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3344 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3345 
3346 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3347 	if (!adev->pm.ac_power) {
3348 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3349 			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3350 				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3351 			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3352 				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3353 		}
3354 	}
3355 
3356 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3357 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3358 
3359 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3360 			PHM_PlatformCaps_StablePState)) {
3361 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3362 		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3363 
3364 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3365 				count >= 0; count--) {
3366 			if (stable_pstate_sclk >=
3367 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3368 				stable_pstate_sclk =
3369 						table_info->vdd_dep_on_sclk->entries[count].clk;
3370 				break;
3371 			}
3372 		}
3373 
3374 		if (count < 0)
3375 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3376 
3377 		stable_pstate_mclk = max_limits->mclk;
3378 
3379 		minimum_clocks.engineClock = stable_pstate_sclk;
3380 		minimum_clocks.memoryClock = stable_pstate_mclk;
3381 	}
3382 
3383 	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3384 				    hwmgr->platform_descriptor.platformCaps,
3385 				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3386 
3387 	disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3388 						!hwmgr->display_config->multi_monitor_in_sync) ||
3389 						(hwmgr->display_config->num_display &&
3390 						smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3391 
3392 	disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3393 					 disable_mclk_switching_for_display;
3394 
3395 	if (hwmgr->display_config->num_display == 0) {
3396 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3397 			data->mclk_ignore_signal = true;
3398 		else
3399 			disable_mclk_switching = false;
3400 	}
3401 
3402 	sclk = smu7_ps->performance_levels[0].engine_clock;
3403 	mclk = smu7_ps->performance_levels[0].memory_clock;
3404 
3405 	if (disable_mclk_switching &&
3406 	    (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3407 	    hwmgr->chip_id <= CHIP_VEGAM)))
3408 		mclk = smu7_ps->performance_levels
3409 		[smu7_ps->performance_level_count - 1].memory_clock;
3410 
3411 	if (sclk < minimum_clocks.engineClock)
3412 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3413 				max_limits->sclk : minimum_clocks.engineClock;
3414 
3415 	if (mclk < minimum_clocks.memoryClock)
3416 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3417 				max_limits->mclk : minimum_clocks.memoryClock;
3418 
3419 	smu7_ps->performance_levels[0].engine_clock = sclk;
3420 	smu7_ps->performance_levels[0].memory_clock = mclk;
3421 
3422 	smu7_ps->performance_levels[1].engine_clock =
3423 		(smu7_ps->performance_levels[1].engine_clock >=
3424 				smu7_ps->performance_levels[0].engine_clock) ?
3425 						smu7_ps->performance_levels[1].engine_clock :
3426 						smu7_ps->performance_levels[0].engine_clock;
3427 
3428 	if (disable_mclk_switching) {
3429 		if (mclk < smu7_ps->performance_levels[1].memory_clock)
3430 			mclk = smu7_ps->performance_levels[1].memory_clock;
3431 
3432 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3433 			if (disable_mclk_switching_for_display) {
3434 				/* Find the lowest MCLK frequency that is within
3435 				 * the tolerable latency defined in DAL
3436 				 */
3437 				latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3438 				for (i = 0; i < data->mclk_latency_table.count; i++) {
3439 					if (data->mclk_latency_table.entries[i].latency <= latency) {
3440 						latency_allowed = true;
3441 
3442 						if ((data->mclk_latency_table.entries[i].frequency >=
3443 								smu7_ps->performance_levels[0].memory_clock) &&
3444 						    (data->mclk_latency_table.entries[i].frequency <=
3445 								smu7_ps->performance_levels[1].memory_clock)) {
3446 							mclk = data->mclk_latency_table.entries[i].frequency;
3447 							break;
3448 						}
3449 					}
3450 				}
3451 				if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3452 					data->mclk_ignore_signal = true;
3453 				} else {
3454 					data->mclk_ignore_signal = false;
3455 				}
3456 			}
3457 
3458 			if (disable_mclk_switching_for_frame_lock)
3459 				mclk = smu7_ps->performance_levels[1].memory_clock;
3460 		}
3461 
3462 		smu7_ps->performance_levels[0].memory_clock = mclk;
3463 
3464 		if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3465 		      hwmgr->chip_id <= CHIP_VEGAM))
3466 			smu7_ps->performance_levels[1].memory_clock = mclk;
3467 	} else {
3468 		if (smu7_ps->performance_levels[1].memory_clock <
3469 				smu7_ps->performance_levels[0].memory_clock)
3470 			smu7_ps->performance_levels[1].memory_clock =
3471 					smu7_ps->performance_levels[0].memory_clock;
3472 	}
3473 
3474 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3475 			PHM_PlatformCaps_StablePState)) {
3476 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3477 			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3478 			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3479 			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3480 			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3481 		}
3482 	}
3483 	return 0;
3484 }
3485 
3486 
3487 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3488 {
3489 	struct pp_power_state  *ps;
3490 	struct smu7_power_state  *smu7_ps;
3491 
3492 	if (hwmgr == NULL)
3493 		return -EINVAL;
3494 
3495 	ps = hwmgr->request_ps;
3496 
3497 	if (ps == NULL)
3498 		return -EINVAL;
3499 
3500 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3501 
3502 	if (low)
3503 		return smu7_ps->performance_levels[0].memory_clock;
3504 	else
3505 		return smu7_ps->performance_levels
3506 				[smu7_ps->performance_level_count-1].memory_clock;
3507 }
3508 
3509 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3510 {
3511 	struct pp_power_state  *ps;
3512 	struct smu7_power_state  *smu7_ps;
3513 
3514 	if (hwmgr == NULL)
3515 		return -EINVAL;
3516 
3517 	ps = hwmgr->request_ps;
3518 
3519 	if (ps == NULL)
3520 		return -EINVAL;
3521 
3522 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3523 
3524 	if (low)
3525 		return smu7_ps->performance_levels[0].engine_clock;
3526 	else
3527 		return smu7_ps->performance_levels
3528 				[smu7_ps->performance_level_count-1].engine_clock;
3529 }
3530 
3531 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3532 					struct pp_hw_power_state *hw_ps)
3533 {
3534 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3535 	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3536 	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3537 	uint16_t size;
3538 	uint8_t frev, crev;
3539 	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3540 
3541 	/* First retrieve the Boot clocks and VDDC from the firmware info table.
3542 	 * We assume here that fw_info is unchanged if this call fails.
3543 	 */
3544 	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3545 			&size, &frev, &crev);
3546 	if (!fw_info)
3547 		/* During a test, there is no firmware info table. */
3548 		return 0;
3549 
3550 	/* Patch the state. */
3551 	data->vbios_boot_state.sclk_bootup_value =
3552 			le32_to_cpu(fw_info->ulDefaultEngineClock);
3553 	data->vbios_boot_state.mclk_bootup_value =
3554 			le32_to_cpu(fw_info->ulDefaultMemoryClock);
3555 	data->vbios_boot_state.mvdd_bootup_value =
3556 			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3557 	data->vbios_boot_state.vddc_bootup_value =
3558 			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3559 	data->vbios_boot_state.vddci_bootup_value =
3560 			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3561 	data->vbios_boot_state.pcie_gen_bootup_value =
3562 			smu7_get_current_pcie_speed(hwmgr);
3563 
3564 	data->vbios_boot_state.pcie_lane_bootup_value =
3565 			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3566 
3567 	/* set boot power state */
3568 	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3569 	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3570 	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3571 	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3572 
3573 	return 0;
3574 }
3575 
3576 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3577 {
3578 	int result;
3579 	unsigned long ret = 0;
3580 
3581 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3582 		result = pp_tables_get_num_of_entries(hwmgr, &ret);
3583 		return result ? 0 : ret;
3584 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3585 		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3586 		return result;
3587 	}
3588 	return 0;
3589 }
3590 
3591 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3592 		void *state, struct pp_power_state *power_state,
3593 		void *pp_table, uint32_t classification_flag)
3594 {
3595 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3596 	struct smu7_power_state  *smu7_power_state =
3597 			(struct smu7_power_state *)(&(power_state->hardware));
3598 	struct smu7_performance_level *performance_level;
3599 	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3600 	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3601 			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3602 	PPTable_Generic_SubTable_Header *sclk_dep_table =
3603 			(PPTable_Generic_SubTable_Header *)
3604 			(((unsigned long)powerplay_table) +
3605 				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3606 
3607 	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3608 			(ATOM_Tonga_MCLK_Dependency_Table *)
3609 			(((unsigned long)powerplay_table) +
3610 				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3611 
3612 	/* The following fields are not initialized here: id orderedList allStatesList */
3613 	power_state->classification.ui_label =
3614 			(le16_to_cpu(state_entry->usClassification) &
3615 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3616 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3617 	power_state->classification.flags = classification_flag;
3618 	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3619 
3620 	power_state->classification.temporary_state = false;
3621 	power_state->classification.to_be_deleted = false;
3622 
3623 	power_state->validation.disallowOnDC =
3624 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3625 					ATOM_Tonga_DISALLOW_ON_DC));
3626 
3627 	power_state->pcie.lanes = 0;
3628 
3629 	power_state->display.disableFrameModulation = false;
3630 	power_state->display.limitRefreshrate = false;
3631 	power_state->display.enableVariBright =
3632 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3633 					ATOM_Tonga_ENABLE_VARIBRIGHT));
3634 
3635 	power_state->validation.supportedPowerLevels = 0;
3636 	power_state->uvd_clocks.VCLK = 0;
3637 	power_state->uvd_clocks.DCLK = 0;
3638 	power_state->temperatures.min = 0;
3639 	power_state->temperatures.max = 0;
3640 
3641 	performance_level = &(smu7_power_state->performance_levels
3642 			[smu7_power_state->performance_level_count++]);
3643 
3644 	PP_ASSERT_WITH_CODE(
3645 			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3646 			"Performance levels exceeds SMC limit!",
3647 			return -EINVAL);
3648 
3649 	PP_ASSERT_WITH_CODE(
3650 			(smu7_power_state->performance_level_count <
3651 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3652 			"Performance levels exceeds Driver limit!",
3653 			return -EINVAL);
3654 
3655 	/* Performance levels are arranged from low to high. */
3656 	performance_level->memory_clock = mclk_dep_table->entries
3657 			[state_entry->ucMemoryClockIndexLow].ulMclk;
3658 	if (sclk_dep_table->ucRevId == 0)
3659 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3660 			[state_entry->ucEngineClockIndexLow].ulSclk;
3661 	else if (sclk_dep_table->ucRevId == 1)
3662 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3663 			[state_entry->ucEngineClockIndexLow].ulSclk;
3664 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3665 			state_entry->ucPCIEGenLow);
3666 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3667 			state_entry->ucPCIELaneLow);
3668 
3669 	performance_level = &(smu7_power_state->performance_levels
3670 			[smu7_power_state->performance_level_count++]);
3671 	performance_level->memory_clock = mclk_dep_table->entries
3672 			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3673 
3674 	if (sclk_dep_table->ucRevId == 0)
3675 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3676 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3677 	else if (sclk_dep_table->ucRevId == 1)
3678 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3679 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3680 
3681 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3682 			state_entry->ucPCIEGenHigh);
3683 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3684 			state_entry->ucPCIELaneHigh);
3685 
3686 	return 0;
3687 }
3688 
3689 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3690 		unsigned long entry_index, struct pp_power_state *state)
3691 {
3692 	int result;
3693 	struct smu7_power_state *ps;
3694 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3695 	struct phm_ppt_v1_information *table_info =
3696 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3697 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3698 			table_info->vdd_dep_on_mclk;
3699 
3700 	state->hardware.magic = PHM_VIslands_Magic;
3701 
3702 	ps = (struct smu7_power_state *)(&state->hardware);
3703 
3704 	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3705 			smu7_get_pp_table_entry_callback_func_v1);
3706 
3707 	/* This is the earliest time we have all the dependency table and the VBIOS boot state
3708 	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3709 	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3710 	 */
3711 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3712 		if (dep_mclk_table->entries[0].clk !=
3713 				data->vbios_boot_state.mclk_bootup_value)
3714 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3715 					"does not match VBIOS boot MCLK level");
3716 		if (dep_mclk_table->entries[0].vddci !=
3717 				data->vbios_boot_state.vddci_bootup_value)
3718 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3719 					"does not match VBIOS boot VDDCI level");
3720 	}
3721 
3722 	/* set DC compatible flag if this state supports DC */
3723 	if (!state->validation.disallowOnDC)
3724 		ps->dc_compatible = true;
3725 
3726 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3727 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3728 
3729 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3730 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3731 
3732 	if (!result) {
3733 		uint32_t i;
3734 
3735 		switch (state->classification.ui_label) {
3736 		case PP_StateUILabel_Performance:
3737 			data->use_pcie_performance_levels = true;
3738 			for (i = 0; i < ps->performance_level_count; i++) {
3739 				if (data->pcie_gen_performance.max <
3740 						ps->performance_levels[i].pcie_gen)
3741 					data->pcie_gen_performance.max =
3742 							ps->performance_levels[i].pcie_gen;
3743 
3744 				if (data->pcie_gen_performance.min >
3745 						ps->performance_levels[i].pcie_gen)
3746 					data->pcie_gen_performance.min =
3747 							ps->performance_levels[i].pcie_gen;
3748 
3749 				if (data->pcie_lane_performance.max <
3750 						ps->performance_levels[i].pcie_lane)
3751 					data->pcie_lane_performance.max =
3752 							ps->performance_levels[i].pcie_lane;
3753 				if (data->pcie_lane_performance.min >
3754 						ps->performance_levels[i].pcie_lane)
3755 					data->pcie_lane_performance.min =
3756 							ps->performance_levels[i].pcie_lane;
3757 			}
3758 			break;
3759 		case PP_StateUILabel_Battery:
3760 			data->use_pcie_power_saving_levels = true;
3761 
3762 			for (i = 0; i < ps->performance_level_count; i++) {
3763 				if (data->pcie_gen_power_saving.max <
3764 						ps->performance_levels[i].pcie_gen)
3765 					data->pcie_gen_power_saving.max =
3766 							ps->performance_levels[i].pcie_gen;
3767 
3768 				if (data->pcie_gen_power_saving.min >
3769 						ps->performance_levels[i].pcie_gen)
3770 					data->pcie_gen_power_saving.min =
3771 							ps->performance_levels[i].pcie_gen;
3772 
3773 				if (data->pcie_lane_power_saving.max <
3774 						ps->performance_levels[i].pcie_lane)
3775 					data->pcie_lane_power_saving.max =
3776 							ps->performance_levels[i].pcie_lane;
3777 
3778 				if (data->pcie_lane_power_saving.min >
3779 						ps->performance_levels[i].pcie_lane)
3780 					data->pcie_lane_power_saving.min =
3781 							ps->performance_levels[i].pcie_lane;
3782 			}
3783 			break;
3784 		default:
3785 			break;
3786 		}
3787 	}
3788 	return 0;
3789 }
3790 
3791 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3792 					struct pp_hw_power_state *power_state,
3793 					unsigned int index, const void *clock_info)
3794 {
3795 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3796 	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
3797 	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3798 	struct smu7_performance_level *performance_level;
3799 	uint32_t engine_clock, memory_clock;
3800 	uint16_t pcie_gen_from_bios;
3801 
3802 	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3803 	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3804 
3805 	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3806 		data->highest_mclk = memory_clock;
3807 
3808 	PP_ASSERT_WITH_CODE(
3809 			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3810 			"Performance levels exceeds SMC limit!",
3811 			return -EINVAL);
3812 
3813 	PP_ASSERT_WITH_CODE(
3814 			(ps->performance_level_count <
3815 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3816 			"Performance levels exceeds Driver limit, Skip!",
3817 			return 0);
3818 
3819 	performance_level = &(ps->performance_levels
3820 			[ps->performance_level_count++]);
3821 
3822 	/* Performance levels are arranged from low to high. */
3823 	performance_level->memory_clock = memory_clock;
3824 	performance_level->engine_clock = engine_clock;
3825 
3826 	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3827 
3828 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3829 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3830 
3831 	return 0;
3832 }
3833 
3834 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3835 		unsigned long entry_index, struct pp_power_state *state)
3836 {
3837 	int result;
3838 	struct smu7_power_state *ps;
3839 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3840 	struct phm_clock_voltage_dependency_table *dep_mclk_table =
3841 			hwmgr->dyn_state.vddci_dependency_on_mclk;
3842 
3843 	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3844 
3845 	state->hardware.magic = PHM_VIslands_Magic;
3846 
3847 	ps = (struct smu7_power_state *)(&state->hardware);
3848 
3849 	result = pp_tables_get_entry(hwmgr, entry_index, state,
3850 			smu7_get_pp_table_entry_callback_func_v0);
3851 
3852 	/*
3853 	 * This is the earliest time we have all the dependency table
3854 	 * and the VBIOS boot state as
3855 	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3856 	 * state if there is only one VDDCI/MCLK level, check if it's
3857 	 * the same as VBIOS boot state
3858 	 */
3859 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3860 		if (dep_mclk_table->entries[0].clk !=
3861 				data->vbios_boot_state.mclk_bootup_value)
3862 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3863 					"does not match VBIOS boot MCLK level");
3864 		if (dep_mclk_table->entries[0].v !=
3865 				data->vbios_boot_state.vddci_bootup_value)
3866 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3867 					"does not match VBIOS boot VDDCI level");
3868 	}
3869 
3870 	/* set DC compatible flag if this state supports DC */
3871 	if (!state->validation.disallowOnDC)
3872 		ps->dc_compatible = true;
3873 
3874 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3875 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3876 
3877 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3878 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3879 
3880 	if (!result) {
3881 		uint32_t i;
3882 
3883 		switch (state->classification.ui_label) {
3884 		case PP_StateUILabel_Performance:
3885 			data->use_pcie_performance_levels = true;
3886 
3887 			for (i = 0; i < ps->performance_level_count; i++) {
3888 				if (data->pcie_gen_performance.max <
3889 						ps->performance_levels[i].pcie_gen)
3890 					data->pcie_gen_performance.max =
3891 							ps->performance_levels[i].pcie_gen;
3892 
3893 				if (data->pcie_gen_performance.min >
3894 						ps->performance_levels[i].pcie_gen)
3895 					data->pcie_gen_performance.min =
3896 							ps->performance_levels[i].pcie_gen;
3897 
3898 				if (data->pcie_lane_performance.max <
3899 						ps->performance_levels[i].pcie_lane)
3900 					data->pcie_lane_performance.max =
3901 							ps->performance_levels[i].pcie_lane;
3902 
3903 				if (data->pcie_lane_performance.min >
3904 						ps->performance_levels[i].pcie_lane)
3905 					data->pcie_lane_performance.min =
3906 							ps->performance_levels[i].pcie_lane;
3907 			}
3908 			break;
3909 		case PP_StateUILabel_Battery:
3910 			data->use_pcie_power_saving_levels = true;
3911 
3912 			for (i = 0; i < ps->performance_level_count; i++) {
3913 				if (data->pcie_gen_power_saving.max <
3914 						ps->performance_levels[i].pcie_gen)
3915 					data->pcie_gen_power_saving.max =
3916 							ps->performance_levels[i].pcie_gen;
3917 
3918 				if (data->pcie_gen_power_saving.min >
3919 						ps->performance_levels[i].pcie_gen)
3920 					data->pcie_gen_power_saving.min =
3921 							ps->performance_levels[i].pcie_gen;
3922 
3923 				if (data->pcie_lane_power_saving.max <
3924 						ps->performance_levels[i].pcie_lane)
3925 					data->pcie_lane_power_saving.max =
3926 							ps->performance_levels[i].pcie_lane;
3927 
3928 				if (data->pcie_lane_power_saving.min >
3929 						ps->performance_levels[i].pcie_lane)
3930 					data->pcie_lane_power_saving.min =
3931 							ps->performance_levels[i].pcie_lane;
3932 			}
3933 			break;
3934 		default:
3935 			break;
3936 		}
3937 	}
3938 	return 0;
3939 }
3940 
3941 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3942 		unsigned long entry_index, struct pp_power_state *state)
3943 {
3944 	if (hwmgr->pp_table_version == PP_TABLE_V0)
3945 		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3946 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
3947 		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3948 
3949 	return 0;
3950 }
3951 
3952 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3953 {
3954 	struct amdgpu_device *adev = hwmgr->adev;
3955 	int i;
3956 	u32 tmp = 0;
3957 
3958 	if (!query)
3959 		return -EINVAL;
3960 
3961 	/*
3962 	 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3963 	 *  - Hawaii
3964 	 *  - Bonaire
3965 	 *  - Fiji
3966 	 *  - Tonga
3967 	 */
3968 	if ((adev->asic_type != CHIP_HAWAII) &&
3969 	    (adev->asic_type != CHIP_BONAIRE) &&
3970 	    (adev->asic_type != CHIP_FIJI) &&
3971 	    (adev->asic_type != CHIP_TONGA)) {
3972 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3973 		*query = tmp;
3974 
3975 		if (tmp != 0)
3976 			return 0;
3977 	}
3978 
3979 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3980 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3981 							ixSMU_PM_STATUS_95, 0);
3982 
3983 	for (i = 0; i < 10; i++) {
3984 		msleep(500);
3985 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3986 		tmp = cgs_read_ind_register(hwmgr->device,
3987 						CGS_IND_REG__SMC,
3988 						ixSMU_PM_STATUS_95);
3989 		if (tmp != 0)
3990 			break;
3991 	}
3992 	*query = tmp;
3993 
3994 	return 0;
3995 }
3996 
3997 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3998 			    void *value, int *size)
3999 {
4000 	uint32_t sclk, mclk, activity_percent;
4001 	uint32_t offset, val_vid;
4002 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4003 	struct amdgpu_device *adev = hwmgr->adev;
4004 
4005 	/* size must be at least 4 bytes for all sensors */
4006 	if (*size < 4)
4007 		return -EINVAL;
4008 
4009 	switch (idx) {
4010 	case AMDGPU_PP_SENSOR_GFX_SCLK:
4011 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
4012 		*((uint32_t *)value) = sclk;
4013 		*size = 4;
4014 		return 0;
4015 	case AMDGPU_PP_SENSOR_GFX_MCLK:
4016 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
4017 		*((uint32_t *)value) = mclk;
4018 		*size = 4;
4019 		return 0;
4020 	case AMDGPU_PP_SENSOR_GPU_LOAD:
4021 	case AMDGPU_PP_SENSOR_MEM_LOAD:
4022 		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
4023 								SMU_SoftRegisters,
4024 								(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
4025 								AverageGraphicsActivity :
4026 								AverageMemoryActivity);
4027 
4028 		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4029 		activity_percent += 0x80;
4030 		activity_percent >>= 8;
4031 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
4032 		*size = 4;
4033 		return 0;
4034 	case AMDGPU_PP_SENSOR_GPU_TEMP:
4035 		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
4036 		*size = 4;
4037 		return 0;
4038 	case AMDGPU_PP_SENSOR_UVD_POWER:
4039 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4040 		*size = 4;
4041 		return 0;
4042 	case AMDGPU_PP_SENSOR_VCE_POWER:
4043 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4044 		*size = 4;
4045 		return 0;
4046 	case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
4047 		if ((adev->asic_type != CHIP_HAWAII) &&
4048 		    (adev->asic_type != CHIP_BONAIRE) &&
4049 		    (adev->asic_type != CHIP_FIJI) &&
4050 		    (adev->asic_type != CHIP_TONGA))
4051 			return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4052 		else
4053 			return -EOPNOTSUPP;
4054 	case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
4055 		if ((adev->asic_type != CHIP_HAWAII) &&
4056 		    (adev->asic_type != CHIP_BONAIRE) &&
4057 		    (adev->asic_type != CHIP_FIJI) &&
4058 		    (adev->asic_type != CHIP_TONGA))
4059 			return -EOPNOTSUPP;
4060 		else
4061 			return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4062 	case AMDGPU_PP_SENSOR_VDDGFX:
4063 		if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4064 		    (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4065 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4066 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4067 		else
4068 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4069 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4070 
4071 		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4072 		return 0;
4073 	default:
4074 		return -EOPNOTSUPP;
4075 	}
4076 }
4077 
4078 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4079 {
4080 	const struct phm_set_power_state_input *states =
4081 			(const struct phm_set_power_state_input *)input;
4082 	const struct smu7_power_state *smu7_ps =
4083 			cast_const_phw_smu7_power_state(states->pnew_state);
4084 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4085 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4086 	uint32_t sclk = smu7_ps->performance_levels
4087 			[smu7_ps->performance_level_count - 1].engine_clock;
4088 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4089 	uint32_t mclk = smu7_ps->performance_levels
4090 			[smu7_ps->performance_level_count - 1].memory_clock;
4091 	struct PP_Clocks min_clocks = {0};
4092 	uint32_t i;
4093 
4094 	for (i = 0; i < sclk_table->count; i++) {
4095 		if (sclk == sclk_table->dpm_levels[i].value)
4096 			break;
4097 	}
4098 
4099 	if (i >= sclk_table->count) {
4100 		if (sclk > sclk_table->dpm_levels[i-1].value) {
4101 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4102 			sclk_table->dpm_levels[i-1].value = sclk;
4103 		}
4104 	} else {
4105 	/* TODO: Check SCLK in DAL's minimum clocks
4106 	 * in case DeepSleep divider update is required.
4107 	 */
4108 		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4109 			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4110 				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4111 			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4112 	}
4113 
4114 	for (i = 0; i < mclk_table->count; i++) {
4115 		if (mclk == mclk_table->dpm_levels[i].value)
4116 			break;
4117 	}
4118 
4119 	if (i >= mclk_table->count) {
4120 		if (mclk > mclk_table->dpm_levels[i-1].value) {
4121 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4122 			mclk_table->dpm_levels[i-1].value = mclk;
4123 		}
4124 	}
4125 
4126 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4127 		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4128 
4129 	return 0;
4130 }
4131 
4132 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4133 		const struct smu7_power_state *smu7_ps)
4134 {
4135 	uint32_t i;
4136 	uint32_t sclk, max_sclk = 0;
4137 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4138 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4139 
4140 	for (i = 0; i < smu7_ps->performance_level_count; i++) {
4141 		sclk = smu7_ps->performance_levels[i].engine_clock;
4142 		if (max_sclk < sclk)
4143 			max_sclk = sclk;
4144 	}
4145 
4146 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
4147 		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4148 			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4149 					dpm_table->pcie_speed_table.dpm_levels
4150 					[dpm_table->pcie_speed_table.count - 1].value :
4151 					dpm_table->pcie_speed_table.dpm_levels[i].value);
4152 	}
4153 
4154 	return 0;
4155 }
4156 
4157 static int smu7_request_link_speed_change_before_state_change(
4158 		struct pp_hwmgr *hwmgr, const void *input)
4159 {
4160 	const struct phm_set_power_state_input *states =
4161 			(const struct phm_set_power_state_input *)input;
4162 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4163 	const struct smu7_power_state *smu7_nps =
4164 			cast_const_phw_smu7_power_state(states->pnew_state);
4165 	const struct smu7_power_state *polaris10_cps =
4166 			cast_const_phw_smu7_power_state(states->pcurrent_state);
4167 
4168 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4169 	uint16_t current_link_speed;
4170 
4171 	if (data->force_pcie_gen == PP_PCIEGenInvalid)
4172 		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4173 	else
4174 		current_link_speed = data->force_pcie_gen;
4175 
4176 	data->force_pcie_gen = PP_PCIEGenInvalid;
4177 	data->pspp_notify_required = false;
4178 
4179 	if (target_link_speed > current_link_speed) {
4180 		switch (target_link_speed) {
4181 #ifdef CONFIG_ACPI
4182 		case PP_PCIEGen3:
4183 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4184 				break;
4185 			data->force_pcie_gen = PP_PCIEGen2;
4186 			if (current_link_speed == PP_PCIEGen2)
4187 				break;
4188 			fallthrough;
4189 		case PP_PCIEGen2:
4190 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4191 				break;
4192 			fallthrough;
4193 #endif
4194 		default:
4195 			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4196 			break;
4197 		}
4198 	} else {
4199 		if (target_link_speed < current_link_speed)
4200 			data->pspp_notify_required = true;
4201 	}
4202 
4203 	return 0;
4204 }
4205 
4206 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4207 {
4208 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4209 
4210 	if (0 == data->need_update_smu7_dpm_table)
4211 		return 0;
4212 
4213 	if ((0 == data->sclk_dpm_key_disabled) &&
4214 		(data->need_update_smu7_dpm_table &
4215 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4216 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4217 				"Trying to freeze SCLK DPM when DPM is disabled",
4218 				);
4219 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4220 				PPSMC_MSG_SCLKDPM_FreezeLevel,
4221 				NULL),
4222 				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4223 				return -EINVAL);
4224 	}
4225 
4226 	if ((0 == data->mclk_dpm_key_disabled) &&
4227 		!data->mclk_ignore_signal &&
4228 		(data->need_update_smu7_dpm_table &
4229 		 DPMTABLE_OD_UPDATE_MCLK)) {
4230 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4231 				"Trying to freeze MCLK DPM when DPM is disabled",
4232 				);
4233 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4234 				PPSMC_MSG_MCLKDPM_FreezeLevel,
4235 				NULL),
4236 				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4237 				return -EINVAL);
4238 	}
4239 
4240 	return 0;
4241 }
4242 
4243 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4244 		struct pp_hwmgr *hwmgr, const void *input)
4245 {
4246 	int result = 0;
4247 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4248 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4249 	uint32_t count;
4250 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4251 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4252 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4253 
4254 	if (0 == data->need_update_smu7_dpm_table)
4255 		return 0;
4256 
4257 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4258 		for (count = 0; count < dpm_table->sclk_table.count; count++) {
4259 			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4260 			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4261 		}
4262 	}
4263 
4264 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4265 		for (count = 0; count < dpm_table->mclk_table.count; count++) {
4266 			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4267 			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4268 		}
4269 	}
4270 
4271 	if (data->need_update_smu7_dpm_table &
4272 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
4273 		result = smum_populate_all_graphic_levels(hwmgr);
4274 		PP_ASSERT_WITH_CODE((0 == result),
4275 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4276 				return result);
4277 	}
4278 
4279 	if (data->need_update_smu7_dpm_table &
4280 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
4281 		/*populate MCLK dpm table to SMU7 */
4282 		result = smum_populate_all_memory_levels(hwmgr);
4283 		PP_ASSERT_WITH_CODE((0 == result),
4284 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4285 				return result);
4286 	}
4287 
4288 	return result;
4289 }
4290 
4291 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4292 			  struct smu7_single_dpm_table *dpm_table,
4293 			uint32_t low_limit, uint32_t high_limit)
4294 {
4295 	uint32_t i;
4296 
4297 	/* force the trim if mclk_switching is disabled to prevent flicker */
4298 	bool force_trim = (low_limit == high_limit);
4299 	for (i = 0; i < dpm_table->count; i++) {
4300 	/*skip the trim if od is enabled*/
4301 		if ((!hwmgr->od_enabled || force_trim)
4302 			&& (dpm_table->dpm_levels[i].value < low_limit
4303 			|| dpm_table->dpm_levels[i].value > high_limit))
4304 			dpm_table->dpm_levels[i].enabled = false;
4305 		else
4306 			dpm_table->dpm_levels[i].enabled = true;
4307 	}
4308 
4309 	return 0;
4310 }
4311 
4312 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4313 		const struct smu7_power_state *smu7_ps)
4314 {
4315 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4316 	uint32_t high_limit_count;
4317 
4318 	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4319 			"power state did not have any performance level",
4320 			return -EINVAL);
4321 
4322 	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4323 
4324 	smu7_trim_single_dpm_states(hwmgr,
4325 			&(data->dpm_table.sclk_table),
4326 			smu7_ps->performance_levels[0].engine_clock,
4327 			smu7_ps->performance_levels[high_limit_count].engine_clock);
4328 
4329 	smu7_trim_single_dpm_states(hwmgr,
4330 			&(data->dpm_table.mclk_table),
4331 			smu7_ps->performance_levels[0].memory_clock,
4332 			smu7_ps->performance_levels[high_limit_count].memory_clock);
4333 
4334 	return 0;
4335 }
4336 
4337 static int smu7_generate_dpm_level_enable_mask(
4338 		struct pp_hwmgr *hwmgr, const void *input)
4339 {
4340 	int result = 0;
4341 	const struct phm_set_power_state_input *states =
4342 			(const struct phm_set_power_state_input *)input;
4343 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4344 	const struct smu7_power_state *smu7_ps =
4345 			cast_const_phw_smu7_power_state(states->pnew_state);
4346 
4347 
4348 	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4349 	if (result)
4350 		return result;
4351 
4352 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4353 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4354 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4355 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4356 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4357 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4358 
4359 	return 0;
4360 }
4361 
4362 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4363 {
4364 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4365 
4366 	if (0 == data->need_update_smu7_dpm_table)
4367 		return 0;
4368 
4369 	if ((0 == data->sclk_dpm_key_disabled) &&
4370 		(data->need_update_smu7_dpm_table &
4371 		(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4372 
4373 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4374 				"Trying to Unfreeze SCLK DPM when DPM is disabled",
4375 				);
4376 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4377 				PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4378 				NULL),
4379 			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4380 			return -EINVAL);
4381 	}
4382 
4383 	if ((0 == data->mclk_dpm_key_disabled) &&
4384 		!data->mclk_ignore_signal &&
4385 		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4386 
4387 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4388 				"Trying to Unfreeze MCLK DPM when DPM is disabled",
4389 				);
4390 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4391 				PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4392 				NULL),
4393 		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4394 		    return -EINVAL);
4395 	}
4396 
4397 	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4398 
4399 	return 0;
4400 }
4401 
4402 static int smu7_notify_link_speed_change_after_state_change(
4403 		struct pp_hwmgr *hwmgr, const void *input)
4404 {
4405 	const struct phm_set_power_state_input *states =
4406 			(const struct phm_set_power_state_input *)input;
4407 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4408 	const struct smu7_power_state *smu7_ps =
4409 			cast_const_phw_smu7_power_state(states->pnew_state);
4410 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4411 	uint8_t  request;
4412 
4413 	if (data->pspp_notify_required) {
4414 		if (target_link_speed == PP_PCIEGen3)
4415 			request = PCIE_PERF_REQ_GEN3;
4416 		else if (target_link_speed == PP_PCIEGen2)
4417 			request = PCIE_PERF_REQ_GEN2;
4418 		else
4419 			request = PCIE_PERF_REQ_GEN1;
4420 
4421 		if (request == PCIE_PERF_REQ_GEN1 &&
4422 				smu7_get_current_pcie_speed(hwmgr) > 0)
4423 			return 0;
4424 
4425 #ifdef CONFIG_ACPI
4426 		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4427 			if (PP_PCIEGen2 == target_link_speed)
4428 				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4429 			else
4430 				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4431 		}
4432 #endif
4433 	}
4434 
4435 	return 0;
4436 }
4437 
4438 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4439 {
4440 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ?  0 : -EINVAL;
4441 }
4442 
4443 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4444 {
4445 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4446 
4447 	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4448 		if (hwmgr->chip_id == CHIP_VEGAM)
4449 			smum_send_msg_to_smc_with_parameter(hwmgr,
4450 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4451 					NULL);
4452 		else
4453 			smum_send_msg_to_smc_with_parameter(hwmgr,
4454 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4455 					NULL);
4456 		data->last_sent_vbi_timeout = data->frame_time_x2;
4457 	}
4458 
4459 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ?  0 : -EINVAL;
4460 }
4461 
4462 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4463 {
4464 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4465 	int result = 0;
4466 
4467 	if (data->mclk_ignore_signal)
4468 		result = smu7_notify_no_display(hwmgr);
4469 	else
4470 		result = smu7_notify_has_display(hwmgr);
4471 
4472 	return result;
4473 }
4474 
4475 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4476 {
4477 	int tmp_result, result = 0;
4478 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4479 
4480 	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4481 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4482 			"Failed to find DPM states clocks in DPM table!",
4483 			result = tmp_result);
4484 
4485 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4486 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4487 		tmp_result =
4488 			smu7_request_link_speed_change_before_state_change(hwmgr, input);
4489 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4490 				"Failed to request link speed change before state change!",
4491 				result = tmp_result);
4492 	}
4493 
4494 	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4495 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4496 			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4497 
4498 	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4499 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4500 			"Failed to populate and upload SCLK MCLK DPM levels!",
4501 			result = tmp_result);
4502 
4503 	/*
4504 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4505 	 * That effectively disables AVFS feature.
4506 	 */
4507 	if (hwmgr->hardcode_pp_table != NULL)
4508 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4509 
4510 	tmp_result = smu7_update_avfs(hwmgr);
4511 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4512 			"Failed to update avfs voltages!",
4513 			result = tmp_result);
4514 
4515 	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4516 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4517 			"Failed to generate DPM level enabled mask!",
4518 			result = tmp_result);
4519 
4520 	tmp_result = smum_update_sclk_threshold(hwmgr);
4521 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4522 			"Failed to update SCLK threshold!",
4523 			result = tmp_result);
4524 
4525 	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4526 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4527 			"Failed to unfreeze SCLK MCLK DPM!",
4528 			result = tmp_result);
4529 
4530 	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4531 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4532 			"Failed to upload DPM level enabled mask!",
4533 			result = tmp_result);
4534 
4535 	tmp_result = smu7_notify_smc_display(hwmgr);
4536 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4537 			"Failed to notify smc display settings!",
4538 			result = tmp_result);
4539 
4540 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4541 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4542 		tmp_result =
4543 			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4544 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4545 				"Failed to notify link speed change after state change!",
4546 				result = tmp_result);
4547 	}
4548 	data->apply_optimized_settings = false;
4549 	return result;
4550 }
4551 
4552 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4553 {
4554 	hwmgr->thermal_controller.
4555 	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4556 
4557 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4558 			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4559 			NULL);
4560 }
4561 
4562 static int
4563 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4564 {
4565 	return 0;
4566 }
4567 
4568 /**
4569  * smu7_program_display_gap - Programs the display gap
4570  *
4571  * @hwmgr:  the address of the powerplay hardware manager.
4572  * Return:   always OK
4573  */
4574 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4575 {
4576 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4577 	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4578 	uint32_t display_gap2;
4579 	uint32_t pre_vbi_time_in_us;
4580 	uint32_t frame_time_in_us;
4581 	uint32_t ref_clock, refresh_rate;
4582 
4583 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4584 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4585 
4586 	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4587 	refresh_rate = hwmgr->display_config->vrefresh;
4588 
4589 	if (0 == refresh_rate)
4590 		refresh_rate = 60;
4591 
4592 	frame_time_in_us = 1000000 / refresh_rate;
4593 
4594 	pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4595 
4596 	data->frame_time_x2 = frame_time_in_us * 2 / 100;
4597 
4598 	if (data->frame_time_x2 < 280) {
4599 		pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4600 		data->frame_time_x2 = 280;
4601 	}
4602 
4603 	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4604 
4605 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4606 
4607 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4608 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4609 							SMU_SoftRegisters,
4610 							PreVBlankGap), 0x64);
4611 
4612 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4613 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4614 							SMU_SoftRegisters,
4615 							VBlankTimeout),
4616 					(frame_time_in_us - pre_vbi_time_in_us));
4617 
4618 	return 0;
4619 }
4620 
4621 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4622 {
4623 	return smu7_program_display_gap(hwmgr);
4624 }
4625 
4626 /**
4627  * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4628  *
4629  * @hwmgr:  the address of the powerplay hardware manager.
4630  * @us_max_fan_rpm:  max operating fan RPM value.
4631  * Return:   The response that came from the SMC.
4632  */
4633 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4634 {
4635 	hwmgr->thermal_controller.
4636 	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4637 
4638 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4639 			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4640 			NULL);
4641 }
4642 
4643 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4644 	.process = phm_irq_process,
4645 };
4646 
4647 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4648 {
4649 	struct amdgpu_irq_src *source =
4650 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4651 
4652 	if (!source)
4653 		return -ENOMEM;
4654 
4655 	source->funcs = &smu7_irq_funcs;
4656 
4657 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4658 			AMDGPU_IRQ_CLIENTID_LEGACY,
4659 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4660 			source);
4661 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4662 			AMDGPU_IRQ_CLIENTID_LEGACY,
4663 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4664 			source);
4665 
4666 	/* Register CTF(GPIO_19) interrupt */
4667 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4668 			AMDGPU_IRQ_CLIENTID_LEGACY,
4669 			VISLANDS30_IV_SRCID_GPIO_19,
4670 			source);
4671 
4672 	return 0;
4673 }
4674 
4675 static bool
4676 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4677 {
4678 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4679 	bool is_update_required = false;
4680 
4681 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4682 		is_update_required = true;
4683 
4684 	if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4685 		is_update_required = true;
4686 
4687 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4688 	    hwmgr->chip_id <= CHIP_VEGAM &&
4689 	    data->last_sent_vbi_timeout != data->frame_time_x2)
4690 		is_update_required = true;
4691 
4692 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4693 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4694 			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4695 			hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4696 			is_update_required = true;
4697 	}
4698 	return is_update_required;
4699 }
4700 
4701 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4702 							   const struct smu7_performance_level *pl2)
4703 {
4704 	return ((pl1->memory_clock == pl2->memory_clock) &&
4705 		  (pl1->engine_clock == pl2->engine_clock) &&
4706 		  (pl1->pcie_gen == pl2->pcie_gen) &&
4707 		  (pl1->pcie_lane == pl2->pcie_lane));
4708 }
4709 
4710 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4711 		const struct pp_hw_power_state *pstate1,
4712 		const struct pp_hw_power_state *pstate2, bool *equal)
4713 {
4714 	const struct smu7_power_state *psa;
4715 	const struct smu7_power_state *psb;
4716 	int i;
4717 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4718 
4719 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4720 		return -EINVAL;
4721 
4722 	psa = cast_const_phw_smu7_power_state(pstate1);
4723 	psb = cast_const_phw_smu7_power_state(pstate2);
4724 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4725 	if (psa->performance_level_count != psb->performance_level_count) {
4726 		*equal = false;
4727 		return 0;
4728 	}
4729 
4730 	for (i = 0; i < psa->performance_level_count; i++) {
4731 		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4732 			/* If we have found even one performance level pair that is different the states are different. */
4733 			*equal = false;
4734 			return 0;
4735 		}
4736 	}
4737 
4738 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4739 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4740 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4741 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4742 	/* For OD call, set value based on flag */
4743 	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4744 							DPMTABLE_OD_UPDATE_MCLK |
4745 							DPMTABLE_OD_UPDATE_VDDC));
4746 
4747 	return 0;
4748 }
4749 
4750 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4751 {
4752 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4753 
4754 	uint32_t tmp;
4755 
4756 	/* Read MC indirect register offset 0x9F bits [3:0] to see
4757 	 * if VBIOS has already loaded a full version of MC ucode
4758 	 * or not.
4759 	 */
4760 
4761 	smu7_get_mc_microcode_version(hwmgr);
4762 
4763 	data->need_long_memory_training = false;
4764 
4765 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4766 							ixMC_IO_DEBUG_UP_13);
4767 	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4768 
4769 	if (tmp & (1 << 23)) {
4770 		data->mem_latency_high = MEM_LATENCY_HIGH;
4771 		data->mem_latency_low = MEM_LATENCY_LOW;
4772 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4773 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4774 		    (hwmgr->chip_id == CHIP_POLARIS12))
4775 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4776 	} else {
4777 		data->mem_latency_high = 330;
4778 		data->mem_latency_low = 330;
4779 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4780 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4781 		    (hwmgr->chip_id == CHIP_POLARIS12))
4782 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4783 	}
4784 
4785 	return 0;
4786 }
4787 
4788 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4789 {
4790 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4791 
4792 	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
4793 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4794 	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
4795 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4796 	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
4797 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4798 	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
4799 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4800 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
4801 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4802 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4803 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4804 	data->clock_registers.vDLL_CNTL                  =
4805 		cgs_read_register(hwmgr->device, mmDLL_CNTL);
4806 	data->clock_registers.vMCLK_PWRMGT_CNTL          =
4807 		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4808 	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
4809 		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4810 	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
4811 		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4812 	data->clock_registers.vMPLL_FUNC_CNTL            =
4813 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4814 	data->clock_registers.vMPLL_FUNC_CNTL_1          =
4815 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4816 	data->clock_registers.vMPLL_FUNC_CNTL_2          =
4817 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4818 	data->clock_registers.vMPLL_SS1                  =
4819 		cgs_read_register(hwmgr->device, mmMPLL_SS1);
4820 	data->clock_registers.vMPLL_SS2                  =
4821 		cgs_read_register(hwmgr->device, mmMPLL_SS2);
4822 	return 0;
4823 
4824 }
4825 
4826 /**
4827  * smu7_get_memory_type - Find out if memory is GDDR5.
4828  *
4829  * @hwmgr:  the address of the powerplay hardware manager.
4830  * Return:   always 0
4831  */
4832 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4833 {
4834 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4835 	struct amdgpu_device *adev = hwmgr->adev;
4836 
4837 	data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4838 
4839 	return 0;
4840 }
4841 
4842 /**
4843  * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4844  *
4845  * @hwmgr:  the address of the powerplay hardware manager.
4846  * Return:   always 0
4847  */
4848 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4849 {
4850 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4851 			GENERAL_PWRMGT, STATIC_PM_EN, 1);
4852 
4853 	return 0;
4854 }
4855 
4856 /**
4857  * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4858  *
4859  * @hwmgr:  the address of the powerplay hardware manager.
4860  * Return:   always 0
4861  */
4862 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4863 {
4864 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4865 
4866 	data->uvd_power_gated = false;
4867 	data->vce_power_gated = false;
4868 
4869 	return 0;
4870 }
4871 
4872 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4873 {
4874 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4875 
4876 	data->low_sclk_interrupt_threshold = 0;
4877 	return 0;
4878 }
4879 
4880 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4881 {
4882 	int tmp_result, result = 0;
4883 
4884 	smu7_check_mc_firmware(hwmgr);
4885 
4886 	tmp_result = smu7_read_clock_registers(hwmgr);
4887 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4888 			"Failed to read clock registers!", result = tmp_result);
4889 
4890 	tmp_result = smu7_get_memory_type(hwmgr);
4891 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4892 			"Failed to get memory type!", result = tmp_result);
4893 
4894 	tmp_result = smu7_enable_acpi_power_management(hwmgr);
4895 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4896 			"Failed to enable ACPI power management!", result = tmp_result);
4897 
4898 	tmp_result = smu7_init_power_gate_state(hwmgr);
4899 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4900 			"Failed to init power gate state!", result = tmp_result);
4901 
4902 	tmp_result = smu7_get_mc_microcode_version(hwmgr);
4903 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4904 			"Failed to get MC microcode version!", result = tmp_result);
4905 
4906 	tmp_result = smu7_init_sclk_threshold(hwmgr);
4907 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4908 			"Failed to init sclk threshold!", result = tmp_result);
4909 
4910 	return result;
4911 }
4912 
4913 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4914 		enum pp_clock_type type, uint32_t mask)
4915 {
4916 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4917 
4918 	if (mask == 0)
4919 		return -EINVAL;
4920 
4921 	switch (type) {
4922 	case PP_SCLK:
4923 		if (!data->sclk_dpm_key_disabled)
4924 			smum_send_msg_to_smc_with_parameter(hwmgr,
4925 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4926 					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4927 					NULL);
4928 		break;
4929 	case PP_MCLK:
4930 		if (!data->mclk_dpm_key_disabled)
4931 			smum_send_msg_to_smc_with_parameter(hwmgr,
4932 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4933 					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4934 					NULL);
4935 		break;
4936 	case PP_PCIE:
4937 	{
4938 		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4939 
4940 		if (!data->pcie_dpm_key_disabled) {
4941 			if (fls(tmp) != ffs(tmp))
4942 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4943 						NULL);
4944 			else
4945 				smum_send_msg_to_smc_with_parameter(hwmgr,
4946 					PPSMC_MSG_PCIeDPM_ForceLevel,
4947 					fls(tmp) - 1,
4948 					NULL);
4949 		}
4950 		break;
4951 	}
4952 	default:
4953 		break;
4954 	}
4955 
4956 	return 0;
4957 }
4958 
4959 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4960 		enum pp_clock_type type, char *buf)
4961 {
4962 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4963 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4964 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4965 	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4966 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4967 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4968 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4969 	int size = 0;
4970 	uint32_t i, now, clock, pcie_speed;
4971 
4972 	switch (type) {
4973 	case PP_SCLK:
4974 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4975 
4976 		for (i = 0; i < sclk_table->count; i++) {
4977 			if (clock > sclk_table->dpm_levels[i].value)
4978 				continue;
4979 			break;
4980 		}
4981 		now = i;
4982 
4983 		for (i = 0; i < sclk_table->count; i++)
4984 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4985 					i, sclk_table->dpm_levels[i].value / 100,
4986 					(i == now) ? "*" : "");
4987 		break;
4988 	case PP_MCLK:
4989 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4990 
4991 		for (i = 0; i < mclk_table->count; i++) {
4992 			if (clock > mclk_table->dpm_levels[i].value)
4993 				continue;
4994 			break;
4995 		}
4996 		now = i;
4997 
4998 		for (i = 0; i < mclk_table->count; i++)
4999 			size += sprintf(buf + size, "%d: %uMhz %s\n",
5000 					i, mclk_table->dpm_levels[i].value / 100,
5001 					(i == now) ? "*" : "");
5002 		break;
5003 	case PP_PCIE:
5004 		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
5005 		for (i = 0; i < pcie_table->count; i++) {
5006 			if (pcie_speed != pcie_table->dpm_levels[i].value)
5007 				continue;
5008 			break;
5009 		}
5010 		now = i;
5011 
5012 		for (i = 0; i < pcie_table->count; i++)
5013 			size += sprintf(buf + size, "%d: %s %s\n", i,
5014 					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
5015 					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
5016 					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
5017 					(i == now) ? "*" : "");
5018 		break;
5019 	case OD_SCLK:
5020 		if (hwmgr->od_enabled) {
5021 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
5022 			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
5023 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5024 					i, odn_sclk_table->entries[i].clock/100,
5025 					odn_sclk_table->entries[i].vddc);
5026 		}
5027 		break;
5028 	case OD_MCLK:
5029 		if (hwmgr->od_enabled) {
5030 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
5031 			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
5032 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5033 					i, odn_mclk_table->entries[i].clock/100,
5034 					odn_mclk_table->entries[i].vddc);
5035 		}
5036 		break;
5037 	case OD_RANGE:
5038 		if (hwmgr->od_enabled) {
5039 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
5040 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
5041 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5042 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5043 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
5044 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5045 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5046 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
5047 				data->odn_dpm_table.min_vddc,
5048 				data->odn_dpm_table.max_vddc);
5049 		}
5050 		break;
5051 	default:
5052 		break;
5053 	}
5054 	return size;
5055 }
5056 
5057 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5058 {
5059 	switch (mode) {
5060 	case AMD_FAN_CTRL_NONE:
5061 		smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5062 		break;
5063 	case AMD_FAN_CTRL_MANUAL:
5064 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5065 			PHM_PlatformCaps_MicrocodeFanControl))
5066 			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5067 		break;
5068 	case AMD_FAN_CTRL_AUTO:
5069 		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5070 			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5071 		break;
5072 	default:
5073 		break;
5074 	}
5075 }
5076 
5077 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5078 {
5079 	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5080 }
5081 
5082 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5083 {
5084 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5085 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5086 	struct smu7_single_dpm_table *golden_sclk_table =
5087 			&(data->golden_dpm_table.sclk_table);
5088 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5089 	int golden_value = golden_sclk_table->dpm_levels
5090 			[golden_sclk_table->count - 1].value;
5091 
5092 	value -= golden_value;
5093 	value = DIV_ROUND_UP(value * 100, golden_value);
5094 
5095 	return value;
5096 }
5097 
5098 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5099 {
5100 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5101 	struct smu7_single_dpm_table *golden_sclk_table =
5102 			&(data->golden_dpm_table.sclk_table);
5103 	struct pp_power_state  *ps;
5104 	struct smu7_power_state  *smu7_ps;
5105 
5106 	if (value > 20)
5107 		value = 20;
5108 
5109 	ps = hwmgr->request_ps;
5110 
5111 	if (ps == NULL)
5112 		return -EINVAL;
5113 
5114 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5115 
5116 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5117 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5118 			value / 100 +
5119 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5120 
5121 	return 0;
5122 }
5123 
5124 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5125 {
5126 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5127 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5128 	struct smu7_single_dpm_table *golden_mclk_table =
5129 			&(data->golden_dpm_table.mclk_table);
5130         int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5131 	int golden_value = golden_mclk_table->dpm_levels
5132 			[golden_mclk_table->count - 1].value;
5133 
5134 	value -= golden_value;
5135 	value = DIV_ROUND_UP(value * 100, golden_value);
5136 
5137 	return value;
5138 }
5139 
5140 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5141 {
5142 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5143 	struct smu7_single_dpm_table *golden_mclk_table =
5144 			&(data->golden_dpm_table.mclk_table);
5145 	struct pp_power_state  *ps;
5146 	struct smu7_power_state  *smu7_ps;
5147 
5148 	if (value > 20)
5149 		value = 20;
5150 
5151 	ps = hwmgr->request_ps;
5152 
5153 	if (ps == NULL)
5154 		return -EINVAL;
5155 
5156 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5157 
5158 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5159 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5160 			value / 100 +
5161 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5162 
5163 	return 0;
5164 }
5165 
5166 
5167 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5168 {
5169 	struct phm_ppt_v1_information *table_info =
5170 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5171 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5172 	struct phm_clock_voltage_dependency_table *sclk_table;
5173 	int i;
5174 
5175 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5176 		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5177 			return -EINVAL;
5178 		dep_sclk_table = table_info->vdd_dep_on_sclk;
5179 		for (i = 0; i < dep_sclk_table->count; i++)
5180 			clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5181 		clocks->count = dep_sclk_table->count;
5182 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5183 		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5184 		for (i = 0; i < sclk_table->count; i++)
5185 			clocks->clock[i] = sclk_table->entries[i].clk * 10;
5186 		clocks->count = sclk_table->count;
5187 	}
5188 
5189 	return 0;
5190 }
5191 
5192 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5193 {
5194 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5195 
5196 	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5197 		return data->mem_latency_high;
5198 	else if (clk >= MEM_FREQ_HIGH_LATENCY)
5199 		return data->mem_latency_low;
5200 	else
5201 		return MEM_LATENCY_ERR;
5202 }
5203 
5204 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5205 {
5206 	struct phm_ppt_v1_information *table_info =
5207 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5208 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5209 	int i;
5210 	struct phm_clock_voltage_dependency_table *mclk_table;
5211 
5212 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5213 		if (table_info == NULL)
5214 			return -EINVAL;
5215 		dep_mclk_table = table_info->vdd_dep_on_mclk;
5216 		for (i = 0; i < dep_mclk_table->count; i++) {
5217 			clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5218 			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5219 						dep_mclk_table->entries[i].clk);
5220 		}
5221 		clocks->count = dep_mclk_table->count;
5222 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5223 		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5224 		for (i = 0; i < mclk_table->count; i++)
5225 			clocks->clock[i] = mclk_table->entries[i].clk * 10;
5226 		clocks->count = mclk_table->count;
5227 	}
5228 	return 0;
5229 }
5230 
5231 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5232 						struct amd_pp_clocks *clocks)
5233 {
5234 	switch (type) {
5235 	case amd_pp_sys_clock:
5236 		smu7_get_sclks(hwmgr, clocks);
5237 		break;
5238 	case amd_pp_mem_clock:
5239 		smu7_get_mclks(hwmgr, clocks);
5240 		break;
5241 	default:
5242 		return -EINVAL;
5243 	}
5244 
5245 	return 0;
5246 }
5247 
5248 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5249 				       struct pp_clock_levels_with_latency *clocks)
5250 {
5251 	struct phm_ppt_v1_information *table_info =
5252 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5253 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5254 			table_info->vdd_dep_on_sclk;
5255 	int i;
5256 
5257 	clocks->num_levels = 0;
5258 	for (i = 0; i < dep_sclk_table->count; i++) {
5259 		if (dep_sclk_table->entries[i].clk) {
5260 			clocks->data[clocks->num_levels].clocks_in_khz =
5261 				dep_sclk_table->entries[i].clk * 10;
5262 			clocks->num_levels++;
5263 		}
5264 	}
5265 
5266 	return 0;
5267 }
5268 
5269 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5270 				       struct pp_clock_levels_with_latency *clocks)
5271 {
5272 	struct phm_ppt_v1_information *table_info =
5273 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5274 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5275 			table_info->vdd_dep_on_mclk;
5276 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5277 	int i;
5278 
5279 	clocks->num_levels = 0;
5280 	data->mclk_latency_table.count = 0;
5281 	for (i = 0; i < dep_mclk_table->count; i++) {
5282 		if (dep_mclk_table->entries[i].clk) {
5283 			clocks->data[clocks->num_levels].clocks_in_khz =
5284 					dep_mclk_table->entries[i].clk * 10;
5285 			data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5286 					dep_mclk_table->entries[i].clk;
5287 			clocks->data[clocks->num_levels].latency_in_us =
5288 				data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5289 					smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5290 			clocks->num_levels++;
5291 			data->mclk_latency_table.count++;
5292 		}
5293 	}
5294 
5295 	return 0;
5296 }
5297 
5298 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5299 					       enum amd_pp_clock_type type,
5300 					       struct pp_clock_levels_with_latency *clocks)
5301 {
5302 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5303 	      hwmgr->chip_id <= CHIP_VEGAM))
5304 		return -EINVAL;
5305 
5306 	switch (type) {
5307 	case amd_pp_sys_clock:
5308 		smu7_get_sclks_with_latency(hwmgr, clocks);
5309 		break;
5310 	case amd_pp_mem_clock:
5311 		smu7_get_mclks_with_latency(hwmgr, clocks);
5312 		break;
5313 	default:
5314 		return -EINVAL;
5315 	}
5316 
5317 	return 0;
5318 }
5319 
5320 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5321 						 void *clock_range)
5322 {
5323 	struct phm_ppt_v1_information *table_info =
5324 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5325 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5326 			table_info->vdd_dep_on_mclk;
5327 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5328 			table_info->vdd_dep_on_sclk;
5329 	struct polaris10_smumgr *smu_data =
5330 			(struct polaris10_smumgr *)(hwmgr->smu_backend);
5331 	SMU74_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
5332 	struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5333 			(struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5334 	uint32_t i, j, k;
5335 	bool valid_entry;
5336 
5337 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5338 	      hwmgr->chip_id <= CHIP_VEGAM))
5339 		return -EINVAL;
5340 
5341 	for (i = 0; i < dep_mclk_table->count; i++) {
5342 		for (j = 0; j < dep_sclk_table->count; j++) {
5343 			valid_entry = false;
5344 			for (k = 0; k < watermarks->num_wm_sets; k++) {
5345 				if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5346 				    dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5347 				    dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5348 				    dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5349 					valid_entry = true;
5350 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5351 					break;
5352 				}
5353 			}
5354 			PP_ASSERT_WITH_CODE(valid_entry,
5355 					"Clock is not in range of specified clock range for watermark from DAL!  Using highest water mark set.",
5356 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5357 		}
5358 	}
5359 
5360 	return smu7_copy_bytes_to_smc(hwmgr,
5361 				      smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5362 				      (uint8_t *)table->DisplayWatermark,
5363 				      sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5364 				      SMC_RAM_END);
5365 }
5366 
5367 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5368 					uint32_t virtual_addr_low,
5369 					uint32_t virtual_addr_hi,
5370 					uint32_t mc_addr_low,
5371 					uint32_t mc_addr_hi,
5372 					uint32_t size)
5373 {
5374 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5375 
5376 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5377 					data->soft_regs_start +
5378 					smum_get_offsetof(hwmgr,
5379 					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5380 					mc_addr_hi);
5381 
5382 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5383 					data->soft_regs_start +
5384 					smum_get_offsetof(hwmgr,
5385 					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5386 					mc_addr_low);
5387 
5388 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5389 					data->soft_regs_start +
5390 					smum_get_offsetof(hwmgr,
5391 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5392 					virtual_addr_hi);
5393 
5394 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5395 					data->soft_regs_start +
5396 					smum_get_offsetof(hwmgr,
5397 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5398 					virtual_addr_low);
5399 
5400 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5401 					data->soft_regs_start +
5402 					smum_get_offsetof(hwmgr,
5403 					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5404 					size);
5405 	return 0;
5406 }
5407 
5408 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5409 					struct amd_pp_simple_clock_info *clocks)
5410 {
5411 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5412 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5413 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5414 
5415 	if (clocks == NULL)
5416 		return -EINVAL;
5417 
5418 	clocks->memory_max_clock = mclk_table->count > 1 ?
5419 				mclk_table->dpm_levels[mclk_table->count-1].value :
5420 				mclk_table->dpm_levels[0].value;
5421 	clocks->engine_max_clock = sclk_table->count > 1 ?
5422 				sclk_table->dpm_levels[sclk_table->count-1].value :
5423 				sclk_table->dpm_levels[0].value;
5424 	return 0;
5425 }
5426 
5427 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5428 		struct PP_TemperatureRange *thermal_data)
5429 {
5430 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5431 	struct phm_ppt_v1_information *table_info =
5432 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5433 
5434 	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5435 
5436 	if (hwmgr->pp_table_version == PP_TABLE_V1)
5437 		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5438 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5439 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
5440 		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5441 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5442 
5443 	thermal_data->sw_ctf_threshold = thermal_data->max;
5444 
5445 	return 0;
5446 }
5447 
5448 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5449 					enum PP_OD_DPM_TABLE_COMMAND type,
5450 					uint32_t clk,
5451 					uint32_t voltage)
5452 {
5453 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5454 
5455 	if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5456 		pr_info("OD voltage is out of range [%d - %d] mV\n",
5457 						data->odn_dpm_table.min_vddc,
5458 						data->odn_dpm_table.max_vddc);
5459 		return false;
5460 	}
5461 
5462 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5463 		if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5464 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5465 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5466 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5467 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5468 			return false;
5469 		}
5470 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5471 		if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5472 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5473 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5474 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5475 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5476 			return false;
5477 		}
5478 	} else {
5479 		return false;
5480 	}
5481 
5482 	return true;
5483 }
5484 
5485 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5486 					enum PP_OD_DPM_TABLE_COMMAND type,
5487 					long *input, uint32_t size)
5488 {
5489 	uint32_t i;
5490 	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5491 	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5492 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5493 
5494 	uint32_t input_clk;
5495 	uint32_t input_vol;
5496 	uint32_t input_level;
5497 
5498 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5499 				return -EINVAL);
5500 
5501 	if (!hwmgr->od_enabled) {
5502 		pr_info("OverDrive feature not enabled\n");
5503 		return -EINVAL;
5504 	}
5505 
5506 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5507 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5508 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5509 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5510 				"Failed to get ODN SCLK and Voltage tables",
5511 				return -EINVAL);
5512 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5513 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5514 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5515 
5516 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5517 			"Failed to get ODN MCLK and Voltage tables",
5518 			return -EINVAL);
5519 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5520 		smu7_odn_initial_default_setting(hwmgr);
5521 		return 0;
5522 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5523 		smu7_check_dpm_table_updated(hwmgr);
5524 		return 0;
5525 	} else {
5526 		return -EINVAL;
5527 	}
5528 
5529 	for (i = 0; i < size; i += 3) {
5530 		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5531 			pr_info("invalid clock voltage input \n");
5532 			return 0;
5533 		}
5534 		input_level = input[i];
5535 		input_clk = input[i+1] * 100;
5536 		input_vol = input[i+2];
5537 
5538 		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5539 			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5540 			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5541 			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5542 			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5543 			podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5544 		} else {
5545 			return -EINVAL;
5546 		}
5547 	}
5548 
5549 	return 0;
5550 }
5551 
5552 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5553 {
5554 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5555 	uint32_t i, size = 0;
5556 	uint32_t len;
5557 
5558 	static const char *title[8] = {"NUM",
5559 			"MODE_NAME",
5560 			"SCLK_UP_HYST",
5561 			"SCLK_DOWN_HYST",
5562 			"SCLK_ACTIVE_LEVEL",
5563 			"MCLK_UP_HYST",
5564 			"MCLK_DOWN_HYST",
5565 			"MCLK_ACTIVE_LEVEL"};
5566 
5567 	if (!buf)
5568 		return -EINVAL;
5569 
5570 	phm_get_sysfs_buf(&buf, &size);
5571 
5572 	size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5573 			title[0], title[1], title[2], title[3],
5574 			title[4], title[5], title[6], title[7]);
5575 
5576 	len = ARRAY_SIZE(smu7_profiling);
5577 
5578 	for (i = 0; i < len; i++) {
5579 		if (i == hwmgr->power_profile_mode) {
5580 			size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5581 			i, amdgpu_pp_profile_name[i], "*",
5582 			data->current_profile_setting.sclk_up_hyst,
5583 			data->current_profile_setting.sclk_down_hyst,
5584 			data->current_profile_setting.sclk_activity,
5585 			data->current_profile_setting.mclk_up_hyst,
5586 			data->current_profile_setting.mclk_down_hyst,
5587 			data->current_profile_setting.mclk_activity);
5588 			continue;
5589 		}
5590 		if (smu7_profiling[i].bupdate_sclk)
5591 			size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5592 			i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5593 			smu7_profiling[i].sclk_down_hyst,
5594 			smu7_profiling[i].sclk_activity);
5595 		else
5596 			size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5597 			i, amdgpu_pp_profile_name[i], "-", "-", "-");
5598 
5599 		if (smu7_profiling[i].bupdate_mclk)
5600 			size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5601 			smu7_profiling[i].mclk_up_hyst,
5602 			smu7_profiling[i].mclk_down_hyst,
5603 			smu7_profiling[i].mclk_activity);
5604 		else
5605 			size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5606 			"-", "-", "-");
5607 	}
5608 
5609 	return size;
5610 }
5611 
5612 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5613 					enum PP_SMC_POWER_PROFILE requst)
5614 {
5615 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5616 	uint32_t tmp, level;
5617 
5618 	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5619 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5620 			level = 0;
5621 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5622 			while (tmp >>= 1)
5623 				level++;
5624 			if (level > 0)
5625 				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5626 		}
5627 	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5628 		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5629 	}
5630 }
5631 
5632 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5633 {
5634 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5635 	struct profile_mode_setting tmp;
5636 	enum PP_SMC_POWER_PROFILE mode;
5637 
5638 	if (input == NULL)
5639 		return -EINVAL;
5640 
5641 	mode = input[size];
5642 	switch (mode) {
5643 	case PP_SMC_POWER_PROFILE_CUSTOM:
5644 		if (size != 8 && size != 0)
5645 			return -EINVAL;
5646 		/* If only CUSTOM is passed in, use the saved values. Check
5647 		 * that we actually have a CUSTOM profile by ensuring that
5648 		 * the "use sclk" or the "use mclk" bits are set
5649 		 */
5650 		tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5651 		if (size == 0) {
5652 			if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5653 				return -EINVAL;
5654 		} else {
5655 			tmp.bupdate_sclk = input[0];
5656 			tmp.sclk_up_hyst = input[1];
5657 			tmp.sclk_down_hyst = input[2];
5658 			tmp.sclk_activity = input[3];
5659 			tmp.bupdate_mclk = input[4];
5660 			tmp.mclk_up_hyst = input[5];
5661 			tmp.mclk_down_hyst = input[6];
5662 			tmp.mclk_activity = input[7];
5663 			smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5664 		}
5665 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5666 			memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5667 			hwmgr->power_profile_mode = mode;
5668 		}
5669 		break;
5670 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5671 	case PP_SMC_POWER_PROFILE_POWERSAVING:
5672 	case PP_SMC_POWER_PROFILE_VIDEO:
5673 	case PP_SMC_POWER_PROFILE_VR:
5674 	case PP_SMC_POWER_PROFILE_COMPUTE:
5675 		if (mode == hwmgr->power_profile_mode)
5676 			return 0;
5677 
5678 		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5679 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5680 			if (tmp.bupdate_sclk) {
5681 				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5682 				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5683 				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5684 				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5685 			}
5686 			if (tmp.bupdate_mclk) {
5687 				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5688 				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5689 				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5690 				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5691 			}
5692 			smu7_patch_compute_profile_mode(hwmgr, mode);
5693 			hwmgr->power_profile_mode = mode;
5694 		}
5695 		break;
5696 	default:
5697 		return -EINVAL;
5698 	}
5699 
5700 	return 0;
5701 }
5702 
5703 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5704 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5705 				PHM_PerformanceLevel *level)
5706 {
5707 	const struct smu7_power_state *ps;
5708 	uint32_t i;
5709 
5710 	if (level == NULL || hwmgr == NULL || state == NULL)
5711 		return -EINVAL;
5712 
5713 	ps = cast_const_phw_smu7_power_state(state);
5714 
5715 	i = index > ps->performance_level_count - 1 ?
5716 			ps->performance_level_count - 1 : index;
5717 
5718 	level->coreClock = ps->performance_levels[i].engine_clock;
5719 	level->memory_clock = ps->performance_levels[i].memory_clock;
5720 
5721 	return 0;
5722 }
5723 
5724 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5725 {
5726 	int result;
5727 
5728 	result = smu7_disable_dpm_tasks(hwmgr);
5729 	PP_ASSERT_WITH_CODE((0 == result),
5730 			"[disable_dpm_tasks] Failed to disable DPM!",
5731 			);
5732 
5733 	return result;
5734 }
5735 
5736 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5737 	.backend_init = &smu7_hwmgr_backend_init,
5738 	.backend_fini = &smu7_hwmgr_backend_fini,
5739 	.asic_setup = &smu7_setup_asic_task,
5740 	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5741 	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5742 	.force_dpm_level = &smu7_force_dpm_level,
5743 	.power_state_set = smu7_set_power_state_tasks,
5744 	.get_power_state_size = smu7_get_power_state_size,
5745 	.get_mclk = smu7_dpm_get_mclk,
5746 	.get_sclk = smu7_dpm_get_sclk,
5747 	.patch_boot_state = smu7_dpm_patch_boot_state,
5748 	.get_pp_table_entry = smu7_get_pp_table_entry,
5749 	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5750 	.powerdown_uvd = smu7_powerdown_uvd,
5751 	.powergate_uvd = smu7_powergate_uvd,
5752 	.powergate_vce = smu7_powergate_vce,
5753 	.disable_clock_power_gating = smu7_disable_clock_power_gating,
5754 	.update_clock_gatings = smu7_update_clock_gatings,
5755 	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5756 	.display_config_changed = smu7_display_configuration_changed_task,
5757 	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5758 	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5759 	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5760 	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5761 	.get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5762 	.set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5763 	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5764 	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5765 	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5766 	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5767 	.register_irq_handlers = smu7_register_irq_handlers,
5768 	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5769 	.check_states_equal = smu7_check_states_equal,
5770 	.set_fan_control_mode = smu7_set_fan_control_mode,
5771 	.get_fan_control_mode = smu7_get_fan_control_mode,
5772 	.force_clock_level = smu7_force_clock_level,
5773 	.print_clock_levels = smu7_print_clock_levels,
5774 	.powergate_gfx = smu7_powergate_gfx,
5775 	.get_sclk_od = smu7_get_sclk_od,
5776 	.set_sclk_od = smu7_set_sclk_od,
5777 	.get_mclk_od = smu7_get_mclk_od,
5778 	.set_mclk_od = smu7_set_mclk_od,
5779 	.get_clock_by_type = smu7_get_clock_by_type,
5780 	.get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5781 	.set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5782 	.read_sensor = smu7_read_sensor,
5783 	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5784 	.avfs_control = smu7_avfs_control,
5785 	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5786 	.start_thermal_controller = smu7_start_thermal_controller,
5787 	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5788 	.get_max_high_clocks = smu7_get_max_high_clocks,
5789 	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5790 	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5791 	.set_power_limit = smu7_set_power_limit,
5792 	.get_power_profile_mode = smu7_get_power_profile_mode,
5793 	.set_power_profile_mode = smu7_set_power_profile_mode,
5794 	.get_performance_level = smu7_get_performance_level,
5795 	.get_asic_baco_capability = smu7_baco_get_capability,
5796 	.get_asic_baco_state = smu7_baco_get_state,
5797 	.set_asic_baco_state = smu7_baco_set_state,
5798 	.power_off_asic = smu7_power_off_asic,
5799 };
5800 
5801 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5802 		uint32_t clock_insr)
5803 {
5804 	uint8_t i;
5805 	uint32_t temp;
5806 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5807 
5808 	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5809 	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
5810 		temp = clock >> i;
5811 
5812 		if (temp >= min || i == 0)
5813 			break;
5814 	}
5815 	return i;
5816 }
5817 
5818 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5819 {
5820 	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5821 	if (hwmgr->pp_table_version == PP_TABLE_V0)
5822 		hwmgr->pptable_func = &pptable_funcs;
5823 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
5824 		hwmgr->pptable_func = &pptable_v1_0_funcs;
5825 
5826 	return 0;
5827 }
5828