1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include "pp_debug.h" 24 #include <linux/delay.h> 25 #include <linux/module.h> 26 #include <linux/pci.h> 27 #include <linux/slab.h> 28 #include <asm/div64.h> 29 #if IS_ENABLED(CONFIG_X86_64) 30 #include <asm/intel-family.h> 31 #endif 32 #include <drm/amdgpu_drm.h> 33 #include "ppatomctrl.h" 34 #include "atombios.h" 35 #include "pptable_v1_0.h" 36 #include "pppcielanes.h" 37 #include "amd_pcie_helpers.h" 38 #include "hardwaremanager.h" 39 #include "process_pptables_v1_0.h" 40 #include "cgs_common.h" 41 42 #include "smu7_common.h" 43 44 #include "hwmgr.h" 45 #include "smu7_hwmgr.h" 46 #include "smu_ucode_xfer_vi.h" 47 #include "smu7_powertune.h" 48 #include "smu7_dyn_defaults.h" 49 #include "smu7_thermal.h" 50 #include "smu7_clockpowergating.h" 51 #include "processpptables.h" 52 #include "pp_thermal.h" 53 #include "smu7_baco.h" 54 #include "smu7_smumgr.h" 55 #include "polaris10_smumgr.h" 56 57 #include "ivsrcid/ivsrcid_vislands30.h" 58 59 #define MC_CG_ARB_FREQ_F0 0x0a 60 #define MC_CG_ARB_FREQ_F1 0x0b 61 #define MC_CG_ARB_FREQ_F2 0x0c 62 #define MC_CG_ARB_FREQ_F3 0x0d 63 64 #define MC_CG_SEQ_DRAMCONF_S0 0x05 65 #define MC_CG_SEQ_DRAMCONF_S1 0x06 66 #define MC_CG_SEQ_YCLK_SUSPEND 0x04 67 #define MC_CG_SEQ_YCLK_RESUME 0x0a 68 69 #define SMC_CG_IND_START 0xc0030000 70 #define SMC_CG_IND_END 0xc0040000 71 72 #define MEM_FREQ_LOW_LATENCY 25000 73 #define MEM_FREQ_HIGH_LATENCY 80000 74 75 #define MEM_LATENCY_HIGH 45 76 #define MEM_LATENCY_LOW 35 77 #define MEM_LATENCY_ERR 0xFFFF 78 79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28 80 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 81 #define MC_SEQ_MISC0_GDDR5_VALUE 5 82 83 #define PCIE_BUS_CLK 10000 84 #define TCLK (PCIE_BUS_CLK / 10) 85 86 static struct profile_mode_setting smu7_profiling[7] = { 87 {0, 0, 0, 0, 0, 0, 0, 0}, 88 {1, 0, 100, 30, 1, 0, 100, 10}, 89 {1, 10, 0, 30, 0, 0, 0, 0}, 90 {0, 0, 0, 0, 1, 10, 16, 31}, 91 {1, 0, 11, 50, 1, 0, 100, 10}, 92 {1, 0, 5, 30, 0, 0, 0, 0}, 93 {0, 0, 0, 0, 0, 0, 0, 0}, 94 }; 95 96 #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310) 97 98 #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280 99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L 100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L 101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005 102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006 103 104 #define STRAP_EVV_REVISION_MSB 2211 105 #define STRAP_EVV_REVISION_LSB 2208 106 107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ 108 enum DPM_EVENT_SRC { 109 DPM_EVENT_SRC_ANALOG = 0, 110 DPM_EVENT_SRC_EXTERNAL = 1, 111 DPM_EVENT_SRC_DIGITAL = 2, 112 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, 113 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 114 }; 115 116 #define ixDIDT_SQ_EDC_CTRL 0x0013 117 #define ixDIDT_SQ_EDC_THRESHOLD 0x0014 118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015 119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016 120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017 121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018 122 123 #define ixDIDT_TD_EDC_CTRL 0x0053 124 #define ixDIDT_TD_EDC_THRESHOLD 0x0054 125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055 126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056 127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057 128 #define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058 129 130 #define ixDIDT_TCP_EDC_CTRL 0x0073 131 #define ixDIDT_TCP_EDC_THRESHOLD 0x0074 132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075 133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076 134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077 135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078 136 137 #define ixDIDT_DB_EDC_CTRL 0x0033 138 #define ixDIDT_DB_EDC_THRESHOLD 0x0034 139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035 140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036 141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037 142 #define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038 143 144 uint32_t DIDTEDCConfig_P12[] = { 145 ixDIDT_SQ_EDC_STALL_PATTERN_1_2, 146 ixDIDT_SQ_EDC_STALL_PATTERN_3_4, 147 ixDIDT_SQ_EDC_STALL_PATTERN_5_6, 148 ixDIDT_SQ_EDC_STALL_PATTERN_7, 149 ixDIDT_SQ_EDC_THRESHOLD, 150 ixDIDT_SQ_EDC_CTRL, 151 ixDIDT_TD_EDC_STALL_PATTERN_1_2, 152 ixDIDT_TD_EDC_STALL_PATTERN_3_4, 153 ixDIDT_TD_EDC_STALL_PATTERN_5_6, 154 ixDIDT_TD_EDC_STALL_PATTERN_7, 155 ixDIDT_TD_EDC_THRESHOLD, 156 ixDIDT_TD_EDC_CTRL, 157 ixDIDT_TCP_EDC_STALL_PATTERN_1_2, 158 ixDIDT_TCP_EDC_STALL_PATTERN_3_4, 159 ixDIDT_TCP_EDC_STALL_PATTERN_5_6, 160 ixDIDT_TCP_EDC_STALL_PATTERN_7, 161 ixDIDT_TCP_EDC_THRESHOLD, 162 ixDIDT_TCP_EDC_CTRL, 163 ixDIDT_DB_EDC_STALL_PATTERN_1_2, 164 ixDIDT_DB_EDC_STALL_PATTERN_3_4, 165 ixDIDT_DB_EDC_STALL_PATTERN_5_6, 166 ixDIDT_DB_EDC_STALL_PATTERN_7, 167 ixDIDT_DB_EDC_THRESHOLD, 168 ixDIDT_DB_EDC_CTRL, 169 0xFFFFFFFF // End of list 170 }; 171 172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic); 173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 174 enum pp_clock_type type, uint32_t mask); 175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr); 176 177 static struct smu7_power_state *cast_phw_smu7_power_state( 178 struct pp_hw_power_state *hw_ps) 179 { 180 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 181 "Invalid Powerstate Type!", 182 return NULL); 183 184 return (struct smu7_power_state *)hw_ps; 185 } 186 187 static const struct smu7_power_state *cast_const_phw_smu7_power_state( 188 const struct pp_hw_power_state *hw_ps) 189 { 190 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 191 "Invalid Powerstate Type!", 192 return NULL); 193 194 return (const struct smu7_power_state *)hw_ps; 195 } 196 197 /** 198 * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct 199 * 200 * @hwmgr: the address of the powerplay hardware manager. 201 * Return: always 0 202 */ 203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr) 204 { 205 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); 206 207 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 208 209 return 0; 210 } 211 212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr) 213 { 214 uint32_t speedCntl = 0; 215 216 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 217 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, 218 ixPCIE_LC_SPEED_CNTL); 219 return((uint16_t)PHM_GET_FIELD(speedCntl, 220 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); 221 } 222 223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) 224 { 225 uint32_t link_width; 226 227 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 228 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 229 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); 230 231 PP_ASSERT_WITH_CODE((7 >= link_width), 232 "Invalid PCIe lane width!", return 0); 233 234 return decode_pcie_lane_width(link_width); 235 } 236 237 /** 238 * smu7_enable_smc_voltage_controller - Enable voltage control 239 * 240 * @hwmgr: the address of the powerplay hardware manager. 241 * Return: always PP_Result_OK 242 */ 243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) 244 { 245 if (hwmgr->chip_id >= CHIP_POLARIS10 && 246 hwmgr->chip_id <= CHIP_VEGAM) { 247 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 248 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0); 249 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 250 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0); 251 } 252 253 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK) 254 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL); 255 256 return 0; 257 } 258 259 /** 260 * smu7_voltage_control - Checks if we want to support voltage control 261 * 262 * @hwmgr: the address of the powerplay hardware manager. 263 */ 264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr) 265 { 266 const struct smu7_hwmgr *data = 267 (const struct smu7_hwmgr *)(hwmgr->backend); 268 269 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control); 270 } 271 272 /** 273 * smu7_enable_voltage_control - Enable voltage control 274 * 275 * @hwmgr: the address of the powerplay hardware manager. 276 * Return: always 0 277 */ 278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr) 279 { 280 /* enable voltage control */ 281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 282 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); 283 284 return 0; 285 } 286 287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table, 288 struct phm_clock_voltage_dependency_table *voltage_dependency_table 289 ) 290 { 291 uint32_t i; 292 293 PP_ASSERT_WITH_CODE((NULL != voltage_table), 294 "Voltage Dependency Table empty.", return -EINVAL;); 295 296 voltage_table->mask_low = 0; 297 voltage_table->phase_delay = 0; 298 voltage_table->count = voltage_dependency_table->count; 299 300 for (i = 0; i < voltage_dependency_table->count; i++) { 301 voltage_table->entries[i].value = 302 voltage_dependency_table->entries[i].v; 303 voltage_table->entries[i].smio_low = 0; 304 } 305 306 return 0; 307 } 308 309 310 /** 311 * smu7_construct_voltage_tables - Create Voltage Tables. 312 * 313 * @hwmgr: the address of the powerplay hardware manager. 314 * Return: always 0 315 */ 316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr) 317 { 318 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 319 struct phm_ppt_v1_information *table_info = 320 (struct phm_ppt_v1_information *)hwmgr->pptable; 321 int result = 0; 322 uint32_t tmp; 323 324 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 325 result = atomctrl_get_voltage_table_v3(hwmgr, 326 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, 327 &(data->mvdd_voltage_table)); 328 PP_ASSERT_WITH_CODE((0 == result), 329 "Failed to retrieve MVDD table.", 330 return result); 331 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { 332 if (hwmgr->pp_table_version == PP_TABLE_V1) 333 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), 334 table_info->vdd_dep_on_mclk); 335 else if (hwmgr->pp_table_version == PP_TABLE_V0) 336 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table), 337 hwmgr->dyn_state.mvdd_dependency_on_mclk); 338 339 PP_ASSERT_WITH_CODE((0 == result), 340 "Failed to retrieve SVI2 MVDD table from dependency table.", 341 return result;); 342 } 343 344 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 345 result = atomctrl_get_voltage_table_v3(hwmgr, 346 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, 347 &(data->vddci_voltage_table)); 348 PP_ASSERT_WITH_CODE((0 == result), 349 "Failed to retrieve VDDCI table.", 350 return result); 351 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 352 if (hwmgr->pp_table_version == PP_TABLE_V1) 353 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), 354 table_info->vdd_dep_on_mclk); 355 else if (hwmgr->pp_table_version == PP_TABLE_V0) 356 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table), 357 hwmgr->dyn_state.vddci_dependency_on_mclk); 358 PP_ASSERT_WITH_CODE((0 == result), 359 "Failed to retrieve SVI2 VDDCI table from dependency table.", 360 return result); 361 } 362 363 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 364 /* VDDGFX has only SVI2 voltage control */ 365 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table), 366 table_info->vddgfx_lookup_table); 367 PP_ASSERT_WITH_CODE((0 == result), 368 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); 369 } 370 371 372 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { 373 result = atomctrl_get_voltage_table_v3(hwmgr, 374 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, 375 &data->vddc_voltage_table); 376 PP_ASSERT_WITH_CODE((0 == result), 377 "Failed to retrieve VDDC table.", return result;); 378 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 379 380 if (hwmgr->pp_table_version == PP_TABLE_V0) 381 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table, 382 hwmgr->dyn_state.vddc_dependency_on_mclk); 383 else if (hwmgr->pp_table_version == PP_TABLE_V1) 384 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), 385 table_info->vddc_lookup_table); 386 387 PP_ASSERT_WITH_CODE((0 == result), 388 "Failed to retrieve SVI2 VDDC table from dependency table.", return result;); 389 } 390 391 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC); 392 PP_ASSERT_WITH_CODE( 393 (data->vddc_voltage_table.count <= tmp), 394 "Too many voltage values for VDDC. Trimming to fit state table.", 395 phm_trim_voltage_table_to_fit_state_table(tmp, 396 &(data->vddc_voltage_table))); 397 398 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 399 PP_ASSERT_WITH_CODE( 400 (data->vddgfx_voltage_table.count <= tmp), 401 "Too many voltage values for VDDC. Trimming to fit state table.", 402 phm_trim_voltage_table_to_fit_state_table(tmp, 403 &(data->vddgfx_voltage_table))); 404 405 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI); 406 PP_ASSERT_WITH_CODE( 407 (data->vddci_voltage_table.count <= tmp), 408 "Too many voltage values for VDDCI. Trimming to fit state table.", 409 phm_trim_voltage_table_to_fit_state_table(tmp, 410 &(data->vddci_voltage_table))); 411 412 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD); 413 PP_ASSERT_WITH_CODE( 414 (data->mvdd_voltage_table.count <= tmp), 415 "Too many voltage values for MVDD. Trimming to fit state table.", 416 phm_trim_voltage_table_to_fit_state_table(tmp, 417 &(data->mvdd_voltage_table))); 418 419 return 0; 420 } 421 422 /** 423 * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters 424 * 425 * @hwmgr: the address of the powerplay hardware manager. 426 * Return: always 0 427 */ 428 static int smu7_program_static_screen_threshold_parameters( 429 struct pp_hwmgr *hwmgr) 430 { 431 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 432 433 /* Set static screen threshold unit */ 434 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 435 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, 436 data->static_screen_threshold_unit); 437 /* Set static screen threshold */ 438 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 439 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, 440 data->static_screen_threshold); 441 442 return 0; 443 } 444 445 /** 446 * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching. 447 * 448 * @hwmgr: the address of the powerplay hardware manager. 449 * Return: always 0 450 */ 451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr) 452 { 453 uint32_t display_gap = 454 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 455 ixCG_DISPLAY_GAP_CNTL); 456 457 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 458 DISP_GAP, DISPLAY_GAP_IGNORE); 459 460 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 461 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); 462 463 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 464 ixCG_DISPLAY_GAP_CNTL, display_gap); 465 466 return 0; 467 } 468 469 /** 470 * smu7_program_voting_clients - Programs activity state transition voting clients 471 * 472 * @hwmgr: the address of the powerplay hardware manager. 473 * Return: always 0 474 */ 475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr) 476 { 477 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 478 int i; 479 480 /* Clear reset for voting clients before enabling DPM */ 481 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 482 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); 483 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 484 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); 485 486 for (i = 0; i < 8; i++) 487 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 488 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 489 data->voting_rights_clients[i]); 490 return 0; 491 } 492 493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr) 494 { 495 int i; 496 497 /* Reset voting clients before disabling DPM */ 498 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 499 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); 500 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 501 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); 502 503 for (i = 0; i < 8; i++) 504 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 505 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0); 506 507 return 0; 508 } 509 510 /* Copy one arb setting to another and then switch the active set. 511 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. 512 */ 513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, 514 uint32_t arb_src, uint32_t arb_dest) 515 { 516 uint32_t mc_arb_dram_timing; 517 uint32_t mc_arb_dram_timing2; 518 uint32_t burst_time; 519 uint32_t mc_cg_config; 520 521 switch (arb_src) { 522 case MC_CG_ARB_FREQ_F0: 523 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 524 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 525 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 526 break; 527 case MC_CG_ARB_FREQ_F1: 528 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); 529 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); 530 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); 531 break; 532 default: 533 return -EINVAL; 534 } 535 536 switch (arb_dest) { 537 case MC_CG_ARB_FREQ_F0: 538 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); 539 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); 540 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); 541 break; 542 case MC_CG_ARB_FREQ_F1: 543 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); 544 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); 545 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); 546 break; 547 default: 548 return -EINVAL; 549 } 550 551 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); 552 mc_cg_config |= 0x0000000F; 553 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); 554 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); 555 556 return 0; 557 } 558 559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr) 560 { 561 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL); 562 } 563 564 /** 565 * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1 566 * 567 * @hwmgr: the address of the powerplay hardware manager. 568 * Return: always 0 569 * This function is to be called from the SetPowerState table. 570 */ 571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) 572 { 573 return smu7_copy_and_switch_arb_sets(hwmgr, 574 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); 575 } 576 577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) 578 { 579 uint32_t tmp; 580 581 tmp = (cgs_read_ind_register(hwmgr->device, 582 CGS_IND_REG__SMC, ixSMC_SCRATCH9) & 583 0x0000ff00) >> 8; 584 585 if (tmp == MC_CG_ARB_FREQ_F0) 586 return 0; 587 588 return smu7_copy_and_switch_arb_sets(hwmgr, 589 tmp, MC_CG_ARB_FREQ_F0); 590 } 591 592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr) 593 { 594 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 595 uint16_t pcie_gen = 0; 596 597 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 && 598 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4) 599 pcie_gen = 3; 600 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 && 601 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3) 602 pcie_gen = 2; 603 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 && 604 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2) 605 pcie_gen = 1; 606 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 && 607 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1) 608 pcie_gen = 0; 609 610 return pcie_gen; 611 } 612 613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr) 614 { 615 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 616 uint16_t pcie_width = 0; 617 618 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) 619 pcie_width = 16; 620 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) 621 pcie_width = 12; 622 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) 623 pcie_width = 8; 624 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) 625 pcie_width = 4; 626 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) 627 pcie_width = 2; 628 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) 629 pcie_width = 1; 630 631 return pcie_width; 632 } 633 634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 635 { 636 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 637 638 struct phm_ppt_v1_information *table_info = 639 (struct phm_ppt_v1_information *)(hwmgr->pptable); 640 struct phm_ppt_v1_pcie_table *pcie_table = NULL; 641 642 uint32_t i, max_entry; 643 uint32_t tmp; 644 645 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || 646 data->use_pcie_power_saving_levels), "No pcie performance levels!", 647 return -EINVAL); 648 649 if (table_info != NULL) 650 pcie_table = table_info->pcie_table; 651 652 if (data->use_pcie_performance_levels && 653 !data->use_pcie_power_saving_levels) { 654 data->pcie_gen_power_saving = data->pcie_gen_performance; 655 data->pcie_lane_power_saving = data->pcie_lane_performance; 656 } else if (!data->use_pcie_performance_levels && 657 data->use_pcie_power_saving_levels) { 658 data->pcie_gen_performance = data->pcie_gen_power_saving; 659 data->pcie_lane_performance = data->pcie_lane_power_saving; 660 } 661 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK); 662 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, 663 tmp, 664 MAX_REGULAR_DPM_NUMBER); 665 666 if (pcie_table != NULL) { 667 /* max_entry is used to make sure we reserve one PCIE level 668 * for boot level (fix for A+A PSPP issue). 669 * If PCIE table from PPTable have ULV entry + 8 entries, 670 * then ignore the last entry.*/ 671 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count; 672 for (i = 1; i < max_entry; i++) { 673 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, 674 get_pcie_gen_support(data->pcie_gen_cap, 675 pcie_table->entries[i].gen_speed), 676 get_pcie_lane_support(data->pcie_lane_cap, 677 pcie_table->entries[i].lane_width)); 678 } 679 data->dpm_table.pcie_speed_table.count = max_entry - 1; 680 smum_update_smc_table(hwmgr, SMU_BIF_TABLE); 681 } else { 682 /* Hardcode Pcie Table */ 683 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, 684 get_pcie_gen_support(data->pcie_gen_cap, 685 PP_Min_PCIEGen), 686 get_pcie_lane_support(data->pcie_lane_cap, 687 PP_Max_PCIELane)); 688 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, 689 get_pcie_gen_support(data->pcie_gen_cap, 690 PP_Min_PCIEGen), 691 get_pcie_lane_support(data->pcie_lane_cap, 692 PP_Max_PCIELane)); 693 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, 694 get_pcie_gen_support(data->pcie_gen_cap, 695 PP_Max_PCIEGen), 696 get_pcie_lane_support(data->pcie_lane_cap, 697 PP_Max_PCIELane)); 698 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, 699 get_pcie_gen_support(data->pcie_gen_cap, 700 PP_Max_PCIEGen), 701 get_pcie_lane_support(data->pcie_lane_cap, 702 PP_Max_PCIELane)); 703 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, 704 get_pcie_gen_support(data->pcie_gen_cap, 705 PP_Max_PCIEGen), 706 get_pcie_lane_support(data->pcie_lane_cap, 707 PP_Max_PCIELane)); 708 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, 709 get_pcie_gen_support(data->pcie_gen_cap, 710 PP_Max_PCIEGen), 711 get_pcie_lane_support(data->pcie_lane_cap, 712 PP_Max_PCIELane)); 713 714 data->dpm_table.pcie_speed_table.count = 6; 715 } 716 /* Populate last level for boot PCIE level, but do not increment count. */ 717 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 718 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) 719 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i, 720 get_pcie_gen_support(data->pcie_gen_cap, 721 PP_Max_PCIEGen), 722 data->vbios_boot_state.pcie_lane_bootup_value); 723 } else { 724 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 725 data->dpm_table.pcie_speed_table.count, 726 get_pcie_gen_support(data->pcie_gen_cap, 727 PP_Min_PCIEGen), 728 get_pcie_lane_support(data->pcie_lane_cap, 729 PP_Max_PCIELane)); 730 731 if (data->pcie_dpm_key_disabled) 732 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 733 data->dpm_table.pcie_speed_table.count, 734 smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr)); 735 } 736 return 0; 737 } 738 739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr) 740 { 741 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 742 743 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); 744 745 phm_reset_single_dpm_table( 746 &data->dpm_table.sclk_table, 747 smum_get_mac_definition(hwmgr, 748 SMU_MAX_LEVELS_GRAPHICS), 749 MAX_REGULAR_DPM_NUMBER); 750 phm_reset_single_dpm_table( 751 &data->dpm_table.mclk_table, 752 smum_get_mac_definition(hwmgr, 753 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER); 754 755 phm_reset_single_dpm_table( 756 &data->dpm_table.vddc_table, 757 smum_get_mac_definition(hwmgr, 758 SMU_MAX_LEVELS_VDDC), 759 MAX_REGULAR_DPM_NUMBER); 760 phm_reset_single_dpm_table( 761 &data->dpm_table.vddci_table, 762 smum_get_mac_definition(hwmgr, 763 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER); 764 765 phm_reset_single_dpm_table( 766 &data->dpm_table.mvdd_table, 767 smum_get_mac_definition(hwmgr, 768 SMU_MAX_LEVELS_MVDD), 769 MAX_REGULAR_DPM_NUMBER); 770 return 0; 771 } 772 /* 773 * This function is to initialize all DPM state tables 774 * for SMU7 based on the dependency table. 775 * Dynamic state patching function will then trim these 776 * state tables to the allowed range based 777 * on the power policy or external client requests, 778 * such as UVD request, etc. 779 */ 780 781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr) 782 { 783 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 784 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = 785 hwmgr->dyn_state.vddc_dependency_on_sclk; 786 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = 787 hwmgr->dyn_state.vddc_dependency_on_mclk; 788 struct phm_cac_leakage_table *std_voltage_table = 789 hwmgr->dyn_state.cac_leakage_table; 790 uint32_t i; 791 792 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, 793 "SCLK dependency table is missing. This table is mandatory", return -EINVAL); 794 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, 795 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 796 797 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 798 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 799 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, 800 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 801 802 803 /* Initialize Sclk DPM table based on allow Sclk values*/ 804 data->dpm_table.sclk_table.count = 0; 805 806 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 807 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != 808 allowed_vdd_sclk_table->entries[i].clk) { 809 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 810 allowed_vdd_sclk_table->entries[i].clk; 811 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0; 812 data->dpm_table.sclk_table.count++; 813 } 814 } 815 816 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 817 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 818 /* Initialize Mclk DPM table based on allow Mclk values */ 819 data->dpm_table.mclk_table.count = 0; 820 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 821 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != 822 allowed_vdd_mclk_table->entries[i].clk) { 823 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 824 allowed_vdd_mclk_table->entries[i].clk; 825 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0; 826 data->dpm_table.mclk_table.count++; 827 } 828 } 829 830 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ 831 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 832 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 833 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; 834 /* param1 is for corresponding std voltage */ 835 data->dpm_table.vddc_table.dpm_levels[i].enabled = true; 836 } 837 838 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; 839 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 840 841 if (NULL != allowed_vdd_mclk_table) { 842 /* Initialize Vddci DPM table based on allow Mclk values */ 843 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 844 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 845 data->dpm_table.vddci_table.dpm_levels[i].enabled = true; 846 } 847 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count; 848 } 849 850 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; 851 852 if (NULL != allowed_vdd_mclk_table) { 853 /* 854 * Initialize MVDD DPM table based on allow Mclk 855 * values 856 */ 857 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 858 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 859 data->dpm_table.mvdd_table.dpm_levels[i].enabled = true; 860 } 861 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; 862 } 863 864 return 0; 865 } 866 867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr) 868 { 869 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 870 struct phm_ppt_v1_information *table_info = 871 (struct phm_ppt_v1_information *)(hwmgr->pptable); 872 uint32_t i; 873 874 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 875 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 876 877 if (table_info == NULL) 878 return -EINVAL; 879 880 dep_sclk_table = table_info->vdd_dep_on_sclk; 881 dep_mclk_table = table_info->vdd_dep_on_mclk; 882 883 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, 884 "SCLK dependency table is missing.", 885 return -EINVAL); 886 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, 887 "SCLK dependency table count is 0.", 888 return -EINVAL); 889 890 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, 891 "MCLK dependency table is missing.", 892 return -EINVAL); 893 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 894 "MCLK dependency table count is 0", 895 return -EINVAL); 896 897 /* Initialize Sclk DPM table based on allow Sclk values */ 898 data->dpm_table.sclk_table.count = 0; 899 for (i = 0; i < dep_sclk_table->count; i++) { 900 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != 901 dep_sclk_table->entries[i].clk) { 902 903 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 904 dep_sclk_table->entries[i].clk; 905 906 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 907 i == 0; 908 data->dpm_table.sclk_table.count++; 909 } 910 } 911 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 912 hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk; 913 /* Initialize Mclk DPM table based on allow Mclk values */ 914 data->dpm_table.mclk_table.count = 0; 915 for (i = 0; i < dep_mclk_table->count; i++) { 916 if (i == 0 || data->dpm_table.mclk_table.dpm_levels 917 [data->dpm_table.mclk_table.count - 1].value != 918 dep_mclk_table->entries[i].clk) { 919 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 920 dep_mclk_table->entries[i].clk; 921 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 922 i == 0; 923 data->dpm_table.mclk_table.count++; 924 } 925 } 926 927 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 928 hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk; 929 return 0; 930 } 931 932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 933 { 934 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 935 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 936 struct phm_ppt_v1_information *table_info = 937 (struct phm_ppt_v1_information *)(hwmgr->pptable); 938 uint32_t i; 939 940 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 941 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 942 struct phm_odn_performance_level *entries; 943 944 if (table_info == NULL) 945 return -EINVAL; 946 947 dep_sclk_table = table_info->vdd_dep_on_sclk; 948 dep_mclk_table = table_info->vdd_dep_on_mclk; 949 950 odn_table->odn_core_clock_dpm_levels.num_of_pl = 951 data->golden_dpm_table.sclk_table.count; 952 entries = odn_table->odn_core_clock_dpm_levels.entries; 953 for (i = 0; i < data->golden_dpm_table.sclk_table.count; i++) { 954 entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value; 955 entries[i].enabled = true; 956 entries[i].vddc = dep_sclk_table->entries[i].vddc; 957 } 958 959 smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table, 960 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk)); 961 962 odn_table->odn_memory_clock_dpm_levels.num_of_pl = 963 data->golden_dpm_table.mclk_table.count; 964 entries = odn_table->odn_memory_clock_dpm_levels.entries; 965 for (i = 0; i < data->golden_dpm_table.mclk_table.count; i++) { 966 entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value; 967 entries[i].enabled = true; 968 entries[i].vddc = dep_mclk_table->entries[i].vddc; 969 } 970 971 smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table, 972 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk)); 973 974 return 0; 975 } 976 977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr) 978 { 979 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 980 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 981 struct phm_ppt_v1_information *table_info = 982 (struct phm_ppt_v1_information *)(hwmgr->pptable); 983 uint32_t min_vddc = 0; 984 uint32_t max_vddc = 0; 985 986 if (!table_info) 987 return; 988 989 dep_sclk_table = table_info->vdd_dep_on_sclk; 990 991 atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc); 992 993 if (min_vddc == 0 || min_vddc > 2000 994 || min_vddc > dep_sclk_table->entries[0].vddc) 995 min_vddc = dep_sclk_table->entries[0].vddc; 996 997 if (max_vddc == 0 || max_vddc > 2000 998 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc) 999 max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc; 1000 1001 data->odn_dpm_table.min_vddc = min_vddc; 1002 data->odn_dpm_table.max_vddc = max_vddc; 1003 } 1004 1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 1006 { 1007 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1008 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 1009 struct phm_ppt_v1_information *table_info = 1010 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1011 uint32_t i; 1012 1013 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 1014 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 1015 1016 if (table_info == NULL) 1017 return; 1018 1019 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1020 if (odn_table->odn_core_clock_dpm_levels.entries[i].clock != 1021 data->dpm_table.sclk_table.dpm_levels[i].value) { 1022 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 1023 break; 1024 } 1025 } 1026 1027 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 1028 if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock != 1029 data->dpm_table.mclk_table.dpm_levels[i].value) { 1030 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 1031 break; 1032 } 1033 } 1034 1035 dep_table = table_info->vdd_dep_on_mclk; 1036 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk); 1037 1038 for (i = 0; i < dep_table->count; i++) { 1039 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 1040 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 1041 return; 1042 } 1043 } 1044 1045 dep_table = table_info->vdd_dep_on_sclk; 1046 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk); 1047 for (i = 0; i < dep_table->count; i++) { 1048 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 1049 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 1050 return; 1051 } 1052 } 1053 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1054 data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC; 1055 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 1056 } 1057 } 1058 1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1060 { 1061 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1062 1063 smu7_reset_dpm_tables(hwmgr); 1064 1065 if (hwmgr->pp_table_version == PP_TABLE_V1) 1066 smu7_setup_dpm_tables_v1(hwmgr); 1067 else if (hwmgr->pp_table_version == PP_TABLE_V0) 1068 smu7_setup_dpm_tables_v0(hwmgr); 1069 1070 smu7_setup_default_pcie_table(hwmgr); 1071 1072 /* save a copy of the default DPM table */ 1073 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1074 sizeof(struct smu7_dpm_table)); 1075 1076 /* initialize ODN table */ 1077 if (hwmgr->od_enabled) { 1078 if (data->odn_dpm_table.max_vddc) { 1079 smu7_check_dpm_table_updated(hwmgr); 1080 } else { 1081 smu7_setup_voltage_range_from_vbios(hwmgr); 1082 smu7_odn_initial_default_setting(hwmgr); 1083 } 1084 } 1085 return 0; 1086 } 1087 1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) 1089 { 1090 1091 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1092 PHM_PlatformCaps_RegulatorHot)) 1093 return smum_send_msg_to_smc(hwmgr, 1094 PPSMC_MSG_EnableVRHotGPIOInterrupt, 1095 NULL); 1096 1097 return 0; 1098 } 1099 1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr) 1101 { 1102 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1103 SCLK_PWRMGT_OFF, 0); 1104 return 0; 1105 } 1106 1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr) 1108 { 1109 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1110 1111 if (data->ulv_supported) 1112 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL); 1113 1114 return 0; 1115 } 1116 1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr) 1118 { 1119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1120 1121 if (data->ulv_supported) 1122 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL); 1123 1124 return 0; 1125 } 1126 1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1128 { 1129 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1130 PHM_PlatformCaps_SclkDeepSleep)) { 1131 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL)) 1132 PP_ASSERT_WITH_CODE(false, 1133 "Attempt to enable Master Deep Sleep switch failed!", 1134 return -EINVAL); 1135 } else { 1136 if (smum_send_msg_to_smc(hwmgr, 1137 PPSMC_MSG_MASTER_DeepSleep_OFF, 1138 NULL)) { 1139 PP_ASSERT_WITH_CODE(false, 1140 "Attempt to disable Master Deep Sleep switch failed!", 1141 return -EINVAL); 1142 } 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1149 { 1150 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1151 PHM_PlatformCaps_SclkDeepSleep)) { 1152 if (smum_send_msg_to_smc(hwmgr, 1153 PPSMC_MSG_MASTER_DeepSleep_OFF, 1154 NULL)) { 1155 PP_ASSERT_WITH_CODE(false, 1156 "Attempt to disable Master Deep Sleep switch failed!", 1157 return -EINVAL); 1158 } 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr) 1165 { 1166 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1167 uint32_t soft_register_value = 0; 1168 uint32_t handshake_disables_offset = data->soft_regs_start 1169 + smum_get_offsetof(hwmgr, 1170 SMU_SoftRegisters, HandshakeDisables); 1171 1172 soft_register_value = cgs_read_ind_register(hwmgr->device, 1173 CGS_IND_REG__SMC, handshake_disables_offset); 1174 soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE; 1175 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1176 handshake_disables_offset, soft_register_value); 1177 return 0; 1178 } 1179 1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr) 1181 { 1182 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1183 uint32_t soft_register_value = 0; 1184 uint32_t handshake_disables_offset = data->soft_regs_start 1185 + smum_get_offsetof(hwmgr, 1186 SMU_SoftRegisters, HandshakeDisables); 1187 1188 soft_register_value = cgs_read_ind_register(hwmgr->device, 1189 CGS_IND_REG__SMC, handshake_disables_offset); 1190 soft_register_value |= smum_get_mac_definition(hwmgr, 1191 SMU_UVD_MCLK_HANDSHAKE_DISABLE); 1192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1193 handshake_disables_offset, soft_register_value); 1194 return 0; 1195 } 1196 1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1198 { 1199 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1200 1201 /* enable SCLK dpm */ 1202 if (!data->sclk_dpm_key_disabled) { 1203 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1204 hwmgr->chip_id <= CHIP_VEGAM) 1205 smu7_disable_sclk_vce_handshake(hwmgr); 1206 1207 PP_ASSERT_WITH_CODE( 1208 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)), 1209 "Failed to enable SCLK DPM during DPM Start Function!", 1210 return -EINVAL); 1211 } 1212 1213 /* enable MCLK dpm */ 1214 if (0 == data->mclk_dpm_key_disabled) { 1215 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK)) 1216 smu7_disable_handshake_uvd(hwmgr); 1217 1218 PP_ASSERT_WITH_CODE( 1219 (0 == smum_send_msg_to_smc(hwmgr, 1220 PPSMC_MSG_MCLKDPM_Enable, 1221 NULL)), 1222 "Failed to enable MCLK DPM during DPM Start Function!", 1223 return -EINVAL); 1224 1225 if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) || 1226 (hwmgr->chip_id == CHIP_POLARIS10) || 1227 (hwmgr->chip_id == CHIP_POLARIS11) || 1228 (hwmgr->chip_id == CHIP_POLARIS12) || 1229 (hwmgr->chip_id == CHIP_TONGA) || 1230 (hwmgr->chip_id == CHIP_TOPAZ)) 1231 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); 1232 1233 1234 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1235 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5); 1236 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5); 1237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005); 1238 udelay(10); 1239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005); 1240 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005); 1241 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005); 1242 } else { 1243 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); 1244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); 1245 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); 1246 udelay(10); 1247 if (hwmgr->chip_id == CHIP_VEGAM) { 1248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009); 1249 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009); 1250 } else { 1251 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); 1252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); 1253 } 1254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); 1255 } 1256 } 1257 1258 return 0; 1259 } 1260 1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr) 1262 { 1263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1264 1265 /*enable general power management */ 1266 1267 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1268 GLOBAL_PWRMGT_EN, 1); 1269 1270 /* enable sclk deep sleep */ 1271 1272 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1273 DYNAMIC_PM_EN, 1); 1274 1275 /* prepare for PCIE DPM */ 1276 1277 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1278 data->soft_regs_start + 1279 smum_get_offsetof(hwmgr, SMU_SoftRegisters, 1280 VoltageChangeTimeout), 0x1000); 1281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 1282 SWRST_COMMAND_1, RESETLC, 0x0); 1283 1284 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) 1285 cgs_write_register(hwmgr->device, 0x1488, 1286 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1)); 1287 1288 if (smu7_enable_sclk_mclk_dpm(hwmgr)) { 1289 pr_err("Failed to enable Sclk DPM and Mclk DPM!"); 1290 return -EINVAL; 1291 } 1292 1293 /* enable PCIE dpm */ 1294 if (0 == data->pcie_dpm_key_disabled) { 1295 PP_ASSERT_WITH_CODE( 1296 (0 == smum_send_msg_to_smc(hwmgr, 1297 PPSMC_MSG_PCIeDPM_Enable, 1298 NULL)), 1299 "Failed to enable pcie DPM during DPM Start Function!", 1300 return -EINVAL); 1301 } else { 1302 PP_ASSERT_WITH_CODE( 1303 (0 == smum_send_msg_to_smc(hwmgr, 1304 PPSMC_MSG_PCIeDPM_Disable, 1305 NULL)), 1306 "Failed to disable pcie DPM during DPM Start Function!", 1307 return -EINVAL); 1308 } 1309 1310 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1311 PHM_PlatformCaps_Falcon_QuickTransition)) { 1312 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr, 1313 PPSMC_MSG_EnableACDCGPIOInterrupt, 1314 NULL)), 1315 "Failed to enable AC DC GPIO Interrupt!", 1316 ); 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1323 { 1324 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1325 1326 /* disable SCLK dpm */ 1327 if (!data->sclk_dpm_key_disabled) { 1328 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1329 "Trying to disable SCLK DPM when DPM is disabled", 1330 return 0); 1331 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL); 1332 } 1333 1334 /* disable MCLK dpm */ 1335 if (!data->mclk_dpm_key_disabled) { 1336 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1337 "Trying to disable MCLK DPM when DPM is disabled", 1338 return 0); 1339 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL); 1340 } 1341 1342 return 0; 1343 } 1344 1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr) 1346 { 1347 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1348 1349 /* disable general power management */ 1350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1351 GLOBAL_PWRMGT_EN, 0); 1352 /* disable sclk deep sleep */ 1353 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1354 DYNAMIC_PM_EN, 0); 1355 1356 /* disable PCIE dpm */ 1357 if (!data->pcie_dpm_key_disabled) { 1358 PP_ASSERT_WITH_CODE( 1359 (smum_send_msg_to_smc(hwmgr, 1360 PPSMC_MSG_PCIeDPM_Disable, 1361 NULL) == 0), 1362 "Failed to disable pcie DPM during DPM Stop Function!", 1363 return -EINVAL); 1364 } 1365 1366 smu7_disable_sclk_mclk_dpm(hwmgr); 1367 1368 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1369 "Trying to disable voltage DPM when DPM is disabled", 1370 return 0); 1371 1372 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL); 1373 1374 return 0; 1375 } 1376 1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) 1378 { 1379 bool protection; 1380 enum DPM_EVENT_SRC src; 1381 1382 switch (sources) { 1383 default: 1384 pr_err("Unknown throttling event sources."); 1385 fallthrough; 1386 case 0: 1387 protection = false; 1388 /* src is unused */ 1389 break; 1390 case (1 << PHM_AutoThrottleSource_Thermal): 1391 protection = true; 1392 src = DPM_EVENT_SRC_DIGITAL; 1393 break; 1394 case (1 << PHM_AutoThrottleSource_External): 1395 protection = true; 1396 src = DPM_EVENT_SRC_EXTERNAL; 1397 break; 1398 case (1 << PHM_AutoThrottleSource_External) | 1399 (1 << PHM_AutoThrottleSource_Thermal): 1400 protection = true; 1401 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; 1402 break; 1403 } 1404 /* Order matters - don't enable thermal protection for the wrong source. */ 1405 if (protection) { 1406 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, 1407 DPM_EVENT_SRC, src); 1408 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1409 THERMAL_PROTECTION_DIS, 1410 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1411 PHM_PlatformCaps_ThermalController)); 1412 } else 1413 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1414 THERMAL_PROTECTION_DIS, 1); 1415 } 1416 1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1418 PHM_AutoThrottleSource source) 1419 { 1420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1421 1422 if (!(data->active_auto_throttle_sources & (1 << source))) { 1423 data->active_auto_throttle_sources |= 1 << source; 1424 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1425 } 1426 return 0; 1427 } 1428 1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1430 { 1431 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1432 } 1433 1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1435 PHM_AutoThrottleSource source) 1436 { 1437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1438 1439 if (data->active_auto_throttle_sources & (1 << source)) { 1440 data->active_auto_throttle_sources &= ~(1 << source); 1441 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1442 } 1443 return 0; 1444 } 1445 1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1447 { 1448 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1449 } 1450 1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr) 1452 { 1453 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1454 data->pcie_performance_request = true; 1455 1456 return 0; 1457 } 1458 1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr, 1460 uint32_t *cac_config_regs, 1461 AtomCtrl_EDCLeakgeTable *edc_leakage_table) 1462 { 1463 uint32_t data, i = 0; 1464 1465 while (cac_config_regs[i] != 0xFFFFFFFF) { 1466 data = edc_leakage_table->DIDT_REG[i]; 1467 cgs_write_ind_register(hwmgr->device, 1468 CGS_IND_REG__DIDT, 1469 cac_config_regs[i], 1470 data); 1471 i++; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr) 1478 { 1479 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1480 int ret = 0; 1481 1482 if (!data->disable_edc_leakage_controller && 1483 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 1484 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 1485 ret = smu7_program_edc_didt_registers(hwmgr, 1486 DIDTEDCConfig_P12, 1487 &data->edc_leakage_table); 1488 if (ret) 1489 return ret; 1490 1491 ret = smum_send_msg_to_smc(hwmgr, 1492 (PPSMC_Msg)PPSMC_MSG_EnableEDCController, 1493 NULL); 1494 } else { 1495 ret = smum_send_msg_to_smc(hwmgr, 1496 (PPSMC_Msg)PPSMC_MSG_DisableEDCController, 1497 NULL); 1498 } 1499 1500 return ret; 1501 } 1502 1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) 1504 { 1505 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1506 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; 1507 int32_t tmp_sclk, count, percentage; 1508 1509 if (golden_dpm_table->mclk_table.count == 1) { 1510 percentage = 70; 1511 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value; 1512 } else { 1513 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / 1514 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 1515 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; 1516 } 1517 1518 tmp_sclk = hwmgr->pstate_mclk * percentage / 100; 1519 1520 if (hwmgr->pp_table_version == PP_TABLE_V0) { 1521 struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk = 1522 hwmgr->dyn_state.vddc_dependency_on_sclk; 1523 1524 for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) { 1525 if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) { 1526 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk; 1527 break; 1528 } 1529 } 1530 if (count < 0) 1531 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk; 1532 1533 hwmgr->pstate_sclk_peak = 1534 vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk; 1535 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 1536 struct phm_ppt_v1_information *table_info = 1537 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1538 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk = 1539 table_info->vdd_dep_on_sclk; 1540 1541 for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) { 1542 if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) { 1543 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk; 1544 break; 1545 } 1546 } 1547 if (count < 0) 1548 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk; 1549 1550 hwmgr->pstate_sclk_peak = 1551 vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk; 1552 } 1553 1554 hwmgr->pstate_mclk_peak = 1555 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 1556 1557 /* make sure the output is in Mhz */ 1558 hwmgr->pstate_sclk /= 100; 1559 hwmgr->pstate_mclk /= 100; 1560 hwmgr->pstate_sclk_peak /= 100; 1561 hwmgr->pstate_mclk_peak /= 100; 1562 } 1563 1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 1565 { 1566 int tmp_result = 0; 1567 int result = 0; 1568 1569 if (smu7_voltage_control(hwmgr)) { 1570 tmp_result = smu7_enable_voltage_control(hwmgr); 1571 PP_ASSERT_WITH_CODE(tmp_result == 0, 1572 "Failed to enable voltage control!", 1573 result = tmp_result); 1574 1575 tmp_result = smu7_construct_voltage_tables(hwmgr); 1576 PP_ASSERT_WITH_CODE((0 == tmp_result), 1577 "Failed to construct voltage tables!", 1578 result = tmp_result); 1579 } 1580 smum_initialize_mc_reg_table(hwmgr); 1581 1582 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1583 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) 1584 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1585 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); 1586 1587 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1588 PHM_PlatformCaps_ThermalController)) 1589 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1590 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); 1591 1592 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr); 1593 PP_ASSERT_WITH_CODE((0 == tmp_result), 1594 "Failed to program static screen threshold parameters!", 1595 result = tmp_result); 1596 1597 tmp_result = smu7_enable_display_gap(hwmgr); 1598 PP_ASSERT_WITH_CODE((0 == tmp_result), 1599 "Failed to enable display gap!", result = tmp_result); 1600 1601 tmp_result = smu7_program_voting_clients(hwmgr); 1602 PP_ASSERT_WITH_CODE((0 == tmp_result), 1603 "Failed to program voting clients!", result = tmp_result); 1604 1605 tmp_result = smum_process_firmware_header(hwmgr); 1606 PP_ASSERT_WITH_CODE((0 == tmp_result), 1607 "Failed to process firmware header!", result = tmp_result); 1608 1609 if (hwmgr->chip_id != CHIP_VEGAM) { 1610 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr); 1611 PP_ASSERT_WITH_CODE((0 == tmp_result), 1612 "Failed to initialize switch from ArbF0 to F1!", 1613 result = tmp_result); 1614 } 1615 1616 result = smu7_setup_default_dpm_tables(hwmgr); 1617 PP_ASSERT_WITH_CODE(0 == result, 1618 "Failed to setup default DPM tables!", return result); 1619 1620 tmp_result = smum_init_smc_table(hwmgr); 1621 PP_ASSERT_WITH_CODE((0 == tmp_result), 1622 "Failed to initialize SMC table!", result = tmp_result); 1623 1624 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr); 1625 PP_ASSERT_WITH_CODE((0 == tmp_result), 1626 "Failed to enable VR hot GPIO interrupt!", result = tmp_result); 1627 1628 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1629 hwmgr->chip_id <= CHIP_VEGAM) { 1630 tmp_result = smu7_notify_has_display(hwmgr); 1631 PP_ASSERT_WITH_CODE((0 == tmp_result), 1632 "Failed to enable display setting!", result = tmp_result); 1633 } else { 1634 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL); 1635 } 1636 1637 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1638 hwmgr->chip_id <= CHIP_VEGAM) { 1639 tmp_result = smu7_populate_edc_leakage_registers(hwmgr); 1640 PP_ASSERT_WITH_CODE((0 == tmp_result), 1641 "Failed to populate edc leakage registers!", result = tmp_result); 1642 } 1643 1644 tmp_result = smu7_enable_sclk_control(hwmgr); 1645 PP_ASSERT_WITH_CODE((0 == tmp_result), 1646 "Failed to enable SCLK control!", result = tmp_result); 1647 1648 tmp_result = smu7_enable_smc_voltage_controller(hwmgr); 1649 PP_ASSERT_WITH_CODE((0 == tmp_result), 1650 "Failed to enable voltage control!", result = tmp_result); 1651 1652 tmp_result = smu7_enable_ulv(hwmgr); 1653 PP_ASSERT_WITH_CODE((0 == tmp_result), 1654 "Failed to enable ULV!", result = tmp_result); 1655 1656 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr); 1657 PP_ASSERT_WITH_CODE((0 == tmp_result), 1658 "Failed to enable deep sleep master switch!", result = tmp_result); 1659 1660 tmp_result = smu7_enable_didt_config(hwmgr); 1661 PP_ASSERT_WITH_CODE((tmp_result == 0), 1662 "Failed to enable deep sleep master switch!", result = tmp_result); 1663 1664 tmp_result = smu7_start_dpm(hwmgr); 1665 PP_ASSERT_WITH_CODE((0 == tmp_result), 1666 "Failed to start DPM!", result = tmp_result); 1667 1668 tmp_result = smu7_enable_smc_cac(hwmgr); 1669 PP_ASSERT_WITH_CODE((0 == tmp_result), 1670 "Failed to enable SMC CAC!", result = tmp_result); 1671 1672 tmp_result = smu7_enable_power_containment(hwmgr); 1673 PP_ASSERT_WITH_CODE((0 == tmp_result), 1674 "Failed to enable power containment!", result = tmp_result); 1675 1676 tmp_result = smu7_power_control_set_level(hwmgr); 1677 PP_ASSERT_WITH_CODE((0 == tmp_result), 1678 "Failed to power control set level!", result = tmp_result); 1679 1680 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr); 1681 PP_ASSERT_WITH_CODE((0 == tmp_result), 1682 "Failed to enable thermal auto throttle!", result = tmp_result); 1683 1684 tmp_result = smu7_pcie_performance_request(hwmgr); 1685 PP_ASSERT_WITH_CODE((0 == tmp_result), 1686 "pcie performance request failed!", result = tmp_result); 1687 1688 smu7_populate_umdpstate_clocks(hwmgr); 1689 1690 return 0; 1691 } 1692 1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable) 1694 { 1695 if (!hwmgr->avfs_supported) 1696 return 0; 1697 1698 if (enable) { 1699 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1700 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1701 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1702 hwmgr, PPSMC_MSG_EnableAvfs, NULL), 1703 "Failed to enable AVFS!", 1704 return -EINVAL); 1705 } 1706 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1707 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1708 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1709 hwmgr, PPSMC_MSG_DisableAvfs, NULL), 1710 "Failed to disable AVFS!", 1711 return -EINVAL); 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr) 1718 { 1719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1720 1721 if (!hwmgr->avfs_supported) 1722 return 0; 1723 1724 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1725 smu7_avfs_control(hwmgr, false); 1726 } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 1727 smu7_avfs_control(hwmgr, false); 1728 smu7_avfs_control(hwmgr, true); 1729 } else { 1730 smu7_avfs_control(hwmgr, true); 1731 } 1732 1733 return 0; 1734 } 1735 1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 1737 { 1738 int tmp_result, result = 0; 1739 1740 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1741 PHM_PlatformCaps_ThermalController)) 1742 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1743 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); 1744 1745 tmp_result = smu7_disable_power_containment(hwmgr); 1746 PP_ASSERT_WITH_CODE((tmp_result == 0), 1747 "Failed to disable power containment!", result = tmp_result); 1748 1749 tmp_result = smu7_disable_smc_cac(hwmgr); 1750 PP_ASSERT_WITH_CODE((tmp_result == 0), 1751 "Failed to disable SMC CAC!", result = tmp_result); 1752 1753 tmp_result = smu7_disable_didt_config(hwmgr); 1754 PP_ASSERT_WITH_CODE((tmp_result == 0), 1755 "Failed to disable DIDT!", result = tmp_result); 1756 1757 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1758 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); 1759 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1760 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); 1761 1762 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr); 1763 PP_ASSERT_WITH_CODE((tmp_result == 0), 1764 "Failed to disable thermal auto throttle!", result = tmp_result); 1765 1766 tmp_result = smu7_avfs_control(hwmgr, false); 1767 PP_ASSERT_WITH_CODE((tmp_result == 0), 1768 "Failed to disable AVFS!", result = tmp_result); 1769 1770 tmp_result = smu7_stop_dpm(hwmgr); 1771 PP_ASSERT_WITH_CODE((tmp_result == 0), 1772 "Failed to stop DPM!", result = tmp_result); 1773 1774 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr); 1775 PP_ASSERT_WITH_CODE((tmp_result == 0), 1776 "Failed to disable deep sleep master switch!", result = tmp_result); 1777 1778 tmp_result = smu7_disable_ulv(hwmgr); 1779 PP_ASSERT_WITH_CODE((tmp_result == 0), 1780 "Failed to disable ULV!", result = tmp_result); 1781 1782 tmp_result = smu7_clear_voting_clients(hwmgr); 1783 PP_ASSERT_WITH_CODE((tmp_result == 0), 1784 "Failed to clear voting clients!", result = tmp_result); 1785 1786 tmp_result = smu7_reset_to_default(hwmgr); 1787 PP_ASSERT_WITH_CODE((tmp_result == 0), 1788 "Failed to reset to default!", result = tmp_result); 1789 1790 tmp_result = smum_stop_smc(hwmgr); 1791 PP_ASSERT_WITH_CODE((tmp_result == 0), 1792 "Failed to stop smc!", result = tmp_result); 1793 1794 tmp_result = smu7_force_switch_to_arbf0(hwmgr); 1795 PP_ASSERT_WITH_CODE((tmp_result == 0), 1796 "Failed to force to switch arbf0!", result = tmp_result); 1797 1798 return result; 1799 } 1800 1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr) 1802 { 1803 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1804 struct phm_ppt_v1_information *table_info = 1805 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1806 struct amdgpu_device *adev = hwmgr->adev; 1807 uint8_t tmp1, tmp2; 1808 uint16_t tmp3 = 0; 1809 1810 data->dll_default_on = false; 1811 data->mclk_dpm0_activity_target = 0xa; 1812 data->vddc_vddgfx_delta = 300; 1813 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT; 1814 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT; 1815 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0; 1816 data->voting_rights_clients[1] = SMU7_VOTINGRIGHTSCLIENTS_DFLT1; 1817 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2; 1818 data->voting_rights_clients[3] = SMU7_VOTINGRIGHTSCLIENTS_DFLT3; 1819 data->voting_rights_clients[4] = SMU7_VOTINGRIGHTSCLIENTS_DFLT4; 1820 data->voting_rights_clients[5] = SMU7_VOTINGRIGHTSCLIENTS_DFLT5; 1821 data->voting_rights_clients[6] = SMU7_VOTINGRIGHTSCLIENTS_DFLT6; 1822 data->voting_rights_clients[7] = SMU7_VOTINGRIGHTSCLIENTS_DFLT7; 1823 1824 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 1825 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 1826 data->pcie_dpm_key_disabled = 1827 !amdgpu_device_pcie_dynamic_switching_supported() || 1828 !(hwmgr->feature_mask & PP_PCIE_DPM_MASK); 1829 /* need to set voltage control types before EVV patching */ 1830 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE; 1831 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE; 1832 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE; 1833 data->enable_tdc_limit_feature = true; 1834 data->enable_pkg_pwr_tracking_feature = true; 1835 data->force_pcie_gen = PP_PCIEGenInvalid; 1836 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false; 1837 data->current_profile_setting.bupdate_sclk = 1; 1838 data->current_profile_setting.sclk_up_hyst = 0; 1839 data->current_profile_setting.sclk_down_hyst = 100; 1840 data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT; 1841 data->current_profile_setting.bupdate_mclk = 1; 1842 if (hwmgr->chip_id >= CHIP_POLARIS10) { 1843 if (adev->gmc.vram_width == 256) { 1844 data->current_profile_setting.mclk_up_hyst = 10; 1845 data->current_profile_setting.mclk_down_hyst = 60; 1846 data->current_profile_setting.mclk_activity = 25; 1847 } else if (adev->gmc.vram_width == 128) { 1848 data->current_profile_setting.mclk_up_hyst = 5; 1849 data->current_profile_setting.mclk_down_hyst = 16; 1850 data->current_profile_setting.mclk_activity = 20; 1851 } else if (adev->gmc.vram_width == 64) { 1852 data->current_profile_setting.mclk_up_hyst = 3; 1853 data->current_profile_setting.mclk_down_hyst = 16; 1854 data->current_profile_setting.mclk_activity = 20; 1855 } 1856 } else { 1857 data->current_profile_setting.mclk_up_hyst = 0; 1858 data->current_profile_setting.mclk_down_hyst = 100; 1859 data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT; 1860 } 1861 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D]; 1862 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1863 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1864 1865 if (hwmgr->chip_id == CHIP_HAWAII) { 1866 data->thermal_temp_setting.temperature_low = 94500; 1867 data->thermal_temp_setting.temperature_high = 95000; 1868 data->thermal_temp_setting.temperature_shutdown = 104000; 1869 } else { 1870 data->thermal_temp_setting.temperature_low = 99500; 1871 data->thermal_temp_setting.temperature_high = 100000; 1872 data->thermal_temp_setting.temperature_shutdown = 104000; 1873 } 1874 1875 data->fast_watermark_threshold = 100; 1876 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1877 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) 1878 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1879 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1880 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) 1881 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1882 1883 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1884 PHM_PlatformCaps_ControlVDDGFX)) { 1885 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1886 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { 1887 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1888 } 1889 } 1890 1891 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1892 PHM_PlatformCaps_EnableMVDDControl)) { 1893 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1894 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) 1895 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1896 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1897 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) 1898 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1899 } 1900 1901 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) 1902 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1903 PHM_PlatformCaps_ControlVDDGFX); 1904 1905 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1906 PHM_PlatformCaps_ControlVDDCI)) { 1907 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1908 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 1909 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1910 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1911 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) 1912 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1913 } 1914 1915 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) 1916 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1917 PHM_PlatformCaps_EnableMVDDControl); 1918 1919 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) 1920 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1921 PHM_PlatformCaps_ControlVDDCI); 1922 1923 data->vddc_phase_shed_control = 1; 1924 if ((hwmgr->chip_id == CHIP_POLARIS12) || 1925 ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1926 ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 1927 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) || 1928 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 1929 if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 1930 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2, 1931 &tmp3); 1932 tmp3 = (tmp3 >> 5) & 0x3; 1933 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3; 1934 } 1935 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1936 data->vddc_phase_shed_control = 1; 1937 } 1938 1939 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK) 1940 && (table_info->cac_dtp_table->usClockStretchAmount != 0)) 1941 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1942 PHM_PlatformCaps_ClockStretcher); 1943 1944 data->pcie_gen_performance.max = PP_PCIEGen1; 1945 data->pcie_gen_performance.min = PP_PCIEGen3; 1946 data->pcie_gen_power_saving.max = PP_PCIEGen1; 1947 data->pcie_gen_power_saving.min = PP_PCIEGen3; 1948 data->pcie_lane_performance.max = 0; 1949 data->pcie_lane_performance.min = 16; 1950 data->pcie_lane_power_saving.max = 0; 1951 data->pcie_lane_power_saving.min = 16; 1952 1953 1954 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 1955 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1956 PHM_PlatformCaps_UVDPowerGating); 1957 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 1958 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1959 PHM_PlatformCaps_VCEPowerGating); 1960 1961 data->disable_edc_leakage_controller = true; 1962 if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) || 1963 ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) || 1964 (adev->asic_type == CHIP_POLARIS12) || 1965 (adev->asic_type == CHIP_VEGAM)) 1966 data->disable_edc_leakage_controller = false; 1967 1968 if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) { 1969 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1970 PHM_PlatformCaps_MemorySpreadSpectrumSupport); 1971 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1972 PHM_PlatformCaps_EngineSpreadSpectrumSupport); 1973 } 1974 1975 if ((adev->pdev->device == 0x699F) && 1976 (adev->pdev->revision == 0xCF)) { 1977 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1978 PHM_PlatformCaps_PowerContainment); 1979 data->enable_tdc_limit_feature = false; 1980 data->enable_pkg_pwr_tracking_feature = false; 1981 data->disable_edc_leakage_controller = true; 1982 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1983 PHM_PlatformCaps_ClockStretcher); 1984 } 1985 } 1986 1987 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr) 1988 { 1989 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1990 struct amdgpu_device *adev = hwmgr->adev; 1991 uint32_t asicrev1, evv_revision, max = 0, min = 0; 1992 1993 atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB, 1994 &evv_revision); 1995 1996 atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1); 1997 1998 if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1999 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) { 2000 min = 1200; 2001 max = 2500; 2002 } else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 2003 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 2004 min = 900; 2005 max = 2100; 2006 } else if (hwmgr->chip_id == CHIP_POLARIS10) { 2007 if (adev->pdev->subsystem_vendor == 0x106B) { 2008 min = 1000; 2009 max = 2300; 2010 } else { 2011 if (evv_revision == 0) { 2012 min = 1000; 2013 max = 2300; 2014 } else if (evv_revision == 1) { 2015 if (asicrev1 == 326) { 2016 min = 1200; 2017 max = 2500; 2018 /* TODO: PATCH RO in VBIOS */ 2019 } else { 2020 min = 1200; 2021 max = 2000; 2022 } 2023 } else if (evv_revision == 2) { 2024 min = 1200; 2025 max = 2500; 2026 } 2027 } 2028 } else { 2029 min = 1100; 2030 max = 2100; 2031 } 2032 2033 data->ro_range_minimum = min; 2034 data->ro_range_maximum = max; 2035 2036 /* TODO: PATCH RO in VBIOS here */ 2037 2038 return 0; 2039 } 2040 2041 /** 2042 * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID. 2043 * 2044 * @hwmgr: the address of the powerplay hardware manager. 2045 * Return: always 0 2046 */ 2047 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr) 2048 { 2049 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2050 uint16_t vv_id; 2051 uint16_t vddc = 0; 2052 uint16_t vddgfx = 0; 2053 uint16_t i, j; 2054 uint32_t sclk = 0; 2055 struct phm_ppt_v1_information *table_info = 2056 (struct phm_ppt_v1_information *)hwmgr->pptable; 2057 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL; 2058 2059 if (hwmgr->chip_id == CHIP_POLARIS10 || 2060 hwmgr->chip_id == CHIP_POLARIS11 || 2061 hwmgr->chip_id == CHIP_POLARIS12) 2062 smu7_calculate_ro_range(hwmgr); 2063 2064 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 2065 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 2066 2067 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2068 if ((hwmgr->pp_table_version == PP_TABLE_V1) 2069 && !phm_get_sclk_for_voltage_evv(hwmgr, 2070 table_info->vddgfx_lookup_table, vv_id, &sclk)) { 2071 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2072 PHM_PlatformCaps_ClockStretcher)) { 2073 sclk_table = table_info->vdd_dep_on_sclk; 2074 2075 for (j = 1; j < sclk_table->count; j++) { 2076 if (sclk_table->entries[j].clk == sclk && 2077 sclk_table->entries[j].cks_enable == 0) { 2078 sclk += 5000; 2079 break; 2080 } 2081 } 2082 } 2083 if (0 == atomctrl_get_voltage_evv_on_sclk 2084 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, 2085 vv_id, &vddgfx)) { 2086 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ 2087 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL); 2088 2089 /* the voltage should not be zero nor equal to leakage ID */ 2090 if (vddgfx != 0 && vddgfx != vv_id) { 2091 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; 2092 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id; 2093 data->vddcgfx_leakage.count++; 2094 } 2095 } else { 2096 pr_info("Error retrieving EVV voltage value!\n"); 2097 } 2098 } 2099 } else { 2100 if ((hwmgr->pp_table_version == PP_TABLE_V0) 2101 || !phm_get_sclk_for_voltage_evv(hwmgr, 2102 table_info->vddc_lookup_table, vv_id, &sclk)) { 2103 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2104 PHM_PlatformCaps_ClockStretcher)) { 2105 if (table_info == NULL) 2106 return -EINVAL; 2107 sclk_table = table_info->vdd_dep_on_sclk; 2108 2109 for (j = 1; j < sclk_table->count; j++) { 2110 if (sclk_table->entries[j].clk == sclk && 2111 sclk_table->entries[j].cks_enable == 0) { 2112 sclk += 5000; 2113 break; 2114 } 2115 } 2116 } 2117 2118 if (phm_get_voltage_evv_on_sclk(hwmgr, 2119 VOLTAGE_TYPE_VDDC, 2120 sclk, vv_id, &vddc) == 0) { 2121 if (vddc >= 2000 || vddc == 0) 2122 return -EINVAL; 2123 } else { 2124 pr_debug("failed to retrieving EVV voltage!\n"); 2125 continue; 2126 } 2127 2128 /* the voltage should not be zero nor equal to leakage ID */ 2129 if (vddc != 0 && vddc != vv_id) { 2130 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc); 2131 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 2132 data->vddc_leakage.count++; 2133 } 2134 } 2135 } 2136 } 2137 2138 return 0; 2139 } 2140 2141 /** 2142 * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value. 2143 * 2144 * @hwmgr: the address of the powerplay hardware manager. 2145 * @voltage: pointer to changing voltage 2146 * @leakage_table: pointer to leakage table 2147 */ 2148 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2149 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table) 2150 { 2151 uint32_t index; 2152 2153 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2154 for (index = 0; index < leakage_table->count; index++) { 2155 /* if this voltage matches a leakage voltage ID */ 2156 /* patch with actual leakage voltage */ 2157 if (leakage_table->leakage_id[index] == *voltage) { 2158 *voltage = leakage_table->actual_voltage[index]; 2159 break; 2160 } 2161 } 2162 2163 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2164 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 2165 } 2166 2167 /** 2168 * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages. 2169 * 2170 * @hwmgr: the address of the powerplay hardware manager. 2171 * @lookup_table: pointer to voltage lookup table 2172 * @leakage_table: pointer to leakage table 2173 * Return: always 0 2174 */ 2175 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 2176 phm_ppt_v1_voltage_lookup_table *lookup_table, 2177 struct smu7_leakage_voltage *leakage_table) 2178 { 2179 uint32_t i; 2180 2181 for (i = 0; i < lookup_table->count; i++) 2182 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2183 &lookup_table->entries[i].us_vdd, leakage_table); 2184 2185 return 0; 2186 } 2187 2188 static int smu7_patch_clock_voltage_limits_with_vddc_leakage( 2189 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table, 2190 uint16_t *vddc) 2191 { 2192 struct phm_ppt_v1_information *table_info = 2193 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2194 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 2195 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = 2196 table_info->max_clock_voltage_on_dc.vddc; 2197 return 0; 2198 } 2199 2200 static int smu7_patch_voltage_dependency_tables_with_lookup_table( 2201 struct pp_hwmgr *hwmgr) 2202 { 2203 uint8_t entry_id; 2204 uint8_t voltage_id; 2205 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2206 struct phm_ppt_v1_information *table_info = 2207 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2208 2209 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 2210 table_info->vdd_dep_on_sclk; 2211 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 2212 table_info->vdd_dep_on_mclk; 2213 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 2214 table_info->mm_dep_table; 2215 2216 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2217 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2218 voltage_id = sclk_table->entries[entry_id].vddInd; 2219 sclk_table->entries[entry_id].vddgfx = 2220 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd; 2221 } 2222 } else { 2223 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2224 voltage_id = sclk_table->entries[entry_id].vddInd; 2225 sclk_table->entries[entry_id].vddc = 2226 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2227 } 2228 } 2229 2230 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2231 voltage_id = mclk_table->entries[entry_id].vddInd; 2232 mclk_table->entries[entry_id].vddc = 2233 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2234 } 2235 2236 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 2237 voltage_id = mm_table->entries[entry_id].vddcInd; 2238 mm_table->entries[entry_id].vddc = 2239 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2240 } 2241 2242 return 0; 2243 2244 } 2245 2246 static int phm_add_voltage(struct pp_hwmgr *hwmgr, 2247 phm_ppt_v1_voltage_lookup_table *look_up_table, 2248 phm_ppt_v1_voltage_lookup_record *record) 2249 { 2250 uint32_t i; 2251 2252 PP_ASSERT_WITH_CODE((NULL != look_up_table), 2253 "Lookup Table empty.", return -EINVAL); 2254 PP_ASSERT_WITH_CODE((0 != look_up_table->count), 2255 "Lookup Table empty.", return -EINVAL); 2256 2257 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 2258 PP_ASSERT_WITH_CODE((i >= look_up_table->count), 2259 "Lookup Table is full.", return -EINVAL); 2260 2261 /* This is to avoid entering duplicate calculated records. */ 2262 for (i = 0; i < look_up_table->count; i++) { 2263 if (look_up_table->entries[i].us_vdd == record->us_vdd) { 2264 if (look_up_table->entries[i].us_calculated == 1) 2265 return 0; 2266 break; 2267 } 2268 } 2269 2270 look_up_table->entries[i].us_calculated = 1; 2271 look_up_table->entries[i].us_vdd = record->us_vdd; 2272 look_up_table->entries[i].us_cac_low = record->us_cac_low; 2273 look_up_table->entries[i].us_cac_mid = record->us_cac_mid; 2274 look_up_table->entries[i].us_cac_high = record->us_cac_high; 2275 /* Only increment the count when we're appending, not replacing duplicate entry. */ 2276 if (i == look_up_table->count) 2277 look_up_table->count++; 2278 2279 return 0; 2280 } 2281 2282 2283 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) 2284 { 2285 uint8_t entry_id; 2286 struct phm_ppt_v1_voltage_lookup_record v_record; 2287 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2288 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2289 2290 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; 2291 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; 2292 2293 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2294 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2295 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2296 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2297 sclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2298 else 2299 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2300 sclk_table->entries[entry_id].vdd_offset; 2301 2302 sclk_table->entries[entry_id].vddc = 2303 v_record.us_cac_low = v_record.us_cac_mid = 2304 v_record.us_cac_high = v_record.us_vdd; 2305 2306 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); 2307 } 2308 2309 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2310 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2311 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2312 mclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2313 else 2314 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2315 mclk_table->entries[entry_id].vdd_offset; 2316 2317 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2318 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2319 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2320 } 2321 } 2322 return 0; 2323 } 2324 2325 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) 2326 { 2327 uint8_t entry_id; 2328 struct phm_ppt_v1_voltage_lookup_record v_record; 2329 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2330 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2331 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; 2332 2333 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2334 for (entry_id = 0; entry_id < mm_table->count; entry_id++) { 2335 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15)) 2336 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2337 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF; 2338 else 2339 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2340 mm_table->entries[entry_id].vddgfx_offset; 2341 2342 /* Add the calculated VDDGFX to the VDDGFX lookup table */ 2343 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2344 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2345 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2346 } 2347 } 2348 return 0; 2349 } 2350 2351 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr, 2352 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 2353 { 2354 uint32_t table_size, i, j; 2355 table_size = lookup_table->count; 2356 2357 PP_ASSERT_WITH_CODE(0 != lookup_table->count, 2358 "Lookup table is empty", return -EINVAL); 2359 2360 /* Sorting voltages */ 2361 for (i = 0; i < table_size - 1; i++) { 2362 for (j = i + 1; j > 0; j--) { 2363 if (lookup_table->entries[j].us_vdd < 2364 lookup_table->entries[j - 1].us_vdd) { 2365 swap(lookup_table->entries[j - 1], 2366 lookup_table->entries[j]); 2367 } 2368 } 2369 } 2370 2371 return 0; 2372 } 2373 2374 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr) 2375 { 2376 int result = 0; 2377 int tmp_result; 2378 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2379 struct phm_ppt_v1_information *table_info = 2380 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2381 2382 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2383 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2384 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); 2385 if (tmp_result != 0) 2386 result = tmp_result; 2387 2388 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2389 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage)); 2390 } else { 2391 2392 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2393 table_info->vddc_lookup_table, &(data->vddc_leakage)); 2394 if (tmp_result) 2395 result = tmp_result; 2396 2397 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 2398 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 2399 if (tmp_result) 2400 result = tmp_result; 2401 } 2402 2403 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 2404 if (tmp_result) 2405 result = tmp_result; 2406 2407 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr); 2408 if (tmp_result) 2409 result = tmp_result; 2410 2411 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr); 2412 if (tmp_result) 2413 result = tmp_result; 2414 2415 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table); 2416 if (tmp_result) 2417 result = tmp_result; 2418 2419 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 2420 if (tmp_result) 2421 result = tmp_result; 2422 2423 return result; 2424 } 2425 2426 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr) 2427 { 2428 struct phm_ppt_v1_information *table_info = 2429 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2430 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2431 table_info->vdd_dep_on_sclk; 2432 struct phm_ppt_v1_voltage_lookup_table *lookup_table = 2433 table_info->vddc_lookup_table; 2434 uint16_t highest_voltage; 2435 uint32_t i; 2436 2437 highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2438 2439 for (i = 0; i < lookup_table->count; i++) { 2440 if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 && 2441 lookup_table->entries[i].us_vdd > highest_voltage) 2442 highest_voltage = lookup_table->entries[i].us_vdd; 2443 } 2444 2445 return highest_voltage; 2446 } 2447 2448 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr) 2449 { 2450 struct phm_ppt_v1_information *table_info = 2451 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2452 2453 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2454 table_info->vdd_dep_on_sclk; 2455 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 2456 table_info->vdd_dep_on_mclk; 2457 2458 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, 2459 "VDD dependency on SCLK table is missing.", 2460 return -EINVAL); 2461 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 2462 "VDD dependency on SCLK table has to have is missing.", 2463 return -EINVAL); 2464 2465 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, 2466 "VDD dependency on MCLK table is missing", 2467 return -EINVAL); 2468 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 2469 "VDD dependency on MCLK table has to have is missing.", 2470 return -EINVAL); 2471 2472 table_info->max_clock_voltage_on_ac.sclk = 2473 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 2474 table_info->max_clock_voltage_on_ac.mclk = 2475 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 2476 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 2477 table_info->max_clock_voltage_on_ac.vddc = 2478 smu7_find_highest_vddc(hwmgr); 2479 else 2480 table_info->max_clock_voltage_on_ac.vddc = 2481 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2482 table_info->max_clock_voltage_on_ac.vddci = 2483 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 2484 2485 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; 2486 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; 2487 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; 2488 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; 2489 2490 return 0; 2491 } 2492 2493 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr) 2494 { 2495 struct phm_ppt_v1_information *table_info = 2496 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2497 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 2498 struct phm_ppt_v1_voltage_lookup_table *lookup_table; 2499 uint32_t i; 2500 uint32_t hw_revision, sub_vendor_id, sub_sys_id; 2501 struct amdgpu_device *adev = hwmgr->adev; 2502 2503 if (table_info != NULL) { 2504 dep_mclk_table = table_info->vdd_dep_on_mclk; 2505 lookup_table = table_info->vddc_lookup_table; 2506 } else 2507 return 0; 2508 2509 hw_revision = adev->pdev->revision; 2510 sub_sys_id = adev->pdev->subsystem_device; 2511 sub_vendor_id = adev->pdev->subsystem_vendor; 2512 2513 if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 && 2514 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) || 2515 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) || 2516 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) { 2517 2518 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 2519 CGS_IND_REG__SMC, 2520 PWR_CKS_CNTL, 2521 CKS_STRETCH_AMOUNT, 2522 0x3); 2523 2524 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) 2525 return 0; 2526 2527 for (i = 0; i < lookup_table->count; i++) { 2528 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { 2529 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; 2530 return 0; 2531 } 2532 } 2533 } 2534 return 0; 2535 } 2536 2537 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr) 2538 { 2539 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; 2540 uint32_t temp_reg; 2541 struct phm_ppt_v1_information *table_info = 2542 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2543 2544 2545 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { 2546 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); 2547 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { 2548 case 0: 2549 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); 2550 break; 2551 case 1: 2552 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); 2553 break; 2554 case 2: 2555 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); 2556 break; 2557 case 3: 2558 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); 2559 break; 2560 case 4: 2561 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); 2562 break; 2563 default: 2564 break; 2565 } 2566 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); 2567 } 2568 2569 if (table_info == NULL) 2570 return 0; 2571 2572 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && 2573 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { 2574 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = 2575 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2576 2577 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = 2578 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2579 2580 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; 2581 2582 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; 2583 2584 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = 2585 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2586 2587 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; 2588 2589 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? 2590 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0; 2591 2592 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2593 table_info->cac_dtp_table->usOperatingTempStep = 1; 2594 table_info->cac_dtp_table->usOperatingTempHyst = 1; 2595 2596 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = 2597 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2598 2599 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = 2600 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; 2601 2602 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = 2603 table_info->cac_dtp_table->usOperatingTempMinLimit; 2604 2605 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = 2606 table_info->cac_dtp_table->usOperatingTempMaxLimit; 2607 2608 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = 2609 table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2610 2611 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = 2612 table_info->cac_dtp_table->usOperatingTempStep; 2613 2614 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = 2615 table_info->cac_dtp_table->usTargetOperatingTemp; 2616 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK) 2617 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2618 PHM_PlatformCaps_ODFuzzyFanControlSupport); 2619 } 2620 2621 return 0; 2622 } 2623 2624 /** 2625 * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value. 2626 * 2627 * @hwmgr: the address of the powerplay hardware manager. 2628 * @voltage: pointer to changing voltage 2629 * @leakage_table: pointer to leakage table 2630 */ 2631 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2632 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table) 2633 { 2634 uint32_t index; 2635 2636 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2637 for (index = 0; index < leakage_table->count; index++) { 2638 /* if this voltage matches a leakage voltage ID */ 2639 /* patch with actual leakage voltage */ 2640 if (leakage_table->leakage_id[index] == *voltage) { 2641 *voltage = leakage_table->actual_voltage[index]; 2642 break; 2643 } 2644 } 2645 2646 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2647 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 2648 } 2649 2650 2651 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr, 2652 struct phm_clock_voltage_dependency_table *tab) 2653 { 2654 uint16_t i; 2655 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2656 2657 if (tab) 2658 for (i = 0; i < tab->count; i++) 2659 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2660 &data->vddc_leakage); 2661 2662 return 0; 2663 } 2664 2665 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr, 2666 struct phm_clock_voltage_dependency_table *tab) 2667 { 2668 uint16_t i; 2669 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2670 2671 if (tab) 2672 for (i = 0; i < tab->count; i++) 2673 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2674 &data->vddci_leakage); 2675 2676 return 0; 2677 } 2678 2679 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr, 2680 struct phm_vce_clock_voltage_dependency_table *tab) 2681 { 2682 uint16_t i; 2683 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2684 2685 if (tab) 2686 for (i = 0; i < tab->count; i++) 2687 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2688 &data->vddc_leakage); 2689 2690 return 0; 2691 } 2692 2693 2694 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr, 2695 struct phm_uvd_clock_voltage_dependency_table *tab) 2696 { 2697 uint16_t i; 2698 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2699 2700 if (tab) 2701 for (i = 0; i < tab->count; i++) 2702 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2703 &data->vddc_leakage); 2704 2705 return 0; 2706 } 2707 2708 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, 2709 struct phm_phase_shedding_limits_table *tab) 2710 { 2711 uint16_t i; 2712 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2713 2714 if (tab) 2715 for (i = 0; i < tab->count; i++) 2716 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage, 2717 &data->vddc_leakage); 2718 2719 return 0; 2720 } 2721 2722 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr, 2723 struct phm_samu_clock_voltage_dependency_table *tab) 2724 { 2725 uint16_t i; 2726 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2727 2728 if (tab) 2729 for (i = 0; i < tab->count; i++) 2730 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2731 &data->vddc_leakage); 2732 2733 return 0; 2734 } 2735 2736 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr, 2737 struct phm_acp_clock_voltage_dependency_table *tab) 2738 { 2739 uint16_t i; 2740 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2741 2742 if (tab) 2743 for (i = 0; i < tab->count; i++) 2744 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2745 &data->vddc_leakage); 2746 2747 return 0; 2748 } 2749 2750 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr, 2751 struct phm_clock_and_voltage_limits *tab) 2752 { 2753 uint32_t vddc, vddci; 2754 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2755 2756 if (tab) { 2757 vddc = tab->vddc; 2758 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, 2759 &data->vddc_leakage); 2760 tab->vddc = vddc; 2761 vddci = tab->vddci; 2762 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci, 2763 &data->vddci_leakage); 2764 tab->vddci = vddci; 2765 } 2766 2767 return 0; 2768 } 2769 2770 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) 2771 { 2772 uint32_t i; 2773 uint32_t vddc; 2774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2775 2776 if (tab) { 2777 for (i = 0; i < tab->count; i++) { 2778 vddc = (uint32_t)(tab->entries[i].Vddc); 2779 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); 2780 tab->entries[i].Vddc = (uint16_t)vddc; 2781 } 2782 } 2783 2784 return 0; 2785 } 2786 2787 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) 2788 { 2789 int tmp; 2790 2791 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); 2792 if (tmp) 2793 return -EINVAL; 2794 2795 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); 2796 if (tmp) 2797 return -EINVAL; 2798 2799 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2800 if (tmp) 2801 return -EINVAL; 2802 2803 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); 2804 if (tmp) 2805 return -EINVAL; 2806 2807 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); 2808 if (tmp) 2809 return -EINVAL; 2810 2811 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); 2812 if (tmp) 2813 return -EINVAL; 2814 2815 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); 2816 if (tmp) 2817 return -EINVAL; 2818 2819 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); 2820 if (tmp) 2821 return -EINVAL; 2822 2823 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); 2824 if (tmp) 2825 return -EINVAL; 2826 2827 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); 2828 if (tmp) 2829 return -EINVAL; 2830 2831 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); 2832 if (tmp) 2833 return -EINVAL; 2834 2835 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); 2836 if (tmp) 2837 return -EINVAL; 2838 2839 return 0; 2840 } 2841 2842 2843 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr) 2844 { 2845 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2846 2847 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 2848 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 2849 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 2850 2851 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, 2852 "VDDC dependency on SCLK table is missing. This table is mandatory", 2853 return -EINVAL); 2854 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, 2855 "VDDC dependency on SCLK table has to have is missing. This table is mandatory", 2856 return -EINVAL); 2857 2858 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, 2859 "VDDC dependency on MCLK table is missing. This table is mandatory", 2860 return -EINVAL); 2861 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, 2862 "VDD dependency on MCLK table has to have is missing. This table is mandatory", 2863 return -EINVAL); 2864 2865 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v; 2866 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2867 2868 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 2869 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; 2870 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 2871 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; 2872 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 2873 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2874 2875 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { 2876 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v; 2877 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; 2878 } 2879 2880 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1) 2881 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; 2882 2883 return 0; 2884 } 2885 2886 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 2887 { 2888 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2889 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 2890 kfree(hwmgr->backend); 2891 hwmgr->backend = NULL; 2892 2893 return 0; 2894 } 2895 2896 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr) 2897 { 2898 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id; 2899 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2900 int i; 2901 2902 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) { 2903 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 2904 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 2905 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci, 2906 virtual_voltage_id, 2907 efuse_voltage_id) == 0) { 2908 if (vddc != 0 && vddc != virtual_voltage_id) { 2909 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; 2910 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; 2911 data->vddc_leakage.count++; 2912 } 2913 if (vddci != 0 && vddci != virtual_voltage_id) { 2914 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci; 2915 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id; 2916 data->vddci_leakage.count++; 2917 } 2918 } 2919 } 2920 } 2921 return 0; 2922 } 2923 2924 #define LEAKAGE_ID_MSB 463 2925 #define LEAKAGE_ID_LSB 454 2926 2927 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr) 2928 { 2929 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2930 uint32_t efuse; 2931 uint16_t offset; 2932 int ret = 0; 2933 2934 if (data->disable_edc_leakage_controller) 2935 return 0; 2936 2937 ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr, 2938 &data->edc_hilo_leakage_offset_from_vbios); 2939 if (ret) 2940 return ret; 2941 2942 if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 2943 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 2944 atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse); 2945 if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold) 2946 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset; 2947 else 2948 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset; 2949 2950 ret = atomctrl_get_edc_leakage_table(hwmgr, 2951 &data->edc_leakage_table, 2952 offset); 2953 if (ret) 2954 return ret; 2955 } 2956 2957 return ret; 2958 } 2959 2960 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 2961 { 2962 struct smu7_hwmgr *data; 2963 int result = 0; 2964 2965 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL); 2966 if (data == NULL) 2967 return -ENOMEM; 2968 2969 hwmgr->backend = data; 2970 smu7_patch_voltage_workaround(hwmgr); 2971 smu7_init_dpm_defaults(hwmgr); 2972 2973 /* Get leakage voltage based on leakage ID. */ 2974 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2975 PHM_PlatformCaps_EVV)) { 2976 result = smu7_get_evv_voltages(hwmgr); 2977 if (result) { 2978 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n"); 2979 return -EINVAL; 2980 } 2981 } else { 2982 smu7_get_elb_voltages(hwmgr); 2983 } 2984 2985 if (hwmgr->pp_table_version == PP_TABLE_V1) { 2986 smu7_complete_dependency_tables(hwmgr); 2987 smu7_set_private_data_based_on_pptable_v1(hwmgr); 2988 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 2989 smu7_patch_dependency_tables_with_leakage(hwmgr); 2990 smu7_set_private_data_based_on_pptable_v0(hwmgr); 2991 } 2992 2993 /* Initalize Dynamic State Adjustment Rule Settings */ 2994 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); 2995 2996 if (0 == result) { 2997 struct amdgpu_device *adev = hwmgr->adev; 2998 2999 data->is_tlu_enabled = false; 3000 3001 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 3002 SMU7_MAX_HARDWARE_POWERLEVELS; 3003 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 3004 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 3005 3006 data->pcie_gen_cap = adev->pm.pcie_gen_mask; 3007 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 3008 data->pcie_spc_cap = 20; 3009 else 3010 data->pcie_spc_cap = 16; 3011 data->pcie_lane_cap = adev->pm.pcie_mlw_mask; 3012 3013 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 3014 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 3015 hwmgr->platform_descriptor.clockStep.engineClock = 500; 3016 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 3017 smu7_thermal_parameter_init(hwmgr); 3018 } else { 3019 /* Ignore return value in here, we are cleaning up a mess. */ 3020 smu7_hwmgr_backend_fini(hwmgr); 3021 } 3022 3023 result = smu7_update_edc_leakage_table(hwmgr); 3024 if (result) 3025 return result; 3026 3027 return 0; 3028 } 3029 3030 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr) 3031 { 3032 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3033 uint32_t level, tmp; 3034 3035 if (!data->pcie_dpm_key_disabled) { 3036 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 3037 level = 0; 3038 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; 3039 while (tmp >>= 1) 3040 level++; 3041 3042 if (level) 3043 smum_send_msg_to_smc_with_parameter(hwmgr, 3044 PPSMC_MSG_PCIeDPM_ForceLevel, level, 3045 NULL); 3046 } 3047 } 3048 3049 if (!data->sclk_dpm_key_disabled) { 3050 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 3051 level = 0; 3052 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 3053 while (tmp >>= 1) 3054 level++; 3055 3056 if (level) 3057 smum_send_msg_to_smc_with_parameter(hwmgr, 3058 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3059 (1 << level), 3060 NULL); 3061 } 3062 } 3063 3064 if (!data->mclk_dpm_key_disabled) { 3065 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 3066 level = 0; 3067 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; 3068 while (tmp >>= 1) 3069 level++; 3070 3071 if (level) 3072 smum_send_msg_to_smc_with_parameter(hwmgr, 3073 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3074 (1 << level), 3075 NULL); 3076 } 3077 } 3078 3079 return 0; 3080 } 3081 3082 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) 3083 { 3084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3085 3086 if (hwmgr->pp_table_version == PP_TABLE_V1) 3087 phm_apply_dal_min_voltage_request(hwmgr); 3088 /* TO DO for v0 iceland and Ci*/ 3089 3090 if (!data->sclk_dpm_key_disabled) { 3091 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) 3092 smum_send_msg_to_smc_with_parameter(hwmgr, 3093 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3094 data->dpm_level_enable_mask.sclk_dpm_enable_mask, 3095 NULL); 3096 } 3097 3098 if (!data->mclk_dpm_key_disabled) { 3099 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) 3100 smum_send_msg_to_smc_with_parameter(hwmgr, 3101 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3102 data->dpm_level_enable_mask.mclk_dpm_enable_mask, 3103 NULL); 3104 } 3105 3106 return 0; 3107 } 3108 3109 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 3110 { 3111 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3112 3113 if (!smum_is_dpm_running(hwmgr)) 3114 return -EINVAL; 3115 3116 if (!data->pcie_dpm_key_disabled) { 3117 smum_send_msg_to_smc(hwmgr, 3118 PPSMC_MSG_PCIeDPM_UnForceLevel, 3119 NULL); 3120 } 3121 3122 return smu7_upload_dpm_level_enable_mask(hwmgr); 3123 } 3124 3125 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr) 3126 { 3127 struct smu7_hwmgr *data = 3128 (struct smu7_hwmgr *)(hwmgr->backend); 3129 uint32_t level; 3130 3131 if (!data->sclk_dpm_key_disabled) 3132 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 3133 level = phm_get_lowest_enabled_level(hwmgr, 3134 data->dpm_level_enable_mask.sclk_dpm_enable_mask); 3135 smum_send_msg_to_smc_with_parameter(hwmgr, 3136 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3137 (1 << level), 3138 NULL); 3139 3140 } 3141 3142 if (!data->mclk_dpm_key_disabled) { 3143 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 3144 level = phm_get_lowest_enabled_level(hwmgr, 3145 data->dpm_level_enable_mask.mclk_dpm_enable_mask); 3146 smum_send_msg_to_smc_with_parameter(hwmgr, 3147 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3148 (1 << level), 3149 NULL); 3150 } 3151 } 3152 3153 if (!data->pcie_dpm_key_disabled) { 3154 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 3155 level = phm_get_lowest_enabled_level(hwmgr, 3156 data->dpm_level_enable_mask.pcie_dpm_enable_mask); 3157 smum_send_msg_to_smc_with_parameter(hwmgr, 3158 PPSMC_MSG_PCIeDPM_ForceLevel, 3159 (level), 3160 NULL); 3161 } 3162 } 3163 3164 return 0; 3165 } 3166 3167 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 3168 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask) 3169 { 3170 uint32_t percentage; 3171 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3172 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; 3173 int32_t tmp_mclk; 3174 int32_t tmp_sclk; 3175 int32_t count; 3176 3177 if (golden_dpm_table->mclk_table.count < 1) 3178 return -EINVAL; 3179 3180 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / 3181 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3182 3183 if (golden_dpm_table->mclk_table.count == 1) { 3184 percentage = 70; 3185 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3186 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3187 } else { 3188 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; 3189 *mclk_mask = golden_dpm_table->mclk_table.count - 2; 3190 } 3191 3192 tmp_sclk = tmp_mclk * percentage / 100; 3193 3194 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3195 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3196 count >= 0; count--) { 3197 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { 3198 *sclk_mask = count; 3199 break; 3200 } 3201 } 3202 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) 3203 *sclk_mask = 0; 3204 3205 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3206 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3207 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3208 struct phm_ppt_v1_information *table_info = 3209 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3210 3211 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { 3212 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { 3213 *sclk_mask = count; 3214 break; 3215 } 3216 } 3217 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) 3218 *sclk_mask = 0; 3219 3220 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3221 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 3222 } 3223 3224 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) 3225 *mclk_mask = 0; 3226 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3227 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3228 3229 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1; 3230 3231 return 0; 3232 } 3233 3234 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr, 3235 enum amd_dpm_forced_level level) 3236 { 3237 int ret = 0; 3238 uint32_t sclk_mask = 0; 3239 uint32_t mclk_mask = 0; 3240 uint32_t pcie_mask = 0; 3241 3242 switch (level) { 3243 case AMD_DPM_FORCED_LEVEL_HIGH: 3244 ret = smu7_force_dpm_highest(hwmgr); 3245 break; 3246 case AMD_DPM_FORCED_LEVEL_LOW: 3247 ret = smu7_force_dpm_lowest(hwmgr); 3248 break; 3249 case AMD_DPM_FORCED_LEVEL_AUTO: 3250 ret = smu7_unforce_dpm_levels(hwmgr); 3251 break; 3252 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 3253 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 3254 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 3255 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 3256 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); 3257 if (ret) 3258 return ret; 3259 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 3260 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 3261 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask); 3262 break; 3263 case AMD_DPM_FORCED_LEVEL_MANUAL: 3264 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 3265 default: 3266 break; 3267 } 3268 3269 if (!ret) { 3270 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3271 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255); 3272 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3273 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr); 3274 } 3275 return ret; 3276 } 3277 3278 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr) 3279 { 3280 return sizeof(struct smu7_power_state); 3281 } 3282 3283 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr, 3284 uint32_t vblank_time_us) 3285 { 3286 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3287 uint32_t switch_limit_us; 3288 3289 switch (hwmgr->chip_id) { 3290 case CHIP_POLARIS10: 3291 case CHIP_POLARIS11: 3292 case CHIP_POLARIS12: 3293 if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12)) 3294 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3295 else 3296 switch_limit_us = data->is_memory_gddr5 ? 200 : 150; 3297 break; 3298 case CHIP_VEGAM: 3299 switch_limit_us = 30; 3300 break; 3301 default: 3302 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3303 break; 3304 } 3305 3306 if (vblank_time_us < switch_limit_us) 3307 return true; 3308 else 3309 return false; 3310 } 3311 3312 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3313 struct pp_power_state *request_ps, 3314 const struct pp_power_state *current_ps) 3315 { 3316 struct amdgpu_device *adev = hwmgr->adev; 3317 struct smu7_power_state *smu7_ps = 3318 cast_phw_smu7_power_state(&request_ps->hardware); 3319 uint32_t sclk; 3320 uint32_t mclk; 3321 struct PP_Clocks minimum_clocks = {0}; 3322 bool disable_mclk_switching; 3323 bool disable_mclk_switching_for_frame_lock; 3324 bool disable_mclk_switching_for_display; 3325 const struct phm_clock_and_voltage_limits *max_limits; 3326 uint32_t i; 3327 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3328 struct phm_ppt_v1_information *table_info = 3329 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3330 int32_t count; 3331 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3332 uint32_t latency; 3333 bool latency_allowed = false; 3334 3335 data->battery_state = (PP_StateUILabel_Battery == 3336 request_ps->classification.ui_label); 3337 data->mclk_ignore_signal = false; 3338 3339 max_limits = adev->pm.ac_power ? 3340 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3341 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3342 3343 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3344 if (!adev->pm.ac_power) { 3345 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3346 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk) 3347 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk; 3348 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk) 3349 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk; 3350 } 3351 } 3352 3353 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3354 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3355 3356 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3357 PHM_PlatformCaps_StablePState)) { 3358 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3359 stable_pstate_sclk = (max_limits->sclk * 75) / 100; 3360 3361 for (count = table_info->vdd_dep_on_sclk->count - 1; 3362 count >= 0; count--) { 3363 if (stable_pstate_sclk >= 3364 table_info->vdd_dep_on_sclk->entries[count].clk) { 3365 stable_pstate_sclk = 3366 table_info->vdd_dep_on_sclk->entries[count].clk; 3367 break; 3368 } 3369 } 3370 3371 if (count < 0) 3372 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3373 3374 stable_pstate_mclk = max_limits->mclk; 3375 3376 minimum_clocks.engineClock = stable_pstate_sclk; 3377 minimum_clocks.memoryClock = stable_pstate_mclk; 3378 } 3379 3380 disable_mclk_switching_for_frame_lock = phm_cap_enabled( 3381 hwmgr->platform_descriptor.platformCaps, 3382 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3383 3384 disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) && 3385 !hwmgr->display_config->multi_monitor_in_sync) || 3386 (hwmgr->display_config->num_display && 3387 smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time)); 3388 3389 disable_mclk_switching = disable_mclk_switching_for_frame_lock || 3390 disable_mclk_switching_for_display; 3391 3392 if (hwmgr->display_config->num_display == 0) { 3393 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 3394 data->mclk_ignore_signal = true; 3395 else 3396 disable_mclk_switching = false; 3397 } 3398 3399 sclk = smu7_ps->performance_levels[0].engine_clock; 3400 mclk = smu7_ps->performance_levels[0].memory_clock; 3401 3402 if (disable_mclk_switching && 3403 (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3404 hwmgr->chip_id <= CHIP_VEGAM))) 3405 mclk = smu7_ps->performance_levels 3406 [smu7_ps->performance_level_count - 1].memory_clock; 3407 3408 if (sclk < minimum_clocks.engineClock) 3409 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3410 max_limits->sclk : minimum_clocks.engineClock; 3411 3412 if (mclk < minimum_clocks.memoryClock) 3413 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3414 max_limits->mclk : minimum_clocks.memoryClock; 3415 3416 smu7_ps->performance_levels[0].engine_clock = sclk; 3417 smu7_ps->performance_levels[0].memory_clock = mclk; 3418 3419 smu7_ps->performance_levels[1].engine_clock = 3420 (smu7_ps->performance_levels[1].engine_clock >= 3421 smu7_ps->performance_levels[0].engine_clock) ? 3422 smu7_ps->performance_levels[1].engine_clock : 3423 smu7_ps->performance_levels[0].engine_clock; 3424 3425 if (disable_mclk_switching) { 3426 if (mclk < smu7_ps->performance_levels[1].memory_clock) 3427 mclk = smu7_ps->performance_levels[1].memory_clock; 3428 3429 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) { 3430 if (disable_mclk_switching_for_display) { 3431 /* Find the lowest MCLK frequency that is within 3432 * the tolerable latency defined in DAL 3433 */ 3434 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3435 for (i = 0; i < data->mclk_latency_table.count; i++) { 3436 if (data->mclk_latency_table.entries[i].latency <= latency) { 3437 latency_allowed = true; 3438 3439 if ((data->mclk_latency_table.entries[i].frequency >= 3440 smu7_ps->performance_levels[0].memory_clock) && 3441 (data->mclk_latency_table.entries[i].frequency <= 3442 smu7_ps->performance_levels[1].memory_clock)) { 3443 mclk = data->mclk_latency_table.entries[i].frequency; 3444 break; 3445 } 3446 } 3447 } 3448 if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) { 3449 data->mclk_ignore_signal = true; 3450 } else { 3451 data->mclk_ignore_signal = false; 3452 } 3453 } 3454 3455 if (disable_mclk_switching_for_frame_lock) 3456 mclk = smu7_ps->performance_levels[1].memory_clock; 3457 } 3458 3459 smu7_ps->performance_levels[0].memory_clock = mclk; 3460 3461 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3462 hwmgr->chip_id <= CHIP_VEGAM)) 3463 smu7_ps->performance_levels[1].memory_clock = mclk; 3464 } else { 3465 if (smu7_ps->performance_levels[1].memory_clock < 3466 smu7_ps->performance_levels[0].memory_clock) 3467 smu7_ps->performance_levels[1].memory_clock = 3468 smu7_ps->performance_levels[0].memory_clock; 3469 } 3470 3471 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3472 PHM_PlatformCaps_StablePState)) { 3473 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3474 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk; 3475 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk; 3476 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; 3477 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; 3478 } 3479 } 3480 return 0; 3481 } 3482 3483 3484 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3485 { 3486 struct pp_power_state *ps; 3487 struct smu7_power_state *smu7_ps; 3488 3489 if (hwmgr == NULL) 3490 return -EINVAL; 3491 3492 ps = hwmgr->request_ps; 3493 3494 if (ps == NULL) 3495 return -EINVAL; 3496 3497 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3498 3499 if (low) 3500 return smu7_ps->performance_levels[0].memory_clock; 3501 else 3502 return smu7_ps->performance_levels 3503 [smu7_ps->performance_level_count-1].memory_clock; 3504 } 3505 3506 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3507 { 3508 struct pp_power_state *ps; 3509 struct smu7_power_state *smu7_ps; 3510 3511 if (hwmgr == NULL) 3512 return -EINVAL; 3513 3514 ps = hwmgr->request_ps; 3515 3516 if (ps == NULL) 3517 return -EINVAL; 3518 3519 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3520 3521 if (low) 3522 return smu7_ps->performance_levels[0].engine_clock; 3523 else 3524 return smu7_ps->performance_levels 3525 [smu7_ps->performance_level_count-1].engine_clock; 3526 } 3527 3528 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, 3529 struct pp_hw_power_state *hw_ps) 3530 { 3531 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3532 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps; 3533 ATOM_FIRMWARE_INFO_V2_2 *fw_info; 3534 uint16_t size; 3535 uint8_t frev, crev; 3536 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); 3537 3538 /* First retrieve the Boot clocks and VDDC from the firmware info table. 3539 * We assume here that fw_info is unchanged if this call fails. 3540 */ 3541 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index, 3542 &size, &frev, &crev); 3543 if (!fw_info) 3544 /* During a test, there is no firmware info table. */ 3545 return 0; 3546 3547 /* Patch the state. */ 3548 data->vbios_boot_state.sclk_bootup_value = 3549 le32_to_cpu(fw_info->ulDefaultEngineClock); 3550 data->vbios_boot_state.mclk_bootup_value = 3551 le32_to_cpu(fw_info->ulDefaultMemoryClock); 3552 data->vbios_boot_state.mvdd_bootup_value = 3553 le16_to_cpu(fw_info->usBootUpMVDDCVoltage); 3554 data->vbios_boot_state.vddc_bootup_value = 3555 le16_to_cpu(fw_info->usBootUpVDDCVoltage); 3556 data->vbios_boot_state.vddci_bootup_value = 3557 le16_to_cpu(fw_info->usBootUpVDDCIVoltage); 3558 data->vbios_boot_state.pcie_gen_bootup_value = 3559 smu7_get_current_pcie_speed(hwmgr); 3560 3561 data->vbios_boot_state.pcie_lane_bootup_value = 3562 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr); 3563 3564 /* set boot power state */ 3565 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; 3566 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; 3567 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; 3568 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; 3569 3570 return 0; 3571 } 3572 3573 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) 3574 { 3575 int result; 3576 unsigned long ret = 0; 3577 3578 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3579 result = pp_tables_get_num_of_entries(hwmgr, &ret); 3580 return result ? 0 : ret; 3581 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3582 result = get_number_of_powerplay_table_entries_v1_0(hwmgr); 3583 return result; 3584 } 3585 return 0; 3586 } 3587 3588 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr, 3589 void *state, struct pp_power_state *power_state, 3590 void *pp_table, uint32_t classification_flag) 3591 { 3592 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3593 struct smu7_power_state *smu7_power_state = 3594 (struct smu7_power_state *)(&(power_state->hardware)); 3595 struct smu7_performance_level *performance_level; 3596 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; 3597 ATOM_Tonga_POWERPLAYTABLE *powerplay_table = 3598 (ATOM_Tonga_POWERPLAYTABLE *)pp_table; 3599 PPTable_Generic_SubTable_Header *sclk_dep_table = 3600 (PPTable_Generic_SubTable_Header *) 3601 (((unsigned long)powerplay_table) + 3602 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); 3603 3604 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = 3605 (ATOM_Tonga_MCLK_Dependency_Table *) 3606 (((unsigned long)powerplay_table) + 3607 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3608 3609 /* The following fields are not initialized here: id orderedList allStatesList */ 3610 power_state->classification.ui_label = 3611 (le16_to_cpu(state_entry->usClassification) & 3612 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3613 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3614 power_state->classification.flags = classification_flag; 3615 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ 3616 3617 power_state->classification.temporary_state = false; 3618 power_state->classification.to_be_deleted = false; 3619 3620 power_state->validation.disallowOnDC = 3621 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3622 ATOM_Tonga_DISALLOW_ON_DC)); 3623 3624 power_state->pcie.lanes = 0; 3625 3626 power_state->display.disableFrameModulation = false; 3627 power_state->display.limitRefreshrate = false; 3628 power_state->display.enableVariBright = 3629 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3630 ATOM_Tonga_ENABLE_VARIBRIGHT)); 3631 3632 power_state->validation.supportedPowerLevels = 0; 3633 power_state->uvd_clocks.VCLK = 0; 3634 power_state->uvd_clocks.DCLK = 0; 3635 power_state->temperatures.min = 0; 3636 power_state->temperatures.max = 0; 3637 3638 performance_level = &(smu7_power_state->performance_levels 3639 [smu7_power_state->performance_level_count++]); 3640 3641 PP_ASSERT_WITH_CODE( 3642 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3643 "Performance levels exceeds SMC limit!", 3644 return -EINVAL); 3645 3646 PP_ASSERT_WITH_CODE( 3647 (smu7_power_state->performance_level_count < 3648 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3649 "Performance levels exceeds Driver limit!", 3650 return -EINVAL); 3651 3652 /* Performance levels are arranged from low to high. */ 3653 performance_level->memory_clock = mclk_dep_table->entries 3654 [state_entry->ucMemoryClockIndexLow].ulMclk; 3655 if (sclk_dep_table->ucRevId == 0) 3656 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3657 [state_entry->ucEngineClockIndexLow].ulSclk; 3658 else if (sclk_dep_table->ucRevId == 1) 3659 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3660 [state_entry->ucEngineClockIndexLow].ulSclk; 3661 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3662 state_entry->ucPCIEGenLow); 3663 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3664 state_entry->ucPCIELaneLow); 3665 3666 performance_level = &(smu7_power_state->performance_levels 3667 [smu7_power_state->performance_level_count++]); 3668 performance_level->memory_clock = mclk_dep_table->entries 3669 [state_entry->ucMemoryClockIndexHigh].ulMclk; 3670 3671 if (sclk_dep_table->ucRevId == 0) 3672 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3673 [state_entry->ucEngineClockIndexHigh].ulSclk; 3674 else if (sclk_dep_table->ucRevId == 1) 3675 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3676 [state_entry->ucEngineClockIndexHigh].ulSclk; 3677 3678 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3679 state_entry->ucPCIEGenHigh); 3680 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3681 state_entry->ucPCIELaneHigh); 3682 3683 return 0; 3684 } 3685 3686 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr, 3687 unsigned long entry_index, struct pp_power_state *state) 3688 { 3689 int result; 3690 struct smu7_power_state *ps; 3691 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3692 struct phm_ppt_v1_information *table_info = 3693 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3694 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 3695 table_info->vdd_dep_on_mclk; 3696 3697 state->hardware.magic = PHM_VIslands_Magic; 3698 3699 ps = (struct smu7_power_state *)(&state->hardware); 3700 3701 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state, 3702 smu7_get_pp_table_entry_callback_func_v1); 3703 3704 /* This is the earliest time we have all the dependency table and the VBIOS boot state 3705 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state 3706 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state 3707 */ 3708 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3709 if (dep_mclk_table->entries[0].clk != 3710 data->vbios_boot_state.mclk_bootup_value) 3711 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3712 "does not match VBIOS boot MCLK level"); 3713 if (dep_mclk_table->entries[0].vddci != 3714 data->vbios_boot_state.vddci_bootup_value) 3715 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3716 "does not match VBIOS boot VDDCI level"); 3717 } 3718 3719 /* set DC compatible flag if this state supports DC */ 3720 if (!state->validation.disallowOnDC) 3721 ps->dc_compatible = true; 3722 3723 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3724 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3725 3726 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3727 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3728 3729 if (!result) { 3730 uint32_t i; 3731 3732 switch (state->classification.ui_label) { 3733 case PP_StateUILabel_Performance: 3734 data->use_pcie_performance_levels = true; 3735 for (i = 0; i < ps->performance_level_count; i++) { 3736 if (data->pcie_gen_performance.max < 3737 ps->performance_levels[i].pcie_gen) 3738 data->pcie_gen_performance.max = 3739 ps->performance_levels[i].pcie_gen; 3740 3741 if (data->pcie_gen_performance.min > 3742 ps->performance_levels[i].pcie_gen) 3743 data->pcie_gen_performance.min = 3744 ps->performance_levels[i].pcie_gen; 3745 3746 if (data->pcie_lane_performance.max < 3747 ps->performance_levels[i].pcie_lane) 3748 data->pcie_lane_performance.max = 3749 ps->performance_levels[i].pcie_lane; 3750 if (data->pcie_lane_performance.min > 3751 ps->performance_levels[i].pcie_lane) 3752 data->pcie_lane_performance.min = 3753 ps->performance_levels[i].pcie_lane; 3754 } 3755 break; 3756 case PP_StateUILabel_Battery: 3757 data->use_pcie_power_saving_levels = true; 3758 3759 for (i = 0; i < ps->performance_level_count; i++) { 3760 if (data->pcie_gen_power_saving.max < 3761 ps->performance_levels[i].pcie_gen) 3762 data->pcie_gen_power_saving.max = 3763 ps->performance_levels[i].pcie_gen; 3764 3765 if (data->pcie_gen_power_saving.min > 3766 ps->performance_levels[i].pcie_gen) 3767 data->pcie_gen_power_saving.min = 3768 ps->performance_levels[i].pcie_gen; 3769 3770 if (data->pcie_lane_power_saving.max < 3771 ps->performance_levels[i].pcie_lane) 3772 data->pcie_lane_power_saving.max = 3773 ps->performance_levels[i].pcie_lane; 3774 3775 if (data->pcie_lane_power_saving.min > 3776 ps->performance_levels[i].pcie_lane) 3777 data->pcie_lane_power_saving.min = 3778 ps->performance_levels[i].pcie_lane; 3779 } 3780 break; 3781 default: 3782 break; 3783 } 3784 } 3785 return 0; 3786 } 3787 3788 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr, 3789 struct pp_hw_power_state *power_state, 3790 unsigned int index, const void *clock_info) 3791 { 3792 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3793 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state); 3794 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; 3795 struct smu7_performance_level *performance_level; 3796 uint32_t engine_clock, memory_clock; 3797 uint16_t pcie_gen_from_bios; 3798 3799 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; 3800 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; 3801 3802 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) 3803 data->highest_mclk = memory_clock; 3804 3805 PP_ASSERT_WITH_CODE( 3806 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3807 "Performance levels exceeds SMC limit!", 3808 return -EINVAL); 3809 3810 PP_ASSERT_WITH_CODE( 3811 (ps->performance_level_count < 3812 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3813 "Performance levels exceeds Driver limit, Skip!", 3814 return 0); 3815 3816 performance_level = &(ps->performance_levels 3817 [ps->performance_level_count++]); 3818 3819 /* Performance levels are arranged from low to high. */ 3820 performance_level->memory_clock = memory_clock; 3821 performance_level->engine_clock = engine_clock; 3822 3823 pcie_gen_from_bios = visland_clk_info->ucPCIEGen; 3824 3825 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); 3826 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); 3827 3828 return 0; 3829 } 3830 3831 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr, 3832 unsigned long entry_index, struct pp_power_state *state) 3833 { 3834 int result; 3835 struct smu7_power_state *ps; 3836 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3837 struct phm_clock_voltage_dependency_table *dep_mclk_table = 3838 hwmgr->dyn_state.vddci_dependency_on_mclk; 3839 3840 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); 3841 3842 state->hardware.magic = PHM_VIslands_Magic; 3843 3844 ps = (struct smu7_power_state *)(&state->hardware); 3845 3846 result = pp_tables_get_entry(hwmgr, entry_index, state, 3847 smu7_get_pp_table_entry_callback_func_v0); 3848 3849 /* 3850 * This is the earliest time we have all the dependency table 3851 * and the VBIOS boot state as 3852 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot 3853 * state if there is only one VDDCI/MCLK level, check if it's 3854 * the same as VBIOS boot state 3855 */ 3856 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3857 if (dep_mclk_table->entries[0].clk != 3858 data->vbios_boot_state.mclk_bootup_value) 3859 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3860 "does not match VBIOS boot MCLK level"); 3861 if (dep_mclk_table->entries[0].v != 3862 data->vbios_boot_state.vddci_bootup_value) 3863 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3864 "does not match VBIOS boot VDDCI level"); 3865 } 3866 3867 /* set DC compatible flag if this state supports DC */ 3868 if (!state->validation.disallowOnDC) 3869 ps->dc_compatible = true; 3870 3871 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3872 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3873 3874 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3875 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3876 3877 if (!result) { 3878 uint32_t i; 3879 3880 switch (state->classification.ui_label) { 3881 case PP_StateUILabel_Performance: 3882 data->use_pcie_performance_levels = true; 3883 3884 for (i = 0; i < ps->performance_level_count; i++) { 3885 if (data->pcie_gen_performance.max < 3886 ps->performance_levels[i].pcie_gen) 3887 data->pcie_gen_performance.max = 3888 ps->performance_levels[i].pcie_gen; 3889 3890 if (data->pcie_gen_performance.min > 3891 ps->performance_levels[i].pcie_gen) 3892 data->pcie_gen_performance.min = 3893 ps->performance_levels[i].pcie_gen; 3894 3895 if (data->pcie_lane_performance.max < 3896 ps->performance_levels[i].pcie_lane) 3897 data->pcie_lane_performance.max = 3898 ps->performance_levels[i].pcie_lane; 3899 3900 if (data->pcie_lane_performance.min > 3901 ps->performance_levels[i].pcie_lane) 3902 data->pcie_lane_performance.min = 3903 ps->performance_levels[i].pcie_lane; 3904 } 3905 break; 3906 case PP_StateUILabel_Battery: 3907 data->use_pcie_power_saving_levels = true; 3908 3909 for (i = 0; i < ps->performance_level_count; i++) { 3910 if (data->pcie_gen_power_saving.max < 3911 ps->performance_levels[i].pcie_gen) 3912 data->pcie_gen_power_saving.max = 3913 ps->performance_levels[i].pcie_gen; 3914 3915 if (data->pcie_gen_power_saving.min > 3916 ps->performance_levels[i].pcie_gen) 3917 data->pcie_gen_power_saving.min = 3918 ps->performance_levels[i].pcie_gen; 3919 3920 if (data->pcie_lane_power_saving.max < 3921 ps->performance_levels[i].pcie_lane) 3922 data->pcie_lane_power_saving.max = 3923 ps->performance_levels[i].pcie_lane; 3924 3925 if (data->pcie_lane_power_saving.min > 3926 ps->performance_levels[i].pcie_lane) 3927 data->pcie_lane_power_saving.min = 3928 ps->performance_levels[i].pcie_lane; 3929 } 3930 break; 3931 default: 3932 break; 3933 } 3934 } 3935 return 0; 3936 } 3937 3938 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3939 unsigned long entry_index, struct pp_power_state *state) 3940 { 3941 if (hwmgr->pp_table_version == PP_TABLE_V0) 3942 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state); 3943 else if (hwmgr->pp_table_version == PP_TABLE_V1) 3944 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state); 3945 3946 return 0; 3947 } 3948 3949 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query) 3950 { 3951 struct amdgpu_device *adev = hwmgr->adev; 3952 int i; 3953 u32 tmp = 0; 3954 3955 if (!query) 3956 return -EINVAL; 3957 3958 /* 3959 * PPSMC_MSG_GetCurrPkgPwr is not supported on: 3960 * - Hawaii 3961 * - Bonaire 3962 * - Fiji 3963 * - Tonga 3964 */ 3965 if ((adev->asic_type != CHIP_HAWAII) && 3966 (adev->asic_type != CHIP_BONAIRE) && 3967 (adev->asic_type != CHIP_FIJI) && 3968 (adev->asic_type != CHIP_TONGA)) { 3969 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp); 3970 *query = tmp; 3971 3972 if (tmp != 0) 3973 return 0; 3974 } 3975 3976 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL); 3977 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 3978 ixSMU_PM_STATUS_95, 0); 3979 3980 for (i = 0; i < 10; i++) { 3981 msleep(500); 3982 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL); 3983 tmp = cgs_read_ind_register(hwmgr->device, 3984 CGS_IND_REG__SMC, 3985 ixSMU_PM_STATUS_95); 3986 if (tmp != 0) 3987 break; 3988 } 3989 *query = tmp; 3990 3991 return 0; 3992 } 3993 3994 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3995 void *value, int *size) 3996 { 3997 uint32_t sclk, mclk, activity_percent; 3998 uint32_t offset, val_vid; 3999 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4000 4001 /* size must be at least 4 bytes for all sensors */ 4002 if (*size < 4) 4003 return -EINVAL; 4004 4005 switch (idx) { 4006 case AMDGPU_PP_SENSOR_GFX_SCLK: 4007 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk); 4008 *((uint32_t *)value) = sclk; 4009 *size = 4; 4010 return 0; 4011 case AMDGPU_PP_SENSOR_GFX_MCLK: 4012 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk); 4013 *((uint32_t *)value) = mclk; 4014 *size = 4; 4015 return 0; 4016 case AMDGPU_PP_SENSOR_GPU_LOAD: 4017 case AMDGPU_PP_SENSOR_MEM_LOAD: 4018 offset = data->soft_regs_start + smum_get_offsetof(hwmgr, 4019 SMU_SoftRegisters, 4020 (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ? 4021 AverageGraphicsActivity : 4022 AverageMemoryActivity); 4023 4024 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); 4025 activity_percent += 0x80; 4026 activity_percent >>= 8; 4027 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 4028 *size = 4; 4029 return 0; 4030 case AMDGPU_PP_SENSOR_GPU_TEMP: 4031 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr); 4032 *size = 4; 4033 return 0; 4034 case AMDGPU_PP_SENSOR_UVD_POWER: 4035 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 4036 *size = 4; 4037 return 0; 4038 case AMDGPU_PP_SENSOR_VCE_POWER: 4039 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 4040 *size = 4; 4041 return 0; 4042 case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: 4043 return smu7_get_gpu_power(hwmgr, (uint32_t *)value); 4044 case AMDGPU_PP_SENSOR_VDDGFX: 4045 if ((data->vr_config & VRCONF_VDDGFX_MASK) == 4046 (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT)) 4047 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 4048 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID); 4049 else 4050 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 4051 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID); 4052 4053 *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid); 4054 return 0; 4055 default: 4056 return -EOPNOTSUPP; 4057 } 4058 } 4059 4060 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 4061 { 4062 const struct phm_set_power_state_input *states = 4063 (const struct phm_set_power_state_input *)input; 4064 const struct smu7_power_state *smu7_ps = 4065 cast_const_phw_smu7_power_state(states->pnew_state); 4066 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4067 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4068 uint32_t sclk = smu7_ps->performance_levels 4069 [smu7_ps->performance_level_count - 1].engine_clock; 4070 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 4071 uint32_t mclk = smu7_ps->performance_levels 4072 [smu7_ps->performance_level_count - 1].memory_clock; 4073 struct PP_Clocks min_clocks = {0}; 4074 uint32_t i; 4075 4076 for (i = 0; i < sclk_table->count; i++) { 4077 if (sclk == sclk_table->dpm_levels[i].value) 4078 break; 4079 } 4080 4081 if (i >= sclk_table->count) { 4082 if (sclk > sclk_table->dpm_levels[i-1].value) { 4083 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 4084 sclk_table->dpm_levels[i-1].value = sclk; 4085 } 4086 } else { 4087 /* TODO: Check SCLK in DAL's minimum clocks 4088 * in case DeepSleep divider update is required. 4089 */ 4090 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && 4091 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK || 4092 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 4093 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; 4094 } 4095 4096 for (i = 0; i < mclk_table->count; i++) { 4097 if (mclk == mclk_table->dpm_levels[i].value) 4098 break; 4099 } 4100 4101 if (i >= mclk_table->count) { 4102 if (mclk > mclk_table->dpm_levels[i-1].value) { 4103 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 4104 mclk_table->dpm_levels[i-1].value = mclk; 4105 } 4106 } 4107 4108 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4109 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; 4110 4111 return 0; 4112 } 4113 4114 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr, 4115 const struct smu7_power_state *smu7_ps) 4116 { 4117 uint32_t i; 4118 uint32_t sclk, max_sclk = 0; 4119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4120 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4121 4122 for (i = 0; i < smu7_ps->performance_level_count; i++) { 4123 sclk = smu7_ps->performance_levels[i].engine_clock; 4124 if (max_sclk < sclk) 4125 max_sclk = sclk; 4126 } 4127 4128 for (i = 0; i < dpm_table->sclk_table.count; i++) { 4129 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) 4130 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? 4131 dpm_table->pcie_speed_table.dpm_levels 4132 [dpm_table->pcie_speed_table.count - 1].value : 4133 dpm_table->pcie_speed_table.dpm_levels[i].value); 4134 } 4135 4136 return 0; 4137 } 4138 4139 static int smu7_request_link_speed_change_before_state_change( 4140 struct pp_hwmgr *hwmgr, const void *input) 4141 { 4142 const struct phm_set_power_state_input *states = 4143 (const struct phm_set_power_state_input *)input; 4144 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4145 const struct smu7_power_state *smu7_nps = 4146 cast_const_phw_smu7_power_state(states->pnew_state); 4147 const struct smu7_power_state *polaris10_cps = 4148 cast_const_phw_smu7_power_state(states->pcurrent_state); 4149 4150 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps); 4151 uint16_t current_link_speed; 4152 4153 if (data->force_pcie_gen == PP_PCIEGenInvalid) 4154 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps); 4155 else 4156 current_link_speed = data->force_pcie_gen; 4157 4158 data->force_pcie_gen = PP_PCIEGenInvalid; 4159 data->pspp_notify_required = false; 4160 4161 if (target_link_speed > current_link_speed) { 4162 switch (target_link_speed) { 4163 #ifdef CONFIG_ACPI 4164 case PP_PCIEGen3: 4165 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false)) 4166 break; 4167 data->force_pcie_gen = PP_PCIEGen2; 4168 if (current_link_speed == PP_PCIEGen2) 4169 break; 4170 fallthrough; 4171 case PP_PCIEGen2: 4172 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false)) 4173 break; 4174 fallthrough; 4175 #endif 4176 default: 4177 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr); 4178 break; 4179 } 4180 } else { 4181 if (target_link_speed < current_link_speed) 4182 data->pspp_notify_required = true; 4183 } 4184 4185 return 0; 4186 } 4187 4188 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4189 { 4190 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4191 4192 if (0 == data->need_update_smu7_dpm_table) 4193 return 0; 4194 4195 if ((0 == data->sclk_dpm_key_disabled) && 4196 (data->need_update_smu7_dpm_table & 4197 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { 4198 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4199 "Trying to freeze SCLK DPM when DPM is disabled", 4200 ); 4201 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4202 PPSMC_MSG_SCLKDPM_FreezeLevel, 4203 NULL), 4204 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", 4205 return -EINVAL); 4206 } 4207 4208 if ((0 == data->mclk_dpm_key_disabled) && 4209 !data->mclk_ignore_signal && 4210 (data->need_update_smu7_dpm_table & 4211 DPMTABLE_OD_UPDATE_MCLK)) { 4212 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4213 "Trying to freeze MCLK DPM when DPM is disabled", 4214 ); 4215 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4216 PPSMC_MSG_MCLKDPM_FreezeLevel, 4217 NULL), 4218 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", 4219 return -EINVAL); 4220 } 4221 4222 return 0; 4223 } 4224 4225 static int smu7_populate_and_upload_sclk_mclk_dpm_levels( 4226 struct pp_hwmgr *hwmgr, const void *input) 4227 { 4228 int result = 0; 4229 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4230 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4231 uint32_t count; 4232 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4233 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4234 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4235 4236 if (0 == data->need_update_smu7_dpm_table) 4237 return 0; 4238 4239 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 4240 for (count = 0; count < dpm_table->sclk_table.count; count++) { 4241 dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled; 4242 dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock; 4243 } 4244 } 4245 4246 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 4247 for (count = 0; count < dpm_table->mclk_table.count; count++) { 4248 dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled; 4249 dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock; 4250 } 4251 } 4252 4253 if (data->need_update_smu7_dpm_table & 4254 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) { 4255 result = smum_populate_all_graphic_levels(hwmgr); 4256 PP_ASSERT_WITH_CODE((0 == result), 4257 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 4258 return result); 4259 } 4260 4261 if (data->need_update_smu7_dpm_table & 4262 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { 4263 /*populate MCLK dpm table to SMU7 */ 4264 result = smum_populate_all_memory_levels(hwmgr); 4265 PP_ASSERT_WITH_CODE((0 == result), 4266 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 4267 return result); 4268 } 4269 4270 return result; 4271 } 4272 4273 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 4274 struct smu7_single_dpm_table *dpm_table, 4275 uint32_t low_limit, uint32_t high_limit) 4276 { 4277 uint32_t i; 4278 4279 /* force the trim if mclk_switching is disabled to prevent flicker */ 4280 bool force_trim = (low_limit == high_limit); 4281 for (i = 0; i < dpm_table->count; i++) { 4282 /*skip the trim if od is enabled*/ 4283 if ((!hwmgr->od_enabled || force_trim) 4284 && (dpm_table->dpm_levels[i].value < low_limit 4285 || dpm_table->dpm_levels[i].value > high_limit)) 4286 dpm_table->dpm_levels[i].enabled = false; 4287 else 4288 dpm_table->dpm_levels[i].enabled = true; 4289 } 4290 4291 return 0; 4292 } 4293 4294 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr, 4295 const struct smu7_power_state *smu7_ps) 4296 { 4297 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4298 uint32_t high_limit_count; 4299 4300 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1), 4301 "power state did not have any performance level", 4302 return -EINVAL); 4303 4304 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1; 4305 4306 smu7_trim_single_dpm_states(hwmgr, 4307 &(data->dpm_table.sclk_table), 4308 smu7_ps->performance_levels[0].engine_clock, 4309 smu7_ps->performance_levels[high_limit_count].engine_clock); 4310 4311 smu7_trim_single_dpm_states(hwmgr, 4312 &(data->dpm_table.mclk_table), 4313 smu7_ps->performance_levels[0].memory_clock, 4314 smu7_ps->performance_levels[high_limit_count].memory_clock); 4315 4316 return 0; 4317 } 4318 4319 static int smu7_generate_dpm_level_enable_mask( 4320 struct pp_hwmgr *hwmgr, const void *input) 4321 { 4322 int result = 0; 4323 const struct phm_set_power_state_input *states = 4324 (const struct phm_set_power_state_input *)input; 4325 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4326 const struct smu7_power_state *smu7_ps = 4327 cast_const_phw_smu7_power_state(states->pnew_state); 4328 4329 4330 result = smu7_trim_dpm_states(hwmgr, smu7_ps); 4331 if (result) 4332 return result; 4333 4334 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 4335 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); 4336 data->dpm_level_enable_mask.mclk_dpm_enable_mask = 4337 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); 4338 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 4339 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); 4340 4341 return 0; 4342 } 4343 4344 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4345 { 4346 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4347 4348 if (0 == data->need_update_smu7_dpm_table) 4349 return 0; 4350 4351 if ((0 == data->sclk_dpm_key_disabled) && 4352 (data->need_update_smu7_dpm_table & 4353 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { 4354 4355 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4356 "Trying to Unfreeze SCLK DPM when DPM is disabled", 4357 ); 4358 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4359 PPSMC_MSG_SCLKDPM_UnfreezeLevel, 4360 NULL), 4361 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", 4362 return -EINVAL); 4363 } 4364 4365 if ((0 == data->mclk_dpm_key_disabled) && 4366 !data->mclk_ignore_signal && 4367 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { 4368 4369 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4370 "Trying to Unfreeze MCLK DPM when DPM is disabled", 4371 ); 4372 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4373 PPSMC_MSG_MCLKDPM_UnfreezeLevel, 4374 NULL), 4375 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", 4376 return -EINVAL); 4377 } 4378 4379 data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 4380 4381 return 0; 4382 } 4383 4384 static int smu7_notify_link_speed_change_after_state_change( 4385 struct pp_hwmgr *hwmgr, const void *input) 4386 { 4387 const struct phm_set_power_state_input *states = 4388 (const struct phm_set_power_state_input *)input; 4389 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4390 const struct smu7_power_state *smu7_ps = 4391 cast_const_phw_smu7_power_state(states->pnew_state); 4392 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps); 4393 uint8_t request; 4394 4395 if (data->pspp_notify_required) { 4396 if (target_link_speed == PP_PCIEGen3) 4397 request = PCIE_PERF_REQ_GEN3; 4398 else if (target_link_speed == PP_PCIEGen2) 4399 request = PCIE_PERF_REQ_GEN2; 4400 else 4401 request = PCIE_PERF_REQ_GEN1; 4402 4403 if (request == PCIE_PERF_REQ_GEN1 && 4404 smu7_get_current_pcie_speed(hwmgr) > 0) 4405 return 0; 4406 4407 #ifdef CONFIG_ACPI 4408 if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) { 4409 if (PP_PCIEGen2 == target_link_speed) 4410 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!"); 4411 else 4412 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!"); 4413 } 4414 #endif 4415 } 4416 4417 return 0; 4418 } 4419 4420 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr) 4421 { 4422 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL; 4423 } 4424 4425 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr) 4426 { 4427 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4428 4429 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) { 4430 if (hwmgr->chip_id == CHIP_VEGAM) 4431 smum_send_msg_to_smc_with_parameter(hwmgr, 4432 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2, 4433 NULL); 4434 else 4435 smum_send_msg_to_smc_with_parameter(hwmgr, 4436 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2, 4437 NULL); 4438 data->last_sent_vbi_timeout = data->frame_time_x2; 4439 } 4440 4441 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL; 4442 } 4443 4444 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr) 4445 { 4446 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4447 int result = 0; 4448 4449 if (data->mclk_ignore_signal) 4450 result = smu7_notify_no_display(hwmgr); 4451 else 4452 result = smu7_notify_has_display(hwmgr); 4453 4454 return result; 4455 } 4456 4457 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) 4458 { 4459 int tmp_result, result = 0; 4460 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4461 4462 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 4463 PP_ASSERT_WITH_CODE((0 == tmp_result), 4464 "Failed to find DPM states clocks in DPM table!", 4465 result = tmp_result); 4466 4467 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4468 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4469 tmp_result = 4470 smu7_request_link_speed_change_before_state_change(hwmgr, input); 4471 PP_ASSERT_WITH_CODE((0 == tmp_result), 4472 "Failed to request link speed change before state change!", 4473 result = tmp_result); 4474 } 4475 4476 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr); 4477 PP_ASSERT_WITH_CODE((0 == tmp_result), 4478 "Failed to freeze SCLK MCLK DPM!", result = tmp_result); 4479 4480 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 4481 PP_ASSERT_WITH_CODE((0 == tmp_result), 4482 "Failed to populate and upload SCLK MCLK DPM levels!", 4483 result = tmp_result); 4484 4485 /* 4486 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 4487 * That effectively disables AVFS feature. 4488 */ 4489 if (hwmgr->hardcode_pp_table != NULL) 4490 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 4491 4492 tmp_result = smu7_update_avfs(hwmgr); 4493 PP_ASSERT_WITH_CODE((0 == tmp_result), 4494 "Failed to update avfs voltages!", 4495 result = tmp_result); 4496 4497 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input); 4498 PP_ASSERT_WITH_CODE((0 == tmp_result), 4499 "Failed to generate DPM level enabled mask!", 4500 result = tmp_result); 4501 4502 tmp_result = smum_update_sclk_threshold(hwmgr); 4503 PP_ASSERT_WITH_CODE((0 == tmp_result), 4504 "Failed to update SCLK threshold!", 4505 result = tmp_result); 4506 4507 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr); 4508 PP_ASSERT_WITH_CODE((0 == tmp_result), 4509 "Failed to unfreeze SCLK MCLK DPM!", 4510 result = tmp_result); 4511 4512 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr); 4513 PP_ASSERT_WITH_CODE((0 == tmp_result), 4514 "Failed to upload DPM level enabled mask!", 4515 result = tmp_result); 4516 4517 tmp_result = smu7_notify_smc_display(hwmgr); 4518 PP_ASSERT_WITH_CODE((0 == tmp_result), 4519 "Failed to notify smc display settings!", 4520 result = tmp_result); 4521 4522 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4523 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4524 tmp_result = 4525 smu7_notify_link_speed_change_after_state_change(hwmgr, input); 4526 PP_ASSERT_WITH_CODE((0 == tmp_result), 4527 "Failed to notify link speed change after state change!", 4528 result = tmp_result); 4529 } 4530 data->apply_optimized_settings = false; 4531 return result; 4532 } 4533 4534 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) 4535 { 4536 hwmgr->thermal_controller. 4537 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; 4538 4539 return smum_send_msg_to_smc_with_parameter(hwmgr, 4540 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm, 4541 NULL); 4542 } 4543 4544 static int 4545 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) 4546 { 4547 return 0; 4548 } 4549 4550 /** 4551 * smu7_program_display_gap - Programs the display gap 4552 * 4553 * @hwmgr: the address of the powerplay hardware manager. 4554 * Return: always OK 4555 */ 4556 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr) 4557 { 4558 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4559 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); 4560 uint32_t display_gap2; 4561 uint32_t pre_vbi_time_in_us; 4562 uint32_t frame_time_in_us; 4563 uint32_t ref_clock, refresh_rate; 4564 4565 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); 4566 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); 4567 4568 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 4569 refresh_rate = hwmgr->display_config->vrefresh; 4570 4571 if (0 == refresh_rate) 4572 refresh_rate = 60; 4573 4574 frame_time_in_us = 1000000 / refresh_rate; 4575 4576 pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time; 4577 4578 data->frame_time_x2 = frame_time_in_us * 2 / 100; 4579 4580 if (data->frame_time_x2 < 280) { 4581 pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2); 4582 data->frame_time_x2 = 280; 4583 } 4584 4585 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); 4586 4587 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); 4588 4589 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4590 data->soft_regs_start + smum_get_offsetof(hwmgr, 4591 SMU_SoftRegisters, 4592 PreVBlankGap), 0x64); 4593 4594 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4595 data->soft_regs_start + smum_get_offsetof(hwmgr, 4596 SMU_SoftRegisters, 4597 VBlankTimeout), 4598 (frame_time_in_us - pre_vbi_time_in_us)); 4599 4600 return 0; 4601 } 4602 4603 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4604 { 4605 return smu7_program_display_gap(hwmgr); 4606 } 4607 4608 /** 4609 * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM 4610 * 4611 * @hwmgr: the address of the powerplay hardware manager. 4612 * @us_max_fan_rpm: max operating fan RPM value. 4613 * Return: The response that came from the SMC. 4614 */ 4615 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) 4616 { 4617 hwmgr->thermal_controller. 4618 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; 4619 4620 return smum_send_msg_to_smc_with_parameter(hwmgr, 4621 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm, 4622 NULL); 4623 } 4624 4625 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = { 4626 .process = phm_irq_process, 4627 }; 4628 4629 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr) 4630 { 4631 struct amdgpu_irq_src *source = 4632 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); 4633 4634 if (!source) 4635 return -ENOMEM; 4636 4637 source->funcs = &smu7_irq_funcs; 4638 4639 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4640 AMDGPU_IRQ_CLIENTID_LEGACY, 4641 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH, 4642 source); 4643 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4644 AMDGPU_IRQ_CLIENTID_LEGACY, 4645 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW, 4646 source); 4647 4648 /* Register CTF(GPIO_19) interrupt */ 4649 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4650 AMDGPU_IRQ_CLIENTID_LEGACY, 4651 VISLANDS30_IV_SRCID_GPIO_19, 4652 source); 4653 4654 return 0; 4655 } 4656 4657 static bool 4658 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4659 { 4660 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4661 bool is_update_required = false; 4662 4663 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4664 is_update_required = true; 4665 4666 if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh) 4667 is_update_required = true; 4668 4669 if (hwmgr->chip_id >= CHIP_POLARIS10 && 4670 hwmgr->chip_id <= CHIP_VEGAM && 4671 data->last_sent_vbi_timeout != data->frame_time_x2) 4672 is_update_required = true; 4673 4674 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { 4675 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr && 4676 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK || 4677 hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 4678 is_update_required = true; 4679 } 4680 return is_update_required; 4681 } 4682 4683 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1, 4684 const struct smu7_performance_level *pl2) 4685 { 4686 return ((pl1->memory_clock == pl2->memory_clock) && 4687 (pl1->engine_clock == pl2->engine_clock) && 4688 (pl1->pcie_gen == pl2->pcie_gen) && 4689 (pl1->pcie_lane == pl2->pcie_lane)); 4690 } 4691 4692 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr, 4693 const struct pp_hw_power_state *pstate1, 4694 const struct pp_hw_power_state *pstate2, bool *equal) 4695 { 4696 const struct smu7_power_state *psa; 4697 const struct smu7_power_state *psb; 4698 int i; 4699 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4700 4701 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4702 return -EINVAL; 4703 4704 psa = cast_const_phw_smu7_power_state(pstate1); 4705 psb = cast_const_phw_smu7_power_state(pstate2); 4706 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4707 if (psa->performance_level_count != psb->performance_level_count) { 4708 *equal = false; 4709 return 0; 4710 } 4711 4712 for (i = 0; i < psa->performance_level_count; i++) { 4713 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4714 /* If we have found even one performance level pair that is different the states are different. */ 4715 *equal = false; 4716 return 0; 4717 } 4718 } 4719 4720 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4721 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4722 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4723 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4724 /* For OD call, set value based on flag */ 4725 *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | 4726 DPMTABLE_OD_UPDATE_MCLK | 4727 DPMTABLE_OD_UPDATE_VDDC)); 4728 4729 return 0; 4730 } 4731 4732 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr) 4733 { 4734 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4735 4736 uint32_t tmp; 4737 4738 /* Read MC indirect register offset 0x9F bits [3:0] to see 4739 * if VBIOS has already loaded a full version of MC ucode 4740 * or not. 4741 */ 4742 4743 smu7_get_mc_microcode_version(hwmgr); 4744 4745 data->need_long_memory_training = false; 4746 4747 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 4748 ixMC_IO_DEBUG_UP_13); 4749 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 4750 4751 if (tmp & (1 << 23)) { 4752 data->mem_latency_high = MEM_LATENCY_HIGH; 4753 data->mem_latency_low = MEM_LATENCY_LOW; 4754 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4755 (hwmgr->chip_id == CHIP_POLARIS11) || 4756 (hwmgr->chip_id == CHIP_POLARIS12)) 4757 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL); 4758 } else { 4759 data->mem_latency_high = 330; 4760 data->mem_latency_low = 330; 4761 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4762 (hwmgr->chip_id == CHIP_POLARIS11) || 4763 (hwmgr->chip_id == CHIP_POLARIS12)) 4764 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL); 4765 } 4766 4767 return 0; 4768 } 4769 4770 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr) 4771 { 4772 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4773 4774 data->clock_registers.vCG_SPLL_FUNC_CNTL = 4775 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); 4776 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = 4777 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); 4778 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = 4779 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); 4780 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = 4781 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); 4782 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = 4783 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); 4784 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = 4785 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); 4786 data->clock_registers.vDLL_CNTL = 4787 cgs_read_register(hwmgr->device, mmDLL_CNTL); 4788 data->clock_registers.vMCLK_PWRMGT_CNTL = 4789 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); 4790 data->clock_registers.vMPLL_AD_FUNC_CNTL = 4791 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); 4792 data->clock_registers.vMPLL_DQ_FUNC_CNTL = 4793 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); 4794 data->clock_registers.vMPLL_FUNC_CNTL = 4795 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); 4796 data->clock_registers.vMPLL_FUNC_CNTL_1 = 4797 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); 4798 data->clock_registers.vMPLL_FUNC_CNTL_2 = 4799 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); 4800 data->clock_registers.vMPLL_SS1 = 4801 cgs_read_register(hwmgr->device, mmMPLL_SS1); 4802 data->clock_registers.vMPLL_SS2 = 4803 cgs_read_register(hwmgr->device, mmMPLL_SS2); 4804 return 0; 4805 4806 } 4807 4808 /** 4809 * smu7_get_memory_type - Find out if memory is GDDR5. 4810 * 4811 * @hwmgr: the address of the powerplay hardware manager. 4812 * Return: always 0 4813 */ 4814 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr) 4815 { 4816 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4817 struct amdgpu_device *adev = hwmgr->adev; 4818 4819 data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5); 4820 4821 return 0; 4822 } 4823 4824 /** 4825 * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC 4826 * 4827 * @hwmgr: the address of the powerplay hardware manager. 4828 * Return: always 0 4829 */ 4830 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr) 4831 { 4832 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 4833 GENERAL_PWRMGT, STATIC_PM_EN, 1); 4834 4835 return 0; 4836 } 4837 4838 /** 4839 * smu7_init_power_gate_state - Initialize PowerGating States for different engines 4840 * 4841 * @hwmgr: the address of the powerplay hardware manager. 4842 * Return: always 0 4843 */ 4844 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr) 4845 { 4846 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4847 4848 data->uvd_power_gated = false; 4849 data->vce_power_gated = false; 4850 4851 return 0; 4852 } 4853 4854 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr) 4855 { 4856 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4857 4858 data->low_sclk_interrupt_threshold = 0; 4859 return 0; 4860 } 4861 4862 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr) 4863 { 4864 int tmp_result, result = 0; 4865 4866 smu7_check_mc_firmware(hwmgr); 4867 4868 tmp_result = smu7_read_clock_registers(hwmgr); 4869 PP_ASSERT_WITH_CODE((0 == tmp_result), 4870 "Failed to read clock registers!", result = tmp_result); 4871 4872 tmp_result = smu7_get_memory_type(hwmgr); 4873 PP_ASSERT_WITH_CODE((0 == tmp_result), 4874 "Failed to get memory type!", result = tmp_result); 4875 4876 tmp_result = smu7_enable_acpi_power_management(hwmgr); 4877 PP_ASSERT_WITH_CODE((0 == tmp_result), 4878 "Failed to enable ACPI power management!", result = tmp_result); 4879 4880 tmp_result = smu7_init_power_gate_state(hwmgr); 4881 PP_ASSERT_WITH_CODE((0 == tmp_result), 4882 "Failed to init power gate state!", result = tmp_result); 4883 4884 tmp_result = smu7_get_mc_microcode_version(hwmgr); 4885 PP_ASSERT_WITH_CODE((0 == tmp_result), 4886 "Failed to get MC microcode version!", result = tmp_result); 4887 4888 tmp_result = smu7_init_sclk_threshold(hwmgr); 4889 PP_ASSERT_WITH_CODE((0 == tmp_result), 4890 "Failed to init sclk threshold!", result = tmp_result); 4891 4892 return result; 4893 } 4894 4895 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 4896 enum pp_clock_type type, uint32_t mask) 4897 { 4898 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4899 4900 if (mask == 0) 4901 return -EINVAL; 4902 4903 switch (type) { 4904 case PP_SCLK: 4905 if (!data->sclk_dpm_key_disabled) 4906 smum_send_msg_to_smc_with_parameter(hwmgr, 4907 PPSMC_MSG_SCLKDPM_SetEnabledMask, 4908 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask, 4909 NULL); 4910 break; 4911 case PP_MCLK: 4912 if (!data->mclk_dpm_key_disabled) 4913 smum_send_msg_to_smc_with_parameter(hwmgr, 4914 PPSMC_MSG_MCLKDPM_SetEnabledMask, 4915 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask, 4916 NULL); 4917 break; 4918 case PP_PCIE: 4919 { 4920 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; 4921 4922 if (!data->pcie_dpm_key_disabled) { 4923 if (fls(tmp) != ffs(tmp)) 4924 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel, 4925 NULL); 4926 else 4927 smum_send_msg_to_smc_with_parameter(hwmgr, 4928 PPSMC_MSG_PCIeDPM_ForceLevel, 4929 fls(tmp) - 1, 4930 NULL); 4931 } 4932 break; 4933 } 4934 default: 4935 break; 4936 } 4937 4938 return 0; 4939 } 4940 4941 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr, 4942 enum pp_clock_type type, char *buf) 4943 { 4944 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4945 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4946 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 4947 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); 4948 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4949 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4950 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4951 int size = 0; 4952 uint32_t i, now, clock, pcie_speed; 4953 4954 switch (type) { 4955 case PP_SCLK: 4956 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock); 4957 4958 for (i = 0; i < sclk_table->count; i++) { 4959 if (clock > sclk_table->dpm_levels[i].value) 4960 continue; 4961 break; 4962 } 4963 now = i; 4964 4965 for (i = 0; i < sclk_table->count; i++) 4966 size += sprintf(buf + size, "%d: %uMhz %s\n", 4967 i, sclk_table->dpm_levels[i].value / 100, 4968 (i == now) ? "*" : ""); 4969 break; 4970 case PP_MCLK: 4971 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock); 4972 4973 for (i = 0; i < mclk_table->count; i++) { 4974 if (clock > mclk_table->dpm_levels[i].value) 4975 continue; 4976 break; 4977 } 4978 now = i; 4979 4980 for (i = 0; i < mclk_table->count; i++) 4981 size += sprintf(buf + size, "%d: %uMhz %s\n", 4982 i, mclk_table->dpm_levels[i].value / 100, 4983 (i == now) ? "*" : ""); 4984 break; 4985 case PP_PCIE: 4986 pcie_speed = smu7_get_current_pcie_speed(hwmgr); 4987 for (i = 0; i < pcie_table->count; i++) { 4988 if (pcie_speed != pcie_table->dpm_levels[i].value) 4989 continue; 4990 break; 4991 } 4992 now = i; 4993 4994 for (i = 0; i < pcie_table->count; i++) 4995 size += sprintf(buf + size, "%d: %s %s\n", i, 4996 (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" : 4997 (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" : 4998 (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "", 4999 (i == now) ? "*" : ""); 5000 break; 5001 case OD_SCLK: 5002 if (hwmgr->od_enabled) { 5003 size += sprintf(buf + size, "%s:\n", "OD_SCLK"); 5004 for (i = 0; i < odn_sclk_table->num_of_pl; i++) 5005 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 5006 i, odn_sclk_table->entries[i].clock/100, 5007 odn_sclk_table->entries[i].vddc); 5008 } 5009 break; 5010 case OD_MCLK: 5011 if (hwmgr->od_enabled) { 5012 size += sprintf(buf + size, "%s:\n", "OD_MCLK"); 5013 for (i = 0; i < odn_mclk_table->num_of_pl; i++) 5014 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 5015 i, odn_mclk_table->entries[i].clock/100, 5016 odn_mclk_table->entries[i].vddc); 5017 } 5018 break; 5019 case OD_RANGE: 5020 if (hwmgr->od_enabled) { 5021 size += sprintf(buf + size, "%s:\n", "OD_RANGE"); 5022 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 5023 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 5024 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5025 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 5026 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 5027 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5028 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 5029 data->odn_dpm_table.min_vddc, 5030 data->odn_dpm_table.max_vddc); 5031 } 5032 break; 5033 default: 5034 break; 5035 } 5036 return size; 5037 } 5038 5039 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 5040 { 5041 switch (mode) { 5042 case AMD_FAN_CTRL_NONE: 5043 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255); 5044 break; 5045 case AMD_FAN_CTRL_MANUAL: 5046 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 5047 PHM_PlatformCaps_MicrocodeFanControl)) 5048 smu7_fan_ctrl_stop_smc_fan_control(hwmgr); 5049 break; 5050 case AMD_FAN_CTRL_AUTO: 5051 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode)) 5052 smu7_fan_ctrl_start_smc_fan_control(hwmgr); 5053 break; 5054 default: 5055 break; 5056 } 5057 } 5058 5059 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr) 5060 { 5061 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL; 5062 } 5063 5064 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr) 5065 { 5066 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5067 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 5068 struct smu7_single_dpm_table *golden_sclk_table = 5069 &(data->golden_dpm_table.sclk_table); 5070 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 5071 int golden_value = golden_sclk_table->dpm_levels 5072 [golden_sclk_table->count - 1].value; 5073 5074 value -= golden_value; 5075 value = DIV_ROUND_UP(value * 100, golden_value); 5076 5077 return value; 5078 } 5079 5080 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 5081 { 5082 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5083 struct smu7_single_dpm_table *golden_sclk_table = 5084 &(data->golden_dpm_table.sclk_table); 5085 struct pp_power_state *ps; 5086 struct smu7_power_state *smu7_ps; 5087 5088 if (value > 20) 5089 value = 20; 5090 5091 ps = hwmgr->request_ps; 5092 5093 if (ps == NULL) 5094 return -EINVAL; 5095 5096 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 5097 5098 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock = 5099 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * 5100 value / 100 + 5101 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; 5102 5103 return 0; 5104 } 5105 5106 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr) 5107 { 5108 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5109 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5110 struct smu7_single_dpm_table *golden_mclk_table = 5111 &(data->golden_dpm_table.mclk_table); 5112 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 5113 int golden_value = golden_mclk_table->dpm_levels 5114 [golden_mclk_table->count - 1].value; 5115 5116 value -= golden_value; 5117 value = DIV_ROUND_UP(value * 100, golden_value); 5118 5119 return value; 5120 } 5121 5122 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 5123 { 5124 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5125 struct smu7_single_dpm_table *golden_mclk_table = 5126 &(data->golden_dpm_table.mclk_table); 5127 struct pp_power_state *ps; 5128 struct smu7_power_state *smu7_ps; 5129 5130 if (value > 20) 5131 value = 20; 5132 5133 ps = hwmgr->request_ps; 5134 5135 if (ps == NULL) 5136 return -EINVAL; 5137 5138 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 5139 5140 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock = 5141 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * 5142 value / 100 + 5143 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; 5144 5145 return 0; 5146 } 5147 5148 5149 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5150 { 5151 struct phm_ppt_v1_information *table_info = 5152 (struct phm_ppt_v1_information *)hwmgr->pptable; 5153 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL; 5154 struct phm_clock_voltage_dependency_table *sclk_table; 5155 int i; 5156 5157 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5158 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL) 5159 return -EINVAL; 5160 dep_sclk_table = table_info->vdd_dep_on_sclk; 5161 for (i = 0; i < dep_sclk_table->count; i++) 5162 clocks->clock[i] = dep_sclk_table->entries[i].clk * 10; 5163 clocks->count = dep_sclk_table->count; 5164 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5165 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 5166 for (i = 0; i < sclk_table->count; i++) 5167 clocks->clock[i] = sclk_table->entries[i].clk * 10; 5168 clocks->count = sclk_table->count; 5169 } 5170 5171 return 0; 5172 } 5173 5174 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk) 5175 { 5176 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5177 5178 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY) 5179 return data->mem_latency_high; 5180 else if (clk >= MEM_FREQ_HIGH_LATENCY) 5181 return data->mem_latency_low; 5182 else 5183 return MEM_LATENCY_ERR; 5184 } 5185 5186 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5187 { 5188 struct phm_ppt_v1_information *table_info = 5189 (struct phm_ppt_v1_information *)hwmgr->pptable; 5190 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 5191 int i; 5192 struct phm_clock_voltage_dependency_table *mclk_table; 5193 5194 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5195 if (table_info == NULL) 5196 return -EINVAL; 5197 dep_mclk_table = table_info->vdd_dep_on_mclk; 5198 for (i = 0; i < dep_mclk_table->count; i++) { 5199 clocks->clock[i] = dep_mclk_table->entries[i].clk * 10; 5200 clocks->latency[i] = smu7_get_mem_latency(hwmgr, 5201 dep_mclk_table->entries[i].clk); 5202 } 5203 clocks->count = dep_mclk_table->count; 5204 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5205 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 5206 for (i = 0; i < mclk_table->count; i++) 5207 clocks->clock[i] = mclk_table->entries[i].clk * 10; 5208 clocks->count = mclk_table->count; 5209 } 5210 return 0; 5211 } 5212 5213 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, 5214 struct amd_pp_clocks *clocks) 5215 { 5216 switch (type) { 5217 case amd_pp_sys_clock: 5218 smu7_get_sclks(hwmgr, clocks); 5219 break; 5220 case amd_pp_mem_clock: 5221 smu7_get_mclks(hwmgr, clocks); 5222 break; 5223 default: 5224 return -EINVAL; 5225 } 5226 5227 return 0; 5228 } 5229 5230 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr, 5231 struct pp_clock_levels_with_latency *clocks) 5232 { 5233 struct phm_ppt_v1_information *table_info = 5234 (struct phm_ppt_v1_information *)hwmgr->pptable; 5235 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5236 table_info->vdd_dep_on_sclk; 5237 int i; 5238 5239 clocks->num_levels = 0; 5240 for (i = 0; i < dep_sclk_table->count; i++) { 5241 if (dep_sclk_table->entries[i].clk) { 5242 clocks->data[clocks->num_levels].clocks_in_khz = 5243 dep_sclk_table->entries[i].clk * 10; 5244 clocks->num_levels++; 5245 } 5246 } 5247 5248 return 0; 5249 } 5250 5251 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr, 5252 struct pp_clock_levels_with_latency *clocks) 5253 { 5254 struct phm_ppt_v1_information *table_info = 5255 (struct phm_ppt_v1_information *)hwmgr->pptable; 5256 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5257 table_info->vdd_dep_on_mclk; 5258 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5259 int i; 5260 5261 clocks->num_levels = 0; 5262 data->mclk_latency_table.count = 0; 5263 for (i = 0; i < dep_mclk_table->count; i++) { 5264 if (dep_mclk_table->entries[i].clk) { 5265 clocks->data[clocks->num_levels].clocks_in_khz = 5266 dep_mclk_table->entries[i].clk * 10; 5267 data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency = 5268 dep_mclk_table->entries[i].clk; 5269 clocks->data[clocks->num_levels].latency_in_us = 5270 data->mclk_latency_table.entries[data->mclk_latency_table.count].latency = 5271 smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk); 5272 clocks->num_levels++; 5273 data->mclk_latency_table.count++; 5274 } 5275 } 5276 5277 return 0; 5278 } 5279 5280 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 5281 enum amd_pp_clock_type type, 5282 struct pp_clock_levels_with_latency *clocks) 5283 { 5284 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5285 hwmgr->chip_id <= CHIP_VEGAM)) 5286 return -EINVAL; 5287 5288 switch (type) { 5289 case amd_pp_sys_clock: 5290 smu7_get_sclks_with_latency(hwmgr, clocks); 5291 break; 5292 case amd_pp_mem_clock: 5293 smu7_get_mclks_with_latency(hwmgr, clocks); 5294 break; 5295 default: 5296 return -EINVAL; 5297 } 5298 5299 return 0; 5300 } 5301 5302 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 5303 void *clock_range) 5304 { 5305 struct phm_ppt_v1_information *table_info = 5306 (struct phm_ppt_v1_information *)hwmgr->pptable; 5307 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5308 table_info->vdd_dep_on_mclk; 5309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5310 table_info->vdd_dep_on_sclk; 5311 struct polaris10_smumgr *smu_data = 5312 (struct polaris10_smumgr *)(hwmgr->smu_backend); 5313 SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); 5314 struct dm_pp_wm_sets_with_clock_ranges *watermarks = 5315 (struct dm_pp_wm_sets_with_clock_ranges *)clock_range; 5316 uint32_t i, j, k; 5317 bool valid_entry; 5318 5319 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5320 hwmgr->chip_id <= CHIP_VEGAM)) 5321 return -EINVAL; 5322 5323 for (i = 0; i < dep_mclk_table->count; i++) { 5324 for (j = 0; j < dep_sclk_table->count; j++) { 5325 valid_entry = false; 5326 for (k = 0; k < watermarks->num_wm_sets; k++) { 5327 if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 && 5328 dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 && 5329 dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 && 5330 dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) { 5331 valid_entry = true; 5332 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id; 5333 break; 5334 } 5335 } 5336 PP_ASSERT_WITH_CODE(valid_entry, 5337 "Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.", 5338 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id); 5339 } 5340 } 5341 5342 return smu7_copy_bytes_to_smc(hwmgr, 5343 smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark), 5344 (uint8_t *)table->DisplayWatermark, 5345 sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS, 5346 SMC_RAM_END); 5347 } 5348 5349 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 5350 uint32_t virtual_addr_low, 5351 uint32_t virtual_addr_hi, 5352 uint32_t mc_addr_low, 5353 uint32_t mc_addr_hi, 5354 uint32_t size) 5355 { 5356 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5357 5358 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5359 data->soft_regs_start + 5360 smum_get_offsetof(hwmgr, 5361 SMU_SoftRegisters, DRAM_LOG_ADDR_H), 5362 mc_addr_hi); 5363 5364 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5365 data->soft_regs_start + 5366 smum_get_offsetof(hwmgr, 5367 SMU_SoftRegisters, DRAM_LOG_ADDR_L), 5368 mc_addr_low); 5369 5370 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5371 data->soft_regs_start + 5372 smum_get_offsetof(hwmgr, 5373 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H), 5374 virtual_addr_hi); 5375 5376 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5377 data->soft_regs_start + 5378 smum_get_offsetof(hwmgr, 5379 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L), 5380 virtual_addr_low); 5381 5382 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5383 data->soft_regs_start + 5384 smum_get_offsetof(hwmgr, 5385 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE), 5386 size); 5387 return 0; 5388 } 5389 5390 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr, 5391 struct amd_pp_simple_clock_info *clocks) 5392 { 5393 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5394 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 5395 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5396 5397 if (clocks == NULL) 5398 return -EINVAL; 5399 5400 clocks->memory_max_clock = mclk_table->count > 1 ? 5401 mclk_table->dpm_levels[mclk_table->count-1].value : 5402 mclk_table->dpm_levels[0].value; 5403 clocks->engine_max_clock = sclk_table->count > 1 ? 5404 sclk_table->dpm_levels[sclk_table->count-1].value : 5405 sclk_table->dpm_levels[0].value; 5406 return 0; 5407 } 5408 5409 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 5410 struct PP_TemperatureRange *thermal_data) 5411 { 5412 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5413 struct phm_ppt_v1_information *table_info = 5414 (struct phm_ppt_v1_information *)hwmgr->pptable; 5415 5416 memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); 5417 5418 if (hwmgr->pp_table_version == PP_TABLE_V1) 5419 thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp * 5420 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5421 else if (hwmgr->pp_table_version == PP_TABLE_V0) 5422 thermal_data->max = data->thermal_temp_setting.temperature_shutdown * 5423 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5424 5425 thermal_data->sw_ctf_threshold = thermal_data->max; 5426 5427 return 0; 5428 } 5429 5430 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5431 enum PP_OD_DPM_TABLE_COMMAND type, 5432 uint32_t clk, 5433 uint32_t voltage) 5434 { 5435 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5436 5437 if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) { 5438 pr_info("OD voltage is out of range [%d - %d] mV\n", 5439 data->odn_dpm_table.min_vddc, 5440 data->odn_dpm_table.max_vddc); 5441 return false; 5442 } 5443 5444 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5445 if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk || 5446 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5447 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5448 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 5449 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5450 return false; 5451 } 5452 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5453 if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk || 5454 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5455 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5456 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 5457 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5458 return false; 5459 } 5460 } else { 5461 return false; 5462 } 5463 5464 return true; 5465 } 5466 5467 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5468 enum PP_OD_DPM_TABLE_COMMAND type, 5469 long *input, uint32_t size) 5470 { 5471 uint32_t i; 5472 struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL; 5473 struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL; 5474 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5475 5476 uint32_t input_clk; 5477 uint32_t input_vol; 5478 uint32_t input_level; 5479 5480 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5481 return -EINVAL); 5482 5483 if (!hwmgr->od_enabled) { 5484 pr_info("OverDrive feature not enabled\n"); 5485 return -EINVAL; 5486 } 5487 5488 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5489 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels; 5490 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk; 5491 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5492 "Failed to get ODN SCLK and Voltage tables", 5493 return -EINVAL); 5494 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5495 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels; 5496 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk; 5497 5498 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5499 "Failed to get ODN MCLK and Voltage tables", 5500 return -EINVAL); 5501 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5502 smu7_odn_initial_default_setting(hwmgr); 5503 return 0; 5504 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5505 smu7_check_dpm_table_updated(hwmgr); 5506 return 0; 5507 } else { 5508 return -EINVAL; 5509 } 5510 5511 for (i = 0; i < size; i += 3) { 5512 if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) { 5513 pr_info("invalid clock voltage input \n"); 5514 return 0; 5515 } 5516 input_level = input[i]; 5517 input_clk = input[i+1] * 100; 5518 input_vol = input[i+2]; 5519 5520 if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5521 podn_dpm_table_in_backend->entries[input_level].clock = input_clk; 5522 podn_vdd_dep_in_backend->entries[input_level].clk = input_clk; 5523 podn_dpm_table_in_backend->entries[input_level].vddc = input_vol; 5524 podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol; 5525 podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol; 5526 } else { 5527 return -EINVAL; 5528 } 5529 } 5530 5531 return 0; 5532 } 5533 5534 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 5535 { 5536 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5537 uint32_t i, size = 0; 5538 uint32_t len; 5539 5540 static const char *title[8] = {"NUM", 5541 "MODE_NAME", 5542 "SCLK_UP_HYST", 5543 "SCLK_DOWN_HYST", 5544 "SCLK_ACTIVE_LEVEL", 5545 "MCLK_UP_HYST", 5546 "MCLK_DOWN_HYST", 5547 "MCLK_ACTIVE_LEVEL"}; 5548 5549 if (!buf) 5550 return -EINVAL; 5551 5552 phm_get_sysfs_buf(&buf, &size); 5553 5554 size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n", 5555 title[0], title[1], title[2], title[3], 5556 title[4], title[5], title[6], title[7]); 5557 5558 len = ARRAY_SIZE(smu7_profiling); 5559 5560 for (i = 0; i < len; i++) { 5561 if (i == hwmgr->power_profile_mode) { 5562 size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n", 5563 i, amdgpu_pp_profile_name[i], "*", 5564 data->current_profile_setting.sclk_up_hyst, 5565 data->current_profile_setting.sclk_down_hyst, 5566 data->current_profile_setting.sclk_activity, 5567 data->current_profile_setting.mclk_up_hyst, 5568 data->current_profile_setting.mclk_down_hyst, 5569 data->current_profile_setting.mclk_activity); 5570 continue; 5571 } 5572 if (smu7_profiling[i].bupdate_sclk) 5573 size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ", 5574 i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst, 5575 smu7_profiling[i].sclk_down_hyst, 5576 smu7_profiling[i].sclk_activity); 5577 else 5578 size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ", 5579 i, amdgpu_pp_profile_name[i], "-", "-", "-"); 5580 5581 if (smu7_profiling[i].bupdate_mclk) 5582 size += sysfs_emit_at(buf, size, "%16d %16d %16d\n", 5583 smu7_profiling[i].mclk_up_hyst, 5584 smu7_profiling[i].mclk_down_hyst, 5585 smu7_profiling[i].mclk_activity); 5586 else 5587 size += sysfs_emit_at(buf, size, "%16s %16s %16s\n", 5588 "-", "-", "-"); 5589 } 5590 5591 return size; 5592 } 5593 5594 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr, 5595 enum PP_SMC_POWER_PROFILE requst) 5596 { 5597 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5598 uint32_t tmp, level; 5599 5600 if (requst == PP_SMC_POWER_PROFILE_COMPUTE) { 5601 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 5602 level = 0; 5603 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 5604 while (tmp >>= 1) 5605 level++; 5606 if (level > 0) 5607 smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1)); 5608 } 5609 } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { 5610 smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask); 5611 } 5612 } 5613 5614 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5615 { 5616 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5617 struct profile_mode_setting tmp; 5618 enum PP_SMC_POWER_PROFILE mode; 5619 5620 if (input == NULL) 5621 return -EINVAL; 5622 5623 mode = input[size]; 5624 switch (mode) { 5625 case PP_SMC_POWER_PROFILE_CUSTOM: 5626 if (size < 8 && size != 0) 5627 return -EINVAL; 5628 /* If only CUSTOM is passed in, use the saved values. Check 5629 * that we actually have a CUSTOM profile by ensuring that 5630 * the "use sclk" or the "use mclk" bits are set 5631 */ 5632 tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM]; 5633 if (size == 0) { 5634 if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0) 5635 return -EINVAL; 5636 } else { 5637 tmp.bupdate_sclk = input[0]; 5638 tmp.sclk_up_hyst = input[1]; 5639 tmp.sclk_down_hyst = input[2]; 5640 tmp.sclk_activity = input[3]; 5641 tmp.bupdate_mclk = input[4]; 5642 tmp.mclk_up_hyst = input[5]; 5643 tmp.mclk_down_hyst = input[6]; 5644 tmp.mclk_activity = input[7]; 5645 smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp; 5646 } 5647 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5648 memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting)); 5649 hwmgr->power_profile_mode = mode; 5650 } 5651 break; 5652 case PP_SMC_POWER_PROFILE_FULLSCREEN3D: 5653 case PP_SMC_POWER_PROFILE_POWERSAVING: 5654 case PP_SMC_POWER_PROFILE_VIDEO: 5655 case PP_SMC_POWER_PROFILE_VR: 5656 case PP_SMC_POWER_PROFILE_COMPUTE: 5657 if (mode == hwmgr->power_profile_mode) 5658 return 0; 5659 5660 memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting)); 5661 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5662 if (tmp.bupdate_sclk) { 5663 data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk; 5664 data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst; 5665 data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst; 5666 data->current_profile_setting.sclk_activity = tmp.sclk_activity; 5667 } 5668 if (tmp.bupdate_mclk) { 5669 data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk; 5670 data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst; 5671 data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst; 5672 data->current_profile_setting.mclk_activity = tmp.mclk_activity; 5673 } 5674 smu7_patch_compute_profile_mode(hwmgr, mode); 5675 hwmgr->power_profile_mode = mode; 5676 } 5677 break; 5678 default: 5679 return -EINVAL; 5680 } 5681 5682 return 0; 5683 } 5684 5685 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5686 PHM_PerformanceLevelDesignation designation, uint32_t index, 5687 PHM_PerformanceLevel *level) 5688 { 5689 const struct smu7_power_state *ps; 5690 uint32_t i; 5691 5692 if (level == NULL || hwmgr == NULL || state == NULL) 5693 return -EINVAL; 5694 5695 ps = cast_const_phw_smu7_power_state(state); 5696 5697 i = index > ps->performance_level_count - 1 ? 5698 ps->performance_level_count - 1 : index; 5699 5700 level->coreClock = ps->performance_levels[i].engine_clock; 5701 level->memory_clock = ps->performance_levels[i].memory_clock; 5702 5703 return 0; 5704 } 5705 5706 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr) 5707 { 5708 int result; 5709 5710 result = smu7_disable_dpm_tasks(hwmgr); 5711 PP_ASSERT_WITH_CODE((0 == result), 5712 "[disable_dpm_tasks] Failed to disable DPM!", 5713 ); 5714 5715 return result; 5716 } 5717 5718 static const struct pp_hwmgr_func smu7_hwmgr_funcs = { 5719 .backend_init = &smu7_hwmgr_backend_init, 5720 .backend_fini = &smu7_hwmgr_backend_fini, 5721 .asic_setup = &smu7_setup_asic_task, 5722 .dynamic_state_management_enable = &smu7_enable_dpm_tasks, 5723 .apply_state_adjust_rules = smu7_apply_state_adjust_rules, 5724 .force_dpm_level = &smu7_force_dpm_level, 5725 .power_state_set = smu7_set_power_state_tasks, 5726 .get_power_state_size = smu7_get_power_state_size, 5727 .get_mclk = smu7_dpm_get_mclk, 5728 .get_sclk = smu7_dpm_get_sclk, 5729 .patch_boot_state = smu7_dpm_patch_boot_state, 5730 .get_pp_table_entry = smu7_get_pp_table_entry, 5731 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries, 5732 .powerdown_uvd = smu7_powerdown_uvd, 5733 .powergate_uvd = smu7_powergate_uvd, 5734 .powergate_vce = smu7_powergate_vce, 5735 .disable_clock_power_gating = smu7_disable_clock_power_gating, 5736 .update_clock_gatings = smu7_update_clock_gatings, 5737 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment, 5738 .display_config_changed = smu7_display_configuration_changed_task, 5739 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output, 5740 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output, 5741 .stop_thermal_controller = smu7_thermal_stop_thermal_controller, 5742 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info, 5743 .get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm, 5744 .set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm, 5745 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default, 5746 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm, 5747 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm, 5748 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller, 5749 .register_irq_handlers = smu7_register_irq_handlers, 5750 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration, 5751 .check_states_equal = smu7_check_states_equal, 5752 .set_fan_control_mode = smu7_set_fan_control_mode, 5753 .get_fan_control_mode = smu7_get_fan_control_mode, 5754 .force_clock_level = smu7_force_clock_level, 5755 .print_clock_levels = smu7_print_clock_levels, 5756 .powergate_gfx = smu7_powergate_gfx, 5757 .get_sclk_od = smu7_get_sclk_od, 5758 .set_sclk_od = smu7_set_sclk_od, 5759 .get_mclk_od = smu7_get_mclk_od, 5760 .set_mclk_od = smu7_set_mclk_od, 5761 .get_clock_by_type = smu7_get_clock_by_type, 5762 .get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency, 5763 .set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges, 5764 .read_sensor = smu7_read_sensor, 5765 .dynamic_state_management_disable = smu7_disable_dpm_tasks, 5766 .avfs_control = smu7_avfs_control, 5767 .disable_smc_firmware_ctf = smu7_thermal_disable_alert, 5768 .start_thermal_controller = smu7_start_thermal_controller, 5769 .notify_cac_buffer_info = smu7_notify_cac_buffer_info, 5770 .get_max_high_clocks = smu7_get_max_high_clocks, 5771 .get_thermal_temperature_range = smu7_get_thermal_temperature_range, 5772 .odn_edit_dpm_table = smu7_odn_edit_dpm_table, 5773 .set_power_limit = smu7_set_power_limit, 5774 .get_power_profile_mode = smu7_get_power_profile_mode, 5775 .set_power_profile_mode = smu7_set_power_profile_mode, 5776 .get_performance_level = smu7_get_performance_level, 5777 .get_asic_baco_capability = smu7_baco_get_capability, 5778 .get_asic_baco_state = smu7_baco_get_state, 5779 .set_asic_baco_state = smu7_baco_set_state, 5780 .power_off_asic = smu7_power_off_asic, 5781 }; 5782 5783 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock, 5784 uint32_t clock_insr) 5785 { 5786 uint8_t i; 5787 uint32_t temp; 5788 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); 5789 5790 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); 5791 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { 5792 temp = clock >> i; 5793 5794 if (temp >= min || i == 0) 5795 break; 5796 } 5797 return i; 5798 } 5799 5800 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr) 5801 { 5802 hwmgr->hwmgr_func = &smu7_hwmgr_funcs; 5803 if (hwmgr->pp_table_version == PP_TABLE_V0) 5804 hwmgr->pptable_func = &pptable_funcs; 5805 else if (hwmgr->pp_table_version == PP_TABLE_V1) 5806 hwmgr->pptable_func = &pptable_v1_0_funcs; 5807 5808 return 0; 5809 } 5810