xref: /openbmc/linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu7_hwmgr.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <asm/div64.h>
30 #if IS_ENABLED(CONFIG_X86_64)
31 #include <asm/intel-family.h>
32 #endif
33 #include <drm/amdgpu_drm.h>
34 #include "ppatomctrl.h"
35 #include "atombios.h"
36 #include "pptable_v1_0.h"
37 #include "pppcielanes.h"
38 #include "amd_pcie_helpers.h"
39 #include "hardwaremanager.h"
40 #include "process_pptables_v1_0.h"
41 #include "cgs_common.h"
42 
43 #include "smu7_common.h"
44 
45 #include "hwmgr.h"
46 #include "smu7_hwmgr.h"
47 #include "smu_ucode_xfer_vi.h"
48 #include "smu7_powertune.h"
49 #include "smu7_dyn_defaults.h"
50 #include "smu7_thermal.h"
51 #include "smu7_clockpowergating.h"
52 #include "processpptables.h"
53 #include "pp_thermal.h"
54 #include "smu7_baco.h"
55 #include "smu7_smumgr.h"
56 #include "polaris10_smumgr.h"
57 
58 #include "ivsrcid/ivsrcid_vislands30.h"
59 
60 #define MC_CG_ARB_FREQ_F0           0x0a
61 #define MC_CG_ARB_FREQ_F1           0x0b
62 #define MC_CG_ARB_FREQ_F2           0x0c
63 #define MC_CG_ARB_FREQ_F3           0x0d
64 
65 #define MC_CG_SEQ_DRAMCONF_S0       0x05
66 #define MC_CG_SEQ_DRAMCONF_S1       0x06
67 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
68 #define MC_CG_SEQ_YCLK_RESUME       0x0a
69 
70 #define SMC_CG_IND_START            0xc0030000
71 #define SMC_CG_IND_END              0xc0040000
72 
73 #define MEM_FREQ_LOW_LATENCY        25000
74 #define MEM_FREQ_HIGH_LATENCY       80000
75 
76 #define MEM_LATENCY_HIGH            45
77 #define MEM_LATENCY_LOW             35
78 #define MEM_LATENCY_ERR             0xFFFF
79 
80 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
81 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
82 #define MC_SEQ_MISC0_GDDR5_VALUE 5
83 
84 #define PCIE_BUS_CLK                10000
85 #define TCLK                        (PCIE_BUS_CLK / 10)
86 
87 static struct profile_mode_setting smu7_profiling[7] =
88 					{{0, 0, 0, 0, 0, 0, 0, 0},
89 					 {1, 0, 100, 30, 1, 0, 100, 10},
90 					 {1, 10, 0, 30, 0, 0, 0, 0},
91 					 {0, 0, 0, 0, 1, 10, 16, 31},
92 					 {1, 0, 11, 50, 1, 0, 100, 10},
93 					 {1, 0, 5, 30, 0, 0, 0, 0},
94 					 {0, 0, 0, 0, 0, 0, 0, 0},
95 					};
96 
97 #define PPSMC_MSG_SetVBITimeout_VEGAM    ((uint16_t) 0x310)
98 
99 #define ixPWR_SVI2_PLANE1_LOAD                     0xC0200280
100 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK                    0x00000020L
101 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK                 0x00000040L
102 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT                  0x00000005
103 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT               0x00000006
104 
105 #define STRAP_EVV_REVISION_MSB		2211
106 #define STRAP_EVV_REVISION_LSB		2208
107 
108 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
109 enum DPM_EVENT_SRC {
110 	DPM_EVENT_SRC_ANALOG = 0,
111 	DPM_EVENT_SRC_EXTERNAL = 1,
112 	DPM_EVENT_SRC_DIGITAL = 2,
113 	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
114 	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
115 };
116 
117 #define ixDIDT_SQ_EDC_CTRL                         0x0013
118 #define ixDIDT_SQ_EDC_THRESHOLD                    0x0014
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2            0x0015
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4            0x0016
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6            0x0017
122 #define ixDIDT_SQ_EDC_STALL_PATTERN_7              0x0018
123 
124 #define ixDIDT_TD_EDC_CTRL                         0x0053
125 #define ixDIDT_TD_EDC_THRESHOLD                    0x0054
126 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2            0x0055
127 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4            0x0056
128 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6            0x0057
129 #define ixDIDT_TD_EDC_STALL_PATTERN_7              0x0058
130 
131 #define ixDIDT_TCP_EDC_CTRL                        0x0073
132 #define ixDIDT_TCP_EDC_THRESHOLD                   0x0074
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2           0x0075
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4           0x0076
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6           0x0077
136 #define ixDIDT_TCP_EDC_STALL_PATTERN_7             0x0078
137 
138 #define ixDIDT_DB_EDC_CTRL                         0x0033
139 #define ixDIDT_DB_EDC_THRESHOLD                    0x0034
140 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2            0x0035
141 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4            0x0036
142 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6            0x0037
143 #define ixDIDT_DB_EDC_STALL_PATTERN_7              0x0038
144 
145 uint32_t DIDTEDCConfig_P12[] = {
146     ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
147     ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
148     ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
149     ixDIDT_SQ_EDC_STALL_PATTERN_7,
150     ixDIDT_SQ_EDC_THRESHOLD,
151     ixDIDT_SQ_EDC_CTRL,
152     ixDIDT_TD_EDC_STALL_PATTERN_1_2,
153     ixDIDT_TD_EDC_STALL_PATTERN_3_4,
154     ixDIDT_TD_EDC_STALL_PATTERN_5_6,
155     ixDIDT_TD_EDC_STALL_PATTERN_7,
156     ixDIDT_TD_EDC_THRESHOLD,
157     ixDIDT_TD_EDC_CTRL,
158     ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
159     ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
160     ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
161     ixDIDT_TCP_EDC_STALL_PATTERN_7,
162     ixDIDT_TCP_EDC_THRESHOLD,
163     ixDIDT_TCP_EDC_CTRL,
164     ixDIDT_DB_EDC_STALL_PATTERN_1_2,
165     ixDIDT_DB_EDC_STALL_PATTERN_3_4,
166     ixDIDT_DB_EDC_STALL_PATTERN_5_6,
167     ixDIDT_DB_EDC_STALL_PATTERN_7,
168     ixDIDT_DB_EDC_THRESHOLD,
169     ixDIDT_DB_EDC_CTRL,
170     0xFFFFFFFF // End of list
171 };
172 
173 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
174 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
175 		enum pp_clock_type type, uint32_t mask);
176 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
177 
178 static struct smu7_power_state *cast_phw_smu7_power_state(
179 				  struct pp_hw_power_state *hw_ps)
180 {
181 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
182 				"Invalid Powerstate Type!",
183 				 return NULL);
184 
185 	return (struct smu7_power_state *)hw_ps;
186 }
187 
188 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
189 				 const struct pp_hw_power_state *hw_ps)
190 {
191 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
192 				"Invalid Powerstate Type!",
193 				 return NULL);
194 
195 	return (const struct smu7_power_state *)hw_ps;
196 }
197 
198 /**
199  * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
200  *
201  * @hwmgr:  the address of the powerplay hardware manager.
202  * Return:   always 0
203  */
204 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
205 {
206 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
207 
208 	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
209 
210 	return 0;
211 }
212 
213 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
214 {
215 	uint32_t speedCntl = 0;
216 
217 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
218 	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
219 			ixPCIE_LC_SPEED_CNTL);
220 	return((uint16_t)PHM_GET_FIELD(speedCntl,
221 			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
222 }
223 
224 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
225 {
226 	uint32_t link_width;
227 
228 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
229 	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
230 			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
231 
232 	PP_ASSERT_WITH_CODE((7 >= link_width),
233 			"Invalid PCIe lane width!", return 0);
234 
235 	return decode_pcie_lane_width(link_width);
236 }
237 
238 /**
239  * smu7_enable_smc_voltage_controller - Enable voltage control
240  *
241  * @hwmgr:  the address of the powerplay hardware manager.
242  * Return:   always PP_Result_OK
243  */
244 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
245 {
246 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
247 	    hwmgr->chip_id <= CHIP_VEGAM) {
248 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
249 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
250 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
251 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
252 	}
253 
254 	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
255 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
256 
257 	return 0;
258 }
259 
260 /**
261  * smu7_voltage_control - Checks if we want to support voltage control
262  *
263  * @hwmgr:  the address of the powerplay hardware manager.
264  */
265 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
266 {
267 	const struct smu7_hwmgr *data =
268 			(const struct smu7_hwmgr *)(hwmgr->backend);
269 
270 	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
271 }
272 
273 /**
274  * smu7_enable_voltage_control - Enable voltage control
275  *
276  * @hwmgr:  the address of the powerplay hardware manager.
277  * Return:   always 0
278  */
279 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
280 {
281 	/* enable voltage control */
282 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
283 			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
284 
285 	return 0;
286 }
287 
288 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
289 		struct phm_clock_voltage_dependency_table *voltage_dependency_table
290 		)
291 {
292 	uint32_t i;
293 
294 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
295 			"Voltage Dependency Table empty.", return -EINVAL;);
296 
297 	voltage_table->mask_low = 0;
298 	voltage_table->phase_delay = 0;
299 	voltage_table->count = voltage_dependency_table->count;
300 
301 	for (i = 0; i < voltage_dependency_table->count; i++) {
302 		voltage_table->entries[i].value =
303 			voltage_dependency_table->entries[i].v;
304 		voltage_table->entries[i].smio_low = 0;
305 	}
306 
307 	return 0;
308 }
309 
310 
311 /**
312  * smu7_construct_voltage_tables - Create Voltage Tables.
313  *
314  * @hwmgr:  the address of the powerplay hardware manager.
315  * Return:   always 0
316  */
317 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
318 {
319 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
320 	struct phm_ppt_v1_information *table_info =
321 			(struct phm_ppt_v1_information *)hwmgr->pptable;
322 	int result = 0;
323 	uint32_t tmp;
324 
325 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
326 		result = atomctrl_get_voltage_table_v3(hwmgr,
327 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
328 				&(data->mvdd_voltage_table));
329 		PP_ASSERT_WITH_CODE((0 == result),
330 				"Failed to retrieve MVDD table.",
331 				return result);
332 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
333 		if (hwmgr->pp_table_version == PP_TABLE_V1)
334 			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
335 					table_info->vdd_dep_on_mclk);
336 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
337 			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
338 					hwmgr->dyn_state.mvdd_dependency_on_mclk);
339 
340 		PP_ASSERT_WITH_CODE((0 == result),
341 				"Failed to retrieve SVI2 MVDD table from dependency table.",
342 				return result;);
343 	}
344 
345 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
346 		result = atomctrl_get_voltage_table_v3(hwmgr,
347 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
348 				&(data->vddci_voltage_table));
349 		PP_ASSERT_WITH_CODE((0 == result),
350 				"Failed to retrieve VDDCI table.",
351 				return result);
352 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
353 		if (hwmgr->pp_table_version == PP_TABLE_V1)
354 			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
355 					table_info->vdd_dep_on_mclk);
356 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
357 			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
358 					hwmgr->dyn_state.vddci_dependency_on_mclk);
359 		PP_ASSERT_WITH_CODE((0 == result),
360 				"Failed to retrieve SVI2 VDDCI table from dependency table.",
361 				return result);
362 	}
363 
364 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
365 		/* VDDGFX has only SVI2 voltage control */
366 		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
367 					table_info->vddgfx_lookup_table);
368 		PP_ASSERT_WITH_CODE((0 == result),
369 			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
370 	}
371 
372 
373 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
374 		result = atomctrl_get_voltage_table_v3(hwmgr,
375 					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
376 					&data->vddc_voltage_table);
377 		PP_ASSERT_WITH_CODE((0 == result),
378 			"Failed to retrieve VDDC table.", return result;);
379 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
380 
381 		if (hwmgr->pp_table_version == PP_TABLE_V0)
382 			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
383 					hwmgr->dyn_state.vddc_dependency_on_mclk);
384 		else if (hwmgr->pp_table_version == PP_TABLE_V1)
385 			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
386 				table_info->vddc_lookup_table);
387 
388 		PP_ASSERT_WITH_CODE((0 == result),
389 			"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
390 	}
391 
392 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
393 	PP_ASSERT_WITH_CODE(
394 			(data->vddc_voltage_table.count <= tmp),
395 		"Too many voltage values for VDDC. Trimming to fit state table.",
396 			phm_trim_voltage_table_to_fit_state_table(tmp,
397 						&(data->vddc_voltage_table)));
398 
399 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
400 	PP_ASSERT_WITH_CODE(
401 			(data->vddgfx_voltage_table.count <= tmp),
402 		"Too many voltage values for VDDC. Trimming to fit state table.",
403 			phm_trim_voltage_table_to_fit_state_table(tmp,
404 						&(data->vddgfx_voltage_table)));
405 
406 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
407 	PP_ASSERT_WITH_CODE(
408 			(data->vddci_voltage_table.count <= tmp),
409 		"Too many voltage values for VDDCI. Trimming to fit state table.",
410 			phm_trim_voltage_table_to_fit_state_table(tmp,
411 					&(data->vddci_voltage_table)));
412 
413 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
414 	PP_ASSERT_WITH_CODE(
415 			(data->mvdd_voltage_table.count <= tmp),
416 		"Too many voltage values for MVDD. Trimming to fit state table.",
417 			phm_trim_voltage_table_to_fit_state_table(tmp,
418 						&(data->mvdd_voltage_table)));
419 
420 	return 0;
421 }
422 
423 /**
424  * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
425  *
426  * @hwmgr:  the address of the powerplay hardware manager.
427  * Return:   always 0
428  */
429 static int smu7_program_static_screen_threshold_parameters(
430 							struct pp_hwmgr *hwmgr)
431 {
432 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
433 
434 	/* Set static screen threshold unit */
435 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
436 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
437 			data->static_screen_threshold_unit);
438 	/* Set static screen threshold */
439 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
440 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
441 			data->static_screen_threshold);
442 
443 	return 0;
444 }
445 
446 /**
447  * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
448  *
449  * @hwmgr:  the address of the powerplay hardware manager.
450  * Return:   always  0
451  */
452 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
453 {
454 	uint32_t display_gap =
455 			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
456 					ixCG_DISPLAY_GAP_CNTL);
457 
458 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
459 			DISP_GAP, DISPLAY_GAP_IGNORE);
460 
461 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
462 			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
463 
464 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
465 			ixCG_DISPLAY_GAP_CNTL, display_gap);
466 
467 	return 0;
468 }
469 
470 /**
471  * smu7_program_voting_clients - Programs activity state transition voting clients
472  *
473  * @hwmgr:  the address of the powerplay hardware manager.
474  * Return:   always  0
475  */
476 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
477 {
478 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
479 	int i;
480 
481 	/* Clear reset for voting clients before enabling DPM */
482 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
483 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
484 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
485 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
486 
487 	for (i = 0; i < 8; i++)
488 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
489 					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
490 					data->voting_rights_clients[i]);
491 	return 0;
492 }
493 
494 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
495 {
496 	int i;
497 
498 	/* Reset voting clients before disabling DPM */
499 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
500 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
501 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
502 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
503 
504 	for (i = 0; i < 8; i++)
505 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
506 				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
507 
508 	return 0;
509 }
510 
511 /* Copy one arb setting to another and then switch the active set.
512  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
513  */
514 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
515 		uint32_t arb_src, uint32_t arb_dest)
516 {
517 	uint32_t mc_arb_dram_timing;
518 	uint32_t mc_arb_dram_timing2;
519 	uint32_t burst_time;
520 	uint32_t mc_cg_config;
521 
522 	switch (arb_src) {
523 	case MC_CG_ARB_FREQ_F0:
524 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
525 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
526 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
527 		break;
528 	case MC_CG_ARB_FREQ_F1:
529 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
530 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
531 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
532 		break;
533 	default:
534 		return -EINVAL;
535 	}
536 
537 	switch (arb_dest) {
538 	case MC_CG_ARB_FREQ_F0:
539 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
540 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
541 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
542 		break;
543 	case MC_CG_ARB_FREQ_F1:
544 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
545 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
546 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
547 		break;
548 	default:
549 		return -EINVAL;
550 	}
551 
552 	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
553 	mc_cg_config |= 0x0000000F;
554 	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
555 	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
556 
557 	return 0;
558 }
559 
560 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
561 {
562 	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
563 }
564 
565 /**
566  * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
567  *
568  * @hwmgr:  the address of the powerplay hardware manager.
569  * Return:   always 0
570  * This function is to be called from the SetPowerState table.
571  */
572 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
573 {
574 	return smu7_copy_and_switch_arb_sets(hwmgr,
575 			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
576 }
577 
578 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
579 {
580 	uint32_t tmp;
581 
582 	tmp = (cgs_read_ind_register(hwmgr->device,
583 			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
584 			0x0000ff00) >> 8;
585 
586 	if (tmp == MC_CG_ARB_FREQ_F0)
587 		return 0;
588 
589 	return smu7_copy_and_switch_arb_sets(hwmgr,
590 			tmp, MC_CG_ARB_FREQ_F0);
591 }
592 
593 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
594 {
595 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
596 	uint16_t pcie_gen = 0;
597 
598 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
599 	    adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
600 		pcie_gen = 3;
601 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
602 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
603 		pcie_gen = 2;
604 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
605 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
606 		pcie_gen = 1;
607 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
608 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
609 		pcie_gen = 0;
610 
611 	return pcie_gen;
612 }
613 
614 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
615 {
616 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
617 	uint16_t pcie_width = 0;
618 
619 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
620 		pcie_width = 16;
621 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
622 		pcie_width = 12;
623 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
624 		pcie_width = 8;
625 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
626 		pcie_width = 4;
627 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
628 		pcie_width = 2;
629 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
630 		pcie_width = 1;
631 
632 	return pcie_width;
633 }
634 
635 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
636 {
637 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
638 
639 	struct phm_ppt_v1_information *table_info =
640 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
641 	struct phm_ppt_v1_pcie_table *pcie_table = NULL;
642 
643 	uint32_t i, max_entry;
644 	uint32_t tmp;
645 
646 	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
647 			data->use_pcie_power_saving_levels), "No pcie performance levels!",
648 			return -EINVAL);
649 
650 	if (table_info != NULL)
651 		pcie_table = table_info->pcie_table;
652 
653 	if (data->use_pcie_performance_levels &&
654 			!data->use_pcie_power_saving_levels) {
655 		data->pcie_gen_power_saving = data->pcie_gen_performance;
656 		data->pcie_lane_power_saving = data->pcie_lane_performance;
657 	} else if (!data->use_pcie_performance_levels &&
658 			data->use_pcie_power_saving_levels) {
659 		data->pcie_gen_performance = data->pcie_gen_power_saving;
660 		data->pcie_lane_performance = data->pcie_lane_power_saving;
661 	}
662 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
663 	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
664 					tmp,
665 					MAX_REGULAR_DPM_NUMBER);
666 
667 	if (pcie_table != NULL) {
668 		/* max_entry is used to make sure we reserve one PCIE level
669 		 * for boot level (fix for A+A PSPP issue).
670 		 * If PCIE table from PPTable have ULV entry + 8 entries,
671 		 * then ignore the last entry.*/
672 		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
673 		for (i = 1; i < max_entry; i++) {
674 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
675 					get_pcie_gen_support(data->pcie_gen_cap,
676 							pcie_table->entries[i].gen_speed),
677 					get_pcie_lane_support(data->pcie_lane_cap,
678 							pcie_table->entries[i].lane_width));
679 		}
680 		data->dpm_table.pcie_speed_table.count = max_entry - 1;
681 		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
682 	} else {
683 		/* Hardcode Pcie Table */
684 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
685 				get_pcie_gen_support(data->pcie_gen_cap,
686 						PP_Min_PCIEGen),
687 				get_pcie_lane_support(data->pcie_lane_cap,
688 						PP_Max_PCIELane));
689 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
690 				get_pcie_gen_support(data->pcie_gen_cap,
691 						PP_Min_PCIEGen),
692 				get_pcie_lane_support(data->pcie_lane_cap,
693 						PP_Max_PCIELane));
694 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
695 				get_pcie_gen_support(data->pcie_gen_cap,
696 						PP_Max_PCIEGen),
697 				get_pcie_lane_support(data->pcie_lane_cap,
698 						PP_Max_PCIELane));
699 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
700 				get_pcie_gen_support(data->pcie_gen_cap,
701 						PP_Max_PCIEGen),
702 				get_pcie_lane_support(data->pcie_lane_cap,
703 						PP_Max_PCIELane));
704 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
705 				get_pcie_gen_support(data->pcie_gen_cap,
706 						PP_Max_PCIEGen),
707 				get_pcie_lane_support(data->pcie_lane_cap,
708 						PP_Max_PCIELane));
709 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
710 				get_pcie_gen_support(data->pcie_gen_cap,
711 						PP_Max_PCIEGen),
712 				get_pcie_lane_support(data->pcie_lane_cap,
713 						PP_Max_PCIELane));
714 
715 		data->dpm_table.pcie_speed_table.count = 6;
716 	}
717 	/* Populate last level for boot PCIE level, but do not increment count. */
718 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
719 		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
720 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
721 				get_pcie_gen_support(data->pcie_gen_cap,
722 						PP_Max_PCIEGen),
723 				data->vbios_boot_state.pcie_lane_bootup_value);
724 	} else {
725 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
726 			data->dpm_table.pcie_speed_table.count,
727 			get_pcie_gen_support(data->pcie_gen_cap,
728 					PP_Min_PCIEGen),
729 			get_pcie_lane_support(data->pcie_lane_cap,
730 					PP_Max_PCIELane));
731 
732 		if (data->pcie_dpm_key_disabled)
733 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
734 				data->dpm_table.pcie_speed_table.count,
735 				smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
736 	}
737 	return 0;
738 }
739 
740 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
741 {
742 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
743 
744 	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
745 
746 	phm_reset_single_dpm_table(
747 			&data->dpm_table.sclk_table,
748 				smum_get_mac_definition(hwmgr,
749 					SMU_MAX_LEVELS_GRAPHICS),
750 					MAX_REGULAR_DPM_NUMBER);
751 	phm_reset_single_dpm_table(
752 			&data->dpm_table.mclk_table,
753 			smum_get_mac_definition(hwmgr,
754 				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
755 
756 	phm_reset_single_dpm_table(
757 			&data->dpm_table.vddc_table,
758 				smum_get_mac_definition(hwmgr,
759 					SMU_MAX_LEVELS_VDDC),
760 					MAX_REGULAR_DPM_NUMBER);
761 	phm_reset_single_dpm_table(
762 			&data->dpm_table.vddci_table,
763 			smum_get_mac_definition(hwmgr,
764 				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
765 
766 	phm_reset_single_dpm_table(
767 			&data->dpm_table.mvdd_table,
768 				smum_get_mac_definition(hwmgr,
769 					SMU_MAX_LEVELS_MVDD),
770 					MAX_REGULAR_DPM_NUMBER);
771 	return 0;
772 }
773 /*
774  * This function is to initialize all DPM state tables
775  * for SMU7 based on the dependency table.
776  * Dynamic state patching function will then trim these
777  * state tables to the allowed range based
778  * on the power policy or external client requests,
779  * such as UVD request, etc.
780  */
781 
782 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
783 {
784 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
785 	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
786 		hwmgr->dyn_state.vddc_dependency_on_sclk;
787 	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
788 		hwmgr->dyn_state.vddc_dependency_on_mclk;
789 	struct phm_cac_leakage_table *std_voltage_table =
790 		hwmgr->dyn_state.cac_leakage_table;
791 	uint32_t i;
792 
793 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
794 		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
795 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
796 		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
797 
798 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
799 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
800 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
801 		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
802 
803 
804 	/* Initialize Sclk DPM table based on allow Sclk values*/
805 	data->dpm_table.sclk_table.count = 0;
806 
807 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
808 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
809 				allowed_vdd_sclk_table->entries[i].clk) {
810 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
811 				allowed_vdd_sclk_table->entries[i].clk;
812 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
813 			data->dpm_table.sclk_table.count++;
814 		}
815 	}
816 
817 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
818 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
819 	/* Initialize Mclk DPM table based on allow Mclk values */
820 	data->dpm_table.mclk_table.count = 0;
821 	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
822 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
823 			allowed_vdd_mclk_table->entries[i].clk) {
824 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
825 				allowed_vdd_mclk_table->entries[i].clk;
826 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
827 			data->dpm_table.mclk_table.count++;
828 		}
829 	}
830 
831 	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
832 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
833 		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
834 		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
835 		/* param1 is for corresponding std voltage */
836 		data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
837 	}
838 
839 	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
840 	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
841 
842 	if (NULL != allowed_vdd_mclk_table) {
843 		/* Initialize Vddci DPM table based on allow Mclk values */
844 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
845 			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
846 			data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
847 		}
848 		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
849 	}
850 
851 	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
852 
853 	if (NULL != allowed_vdd_mclk_table) {
854 		/*
855 		 * Initialize MVDD DPM table based on allow Mclk
856 		 * values
857 		 */
858 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
859 			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
860 			data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
861 		}
862 		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
863 	}
864 
865 	return 0;
866 }
867 
868 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
869 {
870 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
871 	struct phm_ppt_v1_information *table_info =
872 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
873 	uint32_t i;
874 
875 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
876 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
877 
878 	if (table_info == NULL)
879 		return -EINVAL;
880 
881 	dep_sclk_table = table_info->vdd_dep_on_sclk;
882 	dep_mclk_table = table_info->vdd_dep_on_mclk;
883 
884 	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
885 			"SCLK dependency table is missing.",
886 			return -EINVAL);
887 	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
888 			"SCLK dependency table count is 0.",
889 			return -EINVAL);
890 
891 	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
892 			"MCLK dependency table is missing.",
893 			return -EINVAL);
894 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
895 			"MCLK dependency table count is 0",
896 			return -EINVAL);
897 
898 	/* Initialize Sclk DPM table based on allow Sclk values */
899 	data->dpm_table.sclk_table.count = 0;
900 	for (i = 0; i < dep_sclk_table->count; i++) {
901 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
902 						dep_sclk_table->entries[i].clk) {
903 
904 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
905 					dep_sclk_table->entries[i].clk;
906 
907 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
908 					(i == 0) ? true : false;
909 			data->dpm_table.sclk_table.count++;
910 		}
911 	}
912 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
913 		hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
914 	/* Initialize Mclk DPM table based on allow Mclk values */
915 	data->dpm_table.mclk_table.count = 0;
916 	for (i = 0; i < dep_mclk_table->count; i++) {
917 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
918 				[data->dpm_table.mclk_table.count - 1].value !=
919 						dep_mclk_table->entries[i].clk) {
920 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
921 							dep_mclk_table->entries[i].clk;
922 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
923 							(i == 0) ? true : false;
924 			data->dpm_table.mclk_table.count++;
925 		}
926 	}
927 
928 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
929 		hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
930 	return 0;
931 }
932 
933 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
934 {
935 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
936 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
937 	struct phm_ppt_v1_information *table_info =
938 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
939 	uint32_t i;
940 
941 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
942 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
943 	struct phm_odn_performance_level *entries;
944 
945 	if (table_info == NULL)
946 		return -EINVAL;
947 
948 	dep_sclk_table = table_info->vdd_dep_on_sclk;
949 	dep_mclk_table = table_info->vdd_dep_on_mclk;
950 
951 	odn_table->odn_core_clock_dpm_levels.num_of_pl =
952 						data->golden_dpm_table.sclk_table.count;
953 	entries = odn_table->odn_core_clock_dpm_levels.entries;
954 	for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
955 		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
956 		entries[i].enabled = true;
957 		entries[i].vddc = dep_sclk_table->entries[i].vddc;
958 	}
959 
960 	smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
961 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
962 
963 	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
964 						data->golden_dpm_table.mclk_table.count;
965 	entries = odn_table->odn_memory_clock_dpm_levels.entries;
966 	for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
967 		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
968 		entries[i].enabled = true;
969 		entries[i].vddc = dep_mclk_table->entries[i].vddc;
970 	}
971 
972 	smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
973 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
974 
975 	return 0;
976 }
977 
978 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
979 {
980 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
981 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
982 	struct phm_ppt_v1_information *table_info =
983 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
984 	uint32_t min_vddc = 0;
985 	uint32_t max_vddc = 0;
986 
987 	if (!table_info)
988 		return;
989 
990 	dep_sclk_table = table_info->vdd_dep_on_sclk;
991 
992 	atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
993 
994 	if (min_vddc == 0 || min_vddc > 2000
995 		|| min_vddc > dep_sclk_table->entries[0].vddc)
996 		min_vddc = dep_sclk_table->entries[0].vddc;
997 
998 	if (max_vddc == 0 || max_vddc > 2000
999 		|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
1000 		max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1001 
1002 	data->odn_dpm_table.min_vddc = min_vddc;
1003 	data->odn_dpm_table.max_vddc = max_vddc;
1004 }
1005 
1006 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1007 {
1008 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1009 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1010 	struct phm_ppt_v1_information *table_info =
1011 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1012 	uint32_t i;
1013 
1014 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1015 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1016 
1017 	if (table_info == NULL)
1018 		return;
1019 
1020 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1021 		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1022 					data->dpm_table.sclk_table.dpm_levels[i].value) {
1023 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1024 			break;
1025 		}
1026 	}
1027 
1028 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1029 		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1030 					data->dpm_table.mclk_table.dpm_levels[i].value) {
1031 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1032 			break;
1033 		}
1034 	}
1035 
1036 	dep_table = table_info->vdd_dep_on_mclk;
1037 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1038 
1039 	for (i = 0; i < dep_table->count; i++) {
1040 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1041 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1042 			return;
1043 		}
1044 	}
1045 
1046 	dep_table = table_info->vdd_dep_on_sclk;
1047 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1048 	for (i = 0; i < dep_table->count; i++) {
1049 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1050 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1051 			return;
1052 		}
1053 	}
1054 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1055 		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1056 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1057 	}
1058 }
1059 
1060 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1061 {
1062 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1063 
1064 	smu7_reset_dpm_tables(hwmgr);
1065 
1066 	if (hwmgr->pp_table_version == PP_TABLE_V1)
1067 		smu7_setup_dpm_tables_v1(hwmgr);
1068 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
1069 		smu7_setup_dpm_tables_v0(hwmgr);
1070 
1071 	smu7_setup_default_pcie_table(hwmgr);
1072 
1073 	/* save a copy of the default DPM table */
1074 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1075 			sizeof(struct smu7_dpm_table));
1076 
1077 	/* initialize ODN table */
1078 	if (hwmgr->od_enabled) {
1079 		if (data->odn_dpm_table.max_vddc) {
1080 			smu7_check_dpm_table_updated(hwmgr);
1081 		} else {
1082 			smu7_setup_voltage_range_from_vbios(hwmgr);
1083 			smu7_odn_initial_default_setting(hwmgr);
1084 		}
1085 	}
1086 	return 0;
1087 }
1088 
1089 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1090 {
1091 
1092 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1093 			PHM_PlatformCaps_RegulatorHot))
1094 		return smum_send_msg_to_smc(hwmgr,
1095 				PPSMC_MSG_EnableVRHotGPIOInterrupt,
1096 				NULL);
1097 
1098 	return 0;
1099 }
1100 
1101 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1102 {
1103 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1104 			SCLK_PWRMGT_OFF, 0);
1105 	return 0;
1106 }
1107 
1108 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1109 {
1110 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1111 
1112 	if (data->ulv_supported)
1113 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1114 
1115 	return 0;
1116 }
1117 
1118 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1119 {
1120 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1121 
1122 	if (data->ulv_supported)
1123 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1124 
1125 	return 0;
1126 }
1127 
1128 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1129 {
1130 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1131 			PHM_PlatformCaps_SclkDeepSleep)) {
1132 		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1133 			PP_ASSERT_WITH_CODE(false,
1134 					"Attempt to enable Master Deep Sleep switch failed!",
1135 					return -EINVAL);
1136 	} else {
1137 		if (smum_send_msg_to_smc(hwmgr,
1138 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1139 				NULL)) {
1140 			PP_ASSERT_WITH_CODE(false,
1141 					"Attempt to disable Master Deep Sleep switch failed!",
1142 					return -EINVAL);
1143 		}
1144 	}
1145 
1146 	return 0;
1147 }
1148 
1149 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1150 {
1151 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1152 			PHM_PlatformCaps_SclkDeepSleep)) {
1153 		if (smum_send_msg_to_smc(hwmgr,
1154 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1155 				NULL)) {
1156 			PP_ASSERT_WITH_CODE(false,
1157 					"Attempt to disable Master Deep Sleep switch failed!",
1158 					return -EINVAL);
1159 		}
1160 	}
1161 
1162 	return 0;
1163 }
1164 
1165 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1166 {
1167 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1168 	uint32_t soft_register_value = 0;
1169 	uint32_t handshake_disables_offset = data->soft_regs_start
1170 				+ smum_get_offsetof(hwmgr,
1171 					SMU_SoftRegisters, HandshakeDisables);
1172 
1173 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1174 				CGS_IND_REG__SMC, handshake_disables_offset);
1175 	soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1176 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1177 			handshake_disables_offset, soft_register_value);
1178 	return 0;
1179 }
1180 
1181 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1182 {
1183 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1184 	uint32_t soft_register_value = 0;
1185 	uint32_t handshake_disables_offset = data->soft_regs_start
1186 				+ smum_get_offsetof(hwmgr,
1187 					SMU_SoftRegisters, HandshakeDisables);
1188 
1189 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1190 				CGS_IND_REG__SMC, handshake_disables_offset);
1191 	soft_register_value |= smum_get_mac_definition(hwmgr,
1192 					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1193 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1194 			handshake_disables_offset, soft_register_value);
1195 	return 0;
1196 }
1197 
1198 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1199 {
1200 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1201 
1202 	/* enable SCLK dpm */
1203 	if (!data->sclk_dpm_key_disabled) {
1204 		if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1205 		    hwmgr->chip_id <= CHIP_VEGAM)
1206 			smu7_disable_sclk_vce_handshake(hwmgr);
1207 
1208 		PP_ASSERT_WITH_CODE(
1209 		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1210 		"Failed to enable SCLK DPM during DPM Start Function!",
1211 		return -EINVAL);
1212 	}
1213 
1214 	/* enable MCLK dpm */
1215 	if (0 == data->mclk_dpm_key_disabled) {
1216 		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1217 			smu7_disable_handshake_uvd(hwmgr);
1218 
1219 		PP_ASSERT_WITH_CODE(
1220 				(0 == smum_send_msg_to_smc(hwmgr,
1221 						PPSMC_MSG_MCLKDPM_Enable,
1222 						NULL)),
1223 				"Failed to enable MCLK DPM during DPM Start Function!",
1224 				return -EINVAL);
1225 
1226 		if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1227 		    (hwmgr->chip_id == CHIP_POLARIS10) ||
1228 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
1229 		    (hwmgr->chip_id == CHIP_POLARIS12) ||
1230 		    (hwmgr->chip_id == CHIP_TONGA) ||
1231 		    (hwmgr->chip_id == CHIP_TOPAZ))
1232 			PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1233 
1234 
1235 		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1236 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1237 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1238 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1239 			udelay(10);
1240 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1241 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1242 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1243 		} else {
1244 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1245 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1246 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1247 			udelay(10);
1248 			if (hwmgr->chip_id == CHIP_VEGAM) {
1249 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1250 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1251 			} else {
1252 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1253 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1254 			}
1255 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1256 		}
1257 	}
1258 
1259 	return 0;
1260 }
1261 
1262 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1263 {
1264 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1265 
1266 	/*enable general power management */
1267 
1268 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1269 			GLOBAL_PWRMGT_EN, 1);
1270 
1271 	/* enable sclk deep sleep */
1272 
1273 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1274 			DYNAMIC_PM_EN, 1);
1275 
1276 	/* prepare for PCIE DPM */
1277 
1278 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1279 			data->soft_regs_start +
1280 			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1281 						VoltageChangeTimeout), 0x1000);
1282 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1283 			SWRST_COMMAND_1, RESETLC, 0x0);
1284 
1285 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1286 		cgs_write_register(hwmgr->device, 0x1488,
1287 			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1288 
1289 	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1290 		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1291 		return -EINVAL;
1292 	}
1293 
1294 	/* enable PCIE dpm */
1295 	if (0 == data->pcie_dpm_key_disabled) {
1296 		PP_ASSERT_WITH_CODE(
1297 				(0 == smum_send_msg_to_smc(hwmgr,
1298 						PPSMC_MSG_PCIeDPM_Enable,
1299 						NULL)),
1300 				"Failed to enable pcie DPM during DPM Start Function!",
1301 				return -EINVAL);
1302 	} else {
1303 		PP_ASSERT_WITH_CODE(
1304 				(0 == smum_send_msg_to_smc(hwmgr,
1305 						PPSMC_MSG_PCIeDPM_Disable,
1306 						NULL)),
1307 				"Failed to disable pcie DPM during DPM Start Function!",
1308 				return -EINVAL);
1309 	}
1310 
1311 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1312 				PHM_PlatformCaps_Falcon_QuickTransition)) {
1313 		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1314 				PPSMC_MSG_EnableACDCGPIOInterrupt,
1315 				NULL)),
1316 				"Failed to enable AC DC GPIO Interrupt!",
1317 				);
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1324 {
1325 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1326 
1327 	/* disable SCLK dpm */
1328 	if (!data->sclk_dpm_key_disabled) {
1329 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1330 				"Trying to disable SCLK DPM when DPM is disabled",
1331 				return 0);
1332 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1333 	}
1334 
1335 	/* disable MCLK dpm */
1336 	if (!data->mclk_dpm_key_disabled) {
1337 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1338 				"Trying to disable MCLK DPM when DPM is disabled",
1339 				return 0);
1340 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1347 {
1348 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1349 
1350 	/* disable general power management */
1351 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1352 			GLOBAL_PWRMGT_EN, 0);
1353 	/* disable sclk deep sleep */
1354 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1355 			DYNAMIC_PM_EN, 0);
1356 
1357 	/* disable PCIE dpm */
1358 	if (!data->pcie_dpm_key_disabled) {
1359 		PP_ASSERT_WITH_CODE(
1360 				(smum_send_msg_to_smc(hwmgr,
1361 						PPSMC_MSG_PCIeDPM_Disable,
1362 						NULL) == 0),
1363 				"Failed to disable pcie DPM during DPM Stop Function!",
1364 				return -EINVAL);
1365 	}
1366 
1367 	smu7_disable_sclk_mclk_dpm(hwmgr);
1368 
1369 	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1370 			"Trying to disable voltage DPM when DPM is disabled",
1371 			return 0);
1372 
1373 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1374 
1375 	return 0;
1376 }
1377 
1378 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1379 {
1380 	bool protection;
1381 	enum DPM_EVENT_SRC src;
1382 
1383 	switch (sources) {
1384 	default:
1385 		pr_err("Unknown throttling event sources.");
1386 		fallthrough;
1387 	case 0:
1388 		protection = false;
1389 		/* src is unused */
1390 		break;
1391 	case (1 << PHM_AutoThrottleSource_Thermal):
1392 		protection = true;
1393 		src = DPM_EVENT_SRC_DIGITAL;
1394 		break;
1395 	case (1 << PHM_AutoThrottleSource_External):
1396 		protection = true;
1397 		src = DPM_EVENT_SRC_EXTERNAL;
1398 		break;
1399 	case (1 << PHM_AutoThrottleSource_External) |
1400 			(1 << PHM_AutoThrottleSource_Thermal):
1401 		protection = true;
1402 		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1403 		break;
1404 	}
1405 	/* Order matters - don't enable thermal protection for the wrong source. */
1406 	if (protection) {
1407 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1408 				DPM_EVENT_SRC, src);
1409 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1410 				THERMAL_PROTECTION_DIS,
1411 				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1412 						PHM_PlatformCaps_ThermalController));
1413 	} else
1414 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1415 				THERMAL_PROTECTION_DIS, 1);
1416 }
1417 
1418 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1419 		PHM_AutoThrottleSource source)
1420 {
1421 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1422 
1423 	if (!(data->active_auto_throttle_sources & (1 << source))) {
1424 		data->active_auto_throttle_sources |= 1 << source;
1425 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1426 	}
1427 	return 0;
1428 }
1429 
1430 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1431 {
1432 	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1433 }
1434 
1435 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1436 		PHM_AutoThrottleSource source)
1437 {
1438 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1439 
1440 	if (data->active_auto_throttle_sources & (1 << source)) {
1441 		data->active_auto_throttle_sources &= ~(1 << source);
1442 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1443 	}
1444 	return 0;
1445 }
1446 
1447 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1448 {
1449 	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1450 }
1451 
1452 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1453 {
1454 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1455 	data->pcie_performance_request = true;
1456 
1457 	return 0;
1458 }
1459 
1460 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1461 					   uint32_t *cac_config_regs,
1462 					   AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1463 {
1464 	uint32_t data, i = 0;
1465 
1466 	while (cac_config_regs[i] != 0xFFFFFFFF) {
1467 		data = edc_leakage_table->DIDT_REG[i];
1468 		cgs_write_ind_register(hwmgr->device,
1469 				       CGS_IND_REG__DIDT,
1470 				       cac_config_regs[i],
1471 				       data);
1472 		i++;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1479 {
1480 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1481 	int ret = 0;
1482 
1483 	if (!data->disable_edc_leakage_controller &&
1484 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1485 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1486 		ret = smu7_program_edc_didt_registers(hwmgr,
1487 						      DIDTEDCConfig_P12,
1488 						      &data->edc_leakage_table);
1489 		if (ret)
1490 			return ret;
1491 
1492 		ret = smum_send_msg_to_smc(hwmgr,
1493 					   (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1494 					   NULL);
1495 	} else {
1496 		ret = smum_send_msg_to_smc(hwmgr,
1497 					   (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1498 					   NULL);
1499 	}
1500 
1501 	return ret;
1502 }
1503 
1504 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1505 {
1506 	int tmp_result = 0;
1507 	int result = 0;
1508 
1509 	if (smu7_voltage_control(hwmgr)) {
1510 		tmp_result = smu7_enable_voltage_control(hwmgr);
1511 		PP_ASSERT_WITH_CODE(tmp_result == 0,
1512 				"Failed to enable voltage control!",
1513 				result = tmp_result);
1514 
1515 		tmp_result = smu7_construct_voltage_tables(hwmgr);
1516 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1517 				"Failed to construct voltage tables!",
1518 				result = tmp_result);
1519 	}
1520 	smum_initialize_mc_reg_table(hwmgr);
1521 
1522 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1523 			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1524 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1525 				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1526 
1527 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1528 			PHM_PlatformCaps_ThermalController))
1529 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1530 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1531 
1532 	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1533 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1534 			"Failed to program static screen threshold parameters!",
1535 			result = tmp_result);
1536 
1537 	tmp_result = smu7_enable_display_gap(hwmgr);
1538 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1539 			"Failed to enable display gap!", result = tmp_result);
1540 
1541 	tmp_result = smu7_program_voting_clients(hwmgr);
1542 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1543 			"Failed to program voting clients!", result = tmp_result);
1544 
1545 	tmp_result = smum_process_firmware_header(hwmgr);
1546 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1547 			"Failed to process firmware header!", result = tmp_result);
1548 
1549 	if (hwmgr->chip_id != CHIP_VEGAM) {
1550 		tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1551 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1552 				"Failed to initialize switch from ArbF0 to F1!",
1553 				result = tmp_result);
1554 	}
1555 
1556 	result = smu7_setup_default_dpm_tables(hwmgr);
1557 	PP_ASSERT_WITH_CODE(0 == result,
1558 			"Failed to setup default DPM tables!", return result);
1559 
1560 	tmp_result = smum_init_smc_table(hwmgr);
1561 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1562 			"Failed to initialize SMC table!", result = tmp_result);
1563 
1564 	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1565 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1566 			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1567 
1568 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1569 	    hwmgr->chip_id <= CHIP_VEGAM) {
1570 		tmp_result = smu7_notify_has_display(hwmgr);
1571 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1572 				"Failed to enable display setting!", result = tmp_result);
1573 	} else {
1574 		smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1575 	}
1576 
1577 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1578 	    hwmgr->chip_id <= CHIP_VEGAM) {
1579 		tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1580 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1581 				"Failed to populate edc leakage registers!", result = tmp_result);
1582 	}
1583 
1584 	tmp_result = smu7_enable_sclk_control(hwmgr);
1585 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1586 			"Failed to enable SCLK control!", result = tmp_result);
1587 
1588 	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1589 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1590 			"Failed to enable voltage control!", result = tmp_result);
1591 
1592 	tmp_result = smu7_enable_ulv(hwmgr);
1593 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 			"Failed to enable ULV!", result = tmp_result);
1595 
1596 	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1597 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1598 			"Failed to enable deep sleep master switch!", result = tmp_result);
1599 
1600 	tmp_result = smu7_enable_didt_config(hwmgr);
1601 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1602 			"Failed to enable deep sleep master switch!", result = tmp_result);
1603 
1604 	tmp_result = smu7_start_dpm(hwmgr);
1605 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1606 			"Failed to start DPM!", result = tmp_result);
1607 
1608 	tmp_result = smu7_enable_smc_cac(hwmgr);
1609 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1610 			"Failed to enable SMC CAC!", result = tmp_result);
1611 
1612 	tmp_result = smu7_enable_power_containment(hwmgr);
1613 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1614 			"Failed to enable power containment!", result = tmp_result);
1615 
1616 	tmp_result = smu7_power_control_set_level(hwmgr);
1617 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1618 			"Failed to power control set level!", result = tmp_result);
1619 
1620 	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1621 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 			"Failed to enable thermal auto throttle!", result = tmp_result);
1623 
1624 	tmp_result = smu7_pcie_performance_request(hwmgr);
1625 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 			"pcie performance request failed!", result = tmp_result);
1627 
1628 	return 0;
1629 }
1630 
1631 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1632 {
1633 	if (!hwmgr->avfs_supported)
1634 		return 0;
1635 
1636 	if (enable) {
1637 		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1638 				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1639 			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1640 					hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1641 					"Failed to enable AVFS!",
1642 					return -EINVAL);
1643 		}
1644 	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1645 			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1646 		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1647 				hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1648 				"Failed to disable AVFS!",
1649 				return -EINVAL);
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1656 {
1657 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1658 
1659 	if (!hwmgr->avfs_supported)
1660 		return 0;
1661 
1662 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1663 		smu7_avfs_control(hwmgr, false);
1664 	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1665 		smu7_avfs_control(hwmgr, false);
1666 		smu7_avfs_control(hwmgr, true);
1667 	} else {
1668 		smu7_avfs_control(hwmgr, true);
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1675 {
1676 	int tmp_result, result = 0;
1677 
1678 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1679 			PHM_PlatformCaps_ThermalController))
1680 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1681 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1682 
1683 	tmp_result = smu7_disable_power_containment(hwmgr);
1684 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1685 			"Failed to disable power containment!", result = tmp_result);
1686 
1687 	tmp_result = smu7_disable_smc_cac(hwmgr);
1688 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1689 			"Failed to disable SMC CAC!", result = tmp_result);
1690 
1691 	tmp_result = smu7_disable_didt_config(hwmgr);
1692 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1693 			"Failed to disable DIDT!", result = tmp_result);
1694 
1695 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1696 			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1697 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1698 			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1699 
1700 	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1701 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1702 			"Failed to disable thermal auto throttle!", result = tmp_result);
1703 
1704 	tmp_result = smu7_avfs_control(hwmgr, false);
1705 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1706 			"Failed to disable AVFS!", result = tmp_result);
1707 
1708 	tmp_result = smu7_stop_dpm(hwmgr);
1709 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1710 			"Failed to stop DPM!", result = tmp_result);
1711 
1712 	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1713 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1714 			"Failed to disable deep sleep master switch!", result = tmp_result);
1715 
1716 	tmp_result = smu7_disable_ulv(hwmgr);
1717 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1718 			"Failed to disable ULV!", result = tmp_result);
1719 
1720 	tmp_result = smu7_clear_voting_clients(hwmgr);
1721 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1722 			"Failed to clear voting clients!", result = tmp_result);
1723 
1724 	tmp_result = smu7_reset_to_default(hwmgr);
1725 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1726 			"Failed to reset to default!", result = tmp_result);
1727 
1728 	tmp_result = smum_stop_smc(hwmgr);
1729 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1730 			"Failed to stop smc!", result = tmp_result);
1731 
1732 	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1733 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1734 			"Failed to force to switch arbf0!", result = tmp_result);
1735 
1736 	return result;
1737 }
1738 
1739 static bool intel_core_rkl_chk(void)
1740 {
1741 #if IS_ENABLED(CONFIG_X86_64)
1742 	struct cpuinfo_x86 *c = &cpu_data(0);
1743 
1744 	return (c->x86 == 6 && c->x86_model == INTEL_FAM6_ROCKETLAKE);
1745 #else
1746 	return false;
1747 #endif
1748 }
1749 
1750 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1751 {
1752 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1753 	struct phm_ppt_v1_information *table_info =
1754 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1755 	struct amdgpu_device *adev = hwmgr->adev;
1756 	uint8_t tmp1, tmp2;
1757 	uint16_t tmp3 = 0;
1758 
1759 	data->dll_default_on = false;
1760 	data->mclk_dpm0_activity_target = 0xa;
1761 	data->vddc_vddgfx_delta = 300;
1762 	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1763 	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1764 	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1765 	data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1766 	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1767 	data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1768 	data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1769 	data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1770 	data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1771 	data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1772 
1773 	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1774 	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1775 	data->pcie_dpm_key_disabled =
1776 		intel_core_rkl_chk() || !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1777 	/* need to set voltage control types before EVV patching */
1778 	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1779 	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1780 	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1781 	data->enable_tdc_limit_feature = true;
1782 	data->enable_pkg_pwr_tracking_feature = true;
1783 	data->force_pcie_gen = PP_PCIEGenInvalid;
1784 	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1785 	data->current_profile_setting.bupdate_sclk = 1;
1786 	data->current_profile_setting.sclk_up_hyst = 0;
1787 	data->current_profile_setting.sclk_down_hyst = 100;
1788 	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1789 	data->current_profile_setting.bupdate_mclk = 1;
1790 	if (hwmgr->chip_id >= CHIP_POLARIS10) {
1791 		if (adev->gmc.vram_width == 256) {
1792 			data->current_profile_setting.mclk_up_hyst = 10;
1793 			data->current_profile_setting.mclk_down_hyst = 60;
1794 			data->current_profile_setting.mclk_activity = 25;
1795 		} else if (adev->gmc.vram_width == 128) {
1796 			data->current_profile_setting.mclk_up_hyst = 5;
1797 			data->current_profile_setting.mclk_down_hyst = 16;
1798 			data->current_profile_setting.mclk_activity = 20;
1799 		} else if (adev->gmc.vram_width == 64) {
1800 			data->current_profile_setting.mclk_up_hyst = 3;
1801 			data->current_profile_setting.mclk_down_hyst = 16;
1802 			data->current_profile_setting.mclk_activity = 20;
1803 		}
1804 	} else {
1805 		data->current_profile_setting.mclk_up_hyst = 0;
1806 		data->current_profile_setting.mclk_down_hyst = 100;
1807 		data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1808 	}
1809 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1810 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1811 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1812 
1813 	if (hwmgr->chip_id  == CHIP_HAWAII) {
1814 		data->thermal_temp_setting.temperature_low = 94500;
1815 		data->thermal_temp_setting.temperature_high = 95000;
1816 		data->thermal_temp_setting.temperature_shutdown = 104000;
1817 	} else {
1818 		data->thermal_temp_setting.temperature_low = 99500;
1819 		data->thermal_temp_setting.temperature_high = 100000;
1820 		data->thermal_temp_setting.temperature_shutdown = 104000;
1821 	}
1822 
1823 	data->fast_watermark_threshold = 100;
1824 	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1825 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1826 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1827 	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1828 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1829 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1830 
1831 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1832 			PHM_PlatformCaps_ControlVDDGFX)) {
1833 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1834 			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1835 			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1836 		}
1837 	}
1838 
1839 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1840 			PHM_PlatformCaps_EnableMVDDControl)) {
1841 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1842 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1843 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1844 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1845 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1846 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1847 	}
1848 
1849 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1850 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1851 			PHM_PlatformCaps_ControlVDDGFX);
1852 
1853 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1854 			PHM_PlatformCaps_ControlVDDCI)) {
1855 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1856 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1857 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1858 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1859 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1860 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1861 	}
1862 
1863 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1864 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1865 				PHM_PlatformCaps_EnableMVDDControl);
1866 
1867 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1868 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1869 				PHM_PlatformCaps_ControlVDDCI);
1870 
1871 	data->vddc_phase_shed_control = 1;
1872 	if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1873 	    ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1874 	    ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1875 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1876 	    ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1877 		if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1878 			atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1879 							&tmp3);
1880 			tmp3 = (tmp3 >> 5) & 0x3;
1881 			data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1882 		}
1883 	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1884 		data->vddc_phase_shed_control = 1;
1885 	}
1886 
1887 	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1888 		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
1889 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1890 					PHM_PlatformCaps_ClockStretcher);
1891 
1892 	data->pcie_gen_performance.max = PP_PCIEGen1;
1893 	data->pcie_gen_performance.min = PP_PCIEGen3;
1894 	data->pcie_gen_power_saving.max = PP_PCIEGen1;
1895 	data->pcie_gen_power_saving.min = PP_PCIEGen3;
1896 	data->pcie_lane_performance.max = 0;
1897 	data->pcie_lane_performance.min = 16;
1898 	data->pcie_lane_power_saving.max = 0;
1899 	data->pcie_lane_power_saving.min = 16;
1900 
1901 
1902 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1903 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1904 			      PHM_PlatformCaps_UVDPowerGating);
1905 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1906 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1907 			      PHM_PlatformCaps_VCEPowerGating);
1908 
1909 	data->disable_edc_leakage_controller = true;
1910 	if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1911 	    ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1912 	    (adev->asic_type == CHIP_POLARIS12) ||
1913 	    (adev->asic_type == CHIP_VEGAM))
1914 		data->disable_edc_leakage_controller = false;
1915 
1916 	if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1917 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1918 			PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1919 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1920 			PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1921 	}
1922 
1923 	if ((adev->pdev->device == 0x699F) &&
1924 	    (adev->pdev->revision == 0xCF)) {
1925 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1926 				PHM_PlatformCaps_PowerContainment);
1927 		data->enable_tdc_limit_feature = false;
1928 		data->enable_pkg_pwr_tracking_feature = false;
1929 		data->disable_edc_leakage_controller = true;
1930 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1931 					PHM_PlatformCaps_ClockStretcher);
1932 	}
1933 }
1934 
1935 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1936 {
1937 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1938 	struct amdgpu_device *adev = hwmgr->adev;
1939 	uint32_t asicrev1, evv_revision, max = 0, min = 0;
1940 
1941 	atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
1942 			&evv_revision);
1943 
1944 	atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
1945 
1946 	if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1947 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
1948 		min = 1200;
1949 		max = 2500;
1950 	} else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1951 		   ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1952 		min = 900;
1953 		max= 2100;
1954 	} else if (hwmgr->chip_id == CHIP_POLARIS10) {
1955 		if (adev->pdev->subsystem_vendor == 0x106B) {
1956 			min = 1000;
1957 			max = 2300;
1958 		} else {
1959 			if (evv_revision == 0) {
1960 				min = 1000;
1961 				max = 2300;
1962 			} else if (evv_revision == 1) {
1963 				if (asicrev1 == 326) {
1964 					min = 1200;
1965 					max = 2500;
1966 					/* TODO: PATCH RO in VBIOS */
1967 				} else {
1968 					min = 1200;
1969 					max = 2000;
1970 				}
1971 			} else if (evv_revision == 2) {
1972 				min = 1200;
1973 				max = 2500;
1974 			}
1975 		}
1976 	} else {
1977 		min = 1100;
1978 		max = 2100;
1979 	}
1980 
1981 	data->ro_range_minimum = min;
1982 	data->ro_range_maximum = max;
1983 
1984 	/* TODO: PATCH RO in VBIOS here */
1985 
1986 	return 0;
1987 }
1988 
1989 /**
1990  * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
1991  *
1992  * @hwmgr:  the address of the powerplay hardware manager.
1993  * Return:   always 0
1994  */
1995 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
1996 {
1997 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1998 	uint16_t vv_id;
1999 	uint16_t vddc = 0;
2000 	uint16_t vddgfx = 0;
2001 	uint16_t i, j;
2002 	uint32_t sclk = 0;
2003 	struct phm_ppt_v1_information *table_info =
2004 			(struct phm_ppt_v1_information *)hwmgr->pptable;
2005 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2006 
2007 	if (hwmgr->chip_id == CHIP_POLARIS10 ||
2008 	    hwmgr->chip_id == CHIP_POLARIS11 ||
2009 	    hwmgr->chip_id == CHIP_POLARIS12)
2010 		smu7_calculate_ro_range(hwmgr);
2011 
2012 	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2013 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2014 
2015 		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2016 			if ((hwmgr->pp_table_version == PP_TABLE_V1)
2017 			    && !phm_get_sclk_for_voltage_evv(hwmgr,
2018 						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2019 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2020 							PHM_PlatformCaps_ClockStretcher)) {
2021 					sclk_table = table_info->vdd_dep_on_sclk;
2022 
2023 					for (j = 1; j < sclk_table->count; j++) {
2024 						if (sclk_table->entries[j].clk == sclk &&
2025 								sclk_table->entries[j].cks_enable == 0) {
2026 							sclk += 5000;
2027 							break;
2028 						}
2029 					}
2030 				}
2031 				if (0 == atomctrl_get_voltage_evv_on_sclk
2032 				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2033 				     vv_id, &vddgfx)) {
2034 					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2035 					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2036 
2037 					/* the voltage should not be zero nor equal to leakage ID */
2038 					if (vddgfx != 0 && vddgfx != vv_id) {
2039 						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2040 						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2041 						data->vddcgfx_leakage.count++;
2042 					}
2043 				} else {
2044 					pr_info("Error retrieving EVV voltage value!\n");
2045 				}
2046 			}
2047 		} else {
2048 			if ((hwmgr->pp_table_version == PP_TABLE_V0)
2049 				|| !phm_get_sclk_for_voltage_evv(hwmgr,
2050 					table_info->vddc_lookup_table, vv_id, &sclk)) {
2051 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2052 						PHM_PlatformCaps_ClockStretcher)) {
2053 					if (table_info == NULL)
2054 						return -EINVAL;
2055 					sclk_table = table_info->vdd_dep_on_sclk;
2056 
2057 					for (j = 1; j < sclk_table->count; j++) {
2058 						if (sclk_table->entries[j].clk == sclk &&
2059 								sclk_table->entries[j].cks_enable == 0) {
2060 							sclk += 5000;
2061 							break;
2062 						}
2063 					}
2064 				}
2065 
2066 				if (phm_get_voltage_evv_on_sclk(hwmgr,
2067 							VOLTAGE_TYPE_VDDC,
2068 							sclk, vv_id, &vddc) == 0) {
2069 					if (vddc >= 2000 || vddc == 0)
2070 						return -EINVAL;
2071 				} else {
2072 					pr_debug("failed to retrieving EVV voltage!\n");
2073 					continue;
2074 				}
2075 
2076 				/* the voltage should not be zero nor equal to leakage ID */
2077 				if (vddc != 0 && vddc != vv_id) {
2078 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2079 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2080 					data->vddc_leakage.count++;
2081 				}
2082 			}
2083 		}
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 /**
2090  * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2091  *
2092  * @hwmgr:  the address of the powerplay hardware manager.
2093  * @voltage: pointer to changing voltage
2094  * @leakage_table: pointer to leakage table
2095  */
2096 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2097 		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2098 {
2099 	uint32_t index;
2100 
2101 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2102 	for (index = 0; index < leakage_table->count; index++) {
2103 		/* if this voltage matches a leakage voltage ID */
2104 		/* patch with actual leakage voltage */
2105 		if (leakage_table->leakage_id[index] == *voltage) {
2106 			*voltage = leakage_table->actual_voltage[index];
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2112 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2113 }
2114 
2115 /**
2116  * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2117  *
2118  * @hwmgr:  the address of the powerplay hardware manager.
2119  * @lookup_table: pointer to voltage lookup table
2120  * @leakage_table: pointer to leakage table
2121  * Return:     always 0
2122  */
2123 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2124 		phm_ppt_v1_voltage_lookup_table *lookup_table,
2125 		struct smu7_leakage_voltage *leakage_table)
2126 {
2127 	uint32_t i;
2128 
2129 	for (i = 0; i < lookup_table->count; i++)
2130 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2131 				&lookup_table->entries[i].us_vdd, leakage_table);
2132 
2133 	return 0;
2134 }
2135 
2136 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2137 		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2138 		uint16_t *vddc)
2139 {
2140 	struct phm_ppt_v1_information *table_info =
2141 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2142 	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2143 	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2144 			table_info->max_clock_voltage_on_dc.vddc;
2145 	return 0;
2146 }
2147 
2148 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2149 		struct pp_hwmgr *hwmgr)
2150 {
2151 	uint8_t entry_id;
2152 	uint8_t voltage_id;
2153 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2154 	struct phm_ppt_v1_information *table_info =
2155 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2156 
2157 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2158 			table_info->vdd_dep_on_sclk;
2159 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2160 			table_info->vdd_dep_on_mclk;
2161 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2162 			table_info->mm_dep_table;
2163 
2164 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2165 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2166 			voltage_id = sclk_table->entries[entry_id].vddInd;
2167 			sclk_table->entries[entry_id].vddgfx =
2168 				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2169 		}
2170 	} else {
2171 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2172 			voltage_id = sclk_table->entries[entry_id].vddInd;
2173 			sclk_table->entries[entry_id].vddc =
2174 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2175 		}
2176 	}
2177 
2178 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2179 		voltage_id = mclk_table->entries[entry_id].vddInd;
2180 		mclk_table->entries[entry_id].vddc =
2181 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2182 	}
2183 
2184 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2185 		voltage_id = mm_table->entries[entry_id].vddcInd;
2186 		mm_table->entries[entry_id].vddc =
2187 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2188 	}
2189 
2190 	return 0;
2191 
2192 }
2193 
2194 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2195 			phm_ppt_v1_voltage_lookup_table *look_up_table,
2196 			phm_ppt_v1_voltage_lookup_record *record)
2197 {
2198 	uint32_t i;
2199 
2200 	PP_ASSERT_WITH_CODE((NULL != look_up_table),
2201 		"Lookup Table empty.", return -EINVAL);
2202 	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2203 		"Lookup Table empty.", return -EINVAL);
2204 
2205 	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2206 	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2207 		"Lookup Table is full.", return -EINVAL);
2208 
2209 	/* This is to avoid entering duplicate calculated records. */
2210 	for (i = 0; i < look_up_table->count; i++) {
2211 		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2212 			if (look_up_table->entries[i].us_calculated == 1)
2213 				return 0;
2214 			break;
2215 		}
2216 	}
2217 
2218 	look_up_table->entries[i].us_calculated = 1;
2219 	look_up_table->entries[i].us_vdd = record->us_vdd;
2220 	look_up_table->entries[i].us_cac_low = record->us_cac_low;
2221 	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2222 	look_up_table->entries[i].us_cac_high = record->us_cac_high;
2223 	/* Only increment the count when we're appending, not replacing duplicate entry. */
2224 	if (i == look_up_table->count)
2225 		look_up_table->count++;
2226 
2227 	return 0;
2228 }
2229 
2230 
2231 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2232 {
2233 	uint8_t entry_id;
2234 	struct phm_ppt_v1_voltage_lookup_record v_record;
2235 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2236 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2237 
2238 	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2239 	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2240 
2241 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2242 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2243 			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2244 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2245 					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2246 			else
2247 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2248 					sclk_table->entries[entry_id].vdd_offset;
2249 
2250 			sclk_table->entries[entry_id].vddc =
2251 				v_record.us_cac_low = v_record.us_cac_mid =
2252 				v_record.us_cac_high = v_record.us_vdd;
2253 
2254 			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2255 		}
2256 
2257 		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2258 			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2259 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2260 					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2261 			else
2262 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2263 					mclk_table->entries[entry_id].vdd_offset;
2264 
2265 			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2266 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2267 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2268 		}
2269 	}
2270 	return 0;
2271 }
2272 
2273 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2274 {
2275 	uint8_t entry_id;
2276 	struct phm_ppt_v1_voltage_lookup_record v_record;
2277 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2278 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2279 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2280 
2281 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2282 		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2283 			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2284 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2285 					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2286 			else
2287 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2288 					mm_table->entries[entry_id].vddgfx_offset;
2289 
2290 			/* Add the calculated VDDGFX to the VDDGFX lookup table */
2291 			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2292 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2293 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2294 		}
2295 	}
2296 	return 0;
2297 }
2298 
2299 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2300 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2301 {
2302 	uint32_t table_size, i, j;
2303 	table_size = lookup_table->count;
2304 
2305 	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2306 		"Lookup table is empty", return -EINVAL);
2307 
2308 	/* Sorting voltages */
2309 	for (i = 0; i < table_size - 1; i++) {
2310 		for (j = i + 1; j > 0; j--) {
2311 			if (lookup_table->entries[j].us_vdd <
2312 					lookup_table->entries[j - 1].us_vdd) {
2313 				swap(lookup_table->entries[j - 1],
2314 				     lookup_table->entries[j]);
2315 			}
2316 		}
2317 	}
2318 
2319 	return 0;
2320 }
2321 
2322 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2323 {
2324 	int result = 0;
2325 	int tmp_result;
2326 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2327 	struct phm_ppt_v1_information *table_info =
2328 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2329 
2330 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2331 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2332 			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2333 		if (tmp_result != 0)
2334 			result = tmp_result;
2335 
2336 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2337 			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2338 	} else {
2339 
2340 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2341 				table_info->vddc_lookup_table, &(data->vddc_leakage));
2342 		if (tmp_result)
2343 			result = tmp_result;
2344 
2345 		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2346 				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2347 		if (tmp_result)
2348 			result = tmp_result;
2349 	}
2350 
2351 	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2352 	if (tmp_result)
2353 		result = tmp_result;
2354 
2355 	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2356 	if (tmp_result)
2357 		result = tmp_result;
2358 
2359 	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2360 	if (tmp_result)
2361 		result = tmp_result;
2362 
2363 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2364 	if (tmp_result)
2365 		result = tmp_result;
2366 
2367 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2368 	if (tmp_result)
2369 		result = tmp_result;
2370 
2371 	return result;
2372 }
2373 
2374 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2375 {
2376 	struct phm_ppt_v1_information *table_info =
2377 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2378 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2379 						table_info->vdd_dep_on_sclk;
2380 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2381 						table_info->vddc_lookup_table;
2382 	uint16_t highest_voltage;
2383 	uint32_t i;
2384 
2385 	highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2386 
2387 	for (i = 0; i < lookup_table->count; i++) {
2388 		if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2389 		    lookup_table->entries[i].us_vdd > highest_voltage)
2390 			highest_voltage = lookup_table->entries[i].us_vdd;
2391 	}
2392 
2393 	return highest_voltage;
2394 }
2395 
2396 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2397 {
2398 	struct phm_ppt_v1_information *table_info =
2399 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2400 
2401 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2402 						table_info->vdd_dep_on_sclk;
2403 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2404 						table_info->vdd_dep_on_mclk;
2405 
2406 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2407 		"VDD dependency on SCLK table is missing.",
2408 		return -EINVAL);
2409 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2410 		"VDD dependency on SCLK table has to have is missing.",
2411 		return -EINVAL);
2412 
2413 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2414 		"VDD dependency on MCLK table is missing",
2415 		return -EINVAL);
2416 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2417 		"VDD dependency on MCLK table has to have is missing.",
2418 		return -EINVAL);
2419 
2420 	table_info->max_clock_voltage_on_ac.sclk =
2421 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2422 	table_info->max_clock_voltage_on_ac.mclk =
2423 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2424 	if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2425 		table_info->max_clock_voltage_on_ac.vddc =
2426 			smu7_find_highest_vddc(hwmgr);
2427 	else
2428 		table_info->max_clock_voltage_on_ac.vddc =
2429 			allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2430 	table_info->max_clock_voltage_on_ac.vddci =
2431 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2432 
2433 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2434 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2435 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2436 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2437 
2438 	return 0;
2439 }
2440 
2441 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2442 {
2443 	struct phm_ppt_v1_information *table_info =
2444 		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
2445 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2446 	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2447 	uint32_t i;
2448 	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2449 	struct amdgpu_device *adev = hwmgr->adev;
2450 
2451 	if (table_info != NULL) {
2452 		dep_mclk_table = table_info->vdd_dep_on_mclk;
2453 		lookup_table = table_info->vddc_lookup_table;
2454 	} else
2455 		return 0;
2456 
2457 	hw_revision = adev->pdev->revision;
2458 	sub_sys_id = adev->pdev->subsystem_device;
2459 	sub_vendor_id = adev->pdev->subsystem_vendor;
2460 
2461 	if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2462 	    ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2463 	     (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2464 	     (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2465 
2466 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2467 					      CGS_IND_REG__SMC,
2468 					      PWR_CKS_CNTL,
2469 					      CKS_STRETCH_AMOUNT,
2470 					      0x3);
2471 
2472 		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2473 			return 0;
2474 
2475 		for (i = 0; i < lookup_table->count; i++) {
2476 			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2477 				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2478 				return 0;
2479 			}
2480 		}
2481 	}
2482 	return 0;
2483 }
2484 
2485 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2486 {
2487 	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2488 	uint32_t temp_reg;
2489 	struct phm_ppt_v1_information *table_info =
2490 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2491 
2492 
2493 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2494 		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2495 		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2496 		case 0:
2497 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2498 			break;
2499 		case 1:
2500 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2501 			break;
2502 		case 2:
2503 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2504 			break;
2505 		case 3:
2506 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2507 			break;
2508 		case 4:
2509 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2510 			break;
2511 		default:
2512 			break;
2513 		}
2514 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2515 	}
2516 
2517 	if (table_info == NULL)
2518 		return 0;
2519 
2520 	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2521 		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2522 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2523 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2524 
2525 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2526 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2527 
2528 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2529 
2530 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2531 
2532 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2533 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2534 
2535 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2536 
2537 		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2538 								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2539 
2540 		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2541 		table_info->cac_dtp_table->usOperatingTempStep = 1;
2542 		table_info->cac_dtp_table->usOperatingTempHyst = 1;
2543 
2544 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2545 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2546 
2547 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2548 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2549 
2550 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2551 			       table_info->cac_dtp_table->usOperatingTempMinLimit;
2552 
2553 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2554 			       table_info->cac_dtp_table->usOperatingTempMaxLimit;
2555 
2556 		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2557 			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2558 
2559 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2560 			       table_info->cac_dtp_table->usOperatingTempStep;
2561 
2562 		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2563 			       table_info->cac_dtp_table->usTargetOperatingTemp;
2564 		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2565 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2566 					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 /**
2573  * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2574  *
2575  * @hwmgr:  the address of the powerplay hardware manager.
2576  * @voltage: pointer to changing voltage
2577  * @leakage_table: pointer to leakage table
2578  */
2579 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2580 		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2581 {
2582 	uint32_t index;
2583 
2584 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2585 	for (index = 0; index < leakage_table->count; index++) {
2586 		/* if this voltage matches a leakage voltage ID */
2587 		/* patch with actual leakage voltage */
2588 		if (leakage_table->leakage_id[index] == *voltage) {
2589 			*voltage = leakage_table->actual_voltage[index];
2590 			break;
2591 		}
2592 	}
2593 
2594 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2595 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2596 }
2597 
2598 
2599 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2600 			      struct phm_clock_voltage_dependency_table *tab)
2601 {
2602 	uint16_t i;
2603 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2604 
2605 	if (tab)
2606 		for (i = 0; i < tab->count; i++)
2607 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2608 						&data->vddc_leakage);
2609 
2610 	return 0;
2611 }
2612 
2613 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2614 			       struct phm_clock_voltage_dependency_table *tab)
2615 {
2616 	uint16_t i;
2617 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2618 
2619 	if (tab)
2620 		for (i = 0; i < tab->count; i++)
2621 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2622 							&data->vddci_leakage);
2623 
2624 	return 0;
2625 }
2626 
2627 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2628 				  struct phm_vce_clock_voltage_dependency_table *tab)
2629 {
2630 	uint16_t i;
2631 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2632 
2633 	if (tab)
2634 		for (i = 0; i < tab->count; i++)
2635 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2636 							&data->vddc_leakage);
2637 
2638 	return 0;
2639 }
2640 
2641 
2642 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2643 				  struct phm_uvd_clock_voltage_dependency_table *tab)
2644 {
2645 	uint16_t i;
2646 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2647 
2648 	if (tab)
2649 		for (i = 0; i < tab->count; i++)
2650 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2651 							&data->vddc_leakage);
2652 
2653 	return 0;
2654 }
2655 
2656 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2657 					 struct phm_phase_shedding_limits_table *tab)
2658 {
2659 	uint16_t i;
2660 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2661 
2662 	if (tab)
2663 		for (i = 0; i < tab->count; i++)
2664 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2665 							&data->vddc_leakage);
2666 
2667 	return 0;
2668 }
2669 
2670 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2671 				   struct phm_samu_clock_voltage_dependency_table *tab)
2672 {
2673 	uint16_t i;
2674 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2675 
2676 	if (tab)
2677 		for (i = 0; i < tab->count; i++)
2678 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2679 							&data->vddc_leakage);
2680 
2681 	return 0;
2682 }
2683 
2684 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2685 				  struct phm_acp_clock_voltage_dependency_table *tab)
2686 {
2687 	uint16_t i;
2688 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2689 
2690 	if (tab)
2691 		for (i = 0; i < tab->count; i++)
2692 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2693 					&data->vddc_leakage);
2694 
2695 	return 0;
2696 }
2697 
2698 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2699 				  struct phm_clock_and_voltage_limits *tab)
2700 {
2701 	uint32_t vddc, vddci;
2702 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2703 
2704 	if (tab) {
2705 		vddc = tab->vddc;
2706 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2707 						   &data->vddc_leakage);
2708 		tab->vddc = vddc;
2709 		vddci = tab->vddci;
2710 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2711 						   &data->vddci_leakage);
2712 		tab->vddci = vddci;
2713 	}
2714 
2715 	return 0;
2716 }
2717 
2718 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2719 {
2720 	uint32_t i;
2721 	uint32_t vddc;
2722 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2723 
2724 	if (tab) {
2725 		for (i = 0; i < tab->count; i++) {
2726 			vddc = (uint32_t)(tab->entries[i].Vddc);
2727 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2728 			tab->entries[i].Vddc = (uint16_t)vddc;
2729 		}
2730 	}
2731 
2732 	return 0;
2733 }
2734 
2735 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2736 {
2737 	int tmp;
2738 
2739 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2740 	if (tmp)
2741 		return -EINVAL;
2742 
2743 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2744 	if (tmp)
2745 		return -EINVAL;
2746 
2747 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2748 	if (tmp)
2749 		return -EINVAL;
2750 
2751 	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2752 	if (tmp)
2753 		return -EINVAL;
2754 
2755 	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2756 	if (tmp)
2757 		return -EINVAL;
2758 
2759 	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2760 	if (tmp)
2761 		return -EINVAL;
2762 
2763 	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2764 	if (tmp)
2765 		return -EINVAL;
2766 
2767 	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2768 	if (tmp)
2769 		return -EINVAL;
2770 
2771 	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2772 	if (tmp)
2773 		return -EINVAL;
2774 
2775 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2776 	if (tmp)
2777 		return -EINVAL;
2778 
2779 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2780 	if (tmp)
2781 		return -EINVAL;
2782 
2783 	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2784 	if (tmp)
2785 		return -EINVAL;
2786 
2787 	return 0;
2788 }
2789 
2790 
2791 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2792 {
2793 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2794 
2795 	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2796 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2797 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2798 
2799 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2800 		"VDDC dependency on SCLK table is missing. This table is mandatory",
2801 		return -EINVAL);
2802 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2803 		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2804 		return -EINVAL);
2805 
2806 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2807 		"VDDC dependency on MCLK table is missing. This table is mandatory",
2808 		return -EINVAL);
2809 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2810 		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
2811 		return -EINVAL);
2812 
2813 	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2814 	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2815 
2816 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2817 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2818 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2819 		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2820 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2821 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2822 
2823 	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2824 		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2825 		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2826 	}
2827 
2828 	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2829 		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2830 
2831 	return 0;
2832 }
2833 
2834 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2835 {
2836 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2837 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2838 	kfree(hwmgr->backend);
2839 	hwmgr->backend = NULL;
2840 
2841 	return 0;
2842 }
2843 
2844 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2845 {
2846 	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2847 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2848 	int i;
2849 
2850 	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2851 		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2852 			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2853 			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2854 								virtual_voltage_id,
2855 								efuse_voltage_id) == 0) {
2856 				if (vddc != 0 && vddc != virtual_voltage_id) {
2857 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2858 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2859 					data->vddc_leakage.count++;
2860 				}
2861 				if (vddci != 0 && vddci != virtual_voltage_id) {
2862 					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2863 					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2864 					data->vddci_leakage.count++;
2865 				}
2866 			}
2867 		}
2868 	}
2869 	return 0;
2870 }
2871 
2872 #define LEAKAGE_ID_MSB			463
2873 #define LEAKAGE_ID_LSB			454
2874 
2875 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2876 {
2877 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2878 	uint32_t efuse;
2879 	uint16_t offset;
2880 	int ret = 0;
2881 
2882 	if (data->disable_edc_leakage_controller)
2883 		return 0;
2884 
2885 	ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2886 							 &data->edc_hilo_leakage_offset_from_vbios);
2887 	if (ret)
2888 		return ret;
2889 
2890 	if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2891 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2892 		atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2893 		if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2894 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2895 		else
2896 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2897 
2898 		ret = atomctrl_get_edc_leakage_table(hwmgr,
2899 						     &data->edc_leakage_table,
2900 						     offset);
2901 		if (ret)
2902 			return ret;
2903 	}
2904 
2905 	return ret;
2906 }
2907 
2908 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2909 {
2910 	struct smu7_hwmgr *data;
2911 	int result = 0;
2912 
2913 	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2914 	if (data == NULL)
2915 		return -ENOMEM;
2916 
2917 	hwmgr->backend = data;
2918 	smu7_patch_voltage_workaround(hwmgr);
2919 	smu7_init_dpm_defaults(hwmgr);
2920 
2921 	/* Get leakage voltage based on leakage ID. */
2922 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2923 			PHM_PlatformCaps_EVV)) {
2924 		result = smu7_get_evv_voltages(hwmgr);
2925 		if (result) {
2926 			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
2927 			return -EINVAL;
2928 		}
2929 	} else {
2930 		smu7_get_elb_voltages(hwmgr);
2931 	}
2932 
2933 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
2934 		smu7_complete_dependency_tables(hwmgr);
2935 		smu7_set_private_data_based_on_pptable_v1(hwmgr);
2936 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2937 		smu7_patch_dependency_tables_with_leakage(hwmgr);
2938 		smu7_set_private_data_based_on_pptable_v0(hwmgr);
2939 	}
2940 
2941 	/* Initalize Dynamic State Adjustment Rule Settings */
2942 	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2943 
2944 	if (0 == result) {
2945 		struct amdgpu_device *adev = hwmgr->adev;
2946 
2947 		data->is_tlu_enabled = false;
2948 
2949 		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2950 							SMU7_MAX_HARDWARE_POWERLEVELS;
2951 		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2952 		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2953 
2954 		data->pcie_gen_cap = adev->pm.pcie_gen_mask;
2955 		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2956 			data->pcie_spc_cap = 20;
2957 		else
2958 			data->pcie_spc_cap = 16;
2959 		data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
2960 
2961 		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
2962 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
2963 		hwmgr->platform_descriptor.clockStep.engineClock = 500;
2964 		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
2965 		smu7_thermal_parameter_init(hwmgr);
2966 	} else {
2967 		/* Ignore return value in here, we are cleaning up a mess. */
2968 		smu7_hwmgr_backend_fini(hwmgr);
2969 	}
2970 
2971 	result = smu7_update_edc_leakage_table(hwmgr);
2972 	if (result)
2973 		return result;
2974 
2975 	return 0;
2976 }
2977 
2978 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
2979 {
2980 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2981 	uint32_t level, tmp;
2982 
2983 	if (!data->pcie_dpm_key_disabled) {
2984 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2985 			level = 0;
2986 			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
2987 			while (tmp >>= 1)
2988 				level++;
2989 
2990 			if (level)
2991 				smum_send_msg_to_smc_with_parameter(hwmgr,
2992 						PPSMC_MSG_PCIeDPM_ForceLevel, level,
2993 						NULL);
2994 		}
2995 	}
2996 
2997 	if (!data->sclk_dpm_key_disabled) {
2998 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2999 			level = 0;
3000 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3001 			while (tmp >>= 1)
3002 				level++;
3003 
3004 			if (level)
3005 				smum_send_msg_to_smc_with_parameter(hwmgr,
3006 						PPSMC_MSG_SCLKDPM_SetEnabledMask,
3007 						(1 << level),
3008 						NULL);
3009 		}
3010 	}
3011 
3012 	if (!data->mclk_dpm_key_disabled) {
3013 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3014 			level = 0;
3015 			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3016 			while (tmp >>= 1)
3017 				level++;
3018 
3019 			if (level)
3020 				smum_send_msg_to_smc_with_parameter(hwmgr,
3021 						PPSMC_MSG_MCLKDPM_SetEnabledMask,
3022 						(1 << level),
3023 						NULL);
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3031 {
3032 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3033 
3034 	if (hwmgr->pp_table_version == PP_TABLE_V1)
3035 		phm_apply_dal_min_voltage_request(hwmgr);
3036 /* TO DO  for v0 iceland and Ci*/
3037 
3038 	if (!data->sclk_dpm_key_disabled) {
3039 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3040 			smum_send_msg_to_smc_with_parameter(hwmgr,
3041 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
3042 					data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3043 					NULL);
3044 	}
3045 
3046 	if (!data->mclk_dpm_key_disabled) {
3047 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3048 			smum_send_msg_to_smc_with_parameter(hwmgr,
3049 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
3050 					data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3051 					NULL);
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3058 {
3059 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3060 
3061 	if (!smum_is_dpm_running(hwmgr))
3062 		return -EINVAL;
3063 
3064 	if (!data->pcie_dpm_key_disabled) {
3065 		smum_send_msg_to_smc(hwmgr,
3066 				PPSMC_MSG_PCIeDPM_UnForceLevel,
3067 				NULL);
3068 	}
3069 
3070 	return smu7_upload_dpm_level_enable_mask(hwmgr);
3071 }
3072 
3073 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3074 {
3075 	struct smu7_hwmgr *data =
3076 			(struct smu7_hwmgr *)(hwmgr->backend);
3077 	uint32_t level;
3078 
3079 	if (!data->sclk_dpm_key_disabled)
3080 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3081 			level = phm_get_lowest_enabled_level(hwmgr,
3082 							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3083 			smum_send_msg_to_smc_with_parameter(hwmgr,
3084 							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
3085 							    (1 << level),
3086 							    NULL);
3087 
3088 	}
3089 
3090 	if (!data->mclk_dpm_key_disabled) {
3091 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3092 			level = phm_get_lowest_enabled_level(hwmgr,
3093 							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3094 			smum_send_msg_to_smc_with_parameter(hwmgr,
3095 							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
3096 							    (1 << level),
3097 							    NULL);
3098 		}
3099 	}
3100 
3101 	if (!data->pcie_dpm_key_disabled) {
3102 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3103 			level = phm_get_lowest_enabled_level(hwmgr,
3104 							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3105 			smum_send_msg_to_smc_with_parameter(hwmgr,
3106 							    PPSMC_MSG_PCIeDPM_ForceLevel,
3107 							    (level),
3108 							    NULL);
3109 		}
3110 	}
3111 
3112 	return 0;
3113 }
3114 
3115 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3116 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3117 {
3118 	uint32_t percentage;
3119 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3120 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3121 	int32_t tmp_mclk;
3122 	int32_t tmp_sclk;
3123 	int32_t count;
3124 
3125 	if (golden_dpm_table->mclk_table.count < 1)
3126 		return -EINVAL;
3127 
3128 	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3129 			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3130 
3131 	if (golden_dpm_table->mclk_table.count == 1) {
3132 		percentage = 70;
3133 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3134 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3135 	} else {
3136 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3137 		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
3138 	}
3139 
3140 	tmp_sclk = tmp_mclk * percentage / 100;
3141 
3142 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3143 		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3144 			count >= 0; count--) {
3145 			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3146 				tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
3147 				*sclk_mask = count;
3148 				break;
3149 			}
3150 		}
3151 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
3152 			*sclk_mask = 0;
3153 			tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk;
3154 		}
3155 
3156 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3157 			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3158 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3159 		struct phm_ppt_v1_information *table_info =
3160 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
3161 
3162 		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3163 			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3164 				tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
3165 				*sclk_mask = count;
3166 				break;
3167 			}
3168 		}
3169 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
3170 			*sclk_mask = 0;
3171 			tmp_sclk =  table_info->vdd_dep_on_sclk->entries[0].clk;
3172 		}
3173 
3174 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3175 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3176 	}
3177 
3178 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3179 		*mclk_mask = 0;
3180 	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3181 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3182 
3183 	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3184 	hwmgr->pstate_sclk = tmp_sclk;
3185 	hwmgr->pstate_mclk = tmp_mclk;
3186 
3187 	return 0;
3188 }
3189 
3190 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3191 				enum amd_dpm_forced_level level)
3192 {
3193 	int ret = 0;
3194 	uint32_t sclk_mask = 0;
3195 	uint32_t mclk_mask = 0;
3196 	uint32_t pcie_mask = 0;
3197 
3198 	if (hwmgr->pstate_sclk == 0)
3199 		smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3200 
3201 	switch (level) {
3202 	case AMD_DPM_FORCED_LEVEL_HIGH:
3203 		ret = smu7_force_dpm_highest(hwmgr);
3204 		break;
3205 	case AMD_DPM_FORCED_LEVEL_LOW:
3206 		ret = smu7_force_dpm_lowest(hwmgr);
3207 		break;
3208 	case AMD_DPM_FORCED_LEVEL_AUTO:
3209 		ret = smu7_unforce_dpm_levels(hwmgr);
3210 		break;
3211 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3212 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3213 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3214 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3215 		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3216 		if (ret)
3217 			return ret;
3218 		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3219 		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3220 		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3221 		break;
3222 	case AMD_DPM_FORCED_LEVEL_MANUAL:
3223 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3224 	default:
3225 		break;
3226 	}
3227 
3228 	if (!ret) {
3229 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3230 			smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3231 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3232 			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3233 	}
3234 	return ret;
3235 }
3236 
3237 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3238 {
3239 	return sizeof(struct smu7_power_state);
3240 }
3241 
3242 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3243 				 uint32_t vblank_time_us)
3244 {
3245 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3246 	uint32_t switch_limit_us;
3247 
3248 	switch (hwmgr->chip_id) {
3249 	case CHIP_POLARIS10:
3250 	case CHIP_POLARIS11:
3251 	case CHIP_POLARIS12:
3252 		if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3253 			switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3254 		else
3255 			switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3256 		break;
3257 	case CHIP_VEGAM:
3258 		switch_limit_us = 30;
3259 		break;
3260 	default:
3261 		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3262 		break;
3263 	}
3264 
3265 	if (vblank_time_us < switch_limit_us)
3266 		return true;
3267 	else
3268 		return false;
3269 }
3270 
3271 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3272 				struct pp_power_state *request_ps,
3273 			const struct pp_power_state *current_ps)
3274 {
3275 	struct amdgpu_device *adev = hwmgr->adev;
3276 	struct smu7_power_state *smu7_ps =
3277 				cast_phw_smu7_power_state(&request_ps->hardware);
3278 	uint32_t sclk;
3279 	uint32_t mclk;
3280 	struct PP_Clocks minimum_clocks = {0};
3281 	bool disable_mclk_switching;
3282 	bool disable_mclk_switching_for_frame_lock;
3283 	bool disable_mclk_switching_for_display;
3284 	const struct phm_clock_and_voltage_limits *max_limits;
3285 	uint32_t i;
3286 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3287 	struct phm_ppt_v1_information *table_info =
3288 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3289 	int32_t count;
3290 	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3291 	uint32_t latency;
3292 	bool latency_allowed = false;
3293 
3294 	data->battery_state = (PP_StateUILabel_Battery ==
3295 			request_ps->classification.ui_label);
3296 	data->mclk_ignore_signal = false;
3297 
3298 	max_limits = adev->pm.ac_power ?
3299 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3300 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3301 
3302 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3303 	if (!adev->pm.ac_power) {
3304 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3305 			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3306 				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3307 			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3308 				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3309 		}
3310 	}
3311 
3312 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3313 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3314 
3315 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3316 			PHM_PlatformCaps_StablePState)) {
3317 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3318 		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3319 
3320 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3321 				count >= 0; count--) {
3322 			if (stable_pstate_sclk >=
3323 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3324 				stable_pstate_sclk =
3325 						table_info->vdd_dep_on_sclk->entries[count].clk;
3326 				break;
3327 			}
3328 		}
3329 
3330 		if (count < 0)
3331 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3332 
3333 		stable_pstate_mclk = max_limits->mclk;
3334 
3335 		minimum_clocks.engineClock = stable_pstate_sclk;
3336 		minimum_clocks.memoryClock = stable_pstate_mclk;
3337 	}
3338 
3339 	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3340 				    hwmgr->platform_descriptor.platformCaps,
3341 				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3342 
3343 	disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3344 						!hwmgr->display_config->multi_monitor_in_sync) ||
3345 						(hwmgr->display_config->num_display &&
3346 						smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3347 
3348 	disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3349 					 disable_mclk_switching_for_display;
3350 
3351 	if (hwmgr->display_config->num_display == 0) {
3352 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3353 			data->mclk_ignore_signal = true;
3354 		else
3355 			disable_mclk_switching = false;
3356 	}
3357 
3358 	sclk = smu7_ps->performance_levels[0].engine_clock;
3359 	mclk = smu7_ps->performance_levels[0].memory_clock;
3360 
3361 	if (disable_mclk_switching &&
3362 	    (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3363 	    hwmgr->chip_id <= CHIP_VEGAM)))
3364 		mclk = smu7_ps->performance_levels
3365 		[smu7_ps->performance_level_count - 1].memory_clock;
3366 
3367 	if (sclk < minimum_clocks.engineClock)
3368 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3369 				max_limits->sclk : minimum_clocks.engineClock;
3370 
3371 	if (mclk < minimum_clocks.memoryClock)
3372 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3373 				max_limits->mclk : minimum_clocks.memoryClock;
3374 
3375 	smu7_ps->performance_levels[0].engine_clock = sclk;
3376 	smu7_ps->performance_levels[0].memory_clock = mclk;
3377 
3378 	smu7_ps->performance_levels[1].engine_clock =
3379 		(smu7_ps->performance_levels[1].engine_clock >=
3380 				smu7_ps->performance_levels[0].engine_clock) ?
3381 						smu7_ps->performance_levels[1].engine_clock :
3382 						smu7_ps->performance_levels[0].engine_clock;
3383 
3384 	if (disable_mclk_switching) {
3385 		if (mclk < smu7_ps->performance_levels[1].memory_clock)
3386 			mclk = smu7_ps->performance_levels[1].memory_clock;
3387 
3388 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3389 			if (disable_mclk_switching_for_display) {
3390 				/* Find the lowest MCLK frequency that is within
3391 				 * the tolerable latency defined in DAL
3392 				 */
3393 				latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3394 				for (i = 0; i < data->mclk_latency_table.count; i++) {
3395 					if (data->mclk_latency_table.entries[i].latency <= latency) {
3396 						latency_allowed = true;
3397 
3398 						if ((data->mclk_latency_table.entries[i].frequency >=
3399 								smu7_ps->performance_levels[0].memory_clock) &&
3400 						    (data->mclk_latency_table.entries[i].frequency <=
3401 								smu7_ps->performance_levels[1].memory_clock)) {
3402 							mclk = data->mclk_latency_table.entries[i].frequency;
3403 							break;
3404 						}
3405 					}
3406 				}
3407 				if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3408 					data->mclk_ignore_signal = true;
3409 				} else {
3410 					data->mclk_ignore_signal = false;
3411 				}
3412 			}
3413 
3414 			if (disable_mclk_switching_for_frame_lock)
3415 				mclk = smu7_ps->performance_levels[1].memory_clock;
3416 		}
3417 
3418 		smu7_ps->performance_levels[0].memory_clock = mclk;
3419 
3420 		if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3421 		      hwmgr->chip_id <= CHIP_VEGAM))
3422 			smu7_ps->performance_levels[1].memory_clock = mclk;
3423 	} else {
3424 		if (smu7_ps->performance_levels[1].memory_clock <
3425 				smu7_ps->performance_levels[0].memory_clock)
3426 			smu7_ps->performance_levels[1].memory_clock =
3427 					smu7_ps->performance_levels[0].memory_clock;
3428 	}
3429 
3430 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3431 			PHM_PlatformCaps_StablePState)) {
3432 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3433 			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3434 			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3435 			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3436 			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3437 		}
3438 	}
3439 	return 0;
3440 }
3441 
3442 
3443 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3444 {
3445 	struct pp_power_state  *ps;
3446 	struct smu7_power_state  *smu7_ps;
3447 
3448 	if (hwmgr == NULL)
3449 		return -EINVAL;
3450 
3451 	ps = hwmgr->request_ps;
3452 
3453 	if (ps == NULL)
3454 		return -EINVAL;
3455 
3456 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3457 
3458 	if (low)
3459 		return smu7_ps->performance_levels[0].memory_clock;
3460 	else
3461 		return smu7_ps->performance_levels
3462 				[smu7_ps->performance_level_count-1].memory_clock;
3463 }
3464 
3465 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3466 {
3467 	struct pp_power_state  *ps;
3468 	struct smu7_power_state  *smu7_ps;
3469 
3470 	if (hwmgr == NULL)
3471 		return -EINVAL;
3472 
3473 	ps = hwmgr->request_ps;
3474 
3475 	if (ps == NULL)
3476 		return -EINVAL;
3477 
3478 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3479 
3480 	if (low)
3481 		return smu7_ps->performance_levels[0].engine_clock;
3482 	else
3483 		return smu7_ps->performance_levels
3484 				[smu7_ps->performance_level_count-1].engine_clock;
3485 }
3486 
3487 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3488 					struct pp_hw_power_state *hw_ps)
3489 {
3490 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3491 	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3492 	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3493 	uint16_t size;
3494 	uint8_t frev, crev;
3495 	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3496 
3497 	/* First retrieve the Boot clocks and VDDC from the firmware info table.
3498 	 * We assume here that fw_info is unchanged if this call fails.
3499 	 */
3500 	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3501 			&size, &frev, &crev);
3502 	if (!fw_info)
3503 		/* During a test, there is no firmware info table. */
3504 		return 0;
3505 
3506 	/* Patch the state. */
3507 	data->vbios_boot_state.sclk_bootup_value =
3508 			le32_to_cpu(fw_info->ulDefaultEngineClock);
3509 	data->vbios_boot_state.mclk_bootup_value =
3510 			le32_to_cpu(fw_info->ulDefaultMemoryClock);
3511 	data->vbios_boot_state.mvdd_bootup_value =
3512 			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3513 	data->vbios_boot_state.vddc_bootup_value =
3514 			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3515 	data->vbios_boot_state.vddci_bootup_value =
3516 			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3517 	data->vbios_boot_state.pcie_gen_bootup_value =
3518 			smu7_get_current_pcie_speed(hwmgr);
3519 
3520 	data->vbios_boot_state.pcie_lane_bootup_value =
3521 			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3522 
3523 	/* set boot power state */
3524 	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3525 	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3526 	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3527 	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3528 
3529 	return 0;
3530 }
3531 
3532 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3533 {
3534 	int result;
3535 	unsigned long ret = 0;
3536 
3537 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3538 		result = pp_tables_get_num_of_entries(hwmgr, &ret);
3539 		return result ? 0 : ret;
3540 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3541 		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3542 		return result;
3543 	}
3544 	return 0;
3545 }
3546 
3547 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3548 		void *state, struct pp_power_state *power_state,
3549 		void *pp_table, uint32_t classification_flag)
3550 {
3551 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3552 	struct smu7_power_state  *smu7_power_state =
3553 			(struct smu7_power_state *)(&(power_state->hardware));
3554 	struct smu7_performance_level *performance_level;
3555 	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3556 	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3557 			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3558 	PPTable_Generic_SubTable_Header *sclk_dep_table =
3559 			(PPTable_Generic_SubTable_Header *)
3560 			(((unsigned long)powerplay_table) +
3561 				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3562 
3563 	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3564 			(ATOM_Tonga_MCLK_Dependency_Table *)
3565 			(((unsigned long)powerplay_table) +
3566 				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3567 
3568 	/* The following fields are not initialized here: id orderedList allStatesList */
3569 	power_state->classification.ui_label =
3570 			(le16_to_cpu(state_entry->usClassification) &
3571 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3572 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3573 	power_state->classification.flags = classification_flag;
3574 	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3575 
3576 	power_state->classification.temporary_state = false;
3577 	power_state->classification.to_be_deleted = false;
3578 
3579 	power_state->validation.disallowOnDC =
3580 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3581 					ATOM_Tonga_DISALLOW_ON_DC));
3582 
3583 	power_state->pcie.lanes = 0;
3584 
3585 	power_state->display.disableFrameModulation = false;
3586 	power_state->display.limitRefreshrate = false;
3587 	power_state->display.enableVariBright =
3588 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3589 					ATOM_Tonga_ENABLE_VARIBRIGHT));
3590 
3591 	power_state->validation.supportedPowerLevels = 0;
3592 	power_state->uvd_clocks.VCLK = 0;
3593 	power_state->uvd_clocks.DCLK = 0;
3594 	power_state->temperatures.min = 0;
3595 	power_state->temperatures.max = 0;
3596 
3597 	performance_level = &(smu7_power_state->performance_levels
3598 			[smu7_power_state->performance_level_count++]);
3599 
3600 	PP_ASSERT_WITH_CODE(
3601 			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3602 			"Performance levels exceeds SMC limit!",
3603 			return -EINVAL);
3604 
3605 	PP_ASSERT_WITH_CODE(
3606 			(smu7_power_state->performance_level_count <
3607 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3608 			"Performance levels exceeds Driver limit!",
3609 			return -EINVAL);
3610 
3611 	/* Performance levels are arranged from low to high. */
3612 	performance_level->memory_clock = mclk_dep_table->entries
3613 			[state_entry->ucMemoryClockIndexLow].ulMclk;
3614 	if (sclk_dep_table->ucRevId == 0)
3615 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3616 			[state_entry->ucEngineClockIndexLow].ulSclk;
3617 	else if (sclk_dep_table->ucRevId == 1)
3618 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3619 			[state_entry->ucEngineClockIndexLow].ulSclk;
3620 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3621 			state_entry->ucPCIEGenLow);
3622 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3623 			state_entry->ucPCIELaneLow);
3624 
3625 	performance_level = &(smu7_power_state->performance_levels
3626 			[smu7_power_state->performance_level_count++]);
3627 	performance_level->memory_clock = mclk_dep_table->entries
3628 			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3629 
3630 	if (sclk_dep_table->ucRevId == 0)
3631 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3632 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3633 	else if (sclk_dep_table->ucRevId == 1)
3634 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3635 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3636 
3637 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3638 			state_entry->ucPCIEGenHigh);
3639 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3640 			state_entry->ucPCIELaneHigh);
3641 
3642 	return 0;
3643 }
3644 
3645 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3646 		unsigned long entry_index, struct pp_power_state *state)
3647 {
3648 	int result;
3649 	struct smu7_power_state *ps;
3650 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3651 	struct phm_ppt_v1_information *table_info =
3652 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3653 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3654 			table_info->vdd_dep_on_mclk;
3655 
3656 	state->hardware.magic = PHM_VIslands_Magic;
3657 
3658 	ps = (struct smu7_power_state *)(&state->hardware);
3659 
3660 	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3661 			smu7_get_pp_table_entry_callback_func_v1);
3662 
3663 	/* This is the earliest time we have all the dependency table and the VBIOS boot state
3664 	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3665 	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3666 	 */
3667 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3668 		if (dep_mclk_table->entries[0].clk !=
3669 				data->vbios_boot_state.mclk_bootup_value)
3670 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3671 					"does not match VBIOS boot MCLK level");
3672 		if (dep_mclk_table->entries[0].vddci !=
3673 				data->vbios_boot_state.vddci_bootup_value)
3674 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3675 					"does not match VBIOS boot VDDCI level");
3676 	}
3677 
3678 	/* set DC compatible flag if this state supports DC */
3679 	if (!state->validation.disallowOnDC)
3680 		ps->dc_compatible = true;
3681 
3682 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3683 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3684 
3685 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3686 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3687 
3688 	if (!result) {
3689 		uint32_t i;
3690 
3691 		switch (state->classification.ui_label) {
3692 		case PP_StateUILabel_Performance:
3693 			data->use_pcie_performance_levels = true;
3694 			for (i = 0; i < ps->performance_level_count; i++) {
3695 				if (data->pcie_gen_performance.max <
3696 						ps->performance_levels[i].pcie_gen)
3697 					data->pcie_gen_performance.max =
3698 							ps->performance_levels[i].pcie_gen;
3699 
3700 				if (data->pcie_gen_performance.min >
3701 						ps->performance_levels[i].pcie_gen)
3702 					data->pcie_gen_performance.min =
3703 							ps->performance_levels[i].pcie_gen;
3704 
3705 				if (data->pcie_lane_performance.max <
3706 						ps->performance_levels[i].pcie_lane)
3707 					data->pcie_lane_performance.max =
3708 							ps->performance_levels[i].pcie_lane;
3709 				if (data->pcie_lane_performance.min >
3710 						ps->performance_levels[i].pcie_lane)
3711 					data->pcie_lane_performance.min =
3712 							ps->performance_levels[i].pcie_lane;
3713 			}
3714 			break;
3715 		case PP_StateUILabel_Battery:
3716 			data->use_pcie_power_saving_levels = true;
3717 
3718 			for (i = 0; i < ps->performance_level_count; i++) {
3719 				if (data->pcie_gen_power_saving.max <
3720 						ps->performance_levels[i].pcie_gen)
3721 					data->pcie_gen_power_saving.max =
3722 							ps->performance_levels[i].pcie_gen;
3723 
3724 				if (data->pcie_gen_power_saving.min >
3725 						ps->performance_levels[i].pcie_gen)
3726 					data->pcie_gen_power_saving.min =
3727 							ps->performance_levels[i].pcie_gen;
3728 
3729 				if (data->pcie_lane_power_saving.max <
3730 						ps->performance_levels[i].pcie_lane)
3731 					data->pcie_lane_power_saving.max =
3732 							ps->performance_levels[i].pcie_lane;
3733 
3734 				if (data->pcie_lane_power_saving.min >
3735 						ps->performance_levels[i].pcie_lane)
3736 					data->pcie_lane_power_saving.min =
3737 							ps->performance_levels[i].pcie_lane;
3738 			}
3739 			break;
3740 		default:
3741 			break;
3742 		}
3743 	}
3744 	return 0;
3745 }
3746 
3747 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3748 					struct pp_hw_power_state *power_state,
3749 					unsigned int index, const void *clock_info)
3750 {
3751 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3752 	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
3753 	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3754 	struct smu7_performance_level *performance_level;
3755 	uint32_t engine_clock, memory_clock;
3756 	uint16_t pcie_gen_from_bios;
3757 
3758 	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3759 	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3760 
3761 	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3762 		data->highest_mclk = memory_clock;
3763 
3764 	PP_ASSERT_WITH_CODE(
3765 			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3766 			"Performance levels exceeds SMC limit!",
3767 			return -EINVAL);
3768 
3769 	PP_ASSERT_WITH_CODE(
3770 			(ps->performance_level_count <
3771 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3772 			"Performance levels exceeds Driver limit, Skip!",
3773 			return 0);
3774 
3775 	performance_level = &(ps->performance_levels
3776 			[ps->performance_level_count++]);
3777 
3778 	/* Performance levels are arranged from low to high. */
3779 	performance_level->memory_clock = memory_clock;
3780 	performance_level->engine_clock = engine_clock;
3781 
3782 	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3783 
3784 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3785 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3786 
3787 	return 0;
3788 }
3789 
3790 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3791 		unsigned long entry_index, struct pp_power_state *state)
3792 {
3793 	int result;
3794 	struct smu7_power_state *ps;
3795 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3796 	struct phm_clock_voltage_dependency_table *dep_mclk_table =
3797 			hwmgr->dyn_state.vddci_dependency_on_mclk;
3798 
3799 	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3800 
3801 	state->hardware.magic = PHM_VIslands_Magic;
3802 
3803 	ps = (struct smu7_power_state *)(&state->hardware);
3804 
3805 	result = pp_tables_get_entry(hwmgr, entry_index, state,
3806 			smu7_get_pp_table_entry_callback_func_v0);
3807 
3808 	/*
3809 	 * This is the earliest time we have all the dependency table
3810 	 * and the VBIOS boot state as
3811 	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3812 	 * state if there is only one VDDCI/MCLK level, check if it's
3813 	 * the same as VBIOS boot state
3814 	 */
3815 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3816 		if (dep_mclk_table->entries[0].clk !=
3817 				data->vbios_boot_state.mclk_bootup_value)
3818 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3819 					"does not match VBIOS boot MCLK level");
3820 		if (dep_mclk_table->entries[0].v !=
3821 				data->vbios_boot_state.vddci_bootup_value)
3822 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3823 					"does not match VBIOS boot VDDCI level");
3824 	}
3825 
3826 	/* set DC compatible flag if this state supports DC */
3827 	if (!state->validation.disallowOnDC)
3828 		ps->dc_compatible = true;
3829 
3830 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3831 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3832 
3833 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3834 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3835 
3836 	if (!result) {
3837 		uint32_t i;
3838 
3839 		switch (state->classification.ui_label) {
3840 		case PP_StateUILabel_Performance:
3841 			data->use_pcie_performance_levels = true;
3842 
3843 			for (i = 0; i < ps->performance_level_count; i++) {
3844 				if (data->pcie_gen_performance.max <
3845 						ps->performance_levels[i].pcie_gen)
3846 					data->pcie_gen_performance.max =
3847 							ps->performance_levels[i].pcie_gen;
3848 
3849 				if (data->pcie_gen_performance.min >
3850 						ps->performance_levels[i].pcie_gen)
3851 					data->pcie_gen_performance.min =
3852 							ps->performance_levels[i].pcie_gen;
3853 
3854 				if (data->pcie_lane_performance.max <
3855 						ps->performance_levels[i].pcie_lane)
3856 					data->pcie_lane_performance.max =
3857 							ps->performance_levels[i].pcie_lane;
3858 
3859 				if (data->pcie_lane_performance.min >
3860 						ps->performance_levels[i].pcie_lane)
3861 					data->pcie_lane_performance.min =
3862 							ps->performance_levels[i].pcie_lane;
3863 			}
3864 			break;
3865 		case PP_StateUILabel_Battery:
3866 			data->use_pcie_power_saving_levels = true;
3867 
3868 			for (i = 0; i < ps->performance_level_count; i++) {
3869 				if (data->pcie_gen_power_saving.max <
3870 						ps->performance_levels[i].pcie_gen)
3871 					data->pcie_gen_power_saving.max =
3872 							ps->performance_levels[i].pcie_gen;
3873 
3874 				if (data->pcie_gen_power_saving.min >
3875 						ps->performance_levels[i].pcie_gen)
3876 					data->pcie_gen_power_saving.min =
3877 							ps->performance_levels[i].pcie_gen;
3878 
3879 				if (data->pcie_lane_power_saving.max <
3880 						ps->performance_levels[i].pcie_lane)
3881 					data->pcie_lane_power_saving.max =
3882 							ps->performance_levels[i].pcie_lane;
3883 
3884 				if (data->pcie_lane_power_saving.min >
3885 						ps->performance_levels[i].pcie_lane)
3886 					data->pcie_lane_power_saving.min =
3887 							ps->performance_levels[i].pcie_lane;
3888 			}
3889 			break;
3890 		default:
3891 			break;
3892 		}
3893 	}
3894 	return 0;
3895 }
3896 
3897 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3898 		unsigned long entry_index, struct pp_power_state *state)
3899 {
3900 	if (hwmgr->pp_table_version == PP_TABLE_V0)
3901 		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3902 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
3903 		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3904 
3905 	return 0;
3906 }
3907 
3908 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3909 {
3910 	struct amdgpu_device *adev = hwmgr->adev;
3911 	int i;
3912 	u32 tmp = 0;
3913 
3914 	if (!query)
3915 		return -EINVAL;
3916 
3917 	/*
3918 	 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3919 	 *  - Hawaii
3920 	 *  - Bonaire
3921 	 *  - Fiji
3922 	 *  - Tonga
3923 	 */
3924 	if ((adev->asic_type != CHIP_HAWAII) &&
3925 	    (adev->asic_type != CHIP_BONAIRE) &&
3926 	    (adev->asic_type != CHIP_FIJI) &&
3927 	    (adev->asic_type != CHIP_TONGA)) {
3928 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3929 		*query = tmp;
3930 
3931 		if (tmp != 0)
3932 			return 0;
3933 	}
3934 
3935 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3936 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3937 							ixSMU_PM_STATUS_95, 0);
3938 
3939 	for (i = 0; i < 10; i++) {
3940 		msleep(500);
3941 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3942 		tmp = cgs_read_ind_register(hwmgr->device,
3943 						CGS_IND_REG__SMC,
3944 						ixSMU_PM_STATUS_95);
3945 		if (tmp != 0)
3946 			break;
3947 	}
3948 	*query = tmp;
3949 
3950 	return 0;
3951 }
3952 
3953 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3954 			    void *value, int *size)
3955 {
3956 	uint32_t sclk, mclk, activity_percent;
3957 	uint32_t offset, val_vid;
3958 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3959 
3960 	/* size must be at least 4 bytes for all sensors */
3961 	if (*size < 4)
3962 		return -EINVAL;
3963 
3964 	switch (idx) {
3965 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3966 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
3967 		*((uint32_t *)value) = sclk;
3968 		*size = 4;
3969 		return 0;
3970 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3971 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
3972 		*((uint32_t *)value) = mclk;
3973 		*size = 4;
3974 		return 0;
3975 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3976 	case AMDGPU_PP_SENSOR_MEM_LOAD:
3977 		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
3978 								SMU_SoftRegisters,
3979 								(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
3980 								AverageGraphicsActivity:
3981 								AverageMemoryActivity);
3982 
3983 		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3984 		activity_percent += 0x80;
3985 		activity_percent >>= 8;
3986 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3987 		*size = 4;
3988 		return 0;
3989 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3990 		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
3991 		*size = 4;
3992 		return 0;
3993 	case AMDGPU_PP_SENSOR_UVD_POWER:
3994 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3995 		*size = 4;
3996 		return 0;
3997 	case AMDGPU_PP_SENSOR_VCE_POWER:
3998 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3999 		*size = 4;
4000 		return 0;
4001 	case AMDGPU_PP_SENSOR_GPU_POWER:
4002 		return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4003 	case AMDGPU_PP_SENSOR_VDDGFX:
4004 		if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4005 		    (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4006 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4007 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4008 		else
4009 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4010 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4011 
4012 		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4013 		return 0;
4014 	default:
4015 		return -EOPNOTSUPP;
4016 	}
4017 }
4018 
4019 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4020 {
4021 	const struct phm_set_power_state_input *states =
4022 			(const struct phm_set_power_state_input *)input;
4023 	const struct smu7_power_state *smu7_ps =
4024 			cast_const_phw_smu7_power_state(states->pnew_state);
4025 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4026 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4027 	uint32_t sclk = smu7_ps->performance_levels
4028 			[smu7_ps->performance_level_count - 1].engine_clock;
4029 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4030 	uint32_t mclk = smu7_ps->performance_levels
4031 			[smu7_ps->performance_level_count - 1].memory_clock;
4032 	struct PP_Clocks min_clocks = {0};
4033 	uint32_t i;
4034 
4035 	for (i = 0; i < sclk_table->count; i++) {
4036 		if (sclk == sclk_table->dpm_levels[i].value)
4037 			break;
4038 	}
4039 
4040 	if (i >= sclk_table->count) {
4041 		if (sclk > sclk_table->dpm_levels[i-1].value) {
4042 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4043 			sclk_table->dpm_levels[i-1].value = sclk;
4044 		}
4045 	} else {
4046 	/* TODO: Check SCLK in DAL's minimum clocks
4047 	 * in case DeepSleep divider update is required.
4048 	 */
4049 		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4050 			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4051 				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4052 			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4053 	}
4054 
4055 	for (i = 0; i < mclk_table->count; i++) {
4056 		if (mclk == mclk_table->dpm_levels[i].value)
4057 			break;
4058 	}
4059 
4060 	if (i >= mclk_table->count) {
4061 		if (mclk > mclk_table->dpm_levels[i-1].value) {
4062 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4063 			mclk_table->dpm_levels[i-1].value = mclk;
4064 		}
4065 	}
4066 
4067 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4068 		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4069 
4070 	return 0;
4071 }
4072 
4073 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4074 		const struct smu7_power_state *smu7_ps)
4075 {
4076 	uint32_t i;
4077 	uint32_t sclk, max_sclk = 0;
4078 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4079 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4080 
4081 	for (i = 0; i < smu7_ps->performance_level_count; i++) {
4082 		sclk = smu7_ps->performance_levels[i].engine_clock;
4083 		if (max_sclk < sclk)
4084 			max_sclk = sclk;
4085 	}
4086 
4087 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
4088 		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4089 			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4090 					dpm_table->pcie_speed_table.dpm_levels
4091 					[dpm_table->pcie_speed_table.count - 1].value :
4092 					dpm_table->pcie_speed_table.dpm_levels[i].value);
4093 	}
4094 
4095 	return 0;
4096 }
4097 
4098 static int smu7_request_link_speed_change_before_state_change(
4099 		struct pp_hwmgr *hwmgr, const void *input)
4100 {
4101 	const struct phm_set_power_state_input *states =
4102 			(const struct phm_set_power_state_input *)input;
4103 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4104 	const struct smu7_power_state *smu7_nps =
4105 			cast_const_phw_smu7_power_state(states->pnew_state);
4106 	const struct smu7_power_state *polaris10_cps =
4107 			cast_const_phw_smu7_power_state(states->pcurrent_state);
4108 
4109 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4110 	uint16_t current_link_speed;
4111 
4112 	if (data->force_pcie_gen == PP_PCIEGenInvalid)
4113 		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4114 	else
4115 		current_link_speed = data->force_pcie_gen;
4116 
4117 	data->force_pcie_gen = PP_PCIEGenInvalid;
4118 	data->pspp_notify_required = false;
4119 
4120 	if (target_link_speed > current_link_speed) {
4121 		switch (target_link_speed) {
4122 #ifdef CONFIG_ACPI
4123 		case PP_PCIEGen3:
4124 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4125 				break;
4126 			data->force_pcie_gen = PP_PCIEGen2;
4127 			if (current_link_speed == PP_PCIEGen2)
4128 				break;
4129 			fallthrough;
4130 		case PP_PCIEGen2:
4131 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4132 				break;
4133 			fallthrough;
4134 #endif
4135 		default:
4136 			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4137 			break;
4138 		}
4139 	} else {
4140 		if (target_link_speed < current_link_speed)
4141 			data->pspp_notify_required = true;
4142 	}
4143 
4144 	return 0;
4145 }
4146 
4147 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4148 {
4149 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4150 
4151 	if (0 == data->need_update_smu7_dpm_table)
4152 		return 0;
4153 
4154 	if ((0 == data->sclk_dpm_key_disabled) &&
4155 		(data->need_update_smu7_dpm_table &
4156 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4157 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4158 				"Trying to freeze SCLK DPM when DPM is disabled",
4159 				);
4160 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4161 				PPSMC_MSG_SCLKDPM_FreezeLevel,
4162 				NULL),
4163 				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4164 				return -EINVAL);
4165 	}
4166 
4167 	if ((0 == data->mclk_dpm_key_disabled) &&
4168 		!data->mclk_ignore_signal &&
4169 		(data->need_update_smu7_dpm_table &
4170 		 DPMTABLE_OD_UPDATE_MCLK)) {
4171 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4172 				"Trying to freeze MCLK DPM when DPM is disabled",
4173 				);
4174 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4175 				PPSMC_MSG_MCLKDPM_FreezeLevel,
4176 				NULL),
4177 				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4178 				return -EINVAL);
4179 	}
4180 
4181 	return 0;
4182 }
4183 
4184 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4185 		struct pp_hwmgr *hwmgr, const void *input)
4186 {
4187 	int result = 0;
4188 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4189 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4190 	uint32_t count;
4191 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4192 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4193 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4194 
4195 	if (0 == data->need_update_smu7_dpm_table)
4196 		return 0;
4197 
4198 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4199 		for (count = 0; count < dpm_table->sclk_table.count; count++) {
4200 			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4201 			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4202 		}
4203 	}
4204 
4205 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4206 		for (count = 0; count < dpm_table->mclk_table.count; count++) {
4207 			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4208 			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4209 		}
4210 	}
4211 
4212 	if (data->need_update_smu7_dpm_table &
4213 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4214 		result = smum_populate_all_graphic_levels(hwmgr);
4215 		PP_ASSERT_WITH_CODE((0 == result),
4216 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4217 				return result);
4218 	}
4219 
4220 	if (data->need_update_smu7_dpm_table &
4221 			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4222 		/*populate MCLK dpm table to SMU7 */
4223 		result = smum_populate_all_memory_levels(hwmgr);
4224 		PP_ASSERT_WITH_CODE((0 == result),
4225 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4226 				return result);
4227 	}
4228 
4229 	return result;
4230 }
4231 
4232 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4233 			  struct smu7_single_dpm_table *dpm_table,
4234 			uint32_t low_limit, uint32_t high_limit)
4235 {
4236 	uint32_t i;
4237 
4238 	/* force the trim if mclk_switching is disabled to prevent flicker */
4239 	bool force_trim = (low_limit == high_limit);
4240 	for (i = 0; i < dpm_table->count; i++) {
4241 	/*skip the trim if od is enabled*/
4242 		if ((!hwmgr->od_enabled || force_trim)
4243 			&& (dpm_table->dpm_levels[i].value < low_limit
4244 			|| dpm_table->dpm_levels[i].value > high_limit))
4245 			dpm_table->dpm_levels[i].enabled = false;
4246 		else
4247 			dpm_table->dpm_levels[i].enabled = true;
4248 	}
4249 
4250 	return 0;
4251 }
4252 
4253 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4254 		const struct smu7_power_state *smu7_ps)
4255 {
4256 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4257 	uint32_t high_limit_count;
4258 
4259 	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4260 			"power state did not have any performance level",
4261 			return -EINVAL);
4262 
4263 	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4264 
4265 	smu7_trim_single_dpm_states(hwmgr,
4266 			&(data->dpm_table.sclk_table),
4267 			smu7_ps->performance_levels[0].engine_clock,
4268 			smu7_ps->performance_levels[high_limit_count].engine_clock);
4269 
4270 	smu7_trim_single_dpm_states(hwmgr,
4271 			&(data->dpm_table.mclk_table),
4272 			smu7_ps->performance_levels[0].memory_clock,
4273 			smu7_ps->performance_levels[high_limit_count].memory_clock);
4274 
4275 	return 0;
4276 }
4277 
4278 static int smu7_generate_dpm_level_enable_mask(
4279 		struct pp_hwmgr *hwmgr, const void *input)
4280 {
4281 	int result = 0;
4282 	const struct phm_set_power_state_input *states =
4283 			(const struct phm_set_power_state_input *)input;
4284 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4285 	const struct smu7_power_state *smu7_ps =
4286 			cast_const_phw_smu7_power_state(states->pnew_state);
4287 
4288 
4289 	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4290 	if (result)
4291 		return result;
4292 
4293 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4294 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4295 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4296 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4297 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4298 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4299 
4300 	return 0;
4301 }
4302 
4303 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4304 {
4305 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4306 
4307 	if (0 == data->need_update_smu7_dpm_table)
4308 		return 0;
4309 
4310 	if ((0 == data->sclk_dpm_key_disabled) &&
4311 		(data->need_update_smu7_dpm_table &
4312 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4313 
4314 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4315 				"Trying to Unfreeze SCLK DPM when DPM is disabled",
4316 				);
4317 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4318 				PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4319 				NULL),
4320 			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4321 			return -EINVAL);
4322 	}
4323 
4324 	if ((0 == data->mclk_dpm_key_disabled) &&
4325 		!data->mclk_ignore_signal &&
4326 		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4327 
4328 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4329 				"Trying to Unfreeze MCLK DPM when DPM is disabled",
4330 				);
4331 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4332 				PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4333 				NULL),
4334 		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4335 		    return -EINVAL);
4336 	}
4337 
4338 	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4339 
4340 	return 0;
4341 }
4342 
4343 static int smu7_notify_link_speed_change_after_state_change(
4344 		struct pp_hwmgr *hwmgr, const void *input)
4345 {
4346 	const struct phm_set_power_state_input *states =
4347 			(const struct phm_set_power_state_input *)input;
4348 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4349 	const struct smu7_power_state *smu7_ps =
4350 			cast_const_phw_smu7_power_state(states->pnew_state);
4351 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4352 	uint8_t  request;
4353 
4354 	if (data->pspp_notify_required) {
4355 		if (target_link_speed == PP_PCIEGen3)
4356 			request = PCIE_PERF_REQ_GEN3;
4357 		else if (target_link_speed == PP_PCIEGen2)
4358 			request = PCIE_PERF_REQ_GEN2;
4359 		else
4360 			request = PCIE_PERF_REQ_GEN1;
4361 
4362 		if (request == PCIE_PERF_REQ_GEN1 &&
4363 				smu7_get_current_pcie_speed(hwmgr) > 0)
4364 			return 0;
4365 
4366 #ifdef CONFIG_ACPI
4367 		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4368 			if (PP_PCIEGen2 == target_link_speed)
4369 				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4370 			else
4371 				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4372 		}
4373 #endif
4374 	}
4375 
4376 	return 0;
4377 }
4378 
4379 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4380 {
4381 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ?  0 : -EINVAL;
4382 }
4383 
4384 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4385 {
4386 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4387 
4388 	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4389 		if (hwmgr->chip_id == CHIP_VEGAM)
4390 			smum_send_msg_to_smc_with_parameter(hwmgr,
4391 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4392 					NULL);
4393 		else
4394 			smum_send_msg_to_smc_with_parameter(hwmgr,
4395 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4396 					NULL);
4397 		data->last_sent_vbi_timeout = data->frame_time_x2;
4398 	}
4399 
4400 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ?  0 : -EINVAL;
4401 }
4402 
4403 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4404 {
4405 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4406 	int result = 0;
4407 
4408 	if (data->mclk_ignore_signal)
4409 		result = smu7_notify_no_display(hwmgr);
4410 	else
4411 		result = smu7_notify_has_display(hwmgr);
4412 
4413 	return result;
4414 }
4415 
4416 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4417 {
4418 	int tmp_result, result = 0;
4419 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4420 
4421 	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4422 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4423 			"Failed to find DPM states clocks in DPM table!",
4424 			result = tmp_result);
4425 
4426 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4427 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4428 		tmp_result =
4429 			smu7_request_link_speed_change_before_state_change(hwmgr, input);
4430 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4431 				"Failed to request link speed change before state change!",
4432 				result = tmp_result);
4433 	}
4434 
4435 	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4436 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4437 			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4438 
4439 	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4440 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4441 			"Failed to populate and upload SCLK MCLK DPM levels!",
4442 			result = tmp_result);
4443 
4444 	/*
4445 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4446 	 * That effectively disables AVFS feature.
4447 	 */
4448 	if (hwmgr->hardcode_pp_table != NULL)
4449 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4450 
4451 	tmp_result = smu7_update_avfs(hwmgr);
4452 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4453 			"Failed to update avfs voltages!",
4454 			result = tmp_result);
4455 
4456 	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4457 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4458 			"Failed to generate DPM level enabled mask!",
4459 			result = tmp_result);
4460 
4461 	tmp_result = smum_update_sclk_threshold(hwmgr);
4462 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4463 			"Failed to update SCLK threshold!",
4464 			result = tmp_result);
4465 
4466 	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4467 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4468 			"Failed to unfreeze SCLK MCLK DPM!",
4469 			result = tmp_result);
4470 
4471 	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4472 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4473 			"Failed to upload DPM level enabled mask!",
4474 			result = tmp_result);
4475 
4476 	tmp_result = smu7_notify_smc_display(hwmgr);
4477 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4478 			"Failed to notify smc display settings!",
4479 			result = tmp_result);
4480 
4481 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4482 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4483 		tmp_result =
4484 			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4485 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4486 				"Failed to notify link speed change after state change!",
4487 				result = tmp_result);
4488 	}
4489 	data->apply_optimized_settings = false;
4490 	return result;
4491 }
4492 
4493 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4494 {
4495 	hwmgr->thermal_controller.
4496 	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4497 
4498 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4499 			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4500 			NULL);
4501 }
4502 
4503 static int
4504 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4505 {
4506 	return 0;
4507 }
4508 
4509 /**
4510  * smu7_program_display_gap - Programs the display gap
4511  *
4512  * @hwmgr:  the address of the powerplay hardware manager.
4513  * Return:   always OK
4514  */
4515 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4516 {
4517 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4518 	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4519 	uint32_t display_gap2;
4520 	uint32_t pre_vbi_time_in_us;
4521 	uint32_t frame_time_in_us;
4522 	uint32_t ref_clock, refresh_rate;
4523 
4524 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4525 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4526 
4527 	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4528 	refresh_rate = hwmgr->display_config->vrefresh;
4529 
4530 	if (0 == refresh_rate)
4531 		refresh_rate = 60;
4532 
4533 	frame_time_in_us = 1000000 / refresh_rate;
4534 
4535 	pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4536 
4537 	data->frame_time_x2 = frame_time_in_us * 2 / 100;
4538 
4539 	if (data->frame_time_x2 < 280) {
4540 		pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4541 		data->frame_time_x2 = 280;
4542 	}
4543 
4544 	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4545 
4546 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4547 
4548 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4549 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4550 							SMU_SoftRegisters,
4551 							PreVBlankGap), 0x64);
4552 
4553 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4554 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4555 							SMU_SoftRegisters,
4556 							VBlankTimeout),
4557 					(frame_time_in_us - pre_vbi_time_in_us));
4558 
4559 	return 0;
4560 }
4561 
4562 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4563 {
4564 	return smu7_program_display_gap(hwmgr);
4565 }
4566 
4567 /**
4568  * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4569  *
4570  * @hwmgr:  the address of the powerplay hardware manager.
4571  * @us_max_fan_rpm:  max operating fan RPM value.
4572  * Return:   The response that came from the SMC.
4573  */
4574 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4575 {
4576 	hwmgr->thermal_controller.
4577 	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4578 
4579 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4580 			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4581 			NULL);
4582 }
4583 
4584 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4585 	.process = phm_irq_process,
4586 };
4587 
4588 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4589 {
4590 	struct amdgpu_irq_src *source =
4591 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4592 
4593 	if (!source)
4594 		return -ENOMEM;
4595 
4596 	source->funcs = &smu7_irq_funcs;
4597 
4598 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4599 			AMDGPU_IRQ_CLIENTID_LEGACY,
4600 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4601 			source);
4602 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4603 			AMDGPU_IRQ_CLIENTID_LEGACY,
4604 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4605 			source);
4606 
4607 	/* Register CTF(GPIO_19) interrupt */
4608 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4609 			AMDGPU_IRQ_CLIENTID_LEGACY,
4610 			VISLANDS30_IV_SRCID_GPIO_19,
4611 			source);
4612 
4613 	return 0;
4614 }
4615 
4616 static bool
4617 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4618 {
4619 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4620 	bool is_update_required = false;
4621 
4622 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4623 		is_update_required = true;
4624 
4625 	if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4626 		is_update_required = true;
4627 
4628 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4629 	    hwmgr->chip_id <= CHIP_VEGAM &&
4630 	    data->last_sent_vbi_timeout != data->frame_time_x2)
4631 		is_update_required = true;
4632 
4633 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4634 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4635 			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4636 			hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4637 			is_update_required = true;
4638 	}
4639 	return is_update_required;
4640 }
4641 
4642 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4643 							   const struct smu7_performance_level *pl2)
4644 {
4645 	return ((pl1->memory_clock == pl2->memory_clock) &&
4646 		  (pl1->engine_clock == pl2->engine_clock) &&
4647 		  (pl1->pcie_gen == pl2->pcie_gen) &&
4648 		  (pl1->pcie_lane == pl2->pcie_lane));
4649 }
4650 
4651 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4652 		const struct pp_hw_power_state *pstate1,
4653 		const struct pp_hw_power_state *pstate2, bool *equal)
4654 {
4655 	const struct smu7_power_state *psa;
4656 	const struct smu7_power_state *psb;
4657 	int i;
4658 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4659 
4660 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4661 		return -EINVAL;
4662 
4663 	psa = cast_const_phw_smu7_power_state(pstate1);
4664 	psb = cast_const_phw_smu7_power_state(pstate2);
4665 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4666 	if (psa->performance_level_count != psb->performance_level_count) {
4667 		*equal = false;
4668 		return 0;
4669 	}
4670 
4671 	for (i = 0; i < psa->performance_level_count; i++) {
4672 		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4673 			/* If we have found even one performance level pair that is different the states are different. */
4674 			*equal = false;
4675 			return 0;
4676 		}
4677 	}
4678 
4679 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4680 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4681 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4682 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4683 	/* For OD call, set value based on flag */
4684 	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4685 							DPMTABLE_OD_UPDATE_MCLK |
4686 							DPMTABLE_OD_UPDATE_VDDC));
4687 
4688 	return 0;
4689 }
4690 
4691 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4692 {
4693 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4694 
4695 	uint32_t tmp;
4696 
4697 	/* Read MC indirect register offset 0x9F bits [3:0] to see
4698 	 * if VBIOS has already loaded a full version of MC ucode
4699 	 * or not.
4700 	 */
4701 
4702 	smu7_get_mc_microcode_version(hwmgr);
4703 
4704 	data->need_long_memory_training = false;
4705 
4706 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4707 							ixMC_IO_DEBUG_UP_13);
4708 	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4709 
4710 	if (tmp & (1 << 23)) {
4711 		data->mem_latency_high = MEM_LATENCY_HIGH;
4712 		data->mem_latency_low = MEM_LATENCY_LOW;
4713 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4714 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4715 		    (hwmgr->chip_id == CHIP_POLARIS12))
4716 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4717 	} else {
4718 		data->mem_latency_high = 330;
4719 		data->mem_latency_low = 330;
4720 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4721 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4722 		    (hwmgr->chip_id == CHIP_POLARIS12))
4723 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4724 	}
4725 
4726 	return 0;
4727 }
4728 
4729 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4730 {
4731 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4732 
4733 	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
4734 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4735 	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
4736 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4737 	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
4738 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4739 	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
4740 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4741 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
4742 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4743 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4744 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4745 	data->clock_registers.vDLL_CNTL                  =
4746 		cgs_read_register(hwmgr->device, mmDLL_CNTL);
4747 	data->clock_registers.vMCLK_PWRMGT_CNTL          =
4748 		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4749 	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
4750 		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4751 	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
4752 		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4753 	data->clock_registers.vMPLL_FUNC_CNTL            =
4754 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4755 	data->clock_registers.vMPLL_FUNC_CNTL_1          =
4756 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4757 	data->clock_registers.vMPLL_FUNC_CNTL_2          =
4758 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4759 	data->clock_registers.vMPLL_SS1                  =
4760 		cgs_read_register(hwmgr->device, mmMPLL_SS1);
4761 	data->clock_registers.vMPLL_SS2                  =
4762 		cgs_read_register(hwmgr->device, mmMPLL_SS2);
4763 	return 0;
4764 
4765 }
4766 
4767 /**
4768  * smu7_get_memory_type - Find out if memory is GDDR5.
4769  *
4770  * @hwmgr:  the address of the powerplay hardware manager.
4771  * Return:   always 0
4772  */
4773 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4774 {
4775 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4776 	struct amdgpu_device *adev = hwmgr->adev;
4777 
4778 	data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4779 
4780 	return 0;
4781 }
4782 
4783 /**
4784  * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4785  *
4786  * @hwmgr:  the address of the powerplay hardware manager.
4787  * Return:   always 0
4788  */
4789 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4790 {
4791 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4792 			GENERAL_PWRMGT, STATIC_PM_EN, 1);
4793 
4794 	return 0;
4795 }
4796 
4797 /**
4798  * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4799  *
4800  * @hwmgr:  the address of the powerplay hardware manager.
4801  * Return:   always 0
4802  */
4803 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4804 {
4805 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4806 
4807 	data->uvd_power_gated = false;
4808 	data->vce_power_gated = false;
4809 
4810 	return 0;
4811 }
4812 
4813 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4814 {
4815 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4816 
4817 	data->low_sclk_interrupt_threshold = 0;
4818 	return 0;
4819 }
4820 
4821 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4822 {
4823 	int tmp_result, result = 0;
4824 
4825 	smu7_check_mc_firmware(hwmgr);
4826 
4827 	tmp_result = smu7_read_clock_registers(hwmgr);
4828 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4829 			"Failed to read clock registers!", result = tmp_result);
4830 
4831 	tmp_result = smu7_get_memory_type(hwmgr);
4832 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4833 			"Failed to get memory type!", result = tmp_result);
4834 
4835 	tmp_result = smu7_enable_acpi_power_management(hwmgr);
4836 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4837 			"Failed to enable ACPI power management!", result = tmp_result);
4838 
4839 	tmp_result = smu7_init_power_gate_state(hwmgr);
4840 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4841 			"Failed to init power gate state!", result = tmp_result);
4842 
4843 	tmp_result = smu7_get_mc_microcode_version(hwmgr);
4844 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4845 			"Failed to get MC microcode version!", result = tmp_result);
4846 
4847 	tmp_result = smu7_init_sclk_threshold(hwmgr);
4848 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4849 			"Failed to init sclk threshold!", result = tmp_result);
4850 
4851 	return result;
4852 }
4853 
4854 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4855 		enum pp_clock_type type, uint32_t mask)
4856 {
4857 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4858 
4859 	if (mask == 0)
4860 		return -EINVAL;
4861 
4862 	switch (type) {
4863 	case PP_SCLK:
4864 		if (!data->sclk_dpm_key_disabled)
4865 			smum_send_msg_to_smc_with_parameter(hwmgr,
4866 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4867 					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4868 					NULL);
4869 		break;
4870 	case PP_MCLK:
4871 		if (!data->mclk_dpm_key_disabled)
4872 			smum_send_msg_to_smc_with_parameter(hwmgr,
4873 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4874 					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4875 					NULL);
4876 		break;
4877 	case PP_PCIE:
4878 	{
4879 		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4880 
4881 		if (!data->pcie_dpm_key_disabled) {
4882 			if (fls(tmp) != ffs(tmp))
4883 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4884 						NULL);
4885 			else
4886 				smum_send_msg_to_smc_with_parameter(hwmgr,
4887 					PPSMC_MSG_PCIeDPM_ForceLevel,
4888 					fls(tmp) - 1,
4889 					NULL);
4890 		}
4891 		break;
4892 	}
4893 	default:
4894 		break;
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4901 		enum pp_clock_type type, char *buf)
4902 {
4903 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4904 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4905 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4906 	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4907 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4908 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4909 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4910 	int size = 0;
4911 	uint32_t i, now, clock, pcie_speed;
4912 
4913 	switch (type) {
4914 	case PP_SCLK:
4915 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4916 
4917 		for (i = 0; i < sclk_table->count; i++) {
4918 			if (clock > sclk_table->dpm_levels[i].value)
4919 				continue;
4920 			break;
4921 		}
4922 		now = i;
4923 
4924 		for (i = 0; i < sclk_table->count; i++)
4925 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4926 					i, sclk_table->dpm_levels[i].value / 100,
4927 					(i == now) ? "*" : "");
4928 		break;
4929 	case PP_MCLK:
4930 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4931 
4932 		for (i = 0; i < mclk_table->count; i++) {
4933 			if (clock > mclk_table->dpm_levels[i].value)
4934 				continue;
4935 			break;
4936 		}
4937 		now = i;
4938 
4939 		for (i = 0; i < mclk_table->count; i++)
4940 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4941 					i, mclk_table->dpm_levels[i].value / 100,
4942 					(i == now) ? "*" : "");
4943 		break;
4944 	case PP_PCIE:
4945 		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4946 		for (i = 0; i < pcie_table->count; i++) {
4947 			if (pcie_speed != pcie_table->dpm_levels[i].value)
4948 				continue;
4949 			break;
4950 		}
4951 		now = i;
4952 
4953 		for (i = 0; i < pcie_table->count; i++)
4954 			size += sprintf(buf + size, "%d: %s %s\n", i,
4955 					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
4956 					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
4957 					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
4958 					(i == now) ? "*" : "");
4959 		break;
4960 	case OD_SCLK:
4961 		if (hwmgr->od_enabled) {
4962 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
4963 			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
4964 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
4965 					i, odn_sclk_table->entries[i].clock/100,
4966 					odn_sclk_table->entries[i].vddc);
4967 		}
4968 		break;
4969 	case OD_MCLK:
4970 		if (hwmgr->od_enabled) {
4971 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
4972 			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
4973 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
4974 					i, odn_mclk_table->entries[i].clock/100,
4975 					odn_mclk_table->entries[i].vddc);
4976 		}
4977 		break;
4978 	case OD_RANGE:
4979 		if (hwmgr->od_enabled) {
4980 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
4981 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4982 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
4983 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4984 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4985 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
4986 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4987 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4988 				data->odn_dpm_table.min_vddc,
4989 				data->odn_dpm_table.max_vddc);
4990 		}
4991 		break;
4992 	default:
4993 		break;
4994 	}
4995 	return size;
4996 }
4997 
4998 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4999 {
5000 	switch (mode) {
5001 	case AMD_FAN_CTRL_NONE:
5002 		smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5003 		break;
5004 	case AMD_FAN_CTRL_MANUAL:
5005 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5006 			PHM_PlatformCaps_MicrocodeFanControl))
5007 			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5008 		break;
5009 	case AMD_FAN_CTRL_AUTO:
5010 		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5011 			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5012 		break;
5013 	default:
5014 		break;
5015 	}
5016 }
5017 
5018 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5019 {
5020 	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5021 }
5022 
5023 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5024 {
5025 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5026 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5027 	struct smu7_single_dpm_table *golden_sclk_table =
5028 			&(data->golden_dpm_table.sclk_table);
5029 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5030 	int golden_value = golden_sclk_table->dpm_levels
5031 			[golden_sclk_table->count - 1].value;
5032 
5033 	value -= golden_value;
5034 	value = DIV_ROUND_UP(value * 100, golden_value);
5035 
5036 	return value;
5037 }
5038 
5039 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5040 {
5041 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5042 	struct smu7_single_dpm_table *golden_sclk_table =
5043 			&(data->golden_dpm_table.sclk_table);
5044 	struct pp_power_state  *ps;
5045 	struct smu7_power_state  *smu7_ps;
5046 
5047 	if (value > 20)
5048 		value = 20;
5049 
5050 	ps = hwmgr->request_ps;
5051 
5052 	if (ps == NULL)
5053 		return -EINVAL;
5054 
5055 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5056 
5057 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5058 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5059 			value / 100 +
5060 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5061 
5062 	return 0;
5063 }
5064 
5065 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5066 {
5067 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5068 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5069 	struct smu7_single_dpm_table *golden_mclk_table =
5070 			&(data->golden_dpm_table.mclk_table);
5071         int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5072 	int golden_value = golden_mclk_table->dpm_levels
5073 			[golden_mclk_table->count - 1].value;
5074 
5075 	value -= golden_value;
5076 	value = DIV_ROUND_UP(value * 100, golden_value);
5077 
5078 	return value;
5079 }
5080 
5081 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5082 {
5083 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5084 	struct smu7_single_dpm_table *golden_mclk_table =
5085 			&(data->golden_dpm_table.mclk_table);
5086 	struct pp_power_state  *ps;
5087 	struct smu7_power_state  *smu7_ps;
5088 
5089 	if (value > 20)
5090 		value = 20;
5091 
5092 	ps = hwmgr->request_ps;
5093 
5094 	if (ps == NULL)
5095 		return -EINVAL;
5096 
5097 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5098 
5099 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5100 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5101 			value / 100 +
5102 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5103 
5104 	return 0;
5105 }
5106 
5107 
5108 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5109 {
5110 	struct phm_ppt_v1_information *table_info =
5111 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5112 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5113 	struct phm_clock_voltage_dependency_table *sclk_table;
5114 	int i;
5115 
5116 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5117 		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5118 			return -EINVAL;
5119 		dep_sclk_table = table_info->vdd_dep_on_sclk;
5120 		for (i = 0; i < dep_sclk_table->count; i++)
5121 			clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5122 		clocks->count = dep_sclk_table->count;
5123 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5124 		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5125 		for (i = 0; i < sclk_table->count; i++)
5126 			clocks->clock[i] = sclk_table->entries[i].clk * 10;
5127 		clocks->count = sclk_table->count;
5128 	}
5129 
5130 	return 0;
5131 }
5132 
5133 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5134 {
5135 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5136 
5137 	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5138 		return data->mem_latency_high;
5139 	else if (clk >= MEM_FREQ_HIGH_LATENCY)
5140 		return data->mem_latency_low;
5141 	else
5142 		return MEM_LATENCY_ERR;
5143 }
5144 
5145 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5146 {
5147 	struct phm_ppt_v1_information *table_info =
5148 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5149 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5150 	int i;
5151 	struct phm_clock_voltage_dependency_table *mclk_table;
5152 
5153 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5154 		if (table_info == NULL)
5155 			return -EINVAL;
5156 		dep_mclk_table = table_info->vdd_dep_on_mclk;
5157 		for (i = 0; i < dep_mclk_table->count; i++) {
5158 			clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5159 			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5160 						dep_mclk_table->entries[i].clk);
5161 		}
5162 		clocks->count = dep_mclk_table->count;
5163 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5164 		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5165 		for (i = 0; i < mclk_table->count; i++)
5166 			clocks->clock[i] = mclk_table->entries[i].clk * 10;
5167 		clocks->count = mclk_table->count;
5168 	}
5169 	return 0;
5170 }
5171 
5172 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5173 						struct amd_pp_clocks *clocks)
5174 {
5175 	switch (type) {
5176 	case amd_pp_sys_clock:
5177 		smu7_get_sclks(hwmgr, clocks);
5178 		break;
5179 	case amd_pp_mem_clock:
5180 		smu7_get_mclks(hwmgr, clocks);
5181 		break;
5182 	default:
5183 		return -EINVAL;
5184 	}
5185 
5186 	return 0;
5187 }
5188 
5189 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5190 				       struct pp_clock_levels_with_latency *clocks)
5191 {
5192 	struct phm_ppt_v1_information *table_info =
5193 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5194 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5195 			table_info->vdd_dep_on_sclk;
5196 	int i;
5197 
5198 	clocks->num_levels = 0;
5199 	for (i = 0; i < dep_sclk_table->count; i++) {
5200 		if (dep_sclk_table->entries[i].clk) {
5201 			clocks->data[clocks->num_levels].clocks_in_khz =
5202 				dep_sclk_table->entries[i].clk * 10;
5203 			clocks->num_levels++;
5204 		}
5205 	}
5206 
5207 	return 0;
5208 }
5209 
5210 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5211 				       struct pp_clock_levels_with_latency *clocks)
5212 {
5213 	struct phm_ppt_v1_information *table_info =
5214 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5215 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5216 			table_info->vdd_dep_on_mclk;
5217 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5218 	int i;
5219 
5220 	clocks->num_levels = 0;
5221 	data->mclk_latency_table.count = 0;
5222 	for (i = 0; i < dep_mclk_table->count; i++) {
5223 		if (dep_mclk_table->entries[i].clk) {
5224 			clocks->data[clocks->num_levels].clocks_in_khz =
5225 					dep_mclk_table->entries[i].clk * 10;
5226 			data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5227 					dep_mclk_table->entries[i].clk;
5228 			clocks->data[clocks->num_levels].latency_in_us =
5229 				data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5230 					smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5231 			clocks->num_levels++;
5232 			data->mclk_latency_table.count++;
5233 		}
5234 	}
5235 
5236 	return 0;
5237 }
5238 
5239 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5240 					       enum amd_pp_clock_type type,
5241 					       struct pp_clock_levels_with_latency *clocks)
5242 {
5243 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5244 	      hwmgr->chip_id <= CHIP_VEGAM))
5245 		return -EINVAL;
5246 
5247 	switch (type) {
5248 	case amd_pp_sys_clock:
5249 		smu7_get_sclks_with_latency(hwmgr, clocks);
5250 		break;
5251 	case amd_pp_mem_clock:
5252 		smu7_get_mclks_with_latency(hwmgr, clocks);
5253 		break;
5254 	default:
5255 		return -EINVAL;
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5262 						 void *clock_range)
5263 {
5264 	struct phm_ppt_v1_information *table_info =
5265 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5266 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5267 			table_info->vdd_dep_on_mclk;
5268 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5269 			table_info->vdd_dep_on_sclk;
5270 	struct polaris10_smumgr *smu_data =
5271 			(struct polaris10_smumgr *)(hwmgr->smu_backend);
5272 	SMU74_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
5273 	struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5274 			(struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5275 	uint32_t i, j, k;
5276 	bool valid_entry;
5277 
5278 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5279 	      hwmgr->chip_id <= CHIP_VEGAM))
5280 		return -EINVAL;
5281 
5282 	for (i = 0; i < dep_mclk_table->count; i++) {
5283 		for (j = 0; j < dep_sclk_table->count; j++) {
5284 			valid_entry = false;
5285 			for (k = 0; k < watermarks->num_wm_sets; k++) {
5286 				if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5287 				    dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5288 				    dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5289 				    dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5290 					valid_entry = true;
5291 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5292 					break;
5293 				}
5294 			}
5295 			PP_ASSERT_WITH_CODE(valid_entry,
5296 					"Clock is not in range of specified clock range for watermark from DAL!  Using highest water mark set.",
5297 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5298 		}
5299 	}
5300 
5301 	return smu7_copy_bytes_to_smc(hwmgr,
5302 				      smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5303 				      (uint8_t *)table->DisplayWatermark,
5304 				      sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5305 				      SMC_RAM_END);
5306 }
5307 
5308 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5309 					uint32_t virtual_addr_low,
5310 					uint32_t virtual_addr_hi,
5311 					uint32_t mc_addr_low,
5312 					uint32_t mc_addr_hi,
5313 					uint32_t size)
5314 {
5315 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5316 
5317 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5318 					data->soft_regs_start +
5319 					smum_get_offsetof(hwmgr,
5320 					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5321 					mc_addr_hi);
5322 
5323 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5324 					data->soft_regs_start +
5325 					smum_get_offsetof(hwmgr,
5326 					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5327 					mc_addr_low);
5328 
5329 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5330 					data->soft_regs_start +
5331 					smum_get_offsetof(hwmgr,
5332 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5333 					virtual_addr_hi);
5334 
5335 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5336 					data->soft_regs_start +
5337 					smum_get_offsetof(hwmgr,
5338 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5339 					virtual_addr_low);
5340 
5341 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5342 					data->soft_regs_start +
5343 					smum_get_offsetof(hwmgr,
5344 					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5345 					size);
5346 	return 0;
5347 }
5348 
5349 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5350 					struct amd_pp_simple_clock_info *clocks)
5351 {
5352 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5353 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5354 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5355 
5356 	if (clocks == NULL)
5357 		return -EINVAL;
5358 
5359 	clocks->memory_max_clock = mclk_table->count > 1 ?
5360 				mclk_table->dpm_levels[mclk_table->count-1].value :
5361 				mclk_table->dpm_levels[0].value;
5362 	clocks->engine_max_clock = sclk_table->count > 1 ?
5363 				sclk_table->dpm_levels[sclk_table->count-1].value :
5364 				sclk_table->dpm_levels[0].value;
5365 	return 0;
5366 }
5367 
5368 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5369 		struct PP_TemperatureRange *thermal_data)
5370 {
5371 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5372 	struct phm_ppt_v1_information *table_info =
5373 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5374 
5375 	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5376 
5377 	if (hwmgr->pp_table_version == PP_TABLE_V1)
5378 		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5379 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5380 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
5381 		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5382 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5383 
5384 	return 0;
5385 }
5386 
5387 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5388 					enum PP_OD_DPM_TABLE_COMMAND type,
5389 					uint32_t clk,
5390 					uint32_t voltage)
5391 {
5392 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5393 
5394 	if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5395 		pr_info("OD voltage is out of range [%d - %d] mV\n",
5396 						data->odn_dpm_table.min_vddc,
5397 						data->odn_dpm_table.max_vddc);
5398 		return false;
5399 	}
5400 
5401 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5402 		if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5403 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5404 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5405 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5406 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5407 			return false;
5408 		}
5409 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5410 		if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5411 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5412 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5413 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5414 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5415 			return false;
5416 		}
5417 	} else {
5418 		return false;
5419 	}
5420 
5421 	return true;
5422 }
5423 
5424 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5425 					enum PP_OD_DPM_TABLE_COMMAND type,
5426 					long *input, uint32_t size)
5427 {
5428 	uint32_t i;
5429 	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5430 	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5431 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5432 
5433 	uint32_t input_clk;
5434 	uint32_t input_vol;
5435 	uint32_t input_level;
5436 
5437 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5438 				return -EINVAL);
5439 
5440 	if (!hwmgr->od_enabled) {
5441 		pr_info("OverDrive feature not enabled\n");
5442 		return -EINVAL;
5443 	}
5444 
5445 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5446 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5447 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5448 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5449 				"Failed to get ODN SCLK and Voltage tables",
5450 				return -EINVAL);
5451 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5452 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5453 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5454 
5455 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5456 			"Failed to get ODN MCLK and Voltage tables",
5457 			return -EINVAL);
5458 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5459 		smu7_odn_initial_default_setting(hwmgr);
5460 		return 0;
5461 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5462 		smu7_check_dpm_table_updated(hwmgr);
5463 		return 0;
5464 	} else {
5465 		return -EINVAL;
5466 	}
5467 
5468 	for (i = 0; i < size; i += 3) {
5469 		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5470 			pr_info("invalid clock voltage input \n");
5471 			return 0;
5472 		}
5473 		input_level = input[i];
5474 		input_clk = input[i+1] * 100;
5475 		input_vol = input[i+2];
5476 
5477 		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5478 			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5479 			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5480 			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5481 			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5482 			podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5483 		} else {
5484 			return -EINVAL;
5485 		}
5486 	}
5487 
5488 	return 0;
5489 }
5490 
5491 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5492 {
5493 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5494 	uint32_t i, size = 0;
5495 	uint32_t len;
5496 
5497 	static const char *title[8] = {"NUM",
5498 			"MODE_NAME",
5499 			"SCLK_UP_HYST",
5500 			"SCLK_DOWN_HYST",
5501 			"SCLK_ACTIVE_LEVEL",
5502 			"MCLK_UP_HYST",
5503 			"MCLK_DOWN_HYST",
5504 			"MCLK_ACTIVE_LEVEL"};
5505 
5506 	if (!buf)
5507 		return -EINVAL;
5508 
5509 	phm_get_sysfs_buf(&buf, &size);
5510 
5511 	size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5512 			title[0], title[1], title[2], title[3],
5513 			title[4], title[5], title[6], title[7]);
5514 
5515 	len = ARRAY_SIZE(smu7_profiling);
5516 
5517 	for (i = 0; i < len; i++) {
5518 		if (i == hwmgr->power_profile_mode) {
5519 			size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5520 			i, amdgpu_pp_profile_name[i], "*",
5521 			data->current_profile_setting.sclk_up_hyst,
5522 			data->current_profile_setting.sclk_down_hyst,
5523 			data->current_profile_setting.sclk_activity,
5524 			data->current_profile_setting.mclk_up_hyst,
5525 			data->current_profile_setting.mclk_down_hyst,
5526 			data->current_profile_setting.mclk_activity);
5527 			continue;
5528 		}
5529 		if (smu7_profiling[i].bupdate_sclk)
5530 			size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5531 			i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5532 			smu7_profiling[i].sclk_down_hyst,
5533 			smu7_profiling[i].sclk_activity);
5534 		else
5535 			size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5536 			i, amdgpu_pp_profile_name[i], "-", "-", "-");
5537 
5538 		if (smu7_profiling[i].bupdate_mclk)
5539 			size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5540 			smu7_profiling[i].mclk_up_hyst,
5541 			smu7_profiling[i].mclk_down_hyst,
5542 			smu7_profiling[i].mclk_activity);
5543 		else
5544 			size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5545 			"-", "-", "-");
5546 	}
5547 
5548 	return size;
5549 }
5550 
5551 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5552 					enum PP_SMC_POWER_PROFILE requst)
5553 {
5554 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5555 	uint32_t tmp, level;
5556 
5557 	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5558 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5559 			level = 0;
5560 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5561 			while (tmp >>= 1)
5562 				level++;
5563 			if (level > 0)
5564 				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5565 		}
5566 	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5567 		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5568 	}
5569 }
5570 
5571 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5572 {
5573 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5574 	struct profile_mode_setting tmp;
5575 	enum PP_SMC_POWER_PROFILE mode;
5576 
5577 	if (input == NULL)
5578 		return -EINVAL;
5579 
5580 	mode = input[size];
5581 	switch (mode) {
5582 	case PP_SMC_POWER_PROFILE_CUSTOM:
5583 		if (size < 8 && size != 0)
5584 			return -EINVAL;
5585 		/* If only CUSTOM is passed in, use the saved values. Check
5586 		 * that we actually have a CUSTOM profile by ensuring that
5587 		 * the "use sclk" or the "use mclk" bits are set
5588 		 */
5589 		tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5590 		if (size == 0) {
5591 			if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5592 				return -EINVAL;
5593 		} else {
5594 			tmp.bupdate_sclk = input[0];
5595 			tmp.sclk_up_hyst = input[1];
5596 			tmp.sclk_down_hyst = input[2];
5597 			tmp.sclk_activity = input[3];
5598 			tmp.bupdate_mclk = input[4];
5599 			tmp.mclk_up_hyst = input[5];
5600 			tmp.mclk_down_hyst = input[6];
5601 			tmp.mclk_activity = input[7];
5602 			smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5603 		}
5604 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5605 			memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5606 			hwmgr->power_profile_mode = mode;
5607 		}
5608 		break;
5609 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5610 	case PP_SMC_POWER_PROFILE_POWERSAVING:
5611 	case PP_SMC_POWER_PROFILE_VIDEO:
5612 	case PP_SMC_POWER_PROFILE_VR:
5613 	case PP_SMC_POWER_PROFILE_COMPUTE:
5614 		if (mode == hwmgr->power_profile_mode)
5615 			return 0;
5616 
5617 		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5618 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5619 			if (tmp.bupdate_sclk) {
5620 				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5621 				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5622 				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5623 				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5624 			}
5625 			if (tmp.bupdate_mclk) {
5626 				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5627 				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5628 				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5629 				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5630 			}
5631 			smu7_patch_compute_profile_mode(hwmgr, mode);
5632 			hwmgr->power_profile_mode = mode;
5633 		}
5634 		break;
5635 	default:
5636 		return -EINVAL;
5637 	}
5638 
5639 	return 0;
5640 }
5641 
5642 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5643 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5644 				PHM_PerformanceLevel *level)
5645 {
5646 	const struct smu7_power_state *ps;
5647 	uint32_t i;
5648 
5649 	if (level == NULL || hwmgr == NULL || state == NULL)
5650 		return -EINVAL;
5651 
5652 	ps = cast_const_phw_smu7_power_state(state);
5653 
5654 	i = index > ps->performance_level_count - 1 ?
5655 			ps->performance_level_count - 1 : index;
5656 
5657 	level->coreClock = ps->performance_levels[i].engine_clock;
5658 	level->memory_clock = ps->performance_levels[i].memory_clock;
5659 
5660 	return 0;
5661 }
5662 
5663 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5664 {
5665 	int result;
5666 
5667 	result = smu7_disable_dpm_tasks(hwmgr);
5668 	PP_ASSERT_WITH_CODE((0 == result),
5669 			"[disable_dpm_tasks] Failed to disable DPM!",
5670 			);
5671 
5672 	return result;
5673 }
5674 
5675 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5676 	.backend_init = &smu7_hwmgr_backend_init,
5677 	.backend_fini = &smu7_hwmgr_backend_fini,
5678 	.asic_setup = &smu7_setup_asic_task,
5679 	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5680 	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5681 	.force_dpm_level = &smu7_force_dpm_level,
5682 	.power_state_set = smu7_set_power_state_tasks,
5683 	.get_power_state_size = smu7_get_power_state_size,
5684 	.get_mclk = smu7_dpm_get_mclk,
5685 	.get_sclk = smu7_dpm_get_sclk,
5686 	.patch_boot_state = smu7_dpm_patch_boot_state,
5687 	.get_pp_table_entry = smu7_get_pp_table_entry,
5688 	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5689 	.powerdown_uvd = smu7_powerdown_uvd,
5690 	.powergate_uvd = smu7_powergate_uvd,
5691 	.powergate_vce = smu7_powergate_vce,
5692 	.disable_clock_power_gating = smu7_disable_clock_power_gating,
5693 	.update_clock_gatings = smu7_update_clock_gatings,
5694 	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5695 	.display_config_changed = smu7_display_configuration_changed_task,
5696 	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5697 	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5698 	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5699 	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5700 	.get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5701 	.set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5702 	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5703 	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5704 	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5705 	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5706 	.register_irq_handlers = smu7_register_irq_handlers,
5707 	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5708 	.check_states_equal = smu7_check_states_equal,
5709 	.set_fan_control_mode = smu7_set_fan_control_mode,
5710 	.get_fan_control_mode = smu7_get_fan_control_mode,
5711 	.force_clock_level = smu7_force_clock_level,
5712 	.print_clock_levels = smu7_print_clock_levels,
5713 	.powergate_gfx = smu7_powergate_gfx,
5714 	.get_sclk_od = smu7_get_sclk_od,
5715 	.set_sclk_od = smu7_set_sclk_od,
5716 	.get_mclk_od = smu7_get_mclk_od,
5717 	.set_mclk_od = smu7_set_mclk_od,
5718 	.get_clock_by_type = smu7_get_clock_by_type,
5719 	.get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5720 	.set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5721 	.read_sensor = smu7_read_sensor,
5722 	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5723 	.avfs_control = smu7_avfs_control,
5724 	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5725 	.start_thermal_controller = smu7_start_thermal_controller,
5726 	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5727 	.get_max_high_clocks = smu7_get_max_high_clocks,
5728 	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5729 	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5730 	.set_power_limit = smu7_set_power_limit,
5731 	.get_power_profile_mode = smu7_get_power_profile_mode,
5732 	.set_power_profile_mode = smu7_set_power_profile_mode,
5733 	.get_performance_level = smu7_get_performance_level,
5734 	.get_asic_baco_capability = smu7_baco_get_capability,
5735 	.get_asic_baco_state = smu7_baco_get_state,
5736 	.set_asic_baco_state = smu7_baco_set_state,
5737 	.power_off_asic = smu7_power_off_asic,
5738 };
5739 
5740 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5741 		uint32_t clock_insr)
5742 {
5743 	uint8_t i;
5744 	uint32_t temp;
5745 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5746 
5747 	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5748 	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
5749 		temp = clock >> i;
5750 
5751 		if (temp >= min || i == 0)
5752 			break;
5753 	}
5754 	return i;
5755 }
5756 
5757 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5758 {
5759 	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5760 	if (hwmgr->pp_table_version == PP_TABLE_V0)
5761 		hwmgr->pptable_func = &pptable_funcs;
5762 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
5763 		hwmgr->pptable_func = &pptable_v1_0_funcs;
5764 
5765 	return 0;
5766 }
5767