1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include "pp_debug.h" 24 #include <linux/delay.h> 25 #include <linux/module.h> 26 #include <linux/pci.h> 27 #include <linux/slab.h> 28 #include <asm/div64.h> 29 #if IS_ENABLED(CONFIG_X86_64) 30 #include <asm/intel-family.h> 31 #endif 32 #include <drm/amdgpu_drm.h> 33 #include "ppatomctrl.h" 34 #include "atombios.h" 35 #include "pptable_v1_0.h" 36 #include "pppcielanes.h" 37 #include "amd_pcie_helpers.h" 38 #include "hardwaremanager.h" 39 #include "process_pptables_v1_0.h" 40 #include "cgs_common.h" 41 42 #include "smu7_common.h" 43 44 #include "hwmgr.h" 45 #include "smu7_hwmgr.h" 46 #include "smu_ucode_xfer_vi.h" 47 #include "smu7_powertune.h" 48 #include "smu7_dyn_defaults.h" 49 #include "smu7_thermal.h" 50 #include "smu7_clockpowergating.h" 51 #include "processpptables.h" 52 #include "pp_thermal.h" 53 #include "smu7_baco.h" 54 #include "smu7_smumgr.h" 55 #include "polaris10_smumgr.h" 56 57 #include "ivsrcid/ivsrcid_vislands30.h" 58 59 #define MC_CG_ARB_FREQ_F0 0x0a 60 #define MC_CG_ARB_FREQ_F1 0x0b 61 #define MC_CG_ARB_FREQ_F2 0x0c 62 #define MC_CG_ARB_FREQ_F3 0x0d 63 64 #define MC_CG_SEQ_DRAMCONF_S0 0x05 65 #define MC_CG_SEQ_DRAMCONF_S1 0x06 66 #define MC_CG_SEQ_YCLK_SUSPEND 0x04 67 #define MC_CG_SEQ_YCLK_RESUME 0x0a 68 69 #define SMC_CG_IND_START 0xc0030000 70 #define SMC_CG_IND_END 0xc0040000 71 72 #define MEM_FREQ_LOW_LATENCY 25000 73 #define MEM_FREQ_HIGH_LATENCY 80000 74 75 #define MEM_LATENCY_HIGH 45 76 #define MEM_LATENCY_LOW 35 77 #define MEM_LATENCY_ERR 0xFFFF 78 79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28 80 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 81 #define MC_SEQ_MISC0_GDDR5_VALUE 5 82 83 #define PCIE_BUS_CLK 10000 84 #define TCLK (PCIE_BUS_CLK / 10) 85 86 static struct profile_mode_setting smu7_profiling[7] = { 87 {0, 0, 0, 0, 0, 0, 0, 0}, 88 {1, 0, 100, 30, 1, 0, 100, 10}, 89 {1, 10, 0, 30, 0, 0, 0, 0}, 90 {0, 0, 0, 0, 1, 10, 16, 31}, 91 {1, 0, 11, 50, 1, 0, 100, 10}, 92 {1, 0, 5, 30, 0, 0, 0, 0}, 93 {0, 0, 0, 0, 0, 0, 0, 0}, 94 }; 95 96 #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310) 97 98 #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280 99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L 100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L 101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005 102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006 103 104 #define STRAP_EVV_REVISION_MSB 2211 105 #define STRAP_EVV_REVISION_LSB 2208 106 107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ 108 enum DPM_EVENT_SRC { 109 DPM_EVENT_SRC_ANALOG = 0, 110 DPM_EVENT_SRC_EXTERNAL = 1, 111 DPM_EVENT_SRC_DIGITAL = 2, 112 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, 113 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 114 }; 115 116 #define ixDIDT_SQ_EDC_CTRL 0x0013 117 #define ixDIDT_SQ_EDC_THRESHOLD 0x0014 118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015 119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016 120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017 121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018 122 123 #define ixDIDT_TD_EDC_CTRL 0x0053 124 #define ixDIDT_TD_EDC_THRESHOLD 0x0054 125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055 126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056 127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057 128 #define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058 129 130 #define ixDIDT_TCP_EDC_CTRL 0x0073 131 #define ixDIDT_TCP_EDC_THRESHOLD 0x0074 132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075 133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076 134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077 135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078 136 137 #define ixDIDT_DB_EDC_CTRL 0x0033 138 #define ixDIDT_DB_EDC_THRESHOLD 0x0034 139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035 140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036 141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037 142 #define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038 143 144 uint32_t DIDTEDCConfig_P12[] = { 145 ixDIDT_SQ_EDC_STALL_PATTERN_1_2, 146 ixDIDT_SQ_EDC_STALL_PATTERN_3_4, 147 ixDIDT_SQ_EDC_STALL_PATTERN_5_6, 148 ixDIDT_SQ_EDC_STALL_PATTERN_7, 149 ixDIDT_SQ_EDC_THRESHOLD, 150 ixDIDT_SQ_EDC_CTRL, 151 ixDIDT_TD_EDC_STALL_PATTERN_1_2, 152 ixDIDT_TD_EDC_STALL_PATTERN_3_4, 153 ixDIDT_TD_EDC_STALL_PATTERN_5_6, 154 ixDIDT_TD_EDC_STALL_PATTERN_7, 155 ixDIDT_TD_EDC_THRESHOLD, 156 ixDIDT_TD_EDC_CTRL, 157 ixDIDT_TCP_EDC_STALL_PATTERN_1_2, 158 ixDIDT_TCP_EDC_STALL_PATTERN_3_4, 159 ixDIDT_TCP_EDC_STALL_PATTERN_5_6, 160 ixDIDT_TCP_EDC_STALL_PATTERN_7, 161 ixDIDT_TCP_EDC_THRESHOLD, 162 ixDIDT_TCP_EDC_CTRL, 163 ixDIDT_DB_EDC_STALL_PATTERN_1_2, 164 ixDIDT_DB_EDC_STALL_PATTERN_3_4, 165 ixDIDT_DB_EDC_STALL_PATTERN_5_6, 166 ixDIDT_DB_EDC_STALL_PATTERN_7, 167 ixDIDT_DB_EDC_THRESHOLD, 168 ixDIDT_DB_EDC_CTRL, 169 0xFFFFFFFF // End of list 170 }; 171 172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic); 173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 174 enum pp_clock_type type, uint32_t mask); 175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr); 176 177 static struct smu7_power_state *cast_phw_smu7_power_state( 178 struct pp_hw_power_state *hw_ps) 179 { 180 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 181 "Invalid Powerstate Type!", 182 return NULL); 183 184 return (struct smu7_power_state *)hw_ps; 185 } 186 187 static const struct smu7_power_state *cast_const_phw_smu7_power_state( 188 const struct pp_hw_power_state *hw_ps) 189 { 190 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 191 "Invalid Powerstate Type!", 192 return NULL); 193 194 return (const struct smu7_power_state *)hw_ps; 195 } 196 197 /** 198 * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct 199 * 200 * @hwmgr: the address of the powerplay hardware manager. 201 * Return: always 0 202 */ 203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr) 204 { 205 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); 206 207 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 208 209 return 0; 210 } 211 212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr) 213 { 214 uint32_t speedCntl = 0; 215 216 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 217 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, 218 ixPCIE_LC_SPEED_CNTL); 219 return((uint16_t)PHM_GET_FIELD(speedCntl, 220 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); 221 } 222 223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) 224 { 225 uint32_t link_width; 226 227 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 228 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 229 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); 230 231 PP_ASSERT_WITH_CODE((7 >= link_width), 232 "Invalid PCIe lane width!", return 0); 233 234 return decode_pcie_lane_width(link_width); 235 } 236 237 /** 238 * smu7_enable_smc_voltage_controller - Enable voltage control 239 * 240 * @hwmgr: the address of the powerplay hardware manager. 241 * Return: always PP_Result_OK 242 */ 243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) 244 { 245 if (hwmgr->chip_id >= CHIP_POLARIS10 && 246 hwmgr->chip_id <= CHIP_VEGAM) { 247 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 248 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0); 249 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 250 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0); 251 } 252 253 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK) 254 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL); 255 256 return 0; 257 } 258 259 /** 260 * smu7_voltage_control - Checks if we want to support voltage control 261 * 262 * @hwmgr: the address of the powerplay hardware manager. 263 */ 264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr) 265 { 266 const struct smu7_hwmgr *data = 267 (const struct smu7_hwmgr *)(hwmgr->backend); 268 269 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control); 270 } 271 272 /** 273 * smu7_enable_voltage_control - Enable voltage control 274 * 275 * @hwmgr: the address of the powerplay hardware manager. 276 * Return: always 0 277 */ 278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr) 279 { 280 /* enable voltage control */ 281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 282 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); 283 284 return 0; 285 } 286 287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table, 288 struct phm_clock_voltage_dependency_table *voltage_dependency_table 289 ) 290 { 291 uint32_t i; 292 293 PP_ASSERT_WITH_CODE((NULL != voltage_table), 294 "Voltage Dependency Table empty.", return -EINVAL;); 295 296 voltage_table->mask_low = 0; 297 voltage_table->phase_delay = 0; 298 voltage_table->count = voltage_dependency_table->count; 299 300 for (i = 0; i < voltage_dependency_table->count; i++) { 301 voltage_table->entries[i].value = 302 voltage_dependency_table->entries[i].v; 303 voltage_table->entries[i].smio_low = 0; 304 } 305 306 return 0; 307 } 308 309 310 /** 311 * smu7_construct_voltage_tables - Create Voltage Tables. 312 * 313 * @hwmgr: the address of the powerplay hardware manager. 314 * Return: always 0 315 */ 316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr) 317 { 318 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 319 struct phm_ppt_v1_information *table_info = 320 (struct phm_ppt_v1_information *)hwmgr->pptable; 321 int result = 0; 322 uint32_t tmp; 323 324 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 325 result = atomctrl_get_voltage_table_v3(hwmgr, 326 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, 327 &(data->mvdd_voltage_table)); 328 PP_ASSERT_WITH_CODE((0 == result), 329 "Failed to retrieve MVDD table.", 330 return result); 331 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { 332 if (hwmgr->pp_table_version == PP_TABLE_V1) 333 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), 334 table_info->vdd_dep_on_mclk); 335 else if (hwmgr->pp_table_version == PP_TABLE_V0) 336 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table), 337 hwmgr->dyn_state.mvdd_dependency_on_mclk); 338 339 PP_ASSERT_WITH_CODE((0 == result), 340 "Failed to retrieve SVI2 MVDD table from dependency table.", 341 return result;); 342 } 343 344 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 345 result = atomctrl_get_voltage_table_v3(hwmgr, 346 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, 347 &(data->vddci_voltage_table)); 348 PP_ASSERT_WITH_CODE((0 == result), 349 "Failed to retrieve VDDCI table.", 350 return result); 351 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 352 if (hwmgr->pp_table_version == PP_TABLE_V1) 353 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), 354 table_info->vdd_dep_on_mclk); 355 else if (hwmgr->pp_table_version == PP_TABLE_V0) 356 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table), 357 hwmgr->dyn_state.vddci_dependency_on_mclk); 358 PP_ASSERT_WITH_CODE((0 == result), 359 "Failed to retrieve SVI2 VDDCI table from dependency table.", 360 return result); 361 } 362 363 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 364 /* VDDGFX has only SVI2 voltage control */ 365 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table), 366 table_info->vddgfx_lookup_table); 367 PP_ASSERT_WITH_CODE((0 == result), 368 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); 369 } 370 371 372 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { 373 result = atomctrl_get_voltage_table_v3(hwmgr, 374 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, 375 &data->vddc_voltage_table); 376 PP_ASSERT_WITH_CODE((0 == result), 377 "Failed to retrieve VDDC table.", return result;); 378 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 379 380 if (hwmgr->pp_table_version == PP_TABLE_V0) 381 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table, 382 hwmgr->dyn_state.vddc_dependency_on_mclk); 383 else if (hwmgr->pp_table_version == PP_TABLE_V1) 384 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), 385 table_info->vddc_lookup_table); 386 387 PP_ASSERT_WITH_CODE((0 == result), 388 "Failed to retrieve SVI2 VDDC table from dependency table.", return result;); 389 } 390 391 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC); 392 PP_ASSERT_WITH_CODE( 393 (data->vddc_voltage_table.count <= tmp), 394 "Too many voltage values for VDDC. Trimming to fit state table.", 395 phm_trim_voltage_table_to_fit_state_table(tmp, 396 &(data->vddc_voltage_table))); 397 398 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 399 PP_ASSERT_WITH_CODE( 400 (data->vddgfx_voltage_table.count <= tmp), 401 "Too many voltage values for VDDC. Trimming to fit state table.", 402 phm_trim_voltage_table_to_fit_state_table(tmp, 403 &(data->vddgfx_voltage_table))); 404 405 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI); 406 PP_ASSERT_WITH_CODE( 407 (data->vddci_voltage_table.count <= tmp), 408 "Too many voltage values for VDDCI. Trimming to fit state table.", 409 phm_trim_voltage_table_to_fit_state_table(tmp, 410 &(data->vddci_voltage_table))); 411 412 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD); 413 PP_ASSERT_WITH_CODE( 414 (data->mvdd_voltage_table.count <= tmp), 415 "Too many voltage values for MVDD. Trimming to fit state table.", 416 phm_trim_voltage_table_to_fit_state_table(tmp, 417 &(data->mvdd_voltage_table))); 418 419 return 0; 420 } 421 422 /** 423 * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters 424 * 425 * @hwmgr: the address of the powerplay hardware manager. 426 * Return: always 0 427 */ 428 static int smu7_program_static_screen_threshold_parameters( 429 struct pp_hwmgr *hwmgr) 430 { 431 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 432 433 /* Set static screen threshold unit */ 434 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 435 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, 436 data->static_screen_threshold_unit); 437 /* Set static screen threshold */ 438 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 439 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, 440 data->static_screen_threshold); 441 442 return 0; 443 } 444 445 /** 446 * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching. 447 * 448 * @hwmgr: the address of the powerplay hardware manager. 449 * Return: always 0 450 */ 451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr) 452 { 453 uint32_t display_gap = 454 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 455 ixCG_DISPLAY_GAP_CNTL); 456 457 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 458 DISP_GAP, DISPLAY_GAP_IGNORE); 459 460 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 461 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); 462 463 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 464 ixCG_DISPLAY_GAP_CNTL, display_gap); 465 466 return 0; 467 } 468 469 /** 470 * smu7_program_voting_clients - Programs activity state transition voting clients 471 * 472 * @hwmgr: the address of the powerplay hardware manager. 473 * Return: always 0 474 */ 475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr) 476 { 477 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 478 int i; 479 480 /* Clear reset for voting clients before enabling DPM */ 481 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 482 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); 483 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 484 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); 485 486 for (i = 0; i < 8; i++) 487 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 488 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 489 data->voting_rights_clients[i]); 490 return 0; 491 } 492 493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr) 494 { 495 int i; 496 497 /* Reset voting clients before disabling DPM */ 498 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 499 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); 500 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 501 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); 502 503 for (i = 0; i < 8; i++) 504 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 505 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0); 506 507 return 0; 508 } 509 510 /* Copy one arb setting to another and then switch the active set. 511 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. 512 */ 513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, 514 uint32_t arb_src, uint32_t arb_dest) 515 { 516 uint32_t mc_arb_dram_timing; 517 uint32_t mc_arb_dram_timing2; 518 uint32_t burst_time; 519 uint32_t mc_cg_config; 520 521 switch (arb_src) { 522 case MC_CG_ARB_FREQ_F0: 523 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 524 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 525 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 526 break; 527 case MC_CG_ARB_FREQ_F1: 528 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); 529 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); 530 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); 531 break; 532 default: 533 return -EINVAL; 534 } 535 536 switch (arb_dest) { 537 case MC_CG_ARB_FREQ_F0: 538 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); 539 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); 540 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); 541 break; 542 case MC_CG_ARB_FREQ_F1: 543 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); 544 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); 545 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); 546 break; 547 default: 548 return -EINVAL; 549 } 550 551 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); 552 mc_cg_config |= 0x0000000F; 553 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); 554 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); 555 556 return 0; 557 } 558 559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr) 560 { 561 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL); 562 } 563 564 /** 565 * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1 566 * 567 * @hwmgr: the address of the powerplay hardware manager. 568 * Return: always 0 569 * This function is to be called from the SetPowerState table. 570 */ 571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) 572 { 573 return smu7_copy_and_switch_arb_sets(hwmgr, 574 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); 575 } 576 577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) 578 { 579 uint32_t tmp; 580 581 tmp = (cgs_read_ind_register(hwmgr->device, 582 CGS_IND_REG__SMC, ixSMC_SCRATCH9) & 583 0x0000ff00) >> 8; 584 585 if (tmp == MC_CG_ARB_FREQ_F0) 586 return 0; 587 588 return smu7_copy_and_switch_arb_sets(hwmgr, 589 tmp, MC_CG_ARB_FREQ_F0); 590 } 591 592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr) 593 { 594 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 595 uint16_t pcie_gen = 0; 596 597 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 && 598 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4) 599 pcie_gen = 3; 600 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 && 601 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3) 602 pcie_gen = 2; 603 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 && 604 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2) 605 pcie_gen = 1; 606 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 && 607 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1) 608 pcie_gen = 0; 609 610 return pcie_gen; 611 } 612 613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr) 614 { 615 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev); 616 uint16_t pcie_width = 0; 617 618 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16) 619 pcie_width = 16; 620 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12) 621 pcie_width = 12; 622 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8) 623 pcie_width = 8; 624 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4) 625 pcie_width = 4; 626 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2) 627 pcie_width = 2; 628 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1) 629 pcie_width = 1; 630 631 return pcie_width; 632 } 633 634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 635 { 636 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 637 638 struct phm_ppt_v1_information *table_info = 639 (struct phm_ppt_v1_information *)(hwmgr->pptable); 640 struct phm_ppt_v1_pcie_table *pcie_table = NULL; 641 642 uint32_t i, max_entry; 643 uint32_t tmp; 644 645 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || 646 data->use_pcie_power_saving_levels), "No pcie performance levels!", 647 return -EINVAL); 648 649 if (table_info != NULL) 650 pcie_table = table_info->pcie_table; 651 652 if (data->use_pcie_performance_levels && 653 !data->use_pcie_power_saving_levels) { 654 data->pcie_gen_power_saving = data->pcie_gen_performance; 655 data->pcie_lane_power_saving = data->pcie_lane_performance; 656 } else if (!data->use_pcie_performance_levels && 657 data->use_pcie_power_saving_levels) { 658 data->pcie_gen_performance = data->pcie_gen_power_saving; 659 data->pcie_lane_performance = data->pcie_lane_power_saving; 660 } 661 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK); 662 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, 663 tmp, 664 MAX_REGULAR_DPM_NUMBER); 665 666 if (pcie_table != NULL) { 667 /* max_entry is used to make sure we reserve one PCIE level 668 * for boot level (fix for A+A PSPP issue). 669 * If PCIE table from PPTable have ULV entry + 8 entries, 670 * then ignore the last entry.*/ 671 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count; 672 for (i = 1; i < max_entry; i++) { 673 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, 674 get_pcie_gen_support(data->pcie_gen_cap, 675 pcie_table->entries[i].gen_speed), 676 get_pcie_lane_support(data->pcie_lane_cap, 677 pcie_table->entries[i].lane_width)); 678 } 679 data->dpm_table.pcie_speed_table.count = max_entry - 1; 680 smum_update_smc_table(hwmgr, SMU_BIF_TABLE); 681 } else { 682 /* Hardcode Pcie Table */ 683 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, 684 get_pcie_gen_support(data->pcie_gen_cap, 685 PP_Min_PCIEGen), 686 get_pcie_lane_support(data->pcie_lane_cap, 687 PP_Max_PCIELane)); 688 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, 689 get_pcie_gen_support(data->pcie_gen_cap, 690 PP_Min_PCIEGen), 691 get_pcie_lane_support(data->pcie_lane_cap, 692 PP_Max_PCIELane)); 693 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, 694 get_pcie_gen_support(data->pcie_gen_cap, 695 PP_Max_PCIEGen), 696 get_pcie_lane_support(data->pcie_lane_cap, 697 PP_Max_PCIELane)); 698 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, 699 get_pcie_gen_support(data->pcie_gen_cap, 700 PP_Max_PCIEGen), 701 get_pcie_lane_support(data->pcie_lane_cap, 702 PP_Max_PCIELane)); 703 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, 704 get_pcie_gen_support(data->pcie_gen_cap, 705 PP_Max_PCIEGen), 706 get_pcie_lane_support(data->pcie_lane_cap, 707 PP_Max_PCIELane)); 708 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, 709 get_pcie_gen_support(data->pcie_gen_cap, 710 PP_Max_PCIEGen), 711 get_pcie_lane_support(data->pcie_lane_cap, 712 PP_Max_PCIELane)); 713 714 data->dpm_table.pcie_speed_table.count = 6; 715 } 716 /* Populate last level for boot PCIE level, but do not increment count. */ 717 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 718 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) 719 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i, 720 get_pcie_gen_support(data->pcie_gen_cap, 721 PP_Max_PCIEGen), 722 data->vbios_boot_state.pcie_lane_bootup_value); 723 } else { 724 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 725 data->dpm_table.pcie_speed_table.count, 726 get_pcie_gen_support(data->pcie_gen_cap, 727 PP_Min_PCIEGen), 728 get_pcie_lane_support(data->pcie_lane_cap, 729 PP_Max_PCIELane)); 730 731 if (data->pcie_dpm_key_disabled) 732 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 733 data->dpm_table.pcie_speed_table.count, 734 smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr)); 735 } 736 return 0; 737 } 738 739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr) 740 { 741 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 742 743 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); 744 745 phm_reset_single_dpm_table( 746 &data->dpm_table.sclk_table, 747 smum_get_mac_definition(hwmgr, 748 SMU_MAX_LEVELS_GRAPHICS), 749 MAX_REGULAR_DPM_NUMBER); 750 phm_reset_single_dpm_table( 751 &data->dpm_table.mclk_table, 752 smum_get_mac_definition(hwmgr, 753 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER); 754 755 phm_reset_single_dpm_table( 756 &data->dpm_table.vddc_table, 757 smum_get_mac_definition(hwmgr, 758 SMU_MAX_LEVELS_VDDC), 759 MAX_REGULAR_DPM_NUMBER); 760 phm_reset_single_dpm_table( 761 &data->dpm_table.vddci_table, 762 smum_get_mac_definition(hwmgr, 763 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER); 764 765 phm_reset_single_dpm_table( 766 &data->dpm_table.mvdd_table, 767 smum_get_mac_definition(hwmgr, 768 SMU_MAX_LEVELS_MVDD), 769 MAX_REGULAR_DPM_NUMBER); 770 return 0; 771 } 772 /* 773 * This function is to initialize all DPM state tables 774 * for SMU7 based on the dependency table. 775 * Dynamic state patching function will then trim these 776 * state tables to the allowed range based 777 * on the power policy or external client requests, 778 * such as UVD request, etc. 779 */ 780 781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr) 782 { 783 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 784 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = 785 hwmgr->dyn_state.vddc_dependency_on_sclk; 786 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = 787 hwmgr->dyn_state.vddc_dependency_on_mclk; 788 struct phm_cac_leakage_table *std_voltage_table = 789 hwmgr->dyn_state.cac_leakage_table; 790 uint32_t i; 791 792 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, 793 "SCLK dependency table is missing. This table is mandatory", return -EINVAL); 794 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, 795 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 796 797 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 798 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 799 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, 800 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 801 802 803 /* Initialize Sclk DPM table based on allow Sclk values*/ 804 data->dpm_table.sclk_table.count = 0; 805 806 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 807 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != 808 allowed_vdd_sclk_table->entries[i].clk) { 809 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 810 allowed_vdd_sclk_table->entries[i].clk; 811 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0; 812 data->dpm_table.sclk_table.count++; 813 } 814 } 815 816 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 817 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 818 /* Initialize Mclk DPM table based on allow Mclk values */ 819 data->dpm_table.mclk_table.count = 0; 820 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 821 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != 822 allowed_vdd_mclk_table->entries[i].clk) { 823 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 824 allowed_vdd_mclk_table->entries[i].clk; 825 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0; 826 data->dpm_table.mclk_table.count++; 827 } 828 } 829 830 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ 831 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 832 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 833 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; 834 /* param1 is for corresponding std voltage */ 835 data->dpm_table.vddc_table.dpm_levels[i].enabled = true; 836 } 837 838 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; 839 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 840 841 if (NULL != allowed_vdd_mclk_table) { 842 /* Initialize Vddci DPM table based on allow Mclk values */ 843 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 844 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 845 data->dpm_table.vddci_table.dpm_levels[i].enabled = true; 846 } 847 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count; 848 } 849 850 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; 851 852 if (NULL != allowed_vdd_mclk_table) { 853 /* 854 * Initialize MVDD DPM table based on allow Mclk 855 * values 856 */ 857 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 858 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 859 data->dpm_table.mvdd_table.dpm_levels[i].enabled = true; 860 } 861 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; 862 } 863 864 return 0; 865 } 866 867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr) 868 { 869 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 870 struct phm_ppt_v1_information *table_info = 871 (struct phm_ppt_v1_information *)(hwmgr->pptable); 872 uint32_t i; 873 874 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 875 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 876 877 if (table_info == NULL) 878 return -EINVAL; 879 880 dep_sclk_table = table_info->vdd_dep_on_sclk; 881 dep_mclk_table = table_info->vdd_dep_on_mclk; 882 883 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, 884 "SCLK dependency table is missing.", 885 return -EINVAL); 886 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, 887 "SCLK dependency table count is 0.", 888 return -EINVAL); 889 890 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, 891 "MCLK dependency table is missing.", 892 return -EINVAL); 893 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 894 "MCLK dependency table count is 0", 895 return -EINVAL); 896 897 /* Initialize Sclk DPM table based on allow Sclk values */ 898 data->dpm_table.sclk_table.count = 0; 899 for (i = 0; i < dep_sclk_table->count; i++) { 900 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != 901 dep_sclk_table->entries[i].clk) { 902 903 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 904 dep_sclk_table->entries[i].clk; 905 906 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 907 i == 0; 908 data->dpm_table.sclk_table.count++; 909 } 910 } 911 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 912 hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk; 913 /* Initialize Mclk DPM table based on allow Mclk values */ 914 data->dpm_table.mclk_table.count = 0; 915 for (i = 0; i < dep_mclk_table->count; i++) { 916 if (i == 0 || data->dpm_table.mclk_table.dpm_levels 917 [data->dpm_table.mclk_table.count - 1].value != 918 dep_mclk_table->entries[i].clk) { 919 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 920 dep_mclk_table->entries[i].clk; 921 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 922 i == 0; 923 data->dpm_table.mclk_table.count++; 924 } 925 } 926 927 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 928 hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk; 929 return 0; 930 } 931 932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 933 { 934 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 935 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 936 struct phm_ppt_v1_information *table_info = 937 (struct phm_ppt_v1_information *)(hwmgr->pptable); 938 uint32_t i; 939 940 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 941 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 942 struct phm_odn_performance_level *entries; 943 944 if (table_info == NULL) 945 return -EINVAL; 946 947 dep_sclk_table = table_info->vdd_dep_on_sclk; 948 dep_mclk_table = table_info->vdd_dep_on_mclk; 949 950 odn_table->odn_core_clock_dpm_levels.num_of_pl = 951 data->golden_dpm_table.sclk_table.count; 952 entries = odn_table->odn_core_clock_dpm_levels.entries; 953 for (i = 0; i < data->golden_dpm_table.sclk_table.count; i++) { 954 entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value; 955 entries[i].enabled = true; 956 entries[i].vddc = dep_sclk_table->entries[i].vddc; 957 } 958 959 smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table, 960 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk)); 961 962 odn_table->odn_memory_clock_dpm_levels.num_of_pl = 963 data->golden_dpm_table.mclk_table.count; 964 entries = odn_table->odn_memory_clock_dpm_levels.entries; 965 for (i = 0; i < data->golden_dpm_table.mclk_table.count; i++) { 966 entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value; 967 entries[i].enabled = true; 968 entries[i].vddc = dep_mclk_table->entries[i].vddc; 969 } 970 971 smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table, 972 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk)); 973 974 return 0; 975 } 976 977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr) 978 { 979 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 980 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 981 struct phm_ppt_v1_information *table_info = 982 (struct phm_ppt_v1_information *)(hwmgr->pptable); 983 uint32_t min_vddc = 0; 984 uint32_t max_vddc = 0; 985 986 if (!table_info) 987 return; 988 989 dep_sclk_table = table_info->vdd_dep_on_sclk; 990 991 atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc); 992 993 if (min_vddc == 0 || min_vddc > 2000 994 || min_vddc > dep_sclk_table->entries[0].vddc) 995 min_vddc = dep_sclk_table->entries[0].vddc; 996 997 if (max_vddc == 0 || max_vddc > 2000 998 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc) 999 max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc; 1000 1001 data->odn_dpm_table.min_vddc = min_vddc; 1002 data->odn_dpm_table.max_vddc = max_vddc; 1003 } 1004 1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 1006 { 1007 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1008 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 1009 struct phm_ppt_v1_information *table_info = 1010 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1011 uint32_t i; 1012 1013 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 1014 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 1015 1016 if (table_info == NULL) 1017 return; 1018 1019 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 1020 if (odn_table->odn_core_clock_dpm_levels.entries[i].clock != 1021 data->dpm_table.sclk_table.dpm_levels[i].value) { 1022 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 1023 break; 1024 } 1025 } 1026 1027 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 1028 if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock != 1029 data->dpm_table.mclk_table.dpm_levels[i].value) { 1030 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 1031 break; 1032 } 1033 } 1034 1035 dep_table = table_info->vdd_dep_on_mclk; 1036 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk); 1037 1038 for (i = 0; i < dep_table->count; i++) { 1039 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 1040 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 1041 return; 1042 } 1043 } 1044 1045 dep_table = table_info->vdd_dep_on_sclk; 1046 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk); 1047 for (i = 0; i < dep_table->count; i++) { 1048 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 1049 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 1050 return; 1051 } 1052 } 1053 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1054 data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC; 1055 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 1056 } 1057 } 1058 1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1060 { 1061 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1062 1063 smu7_reset_dpm_tables(hwmgr); 1064 1065 if (hwmgr->pp_table_version == PP_TABLE_V1) 1066 smu7_setup_dpm_tables_v1(hwmgr); 1067 else if (hwmgr->pp_table_version == PP_TABLE_V0) 1068 smu7_setup_dpm_tables_v0(hwmgr); 1069 1070 smu7_setup_default_pcie_table(hwmgr); 1071 1072 /* save a copy of the default DPM table */ 1073 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1074 sizeof(struct smu7_dpm_table)); 1075 1076 /* initialize ODN table */ 1077 if (hwmgr->od_enabled) { 1078 if (data->odn_dpm_table.max_vddc) { 1079 smu7_check_dpm_table_updated(hwmgr); 1080 } else { 1081 smu7_setup_voltage_range_from_vbios(hwmgr); 1082 smu7_odn_initial_default_setting(hwmgr); 1083 } 1084 } 1085 return 0; 1086 } 1087 1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) 1089 { 1090 1091 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1092 PHM_PlatformCaps_RegulatorHot)) 1093 return smum_send_msg_to_smc(hwmgr, 1094 PPSMC_MSG_EnableVRHotGPIOInterrupt, 1095 NULL); 1096 1097 return 0; 1098 } 1099 1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr) 1101 { 1102 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1103 SCLK_PWRMGT_OFF, 0); 1104 return 0; 1105 } 1106 1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr) 1108 { 1109 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1110 1111 if (data->ulv_supported) 1112 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL); 1113 1114 return 0; 1115 } 1116 1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr) 1118 { 1119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1120 1121 if (data->ulv_supported) 1122 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL); 1123 1124 return 0; 1125 } 1126 1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1128 { 1129 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1130 PHM_PlatformCaps_SclkDeepSleep)) { 1131 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL)) 1132 PP_ASSERT_WITH_CODE(false, 1133 "Attempt to enable Master Deep Sleep switch failed!", 1134 return -EINVAL); 1135 } else { 1136 if (smum_send_msg_to_smc(hwmgr, 1137 PPSMC_MSG_MASTER_DeepSleep_OFF, 1138 NULL)) { 1139 PP_ASSERT_WITH_CODE(false, 1140 "Attempt to disable Master Deep Sleep switch failed!", 1141 return -EINVAL); 1142 } 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1149 { 1150 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1151 PHM_PlatformCaps_SclkDeepSleep)) { 1152 if (smum_send_msg_to_smc(hwmgr, 1153 PPSMC_MSG_MASTER_DeepSleep_OFF, 1154 NULL)) { 1155 PP_ASSERT_WITH_CODE(false, 1156 "Attempt to disable Master Deep Sleep switch failed!", 1157 return -EINVAL); 1158 } 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr) 1165 { 1166 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1167 uint32_t soft_register_value = 0; 1168 uint32_t handshake_disables_offset = data->soft_regs_start 1169 + smum_get_offsetof(hwmgr, 1170 SMU_SoftRegisters, HandshakeDisables); 1171 1172 soft_register_value = cgs_read_ind_register(hwmgr->device, 1173 CGS_IND_REG__SMC, handshake_disables_offset); 1174 soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE; 1175 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1176 handshake_disables_offset, soft_register_value); 1177 return 0; 1178 } 1179 1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr) 1181 { 1182 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1183 uint32_t soft_register_value = 0; 1184 uint32_t handshake_disables_offset = data->soft_regs_start 1185 + smum_get_offsetof(hwmgr, 1186 SMU_SoftRegisters, HandshakeDisables); 1187 1188 soft_register_value = cgs_read_ind_register(hwmgr->device, 1189 CGS_IND_REG__SMC, handshake_disables_offset); 1190 soft_register_value |= smum_get_mac_definition(hwmgr, 1191 SMU_UVD_MCLK_HANDSHAKE_DISABLE); 1192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1193 handshake_disables_offset, soft_register_value); 1194 return 0; 1195 } 1196 1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1198 { 1199 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1200 1201 /* enable SCLK dpm */ 1202 if (!data->sclk_dpm_key_disabled) { 1203 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1204 hwmgr->chip_id <= CHIP_VEGAM) 1205 smu7_disable_sclk_vce_handshake(hwmgr); 1206 1207 PP_ASSERT_WITH_CODE( 1208 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)), 1209 "Failed to enable SCLK DPM during DPM Start Function!", 1210 return -EINVAL); 1211 } 1212 1213 /* enable MCLK dpm */ 1214 if (0 == data->mclk_dpm_key_disabled) { 1215 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK)) 1216 smu7_disable_handshake_uvd(hwmgr); 1217 1218 PP_ASSERT_WITH_CODE( 1219 (0 == smum_send_msg_to_smc(hwmgr, 1220 PPSMC_MSG_MCLKDPM_Enable, 1221 NULL)), 1222 "Failed to enable MCLK DPM during DPM Start Function!", 1223 return -EINVAL); 1224 1225 if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) || 1226 (hwmgr->chip_id == CHIP_POLARIS10) || 1227 (hwmgr->chip_id == CHIP_POLARIS11) || 1228 (hwmgr->chip_id == CHIP_POLARIS12) || 1229 (hwmgr->chip_id == CHIP_TONGA) || 1230 (hwmgr->chip_id == CHIP_TOPAZ)) 1231 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); 1232 1233 1234 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1235 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5); 1236 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5); 1237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005); 1238 udelay(10); 1239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005); 1240 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005); 1241 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005); 1242 } else { 1243 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); 1244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); 1245 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); 1246 udelay(10); 1247 if (hwmgr->chip_id == CHIP_VEGAM) { 1248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009); 1249 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009); 1250 } else { 1251 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); 1252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); 1253 } 1254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); 1255 } 1256 } 1257 1258 return 0; 1259 } 1260 1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr) 1262 { 1263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1264 1265 /*enable general power management */ 1266 1267 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1268 GLOBAL_PWRMGT_EN, 1); 1269 1270 /* enable sclk deep sleep */ 1271 1272 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1273 DYNAMIC_PM_EN, 1); 1274 1275 /* prepare for PCIE DPM */ 1276 1277 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1278 data->soft_regs_start + 1279 smum_get_offsetof(hwmgr, SMU_SoftRegisters, 1280 VoltageChangeTimeout), 0x1000); 1281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 1282 SWRST_COMMAND_1, RESETLC, 0x0); 1283 1284 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) 1285 cgs_write_register(hwmgr->device, 0x1488, 1286 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1)); 1287 1288 if (smu7_enable_sclk_mclk_dpm(hwmgr)) { 1289 pr_err("Failed to enable Sclk DPM and Mclk DPM!"); 1290 return -EINVAL; 1291 } 1292 1293 /* enable PCIE dpm */ 1294 if (0 == data->pcie_dpm_key_disabled) { 1295 PP_ASSERT_WITH_CODE( 1296 (0 == smum_send_msg_to_smc(hwmgr, 1297 PPSMC_MSG_PCIeDPM_Enable, 1298 NULL)), 1299 "Failed to enable pcie DPM during DPM Start Function!", 1300 return -EINVAL); 1301 } else { 1302 PP_ASSERT_WITH_CODE( 1303 (0 == smum_send_msg_to_smc(hwmgr, 1304 PPSMC_MSG_PCIeDPM_Disable, 1305 NULL)), 1306 "Failed to disable pcie DPM during DPM Start Function!", 1307 return -EINVAL); 1308 } 1309 1310 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1311 PHM_PlatformCaps_Falcon_QuickTransition)) { 1312 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr, 1313 PPSMC_MSG_EnableACDCGPIOInterrupt, 1314 NULL)), 1315 "Failed to enable AC DC GPIO Interrupt!", 1316 ); 1317 } 1318 1319 return 0; 1320 } 1321 1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1323 { 1324 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1325 1326 /* disable SCLK dpm */ 1327 if (!data->sclk_dpm_key_disabled) { 1328 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1329 "Trying to disable SCLK DPM when DPM is disabled", 1330 return 0); 1331 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL); 1332 } 1333 1334 /* disable MCLK dpm */ 1335 if (!data->mclk_dpm_key_disabled) { 1336 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1337 "Trying to disable MCLK DPM when DPM is disabled", 1338 return 0); 1339 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL); 1340 } 1341 1342 return 0; 1343 } 1344 1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr) 1346 { 1347 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1348 1349 /* disable general power management */ 1350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1351 GLOBAL_PWRMGT_EN, 0); 1352 /* disable sclk deep sleep */ 1353 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1354 DYNAMIC_PM_EN, 0); 1355 1356 /* disable PCIE dpm */ 1357 if (!data->pcie_dpm_key_disabled) { 1358 PP_ASSERT_WITH_CODE( 1359 (smum_send_msg_to_smc(hwmgr, 1360 PPSMC_MSG_PCIeDPM_Disable, 1361 NULL) == 0), 1362 "Failed to disable pcie DPM during DPM Stop Function!", 1363 return -EINVAL); 1364 } 1365 1366 smu7_disable_sclk_mclk_dpm(hwmgr); 1367 1368 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1369 "Trying to disable voltage DPM when DPM is disabled", 1370 return 0); 1371 1372 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL); 1373 1374 return 0; 1375 } 1376 1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) 1378 { 1379 bool protection; 1380 enum DPM_EVENT_SRC src; 1381 1382 switch (sources) { 1383 default: 1384 pr_err("Unknown throttling event sources."); 1385 fallthrough; 1386 case 0: 1387 protection = false; 1388 /* src is unused */ 1389 break; 1390 case (1 << PHM_AutoThrottleSource_Thermal): 1391 protection = true; 1392 src = DPM_EVENT_SRC_DIGITAL; 1393 break; 1394 case (1 << PHM_AutoThrottleSource_External): 1395 protection = true; 1396 src = DPM_EVENT_SRC_EXTERNAL; 1397 break; 1398 case (1 << PHM_AutoThrottleSource_External) | 1399 (1 << PHM_AutoThrottleSource_Thermal): 1400 protection = true; 1401 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; 1402 break; 1403 } 1404 /* Order matters - don't enable thermal protection for the wrong source. */ 1405 if (protection) { 1406 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, 1407 DPM_EVENT_SRC, src); 1408 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1409 THERMAL_PROTECTION_DIS, 1410 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1411 PHM_PlatformCaps_ThermalController)); 1412 } else 1413 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1414 THERMAL_PROTECTION_DIS, 1); 1415 } 1416 1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1418 PHM_AutoThrottleSource source) 1419 { 1420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1421 1422 if (!(data->active_auto_throttle_sources & (1 << source))) { 1423 data->active_auto_throttle_sources |= 1 << source; 1424 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1425 } 1426 return 0; 1427 } 1428 1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1430 { 1431 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1432 } 1433 1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1435 PHM_AutoThrottleSource source) 1436 { 1437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1438 1439 if (data->active_auto_throttle_sources & (1 << source)) { 1440 data->active_auto_throttle_sources &= ~(1 << source); 1441 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1442 } 1443 return 0; 1444 } 1445 1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1447 { 1448 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1449 } 1450 1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr) 1452 { 1453 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1454 data->pcie_performance_request = true; 1455 1456 return 0; 1457 } 1458 1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr, 1460 uint32_t *cac_config_regs, 1461 AtomCtrl_EDCLeakgeTable *edc_leakage_table) 1462 { 1463 uint32_t data, i = 0; 1464 1465 while (cac_config_regs[i] != 0xFFFFFFFF) { 1466 data = edc_leakage_table->DIDT_REG[i]; 1467 cgs_write_ind_register(hwmgr->device, 1468 CGS_IND_REG__DIDT, 1469 cac_config_regs[i], 1470 data); 1471 i++; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr) 1478 { 1479 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1480 int ret = 0; 1481 1482 if (!data->disable_edc_leakage_controller && 1483 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 1484 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 1485 ret = smu7_program_edc_didt_registers(hwmgr, 1486 DIDTEDCConfig_P12, 1487 &data->edc_leakage_table); 1488 if (ret) 1489 return ret; 1490 1491 ret = smum_send_msg_to_smc(hwmgr, 1492 (PPSMC_Msg)PPSMC_MSG_EnableEDCController, 1493 NULL); 1494 } else { 1495 ret = smum_send_msg_to_smc(hwmgr, 1496 (PPSMC_Msg)PPSMC_MSG_DisableEDCController, 1497 NULL); 1498 } 1499 1500 return ret; 1501 } 1502 1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr) 1504 { 1505 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1506 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; 1507 int32_t tmp_sclk, count, percentage; 1508 1509 if (golden_dpm_table->mclk_table.count == 1) { 1510 percentage = 70; 1511 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value; 1512 } else { 1513 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / 1514 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 1515 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; 1516 } 1517 1518 tmp_sclk = hwmgr->pstate_mclk * percentage / 100; 1519 1520 if (hwmgr->pp_table_version == PP_TABLE_V0) { 1521 struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk = 1522 hwmgr->dyn_state.vddc_dependency_on_sclk; 1523 1524 for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) { 1525 if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) { 1526 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk; 1527 break; 1528 } 1529 } 1530 if (count < 0) 1531 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk; 1532 1533 hwmgr->pstate_sclk_peak = 1534 vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk; 1535 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 1536 struct phm_ppt_v1_information *table_info = 1537 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1538 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk = 1539 table_info->vdd_dep_on_sclk; 1540 1541 for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) { 1542 if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) { 1543 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk; 1544 break; 1545 } 1546 } 1547 if (count < 0) 1548 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk; 1549 1550 hwmgr->pstate_sclk_peak = 1551 vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk; 1552 } 1553 1554 hwmgr->pstate_mclk_peak = 1555 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 1556 1557 /* make sure the output is in Mhz */ 1558 hwmgr->pstate_sclk /= 100; 1559 hwmgr->pstate_mclk /= 100; 1560 hwmgr->pstate_sclk_peak /= 100; 1561 hwmgr->pstate_mclk_peak /= 100; 1562 } 1563 1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 1565 { 1566 int tmp_result = 0; 1567 int result = 0; 1568 1569 if (smu7_voltage_control(hwmgr)) { 1570 tmp_result = smu7_enable_voltage_control(hwmgr); 1571 PP_ASSERT_WITH_CODE(tmp_result == 0, 1572 "Failed to enable voltage control!", 1573 result = tmp_result); 1574 1575 tmp_result = smu7_construct_voltage_tables(hwmgr); 1576 PP_ASSERT_WITH_CODE((0 == tmp_result), 1577 "Failed to construct voltage tables!", 1578 result = tmp_result); 1579 } 1580 smum_initialize_mc_reg_table(hwmgr); 1581 1582 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1583 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) 1584 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1585 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); 1586 1587 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1588 PHM_PlatformCaps_ThermalController)) 1589 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1590 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); 1591 1592 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr); 1593 PP_ASSERT_WITH_CODE((0 == tmp_result), 1594 "Failed to program static screen threshold parameters!", 1595 result = tmp_result); 1596 1597 tmp_result = smu7_enable_display_gap(hwmgr); 1598 PP_ASSERT_WITH_CODE((0 == tmp_result), 1599 "Failed to enable display gap!", result = tmp_result); 1600 1601 tmp_result = smu7_program_voting_clients(hwmgr); 1602 PP_ASSERT_WITH_CODE((0 == tmp_result), 1603 "Failed to program voting clients!", result = tmp_result); 1604 1605 tmp_result = smum_process_firmware_header(hwmgr); 1606 PP_ASSERT_WITH_CODE((0 == tmp_result), 1607 "Failed to process firmware header!", result = tmp_result); 1608 1609 if (hwmgr->chip_id != CHIP_VEGAM) { 1610 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr); 1611 PP_ASSERT_WITH_CODE((0 == tmp_result), 1612 "Failed to initialize switch from ArbF0 to F1!", 1613 result = tmp_result); 1614 } 1615 1616 result = smu7_setup_default_dpm_tables(hwmgr); 1617 PP_ASSERT_WITH_CODE(0 == result, 1618 "Failed to setup default DPM tables!", return result); 1619 1620 tmp_result = smum_init_smc_table(hwmgr); 1621 PP_ASSERT_WITH_CODE((0 == tmp_result), 1622 "Failed to initialize SMC table!", result = tmp_result); 1623 1624 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr); 1625 PP_ASSERT_WITH_CODE((0 == tmp_result), 1626 "Failed to enable VR hot GPIO interrupt!", result = tmp_result); 1627 1628 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1629 hwmgr->chip_id <= CHIP_VEGAM) { 1630 tmp_result = smu7_notify_has_display(hwmgr); 1631 PP_ASSERT_WITH_CODE((0 == tmp_result), 1632 "Failed to enable display setting!", result = tmp_result); 1633 } else { 1634 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL); 1635 } 1636 1637 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1638 hwmgr->chip_id <= CHIP_VEGAM) { 1639 tmp_result = smu7_populate_edc_leakage_registers(hwmgr); 1640 PP_ASSERT_WITH_CODE((0 == tmp_result), 1641 "Failed to populate edc leakage registers!", result = tmp_result); 1642 } 1643 1644 tmp_result = smu7_enable_sclk_control(hwmgr); 1645 PP_ASSERT_WITH_CODE((0 == tmp_result), 1646 "Failed to enable SCLK control!", result = tmp_result); 1647 1648 tmp_result = smu7_enable_smc_voltage_controller(hwmgr); 1649 PP_ASSERT_WITH_CODE((0 == tmp_result), 1650 "Failed to enable voltage control!", result = tmp_result); 1651 1652 tmp_result = smu7_enable_ulv(hwmgr); 1653 PP_ASSERT_WITH_CODE((0 == tmp_result), 1654 "Failed to enable ULV!", result = tmp_result); 1655 1656 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr); 1657 PP_ASSERT_WITH_CODE((0 == tmp_result), 1658 "Failed to enable deep sleep master switch!", result = tmp_result); 1659 1660 tmp_result = smu7_enable_didt_config(hwmgr); 1661 PP_ASSERT_WITH_CODE((tmp_result == 0), 1662 "Failed to enable deep sleep master switch!", result = tmp_result); 1663 1664 tmp_result = smu7_start_dpm(hwmgr); 1665 PP_ASSERT_WITH_CODE((0 == tmp_result), 1666 "Failed to start DPM!", result = tmp_result); 1667 1668 tmp_result = smu7_enable_smc_cac(hwmgr); 1669 PP_ASSERT_WITH_CODE((0 == tmp_result), 1670 "Failed to enable SMC CAC!", result = tmp_result); 1671 1672 tmp_result = smu7_enable_power_containment(hwmgr); 1673 PP_ASSERT_WITH_CODE((0 == tmp_result), 1674 "Failed to enable power containment!", result = tmp_result); 1675 1676 tmp_result = smu7_power_control_set_level(hwmgr); 1677 PP_ASSERT_WITH_CODE((0 == tmp_result), 1678 "Failed to power control set level!", result = tmp_result); 1679 1680 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr); 1681 PP_ASSERT_WITH_CODE((0 == tmp_result), 1682 "Failed to enable thermal auto throttle!", result = tmp_result); 1683 1684 tmp_result = smu7_pcie_performance_request(hwmgr); 1685 PP_ASSERT_WITH_CODE((0 == tmp_result), 1686 "pcie performance request failed!", result = tmp_result); 1687 1688 smu7_populate_umdpstate_clocks(hwmgr); 1689 1690 return 0; 1691 } 1692 1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable) 1694 { 1695 if (!hwmgr->avfs_supported) 1696 return 0; 1697 1698 if (enable) { 1699 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1700 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1701 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1702 hwmgr, PPSMC_MSG_EnableAvfs, NULL), 1703 "Failed to enable AVFS!", 1704 return -EINVAL); 1705 } 1706 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1707 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1708 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1709 hwmgr, PPSMC_MSG_DisableAvfs, NULL), 1710 "Failed to disable AVFS!", 1711 return -EINVAL); 1712 } 1713 1714 return 0; 1715 } 1716 1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr) 1718 { 1719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1720 1721 if (!hwmgr->avfs_supported) 1722 return 0; 1723 1724 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1725 smu7_avfs_control(hwmgr, false); 1726 } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 1727 smu7_avfs_control(hwmgr, false); 1728 smu7_avfs_control(hwmgr, true); 1729 } else { 1730 smu7_avfs_control(hwmgr, true); 1731 } 1732 1733 return 0; 1734 } 1735 1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 1737 { 1738 int tmp_result, result = 0; 1739 1740 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1741 PHM_PlatformCaps_ThermalController)) 1742 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1743 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); 1744 1745 tmp_result = smu7_disable_power_containment(hwmgr); 1746 PP_ASSERT_WITH_CODE((tmp_result == 0), 1747 "Failed to disable power containment!", result = tmp_result); 1748 1749 tmp_result = smu7_disable_smc_cac(hwmgr); 1750 PP_ASSERT_WITH_CODE((tmp_result == 0), 1751 "Failed to disable SMC CAC!", result = tmp_result); 1752 1753 tmp_result = smu7_disable_didt_config(hwmgr); 1754 PP_ASSERT_WITH_CODE((tmp_result == 0), 1755 "Failed to disable DIDT!", result = tmp_result); 1756 1757 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1758 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); 1759 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1760 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); 1761 1762 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr); 1763 PP_ASSERT_WITH_CODE((tmp_result == 0), 1764 "Failed to disable thermal auto throttle!", result = tmp_result); 1765 1766 tmp_result = smu7_avfs_control(hwmgr, false); 1767 PP_ASSERT_WITH_CODE((tmp_result == 0), 1768 "Failed to disable AVFS!", result = tmp_result); 1769 1770 tmp_result = smu7_stop_dpm(hwmgr); 1771 PP_ASSERT_WITH_CODE((tmp_result == 0), 1772 "Failed to stop DPM!", result = tmp_result); 1773 1774 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr); 1775 PP_ASSERT_WITH_CODE((tmp_result == 0), 1776 "Failed to disable deep sleep master switch!", result = tmp_result); 1777 1778 tmp_result = smu7_disable_ulv(hwmgr); 1779 PP_ASSERT_WITH_CODE((tmp_result == 0), 1780 "Failed to disable ULV!", result = tmp_result); 1781 1782 tmp_result = smu7_clear_voting_clients(hwmgr); 1783 PP_ASSERT_WITH_CODE((tmp_result == 0), 1784 "Failed to clear voting clients!", result = tmp_result); 1785 1786 tmp_result = smu7_reset_to_default(hwmgr); 1787 PP_ASSERT_WITH_CODE((tmp_result == 0), 1788 "Failed to reset to default!", result = tmp_result); 1789 1790 tmp_result = smum_stop_smc(hwmgr); 1791 PP_ASSERT_WITH_CODE((tmp_result == 0), 1792 "Failed to stop smc!", result = tmp_result); 1793 1794 tmp_result = smu7_force_switch_to_arbf0(hwmgr); 1795 PP_ASSERT_WITH_CODE((tmp_result == 0), 1796 "Failed to force to switch arbf0!", result = tmp_result); 1797 1798 return result; 1799 } 1800 1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr) 1802 { 1803 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1804 struct phm_ppt_v1_information *table_info = 1805 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1806 struct amdgpu_device *adev = hwmgr->adev; 1807 uint8_t tmp1, tmp2; 1808 uint16_t tmp3 = 0; 1809 1810 data->dll_default_on = false; 1811 data->mclk_dpm0_activity_target = 0xa; 1812 data->vddc_vddgfx_delta = 300; 1813 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT; 1814 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT; 1815 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0; 1816 data->voting_rights_clients[1] = SMU7_VOTINGRIGHTSCLIENTS_DFLT1; 1817 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2; 1818 data->voting_rights_clients[3] = SMU7_VOTINGRIGHTSCLIENTS_DFLT3; 1819 data->voting_rights_clients[4] = SMU7_VOTINGRIGHTSCLIENTS_DFLT4; 1820 data->voting_rights_clients[5] = SMU7_VOTINGRIGHTSCLIENTS_DFLT5; 1821 data->voting_rights_clients[6] = SMU7_VOTINGRIGHTSCLIENTS_DFLT6; 1822 data->voting_rights_clients[7] = SMU7_VOTINGRIGHTSCLIENTS_DFLT7; 1823 1824 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 1825 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 1826 data->pcie_dpm_key_disabled = !(hwmgr->feature_mask & PP_PCIE_DPM_MASK); 1827 /* need to set voltage control types before EVV patching */ 1828 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE; 1829 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE; 1830 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE; 1831 data->enable_tdc_limit_feature = true; 1832 data->enable_pkg_pwr_tracking_feature = true; 1833 data->force_pcie_gen = PP_PCIEGenInvalid; 1834 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false; 1835 data->current_profile_setting.bupdate_sclk = 1; 1836 data->current_profile_setting.sclk_up_hyst = 0; 1837 data->current_profile_setting.sclk_down_hyst = 100; 1838 data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT; 1839 data->current_profile_setting.bupdate_mclk = 1; 1840 if (hwmgr->chip_id >= CHIP_POLARIS10) { 1841 if (adev->gmc.vram_width == 256) { 1842 data->current_profile_setting.mclk_up_hyst = 10; 1843 data->current_profile_setting.mclk_down_hyst = 60; 1844 data->current_profile_setting.mclk_activity = 25; 1845 } else if (adev->gmc.vram_width == 128) { 1846 data->current_profile_setting.mclk_up_hyst = 5; 1847 data->current_profile_setting.mclk_down_hyst = 16; 1848 data->current_profile_setting.mclk_activity = 20; 1849 } else if (adev->gmc.vram_width == 64) { 1850 data->current_profile_setting.mclk_up_hyst = 3; 1851 data->current_profile_setting.mclk_down_hyst = 16; 1852 data->current_profile_setting.mclk_activity = 20; 1853 } 1854 } else { 1855 data->current_profile_setting.mclk_up_hyst = 0; 1856 data->current_profile_setting.mclk_down_hyst = 100; 1857 data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT; 1858 } 1859 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D]; 1860 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1861 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1862 1863 if (hwmgr->chip_id == CHIP_HAWAII) { 1864 data->thermal_temp_setting.temperature_low = 94500; 1865 data->thermal_temp_setting.temperature_high = 95000; 1866 data->thermal_temp_setting.temperature_shutdown = 104000; 1867 } else { 1868 data->thermal_temp_setting.temperature_low = 99500; 1869 data->thermal_temp_setting.temperature_high = 100000; 1870 data->thermal_temp_setting.temperature_shutdown = 104000; 1871 } 1872 1873 data->fast_watermark_threshold = 100; 1874 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1875 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) 1876 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1877 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1878 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) 1879 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1880 1881 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1882 PHM_PlatformCaps_ControlVDDGFX)) { 1883 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1884 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { 1885 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1886 } 1887 } 1888 1889 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1890 PHM_PlatformCaps_EnableMVDDControl)) { 1891 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1892 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) 1893 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1894 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1895 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) 1896 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1897 } 1898 1899 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) 1900 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1901 PHM_PlatformCaps_ControlVDDGFX); 1902 1903 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1904 PHM_PlatformCaps_ControlVDDCI)) { 1905 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1906 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 1907 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1908 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1909 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) 1910 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1911 } 1912 1913 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) 1914 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1915 PHM_PlatformCaps_EnableMVDDControl); 1916 1917 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) 1918 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1919 PHM_PlatformCaps_ControlVDDCI); 1920 1921 data->vddc_phase_shed_control = 1; 1922 if ((hwmgr->chip_id == CHIP_POLARIS12) || 1923 ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1924 ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 1925 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) || 1926 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 1927 if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 1928 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2, 1929 &tmp3); 1930 tmp3 = (tmp3 >> 5) & 0x3; 1931 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3; 1932 } 1933 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1934 data->vddc_phase_shed_control = 1; 1935 } 1936 1937 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK) 1938 && (table_info->cac_dtp_table->usClockStretchAmount != 0)) 1939 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1940 PHM_PlatformCaps_ClockStretcher); 1941 1942 data->pcie_gen_performance.max = PP_PCIEGen1; 1943 data->pcie_gen_performance.min = PP_PCIEGen3; 1944 data->pcie_gen_power_saving.max = PP_PCIEGen1; 1945 data->pcie_gen_power_saving.min = PP_PCIEGen3; 1946 data->pcie_lane_performance.max = 0; 1947 data->pcie_lane_performance.min = 16; 1948 data->pcie_lane_power_saving.max = 0; 1949 data->pcie_lane_power_saving.min = 16; 1950 1951 1952 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 1953 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1954 PHM_PlatformCaps_UVDPowerGating); 1955 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 1956 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1957 PHM_PlatformCaps_VCEPowerGating); 1958 1959 data->disable_edc_leakage_controller = true; 1960 if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) || 1961 ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) || 1962 (adev->asic_type == CHIP_POLARIS12) || 1963 (adev->asic_type == CHIP_VEGAM)) 1964 data->disable_edc_leakage_controller = false; 1965 1966 if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) { 1967 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1968 PHM_PlatformCaps_MemorySpreadSpectrumSupport); 1969 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1970 PHM_PlatformCaps_EngineSpreadSpectrumSupport); 1971 } 1972 1973 if ((adev->pdev->device == 0x699F) && 1974 (adev->pdev->revision == 0xCF)) { 1975 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1976 PHM_PlatformCaps_PowerContainment); 1977 data->enable_tdc_limit_feature = false; 1978 data->enable_pkg_pwr_tracking_feature = false; 1979 data->disable_edc_leakage_controller = true; 1980 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1981 PHM_PlatformCaps_ClockStretcher); 1982 } 1983 } 1984 1985 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr) 1986 { 1987 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1988 struct amdgpu_device *adev = hwmgr->adev; 1989 uint32_t asicrev1, evv_revision, max = 0, min = 0; 1990 1991 atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB, 1992 &evv_revision); 1993 1994 atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1); 1995 1996 if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1997 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) { 1998 min = 1200; 1999 max = 2500; 2000 } else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 2001 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 2002 min = 900; 2003 max = 2100; 2004 } else if (hwmgr->chip_id == CHIP_POLARIS10) { 2005 if (adev->pdev->subsystem_vendor == 0x106B) { 2006 min = 1000; 2007 max = 2300; 2008 } else { 2009 if (evv_revision == 0) { 2010 min = 1000; 2011 max = 2300; 2012 } else if (evv_revision == 1) { 2013 if (asicrev1 == 326) { 2014 min = 1200; 2015 max = 2500; 2016 /* TODO: PATCH RO in VBIOS */ 2017 } else { 2018 min = 1200; 2019 max = 2000; 2020 } 2021 } else if (evv_revision == 2) { 2022 min = 1200; 2023 max = 2500; 2024 } 2025 } 2026 } else { 2027 min = 1100; 2028 max = 2100; 2029 } 2030 2031 data->ro_range_minimum = min; 2032 data->ro_range_maximum = max; 2033 2034 /* TODO: PATCH RO in VBIOS here */ 2035 2036 return 0; 2037 } 2038 2039 /** 2040 * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID. 2041 * 2042 * @hwmgr: the address of the powerplay hardware manager. 2043 * Return: always 0 2044 */ 2045 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr) 2046 { 2047 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2048 uint16_t vv_id; 2049 uint16_t vddc = 0; 2050 uint16_t vddgfx = 0; 2051 uint16_t i, j; 2052 uint32_t sclk = 0; 2053 struct phm_ppt_v1_information *table_info = 2054 (struct phm_ppt_v1_information *)hwmgr->pptable; 2055 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL; 2056 2057 if (hwmgr->chip_id == CHIP_POLARIS10 || 2058 hwmgr->chip_id == CHIP_POLARIS11 || 2059 hwmgr->chip_id == CHIP_POLARIS12) 2060 smu7_calculate_ro_range(hwmgr); 2061 2062 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 2063 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 2064 2065 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2066 if ((hwmgr->pp_table_version == PP_TABLE_V1) 2067 && !phm_get_sclk_for_voltage_evv(hwmgr, 2068 table_info->vddgfx_lookup_table, vv_id, &sclk)) { 2069 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2070 PHM_PlatformCaps_ClockStretcher)) { 2071 sclk_table = table_info->vdd_dep_on_sclk; 2072 2073 for (j = 1; j < sclk_table->count; j++) { 2074 if (sclk_table->entries[j].clk == sclk && 2075 sclk_table->entries[j].cks_enable == 0) { 2076 sclk += 5000; 2077 break; 2078 } 2079 } 2080 } 2081 if (0 == atomctrl_get_voltage_evv_on_sclk 2082 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, 2083 vv_id, &vddgfx)) { 2084 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ 2085 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL); 2086 2087 /* the voltage should not be zero nor equal to leakage ID */ 2088 if (vddgfx != 0 && vddgfx != vv_id) { 2089 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; 2090 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id; 2091 data->vddcgfx_leakage.count++; 2092 } 2093 } else { 2094 pr_info("Error retrieving EVV voltage value!\n"); 2095 } 2096 } 2097 } else { 2098 if ((hwmgr->pp_table_version == PP_TABLE_V0) 2099 || !phm_get_sclk_for_voltage_evv(hwmgr, 2100 table_info->vddc_lookup_table, vv_id, &sclk)) { 2101 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2102 PHM_PlatformCaps_ClockStretcher)) { 2103 if (table_info == NULL) 2104 return -EINVAL; 2105 sclk_table = table_info->vdd_dep_on_sclk; 2106 2107 for (j = 1; j < sclk_table->count; j++) { 2108 if (sclk_table->entries[j].clk == sclk && 2109 sclk_table->entries[j].cks_enable == 0) { 2110 sclk += 5000; 2111 break; 2112 } 2113 } 2114 } 2115 2116 if (phm_get_voltage_evv_on_sclk(hwmgr, 2117 VOLTAGE_TYPE_VDDC, 2118 sclk, vv_id, &vddc) == 0) { 2119 if (vddc >= 2000 || vddc == 0) 2120 return -EINVAL; 2121 } else { 2122 pr_debug("failed to retrieving EVV voltage!\n"); 2123 continue; 2124 } 2125 2126 /* the voltage should not be zero nor equal to leakage ID */ 2127 if (vddc != 0 && vddc != vv_id) { 2128 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc); 2129 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 2130 data->vddc_leakage.count++; 2131 } 2132 } 2133 } 2134 } 2135 2136 return 0; 2137 } 2138 2139 /** 2140 * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value. 2141 * 2142 * @hwmgr: the address of the powerplay hardware manager. 2143 * @voltage: pointer to changing voltage 2144 * @leakage_table: pointer to leakage table 2145 */ 2146 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2147 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table) 2148 { 2149 uint32_t index; 2150 2151 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2152 for (index = 0; index < leakage_table->count; index++) { 2153 /* if this voltage matches a leakage voltage ID */ 2154 /* patch with actual leakage voltage */ 2155 if (leakage_table->leakage_id[index] == *voltage) { 2156 *voltage = leakage_table->actual_voltage[index]; 2157 break; 2158 } 2159 } 2160 2161 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2162 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 2163 } 2164 2165 /** 2166 * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages. 2167 * 2168 * @hwmgr: the address of the powerplay hardware manager. 2169 * @lookup_table: pointer to voltage lookup table 2170 * @leakage_table: pointer to leakage table 2171 * Return: always 0 2172 */ 2173 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 2174 phm_ppt_v1_voltage_lookup_table *lookup_table, 2175 struct smu7_leakage_voltage *leakage_table) 2176 { 2177 uint32_t i; 2178 2179 for (i = 0; i < lookup_table->count; i++) 2180 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2181 &lookup_table->entries[i].us_vdd, leakage_table); 2182 2183 return 0; 2184 } 2185 2186 static int smu7_patch_clock_voltage_limits_with_vddc_leakage( 2187 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table, 2188 uint16_t *vddc) 2189 { 2190 struct phm_ppt_v1_information *table_info = 2191 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2192 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 2193 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = 2194 table_info->max_clock_voltage_on_dc.vddc; 2195 return 0; 2196 } 2197 2198 static int smu7_patch_voltage_dependency_tables_with_lookup_table( 2199 struct pp_hwmgr *hwmgr) 2200 { 2201 uint8_t entry_id; 2202 uint8_t voltage_id; 2203 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2204 struct phm_ppt_v1_information *table_info = 2205 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2206 2207 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 2208 table_info->vdd_dep_on_sclk; 2209 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 2210 table_info->vdd_dep_on_mclk; 2211 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 2212 table_info->mm_dep_table; 2213 2214 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2215 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2216 voltage_id = sclk_table->entries[entry_id].vddInd; 2217 sclk_table->entries[entry_id].vddgfx = 2218 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd; 2219 } 2220 } else { 2221 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2222 voltage_id = sclk_table->entries[entry_id].vddInd; 2223 sclk_table->entries[entry_id].vddc = 2224 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2225 } 2226 } 2227 2228 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2229 voltage_id = mclk_table->entries[entry_id].vddInd; 2230 mclk_table->entries[entry_id].vddc = 2231 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2232 } 2233 2234 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 2235 voltage_id = mm_table->entries[entry_id].vddcInd; 2236 mm_table->entries[entry_id].vddc = 2237 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2238 } 2239 2240 return 0; 2241 2242 } 2243 2244 static int phm_add_voltage(struct pp_hwmgr *hwmgr, 2245 phm_ppt_v1_voltage_lookup_table *look_up_table, 2246 phm_ppt_v1_voltage_lookup_record *record) 2247 { 2248 uint32_t i; 2249 2250 PP_ASSERT_WITH_CODE((NULL != look_up_table), 2251 "Lookup Table empty.", return -EINVAL); 2252 PP_ASSERT_WITH_CODE((0 != look_up_table->count), 2253 "Lookup Table empty.", return -EINVAL); 2254 2255 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 2256 PP_ASSERT_WITH_CODE((i >= look_up_table->count), 2257 "Lookup Table is full.", return -EINVAL); 2258 2259 /* This is to avoid entering duplicate calculated records. */ 2260 for (i = 0; i < look_up_table->count; i++) { 2261 if (look_up_table->entries[i].us_vdd == record->us_vdd) { 2262 if (look_up_table->entries[i].us_calculated == 1) 2263 return 0; 2264 break; 2265 } 2266 } 2267 2268 look_up_table->entries[i].us_calculated = 1; 2269 look_up_table->entries[i].us_vdd = record->us_vdd; 2270 look_up_table->entries[i].us_cac_low = record->us_cac_low; 2271 look_up_table->entries[i].us_cac_mid = record->us_cac_mid; 2272 look_up_table->entries[i].us_cac_high = record->us_cac_high; 2273 /* Only increment the count when we're appending, not replacing duplicate entry. */ 2274 if (i == look_up_table->count) 2275 look_up_table->count++; 2276 2277 return 0; 2278 } 2279 2280 2281 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) 2282 { 2283 uint8_t entry_id; 2284 struct phm_ppt_v1_voltage_lookup_record v_record; 2285 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2286 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2287 2288 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; 2289 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; 2290 2291 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2292 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2293 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2294 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2295 sclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2296 else 2297 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2298 sclk_table->entries[entry_id].vdd_offset; 2299 2300 sclk_table->entries[entry_id].vddc = 2301 v_record.us_cac_low = v_record.us_cac_mid = 2302 v_record.us_cac_high = v_record.us_vdd; 2303 2304 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); 2305 } 2306 2307 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2308 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2309 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2310 mclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2311 else 2312 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2313 mclk_table->entries[entry_id].vdd_offset; 2314 2315 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2316 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2317 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2318 } 2319 } 2320 return 0; 2321 } 2322 2323 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) 2324 { 2325 uint8_t entry_id; 2326 struct phm_ppt_v1_voltage_lookup_record v_record; 2327 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2328 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2329 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; 2330 2331 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2332 for (entry_id = 0; entry_id < mm_table->count; entry_id++) { 2333 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15)) 2334 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2335 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF; 2336 else 2337 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2338 mm_table->entries[entry_id].vddgfx_offset; 2339 2340 /* Add the calculated VDDGFX to the VDDGFX lookup table */ 2341 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2342 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2343 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2344 } 2345 } 2346 return 0; 2347 } 2348 2349 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr, 2350 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 2351 { 2352 uint32_t table_size, i, j; 2353 table_size = lookup_table->count; 2354 2355 PP_ASSERT_WITH_CODE(0 != lookup_table->count, 2356 "Lookup table is empty", return -EINVAL); 2357 2358 /* Sorting voltages */ 2359 for (i = 0; i < table_size - 1; i++) { 2360 for (j = i + 1; j > 0; j--) { 2361 if (lookup_table->entries[j].us_vdd < 2362 lookup_table->entries[j - 1].us_vdd) { 2363 swap(lookup_table->entries[j - 1], 2364 lookup_table->entries[j]); 2365 } 2366 } 2367 } 2368 2369 return 0; 2370 } 2371 2372 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr) 2373 { 2374 int result = 0; 2375 int tmp_result; 2376 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2377 struct phm_ppt_v1_information *table_info = 2378 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2379 2380 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2381 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2382 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); 2383 if (tmp_result != 0) 2384 result = tmp_result; 2385 2386 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2387 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage)); 2388 } else { 2389 2390 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2391 table_info->vddc_lookup_table, &(data->vddc_leakage)); 2392 if (tmp_result) 2393 result = tmp_result; 2394 2395 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 2396 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 2397 if (tmp_result) 2398 result = tmp_result; 2399 } 2400 2401 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 2402 if (tmp_result) 2403 result = tmp_result; 2404 2405 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr); 2406 if (tmp_result) 2407 result = tmp_result; 2408 2409 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr); 2410 if (tmp_result) 2411 result = tmp_result; 2412 2413 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table); 2414 if (tmp_result) 2415 result = tmp_result; 2416 2417 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 2418 if (tmp_result) 2419 result = tmp_result; 2420 2421 return result; 2422 } 2423 2424 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr) 2425 { 2426 struct phm_ppt_v1_information *table_info = 2427 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2428 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2429 table_info->vdd_dep_on_sclk; 2430 struct phm_ppt_v1_voltage_lookup_table *lookup_table = 2431 table_info->vddc_lookup_table; 2432 uint16_t highest_voltage; 2433 uint32_t i; 2434 2435 highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2436 2437 for (i = 0; i < lookup_table->count; i++) { 2438 if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 && 2439 lookup_table->entries[i].us_vdd > highest_voltage) 2440 highest_voltage = lookup_table->entries[i].us_vdd; 2441 } 2442 2443 return highest_voltage; 2444 } 2445 2446 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr) 2447 { 2448 struct phm_ppt_v1_information *table_info = 2449 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2450 2451 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2452 table_info->vdd_dep_on_sclk; 2453 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 2454 table_info->vdd_dep_on_mclk; 2455 2456 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, 2457 "VDD dependency on SCLK table is missing.", 2458 return -EINVAL); 2459 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 2460 "VDD dependency on SCLK table has to have is missing.", 2461 return -EINVAL); 2462 2463 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, 2464 "VDD dependency on MCLK table is missing", 2465 return -EINVAL); 2466 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 2467 "VDD dependency on MCLK table has to have is missing.", 2468 return -EINVAL); 2469 2470 table_info->max_clock_voltage_on_ac.sclk = 2471 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 2472 table_info->max_clock_voltage_on_ac.mclk = 2473 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 2474 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 2475 table_info->max_clock_voltage_on_ac.vddc = 2476 smu7_find_highest_vddc(hwmgr); 2477 else 2478 table_info->max_clock_voltage_on_ac.vddc = 2479 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2480 table_info->max_clock_voltage_on_ac.vddci = 2481 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 2482 2483 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; 2484 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; 2485 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; 2486 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; 2487 2488 return 0; 2489 } 2490 2491 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr) 2492 { 2493 struct phm_ppt_v1_information *table_info = 2494 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2495 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 2496 struct phm_ppt_v1_voltage_lookup_table *lookup_table; 2497 uint32_t i; 2498 uint32_t hw_revision, sub_vendor_id, sub_sys_id; 2499 struct amdgpu_device *adev = hwmgr->adev; 2500 2501 if (table_info != NULL) { 2502 dep_mclk_table = table_info->vdd_dep_on_mclk; 2503 lookup_table = table_info->vddc_lookup_table; 2504 } else 2505 return 0; 2506 2507 hw_revision = adev->pdev->revision; 2508 sub_sys_id = adev->pdev->subsystem_device; 2509 sub_vendor_id = adev->pdev->subsystem_vendor; 2510 2511 if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 && 2512 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) || 2513 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) || 2514 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) { 2515 2516 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 2517 CGS_IND_REG__SMC, 2518 PWR_CKS_CNTL, 2519 CKS_STRETCH_AMOUNT, 2520 0x3); 2521 2522 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) 2523 return 0; 2524 2525 for (i = 0; i < lookup_table->count; i++) { 2526 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { 2527 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; 2528 return 0; 2529 } 2530 } 2531 } 2532 return 0; 2533 } 2534 2535 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr) 2536 { 2537 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; 2538 uint32_t temp_reg; 2539 struct phm_ppt_v1_information *table_info = 2540 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2541 2542 2543 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { 2544 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); 2545 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { 2546 case 0: 2547 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); 2548 break; 2549 case 1: 2550 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); 2551 break; 2552 case 2: 2553 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); 2554 break; 2555 case 3: 2556 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); 2557 break; 2558 case 4: 2559 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); 2560 break; 2561 default: 2562 break; 2563 } 2564 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); 2565 } 2566 2567 if (table_info == NULL) 2568 return 0; 2569 2570 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && 2571 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { 2572 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = 2573 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2574 2575 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = 2576 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2577 2578 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; 2579 2580 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; 2581 2582 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = 2583 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2584 2585 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; 2586 2587 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? 2588 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0; 2589 2590 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2591 table_info->cac_dtp_table->usOperatingTempStep = 1; 2592 table_info->cac_dtp_table->usOperatingTempHyst = 1; 2593 2594 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = 2595 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2596 2597 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = 2598 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; 2599 2600 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = 2601 table_info->cac_dtp_table->usOperatingTempMinLimit; 2602 2603 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = 2604 table_info->cac_dtp_table->usOperatingTempMaxLimit; 2605 2606 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = 2607 table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2608 2609 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = 2610 table_info->cac_dtp_table->usOperatingTempStep; 2611 2612 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = 2613 table_info->cac_dtp_table->usTargetOperatingTemp; 2614 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK) 2615 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2616 PHM_PlatformCaps_ODFuzzyFanControlSupport); 2617 } 2618 2619 return 0; 2620 } 2621 2622 /** 2623 * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value. 2624 * 2625 * @hwmgr: the address of the powerplay hardware manager. 2626 * @voltage: pointer to changing voltage 2627 * @leakage_table: pointer to leakage table 2628 */ 2629 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2630 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table) 2631 { 2632 uint32_t index; 2633 2634 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2635 for (index = 0; index < leakage_table->count; index++) { 2636 /* if this voltage matches a leakage voltage ID */ 2637 /* patch with actual leakage voltage */ 2638 if (leakage_table->leakage_id[index] == *voltage) { 2639 *voltage = leakage_table->actual_voltage[index]; 2640 break; 2641 } 2642 } 2643 2644 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2645 pr_info("Voltage value looks like a Leakage ID but it's not patched\n"); 2646 } 2647 2648 2649 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr, 2650 struct phm_clock_voltage_dependency_table *tab) 2651 { 2652 uint16_t i; 2653 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2654 2655 if (tab) 2656 for (i = 0; i < tab->count; i++) 2657 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2658 &data->vddc_leakage); 2659 2660 return 0; 2661 } 2662 2663 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr, 2664 struct phm_clock_voltage_dependency_table *tab) 2665 { 2666 uint16_t i; 2667 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2668 2669 if (tab) 2670 for (i = 0; i < tab->count; i++) 2671 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2672 &data->vddci_leakage); 2673 2674 return 0; 2675 } 2676 2677 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr, 2678 struct phm_vce_clock_voltage_dependency_table *tab) 2679 { 2680 uint16_t i; 2681 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2682 2683 if (tab) 2684 for (i = 0; i < tab->count; i++) 2685 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2686 &data->vddc_leakage); 2687 2688 return 0; 2689 } 2690 2691 2692 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr, 2693 struct phm_uvd_clock_voltage_dependency_table *tab) 2694 { 2695 uint16_t i; 2696 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2697 2698 if (tab) 2699 for (i = 0; i < tab->count; i++) 2700 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2701 &data->vddc_leakage); 2702 2703 return 0; 2704 } 2705 2706 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, 2707 struct phm_phase_shedding_limits_table *tab) 2708 { 2709 uint16_t i; 2710 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2711 2712 if (tab) 2713 for (i = 0; i < tab->count; i++) 2714 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage, 2715 &data->vddc_leakage); 2716 2717 return 0; 2718 } 2719 2720 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr, 2721 struct phm_samu_clock_voltage_dependency_table *tab) 2722 { 2723 uint16_t i; 2724 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2725 2726 if (tab) 2727 for (i = 0; i < tab->count; i++) 2728 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2729 &data->vddc_leakage); 2730 2731 return 0; 2732 } 2733 2734 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr, 2735 struct phm_acp_clock_voltage_dependency_table *tab) 2736 { 2737 uint16_t i; 2738 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2739 2740 if (tab) 2741 for (i = 0; i < tab->count; i++) 2742 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2743 &data->vddc_leakage); 2744 2745 return 0; 2746 } 2747 2748 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr, 2749 struct phm_clock_and_voltage_limits *tab) 2750 { 2751 uint32_t vddc, vddci; 2752 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2753 2754 if (tab) { 2755 vddc = tab->vddc; 2756 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, 2757 &data->vddc_leakage); 2758 tab->vddc = vddc; 2759 vddci = tab->vddci; 2760 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci, 2761 &data->vddci_leakage); 2762 tab->vddci = vddci; 2763 } 2764 2765 return 0; 2766 } 2767 2768 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) 2769 { 2770 uint32_t i; 2771 uint32_t vddc; 2772 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2773 2774 if (tab) { 2775 for (i = 0; i < tab->count; i++) { 2776 vddc = (uint32_t)(tab->entries[i].Vddc); 2777 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); 2778 tab->entries[i].Vddc = (uint16_t)vddc; 2779 } 2780 } 2781 2782 return 0; 2783 } 2784 2785 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) 2786 { 2787 int tmp; 2788 2789 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); 2790 if (tmp) 2791 return -EINVAL; 2792 2793 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); 2794 if (tmp) 2795 return -EINVAL; 2796 2797 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2798 if (tmp) 2799 return -EINVAL; 2800 2801 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); 2802 if (tmp) 2803 return -EINVAL; 2804 2805 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); 2806 if (tmp) 2807 return -EINVAL; 2808 2809 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); 2810 if (tmp) 2811 return -EINVAL; 2812 2813 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); 2814 if (tmp) 2815 return -EINVAL; 2816 2817 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); 2818 if (tmp) 2819 return -EINVAL; 2820 2821 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); 2822 if (tmp) 2823 return -EINVAL; 2824 2825 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); 2826 if (tmp) 2827 return -EINVAL; 2828 2829 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); 2830 if (tmp) 2831 return -EINVAL; 2832 2833 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); 2834 if (tmp) 2835 return -EINVAL; 2836 2837 return 0; 2838 } 2839 2840 2841 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr) 2842 { 2843 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2844 2845 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 2846 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 2847 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 2848 2849 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, 2850 "VDDC dependency on SCLK table is missing. This table is mandatory", 2851 return -EINVAL); 2852 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, 2853 "VDDC dependency on SCLK table has to have is missing. This table is mandatory", 2854 return -EINVAL); 2855 2856 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, 2857 "VDDC dependency on MCLK table is missing. This table is mandatory", 2858 return -EINVAL); 2859 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, 2860 "VDD dependency on MCLK table has to have is missing. This table is mandatory", 2861 return -EINVAL); 2862 2863 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v; 2864 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2865 2866 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 2867 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; 2868 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 2869 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; 2870 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 2871 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2872 2873 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { 2874 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v; 2875 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; 2876 } 2877 2878 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1) 2879 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; 2880 2881 return 0; 2882 } 2883 2884 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 2885 { 2886 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2887 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 2888 kfree(hwmgr->backend); 2889 hwmgr->backend = NULL; 2890 2891 return 0; 2892 } 2893 2894 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr) 2895 { 2896 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id; 2897 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2898 int i; 2899 2900 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) { 2901 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 2902 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 2903 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci, 2904 virtual_voltage_id, 2905 efuse_voltage_id) == 0) { 2906 if (vddc != 0 && vddc != virtual_voltage_id) { 2907 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; 2908 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; 2909 data->vddc_leakage.count++; 2910 } 2911 if (vddci != 0 && vddci != virtual_voltage_id) { 2912 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci; 2913 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id; 2914 data->vddci_leakage.count++; 2915 } 2916 } 2917 } 2918 } 2919 return 0; 2920 } 2921 2922 #define LEAKAGE_ID_MSB 463 2923 #define LEAKAGE_ID_LSB 454 2924 2925 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr) 2926 { 2927 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2928 uint32_t efuse; 2929 uint16_t offset; 2930 int ret = 0; 2931 2932 if (data->disable_edc_leakage_controller) 2933 return 0; 2934 2935 ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr, 2936 &data->edc_hilo_leakage_offset_from_vbios); 2937 if (ret) 2938 return ret; 2939 2940 if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 2941 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 2942 atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse); 2943 if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold) 2944 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset; 2945 else 2946 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset; 2947 2948 ret = atomctrl_get_edc_leakage_table(hwmgr, 2949 &data->edc_leakage_table, 2950 offset); 2951 if (ret) 2952 return ret; 2953 } 2954 2955 return ret; 2956 } 2957 2958 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 2959 { 2960 struct smu7_hwmgr *data; 2961 int result = 0; 2962 2963 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL); 2964 if (data == NULL) 2965 return -ENOMEM; 2966 2967 hwmgr->backend = data; 2968 smu7_patch_voltage_workaround(hwmgr); 2969 smu7_init_dpm_defaults(hwmgr); 2970 2971 /* Get leakage voltage based on leakage ID. */ 2972 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2973 PHM_PlatformCaps_EVV)) { 2974 result = smu7_get_evv_voltages(hwmgr); 2975 if (result) { 2976 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n"); 2977 kfree(hwmgr->backend); 2978 hwmgr->backend = NULL; 2979 return -EINVAL; 2980 } 2981 } else { 2982 smu7_get_elb_voltages(hwmgr); 2983 } 2984 2985 if (hwmgr->pp_table_version == PP_TABLE_V1) { 2986 smu7_complete_dependency_tables(hwmgr); 2987 smu7_set_private_data_based_on_pptable_v1(hwmgr); 2988 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 2989 smu7_patch_dependency_tables_with_leakage(hwmgr); 2990 smu7_set_private_data_based_on_pptable_v0(hwmgr); 2991 } 2992 2993 /* Initalize Dynamic State Adjustment Rule Settings */ 2994 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); 2995 2996 if (0 == result) { 2997 struct amdgpu_device *adev = hwmgr->adev; 2998 2999 data->is_tlu_enabled = false; 3000 3001 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 3002 SMU7_MAX_HARDWARE_POWERLEVELS; 3003 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 3004 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 3005 3006 data->pcie_gen_cap = adev->pm.pcie_gen_mask; 3007 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 3008 data->pcie_spc_cap = 20; 3009 else 3010 data->pcie_spc_cap = 16; 3011 data->pcie_lane_cap = adev->pm.pcie_mlw_mask; 3012 3013 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 3014 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 3015 hwmgr->platform_descriptor.clockStep.engineClock = 500; 3016 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 3017 smu7_thermal_parameter_init(hwmgr); 3018 } else { 3019 /* Ignore return value in here, we are cleaning up a mess. */ 3020 smu7_hwmgr_backend_fini(hwmgr); 3021 } 3022 3023 result = smu7_update_edc_leakage_table(hwmgr); 3024 if (result) { 3025 smu7_hwmgr_backend_fini(hwmgr); 3026 return result; 3027 } 3028 3029 return 0; 3030 } 3031 3032 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr) 3033 { 3034 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3035 uint32_t level, tmp; 3036 3037 if (!data->pcie_dpm_key_disabled) { 3038 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 3039 level = 0; 3040 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; 3041 while (tmp >>= 1) 3042 level++; 3043 3044 if (level) 3045 smum_send_msg_to_smc_with_parameter(hwmgr, 3046 PPSMC_MSG_PCIeDPM_ForceLevel, level, 3047 NULL); 3048 } 3049 } 3050 3051 if (!data->sclk_dpm_key_disabled) { 3052 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 3053 level = 0; 3054 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 3055 while (tmp >>= 1) 3056 level++; 3057 3058 if (level) 3059 smum_send_msg_to_smc_with_parameter(hwmgr, 3060 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3061 (1 << level), 3062 NULL); 3063 } 3064 } 3065 3066 if (!data->mclk_dpm_key_disabled) { 3067 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 3068 level = 0; 3069 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; 3070 while (tmp >>= 1) 3071 level++; 3072 3073 if (level) 3074 smum_send_msg_to_smc_with_parameter(hwmgr, 3075 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3076 (1 << level), 3077 NULL); 3078 } 3079 } 3080 3081 return 0; 3082 } 3083 3084 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) 3085 { 3086 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3087 3088 if (hwmgr->pp_table_version == PP_TABLE_V1) 3089 phm_apply_dal_min_voltage_request(hwmgr); 3090 /* TO DO for v0 iceland and Ci*/ 3091 3092 if (!data->sclk_dpm_key_disabled) { 3093 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) 3094 smum_send_msg_to_smc_with_parameter(hwmgr, 3095 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3096 data->dpm_level_enable_mask.sclk_dpm_enable_mask, 3097 NULL); 3098 } 3099 3100 if (!data->mclk_dpm_key_disabled) { 3101 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) 3102 smum_send_msg_to_smc_with_parameter(hwmgr, 3103 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3104 data->dpm_level_enable_mask.mclk_dpm_enable_mask, 3105 NULL); 3106 } 3107 3108 return 0; 3109 } 3110 3111 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 3112 { 3113 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3114 3115 if (!smum_is_dpm_running(hwmgr)) 3116 return -EINVAL; 3117 3118 if (!data->pcie_dpm_key_disabled) { 3119 smum_send_msg_to_smc(hwmgr, 3120 PPSMC_MSG_PCIeDPM_UnForceLevel, 3121 NULL); 3122 } 3123 3124 return smu7_upload_dpm_level_enable_mask(hwmgr); 3125 } 3126 3127 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr) 3128 { 3129 struct smu7_hwmgr *data = 3130 (struct smu7_hwmgr *)(hwmgr->backend); 3131 uint32_t level; 3132 3133 if (!data->sclk_dpm_key_disabled) 3134 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 3135 level = phm_get_lowest_enabled_level(hwmgr, 3136 data->dpm_level_enable_mask.sclk_dpm_enable_mask); 3137 smum_send_msg_to_smc_with_parameter(hwmgr, 3138 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3139 (1 << level), 3140 NULL); 3141 3142 } 3143 3144 if (!data->mclk_dpm_key_disabled) { 3145 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 3146 level = phm_get_lowest_enabled_level(hwmgr, 3147 data->dpm_level_enable_mask.mclk_dpm_enable_mask); 3148 smum_send_msg_to_smc_with_parameter(hwmgr, 3149 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3150 (1 << level), 3151 NULL); 3152 } 3153 } 3154 3155 if (!data->pcie_dpm_key_disabled) { 3156 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 3157 level = phm_get_lowest_enabled_level(hwmgr, 3158 data->dpm_level_enable_mask.pcie_dpm_enable_mask); 3159 smum_send_msg_to_smc_with_parameter(hwmgr, 3160 PPSMC_MSG_PCIeDPM_ForceLevel, 3161 (level), 3162 NULL); 3163 } 3164 } 3165 3166 return 0; 3167 } 3168 3169 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 3170 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask) 3171 { 3172 uint32_t percentage; 3173 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3174 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; 3175 int32_t tmp_mclk; 3176 int32_t tmp_sclk; 3177 int32_t count; 3178 3179 if (golden_dpm_table->mclk_table.count < 1) 3180 return -EINVAL; 3181 3182 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / 3183 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3184 3185 if (golden_dpm_table->mclk_table.count == 1) { 3186 percentage = 70; 3187 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3188 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3189 } else { 3190 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; 3191 *mclk_mask = golden_dpm_table->mclk_table.count - 2; 3192 } 3193 3194 tmp_sclk = tmp_mclk * percentage / 100; 3195 3196 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3197 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3198 count >= 0; count--) { 3199 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { 3200 *sclk_mask = count; 3201 break; 3202 } 3203 } 3204 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) 3205 *sclk_mask = 0; 3206 3207 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3208 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3209 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3210 struct phm_ppt_v1_information *table_info = 3211 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3212 3213 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { 3214 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { 3215 *sclk_mask = count; 3216 break; 3217 } 3218 } 3219 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) 3220 *sclk_mask = 0; 3221 3222 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3223 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 3224 } 3225 3226 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) 3227 *mclk_mask = 0; 3228 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3229 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3230 3231 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1; 3232 3233 return 0; 3234 } 3235 3236 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr, 3237 enum amd_dpm_forced_level level) 3238 { 3239 int ret = 0; 3240 uint32_t sclk_mask = 0; 3241 uint32_t mclk_mask = 0; 3242 uint32_t pcie_mask = 0; 3243 3244 switch (level) { 3245 case AMD_DPM_FORCED_LEVEL_HIGH: 3246 ret = smu7_force_dpm_highest(hwmgr); 3247 break; 3248 case AMD_DPM_FORCED_LEVEL_LOW: 3249 ret = smu7_force_dpm_lowest(hwmgr); 3250 break; 3251 case AMD_DPM_FORCED_LEVEL_AUTO: 3252 ret = smu7_unforce_dpm_levels(hwmgr); 3253 break; 3254 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 3255 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 3256 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 3257 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 3258 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); 3259 if (ret) 3260 return ret; 3261 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 3262 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 3263 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask); 3264 break; 3265 case AMD_DPM_FORCED_LEVEL_MANUAL: 3266 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 3267 default: 3268 break; 3269 } 3270 3271 if (!ret) { 3272 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3273 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255); 3274 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3275 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr); 3276 } 3277 return ret; 3278 } 3279 3280 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr) 3281 { 3282 return sizeof(struct smu7_power_state); 3283 } 3284 3285 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr, 3286 uint32_t vblank_time_us) 3287 { 3288 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3289 uint32_t switch_limit_us; 3290 3291 switch (hwmgr->chip_id) { 3292 case CHIP_POLARIS10: 3293 case CHIP_POLARIS11: 3294 case CHIP_POLARIS12: 3295 if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12)) 3296 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3297 else 3298 switch_limit_us = data->is_memory_gddr5 ? 200 : 150; 3299 break; 3300 case CHIP_VEGAM: 3301 switch_limit_us = 30; 3302 break; 3303 default: 3304 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3305 break; 3306 } 3307 3308 if (vblank_time_us < switch_limit_us) 3309 return true; 3310 else 3311 return false; 3312 } 3313 3314 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3315 struct pp_power_state *request_ps, 3316 const struct pp_power_state *current_ps) 3317 { 3318 struct amdgpu_device *adev = hwmgr->adev; 3319 struct smu7_power_state *smu7_ps = 3320 cast_phw_smu7_power_state(&request_ps->hardware); 3321 uint32_t sclk; 3322 uint32_t mclk; 3323 struct PP_Clocks minimum_clocks = {0}; 3324 bool disable_mclk_switching; 3325 bool disable_mclk_switching_for_frame_lock; 3326 bool disable_mclk_switching_for_display; 3327 const struct phm_clock_and_voltage_limits *max_limits; 3328 uint32_t i; 3329 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3330 struct phm_ppt_v1_information *table_info = 3331 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3332 int32_t count; 3333 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3334 uint32_t latency; 3335 bool latency_allowed = false; 3336 3337 data->battery_state = (PP_StateUILabel_Battery == 3338 request_ps->classification.ui_label); 3339 data->mclk_ignore_signal = false; 3340 3341 max_limits = adev->pm.ac_power ? 3342 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3343 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3344 3345 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3346 if (!adev->pm.ac_power) { 3347 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3348 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk) 3349 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk; 3350 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk) 3351 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk; 3352 } 3353 } 3354 3355 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3356 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3357 3358 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3359 PHM_PlatformCaps_StablePState)) { 3360 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3361 stable_pstate_sclk = (max_limits->sclk * 75) / 100; 3362 3363 for (count = table_info->vdd_dep_on_sclk->count - 1; 3364 count >= 0; count--) { 3365 if (stable_pstate_sclk >= 3366 table_info->vdd_dep_on_sclk->entries[count].clk) { 3367 stable_pstate_sclk = 3368 table_info->vdd_dep_on_sclk->entries[count].clk; 3369 break; 3370 } 3371 } 3372 3373 if (count < 0) 3374 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3375 3376 stable_pstate_mclk = max_limits->mclk; 3377 3378 minimum_clocks.engineClock = stable_pstate_sclk; 3379 minimum_clocks.memoryClock = stable_pstate_mclk; 3380 } 3381 3382 disable_mclk_switching_for_frame_lock = phm_cap_enabled( 3383 hwmgr->platform_descriptor.platformCaps, 3384 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3385 3386 disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) && 3387 !hwmgr->display_config->multi_monitor_in_sync) || 3388 (hwmgr->display_config->num_display && 3389 smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time)); 3390 3391 disable_mclk_switching = disable_mclk_switching_for_frame_lock || 3392 disable_mclk_switching_for_display; 3393 3394 if (hwmgr->display_config->num_display == 0) { 3395 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 3396 data->mclk_ignore_signal = true; 3397 else 3398 disable_mclk_switching = false; 3399 } 3400 3401 sclk = smu7_ps->performance_levels[0].engine_clock; 3402 mclk = smu7_ps->performance_levels[0].memory_clock; 3403 3404 if (disable_mclk_switching && 3405 (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3406 hwmgr->chip_id <= CHIP_VEGAM))) 3407 mclk = smu7_ps->performance_levels 3408 [smu7_ps->performance_level_count - 1].memory_clock; 3409 3410 if (sclk < minimum_clocks.engineClock) 3411 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3412 max_limits->sclk : minimum_clocks.engineClock; 3413 3414 if (mclk < minimum_clocks.memoryClock) 3415 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3416 max_limits->mclk : minimum_clocks.memoryClock; 3417 3418 smu7_ps->performance_levels[0].engine_clock = sclk; 3419 smu7_ps->performance_levels[0].memory_clock = mclk; 3420 3421 smu7_ps->performance_levels[1].engine_clock = 3422 (smu7_ps->performance_levels[1].engine_clock >= 3423 smu7_ps->performance_levels[0].engine_clock) ? 3424 smu7_ps->performance_levels[1].engine_clock : 3425 smu7_ps->performance_levels[0].engine_clock; 3426 3427 if (disable_mclk_switching) { 3428 if (mclk < smu7_ps->performance_levels[1].memory_clock) 3429 mclk = smu7_ps->performance_levels[1].memory_clock; 3430 3431 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) { 3432 if (disable_mclk_switching_for_display) { 3433 /* Find the lowest MCLK frequency that is within 3434 * the tolerable latency defined in DAL 3435 */ 3436 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3437 for (i = 0; i < data->mclk_latency_table.count; i++) { 3438 if (data->mclk_latency_table.entries[i].latency <= latency) { 3439 latency_allowed = true; 3440 3441 if ((data->mclk_latency_table.entries[i].frequency >= 3442 smu7_ps->performance_levels[0].memory_clock) && 3443 (data->mclk_latency_table.entries[i].frequency <= 3444 smu7_ps->performance_levels[1].memory_clock)) { 3445 mclk = data->mclk_latency_table.entries[i].frequency; 3446 break; 3447 } 3448 } 3449 } 3450 if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) { 3451 data->mclk_ignore_signal = true; 3452 } else { 3453 data->mclk_ignore_signal = false; 3454 } 3455 } 3456 3457 if (disable_mclk_switching_for_frame_lock) 3458 mclk = smu7_ps->performance_levels[1].memory_clock; 3459 } 3460 3461 smu7_ps->performance_levels[0].memory_clock = mclk; 3462 3463 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3464 hwmgr->chip_id <= CHIP_VEGAM)) 3465 smu7_ps->performance_levels[1].memory_clock = mclk; 3466 } else { 3467 if (smu7_ps->performance_levels[1].memory_clock < 3468 smu7_ps->performance_levels[0].memory_clock) 3469 smu7_ps->performance_levels[1].memory_clock = 3470 smu7_ps->performance_levels[0].memory_clock; 3471 } 3472 3473 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3474 PHM_PlatformCaps_StablePState)) { 3475 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3476 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk; 3477 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk; 3478 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; 3479 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; 3480 } 3481 } 3482 return 0; 3483 } 3484 3485 3486 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3487 { 3488 struct pp_power_state *ps; 3489 struct smu7_power_state *smu7_ps; 3490 3491 if (hwmgr == NULL) 3492 return -EINVAL; 3493 3494 ps = hwmgr->request_ps; 3495 3496 if (ps == NULL) 3497 return -EINVAL; 3498 3499 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3500 3501 if (low) 3502 return smu7_ps->performance_levels[0].memory_clock; 3503 else 3504 return smu7_ps->performance_levels 3505 [smu7_ps->performance_level_count-1].memory_clock; 3506 } 3507 3508 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3509 { 3510 struct pp_power_state *ps; 3511 struct smu7_power_state *smu7_ps; 3512 3513 if (hwmgr == NULL) 3514 return -EINVAL; 3515 3516 ps = hwmgr->request_ps; 3517 3518 if (ps == NULL) 3519 return -EINVAL; 3520 3521 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3522 3523 if (low) 3524 return smu7_ps->performance_levels[0].engine_clock; 3525 else 3526 return smu7_ps->performance_levels 3527 [smu7_ps->performance_level_count-1].engine_clock; 3528 } 3529 3530 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, 3531 struct pp_hw_power_state *hw_ps) 3532 { 3533 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3534 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps; 3535 ATOM_FIRMWARE_INFO_V2_2 *fw_info; 3536 uint16_t size; 3537 uint8_t frev, crev; 3538 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); 3539 3540 /* First retrieve the Boot clocks and VDDC from the firmware info table. 3541 * We assume here that fw_info is unchanged if this call fails. 3542 */ 3543 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index, 3544 &size, &frev, &crev); 3545 if (!fw_info) 3546 /* During a test, there is no firmware info table. */ 3547 return 0; 3548 3549 /* Patch the state. */ 3550 data->vbios_boot_state.sclk_bootup_value = 3551 le32_to_cpu(fw_info->ulDefaultEngineClock); 3552 data->vbios_boot_state.mclk_bootup_value = 3553 le32_to_cpu(fw_info->ulDefaultMemoryClock); 3554 data->vbios_boot_state.mvdd_bootup_value = 3555 le16_to_cpu(fw_info->usBootUpMVDDCVoltage); 3556 data->vbios_boot_state.vddc_bootup_value = 3557 le16_to_cpu(fw_info->usBootUpVDDCVoltage); 3558 data->vbios_boot_state.vddci_bootup_value = 3559 le16_to_cpu(fw_info->usBootUpVDDCIVoltage); 3560 data->vbios_boot_state.pcie_gen_bootup_value = 3561 smu7_get_current_pcie_speed(hwmgr); 3562 3563 data->vbios_boot_state.pcie_lane_bootup_value = 3564 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr); 3565 3566 /* set boot power state */ 3567 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; 3568 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; 3569 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; 3570 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; 3571 3572 return 0; 3573 } 3574 3575 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) 3576 { 3577 int result; 3578 unsigned long ret = 0; 3579 3580 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3581 result = pp_tables_get_num_of_entries(hwmgr, &ret); 3582 return result ? 0 : ret; 3583 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3584 result = get_number_of_powerplay_table_entries_v1_0(hwmgr); 3585 return result; 3586 } 3587 return 0; 3588 } 3589 3590 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr, 3591 void *state, struct pp_power_state *power_state, 3592 void *pp_table, uint32_t classification_flag) 3593 { 3594 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3595 struct smu7_power_state *smu7_power_state = 3596 (struct smu7_power_state *)(&(power_state->hardware)); 3597 struct smu7_performance_level *performance_level; 3598 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; 3599 ATOM_Tonga_POWERPLAYTABLE *powerplay_table = 3600 (ATOM_Tonga_POWERPLAYTABLE *)pp_table; 3601 PPTable_Generic_SubTable_Header *sclk_dep_table = 3602 (PPTable_Generic_SubTable_Header *) 3603 (((unsigned long)powerplay_table) + 3604 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); 3605 3606 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = 3607 (ATOM_Tonga_MCLK_Dependency_Table *) 3608 (((unsigned long)powerplay_table) + 3609 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3610 3611 /* The following fields are not initialized here: id orderedList allStatesList */ 3612 power_state->classification.ui_label = 3613 (le16_to_cpu(state_entry->usClassification) & 3614 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3615 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3616 power_state->classification.flags = classification_flag; 3617 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ 3618 3619 power_state->classification.temporary_state = false; 3620 power_state->classification.to_be_deleted = false; 3621 3622 power_state->validation.disallowOnDC = 3623 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3624 ATOM_Tonga_DISALLOW_ON_DC)); 3625 3626 power_state->pcie.lanes = 0; 3627 3628 power_state->display.disableFrameModulation = false; 3629 power_state->display.limitRefreshrate = false; 3630 power_state->display.enableVariBright = 3631 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3632 ATOM_Tonga_ENABLE_VARIBRIGHT)); 3633 3634 power_state->validation.supportedPowerLevels = 0; 3635 power_state->uvd_clocks.VCLK = 0; 3636 power_state->uvd_clocks.DCLK = 0; 3637 power_state->temperatures.min = 0; 3638 power_state->temperatures.max = 0; 3639 3640 performance_level = &(smu7_power_state->performance_levels 3641 [smu7_power_state->performance_level_count++]); 3642 3643 PP_ASSERT_WITH_CODE( 3644 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3645 "Performance levels exceeds SMC limit!", 3646 return -EINVAL); 3647 3648 PP_ASSERT_WITH_CODE( 3649 (smu7_power_state->performance_level_count < 3650 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3651 "Performance levels exceeds Driver limit!", 3652 return -EINVAL); 3653 3654 /* Performance levels are arranged from low to high. */ 3655 performance_level->memory_clock = mclk_dep_table->entries 3656 [state_entry->ucMemoryClockIndexLow].ulMclk; 3657 if (sclk_dep_table->ucRevId == 0) 3658 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3659 [state_entry->ucEngineClockIndexLow].ulSclk; 3660 else if (sclk_dep_table->ucRevId == 1) 3661 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3662 [state_entry->ucEngineClockIndexLow].ulSclk; 3663 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3664 state_entry->ucPCIEGenLow); 3665 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3666 state_entry->ucPCIELaneLow); 3667 3668 performance_level = &(smu7_power_state->performance_levels 3669 [smu7_power_state->performance_level_count++]); 3670 performance_level->memory_clock = mclk_dep_table->entries 3671 [state_entry->ucMemoryClockIndexHigh].ulMclk; 3672 3673 if (sclk_dep_table->ucRevId == 0) 3674 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3675 [state_entry->ucEngineClockIndexHigh].ulSclk; 3676 else if (sclk_dep_table->ucRevId == 1) 3677 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3678 [state_entry->ucEngineClockIndexHigh].ulSclk; 3679 3680 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3681 state_entry->ucPCIEGenHigh); 3682 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3683 state_entry->ucPCIELaneHigh); 3684 3685 return 0; 3686 } 3687 3688 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr, 3689 unsigned long entry_index, struct pp_power_state *state) 3690 { 3691 int result; 3692 struct smu7_power_state *ps; 3693 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3694 struct phm_ppt_v1_information *table_info = 3695 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3696 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 3697 table_info->vdd_dep_on_mclk; 3698 3699 state->hardware.magic = PHM_VIslands_Magic; 3700 3701 ps = (struct smu7_power_state *)(&state->hardware); 3702 3703 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state, 3704 smu7_get_pp_table_entry_callback_func_v1); 3705 3706 /* This is the earliest time we have all the dependency table and the VBIOS boot state 3707 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state 3708 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state 3709 */ 3710 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3711 if (dep_mclk_table->entries[0].clk != 3712 data->vbios_boot_state.mclk_bootup_value) 3713 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3714 "does not match VBIOS boot MCLK level"); 3715 if (dep_mclk_table->entries[0].vddci != 3716 data->vbios_boot_state.vddci_bootup_value) 3717 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3718 "does not match VBIOS boot VDDCI level"); 3719 } 3720 3721 /* set DC compatible flag if this state supports DC */ 3722 if (!state->validation.disallowOnDC) 3723 ps->dc_compatible = true; 3724 3725 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3726 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3727 3728 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3729 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3730 3731 if (!result) { 3732 uint32_t i; 3733 3734 switch (state->classification.ui_label) { 3735 case PP_StateUILabel_Performance: 3736 data->use_pcie_performance_levels = true; 3737 for (i = 0; i < ps->performance_level_count; i++) { 3738 if (data->pcie_gen_performance.max < 3739 ps->performance_levels[i].pcie_gen) 3740 data->pcie_gen_performance.max = 3741 ps->performance_levels[i].pcie_gen; 3742 3743 if (data->pcie_gen_performance.min > 3744 ps->performance_levels[i].pcie_gen) 3745 data->pcie_gen_performance.min = 3746 ps->performance_levels[i].pcie_gen; 3747 3748 if (data->pcie_lane_performance.max < 3749 ps->performance_levels[i].pcie_lane) 3750 data->pcie_lane_performance.max = 3751 ps->performance_levels[i].pcie_lane; 3752 if (data->pcie_lane_performance.min > 3753 ps->performance_levels[i].pcie_lane) 3754 data->pcie_lane_performance.min = 3755 ps->performance_levels[i].pcie_lane; 3756 } 3757 break; 3758 case PP_StateUILabel_Battery: 3759 data->use_pcie_power_saving_levels = true; 3760 3761 for (i = 0; i < ps->performance_level_count; i++) { 3762 if (data->pcie_gen_power_saving.max < 3763 ps->performance_levels[i].pcie_gen) 3764 data->pcie_gen_power_saving.max = 3765 ps->performance_levels[i].pcie_gen; 3766 3767 if (data->pcie_gen_power_saving.min > 3768 ps->performance_levels[i].pcie_gen) 3769 data->pcie_gen_power_saving.min = 3770 ps->performance_levels[i].pcie_gen; 3771 3772 if (data->pcie_lane_power_saving.max < 3773 ps->performance_levels[i].pcie_lane) 3774 data->pcie_lane_power_saving.max = 3775 ps->performance_levels[i].pcie_lane; 3776 3777 if (data->pcie_lane_power_saving.min > 3778 ps->performance_levels[i].pcie_lane) 3779 data->pcie_lane_power_saving.min = 3780 ps->performance_levels[i].pcie_lane; 3781 } 3782 break; 3783 default: 3784 break; 3785 } 3786 } 3787 return 0; 3788 } 3789 3790 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr, 3791 struct pp_hw_power_state *power_state, 3792 unsigned int index, const void *clock_info) 3793 { 3794 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3795 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state); 3796 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; 3797 struct smu7_performance_level *performance_level; 3798 uint32_t engine_clock, memory_clock; 3799 uint16_t pcie_gen_from_bios; 3800 3801 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; 3802 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; 3803 3804 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) 3805 data->highest_mclk = memory_clock; 3806 3807 PP_ASSERT_WITH_CODE( 3808 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3809 "Performance levels exceeds SMC limit!", 3810 return -EINVAL); 3811 3812 PP_ASSERT_WITH_CODE( 3813 (ps->performance_level_count < 3814 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3815 "Performance levels exceeds Driver limit, Skip!", 3816 return 0); 3817 3818 performance_level = &(ps->performance_levels 3819 [ps->performance_level_count++]); 3820 3821 /* Performance levels are arranged from low to high. */ 3822 performance_level->memory_clock = memory_clock; 3823 performance_level->engine_clock = engine_clock; 3824 3825 pcie_gen_from_bios = visland_clk_info->ucPCIEGen; 3826 3827 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); 3828 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); 3829 3830 return 0; 3831 } 3832 3833 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr, 3834 unsigned long entry_index, struct pp_power_state *state) 3835 { 3836 int result; 3837 struct smu7_power_state *ps; 3838 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3839 struct phm_clock_voltage_dependency_table *dep_mclk_table = 3840 hwmgr->dyn_state.vddci_dependency_on_mclk; 3841 3842 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); 3843 3844 state->hardware.magic = PHM_VIslands_Magic; 3845 3846 ps = (struct smu7_power_state *)(&state->hardware); 3847 3848 result = pp_tables_get_entry(hwmgr, entry_index, state, 3849 smu7_get_pp_table_entry_callback_func_v0); 3850 3851 /* 3852 * This is the earliest time we have all the dependency table 3853 * and the VBIOS boot state as 3854 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot 3855 * state if there is only one VDDCI/MCLK level, check if it's 3856 * the same as VBIOS boot state 3857 */ 3858 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3859 if (dep_mclk_table->entries[0].clk != 3860 data->vbios_boot_state.mclk_bootup_value) 3861 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3862 "does not match VBIOS boot MCLK level"); 3863 if (dep_mclk_table->entries[0].v != 3864 data->vbios_boot_state.vddci_bootup_value) 3865 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3866 "does not match VBIOS boot VDDCI level"); 3867 } 3868 3869 /* set DC compatible flag if this state supports DC */ 3870 if (!state->validation.disallowOnDC) 3871 ps->dc_compatible = true; 3872 3873 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3874 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3875 3876 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3877 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3878 3879 if (!result) { 3880 uint32_t i; 3881 3882 switch (state->classification.ui_label) { 3883 case PP_StateUILabel_Performance: 3884 data->use_pcie_performance_levels = true; 3885 3886 for (i = 0; i < ps->performance_level_count; i++) { 3887 if (data->pcie_gen_performance.max < 3888 ps->performance_levels[i].pcie_gen) 3889 data->pcie_gen_performance.max = 3890 ps->performance_levels[i].pcie_gen; 3891 3892 if (data->pcie_gen_performance.min > 3893 ps->performance_levels[i].pcie_gen) 3894 data->pcie_gen_performance.min = 3895 ps->performance_levels[i].pcie_gen; 3896 3897 if (data->pcie_lane_performance.max < 3898 ps->performance_levels[i].pcie_lane) 3899 data->pcie_lane_performance.max = 3900 ps->performance_levels[i].pcie_lane; 3901 3902 if (data->pcie_lane_performance.min > 3903 ps->performance_levels[i].pcie_lane) 3904 data->pcie_lane_performance.min = 3905 ps->performance_levels[i].pcie_lane; 3906 } 3907 break; 3908 case PP_StateUILabel_Battery: 3909 data->use_pcie_power_saving_levels = true; 3910 3911 for (i = 0; i < ps->performance_level_count; i++) { 3912 if (data->pcie_gen_power_saving.max < 3913 ps->performance_levels[i].pcie_gen) 3914 data->pcie_gen_power_saving.max = 3915 ps->performance_levels[i].pcie_gen; 3916 3917 if (data->pcie_gen_power_saving.min > 3918 ps->performance_levels[i].pcie_gen) 3919 data->pcie_gen_power_saving.min = 3920 ps->performance_levels[i].pcie_gen; 3921 3922 if (data->pcie_lane_power_saving.max < 3923 ps->performance_levels[i].pcie_lane) 3924 data->pcie_lane_power_saving.max = 3925 ps->performance_levels[i].pcie_lane; 3926 3927 if (data->pcie_lane_power_saving.min > 3928 ps->performance_levels[i].pcie_lane) 3929 data->pcie_lane_power_saving.min = 3930 ps->performance_levels[i].pcie_lane; 3931 } 3932 break; 3933 default: 3934 break; 3935 } 3936 } 3937 return 0; 3938 } 3939 3940 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3941 unsigned long entry_index, struct pp_power_state *state) 3942 { 3943 if (hwmgr->pp_table_version == PP_TABLE_V0) 3944 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state); 3945 else if (hwmgr->pp_table_version == PP_TABLE_V1) 3946 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state); 3947 3948 return 0; 3949 } 3950 3951 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query) 3952 { 3953 struct amdgpu_device *adev = hwmgr->adev; 3954 int i; 3955 u32 tmp = 0; 3956 3957 if (!query) 3958 return -EINVAL; 3959 3960 /* 3961 * PPSMC_MSG_GetCurrPkgPwr is not supported on: 3962 * - Hawaii 3963 * - Bonaire 3964 * - Fiji 3965 * - Tonga 3966 */ 3967 if ((adev->asic_type != CHIP_HAWAII) && 3968 (adev->asic_type != CHIP_BONAIRE) && 3969 (adev->asic_type != CHIP_FIJI) && 3970 (adev->asic_type != CHIP_TONGA)) { 3971 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp); 3972 *query = tmp; 3973 3974 if (tmp != 0) 3975 return 0; 3976 } 3977 3978 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL); 3979 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 3980 ixSMU_PM_STATUS_95, 0); 3981 3982 for (i = 0; i < 10; i++) { 3983 msleep(500); 3984 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL); 3985 tmp = cgs_read_ind_register(hwmgr->device, 3986 CGS_IND_REG__SMC, 3987 ixSMU_PM_STATUS_95); 3988 if (tmp != 0) 3989 break; 3990 } 3991 *query = tmp; 3992 3993 return 0; 3994 } 3995 3996 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3997 void *value, int *size) 3998 { 3999 uint32_t sclk, mclk, activity_percent; 4000 uint32_t offset, val_vid; 4001 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4002 4003 /* size must be at least 4 bytes for all sensors */ 4004 if (*size < 4) 4005 return -EINVAL; 4006 4007 switch (idx) { 4008 case AMDGPU_PP_SENSOR_GFX_SCLK: 4009 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk); 4010 *((uint32_t *)value) = sclk; 4011 *size = 4; 4012 return 0; 4013 case AMDGPU_PP_SENSOR_GFX_MCLK: 4014 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk); 4015 *((uint32_t *)value) = mclk; 4016 *size = 4; 4017 return 0; 4018 case AMDGPU_PP_SENSOR_GPU_LOAD: 4019 case AMDGPU_PP_SENSOR_MEM_LOAD: 4020 offset = data->soft_regs_start + smum_get_offsetof(hwmgr, 4021 SMU_SoftRegisters, 4022 (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ? 4023 AverageGraphicsActivity : 4024 AverageMemoryActivity); 4025 4026 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); 4027 activity_percent += 0x80; 4028 activity_percent >>= 8; 4029 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 4030 *size = 4; 4031 return 0; 4032 case AMDGPU_PP_SENSOR_GPU_TEMP: 4033 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr); 4034 *size = 4; 4035 return 0; 4036 case AMDGPU_PP_SENSOR_UVD_POWER: 4037 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 4038 *size = 4; 4039 return 0; 4040 case AMDGPU_PP_SENSOR_VCE_POWER: 4041 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 4042 *size = 4; 4043 return 0; 4044 case AMDGPU_PP_SENSOR_GPU_INPUT_POWER: 4045 return smu7_get_gpu_power(hwmgr, (uint32_t *)value); 4046 case AMDGPU_PP_SENSOR_VDDGFX: 4047 if ((data->vr_config & VRCONF_VDDGFX_MASK) == 4048 (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT)) 4049 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 4050 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID); 4051 else 4052 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 4053 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID); 4054 4055 *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid); 4056 return 0; 4057 default: 4058 return -EOPNOTSUPP; 4059 } 4060 } 4061 4062 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 4063 { 4064 const struct phm_set_power_state_input *states = 4065 (const struct phm_set_power_state_input *)input; 4066 const struct smu7_power_state *smu7_ps = 4067 cast_const_phw_smu7_power_state(states->pnew_state); 4068 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4069 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4070 uint32_t sclk = smu7_ps->performance_levels 4071 [smu7_ps->performance_level_count - 1].engine_clock; 4072 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 4073 uint32_t mclk = smu7_ps->performance_levels 4074 [smu7_ps->performance_level_count - 1].memory_clock; 4075 struct PP_Clocks min_clocks = {0}; 4076 uint32_t i; 4077 4078 for (i = 0; i < sclk_table->count; i++) { 4079 if (sclk == sclk_table->dpm_levels[i].value) 4080 break; 4081 } 4082 4083 if (i >= sclk_table->count) { 4084 if (sclk > sclk_table->dpm_levels[i-1].value) { 4085 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 4086 sclk_table->dpm_levels[i-1].value = sclk; 4087 } 4088 } else { 4089 /* TODO: Check SCLK in DAL's minimum clocks 4090 * in case DeepSleep divider update is required. 4091 */ 4092 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && 4093 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK || 4094 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 4095 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; 4096 } 4097 4098 for (i = 0; i < mclk_table->count; i++) { 4099 if (mclk == mclk_table->dpm_levels[i].value) 4100 break; 4101 } 4102 4103 if (i >= mclk_table->count) { 4104 if (mclk > mclk_table->dpm_levels[i-1].value) { 4105 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 4106 mclk_table->dpm_levels[i-1].value = mclk; 4107 } 4108 } 4109 4110 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4111 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; 4112 4113 return 0; 4114 } 4115 4116 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr, 4117 const struct smu7_power_state *smu7_ps) 4118 { 4119 uint32_t i; 4120 uint32_t sclk, max_sclk = 0; 4121 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4122 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4123 4124 for (i = 0; i < smu7_ps->performance_level_count; i++) { 4125 sclk = smu7_ps->performance_levels[i].engine_clock; 4126 if (max_sclk < sclk) 4127 max_sclk = sclk; 4128 } 4129 4130 for (i = 0; i < dpm_table->sclk_table.count; i++) { 4131 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) 4132 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? 4133 dpm_table->pcie_speed_table.dpm_levels 4134 [dpm_table->pcie_speed_table.count - 1].value : 4135 dpm_table->pcie_speed_table.dpm_levels[i].value); 4136 } 4137 4138 return 0; 4139 } 4140 4141 static int smu7_request_link_speed_change_before_state_change( 4142 struct pp_hwmgr *hwmgr, const void *input) 4143 { 4144 const struct phm_set_power_state_input *states = 4145 (const struct phm_set_power_state_input *)input; 4146 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4147 const struct smu7_power_state *smu7_nps = 4148 cast_const_phw_smu7_power_state(states->pnew_state); 4149 const struct smu7_power_state *polaris10_cps = 4150 cast_const_phw_smu7_power_state(states->pcurrent_state); 4151 4152 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps); 4153 uint16_t current_link_speed; 4154 4155 if (data->force_pcie_gen == PP_PCIEGenInvalid) 4156 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps); 4157 else 4158 current_link_speed = data->force_pcie_gen; 4159 4160 data->force_pcie_gen = PP_PCIEGenInvalid; 4161 data->pspp_notify_required = false; 4162 4163 if (target_link_speed > current_link_speed) { 4164 switch (target_link_speed) { 4165 #ifdef CONFIG_ACPI 4166 case PP_PCIEGen3: 4167 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false)) 4168 break; 4169 data->force_pcie_gen = PP_PCIEGen2; 4170 if (current_link_speed == PP_PCIEGen2) 4171 break; 4172 fallthrough; 4173 case PP_PCIEGen2: 4174 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false)) 4175 break; 4176 fallthrough; 4177 #endif 4178 default: 4179 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr); 4180 break; 4181 } 4182 } else { 4183 if (target_link_speed < current_link_speed) 4184 data->pspp_notify_required = true; 4185 } 4186 4187 return 0; 4188 } 4189 4190 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4191 { 4192 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4193 4194 if (0 == data->need_update_smu7_dpm_table) 4195 return 0; 4196 4197 if ((0 == data->sclk_dpm_key_disabled) && 4198 (data->need_update_smu7_dpm_table & 4199 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { 4200 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4201 "Trying to freeze SCLK DPM when DPM is disabled", 4202 ); 4203 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4204 PPSMC_MSG_SCLKDPM_FreezeLevel, 4205 NULL), 4206 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", 4207 return -EINVAL); 4208 } 4209 4210 if ((0 == data->mclk_dpm_key_disabled) && 4211 !data->mclk_ignore_signal && 4212 (data->need_update_smu7_dpm_table & 4213 DPMTABLE_OD_UPDATE_MCLK)) { 4214 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4215 "Trying to freeze MCLK DPM when DPM is disabled", 4216 ); 4217 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4218 PPSMC_MSG_MCLKDPM_FreezeLevel, 4219 NULL), 4220 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", 4221 return -EINVAL); 4222 } 4223 4224 return 0; 4225 } 4226 4227 static int smu7_populate_and_upload_sclk_mclk_dpm_levels( 4228 struct pp_hwmgr *hwmgr, const void *input) 4229 { 4230 int result = 0; 4231 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4232 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4233 uint32_t count; 4234 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4235 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4236 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4237 4238 if (0 == data->need_update_smu7_dpm_table) 4239 return 0; 4240 4241 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 4242 for (count = 0; count < dpm_table->sclk_table.count; count++) { 4243 dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled; 4244 dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock; 4245 } 4246 } 4247 4248 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 4249 for (count = 0; count < dpm_table->mclk_table.count; count++) { 4250 dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled; 4251 dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock; 4252 } 4253 } 4254 4255 if (data->need_update_smu7_dpm_table & 4256 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) { 4257 result = smum_populate_all_graphic_levels(hwmgr); 4258 PP_ASSERT_WITH_CODE((0 == result), 4259 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 4260 return result); 4261 } 4262 4263 if (data->need_update_smu7_dpm_table & 4264 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) { 4265 /*populate MCLK dpm table to SMU7 */ 4266 result = smum_populate_all_memory_levels(hwmgr); 4267 PP_ASSERT_WITH_CODE((0 == result), 4268 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 4269 return result); 4270 } 4271 4272 return result; 4273 } 4274 4275 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 4276 struct smu7_single_dpm_table *dpm_table, 4277 uint32_t low_limit, uint32_t high_limit) 4278 { 4279 uint32_t i; 4280 4281 /* force the trim if mclk_switching is disabled to prevent flicker */ 4282 bool force_trim = (low_limit == high_limit); 4283 for (i = 0; i < dpm_table->count; i++) { 4284 /*skip the trim if od is enabled*/ 4285 if ((!hwmgr->od_enabled || force_trim) 4286 && (dpm_table->dpm_levels[i].value < low_limit 4287 || dpm_table->dpm_levels[i].value > high_limit)) 4288 dpm_table->dpm_levels[i].enabled = false; 4289 else 4290 dpm_table->dpm_levels[i].enabled = true; 4291 } 4292 4293 return 0; 4294 } 4295 4296 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr, 4297 const struct smu7_power_state *smu7_ps) 4298 { 4299 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4300 uint32_t high_limit_count; 4301 4302 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1), 4303 "power state did not have any performance level", 4304 return -EINVAL); 4305 4306 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1; 4307 4308 smu7_trim_single_dpm_states(hwmgr, 4309 &(data->dpm_table.sclk_table), 4310 smu7_ps->performance_levels[0].engine_clock, 4311 smu7_ps->performance_levels[high_limit_count].engine_clock); 4312 4313 smu7_trim_single_dpm_states(hwmgr, 4314 &(data->dpm_table.mclk_table), 4315 smu7_ps->performance_levels[0].memory_clock, 4316 smu7_ps->performance_levels[high_limit_count].memory_clock); 4317 4318 return 0; 4319 } 4320 4321 static int smu7_generate_dpm_level_enable_mask( 4322 struct pp_hwmgr *hwmgr, const void *input) 4323 { 4324 int result = 0; 4325 const struct phm_set_power_state_input *states = 4326 (const struct phm_set_power_state_input *)input; 4327 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4328 const struct smu7_power_state *smu7_ps = 4329 cast_const_phw_smu7_power_state(states->pnew_state); 4330 4331 4332 result = smu7_trim_dpm_states(hwmgr, smu7_ps); 4333 if (result) 4334 return result; 4335 4336 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 4337 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); 4338 data->dpm_level_enable_mask.mclk_dpm_enable_mask = 4339 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); 4340 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 4341 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); 4342 4343 return 0; 4344 } 4345 4346 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4347 { 4348 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4349 4350 if (0 == data->need_update_smu7_dpm_table) 4351 return 0; 4352 4353 if ((0 == data->sclk_dpm_key_disabled) && 4354 (data->need_update_smu7_dpm_table & 4355 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) { 4356 4357 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4358 "Trying to Unfreeze SCLK DPM when DPM is disabled", 4359 ); 4360 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4361 PPSMC_MSG_SCLKDPM_UnfreezeLevel, 4362 NULL), 4363 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", 4364 return -EINVAL); 4365 } 4366 4367 if ((0 == data->mclk_dpm_key_disabled) && 4368 !data->mclk_ignore_signal && 4369 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { 4370 4371 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4372 "Trying to Unfreeze MCLK DPM when DPM is disabled", 4373 ); 4374 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4375 PPSMC_MSG_MCLKDPM_UnfreezeLevel, 4376 NULL), 4377 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", 4378 return -EINVAL); 4379 } 4380 4381 data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 4382 4383 return 0; 4384 } 4385 4386 static int smu7_notify_link_speed_change_after_state_change( 4387 struct pp_hwmgr *hwmgr, const void *input) 4388 { 4389 const struct phm_set_power_state_input *states = 4390 (const struct phm_set_power_state_input *)input; 4391 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4392 const struct smu7_power_state *smu7_ps = 4393 cast_const_phw_smu7_power_state(states->pnew_state); 4394 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps); 4395 uint8_t request; 4396 4397 if (data->pspp_notify_required) { 4398 if (target_link_speed == PP_PCIEGen3) 4399 request = PCIE_PERF_REQ_GEN3; 4400 else if (target_link_speed == PP_PCIEGen2) 4401 request = PCIE_PERF_REQ_GEN2; 4402 else 4403 request = PCIE_PERF_REQ_GEN1; 4404 4405 if (request == PCIE_PERF_REQ_GEN1 && 4406 smu7_get_current_pcie_speed(hwmgr) > 0) 4407 return 0; 4408 4409 #ifdef CONFIG_ACPI 4410 if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) { 4411 if (PP_PCIEGen2 == target_link_speed) 4412 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!"); 4413 else 4414 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!"); 4415 } 4416 #endif 4417 } 4418 4419 return 0; 4420 } 4421 4422 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr) 4423 { 4424 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL; 4425 } 4426 4427 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr) 4428 { 4429 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4430 4431 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) { 4432 if (hwmgr->chip_id == CHIP_VEGAM) 4433 smum_send_msg_to_smc_with_parameter(hwmgr, 4434 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2, 4435 NULL); 4436 else 4437 smum_send_msg_to_smc_with_parameter(hwmgr, 4438 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2, 4439 NULL); 4440 data->last_sent_vbi_timeout = data->frame_time_x2; 4441 } 4442 4443 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL; 4444 } 4445 4446 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr) 4447 { 4448 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4449 int result = 0; 4450 4451 if (data->mclk_ignore_signal) 4452 result = smu7_notify_no_display(hwmgr); 4453 else 4454 result = smu7_notify_has_display(hwmgr); 4455 4456 return result; 4457 } 4458 4459 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) 4460 { 4461 int tmp_result, result = 0; 4462 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4463 4464 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 4465 PP_ASSERT_WITH_CODE((0 == tmp_result), 4466 "Failed to find DPM states clocks in DPM table!", 4467 result = tmp_result); 4468 4469 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4470 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4471 tmp_result = 4472 smu7_request_link_speed_change_before_state_change(hwmgr, input); 4473 PP_ASSERT_WITH_CODE((0 == tmp_result), 4474 "Failed to request link speed change before state change!", 4475 result = tmp_result); 4476 } 4477 4478 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr); 4479 PP_ASSERT_WITH_CODE((0 == tmp_result), 4480 "Failed to freeze SCLK MCLK DPM!", result = tmp_result); 4481 4482 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 4483 PP_ASSERT_WITH_CODE((0 == tmp_result), 4484 "Failed to populate and upload SCLK MCLK DPM levels!", 4485 result = tmp_result); 4486 4487 /* 4488 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 4489 * That effectively disables AVFS feature. 4490 */ 4491 if (hwmgr->hardcode_pp_table != NULL) 4492 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 4493 4494 tmp_result = smu7_update_avfs(hwmgr); 4495 PP_ASSERT_WITH_CODE((0 == tmp_result), 4496 "Failed to update avfs voltages!", 4497 result = tmp_result); 4498 4499 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input); 4500 PP_ASSERT_WITH_CODE((0 == tmp_result), 4501 "Failed to generate DPM level enabled mask!", 4502 result = tmp_result); 4503 4504 tmp_result = smum_update_sclk_threshold(hwmgr); 4505 PP_ASSERT_WITH_CODE((0 == tmp_result), 4506 "Failed to update SCLK threshold!", 4507 result = tmp_result); 4508 4509 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr); 4510 PP_ASSERT_WITH_CODE((0 == tmp_result), 4511 "Failed to unfreeze SCLK MCLK DPM!", 4512 result = tmp_result); 4513 4514 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr); 4515 PP_ASSERT_WITH_CODE((0 == tmp_result), 4516 "Failed to upload DPM level enabled mask!", 4517 result = tmp_result); 4518 4519 tmp_result = smu7_notify_smc_display(hwmgr); 4520 PP_ASSERT_WITH_CODE((0 == tmp_result), 4521 "Failed to notify smc display settings!", 4522 result = tmp_result); 4523 4524 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4525 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4526 tmp_result = 4527 smu7_notify_link_speed_change_after_state_change(hwmgr, input); 4528 PP_ASSERT_WITH_CODE((0 == tmp_result), 4529 "Failed to notify link speed change after state change!", 4530 result = tmp_result); 4531 } 4532 data->apply_optimized_settings = false; 4533 return result; 4534 } 4535 4536 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) 4537 { 4538 hwmgr->thermal_controller. 4539 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; 4540 4541 return smum_send_msg_to_smc_with_parameter(hwmgr, 4542 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm, 4543 NULL); 4544 } 4545 4546 static int 4547 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) 4548 { 4549 return 0; 4550 } 4551 4552 /** 4553 * smu7_program_display_gap - Programs the display gap 4554 * 4555 * @hwmgr: the address of the powerplay hardware manager. 4556 * Return: always OK 4557 */ 4558 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr) 4559 { 4560 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4561 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); 4562 uint32_t display_gap2; 4563 uint32_t pre_vbi_time_in_us; 4564 uint32_t frame_time_in_us; 4565 uint32_t ref_clock, refresh_rate; 4566 4567 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); 4568 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); 4569 4570 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 4571 refresh_rate = hwmgr->display_config->vrefresh; 4572 4573 if (0 == refresh_rate) 4574 refresh_rate = 60; 4575 4576 frame_time_in_us = 1000000 / refresh_rate; 4577 4578 pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time; 4579 4580 data->frame_time_x2 = frame_time_in_us * 2 / 100; 4581 4582 if (data->frame_time_x2 < 280) { 4583 pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2); 4584 data->frame_time_x2 = 280; 4585 } 4586 4587 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); 4588 4589 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); 4590 4591 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4592 data->soft_regs_start + smum_get_offsetof(hwmgr, 4593 SMU_SoftRegisters, 4594 PreVBlankGap), 0x64); 4595 4596 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4597 data->soft_regs_start + smum_get_offsetof(hwmgr, 4598 SMU_SoftRegisters, 4599 VBlankTimeout), 4600 (frame_time_in_us - pre_vbi_time_in_us)); 4601 4602 return 0; 4603 } 4604 4605 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4606 { 4607 return smu7_program_display_gap(hwmgr); 4608 } 4609 4610 /** 4611 * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM 4612 * 4613 * @hwmgr: the address of the powerplay hardware manager. 4614 * @us_max_fan_rpm: max operating fan RPM value. 4615 * Return: The response that came from the SMC. 4616 */ 4617 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) 4618 { 4619 hwmgr->thermal_controller. 4620 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; 4621 4622 return smum_send_msg_to_smc_with_parameter(hwmgr, 4623 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm, 4624 NULL); 4625 } 4626 4627 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = { 4628 .process = phm_irq_process, 4629 }; 4630 4631 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr) 4632 { 4633 struct amdgpu_irq_src *source = 4634 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); 4635 4636 if (!source) 4637 return -ENOMEM; 4638 4639 source->funcs = &smu7_irq_funcs; 4640 4641 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4642 AMDGPU_IRQ_CLIENTID_LEGACY, 4643 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH, 4644 source); 4645 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4646 AMDGPU_IRQ_CLIENTID_LEGACY, 4647 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW, 4648 source); 4649 4650 /* Register CTF(GPIO_19) interrupt */ 4651 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4652 AMDGPU_IRQ_CLIENTID_LEGACY, 4653 VISLANDS30_IV_SRCID_GPIO_19, 4654 source); 4655 4656 return 0; 4657 } 4658 4659 static bool 4660 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4661 { 4662 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4663 bool is_update_required = false; 4664 4665 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4666 is_update_required = true; 4667 4668 if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh) 4669 is_update_required = true; 4670 4671 if (hwmgr->chip_id >= CHIP_POLARIS10 && 4672 hwmgr->chip_id <= CHIP_VEGAM && 4673 data->last_sent_vbi_timeout != data->frame_time_x2) 4674 is_update_required = true; 4675 4676 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { 4677 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr && 4678 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK || 4679 hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 4680 is_update_required = true; 4681 } 4682 return is_update_required; 4683 } 4684 4685 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1, 4686 const struct smu7_performance_level *pl2) 4687 { 4688 return ((pl1->memory_clock == pl2->memory_clock) && 4689 (pl1->engine_clock == pl2->engine_clock) && 4690 (pl1->pcie_gen == pl2->pcie_gen) && 4691 (pl1->pcie_lane == pl2->pcie_lane)); 4692 } 4693 4694 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr, 4695 const struct pp_hw_power_state *pstate1, 4696 const struct pp_hw_power_state *pstate2, bool *equal) 4697 { 4698 const struct smu7_power_state *psa; 4699 const struct smu7_power_state *psb; 4700 int i; 4701 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4702 4703 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4704 return -EINVAL; 4705 4706 psa = cast_const_phw_smu7_power_state(pstate1); 4707 psb = cast_const_phw_smu7_power_state(pstate2); 4708 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4709 if (psa->performance_level_count != psb->performance_level_count) { 4710 *equal = false; 4711 return 0; 4712 } 4713 4714 for (i = 0; i < psa->performance_level_count; i++) { 4715 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4716 /* If we have found even one performance level pair that is different the states are different. */ 4717 *equal = false; 4718 return 0; 4719 } 4720 } 4721 4722 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4723 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4724 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4725 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4726 /* For OD call, set value based on flag */ 4727 *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | 4728 DPMTABLE_OD_UPDATE_MCLK | 4729 DPMTABLE_OD_UPDATE_VDDC)); 4730 4731 return 0; 4732 } 4733 4734 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr) 4735 { 4736 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4737 4738 uint32_t tmp; 4739 4740 /* Read MC indirect register offset 0x9F bits [3:0] to see 4741 * if VBIOS has already loaded a full version of MC ucode 4742 * or not. 4743 */ 4744 4745 smu7_get_mc_microcode_version(hwmgr); 4746 4747 data->need_long_memory_training = false; 4748 4749 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 4750 ixMC_IO_DEBUG_UP_13); 4751 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 4752 4753 if (tmp & (1 << 23)) { 4754 data->mem_latency_high = MEM_LATENCY_HIGH; 4755 data->mem_latency_low = MEM_LATENCY_LOW; 4756 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4757 (hwmgr->chip_id == CHIP_POLARIS11) || 4758 (hwmgr->chip_id == CHIP_POLARIS12)) 4759 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL); 4760 } else { 4761 data->mem_latency_high = 330; 4762 data->mem_latency_low = 330; 4763 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4764 (hwmgr->chip_id == CHIP_POLARIS11) || 4765 (hwmgr->chip_id == CHIP_POLARIS12)) 4766 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL); 4767 } 4768 4769 return 0; 4770 } 4771 4772 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr) 4773 { 4774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4775 4776 data->clock_registers.vCG_SPLL_FUNC_CNTL = 4777 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); 4778 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = 4779 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); 4780 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = 4781 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); 4782 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = 4783 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); 4784 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = 4785 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); 4786 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = 4787 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); 4788 data->clock_registers.vDLL_CNTL = 4789 cgs_read_register(hwmgr->device, mmDLL_CNTL); 4790 data->clock_registers.vMCLK_PWRMGT_CNTL = 4791 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); 4792 data->clock_registers.vMPLL_AD_FUNC_CNTL = 4793 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); 4794 data->clock_registers.vMPLL_DQ_FUNC_CNTL = 4795 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); 4796 data->clock_registers.vMPLL_FUNC_CNTL = 4797 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); 4798 data->clock_registers.vMPLL_FUNC_CNTL_1 = 4799 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); 4800 data->clock_registers.vMPLL_FUNC_CNTL_2 = 4801 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); 4802 data->clock_registers.vMPLL_SS1 = 4803 cgs_read_register(hwmgr->device, mmMPLL_SS1); 4804 data->clock_registers.vMPLL_SS2 = 4805 cgs_read_register(hwmgr->device, mmMPLL_SS2); 4806 return 0; 4807 4808 } 4809 4810 /** 4811 * smu7_get_memory_type - Find out if memory is GDDR5. 4812 * 4813 * @hwmgr: the address of the powerplay hardware manager. 4814 * Return: always 0 4815 */ 4816 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr) 4817 { 4818 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4819 struct amdgpu_device *adev = hwmgr->adev; 4820 4821 data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5); 4822 4823 return 0; 4824 } 4825 4826 /** 4827 * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC 4828 * 4829 * @hwmgr: the address of the powerplay hardware manager. 4830 * Return: always 0 4831 */ 4832 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr) 4833 { 4834 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 4835 GENERAL_PWRMGT, STATIC_PM_EN, 1); 4836 4837 return 0; 4838 } 4839 4840 /** 4841 * smu7_init_power_gate_state - Initialize PowerGating States for different engines 4842 * 4843 * @hwmgr: the address of the powerplay hardware manager. 4844 * Return: always 0 4845 */ 4846 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr) 4847 { 4848 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4849 4850 data->uvd_power_gated = false; 4851 data->vce_power_gated = false; 4852 4853 return 0; 4854 } 4855 4856 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr) 4857 { 4858 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4859 4860 data->low_sclk_interrupt_threshold = 0; 4861 return 0; 4862 } 4863 4864 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr) 4865 { 4866 int tmp_result, result = 0; 4867 4868 smu7_check_mc_firmware(hwmgr); 4869 4870 tmp_result = smu7_read_clock_registers(hwmgr); 4871 PP_ASSERT_WITH_CODE((0 == tmp_result), 4872 "Failed to read clock registers!", result = tmp_result); 4873 4874 tmp_result = smu7_get_memory_type(hwmgr); 4875 PP_ASSERT_WITH_CODE((0 == tmp_result), 4876 "Failed to get memory type!", result = tmp_result); 4877 4878 tmp_result = smu7_enable_acpi_power_management(hwmgr); 4879 PP_ASSERT_WITH_CODE((0 == tmp_result), 4880 "Failed to enable ACPI power management!", result = tmp_result); 4881 4882 tmp_result = smu7_init_power_gate_state(hwmgr); 4883 PP_ASSERT_WITH_CODE((0 == tmp_result), 4884 "Failed to init power gate state!", result = tmp_result); 4885 4886 tmp_result = smu7_get_mc_microcode_version(hwmgr); 4887 PP_ASSERT_WITH_CODE((0 == tmp_result), 4888 "Failed to get MC microcode version!", result = tmp_result); 4889 4890 tmp_result = smu7_init_sclk_threshold(hwmgr); 4891 PP_ASSERT_WITH_CODE((0 == tmp_result), 4892 "Failed to init sclk threshold!", result = tmp_result); 4893 4894 return result; 4895 } 4896 4897 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 4898 enum pp_clock_type type, uint32_t mask) 4899 { 4900 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4901 4902 if (mask == 0) 4903 return -EINVAL; 4904 4905 switch (type) { 4906 case PP_SCLK: 4907 if (!data->sclk_dpm_key_disabled) 4908 smum_send_msg_to_smc_with_parameter(hwmgr, 4909 PPSMC_MSG_SCLKDPM_SetEnabledMask, 4910 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask, 4911 NULL); 4912 break; 4913 case PP_MCLK: 4914 if (!data->mclk_dpm_key_disabled) 4915 smum_send_msg_to_smc_with_parameter(hwmgr, 4916 PPSMC_MSG_MCLKDPM_SetEnabledMask, 4917 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask, 4918 NULL); 4919 break; 4920 case PP_PCIE: 4921 { 4922 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; 4923 4924 if (!data->pcie_dpm_key_disabled) { 4925 if (fls(tmp) != ffs(tmp)) 4926 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel, 4927 NULL); 4928 else 4929 smum_send_msg_to_smc_with_parameter(hwmgr, 4930 PPSMC_MSG_PCIeDPM_ForceLevel, 4931 fls(tmp) - 1, 4932 NULL); 4933 } 4934 break; 4935 } 4936 default: 4937 break; 4938 } 4939 4940 return 0; 4941 } 4942 4943 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr, 4944 enum pp_clock_type type, char *buf) 4945 { 4946 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4947 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4948 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 4949 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); 4950 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4951 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4952 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4953 int size = 0; 4954 uint32_t i, now, clock, pcie_speed; 4955 4956 switch (type) { 4957 case PP_SCLK: 4958 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock); 4959 4960 for (i = 0; i < sclk_table->count; i++) { 4961 if (clock > sclk_table->dpm_levels[i].value) 4962 continue; 4963 break; 4964 } 4965 now = i; 4966 4967 for (i = 0; i < sclk_table->count; i++) 4968 size += sprintf(buf + size, "%d: %uMhz %s\n", 4969 i, sclk_table->dpm_levels[i].value / 100, 4970 (i == now) ? "*" : ""); 4971 break; 4972 case PP_MCLK: 4973 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock); 4974 4975 for (i = 0; i < mclk_table->count; i++) { 4976 if (clock > mclk_table->dpm_levels[i].value) 4977 continue; 4978 break; 4979 } 4980 now = i; 4981 4982 for (i = 0; i < mclk_table->count; i++) 4983 size += sprintf(buf + size, "%d: %uMhz %s\n", 4984 i, mclk_table->dpm_levels[i].value / 100, 4985 (i == now) ? "*" : ""); 4986 break; 4987 case PP_PCIE: 4988 pcie_speed = smu7_get_current_pcie_speed(hwmgr); 4989 for (i = 0; i < pcie_table->count; i++) { 4990 if (pcie_speed != pcie_table->dpm_levels[i].value) 4991 continue; 4992 break; 4993 } 4994 now = i; 4995 4996 for (i = 0; i < pcie_table->count; i++) 4997 size += sprintf(buf + size, "%d: %s %s\n", i, 4998 (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" : 4999 (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" : 5000 (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "", 5001 (i == now) ? "*" : ""); 5002 break; 5003 case OD_SCLK: 5004 if (hwmgr->od_enabled) { 5005 size += sprintf(buf + size, "%s:\n", "OD_SCLK"); 5006 for (i = 0; i < odn_sclk_table->num_of_pl; i++) 5007 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 5008 i, odn_sclk_table->entries[i].clock/100, 5009 odn_sclk_table->entries[i].vddc); 5010 } 5011 break; 5012 case OD_MCLK: 5013 if (hwmgr->od_enabled) { 5014 size += sprintf(buf + size, "%s:\n", "OD_MCLK"); 5015 for (i = 0; i < odn_mclk_table->num_of_pl; i++) 5016 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 5017 i, odn_mclk_table->entries[i].clock/100, 5018 odn_mclk_table->entries[i].vddc); 5019 } 5020 break; 5021 case OD_RANGE: 5022 if (hwmgr->od_enabled) { 5023 size += sprintf(buf + size, "%s:\n", "OD_RANGE"); 5024 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 5025 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 5026 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5027 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 5028 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 5029 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5030 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 5031 data->odn_dpm_table.min_vddc, 5032 data->odn_dpm_table.max_vddc); 5033 } 5034 break; 5035 default: 5036 break; 5037 } 5038 return size; 5039 } 5040 5041 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 5042 { 5043 switch (mode) { 5044 case AMD_FAN_CTRL_NONE: 5045 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255); 5046 break; 5047 case AMD_FAN_CTRL_MANUAL: 5048 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 5049 PHM_PlatformCaps_MicrocodeFanControl)) 5050 smu7_fan_ctrl_stop_smc_fan_control(hwmgr); 5051 break; 5052 case AMD_FAN_CTRL_AUTO: 5053 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode)) 5054 smu7_fan_ctrl_start_smc_fan_control(hwmgr); 5055 break; 5056 default: 5057 break; 5058 } 5059 } 5060 5061 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr) 5062 { 5063 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL; 5064 } 5065 5066 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr) 5067 { 5068 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5069 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 5070 struct smu7_single_dpm_table *golden_sclk_table = 5071 &(data->golden_dpm_table.sclk_table); 5072 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 5073 int golden_value = golden_sclk_table->dpm_levels 5074 [golden_sclk_table->count - 1].value; 5075 5076 value -= golden_value; 5077 value = DIV_ROUND_UP(value * 100, golden_value); 5078 5079 return value; 5080 } 5081 5082 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 5083 { 5084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5085 struct smu7_single_dpm_table *golden_sclk_table = 5086 &(data->golden_dpm_table.sclk_table); 5087 struct pp_power_state *ps; 5088 struct smu7_power_state *smu7_ps; 5089 5090 if (value > 20) 5091 value = 20; 5092 5093 ps = hwmgr->request_ps; 5094 5095 if (ps == NULL) 5096 return -EINVAL; 5097 5098 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 5099 5100 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock = 5101 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * 5102 value / 100 + 5103 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; 5104 5105 return 0; 5106 } 5107 5108 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr) 5109 { 5110 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5111 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5112 struct smu7_single_dpm_table *golden_mclk_table = 5113 &(data->golden_dpm_table.mclk_table); 5114 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 5115 int golden_value = golden_mclk_table->dpm_levels 5116 [golden_mclk_table->count - 1].value; 5117 5118 value -= golden_value; 5119 value = DIV_ROUND_UP(value * 100, golden_value); 5120 5121 return value; 5122 } 5123 5124 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 5125 { 5126 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5127 struct smu7_single_dpm_table *golden_mclk_table = 5128 &(data->golden_dpm_table.mclk_table); 5129 struct pp_power_state *ps; 5130 struct smu7_power_state *smu7_ps; 5131 5132 if (value > 20) 5133 value = 20; 5134 5135 ps = hwmgr->request_ps; 5136 5137 if (ps == NULL) 5138 return -EINVAL; 5139 5140 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 5141 5142 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock = 5143 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * 5144 value / 100 + 5145 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; 5146 5147 return 0; 5148 } 5149 5150 5151 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5152 { 5153 struct phm_ppt_v1_information *table_info = 5154 (struct phm_ppt_v1_information *)hwmgr->pptable; 5155 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL; 5156 struct phm_clock_voltage_dependency_table *sclk_table; 5157 int i; 5158 5159 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5160 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL) 5161 return -EINVAL; 5162 dep_sclk_table = table_info->vdd_dep_on_sclk; 5163 for (i = 0; i < dep_sclk_table->count; i++) 5164 clocks->clock[i] = dep_sclk_table->entries[i].clk * 10; 5165 clocks->count = dep_sclk_table->count; 5166 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5167 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 5168 for (i = 0; i < sclk_table->count; i++) 5169 clocks->clock[i] = sclk_table->entries[i].clk * 10; 5170 clocks->count = sclk_table->count; 5171 } 5172 5173 return 0; 5174 } 5175 5176 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk) 5177 { 5178 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5179 5180 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY) 5181 return data->mem_latency_high; 5182 else if (clk >= MEM_FREQ_HIGH_LATENCY) 5183 return data->mem_latency_low; 5184 else 5185 return MEM_LATENCY_ERR; 5186 } 5187 5188 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5189 { 5190 struct phm_ppt_v1_information *table_info = 5191 (struct phm_ppt_v1_information *)hwmgr->pptable; 5192 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 5193 int i; 5194 struct phm_clock_voltage_dependency_table *mclk_table; 5195 5196 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5197 if (table_info == NULL) 5198 return -EINVAL; 5199 dep_mclk_table = table_info->vdd_dep_on_mclk; 5200 for (i = 0; i < dep_mclk_table->count; i++) { 5201 clocks->clock[i] = dep_mclk_table->entries[i].clk * 10; 5202 clocks->latency[i] = smu7_get_mem_latency(hwmgr, 5203 dep_mclk_table->entries[i].clk); 5204 } 5205 clocks->count = dep_mclk_table->count; 5206 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5207 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 5208 for (i = 0; i < mclk_table->count; i++) 5209 clocks->clock[i] = mclk_table->entries[i].clk * 10; 5210 clocks->count = mclk_table->count; 5211 } 5212 return 0; 5213 } 5214 5215 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, 5216 struct amd_pp_clocks *clocks) 5217 { 5218 switch (type) { 5219 case amd_pp_sys_clock: 5220 smu7_get_sclks(hwmgr, clocks); 5221 break; 5222 case amd_pp_mem_clock: 5223 smu7_get_mclks(hwmgr, clocks); 5224 break; 5225 default: 5226 return -EINVAL; 5227 } 5228 5229 return 0; 5230 } 5231 5232 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr, 5233 struct pp_clock_levels_with_latency *clocks) 5234 { 5235 struct phm_ppt_v1_information *table_info = 5236 (struct phm_ppt_v1_information *)hwmgr->pptable; 5237 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5238 table_info->vdd_dep_on_sclk; 5239 int i; 5240 5241 clocks->num_levels = 0; 5242 for (i = 0; i < dep_sclk_table->count; i++) { 5243 if (dep_sclk_table->entries[i].clk) { 5244 clocks->data[clocks->num_levels].clocks_in_khz = 5245 dep_sclk_table->entries[i].clk * 10; 5246 clocks->num_levels++; 5247 } 5248 } 5249 5250 return 0; 5251 } 5252 5253 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr, 5254 struct pp_clock_levels_with_latency *clocks) 5255 { 5256 struct phm_ppt_v1_information *table_info = 5257 (struct phm_ppt_v1_information *)hwmgr->pptable; 5258 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5259 table_info->vdd_dep_on_mclk; 5260 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5261 int i; 5262 5263 clocks->num_levels = 0; 5264 data->mclk_latency_table.count = 0; 5265 for (i = 0; i < dep_mclk_table->count; i++) { 5266 if (dep_mclk_table->entries[i].clk) { 5267 clocks->data[clocks->num_levels].clocks_in_khz = 5268 dep_mclk_table->entries[i].clk * 10; 5269 data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency = 5270 dep_mclk_table->entries[i].clk; 5271 clocks->data[clocks->num_levels].latency_in_us = 5272 data->mclk_latency_table.entries[data->mclk_latency_table.count].latency = 5273 smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk); 5274 clocks->num_levels++; 5275 data->mclk_latency_table.count++; 5276 } 5277 } 5278 5279 return 0; 5280 } 5281 5282 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 5283 enum amd_pp_clock_type type, 5284 struct pp_clock_levels_with_latency *clocks) 5285 { 5286 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5287 hwmgr->chip_id <= CHIP_VEGAM)) 5288 return -EINVAL; 5289 5290 switch (type) { 5291 case amd_pp_sys_clock: 5292 smu7_get_sclks_with_latency(hwmgr, clocks); 5293 break; 5294 case amd_pp_mem_clock: 5295 smu7_get_mclks_with_latency(hwmgr, clocks); 5296 break; 5297 default: 5298 return -EINVAL; 5299 } 5300 5301 return 0; 5302 } 5303 5304 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 5305 void *clock_range) 5306 { 5307 struct phm_ppt_v1_information *table_info = 5308 (struct phm_ppt_v1_information *)hwmgr->pptable; 5309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5310 table_info->vdd_dep_on_mclk; 5311 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5312 table_info->vdd_dep_on_sclk; 5313 struct polaris10_smumgr *smu_data = 5314 (struct polaris10_smumgr *)(hwmgr->smu_backend); 5315 SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); 5316 struct dm_pp_wm_sets_with_clock_ranges *watermarks = 5317 (struct dm_pp_wm_sets_with_clock_ranges *)clock_range; 5318 uint32_t i, j, k; 5319 bool valid_entry; 5320 5321 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5322 hwmgr->chip_id <= CHIP_VEGAM)) 5323 return -EINVAL; 5324 5325 for (i = 0; i < dep_mclk_table->count; i++) { 5326 for (j = 0; j < dep_sclk_table->count; j++) { 5327 valid_entry = false; 5328 for (k = 0; k < watermarks->num_wm_sets; k++) { 5329 if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 && 5330 dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 && 5331 dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 && 5332 dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) { 5333 valid_entry = true; 5334 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id; 5335 break; 5336 } 5337 } 5338 PP_ASSERT_WITH_CODE(valid_entry, 5339 "Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.", 5340 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id); 5341 } 5342 } 5343 5344 return smu7_copy_bytes_to_smc(hwmgr, 5345 smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark), 5346 (uint8_t *)table->DisplayWatermark, 5347 sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS, 5348 SMC_RAM_END); 5349 } 5350 5351 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 5352 uint32_t virtual_addr_low, 5353 uint32_t virtual_addr_hi, 5354 uint32_t mc_addr_low, 5355 uint32_t mc_addr_hi, 5356 uint32_t size) 5357 { 5358 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5359 5360 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5361 data->soft_regs_start + 5362 smum_get_offsetof(hwmgr, 5363 SMU_SoftRegisters, DRAM_LOG_ADDR_H), 5364 mc_addr_hi); 5365 5366 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5367 data->soft_regs_start + 5368 smum_get_offsetof(hwmgr, 5369 SMU_SoftRegisters, DRAM_LOG_ADDR_L), 5370 mc_addr_low); 5371 5372 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5373 data->soft_regs_start + 5374 smum_get_offsetof(hwmgr, 5375 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H), 5376 virtual_addr_hi); 5377 5378 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5379 data->soft_regs_start + 5380 smum_get_offsetof(hwmgr, 5381 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L), 5382 virtual_addr_low); 5383 5384 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5385 data->soft_regs_start + 5386 smum_get_offsetof(hwmgr, 5387 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE), 5388 size); 5389 return 0; 5390 } 5391 5392 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr, 5393 struct amd_pp_simple_clock_info *clocks) 5394 { 5395 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5396 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 5397 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5398 5399 if (clocks == NULL) 5400 return -EINVAL; 5401 5402 clocks->memory_max_clock = mclk_table->count > 1 ? 5403 mclk_table->dpm_levels[mclk_table->count-1].value : 5404 mclk_table->dpm_levels[0].value; 5405 clocks->engine_max_clock = sclk_table->count > 1 ? 5406 sclk_table->dpm_levels[sclk_table->count-1].value : 5407 sclk_table->dpm_levels[0].value; 5408 return 0; 5409 } 5410 5411 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 5412 struct PP_TemperatureRange *thermal_data) 5413 { 5414 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5415 struct phm_ppt_v1_information *table_info = 5416 (struct phm_ppt_v1_information *)hwmgr->pptable; 5417 5418 memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); 5419 5420 if (hwmgr->pp_table_version == PP_TABLE_V1) 5421 thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp * 5422 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5423 else if (hwmgr->pp_table_version == PP_TABLE_V0) 5424 thermal_data->max = data->thermal_temp_setting.temperature_shutdown * 5425 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5426 5427 thermal_data->sw_ctf_threshold = thermal_data->max; 5428 5429 return 0; 5430 } 5431 5432 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5433 enum PP_OD_DPM_TABLE_COMMAND type, 5434 uint32_t clk, 5435 uint32_t voltage) 5436 { 5437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5438 5439 if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) { 5440 pr_info("OD voltage is out of range [%d - %d] mV\n", 5441 data->odn_dpm_table.min_vddc, 5442 data->odn_dpm_table.max_vddc); 5443 return false; 5444 } 5445 5446 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5447 if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk || 5448 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5449 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5450 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 5451 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5452 return false; 5453 } 5454 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5455 if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk || 5456 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5457 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5458 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 5459 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5460 return false; 5461 } 5462 } else { 5463 return false; 5464 } 5465 5466 return true; 5467 } 5468 5469 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5470 enum PP_OD_DPM_TABLE_COMMAND type, 5471 long *input, uint32_t size) 5472 { 5473 uint32_t i; 5474 struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL; 5475 struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL; 5476 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5477 5478 uint32_t input_clk; 5479 uint32_t input_vol; 5480 uint32_t input_level; 5481 5482 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5483 return -EINVAL); 5484 5485 if (!hwmgr->od_enabled) { 5486 pr_info("OverDrive feature not enabled\n"); 5487 return -EINVAL; 5488 } 5489 5490 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5491 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels; 5492 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk; 5493 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5494 "Failed to get ODN SCLK and Voltage tables", 5495 return -EINVAL); 5496 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5497 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels; 5498 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk; 5499 5500 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5501 "Failed to get ODN MCLK and Voltage tables", 5502 return -EINVAL); 5503 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5504 smu7_odn_initial_default_setting(hwmgr); 5505 return 0; 5506 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5507 smu7_check_dpm_table_updated(hwmgr); 5508 return 0; 5509 } else { 5510 return -EINVAL; 5511 } 5512 5513 for (i = 0; i < size; i += 3) { 5514 if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) { 5515 pr_info("invalid clock voltage input \n"); 5516 return 0; 5517 } 5518 input_level = input[i]; 5519 input_clk = input[i+1] * 100; 5520 input_vol = input[i+2]; 5521 5522 if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5523 podn_dpm_table_in_backend->entries[input_level].clock = input_clk; 5524 podn_vdd_dep_in_backend->entries[input_level].clk = input_clk; 5525 podn_dpm_table_in_backend->entries[input_level].vddc = input_vol; 5526 podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol; 5527 podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol; 5528 } else { 5529 return -EINVAL; 5530 } 5531 } 5532 5533 return 0; 5534 } 5535 5536 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 5537 { 5538 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5539 uint32_t i, size = 0; 5540 uint32_t len; 5541 5542 static const char *title[8] = {"NUM", 5543 "MODE_NAME", 5544 "SCLK_UP_HYST", 5545 "SCLK_DOWN_HYST", 5546 "SCLK_ACTIVE_LEVEL", 5547 "MCLK_UP_HYST", 5548 "MCLK_DOWN_HYST", 5549 "MCLK_ACTIVE_LEVEL"}; 5550 5551 if (!buf) 5552 return -EINVAL; 5553 5554 phm_get_sysfs_buf(&buf, &size); 5555 5556 size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n", 5557 title[0], title[1], title[2], title[3], 5558 title[4], title[5], title[6], title[7]); 5559 5560 len = ARRAY_SIZE(smu7_profiling); 5561 5562 for (i = 0; i < len; i++) { 5563 if (i == hwmgr->power_profile_mode) { 5564 size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n", 5565 i, amdgpu_pp_profile_name[i], "*", 5566 data->current_profile_setting.sclk_up_hyst, 5567 data->current_profile_setting.sclk_down_hyst, 5568 data->current_profile_setting.sclk_activity, 5569 data->current_profile_setting.mclk_up_hyst, 5570 data->current_profile_setting.mclk_down_hyst, 5571 data->current_profile_setting.mclk_activity); 5572 continue; 5573 } 5574 if (smu7_profiling[i].bupdate_sclk) 5575 size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ", 5576 i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst, 5577 smu7_profiling[i].sclk_down_hyst, 5578 smu7_profiling[i].sclk_activity); 5579 else 5580 size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ", 5581 i, amdgpu_pp_profile_name[i], "-", "-", "-"); 5582 5583 if (smu7_profiling[i].bupdate_mclk) 5584 size += sysfs_emit_at(buf, size, "%16d %16d %16d\n", 5585 smu7_profiling[i].mclk_up_hyst, 5586 smu7_profiling[i].mclk_down_hyst, 5587 smu7_profiling[i].mclk_activity); 5588 else 5589 size += sysfs_emit_at(buf, size, "%16s %16s %16s\n", 5590 "-", "-", "-"); 5591 } 5592 5593 return size; 5594 } 5595 5596 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr, 5597 enum PP_SMC_POWER_PROFILE requst) 5598 { 5599 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5600 uint32_t tmp, level; 5601 5602 if (requst == PP_SMC_POWER_PROFILE_COMPUTE) { 5603 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 5604 level = 0; 5605 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 5606 while (tmp >>= 1) 5607 level++; 5608 if (level > 0) 5609 smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1)); 5610 } 5611 } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { 5612 smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask); 5613 } 5614 } 5615 5616 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5617 { 5618 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5619 struct profile_mode_setting tmp; 5620 enum PP_SMC_POWER_PROFILE mode; 5621 5622 if (input == NULL) 5623 return -EINVAL; 5624 5625 mode = input[size]; 5626 switch (mode) { 5627 case PP_SMC_POWER_PROFILE_CUSTOM: 5628 if (size < 8 && size != 0) 5629 return -EINVAL; 5630 /* If only CUSTOM is passed in, use the saved values. Check 5631 * that we actually have a CUSTOM profile by ensuring that 5632 * the "use sclk" or the "use mclk" bits are set 5633 */ 5634 tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM]; 5635 if (size == 0) { 5636 if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0) 5637 return -EINVAL; 5638 } else { 5639 tmp.bupdate_sclk = input[0]; 5640 tmp.sclk_up_hyst = input[1]; 5641 tmp.sclk_down_hyst = input[2]; 5642 tmp.sclk_activity = input[3]; 5643 tmp.bupdate_mclk = input[4]; 5644 tmp.mclk_up_hyst = input[5]; 5645 tmp.mclk_down_hyst = input[6]; 5646 tmp.mclk_activity = input[7]; 5647 smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp; 5648 } 5649 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5650 memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting)); 5651 hwmgr->power_profile_mode = mode; 5652 } 5653 break; 5654 case PP_SMC_POWER_PROFILE_FULLSCREEN3D: 5655 case PP_SMC_POWER_PROFILE_POWERSAVING: 5656 case PP_SMC_POWER_PROFILE_VIDEO: 5657 case PP_SMC_POWER_PROFILE_VR: 5658 case PP_SMC_POWER_PROFILE_COMPUTE: 5659 if (mode == hwmgr->power_profile_mode) 5660 return 0; 5661 5662 memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting)); 5663 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5664 if (tmp.bupdate_sclk) { 5665 data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk; 5666 data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst; 5667 data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst; 5668 data->current_profile_setting.sclk_activity = tmp.sclk_activity; 5669 } 5670 if (tmp.bupdate_mclk) { 5671 data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk; 5672 data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst; 5673 data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst; 5674 data->current_profile_setting.mclk_activity = tmp.mclk_activity; 5675 } 5676 smu7_patch_compute_profile_mode(hwmgr, mode); 5677 hwmgr->power_profile_mode = mode; 5678 } 5679 break; 5680 default: 5681 return -EINVAL; 5682 } 5683 5684 return 0; 5685 } 5686 5687 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5688 PHM_PerformanceLevelDesignation designation, uint32_t index, 5689 PHM_PerformanceLevel *level) 5690 { 5691 const struct smu7_power_state *ps; 5692 uint32_t i; 5693 5694 if (level == NULL || hwmgr == NULL || state == NULL) 5695 return -EINVAL; 5696 5697 ps = cast_const_phw_smu7_power_state(state); 5698 5699 i = index > ps->performance_level_count - 1 ? 5700 ps->performance_level_count - 1 : index; 5701 5702 level->coreClock = ps->performance_levels[i].engine_clock; 5703 level->memory_clock = ps->performance_levels[i].memory_clock; 5704 5705 return 0; 5706 } 5707 5708 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr) 5709 { 5710 int result; 5711 5712 result = smu7_disable_dpm_tasks(hwmgr); 5713 PP_ASSERT_WITH_CODE((0 == result), 5714 "[disable_dpm_tasks] Failed to disable DPM!", 5715 ); 5716 5717 return result; 5718 } 5719 5720 static const struct pp_hwmgr_func smu7_hwmgr_funcs = { 5721 .backend_init = &smu7_hwmgr_backend_init, 5722 .backend_fini = &smu7_hwmgr_backend_fini, 5723 .asic_setup = &smu7_setup_asic_task, 5724 .dynamic_state_management_enable = &smu7_enable_dpm_tasks, 5725 .apply_state_adjust_rules = smu7_apply_state_adjust_rules, 5726 .force_dpm_level = &smu7_force_dpm_level, 5727 .power_state_set = smu7_set_power_state_tasks, 5728 .get_power_state_size = smu7_get_power_state_size, 5729 .get_mclk = smu7_dpm_get_mclk, 5730 .get_sclk = smu7_dpm_get_sclk, 5731 .patch_boot_state = smu7_dpm_patch_boot_state, 5732 .get_pp_table_entry = smu7_get_pp_table_entry, 5733 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries, 5734 .powerdown_uvd = smu7_powerdown_uvd, 5735 .powergate_uvd = smu7_powergate_uvd, 5736 .powergate_vce = smu7_powergate_vce, 5737 .disable_clock_power_gating = smu7_disable_clock_power_gating, 5738 .update_clock_gatings = smu7_update_clock_gatings, 5739 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment, 5740 .display_config_changed = smu7_display_configuration_changed_task, 5741 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output, 5742 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output, 5743 .stop_thermal_controller = smu7_thermal_stop_thermal_controller, 5744 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info, 5745 .get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm, 5746 .set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm, 5747 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default, 5748 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm, 5749 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm, 5750 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller, 5751 .register_irq_handlers = smu7_register_irq_handlers, 5752 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration, 5753 .check_states_equal = smu7_check_states_equal, 5754 .set_fan_control_mode = smu7_set_fan_control_mode, 5755 .get_fan_control_mode = smu7_get_fan_control_mode, 5756 .force_clock_level = smu7_force_clock_level, 5757 .print_clock_levels = smu7_print_clock_levels, 5758 .powergate_gfx = smu7_powergate_gfx, 5759 .get_sclk_od = smu7_get_sclk_od, 5760 .set_sclk_od = smu7_set_sclk_od, 5761 .get_mclk_od = smu7_get_mclk_od, 5762 .set_mclk_od = smu7_set_mclk_od, 5763 .get_clock_by_type = smu7_get_clock_by_type, 5764 .get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency, 5765 .set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges, 5766 .read_sensor = smu7_read_sensor, 5767 .dynamic_state_management_disable = smu7_disable_dpm_tasks, 5768 .avfs_control = smu7_avfs_control, 5769 .disable_smc_firmware_ctf = smu7_thermal_disable_alert, 5770 .start_thermal_controller = smu7_start_thermal_controller, 5771 .notify_cac_buffer_info = smu7_notify_cac_buffer_info, 5772 .get_max_high_clocks = smu7_get_max_high_clocks, 5773 .get_thermal_temperature_range = smu7_get_thermal_temperature_range, 5774 .odn_edit_dpm_table = smu7_odn_edit_dpm_table, 5775 .set_power_limit = smu7_set_power_limit, 5776 .get_power_profile_mode = smu7_get_power_profile_mode, 5777 .set_power_profile_mode = smu7_set_power_profile_mode, 5778 .get_performance_level = smu7_get_performance_level, 5779 .get_asic_baco_capability = smu7_baco_get_capability, 5780 .get_asic_baco_state = smu7_baco_get_state, 5781 .set_asic_baco_state = smu7_baco_set_state, 5782 .power_off_asic = smu7_power_off_asic, 5783 }; 5784 5785 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock, 5786 uint32_t clock_insr) 5787 { 5788 uint8_t i; 5789 uint32_t temp; 5790 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); 5791 5792 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); 5793 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { 5794 temp = clock >> i; 5795 5796 if (temp >= min || i == 0) 5797 break; 5798 } 5799 return i; 5800 } 5801 5802 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr) 5803 { 5804 hwmgr->hwmgr_func = &smu7_hwmgr_funcs; 5805 if (hwmgr->pp_table_version == PP_TABLE_V0) 5806 hwmgr->pptable_func = &pptable_funcs; 5807 else if (hwmgr->pp_table_version == PP_TABLE_V1) 5808 hwmgr->pptable_func = &pptable_v1_0_funcs; 5809 5810 return 0; 5811 } 5812