1 /* 2 * Copyright 2015 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 #include "pp_debug.h" 24 #include <linux/delay.h> 25 #include <linux/fb.h> 26 #include <linux/module.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <asm/div64.h> 30 #include <drm/amdgpu_drm.h> 31 #include "ppatomctrl.h" 32 #include "atombios.h" 33 #include "pptable_v1_0.h" 34 #include "pppcielanes.h" 35 #include "amd_pcie_helpers.h" 36 #include "hardwaremanager.h" 37 #include "process_pptables_v1_0.h" 38 #include "cgs_common.h" 39 40 #include "smu7_common.h" 41 42 #include "hwmgr.h" 43 #include "smu7_hwmgr.h" 44 #include "smu_ucode_xfer_vi.h" 45 #include "smu7_powertune.h" 46 #include "smu7_dyn_defaults.h" 47 #include "smu7_thermal.h" 48 #include "smu7_clockpowergating.h" 49 #include "processpptables.h" 50 #include "pp_thermal.h" 51 #include "smu7_baco.h" 52 #include "smu7_smumgr.h" 53 #include "polaris10_smumgr.h" 54 55 #include "ivsrcid/ivsrcid_vislands30.h" 56 57 #define MC_CG_ARB_FREQ_F0 0x0a 58 #define MC_CG_ARB_FREQ_F1 0x0b 59 #define MC_CG_ARB_FREQ_F2 0x0c 60 #define MC_CG_ARB_FREQ_F3 0x0d 61 62 #define MC_CG_SEQ_DRAMCONF_S0 0x05 63 #define MC_CG_SEQ_DRAMCONF_S1 0x06 64 #define MC_CG_SEQ_YCLK_SUSPEND 0x04 65 #define MC_CG_SEQ_YCLK_RESUME 0x0a 66 67 #define SMC_CG_IND_START 0xc0030000 68 #define SMC_CG_IND_END 0xc0040000 69 70 #define MEM_FREQ_LOW_LATENCY 25000 71 #define MEM_FREQ_HIGH_LATENCY 80000 72 73 #define MEM_LATENCY_HIGH 45 74 #define MEM_LATENCY_LOW 35 75 #define MEM_LATENCY_ERR 0xFFFF 76 77 #define MC_SEQ_MISC0_GDDR5_SHIFT 28 78 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 79 #define MC_SEQ_MISC0_GDDR5_VALUE 5 80 81 #define PCIE_BUS_CLK 10000 82 #define TCLK (PCIE_BUS_CLK / 10) 83 84 static struct profile_mode_setting smu7_profiling[7] = 85 {{0, 0, 0, 0, 0, 0, 0, 0}, 86 {1, 0, 100, 30, 1, 0, 100, 10}, 87 {1, 10, 0, 30, 0, 0, 0, 0}, 88 {0, 0, 0, 0, 1, 10, 16, 31}, 89 {1, 0, 11, 50, 1, 0, 100, 10}, 90 {1, 0, 5, 30, 0, 0, 0, 0}, 91 {0, 0, 0, 0, 0, 0, 0, 0}, 92 }; 93 94 #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310) 95 96 #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280 97 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L 98 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L 99 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005 100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006 101 102 #define STRAP_EVV_REVISION_MSB 2211 103 #define STRAP_EVV_REVISION_LSB 2208 104 105 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ 106 enum DPM_EVENT_SRC { 107 DPM_EVENT_SRC_ANALOG = 0, 108 DPM_EVENT_SRC_EXTERNAL = 1, 109 DPM_EVENT_SRC_DIGITAL = 2, 110 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, 111 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 112 }; 113 114 #define ixDIDT_SQ_EDC_CTRL 0x0013 115 #define ixDIDT_SQ_EDC_THRESHOLD 0x0014 116 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015 117 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016 118 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017 119 #define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018 120 121 #define ixDIDT_TD_EDC_CTRL 0x0053 122 #define ixDIDT_TD_EDC_THRESHOLD 0x0054 123 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055 124 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056 125 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057 126 #define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058 127 128 #define ixDIDT_TCP_EDC_CTRL 0x0073 129 #define ixDIDT_TCP_EDC_THRESHOLD 0x0074 130 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075 131 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076 132 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077 133 #define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078 134 135 #define ixDIDT_DB_EDC_CTRL 0x0033 136 #define ixDIDT_DB_EDC_THRESHOLD 0x0034 137 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035 138 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036 139 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037 140 #define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038 141 142 uint32_t DIDTEDCConfig_P12[] = { 143 ixDIDT_SQ_EDC_STALL_PATTERN_1_2, 144 ixDIDT_SQ_EDC_STALL_PATTERN_3_4, 145 ixDIDT_SQ_EDC_STALL_PATTERN_5_6, 146 ixDIDT_SQ_EDC_STALL_PATTERN_7, 147 ixDIDT_SQ_EDC_THRESHOLD, 148 ixDIDT_SQ_EDC_CTRL, 149 ixDIDT_TD_EDC_STALL_PATTERN_1_2, 150 ixDIDT_TD_EDC_STALL_PATTERN_3_4, 151 ixDIDT_TD_EDC_STALL_PATTERN_5_6, 152 ixDIDT_TD_EDC_STALL_PATTERN_7, 153 ixDIDT_TD_EDC_THRESHOLD, 154 ixDIDT_TD_EDC_CTRL, 155 ixDIDT_TCP_EDC_STALL_PATTERN_1_2, 156 ixDIDT_TCP_EDC_STALL_PATTERN_3_4, 157 ixDIDT_TCP_EDC_STALL_PATTERN_5_6, 158 ixDIDT_TCP_EDC_STALL_PATTERN_7, 159 ixDIDT_TCP_EDC_THRESHOLD, 160 ixDIDT_TCP_EDC_CTRL, 161 ixDIDT_DB_EDC_STALL_PATTERN_1_2, 162 ixDIDT_DB_EDC_STALL_PATTERN_3_4, 163 ixDIDT_DB_EDC_STALL_PATTERN_5_6, 164 ixDIDT_DB_EDC_STALL_PATTERN_7, 165 ixDIDT_DB_EDC_THRESHOLD, 166 ixDIDT_DB_EDC_CTRL, 167 0xFFFFFFFF // End of list 168 }; 169 170 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic); 171 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 172 enum pp_clock_type type, uint32_t mask); 173 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr); 174 175 static struct smu7_power_state *cast_phw_smu7_power_state( 176 struct pp_hw_power_state *hw_ps) 177 { 178 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 179 "Invalid Powerstate Type!", 180 return NULL); 181 182 return (struct smu7_power_state *)hw_ps; 183 } 184 185 static const struct smu7_power_state *cast_const_phw_smu7_power_state( 186 const struct pp_hw_power_state *hw_ps) 187 { 188 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic), 189 "Invalid Powerstate Type!", 190 return NULL); 191 192 return (const struct smu7_power_state *)hw_ps; 193 } 194 195 /** 196 * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct 197 * 198 * @hwmgr: the address of the powerplay hardware manager. 199 * Return: always 0 200 */ 201 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr) 202 { 203 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); 204 205 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 206 207 return 0; 208 } 209 210 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr) 211 { 212 uint32_t speedCntl = 0; 213 214 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 215 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, 216 ixPCIE_LC_SPEED_CNTL); 217 return((uint16_t)PHM_GET_FIELD(speedCntl, 218 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); 219 } 220 221 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr) 222 { 223 uint32_t link_width; 224 225 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */ 226 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 227 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); 228 229 PP_ASSERT_WITH_CODE((7 >= link_width), 230 "Invalid PCIe lane width!", return 0); 231 232 return decode_pcie_lane_width(link_width); 233 } 234 235 /** 236 * smu7_enable_smc_voltage_controller - Enable voltage control 237 * 238 * @hwmgr the address of the powerplay hardware manager. 239 * Return: always PP_Result_OK 240 */ 241 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr) 242 { 243 if (hwmgr->chip_id >= CHIP_POLARIS10 && 244 hwmgr->chip_id <= CHIP_VEGAM) { 245 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 246 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0); 247 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 248 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0); 249 } 250 251 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK) 252 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL); 253 254 return 0; 255 } 256 257 /** 258 * smu7_voltage_control - Checks if we want to support voltage control 259 * 260 * @hwmgr: the address of the powerplay hardware manager. 261 */ 262 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr) 263 { 264 const struct smu7_hwmgr *data = 265 (const struct smu7_hwmgr *)(hwmgr->backend); 266 267 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control); 268 } 269 270 /** 271 * smu7_enable_voltage_control - Enable voltage control 272 * 273 * @hwmgr: the address of the powerplay hardware manager. 274 * Return: always 0 275 */ 276 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr) 277 { 278 /* enable voltage control */ 279 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 280 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); 281 282 return 0; 283 } 284 285 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table, 286 struct phm_clock_voltage_dependency_table *voltage_dependency_table 287 ) 288 { 289 uint32_t i; 290 291 PP_ASSERT_WITH_CODE((NULL != voltage_table), 292 "Voltage Dependency Table empty.", return -EINVAL;); 293 294 voltage_table->mask_low = 0; 295 voltage_table->phase_delay = 0; 296 voltage_table->count = voltage_dependency_table->count; 297 298 for (i = 0; i < voltage_dependency_table->count; i++) { 299 voltage_table->entries[i].value = 300 voltage_dependency_table->entries[i].v; 301 voltage_table->entries[i].smio_low = 0; 302 } 303 304 return 0; 305 } 306 307 308 /** 309 * smu7_construct_voltage_tables - Create Voltage Tables. 310 * 311 * @hwmgr: the address of the powerplay hardware manager. 312 * Return: always 0 313 */ 314 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr) 315 { 316 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 317 struct phm_ppt_v1_information *table_info = 318 (struct phm_ppt_v1_information *)hwmgr->pptable; 319 int result = 0; 320 uint32_t tmp; 321 322 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { 323 result = atomctrl_get_voltage_table_v3(hwmgr, 324 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, 325 &(data->mvdd_voltage_table)); 326 PP_ASSERT_WITH_CODE((0 == result), 327 "Failed to retrieve MVDD table.", 328 return result); 329 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { 330 if (hwmgr->pp_table_version == PP_TABLE_V1) 331 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table), 332 table_info->vdd_dep_on_mclk); 333 else if (hwmgr->pp_table_version == PP_TABLE_V0) 334 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table), 335 hwmgr->dyn_state.mvdd_dependency_on_mclk); 336 337 PP_ASSERT_WITH_CODE((0 == result), 338 "Failed to retrieve SVI2 MVDD table from dependency table.", 339 return result;); 340 } 341 342 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { 343 result = atomctrl_get_voltage_table_v3(hwmgr, 344 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, 345 &(data->vddci_voltage_table)); 346 PP_ASSERT_WITH_CODE((0 == result), 347 "Failed to retrieve VDDCI table.", 348 return result); 349 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { 350 if (hwmgr->pp_table_version == PP_TABLE_V1) 351 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table), 352 table_info->vdd_dep_on_mclk); 353 else if (hwmgr->pp_table_version == PP_TABLE_V0) 354 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table), 355 hwmgr->dyn_state.vddci_dependency_on_mclk); 356 PP_ASSERT_WITH_CODE((0 == result), 357 "Failed to retrieve SVI2 VDDCI table from dependency table.", 358 return result); 359 } 360 361 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) { 362 /* VDDGFX has only SVI2 voltage control */ 363 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table), 364 table_info->vddgfx_lookup_table); 365 PP_ASSERT_WITH_CODE((0 == result), 366 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;); 367 } 368 369 370 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { 371 result = atomctrl_get_voltage_table_v3(hwmgr, 372 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, 373 &data->vddc_voltage_table); 374 PP_ASSERT_WITH_CODE((0 == result), 375 "Failed to retrieve VDDC table.", return result;); 376 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { 377 378 if (hwmgr->pp_table_version == PP_TABLE_V0) 379 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table, 380 hwmgr->dyn_state.vddc_dependency_on_mclk); 381 else if (hwmgr->pp_table_version == PP_TABLE_V1) 382 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table), 383 table_info->vddc_lookup_table); 384 385 PP_ASSERT_WITH_CODE((0 == result), 386 "Failed to retrieve SVI2 VDDC table from dependency table.", return result;); 387 } 388 389 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC); 390 PP_ASSERT_WITH_CODE( 391 (data->vddc_voltage_table.count <= tmp), 392 "Too many voltage values for VDDC. Trimming to fit state table.", 393 phm_trim_voltage_table_to_fit_state_table(tmp, 394 &(data->vddc_voltage_table))); 395 396 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 397 PP_ASSERT_WITH_CODE( 398 (data->vddgfx_voltage_table.count <= tmp), 399 "Too many voltage values for VDDC. Trimming to fit state table.", 400 phm_trim_voltage_table_to_fit_state_table(tmp, 401 &(data->vddgfx_voltage_table))); 402 403 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI); 404 PP_ASSERT_WITH_CODE( 405 (data->vddci_voltage_table.count <= tmp), 406 "Too many voltage values for VDDCI. Trimming to fit state table.", 407 phm_trim_voltage_table_to_fit_state_table(tmp, 408 &(data->vddci_voltage_table))); 409 410 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD); 411 PP_ASSERT_WITH_CODE( 412 (data->mvdd_voltage_table.count <= tmp), 413 "Too many voltage values for MVDD. Trimming to fit state table.", 414 phm_trim_voltage_table_to_fit_state_table(tmp, 415 &(data->mvdd_voltage_table))); 416 417 return 0; 418 } 419 420 /** 421 * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters 422 * 423 * @hwmgr: the address of the powerplay hardware manager. 424 * Return: always 0 425 */ 426 static int smu7_program_static_screen_threshold_parameters( 427 struct pp_hwmgr *hwmgr) 428 { 429 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 430 431 /* Set static screen threshold unit */ 432 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 433 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, 434 data->static_screen_threshold_unit); 435 /* Set static screen threshold */ 436 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 437 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, 438 data->static_screen_threshold); 439 440 return 0; 441 } 442 443 /** 444 * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching. 445 * 446 * @hwmgr: the address of the powerplay hardware manager. 447 * Return: always 0 448 */ 449 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr) 450 { 451 uint32_t display_gap = 452 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, 453 ixCG_DISPLAY_GAP_CNTL); 454 455 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 456 DISP_GAP, DISPLAY_GAP_IGNORE); 457 458 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, 459 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); 460 461 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 462 ixCG_DISPLAY_GAP_CNTL, display_gap); 463 464 return 0; 465 } 466 467 /** 468 * smu7_program_voting_clients - Programs activity state transition voting clients 469 * 470 * @hwmgr: the address of the powerplay hardware manager. 471 * Return: always 0 472 */ 473 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr) 474 { 475 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 476 int i; 477 478 /* Clear reset for voting clients before enabling DPM */ 479 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 480 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); 481 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 482 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); 483 484 for (i = 0; i < 8; i++) 485 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 486 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 487 data->voting_rights_clients[i]); 488 return 0; 489 } 490 491 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr) 492 { 493 int i; 494 495 /* Reset voting clients before disabling DPM */ 496 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 497 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1); 498 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 499 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1); 500 501 for (i = 0; i < 8; i++) 502 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 503 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0); 504 505 return 0; 506 } 507 508 /* Copy one arb setting to another and then switch the active set. 509 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants. 510 */ 511 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, 512 uint32_t arb_src, uint32_t arb_dest) 513 { 514 uint32_t mc_arb_dram_timing; 515 uint32_t mc_arb_dram_timing2; 516 uint32_t burst_time; 517 uint32_t mc_cg_config; 518 519 switch (arb_src) { 520 case MC_CG_ARB_FREQ_F0: 521 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); 522 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); 523 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); 524 break; 525 case MC_CG_ARB_FREQ_F1: 526 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); 527 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); 528 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); 529 break; 530 default: 531 return -EINVAL; 532 } 533 534 switch (arb_dest) { 535 case MC_CG_ARB_FREQ_F0: 536 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); 537 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); 538 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); 539 break; 540 case MC_CG_ARB_FREQ_F1: 541 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); 542 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); 543 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); 544 break; 545 default: 546 return -EINVAL; 547 } 548 549 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); 550 mc_cg_config |= 0x0000000F; 551 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); 552 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest); 553 554 return 0; 555 } 556 557 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr) 558 { 559 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL); 560 } 561 562 /** 563 * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1 564 * 565 * @hwmgr: the address of the powerplay hardware manager. 566 * Return: always 0 567 * This function is to be called from the SetPowerState table. 568 */ 569 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr) 570 { 571 return smu7_copy_and_switch_arb_sets(hwmgr, 572 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); 573 } 574 575 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr) 576 { 577 uint32_t tmp; 578 579 tmp = (cgs_read_ind_register(hwmgr->device, 580 CGS_IND_REG__SMC, ixSMC_SCRATCH9) & 581 0x0000ff00) >> 8; 582 583 if (tmp == MC_CG_ARB_FREQ_F0) 584 return 0; 585 586 return smu7_copy_and_switch_arb_sets(hwmgr, 587 tmp, MC_CG_ARB_FREQ_F0); 588 } 589 590 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr) 591 { 592 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 593 594 struct phm_ppt_v1_information *table_info = 595 (struct phm_ppt_v1_information *)(hwmgr->pptable); 596 struct phm_ppt_v1_pcie_table *pcie_table = NULL; 597 598 uint32_t i, max_entry; 599 uint32_t tmp; 600 601 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || 602 data->use_pcie_power_saving_levels), "No pcie performance levels!", 603 return -EINVAL); 604 605 if (table_info != NULL) 606 pcie_table = table_info->pcie_table; 607 608 if (data->use_pcie_performance_levels && 609 !data->use_pcie_power_saving_levels) { 610 data->pcie_gen_power_saving = data->pcie_gen_performance; 611 data->pcie_lane_power_saving = data->pcie_lane_performance; 612 } else if (!data->use_pcie_performance_levels && 613 data->use_pcie_power_saving_levels) { 614 data->pcie_gen_performance = data->pcie_gen_power_saving; 615 data->pcie_lane_performance = data->pcie_lane_power_saving; 616 } 617 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK); 618 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table, 619 tmp, 620 MAX_REGULAR_DPM_NUMBER); 621 622 if (pcie_table != NULL) { 623 /* max_entry is used to make sure we reserve one PCIE level 624 * for boot level (fix for A+A PSPP issue). 625 * If PCIE table from PPTable have ULV entry + 8 entries, 626 * then ignore the last entry.*/ 627 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count; 628 for (i = 1; i < max_entry; i++) { 629 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1, 630 get_pcie_gen_support(data->pcie_gen_cap, 631 pcie_table->entries[i].gen_speed), 632 get_pcie_lane_support(data->pcie_lane_cap, 633 pcie_table->entries[i].lane_width)); 634 } 635 data->dpm_table.pcie_speed_table.count = max_entry - 1; 636 smum_update_smc_table(hwmgr, SMU_BIF_TABLE); 637 } else { 638 /* Hardcode Pcie Table */ 639 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, 640 get_pcie_gen_support(data->pcie_gen_cap, 641 PP_Min_PCIEGen), 642 get_pcie_lane_support(data->pcie_lane_cap, 643 PP_Max_PCIELane)); 644 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, 645 get_pcie_gen_support(data->pcie_gen_cap, 646 PP_Min_PCIEGen), 647 get_pcie_lane_support(data->pcie_lane_cap, 648 PP_Max_PCIELane)); 649 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, 650 get_pcie_gen_support(data->pcie_gen_cap, 651 PP_Max_PCIEGen), 652 get_pcie_lane_support(data->pcie_lane_cap, 653 PP_Max_PCIELane)); 654 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, 655 get_pcie_gen_support(data->pcie_gen_cap, 656 PP_Max_PCIEGen), 657 get_pcie_lane_support(data->pcie_lane_cap, 658 PP_Max_PCIELane)); 659 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, 660 get_pcie_gen_support(data->pcie_gen_cap, 661 PP_Max_PCIEGen), 662 get_pcie_lane_support(data->pcie_lane_cap, 663 PP_Max_PCIELane)); 664 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, 665 get_pcie_gen_support(data->pcie_gen_cap, 666 PP_Max_PCIEGen), 667 get_pcie_lane_support(data->pcie_lane_cap, 668 PP_Max_PCIELane)); 669 670 data->dpm_table.pcie_speed_table.count = 6; 671 } 672 /* Populate last level for boot PCIE level, but do not increment count. */ 673 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 674 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) 675 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i, 676 get_pcie_gen_support(data->pcie_gen_cap, 677 PP_Max_PCIEGen), 678 data->vbios_boot_state.pcie_lane_bootup_value); 679 } else { 680 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 681 data->dpm_table.pcie_speed_table.count, 682 get_pcie_gen_support(data->pcie_gen_cap, 683 PP_Min_PCIEGen), 684 get_pcie_lane_support(data->pcie_lane_cap, 685 PP_Max_PCIELane)); 686 } 687 return 0; 688 } 689 690 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr) 691 { 692 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 693 694 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); 695 696 phm_reset_single_dpm_table( 697 &data->dpm_table.sclk_table, 698 smum_get_mac_definition(hwmgr, 699 SMU_MAX_LEVELS_GRAPHICS), 700 MAX_REGULAR_DPM_NUMBER); 701 phm_reset_single_dpm_table( 702 &data->dpm_table.mclk_table, 703 smum_get_mac_definition(hwmgr, 704 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER); 705 706 phm_reset_single_dpm_table( 707 &data->dpm_table.vddc_table, 708 smum_get_mac_definition(hwmgr, 709 SMU_MAX_LEVELS_VDDC), 710 MAX_REGULAR_DPM_NUMBER); 711 phm_reset_single_dpm_table( 712 &data->dpm_table.vddci_table, 713 smum_get_mac_definition(hwmgr, 714 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER); 715 716 phm_reset_single_dpm_table( 717 &data->dpm_table.mvdd_table, 718 smum_get_mac_definition(hwmgr, 719 SMU_MAX_LEVELS_MVDD), 720 MAX_REGULAR_DPM_NUMBER); 721 return 0; 722 } 723 /* 724 * This function is to initialize all DPM state tables 725 * for SMU7 based on the dependency table. 726 * Dynamic state patching function will then trim these 727 * state tables to the allowed range based 728 * on the power policy or external client requests, 729 * such as UVD request, etc. 730 */ 731 732 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr) 733 { 734 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 735 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = 736 hwmgr->dyn_state.vddc_dependency_on_sclk; 737 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = 738 hwmgr->dyn_state.vddc_dependency_on_mclk; 739 struct phm_cac_leakage_table *std_voltage_table = 740 hwmgr->dyn_state.cac_leakage_table; 741 uint32_t i; 742 743 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, 744 "SCLK dependency table is missing. This table is mandatory", return -EINVAL); 745 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, 746 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 747 748 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 749 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 750 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, 751 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); 752 753 754 /* Initialize Sclk DPM table based on allow Sclk values*/ 755 data->dpm_table.sclk_table.count = 0; 756 757 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 758 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != 759 allowed_vdd_sclk_table->entries[i].clk) { 760 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 761 allowed_vdd_sclk_table->entries[i].clk; 762 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0; 763 data->dpm_table.sclk_table.count++; 764 } 765 } 766 767 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, 768 "MCLK dependency table is missing. This table is mandatory", return -EINVAL); 769 /* Initialize Mclk DPM table based on allow Mclk values */ 770 data->dpm_table.mclk_table.count = 0; 771 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 772 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != 773 allowed_vdd_mclk_table->entries[i].clk) { 774 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 775 allowed_vdd_mclk_table->entries[i].clk; 776 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0; 777 data->dpm_table.mclk_table.count++; 778 } 779 } 780 781 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ 782 for (i = 0; i < allowed_vdd_sclk_table->count; i++) { 783 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 784 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; 785 /* param1 is for corresponding std voltage */ 786 data->dpm_table.vddc_table.dpm_levels[i].enabled = true; 787 } 788 789 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; 790 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 791 792 if (NULL != allowed_vdd_mclk_table) { 793 /* Initialize Vddci DPM table based on allow Mclk values */ 794 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 795 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 796 data->dpm_table.vddci_table.dpm_levels[i].enabled = true; 797 } 798 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count; 799 } 800 801 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; 802 803 if (NULL != allowed_vdd_mclk_table) { 804 /* 805 * Initialize MVDD DPM table based on allow Mclk 806 * values 807 */ 808 for (i = 0; i < allowed_vdd_mclk_table->count; i++) { 809 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; 810 data->dpm_table.mvdd_table.dpm_levels[i].enabled = true; 811 } 812 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; 813 } 814 815 return 0; 816 } 817 818 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr) 819 { 820 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 821 struct phm_ppt_v1_information *table_info = 822 (struct phm_ppt_v1_information *)(hwmgr->pptable); 823 uint32_t i; 824 825 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 826 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 827 828 if (table_info == NULL) 829 return -EINVAL; 830 831 dep_sclk_table = table_info->vdd_dep_on_sclk; 832 dep_mclk_table = table_info->vdd_dep_on_mclk; 833 834 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL, 835 "SCLK dependency table is missing.", 836 return -EINVAL); 837 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1, 838 "SCLK dependency table count is 0.", 839 return -EINVAL); 840 841 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL, 842 "MCLK dependency table is missing.", 843 return -EINVAL); 844 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, 845 "MCLK dependency table count is 0", 846 return -EINVAL); 847 848 /* Initialize Sclk DPM table based on allow Sclk values */ 849 data->dpm_table.sclk_table.count = 0; 850 for (i = 0; i < dep_sclk_table->count; i++) { 851 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value != 852 dep_sclk_table->entries[i].clk) { 853 854 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = 855 dep_sclk_table->entries[i].clk; 856 857 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 858 (i == 0) ? true : false; 859 data->dpm_table.sclk_table.count++; 860 } 861 } 862 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0) 863 hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk; 864 /* Initialize Mclk DPM table based on allow Mclk values */ 865 data->dpm_table.mclk_table.count = 0; 866 for (i = 0; i < dep_mclk_table->count; i++) { 867 if (i == 0 || data->dpm_table.mclk_table.dpm_levels 868 [data->dpm_table.mclk_table.count - 1].value != 869 dep_mclk_table->entries[i].clk) { 870 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = 871 dep_mclk_table->entries[i].clk; 872 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 873 (i == 0) ? true : false; 874 data->dpm_table.mclk_table.count++; 875 } 876 } 877 878 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0) 879 hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk; 880 return 0; 881 } 882 883 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr) 884 { 885 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 886 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 887 struct phm_ppt_v1_information *table_info = 888 (struct phm_ppt_v1_information *)(hwmgr->pptable); 889 uint32_t i; 890 891 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 892 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 893 struct phm_odn_performance_level *entries; 894 895 if (table_info == NULL) 896 return -EINVAL; 897 898 dep_sclk_table = table_info->vdd_dep_on_sclk; 899 dep_mclk_table = table_info->vdd_dep_on_mclk; 900 901 odn_table->odn_core_clock_dpm_levels.num_of_pl = 902 data->golden_dpm_table.sclk_table.count; 903 entries = odn_table->odn_core_clock_dpm_levels.entries; 904 for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) { 905 entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value; 906 entries[i].enabled = true; 907 entries[i].vddc = dep_sclk_table->entries[i].vddc; 908 } 909 910 smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table, 911 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk)); 912 913 odn_table->odn_memory_clock_dpm_levels.num_of_pl = 914 data->golden_dpm_table.mclk_table.count; 915 entries = odn_table->odn_memory_clock_dpm_levels.entries; 916 for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) { 917 entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value; 918 entries[i].enabled = true; 919 entries[i].vddc = dep_mclk_table->entries[i].vddc; 920 } 921 922 smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table, 923 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk)); 924 925 return 0; 926 } 927 928 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr) 929 { 930 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 931 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table; 932 struct phm_ppt_v1_information *table_info = 933 (struct phm_ppt_v1_information *)(hwmgr->pptable); 934 uint32_t min_vddc = 0; 935 uint32_t max_vddc = 0; 936 937 if (!table_info) 938 return; 939 940 dep_sclk_table = table_info->vdd_dep_on_sclk; 941 942 atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc); 943 944 if (min_vddc == 0 || min_vddc > 2000 945 || min_vddc > dep_sclk_table->entries[0].vddc) 946 min_vddc = dep_sclk_table->entries[0].vddc; 947 948 if (max_vddc == 0 || max_vddc > 2000 949 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc) 950 max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc; 951 952 data->odn_dpm_table.min_vddc = min_vddc; 953 data->odn_dpm_table.max_vddc = max_vddc; 954 } 955 956 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr) 957 { 958 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 959 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 960 struct phm_ppt_v1_information *table_info = 961 (struct phm_ppt_v1_information *)(hwmgr->pptable); 962 uint32_t i; 963 964 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; 965 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table; 966 967 if (table_info == NULL) 968 return; 969 970 for (i = 0; i < data->dpm_table.sclk_table.count; i++) { 971 if (odn_table->odn_core_clock_dpm_levels.entries[i].clock != 972 data->dpm_table.sclk_table.dpm_levels[i].value) { 973 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 974 break; 975 } 976 } 977 978 for (i = 0; i < data->dpm_table.mclk_table.count; i++) { 979 if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock != 980 data->dpm_table.mclk_table.dpm_levels[i].value) { 981 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 982 break; 983 } 984 } 985 986 dep_table = table_info->vdd_dep_on_mclk; 987 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk); 988 989 for (i = 0; i < dep_table->count; i++) { 990 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 991 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK; 992 return; 993 } 994 } 995 996 dep_table = table_info->vdd_dep_on_sclk; 997 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk); 998 for (i = 0; i < dep_table->count; i++) { 999 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) { 1000 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK; 1001 return; 1002 } 1003 } 1004 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1005 data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC; 1006 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK; 1007 } 1008 } 1009 1010 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) 1011 { 1012 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1013 1014 smu7_reset_dpm_tables(hwmgr); 1015 1016 if (hwmgr->pp_table_version == PP_TABLE_V1) 1017 smu7_setup_dpm_tables_v1(hwmgr); 1018 else if (hwmgr->pp_table_version == PP_TABLE_V0) 1019 smu7_setup_dpm_tables_v0(hwmgr); 1020 1021 smu7_setup_default_pcie_table(hwmgr); 1022 1023 /* save a copy of the default DPM table */ 1024 memcpy(&(data->golden_dpm_table), &(data->dpm_table), 1025 sizeof(struct smu7_dpm_table)); 1026 1027 /* initialize ODN table */ 1028 if (hwmgr->od_enabled) { 1029 if (data->odn_dpm_table.max_vddc) { 1030 smu7_check_dpm_table_updated(hwmgr); 1031 } else { 1032 smu7_setup_voltage_range_from_vbios(hwmgr); 1033 smu7_odn_initial_default_setting(hwmgr); 1034 } 1035 } 1036 return 0; 1037 } 1038 1039 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr) 1040 { 1041 1042 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1043 PHM_PlatformCaps_RegulatorHot)) 1044 return smum_send_msg_to_smc(hwmgr, 1045 PPSMC_MSG_EnableVRHotGPIOInterrupt, 1046 NULL); 1047 1048 return 0; 1049 } 1050 1051 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr) 1052 { 1053 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1054 SCLK_PWRMGT_OFF, 0); 1055 return 0; 1056 } 1057 1058 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr) 1059 { 1060 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1061 1062 if (data->ulv_supported) 1063 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL); 1064 1065 return 0; 1066 } 1067 1068 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr) 1069 { 1070 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1071 1072 if (data->ulv_supported) 1073 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL); 1074 1075 return 0; 1076 } 1077 1078 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1079 { 1080 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1081 PHM_PlatformCaps_SclkDeepSleep)) { 1082 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL)) 1083 PP_ASSERT_WITH_CODE(false, 1084 "Attempt to enable Master Deep Sleep switch failed!", 1085 return -EINVAL); 1086 } else { 1087 if (smum_send_msg_to_smc(hwmgr, 1088 PPSMC_MSG_MASTER_DeepSleep_OFF, 1089 NULL)) { 1090 PP_ASSERT_WITH_CODE(false, 1091 "Attempt to disable Master Deep Sleep switch failed!", 1092 return -EINVAL); 1093 } 1094 } 1095 1096 return 0; 1097 } 1098 1099 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) 1100 { 1101 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1102 PHM_PlatformCaps_SclkDeepSleep)) { 1103 if (smum_send_msg_to_smc(hwmgr, 1104 PPSMC_MSG_MASTER_DeepSleep_OFF, 1105 NULL)) { 1106 PP_ASSERT_WITH_CODE(false, 1107 "Attempt to disable Master Deep Sleep switch failed!", 1108 return -EINVAL); 1109 } 1110 } 1111 1112 return 0; 1113 } 1114 1115 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr) 1116 { 1117 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1118 uint32_t soft_register_value = 0; 1119 uint32_t handshake_disables_offset = data->soft_regs_start 1120 + smum_get_offsetof(hwmgr, 1121 SMU_SoftRegisters, HandshakeDisables); 1122 1123 soft_register_value = cgs_read_ind_register(hwmgr->device, 1124 CGS_IND_REG__SMC, handshake_disables_offset); 1125 soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE; 1126 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1127 handshake_disables_offset, soft_register_value); 1128 return 0; 1129 } 1130 1131 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr) 1132 { 1133 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1134 uint32_t soft_register_value = 0; 1135 uint32_t handshake_disables_offset = data->soft_regs_start 1136 + smum_get_offsetof(hwmgr, 1137 SMU_SoftRegisters, HandshakeDisables); 1138 1139 soft_register_value = cgs_read_ind_register(hwmgr->device, 1140 CGS_IND_REG__SMC, handshake_disables_offset); 1141 soft_register_value |= smum_get_mac_definition(hwmgr, 1142 SMU_UVD_MCLK_HANDSHAKE_DISABLE); 1143 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1144 handshake_disables_offset, soft_register_value); 1145 return 0; 1146 } 1147 1148 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1149 { 1150 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1151 1152 /* enable SCLK dpm */ 1153 if (!data->sclk_dpm_key_disabled) { 1154 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1155 hwmgr->chip_id <= CHIP_VEGAM) 1156 smu7_disable_sclk_vce_handshake(hwmgr); 1157 1158 PP_ASSERT_WITH_CODE( 1159 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)), 1160 "Failed to enable SCLK DPM during DPM Start Function!", 1161 return -EINVAL); 1162 } 1163 1164 /* enable MCLK dpm */ 1165 if (0 == data->mclk_dpm_key_disabled) { 1166 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK)) 1167 smu7_disable_handshake_uvd(hwmgr); 1168 1169 PP_ASSERT_WITH_CODE( 1170 (0 == smum_send_msg_to_smc(hwmgr, 1171 PPSMC_MSG_MCLKDPM_Enable, 1172 NULL)), 1173 "Failed to enable MCLK DPM during DPM Start Function!", 1174 return -EINVAL); 1175 1176 if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) || 1177 (hwmgr->chip_id == CHIP_POLARIS10) || 1178 (hwmgr->chip_id == CHIP_POLARIS11) || 1179 (hwmgr->chip_id == CHIP_POLARIS12) || 1180 (hwmgr->chip_id == CHIP_TONGA)) 1181 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); 1182 1183 1184 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1185 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5); 1186 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5); 1187 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005); 1188 udelay(10); 1189 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005); 1190 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005); 1191 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005); 1192 } else { 1193 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5); 1194 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5); 1195 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005); 1196 udelay(10); 1197 if (hwmgr->chip_id == CHIP_VEGAM) { 1198 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009); 1199 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009); 1200 } else { 1201 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005); 1202 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005); 1203 } 1204 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005); 1205 } 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int smu7_start_dpm(struct pp_hwmgr *hwmgr) 1212 { 1213 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1214 1215 /*enable general power management */ 1216 1217 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1218 GLOBAL_PWRMGT_EN, 1); 1219 1220 /* enable sclk deep sleep */ 1221 1222 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1223 DYNAMIC_PM_EN, 1); 1224 1225 /* prepare for PCIE DPM */ 1226 1227 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 1228 data->soft_regs_start + 1229 smum_get_offsetof(hwmgr, SMU_SoftRegisters, 1230 VoltageChangeTimeout), 0x1000); 1231 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, 1232 SWRST_COMMAND_1, RESETLC, 0x0); 1233 1234 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) 1235 cgs_write_register(hwmgr->device, 0x1488, 1236 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1)); 1237 1238 if (smu7_enable_sclk_mclk_dpm(hwmgr)) { 1239 pr_err("Failed to enable Sclk DPM and Mclk DPM!"); 1240 return -EINVAL; 1241 } 1242 1243 /* enable PCIE dpm */ 1244 if (0 == data->pcie_dpm_key_disabled) { 1245 PP_ASSERT_WITH_CODE( 1246 (0 == smum_send_msg_to_smc(hwmgr, 1247 PPSMC_MSG_PCIeDPM_Enable, 1248 NULL)), 1249 "Failed to enable pcie DPM during DPM Start Function!", 1250 return -EINVAL); 1251 } 1252 1253 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1254 PHM_PlatformCaps_Falcon_QuickTransition)) { 1255 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr, 1256 PPSMC_MSG_EnableACDCGPIOInterrupt, 1257 NULL)), 1258 "Failed to enable AC DC GPIO Interrupt!", 1259 ); 1260 } 1261 1262 return 0; 1263 } 1264 1265 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 1266 { 1267 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1268 1269 /* disable SCLK dpm */ 1270 if (!data->sclk_dpm_key_disabled) { 1271 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1272 "Trying to disable SCLK DPM when DPM is disabled", 1273 return 0); 1274 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL); 1275 } 1276 1277 /* disable MCLK dpm */ 1278 if (!data->mclk_dpm_key_disabled) { 1279 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1280 "Trying to disable MCLK DPM when DPM is disabled", 1281 return 0); 1282 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL); 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr) 1289 { 1290 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1291 1292 /* disable general power management */ 1293 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1294 GLOBAL_PWRMGT_EN, 0); 1295 /* disable sclk deep sleep */ 1296 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, 1297 DYNAMIC_PM_EN, 0); 1298 1299 /* disable PCIE dpm */ 1300 if (!data->pcie_dpm_key_disabled) { 1301 PP_ASSERT_WITH_CODE( 1302 (smum_send_msg_to_smc(hwmgr, 1303 PPSMC_MSG_PCIeDPM_Disable, 1304 NULL) == 0), 1305 "Failed to disable pcie DPM during DPM Stop Function!", 1306 return -EINVAL); 1307 } 1308 1309 smu7_disable_sclk_mclk_dpm(hwmgr); 1310 1311 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 1312 "Trying to disable voltage DPM when DPM is disabled", 1313 return 0); 1314 1315 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL); 1316 1317 return 0; 1318 } 1319 1320 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) 1321 { 1322 bool protection; 1323 enum DPM_EVENT_SRC src; 1324 1325 switch (sources) { 1326 default: 1327 pr_err("Unknown throttling event sources."); 1328 fallthrough; 1329 case 0: 1330 protection = false; 1331 /* src is unused */ 1332 break; 1333 case (1 << PHM_AutoThrottleSource_Thermal): 1334 protection = true; 1335 src = DPM_EVENT_SRC_DIGITAL; 1336 break; 1337 case (1 << PHM_AutoThrottleSource_External): 1338 protection = true; 1339 src = DPM_EVENT_SRC_EXTERNAL; 1340 break; 1341 case (1 << PHM_AutoThrottleSource_External) | 1342 (1 << PHM_AutoThrottleSource_Thermal): 1343 protection = true; 1344 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; 1345 break; 1346 } 1347 /* Order matters - don't enable thermal protection for the wrong source. */ 1348 if (protection) { 1349 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, 1350 DPM_EVENT_SRC, src); 1351 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1352 THERMAL_PROTECTION_DIS, 1353 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1354 PHM_PlatformCaps_ThermalController)); 1355 } else 1356 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, 1357 THERMAL_PROTECTION_DIS, 1); 1358 } 1359 1360 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1361 PHM_AutoThrottleSource source) 1362 { 1363 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1364 1365 if (!(data->active_auto_throttle_sources & (1 << source))) { 1366 data->active_auto_throttle_sources |= 1 << source; 1367 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1368 } 1369 return 0; 1370 } 1371 1372 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1373 { 1374 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1375 } 1376 1377 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr, 1378 PHM_AutoThrottleSource source) 1379 { 1380 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1381 1382 if (data->active_auto_throttle_sources & (1 << source)) { 1383 data->active_auto_throttle_sources &= ~(1 << source); 1384 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); 1385 } 1386 return 0; 1387 } 1388 1389 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) 1390 { 1391 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); 1392 } 1393 1394 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr) 1395 { 1396 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1397 data->pcie_performance_request = true; 1398 1399 return 0; 1400 } 1401 1402 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr, 1403 uint32_t *cac_config_regs, 1404 AtomCtrl_EDCLeakgeTable *edc_leakage_table) 1405 { 1406 uint32_t data, i = 0; 1407 1408 while (cac_config_regs[i] != 0xFFFFFFFF) { 1409 data = edc_leakage_table->DIDT_REG[i]; 1410 cgs_write_ind_register(hwmgr->device, 1411 CGS_IND_REG__DIDT, 1412 cac_config_regs[i], 1413 data); 1414 i++; 1415 } 1416 1417 return 0; 1418 } 1419 1420 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr) 1421 { 1422 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1423 int ret = 0; 1424 1425 if (!data->disable_edc_leakage_controller && 1426 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 1427 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 1428 ret = smu7_program_edc_didt_registers(hwmgr, 1429 DIDTEDCConfig_P12, 1430 &data->edc_leakage_table); 1431 if (ret) 1432 return ret; 1433 1434 ret = smum_send_msg_to_smc(hwmgr, 1435 (PPSMC_Msg)PPSMC_MSG_EnableEDCController, 1436 NULL); 1437 } else { 1438 ret = smum_send_msg_to_smc(hwmgr, 1439 (PPSMC_Msg)PPSMC_MSG_DisableEDCController, 1440 NULL); 1441 } 1442 1443 return ret; 1444 } 1445 1446 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr) 1447 { 1448 int tmp_result = 0; 1449 int result = 0; 1450 1451 if (smu7_voltage_control(hwmgr)) { 1452 tmp_result = smu7_enable_voltage_control(hwmgr); 1453 PP_ASSERT_WITH_CODE(tmp_result == 0, 1454 "Failed to enable voltage control!", 1455 result = tmp_result); 1456 1457 tmp_result = smu7_construct_voltage_tables(hwmgr); 1458 PP_ASSERT_WITH_CODE((0 == tmp_result), 1459 "Failed to construct voltage tables!", 1460 result = tmp_result); 1461 } 1462 smum_initialize_mc_reg_table(hwmgr); 1463 1464 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1465 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) 1466 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1467 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1); 1468 1469 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1470 PHM_PlatformCaps_ThermalController)) 1471 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1472 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0); 1473 1474 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr); 1475 PP_ASSERT_WITH_CODE((0 == tmp_result), 1476 "Failed to program static screen threshold parameters!", 1477 result = tmp_result); 1478 1479 tmp_result = smu7_enable_display_gap(hwmgr); 1480 PP_ASSERT_WITH_CODE((0 == tmp_result), 1481 "Failed to enable display gap!", result = tmp_result); 1482 1483 tmp_result = smu7_program_voting_clients(hwmgr); 1484 PP_ASSERT_WITH_CODE((0 == tmp_result), 1485 "Failed to program voting clients!", result = tmp_result); 1486 1487 tmp_result = smum_process_firmware_header(hwmgr); 1488 PP_ASSERT_WITH_CODE((0 == tmp_result), 1489 "Failed to process firmware header!", result = tmp_result); 1490 1491 if (hwmgr->chip_id != CHIP_VEGAM) { 1492 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr); 1493 PP_ASSERT_WITH_CODE((0 == tmp_result), 1494 "Failed to initialize switch from ArbF0 to F1!", 1495 result = tmp_result); 1496 } 1497 1498 result = smu7_setup_default_dpm_tables(hwmgr); 1499 PP_ASSERT_WITH_CODE(0 == result, 1500 "Failed to setup default DPM tables!", return result); 1501 1502 tmp_result = smum_init_smc_table(hwmgr); 1503 PP_ASSERT_WITH_CODE((0 == tmp_result), 1504 "Failed to initialize SMC table!", result = tmp_result); 1505 1506 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr); 1507 PP_ASSERT_WITH_CODE((0 == tmp_result), 1508 "Failed to enable VR hot GPIO interrupt!", result = tmp_result); 1509 1510 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1511 hwmgr->chip_id <= CHIP_VEGAM) { 1512 tmp_result = smu7_notify_has_display(hwmgr); 1513 PP_ASSERT_WITH_CODE((0 == tmp_result), 1514 "Failed to enable display setting!", result = tmp_result); 1515 } else { 1516 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL); 1517 } 1518 1519 if (hwmgr->chip_id >= CHIP_POLARIS10 && 1520 hwmgr->chip_id <= CHIP_VEGAM) { 1521 tmp_result = smu7_populate_edc_leakage_registers(hwmgr); 1522 PP_ASSERT_WITH_CODE((0 == tmp_result), 1523 "Failed to populate edc leakage registers!", result = tmp_result); 1524 } 1525 1526 tmp_result = smu7_enable_sclk_control(hwmgr); 1527 PP_ASSERT_WITH_CODE((0 == tmp_result), 1528 "Failed to enable SCLK control!", result = tmp_result); 1529 1530 tmp_result = smu7_enable_smc_voltage_controller(hwmgr); 1531 PP_ASSERT_WITH_CODE((0 == tmp_result), 1532 "Failed to enable voltage control!", result = tmp_result); 1533 1534 tmp_result = smu7_enable_ulv(hwmgr); 1535 PP_ASSERT_WITH_CODE((0 == tmp_result), 1536 "Failed to enable ULV!", result = tmp_result); 1537 1538 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr); 1539 PP_ASSERT_WITH_CODE((0 == tmp_result), 1540 "Failed to enable deep sleep master switch!", result = tmp_result); 1541 1542 tmp_result = smu7_enable_didt_config(hwmgr); 1543 PP_ASSERT_WITH_CODE((tmp_result == 0), 1544 "Failed to enable deep sleep master switch!", result = tmp_result); 1545 1546 tmp_result = smu7_start_dpm(hwmgr); 1547 PP_ASSERT_WITH_CODE((0 == tmp_result), 1548 "Failed to start DPM!", result = tmp_result); 1549 1550 tmp_result = smu7_enable_smc_cac(hwmgr); 1551 PP_ASSERT_WITH_CODE((0 == tmp_result), 1552 "Failed to enable SMC CAC!", result = tmp_result); 1553 1554 tmp_result = smu7_enable_power_containment(hwmgr); 1555 PP_ASSERT_WITH_CODE((0 == tmp_result), 1556 "Failed to enable power containment!", result = tmp_result); 1557 1558 tmp_result = smu7_power_control_set_level(hwmgr); 1559 PP_ASSERT_WITH_CODE((0 == tmp_result), 1560 "Failed to power control set level!", result = tmp_result); 1561 1562 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr); 1563 PP_ASSERT_WITH_CODE((0 == tmp_result), 1564 "Failed to enable thermal auto throttle!", result = tmp_result); 1565 1566 tmp_result = smu7_pcie_performance_request(hwmgr); 1567 PP_ASSERT_WITH_CODE((0 == tmp_result), 1568 "pcie performance request failed!", result = tmp_result); 1569 1570 return 0; 1571 } 1572 1573 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable) 1574 { 1575 if (!hwmgr->avfs_supported) 1576 return 0; 1577 1578 if (enable) { 1579 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1580 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1581 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1582 hwmgr, PPSMC_MSG_EnableAvfs, NULL), 1583 "Failed to enable AVFS!", 1584 return -EINVAL); 1585 } 1586 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, 1587 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) { 1588 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc( 1589 hwmgr, PPSMC_MSG_DisableAvfs, NULL), 1590 "Failed to disable AVFS!", 1591 return -EINVAL); 1592 } 1593 1594 return 0; 1595 } 1596 1597 static int smu7_update_avfs(struct pp_hwmgr *hwmgr) 1598 { 1599 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1600 1601 if (!hwmgr->avfs_supported) 1602 return 0; 1603 1604 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) { 1605 smu7_avfs_control(hwmgr, false); 1606 } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 1607 smu7_avfs_control(hwmgr, false); 1608 smu7_avfs_control(hwmgr, true); 1609 } else { 1610 smu7_avfs_control(hwmgr, true); 1611 } 1612 1613 return 0; 1614 } 1615 1616 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr) 1617 { 1618 int tmp_result, result = 0; 1619 1620 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1621 PHM_PlatformCaps_ThermalController)) 1622 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1623 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); 1624 1625 tmp_result = smu7_disable_power_containment(hwmgr); 1626 PP_ASSERT_WITH_CODE((tmp_result == 0), 1627 "Failed to disable power containment!", result = tmp_result); 1628 1629 tmp_result = smu7_disable_smc_cac(hwmgr); 1630 PP_ASSERT_WITH_CODE((tmp_result == 0), 1631 "Failed to disable SMC CAC!", result = tmp_result); 1632 1633 tmp_result = smu7_disable_didt_config(hwmgr); 1634 PP_ASSERT_WITH_CODE((tmp_result == 0), 1635 "Failed to disable DIDT!", result = tmp_result); 1636 1637 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1638 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0); 1639 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 1640 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0); 1641 1642 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr); 1643 PP_ASSERT_WITH_CODE((tmp_result == 0), 1644 "Failed to disable thermal auto throttle!", result = tmp_result); 1645 1646 tmp_result = smu7_avfs_control(hwmgr, false); 1647 PP_ASSERT_WITH_CODE((tmp_result == 0), 1648 "Failed to disable AVFS!", result = tmp_result); 1649 1650 tmp_result = smu7_stop_dpm(hwmgr); 1651 PP_ASSERT_WITH_CODE((tmp_result == 0), 1652 "Failed to stop DPM!", result = tmp_result); 1653 1654 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr); 1655 PP_ASSERT_WITH_CODE((tmp_result == 0), 1656 "Failed to disable deep sleep master switch!", result = tmp_result); 1657 1658 tmp_result = smu7_disable_ulv(hwmgr); 1659 PP_ASSERT_WITH_CODE((tmp_result == 0), 1660 "Failed to disable ULV!", result = tmp_result); 1661 1662 tmp_result = smu7_clear_voting_clients(hwmgr); 1663 PP_ASSERT_WITH_CODE((tmp_result == 0), 1664 "Failed to clear voting clients!", result = tmp_result); 1665 1666 tmp_result = smu7_reset_to_default(hwmgr); 1667 PP_ASSERT_WITH_CODE((tmp_result == 0), 1668 "Failed to reset to default!", result = tmp_result); 1669 1670 tmp_result = smum_stop_smc(hwmgr); 1671 PP_ASSERT_WITH_CODE((tmp_result == 0), 1672 "Failed to stop smc!", result = tmp_result); 1673 1674 tmp_result = smu7_force_switch_to_arbf0(hwmgr); 1675 PP_ASSERT_WITH_CODE((tmp_result == 0), 1676 "Failed to force to switch arbf0!", result = tmp_result); 1677 1678 return result; 1679 } 1680 1681 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr) 1682 { 1683 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1684 struct phm_ppt_v1_information *table_info = 1685 (struct phm_ppt_v1_information *)(hwmgr->pptable); 1686 struct amdgpu_device *adev = hwmgr->adev; 1687 uint8_t tmp1, tmp2; 1688 uint16_t tmp3 = 0; 1689 1690 data->dll_default_on = false; 1691 data->mclk_dpm0_activity_target = 0xa; 1692 data->vddc_vddgfx_delta = 300; 1693 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT; 1694 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT; 1695 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0; 1696 data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1; 1697 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2; 1698 data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3; 1699 data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4; 1700 data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5; 1701 data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6; 1702 data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7; 1703 1704 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; 1705 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; 1706 data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; 1707 /* need to set voltage control types before EVV patching */ 1708 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE; 1709 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE; 1710 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE; 1711 data->enable_tdc_limit_feature = true; 1712 data->enable_pkg_pwr_tracking_feature = true; 1713 data->force_pcie_gen = PP_PCIEGenInvalid; 1714 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false; 1715 data->current_profile_setting.bupdate_sclk = 1; 1716 data->current_profile_setting.sclk_up_hyst = 0; 1717 data->current_profile_setting.sclk_down_hyst = 100; 1718 data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT; 1719 data->current_profile_setting.bupdate_mclk = 1; 1720 if (hwmgr->chip_id >= CHIP_POLARIS10) { 1721 if (adev->gmc.vram_width == 256) { 1722 data->current_profile_setting.mclk_up_hyst = 10; 1723 data->current_profile_setting.mclk_down_hyst = 60; 1724 data->current_profile_setting.mclk_activity = 25; 1725 } else if (adev->gmc.vram_width == 128) { 1726 data->current_profile_setting.mclk_up_hyst = 5; 1727 data->current_profile_setting.mclk_down_hyst = 16; 1728 data->current_profile_setting.mclk_activity = 20; 1729 } else if (adev->gmc.vram_width == 64) { 1730 data->current_profile_setting.mclk_up_hyst = 3; 1731 data->current_profile_setting.mclk_down_hyst = 16; 1732 data->current_profile_setting.mclk_activity = 20; 1733 } 1734 } else { 1735 data->current_profile_setting.mclk_up_hyst = 0; 1736 data->current_profile_setting.mclk_down_hyst = 100; 1737 data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT; 1738 } 1739 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D]; 1740 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1741 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D; 1742 1743 if (hwmgr->chip_id == CHIP_HAWAII) { 1744 data->thermal_temp_setting.temperature_low = 94500; 1745 data->thermal_temp_setting.temperature_high = 95000; 1746 data->thermal_temp_setting.temperature_shutdown = 104000; 1747 } else { 1748 data->thermal_temp_setting.temperature_low = 99500; 1749 data->thermal_temp_setting.temperature_high = 100000; 1750 data->thermal_temp_setting.temperature_shutdown = 104000; 1751 } 1752 1753 data->fast_watermark_threshold = 100; 1754 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1755 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) 1756 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1757 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1758 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) 1759 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1760 1761 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1762 PHM_PlatformCaps_ControlVDDGFX)) { 1763 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1764 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) { 1765 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1766 } 1767 } 1768 1769 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1770 PHM_PlatformCaps_EnableMVDDControl)) { 1771 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1772 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) 1773 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1774 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1775 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) 1776 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1777 } 1778 1779 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control) 1780 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1781 PHM_PlatformCaps_ControlVDDGFX); 1782 1783 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1784 PHM_PlatformCaps_ControlVDDCI)) { 1785 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1786 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) 1787 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO; 1788 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr, 1789 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) 1790 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2; 1791 } 1792 1793 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE) 1794 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1795 PHM_PlatformCaps_EnableMVDDControl); 1796 1797 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) 1798 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1799 PHM_PlatformCaps_ControlVDDCI); 1800 1801 data->vddc_phase_shed_control = 1; 1802 if ((hwmgr->chip_id == CHIP_POLARIS12) || 1803 ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1804 ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 1805 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) || 1806 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 1807 if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 1808 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2, 1809 &tmp3); 1810 tmp3 = (tmp3 >> 5) & 0x3; 1811 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3; 1812 } 1813 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) { 1814 data->vddc_phase_shed_control = 1; 1815 } 1816 1817 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK) 1818 && (table_info->cac_dtp_table->usClockStretchAmount != 0)) 1819 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1820 PHM_PlatformCaps_ClockStretcher); 1821 1822 data->pcie_gen_performance.max = PP_PCIEGen1; 1823 data->pcie_gen_performance.min = PP_PCIEGen3; 1824 data->pcie_gen_power_saving.max = PP_PCIEGen1; 1825 data->pcie_gen_power_saving.min = PP_PCIEGen3; 1826 data->pcie_lane_performance.max = 0; 1827 data->pcie_lane_performance.min = 16; 1828 data->pcie_lane_power_saving.max = 0; 1829 data->pcie_lane_power_saving.min = 16; 1830 1831 1832 if (adev->pg_flags & AMD_PG_SUPPORT_UVD) 1833 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1834 PHM_PlatformCaps_UVDPowerGating); 1835 if (adev->pg_flags & AMD_PG_SUPPORT_VCE) 1836 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 1837 PHM_PlatformCaps_VCEPowerGating); 1838 1839 data->disable_edc_leakage_controller = true; 1840 if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) || 1841 ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) || 1842 (adev->asic_type == CHIP_POLARIS12) || 1843 (adev->asic_type == CHIP_VEGAM)) 1844 data->disable_edc_leakage_controller = false; 1845 1846 if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) { 1847 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1848 PHM_PlatformCaps_MemorySpreadSpectrumSupport); 1849 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1850 PHM_PlatformCaps_EngineSpreadSpectrumSupport); 1851 } 1852 1853 if ((adev->pdev->device == 0x699F) && 1854 (adev->pdev->revision == 0xCF)) { 1855 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1856 PHM_PlatformCaps_PowerContainment); 1857 data->enable_tdc_limit_feature = false; 1858 data->enable_pkg_pwr_tracking_feature = false; 1859 data->disable_edc_leakage_controller = true; 1860 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, 1861 PHM_PlatformCaps_ClockStretcher); 1862 } 1863 } 1864 1865 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr) 1866 { 1867 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1868 struct amdgpu_device *adev = hwmgr->adev; 1869 uint32_t asicrev1, evv_revision, max = 0, min = 0; 1870 1871 atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB, 1872 &evv_revision); 1873 1874 atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1); 1875 1876 if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) || 1877 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) { 1878 min = 1200; 1879 max = 2500; 1880 } else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) || 1881 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) { 1882 min = 900; 1883 max= 2100; 1884 } else if (hwmgr->chip_id == CHIP_POLARIS10) { 1885 if (adev->pdev->subsystem_vendor == 0x106B) { 1886 min = 1000; 1887 max = 2300; 1888 } else { 1889 if (evv_revision == 0) { 1890 min = 1000; 1891 max = 2300; 1892 } else if (evv_revision == 1) { 1893 if (asicrev1 == 326) { 1894 min = 1200; 1895 max = 2500; 1896 /* TODO: PATCH RO in VBIOS */ 1897 } else { 1898 min = 1200; 1899 max = 2000; 1900 } 1901 } else if (evv_revision == 2) { 1902 min = 1200; 1903 max = 2500; 1904 } 1905 } 1906 } else { 1907 min = 1100; 1908 max = 2100; 1909 } 1910 1911 data->ro_range_minimum = min; 1912 data->ro_range_maximum = max; 1913 1914 /* TODO: PATCH RO in VBIOS here */ 1915 1916 return 0; 1917 } 1918 1919 /** 1920 * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID. 1921 * 1922 * @hwmgr: the address of the powerplay hardware manager. 1923 * Return: always 0 1924 */ 1925 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr) 1926 { 1927 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 1928 uint16_t vv_id; 1929 uint16_t vddc = 0; 1930 uint16_t vddgfx = 0; 1931 uint16_t i, j; 1932 uint32_t sclk = 0; 1933 struct phm_ppt_v1_information *table_info = 1934 (struct phm_ppt_v1_information *)hwmgr->pptable; 1935 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL; 1936 1937 if (hwmgr->chip_id == CHIP_POLARIS10 || 1938 hwmgr->chip_id == CHIP_POLARIS11 || 1939 hwmgr->chip_id == CHIP_POLARIS12) 1940 smu7_calculate_ro_range(hwmgr); 1941 1942 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 1943 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 1944 1945 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 1946 if ((hwmgr->pp_table_version == PP_TABLE_V1) 1947 && !phm_get_sclk_for_voltage_evv(hwmgr, 1948 table_info->vddgfx_lookup_table, vv_id, &sclk)) { 1949 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1950 PHM_PlatformCaps_ClockStretcher)) { 1951 sclk_table = table_info->vdd_dep_on_sclk; 1952 1953 for (j = 1; j < sclk_table->count; j++) { 1954 if (sclk_table->entries[j].clk == sclk && 1955 sclk_table->entries[j].cks_enable == 0) { 1956 sclk += 5000; 1957 break; 1958 } 1959 } 1960 } 1961 if (0 == atomctrl_get_voltage_evv_on_sclk 1962 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk, 1963 vv_id, &vddgfx)) { 1964 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */ 1965 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL); 1966 1967 /* the voltage should not be zero nor equal to leakage ID */ 1968 if (vddgfx != 0 && vddgfx != vv_id) { 1969 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx; 1970 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id; 1971 data->vddcgfx_leakage.count++; 1972 } 1973 } else { 1974 pr_info("Error retrieving EVV voltage value!\n"); 1975 } 1976 } 1977 } else { 1978 if ((hwmgr->pp_table_version == PP_TABLE_V0) 1979 || !phm_get_sclk_for_voltage_evv(hwmgr, 1980 table_info->vddc_lookup_table, vv_id, &sclk)) { 1981 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 1982 PHM_PlatformCaps_ClockStretcher)) { 1983 if (table_info == NULL) 1984 return -EINVAL; 1985 sclk_table = table_info->vdd_dep_on_sclk; 1986 1987 for (j = 1; j < sclk_table->count; j++) { 1988 if (sclk_table->entries[j].clk == sclk && 1989 sclk_table->entries[j].cks_enable == 0) { 1990 sclk += 5000; 1991 break; 1992 } 1993 } 1994 } 1995 1996 if (phm_get_voltage_evv_on_sclk(hwmgr, 1997 VOLTAGE_TYPE_VDDC, 1998 sclk, vv_id, &vddc) == 0) { 1999 if (vddc >= 2000 || vddc == 0) 2000 return -EINVAL; 2001 } else { 2002 pr_debug("failed to retrieving EVV voltage!\n"); 2003 continue; 2004 } 2005 2006 /* the voltage should not be zero nor equal to leakage ID */ 2007 if (vddc != 0 && vddc != vv_id) { 2008 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc); 2009 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; 2010 data->vddc_leakage.count++; 2011 } 2012 } 2013 } 2014 } 2015 2016 return 0; 2017 } 2018 2019 /** 2020 * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value. 2021 * 2022 * @hwmgr: the address of the powerplay hardware manager. 2023 * @voltage: pointer to changing voltage 2024 * @leakage_table: pointer to leakage table 2025 */ 2026 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2027 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table) 2028 { 2029 uint32_t index; 2030 2031 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2032 for (index = 0; index < leakage_table->count; index++) { 2033 /* if this voltage matches a leakage voltage ID */ 2034 /* patch with actual leakage voltage */ 2035 if (leakage_table->leakage_id[index] == *voltage) { 2036 *voltage = leakage_table->actual_voltage[index]; 2037 break; 2038 } 2039 } 2040 2041 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2042 pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); 2043 } 2044 2045 /** 2046 * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages. 2047 * 2048 * @hwmgr: the address of the powerplay hardware manager. 2049 * @lookup_table: pointer to voltage lookup table 2050 * @leakage_table: pointer to leakage table 2051 * Return: always 0 2052 */ 2053 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, 2054 phm_ppt_v1_voltage_lookup_table *lookup_table, 2055 struct smu7_leakage_voltage *leakage_table) 2056 { 2057 uint32_t i; 2058 2059 for (i = 0; i < lookup_table->count; i++) 2060 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2061 &lookup_table->entries[i].us_vdd, leakage_table); 2062 2063 return 0; 2064 } 2065 2066 static int smu7_patch_clock_voltage_limits_with_vddc_leakage( 2067 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table, 2068 uint16_t *vddc) 2069 { 2070 struct phm_ppt_v1_information *table_info = 2071 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2072 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); 2073 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc = 2074 table_info->max_clock_voltage_on_dc.vddc; 2075 return 0; 2076 } 2077 2078 static int smu7_patch_voltage_dependency_tables_with_lookup_table( 2079 struct pp_hwmgr *hwmgr) 2080 { 2081 uint8_t entry_id; 2082 uint8_t voltage_id; 2083 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2084 struct phm_ppt_v1_information *table_info = 2085 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2086 2087 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = 2088 table_info->vdd_dep_on_sclk; 2089 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = 2090 table_info->vdd_dep_on_mclk; 2091 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = 2092 table_info->mm_dep_table; 2093 2094 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2095 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2096 voltage_id = sclk_table->entries[entry_id].vddInd; 2097 sclk_table->entries[entry_id].vddgfx = 2098 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd; 2099 } 2100 } else { 2101 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2102 voltage_id = sclk_table->entries[entry_id].vddInd; 2103 sclk_table->entries[entry_id].vddc = 2104 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2105 } 2106 } 2107 2108 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2109 voltage_id = mclk_table->entries[entry_id].vddInd; 2110 mclk_table->entries[entry_id].vddc = 2111 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2112 } 2113 2114 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { 2115 voltage_id = mm_table->entries[entry_id].vddcInd; 2116 mm_table->entries[entry_id].vddc = 2117 table_info->vddc_lookup_table->entries[voltage_id].us_vdd; 2118 } 2119 2120 return 0; 2121 2122 } 2123 2124 static int phm_add_voltage(struct pp_hwmgr *hwmgr, 2125 phm_ppt_v1_voltage_lookup_table *look_up_table, 2126 phm_ppt_v1_voltage_lookup_record *record) 2127 { 2128 uint32_t i; 2129 2130 PP_ASSERT_WITH_CODE((NULL != look_up_table), 2131 "Lookup Table empty.", return -EINVAL); 2132 PP_ASSERT_WITH_CODE((0 != look_up_table->count), 2133 "Lookup Table empty.", return -EINVAL); 2134 2135 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX); 2136 PP_ASSERT_WITH_CODE((i >= look_up_table->count), 2137 "Lookup Table is full.", return -EINVAL); 2138 2139 /* This is to avoid entering duplicate calculated records. */ 2140 for (i = 0; i < look_up_table->count; i++) { 2141 if (look_up_table->entries[i].us_vdd == record->us_vdd) { 2142 if (look_up_table->entries[i].us_calculated == 1) 2143 return 0; 2144 break; 2145 } 2146 } 2147 2148 look_up_table->entries[i].us_calculated = 1; 2149 look_up_table->entries[i].us_vdd = record->us_vdd; 2150 look_up_table->entries[i].us_cac_low = record->us_cac_low; 2151 look_up_table->entries[i].us_cac_mid = record->us_cac_mid; 2152 look_up_table->entries[i].us_cac_high = record->us_cac_high; 2153 /* Only increment the count when we're appending, not replacing duplicate entry. */ 2154 if (i == look_up_table->count) 2155 look_up_table->count++; 2156 2157 return 0; 2158 } 2159 2160 2161 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr) 2162 { 2163 uint8_t entry_id; 2164 struct phm_ppt_v1_voltage_lookup_record v_record; 2165 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2166 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2167 2168 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk; 2169 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk; 2170 2171 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2172 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) { 2173 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2174 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2175 sclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2176 else 2177 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx + 2178 sclk_table->entries[entry_id].vdd_offset; 2179 2180 sclk_table->entries[entry_id].vddc = 2181 v_record.us_cac_low = v_record.us_cac_mid = 2182 v_record.us_cac_high = v_record.us_vdd; 2183 2184 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record); 2185 } 2186 2187 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { 2188 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15)) 2189 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2190 mclk_table->entries[entry_id].vdd_offset - 0xFFFF; 2191 else 2192 v_record.us_vdd = mclk_table->entries[entry_id].vddc + 2193 mclk_table->entries[entry_id].vdd_offset; 2194 2195 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2196 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2197 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2198 } 2199 } 2200 return 0; 2201 } 2202 2203 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr) 2204 { 2205 uint8_t entry_id; 2206 struct phm_ppt_v1_voltage_lookup_record v_record; 2207 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2208 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable); 2209 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table; 2210 2211 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2212 for (entry_id = 0; entry_id < mm_table->count; entry_id++) { 2213 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15)) 2214 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2215 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF; 2216 else 2217 v_record.us_vdd = mm_table->entries[entry_id].vddc + 2218 mm_table->entries[entry_id].vddgfx_offset; 2219 2220 /* Add the calculated VDDGFX to the VDDGFX lookup table */ 2221 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low = 2222 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd; 2223 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record); 2224 } 2225 } 2226 return 0; 2227 } 2228 2229 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr, 2230 struct phm_ppt_v1_voltage_lookup_table *lookup_table) 2231 { 2232 uint32_t table_size, i, j; 2233 table_size = lookup_table->count; 2234 2235 PP_ASSERT_WITH_CODE(0 != lookup_table->count, 2236 "Lookup table is empty", return -EINVAL); 2237 2238 /* Sorting voltages */ 2239 for (i = 0; i < table_size - 1; i++) { 2240 for (j = i + 1; j > 0; j--) { 2241 if (lookup_table->entries[j].us_vdd < 2242 lookup_table->entries[j - 1].us_vdd) { 2243 swap(lookup_table->entries[j - 1], 2244 lookup_table->entries[j]); 2245 } 2246 } 2247 } 2248 2249 return 0; 2250 } 2251 2252 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr) 2253 { 2254 int result = 0; 2255 int tmp_result; 2256 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2257 struct phm_ppt_v1_information *table_info = 2258 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2259 2260 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) { 2261 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2262 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage)); 2263 if (tmp_result != 0) 2264 result = tmp_result; 2265 2266 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, 2267 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage)); 2268 } else { 2269 2270 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr, 2271 table_info->vddc_lookup_table, &(data->vddc_leakage)); 2272 if (tmp_result) 2273 result = tmp_result; 2274 2275 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, 2276 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); 2277 if (tmp_result) 2278 result = tmp_result; 2279 } 2280 2281 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr); 2282 if (tmp_result) 2283 result = tmp_result; 2284 2285 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr); 2286 if (tmp_result) 2287 result = tmp_result; 2288 2289 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr); 2290 if (tmp_result) 2291 result = tmp_result; 2292 2293 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table); 2294 if (tmp_result) 2295 result = tmp_result; 2296 2297 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); 2298 if (tmp_result) 2299 result = tmp_result; 2300 2301 return result; 2302 } 2303 2304 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr) 2305 { 2306 struct phm_ppt_v1_information *table_info = 2307 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2308 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2309 table_info->vdd_dep_on_sclk; 2310 struct phm_ppt_v1_voltage_lookup_table *lookup_table = 2311 table_info->vddc_lookup_table; 2312 uint16_t highest_voltage; 2313 uint32_t i; 2314 2315 highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2316 2317 for (i = 0; i < lookup_table->count; i++) { 2318 if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 && 2319 lookup_table->entries[i].us_vdd > highest_voltage) 2320 highest_voltage = lookup_table->entries[i].us_vdd; 2321 } 2322 2323 return highest_voltage; 2324 } 2325 2326 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr) 2327 { 2328 struct phm_ppt_v1_information *table_info = 2329 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2330 2331 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = 2332 table_info->vdd_dep_on_sclk; 2333 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = 2334 table_info->vdd_dep_on_mclk; 2335 2336 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL, 2337 "VDD dependency on SCLK table is missing.", 2338 return -EINVAL); 2339 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, 2340 "VDD dependency on SCLK table has to have is missing.", 2341 return -EINVAL); 2342 2343 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL, 2344 "VDD dependency on MCLK table is missing", 2345 return -EINVAL); 2346 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, 2347 "VDD dependency on MCLK table has to have is missing.", 2348 return -EINVAL); 2349 2350 table_info->max_clock_voltage_on_ac.sclk = 2351 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; 2352 table_info->max_clock_voltage_on_ac.mclk = 2353 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; 2354 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 2355 table_info->max_clock_voltage_on_ac.vddc = 2356 smu7_find_highest_vddc(hwmgr); 2357 else 2358 table_info->max_clock_voltage_on_ac.vddc = 2359 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; 2360 table_info->max_clock_voltage_on_ac.vddci = 2361 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; 2362 2363 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; 2364 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; 2365 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; 2366 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; 2367 2368 return 0; 2369 } 2370 2371 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr) 2372 { 2373 struct phm_ppt_v1_information *table_info = 2374 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2375 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 2376 struct phm_ppt_v1_voltage_lookup_table *lookup_table; 2377 uint32_t i; 2378 uint32_t hw_revision, sub_vendor_id, sub_sys_id; 2379 struct amdgpu_device *adev = hwmgr->adev; 2380 2381 if (table_info != NULL) { 2382 dep_mclk_table = table_info->vdd_dep_on_mclk; 2383 lookup_table = table_info->vddc_lookup_table; 2384 } else 2385 return 0; 2386 2387 hw_revision = adev->pdev->revision; 2388 sub_sys_id = adev->pdev->subsystem_device; 2389 sub_vendor_id = adev->pdev->subsystem_vendor; 2390 2391 if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 && 2392 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) || 2393 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) || 2394 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) { 2395 2396 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, 2397 CGS_IND_REG__SMC, 2398 PWR_CKS_CNTL, 2399 CKS_STRETCH_AMOUNT, 2400 0x3); 2401 2402 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000) 2403 return 0; 2404 2405 for (i = 0; i < lookup_table->count; i++) { 2406 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) { 2407 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i; 2408 return 0; 2409 } 2410 } 2411 } 2412 return 0; 2413 } 2414 2415 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr) 2416 { 2417 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; 2418 uint32_t temp_reg; 2419 struct phm_ppt_v1_information *table_info = 2420 (struct phm_ppt_v1_information *)(hwmgr->pptable); 2421 2422 2423 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { 2424 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); 2425 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { 2426 case 0: 2427 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); 2428 break; 2429 case 1: 2430 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); 2431 break; 2432 case 2: 2433 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); 2434 break; 2435 case 3: 2436 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); 2437 break; 2438 case 4: 2439 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); 2440 break; 2441 default: 2442 break; 2443 } 2444 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); 2445 } 2446 2447 if (table_info == NULL) 2448 return 0; 2449 2450 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 && 2451 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) { 2452 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit = 2453 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2454 2455 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit = 2456 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2457 2458 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1; 2459 2460 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100; 2461 2462 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit = 2463 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit; 2464 2465 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1; 2466 2467 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ? 2468 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0; 2469 2470 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2471 table_info->cac_dtp_table->usOperatingTempStep = 1; 2472 table_info->cac_dtp_table->usOperatingTempHyst = 1; 2473 2474 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = 2475 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM; 2476 2477 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = 2478 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM; 2479 2480 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit = 2481 table_info->cac_dtp_table->usOperatingTempMinLimit; 2482 2483 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit = 2484 table_info->cac_dtp_table->usOperatingTempMaxLimit; 2485 2486 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp = 2487 table_info->cac_dtp_table->usDefaultTargetOperatingTemp; 2488 2489 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep = 2490 table_info->cac_dtp_table->usOperatingTempStep; 2491 2492 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp = 2493 table_info->cac_dtp_table->usTargetOperatingTemp; 2494 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK) 2495 phm_cap_set(hwmgr->platform_descriptor.platformCaps, 2496 PHM_PlatformCaps_ODFuzzyFanControlSupport); 2497 } 2498 2499 return 0; 2500 } 2501 2502 /** 2503 * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value. 2504 * 2505 * @hwmgr: the address of the powerplay hardware manager. 2506 * @voltage: pointer to changing voltage 2507 * @leakage_table: pointer to leakage table 2508 */ 2509 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr, 2510 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table) 2511 { 2512 uint32_t index; 2513 2514 /* search for leakage voltage ID 0xff01 ~ 0xff08 */ 2515 for (index = 0; index < leakage_table->count; index++) { 2516 /* if this voltage matches a leakage voltage ID */ 2517 /* patch with actual leakage voltage */ 2518 if (leakage_table->leakage_id[index] == *voltage) { 2519 *voltage = leakage_table->actual_voltage[index]; 2520 break; 2521 } 2522 } 2523 2524 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) 2525 pr_err("Voltage value looks like a Leakage ID but it's not patched \n"); 2526 } 2527 2528 2529 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr, 2530 struct phm_clock_voltage_dependency_table *tab) 2531 { 2532 uint16_t i; 2533 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2534 2535 if (tab) 2536 for (i = 0; i < tab->count; i++) 2537 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2538 &data->vddc_leakage); 2539 2540 return 0; 2541 } 2542 2543 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr, 2544 struct phm_clock_voltage_dependency_table *tab) 2545 { 2546 uint16_t i; 2547 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2548 2549 if (tab) 2550 for (i = 0; i < tab->count; i++) 2551 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2552 &data->vddci_leakage); 2553 2554 return 0; 2555 } 2556 2557 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr, 2558 struct phm_vce_clock_voltage_dependency_table *tab) 2559 { 2560 uint16_t i; 2561 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2562 2563 if (tab) 2564 for (i = 0; i < tab->count; i++) 2565 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2566 &data->vddc_leakage); 2567 2568 return 0; 2569 } 2570 2571 2572 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr, 2573 struct phm_uvd_clock_voltage_dependency_table *tab) 2574 { 2575 uint16_t i; 2576 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2577 2578 if (tab) 2579 for (i = 0; i < tab->count; i++) 2580 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2581 &data->vddc_leakage); 2582 2583 return 0; 2584 } 2585 2586 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, 2587 struct phm_phase_shedding_limits_table *tab) 2588 { 2589 uint16_t i; 2590 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2591 2592 if (tab) 2593 for (i = 0; i < tab->count; i++) 2594 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage, 2595 &data->vddc_leakage); 2596 2597 return 0; 2598 } 2599 2600 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr, 2601 struct phm_samu_clock_voltage_dependency_table *tab) 2602 { 2603 uint16_t i; 2604 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2605 2606 if (tab) 2607 for (i = 0; i < tab->count; i++) 2608 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2609 &data->vddc_leakage); 2610 2611 return 0; 2612 } 2613 2614 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr, 2615 struct phm_acp_clock_voltage_dependency_table *tab) 2616 { 2617 uint16_t i; 2618 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2619 2620 if (tab) 2621 for (i = 0; i < tab->count; i++) 2622 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v, 2623 &data->vddc_leakage); 2624 2625 return 0; 2626 } 2627 2628 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr, 2629 struct phm_clock_and_voltage_limits *tab) 2630 { 2631 uint32_t vddc, vddci; 2632 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2633 2634 if (tab) { 2635 vddc = tab->vddc; 2636 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, 2637 &data->vddc_leakage); 2638 tab->vddc = vddc; 2639 vddci = tab->vddci; 2640 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci, 2641 &data->vddci_leakage); 2642 tab->vddci = vddci; 2643 } 2644 2645 return 0; 2646 } 2647 2648 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) 2649 { 2650 uint32_t i; 2651 uint32_t vddc; 2652 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2653 2654 if (tab) { 2655 for (i = 0; i < tab->count; i++) { 2656 vddc = (uint32_t)(tab->entries[i].Vddc); 2657 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage); 2658 tab->entries[i].Vddc = (uint16_t)vddc; 2659 } 2660 } 2661 2662 return 0; 2663 } 2664 2665 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) 2666 { 2667 int tmp; 2668 2669 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); 2670 if (tmp) 2671 return -EINVAL; 2672 2673 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); 2674 if (tmp) 2675 return -EINVAL; 2676 2677 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2678 if (tmp) 2679 return -EINVAL; 2680 2681 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); 2682 if (tmp) 2683 return -EINVAL; 2684 2685 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); 2686 if (tmp) 2687 return -EINVAL; 2688 2689 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); 2690 if (tmp) 2691 return -EINVAL; 2692 2693 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); 2694 if (tmp) 2695 return -EINVAL; 2696 2697 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); 2698 if (tmp) 2699 return -EINVAL; 2700 2701 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); 2702 if (tmp) 2703 return -EINVAL; 2704 2705 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); 2706 if (tmp) 2707 return -EINVAL; 2708 2709 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); 2710 if (tmp) 2711 return -EINVAL; 2712 2713 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); 2714 if (tmp) 2715 return -EINVAL; 2716 2717 return 0; 2718 } 2719 2720 2721 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr) 2722 { 2723 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2724 2725 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 2726 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 2727 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; 2728 2729 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, 2730 "VDDC dependency on SCLK table is missing. This table is mandatory", 2731 return -EINVAL); 2732 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, 2733 "VDDC dependency on SCLK table has to have is missing. This table is mandatory", 2734 return -EINVAL); 2735 2736 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, 2737 "VDDC dependency on MCLK table is missing. This table is mandatory", 2738 return -EINVAL); 2739 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, 2740 "VDD dependency on MCLK table has to have is missing. This table is mandatory", 2741 return -EINVAL); 2742 2743 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v; 2744 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2745 2746 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = 2747 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; 2748 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = 2749 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; 2750 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = 2751 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; 2752 2753 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { 2754 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v; 2755 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; 2756 } 2757 2758 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1) 2759 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; 2760 2761 return 0; 2762 } 2763 2764 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) 2765 { 2766 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); 2767 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; 2768 kfree(hwmgr->backend); 2769 hwmgr->backend = NULL; 2770 2771 return 0; 2772 } 2773 2774 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr) 2775 { 2776 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id; 2777 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2778 int i; 2779 2780 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) { 2781 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) { 2782 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; 2783 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci, 2784 virtual_voltage_id, 2785 efuse_voltage_id) == 0) { 2786 if (vddc != 0 && vddc != virtual_voltage_id) { 2787 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; 2788 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; 2789 data->vddc_leakage.count++; 2790 } 2791 if (vddci != 0 && vddci != virtual_voltage_id) { 2792 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci; 2793 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id; 2794 data->vddci_leakage.count++; 2795 } 2796 } 2797 } 2798 } 2799 return 0; 2800 } 2801 2802 #define LEAKAGE_ID_MSB 463 2803 #define LEAKAGE_ID_LSB 454 2804 2805 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr) 2806 { 2807 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2808 uint32_t efuse; 2809 uint16_t offset; 2810 int ret = 0; 2811 2812 if (data->disable_edc_leakage_controller) 2813 return 0; 2814 2815 ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr, 2816 &data->edc_hilo_leakage_offset_from_vbios); 2817 if (ret) 2818 return ret; 2819 2820 if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset && 2821 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) { 2822 atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse); 2823 if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold) 2824 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset; 2825 else 2826 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset; 2827 2828 ret = atomctrl_get_edc_leakage_table(hwmgr, 2829 &data->edc_leakage_table, 2830 offset); 2831 if (ret) 2832 return ret; 2833 } 2834 2835 return ret; 2836 } 2837 2838 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr) 2839 { 2840 struct smu7_hwmgr *data; 2841 int result = 0; 2842 2843 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL); 2844 if (data == NULL) 2845 return -ENOMEM; 2846 2847 hwmgr->backend = data; 2848 smu7_patch_voltage_workaround(hwmgr); 2849 smu7_init_dpm_defaults(hwmgr); 2850 2851 /* Get leakage voltage based on leakage ID. */ 2852 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 2853 PHM_PlatformCaps_EVV)) { 2854 result = smu7_get_evv_voltages(hwmgr); 2855 if (result) { 2856 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n"); 2857 return -EINVAL; 2858 } 2859 } else { 2860 smu7_get_elb_voltages(hwmgr); 2861 } 2862 2863 if (hwmgr->pp_table_version == PP_TABLE_V1) { 2864 smu7_complete_dependency_tables(hwmgr); 2865 smu7_set_private_data_based_on_pptable_v1(hwmgr); 2866 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 2867 smu7_patch_dependency_tables_with_leakage(hwmgr); 2868 smu7_set_private_data_based_on_pptable_v0(hwmgr); 2869 } 2870 2871 /* Initalize Dynamic State Adjustment Rule Settings */ 2872 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr); 2873 2874 if (0 == result) { 2875 struct amdgpu_device *adev = hwmgr->adev; 2876 2877 data->is_tlu_enabled = false; 2878 2879 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = 2880 SMU7_MAX_HARDWARE_POWERLEVELS; 2881 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; 2882 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; 2883 2884 data->pcie_gen_cap = adev->pm.pcie_gen_mask; 2885 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) 2886 data->pcie_spc_cap = 20; 2887 else 2888 data->pcie_spc_cap = 16; 2889 data->pcie_lane_cap = adev->pm.pcie_mlw_mask; 2890 2891 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ 2892 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ 2893 hwmgr->platform_descriptor.clockStep.engineClock = 500; 2894 hwmgr->platform_descriptor.clockStep.memoryClock = 500; 2895 smu7_thermal_parameter_init(hwmgr); 2896 } else { 2897 /* Ignore return value in here, we are cleaning up a mess. */ 2898 smu7_hwmgr_backend_fini(hwmgr); 2899 } 2900 2901 result = smu7_update_edc_leakage_table(hwmgr); 2902 if (result) 2903 return result; 2904 2905 return 0; 2906 } 2907 2908 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr) 2909 { 2910 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2911 uint32_t level, tmp; 2912 2913 if (!data->pcie_dpm_key_disabled) { 2914 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 2915 level = 0; 2916 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; 2917 while (tmp >>= 1) 2918 level++; 2919 2920 if (level) 2921 smum_send_msg_to_smc_with_parameter(hwmgr, 2922 PPSMC_MSG_PCIeDPM_ForceLevel, level, 2923 NULL); 2924 } 2925 } 2926 2927 if (!data->sclk_dpm_key_disabled) { 2928 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 2929 level = 0; 2930 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 2931 while (tmp >>= 1) 2932 level++; 2933 2934 if (level) 2935 smum_send_msg_to_smc_with_parameter(hwmgr, 2936 PPSMC_MSG_SCLKDPM_SetEnabledMask, 2937 (1 << level), 2938 NULL); 2939 } 2940 } 2941 2942 if (!data->mclk_dpm_key_disabled) { 2943 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 2944 level = 0; 2945 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; 2946 while (tmp >>= 1) 2947 level++; 2948 2949 if (level) 2950 smum_send_msg_to_smc_with_parameter(hwmgr, 2951 PPSMC_MSG_MCLKDPM_SetEnabledMask, 2952 (1 << level), 2953 NULL); 2954 } 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) 2961 { 2962 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2963 2964 if (hwmgr->pp_table_version == PP_TABLE_V1) 2965 phm_apply_dal_min_voltage_request(hwmgr); 2966 /* TO DO for v0 iceland and Ci*/ 2967 2968 if (!data->sclk_dpm_key_disabled) { 2969 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) 2970 smum_send_msg_to_smc_with_parameter(hwmgr, 2971 PPSMC_MSG_SCLKDPM_SetEnabledMask, 2972 data->dpm_level_enable_mask.sclk_dpm_enable_mask, 2973 NULL); 2974 } 2975 2976 if (!data->mclk_dpm_key_disabled) { 2977 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) 2978 smum_send_msg_to_smc_with_parameter(hwmgr, 2979 PPSMC_MSG_MCLKDPM_SetEnabledMask, 2980 data->dpm_level_enable_mask.mclk_dpm_enable_mask, 2981 NULL); 2982 } 2983 2984 return 0; 2985 } 2986 2987 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr) 2988 { 2989 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 2990 2991 if (!smum_is_dpm_running(hwmgr)) 2992 return -EINVAL; 2993 2994 if (!data->pcie_dpm_key_disabled) { 2995 smum_send_msg_to_smc(hwmgr, 2996 PPSMC_MSG_PCIeDPM_UnForceLevel, 2997 NULL); 2998 } 2999 3000 return smu7_upload_dpm_level_enable_mask(hwmgr); 3001 } 3002 3003 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr) 3004 { 3005 struct smu7_hwmgr *data = 3006 (struct smu7_hwmgr *)(hwmgr->backend); 3007 uint32_t level; 3008 3009 if (!data->sclk_dpm_key_disabled) 3010 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 3011 level = phm_get_lowest_enabled_level(hwmgr, 3012 data->dpm_level_enable_mask.sclk_dpm_enable_mask); 3013 smum_send_msg_to_smc_with_parameter(hwmgr, 3014 PPSMC_MSG_SCLKDPM_SetEnabledMask, 3015 (1 << level), 3016 NULL); 3017 3018 } 3019 3020 if (!data->mclk_dpm_key_disabled) { 3021 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) { 3022 level = phm_get_lowest_enabled_level(hwmgr, 3023 data->dpm_level_enable_mask.mclk_dpm_enable_mask); 3024 smum_send_msg_to_smc_with_parameter(hwmgr, 3025 PPSMC_MSG_MCLKDPM_SetEnabledMask, 3026 (1 << level), 3027 NULL); 3028 } 3029 } 3030 3031 if (!data->pcie_dpm_key_disabled) { 3032 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) { 3033 level = phm_get_lowest_enabled_level(hwmgr, 3034 data->dpm_level_enable_mask.pcie_dpm_enable_mask); 3035 smum_send_msg_to_smc_with_parameter(hwmgr, 3036 PPSMC_MSG_PCIeDPM_ForceLevel, 3037 (level), 3038 NULL); 3039 } 3040 } 3041 3042 return 0; 3043 } 3044 3045 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, 3046 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask) 3047 { 3048 uint32_t percentage; 3049 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3050 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table; 3051 int32_t tmp_mclk; 3052 int32_t tmp_sclk; 3053 int32_t count; 3054 3055 if (golden_dpm_table->mclk_table.count < 1) 3056 return -EINVAL; 3057 3058 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value / 3059 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3060 3061 if (golden_dpm_table->mclk_table.count == 1) { 3062 percentage = 70; 3063 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value; 3064 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3065 } else { 3066 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value; 3067 *mclk_mask = golden_dpm_table->mclk_table.count - 2; 3068 } 3069 3070 tmp_sclk = tmp_mclk * percentage / 100; 3071 3072 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3073 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3074 count >= 0; count--) { 3075 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { 3076 tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk; 3077 *sclk_mask = count; 3078 break; 3079 } 3080 } 3081 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 3082 *sclk_mask = 0; 3083 tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk; 3084 } 3085 3086 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3087 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; 3088 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3089 struct phm_ppt_v1_information *table_info = 3090 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3091 3092 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) { 3093 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { 3094 tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; 3095 *sclk_mask = count; 3096 break; 3097 } 3098 } 3099 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { 3100 *sclk_mask = 0; 3101 tmp_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3102 } 3103 3104 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3105 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; 3106 } 3107 3108 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) 3109 *mclk_mask = 0; 3110 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3111 *mclk_mask = golden_dpm_table->mclk_table.count - 1; 3112 3113 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1; 3114 hwmgr->pstate_sclk = tmp_sclk; 3115 hwmgr->pstate_mclk = tmp_mclk; 3116 3117 return 0; 3118 } 3119 3120 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr, 3121 enum amd_dpm_forced_level level) 3122 { 3123 int ret = 0; 3124 uint32_t sclk_mask = 0; 3125 uint32_t mclk_mask = 0; 3126 uint32_t pcie_mask = 0; 3127 3128 if (hwmgr->pstate_sclk == 0) 3129 smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); 3130 3131 switch (level) { 3132 case AMD_DPM_FORCED_LEVEL_HIGH: 3133 ret = smu7_force_dpm_highest(hwmgr); 3134 break; 3135 case AMD_DPM_FORCED_LEVEL_LOW: 3136 ret = smu7_force_dpm_lowest(hwmgr); 3137 break; 3138 case AMD_DPM_FORCED_LEVEL_AUTO: 3139 ret = smu7_unforce_dpm_levels(hwmgr); 3140 break; 3141 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: 3142 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: 3143 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: 3144 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: 3145 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask); 3146 if (ret) 3147 return ret; 3148 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask); 3149 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask); 3150 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask); 3151 break; 3152 case AMD_DPM_FORCED_LEVEL_MANUAL: 3153 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT: 3154 default: 3155 break; 3156 } 3157 3158 if (!ret) { 3159 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3160 smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 3161 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) 3162 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr); 3163 } 3164 return ret; 3165 } 3166 3167 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr) 3168 { 3169 return sizeof(struct smu7_power_state); 3170 } 3171 3172 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr, 3173 uint32_t vblank_time_us) 3174 { 3175 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3176 uint32_t switch_limit_us; 3177 3178 switch (hwmgr->chip_id) { 3179 case CHIP_POLARIS10: 3180 case CHIP_POLARIS11: 3181 case CHIP_POLARIS12: 3182 if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12)) 3183 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3184 else 3185 switch_limit_us = data->is_memory_gddr5 ? 200 : 150; 3186 break; 3187 case CHIP_VEGAM: 3188 switch_limit_us = 30; 3189 break; 3190 default: 3191 switch_limit_us = data->is_memory_gddr5 ? 450 : 150; 3192 break; 3193 } 3194 3195 if (vblank_time_us < switch_limit_us) 3196 return true; 3197 else 3198 return false; 3199 } 3200 3201 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, 3202 struct pp_power_state *request_ps, 3203 const struct pp_power_state *current_ps) 3204 { 3205 struct amdgpu_device *adev = hwmgr->adev; 3206 struct smu7_power_state *smu7_ps = 3207 cast_phw_smu7_power_state(&request_ps->hardware); 3208 uint32_t sclk; 3209 uint32_t mclk; 3210 struct PP_Clocks minimum_clocks = {0}; 3211 bool disable_mclk_switching; 3212 bool disable_mclk_switching_for_frame_lock; 3213 bool disable_mclk_switching_for_display; 3214 const struct phm_clock_and_voltage_limits *max_limits; 3215 uint32_t i; 3216 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3217 struct phm_ppt_v1_information *table_info = 3218 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3219 int32_t count; 3220 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; 3221 uint32_t latency; 3222 bool latency_allowed = false; 3223 3224 data->battery_state = (PP_StateUILabel_Battery == 3225 request_ps->classification.ui_label); 3226 data->mclk_ignore_signal = false; 3227 3228 PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2, 3229 "VI should always have 2 performance levels", 3230 ); 3231 3232 max_limits = adev->pm.ac_power ? 3233 &(hwmgr->dyn_state.max_clock_voltage_on_ac) : 3234 &(hwmgr->dyn_state.max_clock_voltage_on_dc); 3235 3236 /* Cap clock DPM tables at DC MAX if it is in DC. */ 3237 if (!adev->pm.ac_power) { 3238 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3239 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk) 3240 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk; 3241 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk) 3242 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk; 3243 } 3244 } 3245 3246 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock; 3247 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock; 3248 3249 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3250 PHM_PlatformCaps_StablePState)) { 3251 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); 3252 stable_pstate_sclk = (max_limits->sclk * 75) / 100; 3253 3254 for (count = table_info->vdd_dep_on_sclk->count - 1; 3255 count >= 0; count--) { 3256 if (stable_pstate_sclk >= 3257 table_info->vdd_dep_on_sclk->entries[count].clk) { 3258 stable_pstate_sclk = 3259 table_info->vdd_dep_on_sclk->entries[count].clk; 3260 break; 3261 } 3262 } 3263 3264 if (count < 0) 3265 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; 3266 3267 stable_pstate_mclk = max_limits->mclk; 3268 3269 minimum_clocks.engineClock = stable_pstate_sclk; 3270 minimum_clocks.memoryClock = stable_pstate_mclk; 3271 } 3272 3273 disable_mclk_switching_for_frame_lock = phm_cap_enabled( 3274 hwmgr->platform_descriptor.platformCaps, 3275 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); 3276 3277 disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) && 3278 !hwmgr->display_config->multi_monitor_in_sync) || 3279 smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time); 3280 3281 disable_mclk_switching = disable_mclk_switching_for_frame_lock || 3282 disable_mclk_switching_for_display; 3283 3284 if (hwmgr->display_config->num_display == 0) { 3285 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) 3286 data->mclk_ignore_signal = true; 3287 else 3288 disable_mclk_switching = false; 3289 } 3290 3291 sclk = smu7_ps->performance_levels[0].engine_clock; 3292 mclk = smu7_ps->performance_levels[0].memory_clock; 3293 3294 if (disable_mclk_switching && 3295 (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3296 hwmgr->chip_id <= CHIP_VEGAM))) 3297 mclk = smu7_ps->performance_levels 3298 [smu7_ps->performance_level_count - 1].memory_clock; 3299 3300 if (sclk < minimum_clocks.engineClock) 3301 sclk = (minimum_clocks.engineClock > max_limits->sclk) ? 3302 max_limits->sclk : minimum_clocks.engineClock; 3303 3304 if (mclk < minimum_clocks.memoryClock) 3305 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? 3306 max_limits->mclk : minimum_clocks.memoryClock; 3307 3308 smu7_ps->performance_levels[0].engine_clock = sclk; 3309 smu7_ps->performance_levels[0].memory_clock = mclk; 3310 3311 smu7_ps->performance_levels[1].engine_clock = 3312 (smu7_ps->performance_levels[1].engine_clock >= 3313 smu7_ps->performance_levels[0].engine_clock) ? 3314 smu7_ps->performance_levels[1].engine_clock : 3315 smu7_ps->performance_levels[0].engine_clock; 3316 3317 if (disable_mclk_switching) { 3318 if (mclk < smu7_ps->performance_levels[1].memory_clock) 3319 mclk = smu7_ps->performance_levels[1].memory_clock; 3320 3321 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) { 3322 if (disable_mclk_switching_for_display) { 3323 /* Find the lowest MCLK frequency that is within 3324 * the tolerable latency defined in DAL 3325 */ 3326 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency; 3327 for (i = 0; i < data->mclk_latency_table.count; i++) { 3328 if (data->mclk_latency_table.entries[i].latency <= latency) { 3329 latency_allowed = true; 3330 3331 if ((data->mclk_latency_table.entries[i].frequency >= 3332 smu7_ps->performance_levels[0].memory_clock) && 3333 (data->mclk_latency_table.entries[i].frequency <= 3334 smu7_ps->performance_levels[1].memory_clock)) { 3335 mclk = data->mclk_latency_table.entries[i].frequency; 3336 break; 3337 } 3338 } 3339 } 3340 if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) { 3341 data->mclk_ignore_signal = true; 3342 } else { 3343 data->mclk_ignore_signal = false; 3344 } 3345 } 3346 3347 if (disable_mclk_switching_for_frame_lock) 3348 mclk = smu7_ps->performance_levels[1].memory_clock; 3349 } 3350 3351 smu7_ps->performance_levels[0].memory_clock = mclk; 3352 3353 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 3354 hwmgr->chip_id <= CHIP_VEGAM)) 3355 smu7_ps->performance_levels[1].memory_clock = mclk; 3356 } else { 3357 if (smu7_ps->performance_levels[1].memory_clock < 3358 smu7_ps->performance_levels[0].memory_clock) 3359 smu7_ps->performance_levels[1].memory_clock = 3360 smu7_ps->performance_levels[0].memory_clock; 3361 } 3362 3363 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 3364 PHM_PlatformCaps_StablePState)) { 3365 for (i = 0; i < smu7_ps->performance_level_count; i++) { 3366 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk; 3367 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk; 3368 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; 3369 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; 3370 } 3371 } 3372 return 0; 3373 } 3374 3375 3376 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) 3377 { 3378 struct pp_power_state *ps; 3379 struct smu7_power_state *smu7_ps; 3380 3381 if (hwmgr == NULL) 3382 return -EINVAL; 3383 3384 ps = hwmgr->request_ps; 3385 3386 if (ps == NULL) 3387 return -EINVAL; 3388 3389 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3390 3391 if (low) 3392 return smu7_ps->performance_levels[0].memory_clock; 3393 else 3394 return smu7_ps->performance_levels 3395 [smu7_ps->performance_level_count-1].memory_clock; 3396 } 3397 3398 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) 3399 { 3400 struct pp_power_state *ps; 3401 struct smu7_power_state *smu7_ps; 3402 3403 if (hwmgr == NULL) 3404 return -EINVAL; 3405 3406 ps = hwmgr->request_ps; 3407 3408 if (ps == NULL) 3409 return -EINVAL; 3410 3411 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 3412 3413 if (low) 3414 return smu7_ps->performance_levels[0].engine_clock; 3415 else 3416 return smu7_ps->performance_levels 3417 [smu7_ps->performance_level_count-1].engine_clock; 3418 } 3419 3420 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, 3421 struct pp_hw_power_state *hw_ps) 3422 { 3423 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3424 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps; 3425 ATOM_FIRMWARE_INFO_V2_2 *fw_info; 3426 uint16_t size; 3427 uint8_t frev, crev; 3428 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); 3429 3430 /* First retrieve the Boot clocks and VDDC from the firmware info table. 3431 * We assume here that fw_info is unchanged if this call fails. 3432 */ 3433 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index, 3434 &size, &frev, &crev); 3435 if (!fw_info) 3436 /* During a test, there is no firmware info table. */ 3437 return 0; 3438 3439 /* Patch the state. */ 3440 data->vbios_boot_state.sclk_bootup_value = 3441 le32_to_cpu(fw_info->ulDefaultEngineClock); 3442 data->vbios_boot_state.mclk_bootup_value = 3443 le32_to_cpu(fw_info->ulDefaultMemoryClock); 3444 data->vbios_boot_state.mvdd_bootup_value = 3445 le16_to_cpu(fw_info->usBootUpMVDDCVoltage); 3446 data->vbios_boot_state.vddc_bootup_value = 3447 le16_to_cpu(fw_info->usBootUpVDDCVoltage); 3448 data->vbios_boot_state.vddci_bootup_value = 3449 le16_to_cpu(fw_info->usBootUpVDDCIVoltage); 3450 data->vbios_boot_state.pcie_gen_bootup_value = 3451 smu7_get_current_pcie_speed(hwmgr); 3452 3453 data->vbios_boot_state.pcie_lane_bootup_value = 3454 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr); 3455 3456 /* set boot power state */ 3457 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; 3458 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; 3459 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; 3460 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; 3461 3462 return 0; 3463 } 3464 3465 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr) 3466 { 3467 int result; 3468 unsigned long ret = 0; 3469 3470 if (hwmgr->pp_table_version == PP_TABLE_V0) { 3471 result = pp_tables_get_num_of_entries(hwmgr, &ret); 3472 return result ? 0 : ret; 3473 } else if (hwmgr->pp_table_version == PP_TABLE_V1) { 3474 result = get_number_of_powerplay_table_entries_v1_0(hwmgr); 3475 return result; 3476 } 3477 return 0; 3478 } 3479 3480 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr, 3481 void *state, struct pp_power_state *power_state, 3482 void *pp_table, uint32_t classification_flag) 3483 { 3484 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3485 struct smu7_power_state *smu7_power_state = 3486 (struct smu7_power_state *)(&(power_state->hardware)); 3487 struct smu7_performance_level *performance_level; 3488 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state; 3489 ATOM_Tonga_POWERPLAYTABLE *powerplay_table = 3490 (ATOM_Tonga_POWERPLAYTABLE *)pp_table; 3491 PPTable_Generic_SubTable_Header *sclk_dep_table = 3492 (PPTable_Generic_SubTable_Header *) 3493 (((unsigned long)powerplay_table) + 3494 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset)); 3495 3496 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table = 3497 (ATOM_Tonga_MCLK_Dependency_Table *) 3498 (((unsigned long)powerplay_table) + 3499 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); 3500 3501 /* The following fields are not initialized here: id orderedList allStatesList */ 3502 power_state->classification.ui_label = 3503 (le16_to_cpu(state_entry->usClassification) & 3504 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> 3505 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; 3506 power_state->classification.flags = classification_flag; 3507 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */ 3508 3509 power_state->classification.temporary_state = false; 3510 power_state->classification.to_be_deleted = false; 3511 3512 power_state->validation.disallowOnDC = 3513 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3514 ATOM_Tonga_DISALLOW_ON_DC)); 3515 3516 power_state->pcie.lanes = 0; 3517 3518 power_state->display.disableFrameModulation = false; 3519 power_state->display.limitRefreshrate = false; 3520 power_state->display.enableVariBright = 3521 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) & 3522 ATOM_Tonga_ENABLE_VARIBRIGHT)); 3523 3524 power_state->validation.supportedPowerLevels = 0; 3525 power_state->uvd_clocks.VCLK = 0; 3526 power_state->uvd_clocks.DCLK = 0; 3527 power_state->temperatures.min = 0; 3528 power_state->temperatures.max = 0; 3529 3530 performance_level = &(smu7_power_state->performance_levels 3531 [smu7_power_state->performance_level_count++]); 3532 3533 PP_ASSERT_WITH_CODE( 3534 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3535 "Performance levels exceeds SMC limit!", 3536 return -EINVAL); 3537 3538 PP_ASSERT_WITH_CODE( 3539 (smu7_power_state->performance_level_count <= 3540 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3541 "Performance levels exceeds Driver limit!", 3542 return -EINVAL); 3543 3544 /* Performance levels are arranged from low to high. */ 3545 performance_level->memory_clock = mclk_dep_table->entries 3546 [state_entry->ucMemoryClockIndexLow].ulMclk; 3547 if (sclk_dep_table->ucRevId == 0) 3548 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3549 [state_entry->ucEngineClockIndexLow].ulSclk; 3550 else if (sclk_dep_table->ucRevId == 1) 3551 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3552 [state_entry->ucEngineClockIndexLow].ulSclk; 3553 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3554 state_entry->ucPCIEGenLow); 3555 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3556 state_entry->ucPCIELaneLow); 3557 3558 performance_level = &(smu7_power_state->performance_levels 3559 [smu7_power_state->performance_level_count++]); 3560 performance_level->memory_clock = mclk_dep_table->entries 3561 [state_entry->ucMemoryClockIndexHigh].ulMclk; 3562 3563 if (sclk_dep_table->ucRevId == 0) 3564 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries 3565 [state_entry->ucEngineClockIndexHigh].ulSclk; 3566 else if (sclk_dep_table->ucRevId == 1) 3567 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries 3568 [state_entry->ucEngineClockIndexHigh].ulSclk; 3569 3570 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, 3571 state_entry->ucPCIEGenHigh); 3572 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, 3573 state_entry->ucPCIELaneHigh); 3574 3575 return 0; 3576 } 3577 3578 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr, 3579 unsigned long entry_index, struct pp_power_state *state) 3580 { 3581 int result; 3582 struct smu7_power_state *ps; 3583 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3584 struct phm_ppt_v1_information *table_info = 3585 (struct phm_ppt_v1_information *)(hwmgr->pptable); 3586 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 3587 table_info->vdd_dep_on_mclk; 3588 3589 state->hardware.magic = PHM_VIslands_Magic; 3590 3591 ps = (struct smu7_power_state *)(&state->hardware); 3592 3593 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state, 3594 smu7_get_pp_table_entry_callback_func_v1); 3595 3596 /* This is the earliest time we have all the dependency table and the VBIOS boot state 3597 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state 3598 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state 3599 */ 3600 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3601 if (dep_mclk_table->entries[0].clk != 3602 data->vbios_boot_state.mclk_bootup_value) 3603 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3604 "does not match VBIOS boot MCLK level"); 3605 if (dep_mclk_table->entries[0].vddci != 3606 data->vbios_boot_state.vddci_bootup_value) 3607 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3608 "does not match VBIOS boot VDDCI level"); 3609 } 3610 3611 /* set DC compatible flag if this state supports DC */ 3612 if (!state->validation.disallowOnDC) 3613 ps->dc_compatible = true; 3614 3615 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3616 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3617 3618 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3619 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3620 3621 if (!result) { 3622 uint32_t i; 3623 3624 switch (state->classification.ui_label) { 3625 case PP_StateUILabel_Performance: 3626 data->use_pcie_performance_levels = true; 3627 for (i = 0; i < ps->performance_level_count; i++) { 3628 if (data->pcie_gen_performance.max < 3629 ps->performance_levels[i].pcie_gen) 3630 data->pcie_gen_performance.max = 3631 ps->performance_levels[i].pcie_gen; 3632 3633 if (data->pcie_gen_performance.min > 3634 ps->performance_levels[i].pcie_gen) 3635 data->pcie_gen_performance.min = 3636 ps->performance_levels[i].pcie_gen; 3637 3638 if (data->pcie_lane_performance.max < 3639 ps->performance_levels[i].pcie_lane) 3640 data->pcie_lane_performance.max = 3641 ps->performance_levels[i].pcie_lane; 3642 if (data->pcie_lane_performance.min > 3643 ps->performance_levels[i].pcie_lane) 3644 data->pcie_lane_performance.min = 3645 ps->performance_levels[i].pcie_lane; 3646 } 3647 break; 3648 case PP_StateUILabel_Battery: 3649 data->use_pcie_power_saving_levels = true; 3650 3651 for (i = 0; i < ps->performance_level_count; i++) { 3652 if (data->pcie_gen_power_saving.max < 3653 ps->performance_levels[i].pcie_gen) 3654 data->pcie_gen_power_saving.max = 3655 ps->performance_levels[i].pcie_gen; 3656 3657 if (data->pcie_gen_power_saving.min > 3658 ps->performance_levels[i].pcie_gen) 3659 data->pcie_gen_power_saving.min = 3660 ps->performance_levels[i].pcie_gen; 3661 3662 if (data->pcie_lane_power_saving.max < 3663 ps->performance_levels[i].pcie_lane) 3664 data->pcie_lane_power_saving.max = 3665 ps->performance_levels[i].pcie_lane; 3666 3667 if (data->pcie_lane_power_saving.min > 3668 ps->performance_levels[i].pcie_lane) 3669 data->pcie_lane_power_saving.min = 3670 ps->performance_levels[i].pcie_lane; 3671 } 3672 break; 3673 default: 3674 break; 3675 } 3676 } 3677 return 0; 3678 } 3679 3680 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr, 3681 struct pp_hw_power_state *power_state, 3682 unsigned int index, const void *clock_info) 3683 { 3684 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3685 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state); 3686 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; 3687 struct smu7_performance_level *performance_level; 3688 uint32_t engine_clock, memory_clock; 3689 uint16_t pcie_gen_from_bios; 3690 3691 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; 3692 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; 3693 3694 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) 3695 data->highest_mclk = memory_clock; 3696 3697 PP_ASSERT_WITH_CODE( 3698 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)), 3699 "Performance levels exceeds SMC limit!", 3700 return -EINVAL); 3701 3702 PP_ASSERT_WITH_CODE( 3703 (ps->performance_level_count < 3704 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), 3705 "Performance levels exceeds Driver limit, Skip!", 3706 return 0); 3707 3708 performance_level = &(ps->performance_levels 3709 [ps->performance_level_count++]); 3710 3711 /* Performance levels are arranged from low to high. */ 3712 performance_level->memory_clock = memory_clock; 3713 performance_level->engine_clock = engine_clock; 3714 3715 pcie_gen_from_bios = visland_clk_info->ucPCIEGen; 3716 3717 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); 3718 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); 3719 3720 return 0; 3721 } 3722 3723 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr, 3724 unsigned long entry_index, struct pp_power_state *state) 3725 { 3726 int result; 3727 struct smu7_power_state *ps; 3728 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3729 struct phm_clock_voltage_dependency_table *dep_mclk_table = 3730 hwmgr->dyn_state.vddci_dependency_on_mclk; 3731 3732 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); 3733 3734 state->hardware.magic = PHM_VIslands_Magic; 3735 3736 ps = (struct smu7_power_state *)(&state->hardware); 3737 3738 result = pp_tables_get_entry(hwmgr, entry_index, state, 3739 smu7_get_pp_table_entry_callback_func_v0); 3740 3741 /* 3742 * This is the earliest time we have all the dependency table 3743 * and the VBIOS boot state as 3744 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot 3745 * state if there is only one VDDCI/MCLK level, check if it's 3746 * the same as VBIOS boot state 3747 */ 3748 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { 3749 if (dep_mclk_table->entries[0].clk != 3750 data->vbios_boot_state.mclk_bootup_value) 3751 pr_debug("Single MCLK entry VDDCI/MCLK dependency table " 3752 "does not match VBIOS boot MCLK level"); 3753 if (dep_mclk_table->entries[0].v != 3754 data->vbios_boot_state.vddci_bootup_value) 3755 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table " 3756 "does not match VBIOS boot VDDCI level"); 3757 } 3758 3759 /* set DC compatible flag if this state supports DC */ 3760 if (!state->validation.disallowOnDC) 3761 ps->dc_compatible = true; 3762 3763 if (state->classification.flags & PP_StateClassificationFlag_ACPI) 3764 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; 3765 3766 ps->uvd_clks.vclk = state->uvd_clocks.VCLK; 3767 ps->uvd_clks.dclk = state->uvd_clocks.DCLK; 3768 3769 if (!result) { 3770 uint32_t i; 3771 3772 switch (state->classification.ui_label) { 3773 case PP_StateUILabel_Performance: 3774 data->use_pcie_performance_levels = true; 3775 3776 for (i = 0; i < ps->performance_level_count; i++) { 3777 if (data->pcie_gen_performance.max < 3778 ps->performance_levels[i].pcie_gen) 3779 data->pcie_gen_performance.max = 3780 ps->performance_levels[i].pcie_gen; 3781 3782 if (data->pcie_gen_performance.min > 3783 ps->performance_levels[i].pcie_gen) 3784 data->pcie_gen_performance.min = 3785 ps->performance_levels[i].pcie_gen; 3786 3787 if (data->pcie_lane_performance.max < 3788 ps->performance_levels[i].pcie_lane) 3789 data->pcie_lane_performance.max = 3790 ps->performance_levels[i].pcie_lane; 3791 3792 if (data->pcie_lane_performance.min > 3793 ps->performance_levels[i].pcie_lane) 3794 data->pcie_lane_performance.min = 3795 ps->performance_levels[i].pcie_lane; 3796 } 3797 break; 3798 case PP_StateUILabel_Battery: 3799 data->use_pcie_power_saving_levels = true; 3800 3801 for (i = 0; i < ps->performance_level_count; i++) { 3802 if (data->pcie_gen_power_saving.max < 3803 ps->performance_levels[i].pcie_gen) 3804 data->pcie_gen_power_saving.max = 3805 ps->performance_levels[i].pcie_gen; 3806 3807 if (data->pcie_gen_power_saving.min > 3808 ps->performance_levels[i].pcie_gen) 3809 data->pcie_gen_power_saving.min = 3810 ps->performance_levels[i].pcie_gen; 3811 3812 if (data->pcie_lane_power_saving.max < 3813 ps->performance_levels[i].pcie_lane) 3814 data->pcie_lane_power_saving.max = 3815 ps->performance_levels[i].pcie_lane; 3816 3817 if (data->pcie_lane_power_saving.min > 3818 ps->performance_levels[i].pcie_lane) 3819 data->pcie_lane_power_saving.min = 3820 ps->performance_levels[i].pcie_lane; 3821 } 3822 break; 3823 default: 3824 break; 3825 } 3826 } 3827 return 0; 3828 } 3829 3830 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr, 3831 unsigned long entry_index, struct pp_power_state *state) 3832 { 3833 if (hwmgr->pp_table_version == PP_TABLE_V0) 3834 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state); 3835 else if (hwmgr->pp_table_version == PP_TABLE_V1) 3836 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state); 3837 3838 return 0; 3839 } 3840 3841 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query) 3842 { 3843 struct amdgpu_device *adev = hwmgr->adev; 3844 int i; 3845 u32 tmp = 0; 3846 3847 if (!query) 3848 return -EINVAL; 3849 3850 /* 3851 * PPSMC_MSG_GetCurrPkgPwr is not supported on: 3852 * - Hawaii 3853 * - Bonaire 3854 * - Fiji 3855 * - Tonga 3856 */ 3857 if ((adev->asic_type != CHIP_HAWAII) && 3858 (adev->asic_type != CHIP_BONAIRE) && 3859 (adev->asic_type != CHIP_FIJI) && 3860 (adev->asic_type != CHIP_TONGA)) { 3861 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp); 3862 *query = tmp; 3863 3864 if (tmp != 0) 3865 return 0; 3866 } 3867 3868 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL); 3869 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 3870 ixSMU_PM_STATUS_95, 0); 3871 3872 for (i = 0; i < 10; i++) { 3873 msleep(500); 3874 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL); 3875 tmp = cgs_read_ind_register(hwmgr->device, 3876 CGS_IND_REG__SMC, 3877 ixSMU_PM_STATUS_95); 3878 if (tmp != 0) 3879 break; 3880 } 3881 *query = tmp; 3882 3883 return 0; 3884 } 3885 3886 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx, 3887 void *value, int *size) 3888 { 3889 uint32_t sclk, mclk, activity_percent; 3890 uint32_t offset, val_vid; 3891 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3892 3893 /* size must be at least 4 bytes for all sensors */ 3894 if (*size < 4) 3895 return -EINVAL; 3896 3897 switch (idx) { 3898 case AMDGPU_PP_SENSOR_GFX_SCLK: 3899 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk); 3900 *((uint32_t *)value) = sclk; 3901 *size = 4; 3902 return 0; 3903 case AMDGPU_PP_SENSOR_GFX_MCLK: 3904 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk); 3905 *((uint32_t *)value) = mclk; 3906 *size = 4; 3907 return 0; 3908 case AMDGPU_PP_SENSOR_GPU_LOAD: 3909 case AMDGPU_PP_SENSOR_MEM_LOAD: 3910 offset = data->soft_regs_start + smum_get_offsetof(hwmgr, 3911 SMU_SoftRegisters, 3912 (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ? 3913 AverageGraphicsActivity: 3914 AverageMemoryActivity); 3915 3916 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); 3917 activity_percent += 0x80; 3918 activity_percent >>= 8; 3919 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; 3920 *size = 4; 3921 return 0; 3922 case AMDGPU_PP_SENSOR_GPU_TEMP: 3923 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr); 3924 *size = 4; 3925 return 0; 3926 case AMDGPU_PP_SENSOR_UVD_POWER: 3927 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; 3928 *size = 4; 3929 return 0; 3930 case AMDGPU_PP_SENSOR_VCE_POWER: 3931 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; 3932 *size = 4; 3933 return 0; 3934 case AMDGPU_PP_SENSOR_GPU_POWER: 3935 return smu7_get_gpu_power(hwmgr, (uint32_t *)value); 3936 case AMDGPU_PP_SENSOR_VDDGFX: 3937 if ((data->vr_config & VRCONF_VDDGFX_MASK) == 3938 (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT)) 3939 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 3940 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID); 3941 else 3942 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device, 3943 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID); 3944 3945 *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid); 3946 return 0; 3947 default: 3948 return -EINVAL; 3949 } 3950 } 3951 3952 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) 3953 { 3954 const struct phm_set_power_state_input *states = 3955 (const struct phm_set_power_state_input *)input; 3956 const struct smu7_power_state *smu7_ps = 3957 cast_const_phw_smu7_power_state(states->pnew_state); 3958 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 3959 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 3960 uint32_t sclk = smu7_ps->performance_levels 3961 [smu7_ps->performance_level_count - 1].engine_clock; 3962 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 3963 uint32_t mclk = smu7_ps->performance_levels 3964 [smu7_ps->performance_level_count - 1].memory_clock; 3965 struct PP_Clocks min_clocks = {0}; 3966 uint32_t i; 3967 3968 for (i = 0; i < sclk_table->count; i++) { 3969 if (sclk == sclk_table->dpm_levels[i].value) 3970 break; 3971 } 3972 3973 if (i >= sclk_table->count) { 3974 if (sclk > sclk_table->dpm_levels[i-1].value) { 3975 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; 3976 sclk_table->dpm_levels[i-1].value = sclk; 3977 } 3978 } else { 3979 /* TODO: Check SCLK in DAL's minimum clocks 3980 * in case DeepSleep divider update is required. 3981 */ 3982 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && 3983 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK || 3984 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 3985 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; 3986 } 3987 3988 for (i = 0; i < mclk_table->count; i++) { 3989 if (mclk == mclk_table->dpm_levels[i].value) 3990 break; 3991 } 3992 3993 if (i >= mclk_table->count) { 3994 if (mclk > mclk_table->dpm_levels[i-1].value) { 3995 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; 3996 mclk_table->dpm_levels[i-1].value = mclk; 3997 } 3998 } 3999 4000 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4001 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; 4002 4003 return 0; 4004 } 4005 4006 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr, 4007 const struct smu7_power_state *smu7_ps) 4008 { 4009 uint32_t i; 4010 uint32_t sclk, max_sclk = 0; 4011 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4012 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4013 4014 for (i = 0; i < smu7_ps->performance_level_count; i++) { 4015 sclk = smu7_ps->performance_levels[i].engine_clock; 4016 if (max_sclk < sclk) 4017 max_sclk = sclk; 4018 } 4019 4020 for (i = 0; i < dpm_table->sclk_table.count; i++) { 4021 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk) 4022 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ? 4023 dpm_table->pcie_speed_table.dpm_levels 4024 [dpm_table->pcie_speed_table.count - 1].value : 4025 dpm_table->pcie_speed_table.dpm_levels[i].value); 4026 } 4027 4028 return 0; 4029 } 4030 4031 static int smu7_request_link_speed_change_before_state_change( 4032 struct pp_hwmgr *hwmgr, const void *input) 4033 { 4034 const struct phm_set_power_state_input *states = 4035 (const struct phm_set_power_state_input *)input; 4036 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4037 const struct smu7_power_state *smu7_nps = 4038 cast_const_phw_smu7_power_state(states->pnew_state); 4039 const struct smu7_power_state *polaris10_cps = 4040 cast_const_phw_smu7_power_state(states->pcurrent_state); 4041 4042 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps); 4043 uint16_t current_link_speed; 4044 4045 if (data->force_pcie_gen == PP_PCIEGenInvalid) 4046 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps); 4047 else 4048 current_link_speed = data->force_pcie_gen; 4049 4050 data->force_pcie_gen = PP_PCIEGenInvalid; 4051 data->pspp_notify_required = false; 4052 4053 if (target_link_speed > current_link_speed) { 4054 switch (target_link_speed) { 4055 #ifdef CONFIG_ACPI 4056 case PP_PCIEGen3: 4057 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false)) 4058 break; 4059 data->force_pcie_gen = PP_PCIEGen2; 4060 if (current_link_speed == PP_PCIEGen2) 4061 break; 4062 fallthrough; 4063 case PP_PCIEGen2: 4064 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false)) 4065 break; 4066 fallthrough; 4067 #endif 4068 default: 4069 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr); 4070 break; 4071 } 4072 } else { 4073 if (target_link_speed < current_link_speed) 4074 data->pspp_notify_required = true; 4075 } 4076 4077 return 0; 4078 } 4079 4080 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4081 { 4082 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4083 4084 if (0 == data->need_update_smu7_dpm_table) 4085 return 0; 4086 4087 if ((0 == data->sclk_dpm_key_disabled) && 4088 (data->need_update_smu7_dpm_table & 4089 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { 4090 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4091 "Trying to freeze SCLK DPM when DPM is disabled", 4092 ); 4093 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4094 PPSMC_MSG_SCLKDPM_FreezeLevel, 4095 NULL), 4096 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", 4097 return -EINVAL); 4098 } 4099 4100 if ((0 == data->mclk_dpm_key_disabled) && 4101 !data->mclk_ignore_signal && 4102 (data->need_update_smu7_dpm_table & 4103 DPMTABLE_OD_UPDATE_MCLK)) { 4104 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4105 "Trying to freeze MCLK DPM when DPM is disabled", 4106 ); 4107 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4108 PPSMC_MSG_MCLKDPM_FreezeLevel, 4109 NULL), 4110 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", 4111 return -EINVAL); 4112 } 4113 4114 return 0; 4115 } 4116 4117 static int smu7_populate_and_upload_sclk_mclk_dpm_levels( 4118 struct pp_hwmgr *hwmgr, const void *input) 4119 { 4120 int result = 0; 4121 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4122 struct smu7_dpm_table *dpm_table = &data->dpm_table; 4123 uint32_t count; 4124 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4125 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4126 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4127 4128 if (0 == data->need_update_smu7_dpm_table) 4129 return 0; 4130 4131 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { 4132 for (count = 0; count < dpm_table->sclk_table.count; count++) { 4133 dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled; 4134 dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock; 4135 } 4136 } 4137 4138 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { 4139 for (count = 0; count < dpm_table->mclk_table.count; count++) { 4140 dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled; 4141 dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock; 4142 } 4143 } 4144 4145 if (data->need_update_smu7_dpm_table & 4146 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { 4147 result = smum_populate_all_graphic_levels(hwmgr); 4148 PP_ASSERT_WITH_CODE((0 == result), 4149 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", 4150 return result); 4151 } 4152 4153 if (data->need_update_smu7_dpm_table & 4154 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { 4155 /*populate MCLK dpm table to SMU7 */ 4156 result = smum_populate_all_memory_levels(hwmgr); 4157 PP_ASSERT_WITH_CODE((0 == result), 4158 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", 4159 return result); 4160 } 4161 4162 return result; 4163 } 4164 4165 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr, 4166 struct smu7_single_dpm_table *dpm_table, 4167 uint32_t low_limit, uint32_t high_limit) 4168 { 4169 uint32_t i; 4170 4171 /* force the trim if mclk_switching is disabled to prevent flicker */ 4172 bool force_trim = (low_limit == high_limit); 4173 for (i = 0; i < dpm_table->count; i++) { 4174 /*skip the trim if od is enabled*/ 4175 if ((!hwmgr->od_enabled || force_trim) 4176 && (dpm_table->dpm_levels[i].value < low_limit 4177 || dpm_table->dpm_levels[i].value > high_limit)) 4178 dpm_table->dpm_levels[i].enabled = false; 4179 else 4180 dpm_table->dpm_levels[i].enabled = true; 4181 } 4182 4183 return 0; 4184 } 4185 4186 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr, 4187 const struct smu7_power_state *smu7_ps) 4188 { 4189 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4190 uint32_t high_limit_count; 4191 4192 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1), 4193 "power state did not have any performance level", 4194 return -EINVAL); 4195 4196 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1; 4197 4198 smu7_trim_single_dpm_states(hwmgr, 4199 &(data->dpm_table.sclk_table), 4200 smu7_ps->performance_levels[0].engine_clock, 4201 smu7_ps->performance_levels[high_limit_count].engine_clock); 4202 4203 smu7_trim_single_dpm_states(hwmgr, 4204 &(data->dpm_table.mclk_table), 4205 smu7_ps->performance_levels[0].memory_clock, 4206 smu7_ps->performance_levels[high_limit_count].memory_clock); 4207 4208 return 0; 4209 } 4210 4211 static int smu7_generate_dpm_level_enable_mask( 4212 struct pp_hwmgr *hwmgr, const void *input) 4213 { 4214 int result = 0; 4215 const struct phm_set_power_state_input *states = 4216 (const struct phm_set_power_state_input *)input; 4217 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4218 const struct smu7_power_state *smu7_ps = 4219 cast_const_phw_smu7_power_state(states->pnew_state); 4220 4221 4222 result = smu7_trim_dpm_states(hwmgr, smu7_ps); 4223 if (result) 4224 return result; 4225 4226 data->dpm_level_enable_mask.sclk_dpm_enable_mask = 4227 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); 4228 data->dpm_level_enable_mask.mclk_dpm_enable_mask = 4229 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); 4230 data->dpm_level_enable_mask.pcie_dpm_enable_mask = 4231 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); 4232 4233 return 0; 4234 } 4235 4236 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) 4237 { 4238 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4239 4240 if (0 == data->need_update_smu7_dpm_table) 4241 return 0; 4242 4243 if ((0 == data->sclk_dpm_key_disabled) && 4244 (data->need_update_smu7_dpm_table & 4245 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { 4246 4247 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4248 "Trying to Unfreeze SCLK DPM when DPM is disabled", 4249 ); 4250 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4251 PPSMC_MSG_SCLKDPM_UnfreezeLevel, 4252 NULL), 4253 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", 4254 return -EINVAL); 4255 } 4256 4257 if ((0 == data->mclk_dpm_key_disabled) && 4258 !data->mclk_ignore_signal && 4259 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { 4260 4261 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr), 4262 "Trying to Unfreeze MCLK DPM when DPM is disabled", 4263 ); 4264 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr, 4265 PPSMC_MSG_MCLKDPM_UnfreezeLevel, 4266 NULL), 4267 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", 4268 return -EINVAL); 4269 } 4270 4271 data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC; 4272 4273 return 0; 4274 } 4275 4276 static int smu7_notify_link_speed_change_after_state_change( 4277 struct pp_hwmgr *hwmgr, const void *input) 4278 { 4279 const struct phm_set_power_state_input *states = 4280 (const struct phm_set_power_state_input *)input; 4281 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4282 const struct smu7_power_state *smu7_ps = 4283 cast_const_phw_smu7_power_state(states->pnew_state); 4284 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps); 4285 uint8_t request; 4286 4287 if (data->pspp_notify_required) { 4288 if (target_link_speed == PP_PCIEGen3) 4289 request = PCIE_PERF_REQ_GEN3; 4290 else if (target_link_speed == PP_PCIEGen2) 4291 request = PCIE_PERF_REQ_GEN2; 4292 else 4293 request = PCIE_PERF_REQ_GEN1; 4294 4295 if (request == PCIE_PERF_REQ_GEN1 && 4296 smu7_get_current_pcie_speed(hwmgr) > 0) 4297 return 0; 4298 4299 #ifdef CONFIG_ACPI 4300 if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) { 4301 if (PP_PCIEGen2 == target_link_speed) 4302 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!"); 4303 else 4304 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!"); 4305 } 4306 #endif 4307 } 4308 4309 return 0; 4310 } 4311 4312 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr) 4313 { 4314 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL; 4315 } 4316 4317 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr) 4318 { 4319 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4320 4321 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) { 4322 if (hwmgr->chip_id == CHIP_VEGAM) 4323 smum_send_msg_to_smc_with_parameter(hwmgr, 4324 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2, 4325 NULL); 4326 else 4327 smum_send_msg_to_smc_with_parameter(hwmgr, 4328 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2, 4329 NULL); 4330 data->last_sent_vbi_timeout = data->frame_time_x2; 4331 } 4332 4333 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL; 4334 } 4335 4336 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr) 4337 { 4338 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4339 int result = 0; 4340 4341 if (data->mclk_ignore_signal) 4342 result = smu7_notify_no_display(hwmgr); 4343 else 4344 result = smu7_notify_has_display(hwmgr); 4345 4346 return result; 4347 } 4348 4349 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) 4350 { 4351 int tmp_result, result = 0; 4352 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4353 4354 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input); 4355 PP_ASSERT_WITH_CODE((0 == tmp_result), 4356 "Failed to find DPM states clocks in DPM table!", 4357 result = tmp_result); 4358 4359 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4360 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4361 tmp_result = 4362 smu7_request_link_speed_change_before_state_change(hwmgr, input); 4363 PP_ASSERT_WITH_CODE((0 == tmp_result), 4364 "Failed to request link speed change before state change!", 4365 result = tmp_result); 4366 } 4367 4368 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr); 4369 PP_ASSERT_WITH_CODE((0 == tmp_result), 4370 "Failed to freeze SCLK MCLK DPM!", result = tmp_result); 4371 4372 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); 4373 PP_ASSERT_WITH_CODE((0 == tmp_result), 4374 "Failed to populate and upload SCLK MCLK DPM levels!", 4375 result = tmp_result); 4376 4377 /* 4378 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag. 4379 * That effectively disables AVFS feature. 4380 */ 4381 if (hwmgr->hardcode_pp_table != NULL) 4382 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC; 4383 4384 tmp_result = smu7_update_avfs(hwmgr); 4385 PP_ASSERT_WITH_CODE((0 == tmp_result), 4386 "Failed to update avfs voltages!", 4387 result = tmp_result); 4388 4389 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input); 4390 PP_ASSERT_WITH_CODE((0 == tmp_result), 4391 "Failed to generate DPM level enabled mask!", 4392 result = tmp_result); 4393 4394 tmp_result = smum_update_sclk_threshold(hwmgr); 4395 PP_ASSERT_WITH_CODE((0 == tmp_result), 4396 "Failed to update SCLK threshold!", 4397 result = tmp_result); 4398 4399 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr); 4400 PP_ASSERT_WITH_CODE((0 == tmp_result), 4401 "Failed to unfreeze SCLK MCLK DPM!", 4402 result = tmp_result); 4403 4404 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr); 4405 PP_ASSERT_WITH_CODE((0 == tmp_result), 4406 "Failed to upload DPM level enabled mask!", 4407 result = tmp_result); 4408 4409 tmp_result = smu7_notify_smc_display(hwmgr); 4410 PP_ASSERT_WITH_CODE((0 == tmp_result), 4411 "Failed to notify smc display settings!", 4412 result = tmp_result); 4413 4414 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4415 PHM_PlatformCaps_PCIEPerformanceRequest)) { 4416 tmp_result = 4417 smu7_notify_link_speed_change_after_state_change(hwmgr, input); 4418 PP_ASSERT_WITH_CODE((0 == tmp_result), 4419 "Failed to notify link speed change after state change!", 4420 result = tmp_result); 4421 } 4422 data->apply_optimized_settings = false; 4423 return result; 4424 } 4425 4426 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) 4427 { 4428 hwmgr->thermal_controller. 4429 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; 4430 4431 return smum_send_msg_to_smc_with_parameter(hwmgr, 4432 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm, 4433 NULL); 4434 } 4435 4436 static int 4437 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) 4438 { 4439 return 0; 4440 } 4441 4442 /** 4443 * smu7_program_display_gap - Programs the display gap 4444 * 4445 * @hwmgr: the address of the powerplay hardware manager. 4446 * Return: always OK 4447 */ 4448 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr) 4449 { 4450 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4451 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); 4452 uint32_t display_gap2; 4453 uint32_t pre_vbi_time_in_us; 4454 uint32_t frame_time_in_us; 4455 uint32_t ref_clock, refresh_rate; 4456 4457 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); 4458 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); 4459 4460 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); 4461 refresh_rate = hwmgr->display_config->vrefresh; 4462 4463 if (0 == refresh_rate) 4464 refresh_rate = 60; 4465 4466 frame_time_in_us = 1000000 / refresh_rate; 4467 4468 pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time; 4469 4470 data->frame_time_x2 = frame_time_in_us * 2 / 100; 4471 4472 if (data->frame_time_x2 < 280) { 4473 pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2); 4474 data->frame_time_x2 = 280; 4475 } 4476 4477 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); 4478 4479 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); 4480 4481 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4482 data->soft_regs_start + smum_get_offsetof(hwmgr, 4483 SMU_SoftRegisters, 4484 PreVBlankGap), 0x64); 4485 4486 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 4487 data->soft_regs_start + smum_get_offsetof(hwmgr, 4488 SMU_SoftRegisters, 4489 VBlankTimeout), 4490 (frame_time_in_us - pre_vbi_time_in_us)); 4491 4492 return 0; 4493 } 4494 4495 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr) 4496 { 4497 return smu7_program_display_gap(hwmgr); 4498 } 4499 4500 /** 4501 * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM 4502 * 4503 * @hwmgr: the address of the powerplay hardware manager. 4504 * @usMaxFanRpm: max operating fan RPM value. 4505 * Return: The response that came from the SMC. 4506 */ 4507 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm) 4508 { 4509 hwmgr->thermal_controller. 4510 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm; 4511 4512 return smum_send_msg_to_smc_with_parameter(hwmgr, 4513 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm, 4514 NULL); 4515 } 4516 4517 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = { 4518 .process = phm_irq_process, 4519 }; 4520 4521 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr) 4522 { 4523 struct amdgpu_irq_src *source = 4524 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL); 4525 4526 if (!source) 4527 return -ENOMEM; 4528 4529 source->funcs = &smu7_irq_funcs; 4530 4531 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4532 AMDGPU_IRQ_CLIENTID_LEGACY, 4533 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH, 4534 source); 4535 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4536 AMDGPU_IRQ_CLIENTID_LEGACY, 4537 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW, 4538 source); 4539 4540 /* Register CTF(GPIO_19) interrupt */ 4541 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev), 4542 AMDGPU_IRQ_CLIENTID_LEGACY, 4543 VISLANDS30_IV_SRCID_GPIO_19, 4544 source); 4545 4546 return 0; 4547 } 4548 4549 static bool 4550 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) 4551 { 4552 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4553 bool is_update_required = false; 4554 4555 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display) 4556 is_update_required = true; 4557 4558 if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh) 4559 is_update_required = true; 4560 4561 if (hwmgr->chip_id >= CHIP_POLARIS10 && 4562 hwmgr->chip_id <= CHIP_VEGAM && 4563 data->last_sent_vbi_timeout != data->frame_time_x2) 4564 is_update_required = true; 4565 4566 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { 4567 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr && 4568 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK || 4569 hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK)) 4570 is_update_required = true; 4571 } 4572 return is_update_required; 4573 } 4574 4575 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1, 4576 const struct smu7_performance_level *pl2) 4577 { 4578 return ((pl1->memory_clock == pl2->memory_clock) && 4579 (pl1->engine_clock == pl2->engine_clock) && 4580 (pl1->pcie_gen == pl2->pcie_gen) && 4581 (pl1->pcie_lane == pl2->pcie_lane)); 4582 } 4583 4584 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr, 4585 const struct pp_hw_power_state *pstate1, 4586 const struct pp_hw_power_state *pstate2, bool *equal) 4587 { 4588 const struct smu7_power_state *psa; 4589 const struct smu7_power_state *psb; 4590 int i; 4591 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4592 4593 if (pstate1 == NULL || pstate2 == NULL || equal == NULL) 4594 return -EINVAL; 4595 4596 psa = cast_const_phw_smu7_power_state(pstate1); 4597 psb = cast_const_phw_smu7_power_state(pstate2); 4598 /* If the two states don't even have the same number of performance levels they cannot be the same state. */ 4599 if (psa->performance_level_count != psb->performance_level_count) { 4600 *equal = false; 4601 return 0; 4602 } 4603 4604 for (i = 0; i < psa->performance_level_count; i++) { 4605 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { 4606 /* If we have found even one performance level pair that is different the states are different. */ 4607 *equal = false; 4608 return 0; 4609 } 4610 } 4611 4612 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ 4613 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); 4614 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); 4615 *equal &= (psa->sclk_threshold == psb->sclk_threshold); 4616 /* For OD call, set value based on flag */ 4617 *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK | 4618 DPMTABLE_OD_UPDATE_MCLK | 4619 DPMTABLE_OD_UPDATE_VDDC)); 4620 4621 return 0; 4622 } 4623 4624 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr) 4625 { 4626 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4627 4628 uint32_t tmp; 4629 4630 /* Read MC indirect register offset 0x9F bits [3:0] to see 4631 * if VBIOS has already loaded a full version of MC ucode 4632 * or not. 4633 */ 4634 4635 smu7_get_mc_microcode_version(hwmgr); 4636 4637 data->need_long_memory_training = false; 4638 4639 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 4640 ixMC_IO_DEBUG_UP_13); 4641 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); 4642 4643 if (tmp & (1 << 23)) { 4644 data->mem_latency_high = MEM_LATENCY_HIGH; 4645 data->mem_latency_low = MEM_LATENCY_LOW; 4646 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4647 (hwmgr->chip_id == CHIP_POLARIS11) || 4648 (hwmgr->chip_id == CHIP_POLARIS12)) 4649 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL); 4650 } else { 4651 data->mem_latency_high = 330; 4652 data->mem_latency_low = 330; 4653 if ((hwmgr->chip_id == CHIP_POLARIS10) || 4654 (hwmgr->chip_id == CHIP_POLARIS11) || 4655 (hwmgr->chip_id == CHIP_POLARIS12)) 4656 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL); 4657 } 4658 4659 return 0; 4660 } 4661 4662 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr) 4663 { 4664 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4665 4666 data->clock_registers.vCG_SPLL_FUNC_CNTL = 4667 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); 4668 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = 4669 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); 4670 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = 4671 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); 4672 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = 4673 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); 4674 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = 4675 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); 4676 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = 4677 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); 4678 data->clock_registers.vDLL_CNTL = 4679 cgs_read_register(hwmgr->device, mmDLL_CNTL); 4680 data->clock_registers.vMCLK_PWRMGT_CNTL = 4681 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); 4682 data->clock_registers.vMPLL_AD_FUNC_CNTL = 4683 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); 4684 data->clock_registers.vMPLL_DQ_FUNC_CNTL = 4685 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); 4686 data->clock_registers.vMPLL_FUNC_CNTL = 4687 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); 4688 data->clock_registers.vMPLL_FUNC_CNTL_1 = 4689 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); 4690 data->clock_registers.vMPLL_FUNC_CNTL_2 = 4691 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); 4692 data->clock_registers.vMPLL_SS1 = 4693 cgs_read_register(hwmgr->device, mmMPLL_SS1); 4694 data->clock_registers.vMPLL_SS2 = 4695 cgs_read_register(hwmgr->device, mmMPLL_SS2); 4696 return 0; 4697 4698 } 4699 4700 /** 4701 * smu7_get_memory_type - Find out if memory is GDDR5. 4702 * 4703 * @hwmgr: the address of the powerplay hardware manager. 4704 * Return: always 0 4705 */ 4706 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr) 4707 { 4708 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4709 struct amdgpu_device *adev = hwmgr->adev; 4710 4711 data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5); 4712 4713 return 0; 4714 } 4715 4716 /** 4717 * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC 4718 * 4719 * @hwmgr: the address of the powerplay hardware manager. 4720 * Return: always 0 4721 */ 4722 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr) 4723 { 4724 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, 4725 GENERAL_PWRMGT, STATIC_PM_EN, 1); 4726 4727 return 0; 4728 } 4729 4730 /** 4731 * smu7_init_power_gate_state - Initialize PowerGating States for different engines 4732 * 4733 * @hwmgr: the address of the powerplay hardware manager. 4734 * Return: always 0 4735 */ 4736 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr) 4737 { 4738 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4739 4740 data->uvd_power_gated = false; 4741 data->vce_power_gated = false; 4742 4743 return 0; 4744 } 4745 4746 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr) 4747 { 4748 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4749 4750 data->low_sclk_interrupt_threshold = 0; 4751 return 0; 4752 } 4753 4754 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr) 4755 { 4756 int tmp_result, result = 0; 4757 4758 smu7_check_mc_firmware(hwmgr); 4759 4760 tmp_result = smu7_read_clock_registers(hwmgr); 4761 PP_ASSERT_WITH_CODE((0 == tmp_result), 4762 "Failed to read clock registers!", result = tmp_result); 4763 4764 tmp_result = smu7_get_memory_type(hwmgr); 4765 PP_ASSERT_WITH_CODE((0 == tmp_result), 4766 "Failed to get memory type!", result = tmp_result); 4767 4768 tmp_result = smu7_enable_acpi_power_management(hwmgr); 4769 PP_ASSERT_WITH_CODE((0 == tmp_result), 4770 "Failed to enable ACPI power management!", result = tmp_result); 4771 4772 tmp_result = smu7_init_power_gate_state(hwmgr); 4773 PP_ASSERT_WITH_CODE((0 == tmp_result), 4774 "Failed to init power gate state!", result = tmp_result); 4775 4776 tmp_result = smu7_get_mc_microcode_version(hwmgr); 4777 PP_ASSERT_WITH_CODE((0 == tmp_result), 4778 "Failed to get MC microcode version!", result = tmp_result); 4779 4780 tmp_result = smu7_init_sclk_threshold(hwmgr); 4781 PP_ASSERT_WITH_CODE((0 == tmp_result), 4782 "Failed to init sclk threshold!", result = tmp_result); 4783 4784 return result; 4785 } 4786 4787 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr, 4788 enum pp_clock_type type, uint32_t mask) 4789 { 4790 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4791 4792 if (mask == 0) 4793 return -EINVAL; 4794 4795 switch (type) { 4796 case PP_SCLK: 4797 if (!data->sclk_dpm_key_disabled) 4798 smum_send_msg_to_smc_with_parameter(hwmgr, 4799 PPSMC_MSG_SCLKDPM_SetEnabledMask, 4800 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask, 4801 NULL); 4802 break; 4803 case PP_MCLK: 4804 if (!data->mclk_dpm_key_disabled) 4805 smum_send_msg_to_smc_with_parameter(hwmgr, 4806 PPSMC_MSG_MCLKDPM_SetEnabledMask, 4807 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask, 4808 NULL); 4809 break; 4810 case PP_PCIE: 4811 { 4812 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; 4813 4814 if (!data->pcie_dpm_key_disabled) { 4815 if (fls(tmp) != ffs(tmp)) 4816 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel, 4817 NULL); 4818 else 4819 smum_send_msg_to_smc_with_parameter(hwmgr, 4820 PPSMC_MSG_PCIeDPM_ForceLevel, 4821 fls(tmp) - 1, 4822 NULL); 4823 } 4824 break; 4825 } 4826 default: 4827 break; 4828 } 4829 4830 return 0; 4831 } 4832 4833 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr, 4834 enum pp_clock_type type, char *buf) 4835 { 4836 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4837 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4838 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 4839 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); 4840 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table); 4841 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels); 4842 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels); 4843 int i, now, size = 0; 4844 uint32_t clock, pcie_speed; 4845 4846 switch (type) { 4847 case PP_SCLK: 4848 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock); 4849 4850 for (i = 0; i < sclk_table->count; i++) { 4851 if (clock > sclk_table->dpm_levels[i].value) 4852 continue; 4853 break; 4854 } 4855 now = i; 4856 4857 for (i = 0; i < sclk_table->count; i++) 4858 size += sprintf(buf + size, "%d: %uMhz %s\n", 4859 i, sclk_table->dpm_levels[i].value / 100, 4860 (i == now) ? "*" : ""); 4861 break; 4862 case PP_MCLK: 4863 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock); 4864 4865 for (i = 0; i < mclk_table->count; i++) { 4866 if (clock > mclk_table->dpm_levels[i].value) 4867 continue; 4868 break; 4869 } 4870 now = i; 4871 4872 for (i = 0; i < mclk_table->count; i++) 4873 size += sprintf(buf + size, "%d: %uMhz %s\n", 4874 i, mclk_table->dpm_levels[i].value / 100, 4875 (i == now) ? "*" : ""); 4876 break; 4877 case PP_PCIE: 4878 pcie_speed = smu7_get_current_pcie_speed(hwmgr); 4879 for (i = 0; i < pcie_table->count; i++) { 4880 if (pcie_speed != pcie_table->dpm_levels[i].value) 4881 continue; 4882 break; 4883 } 4884 now = i; 4885 4886 for (i = 0; i < pcie_table->count; i++) 4887 size += sprintf(buf + size, "%d: %s %s\n", i, 4888 (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" : 4889 (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" : 4890 (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "", 4891 (i == now) ? "*" : ""); 4892 break; 4893 case OD_SCLK: 4894 if (hwmgr->od_enabled) { 4895 size = sprintf(buf, "%s:\n", "OD_SCLK"); 4896 for (i = 0; i < odn_sclk_table->num_of_pl; i++) 4897 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 4898 i, odn_sclk_table->entries[i].clock/100, 4899 odn_sclk_table->entries[i].vddc); 4900 } 4901 break; 4902 case OD_MCLK: 4903 if (hwmgr->od_enabled) { 4904 size = sprintf(buf, "%s:\n", "OD_MCLK"); 4905 for (i = 0; i < odn_mclk_table->num_of_pl; i++) 4906 size += sprintf(buf + size, "%d: %10uMHz %10umV\n", 4907 i, odn_mclk_table->entries[i].clock/100, 4908 odn_mclk_table->entries[i].vddc); 4909 } 4910 break; 4911 case OD_RANGE: 4912 if (hwmgr->od_enabled) { 4913 size = sprintf(buf, "%s:\n", "OD_RANGE"); 4914 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n", 4915 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 4916 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 4917 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n", 4918 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 4919 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 4920 size += sprintf(buf + size, "VDDC: %7umV %11umV\n", 4921 data->odn_dpm_table.min_vddc, 4922 data->odn_dpm_table.max_vddc); 4923 } 4924 break; 4925 default: 4926 break; 4927 } 4928 return size; 4929 } 4930 4931 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) 4932 { 4933 switch (mode) { 4934 case AMD_FAN_CTRL_NONE: 4935 smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100); 4936 break; 4937 case AMD_FAN_CTRL_MANUAL: 4938 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, 4939 PHM_PlatformCaps_MicrocodeFanControl)) 4940 smu7_fan_ctrl_stop_smc_fan_control(hwmgr); 4941 break; 4942 case AMD_FAN_CTRL_AUTO: 4943 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode)) 4944 smu7_fan_ctrl_start_smc_fan_control(hwmgr); 4945 break; 4946 default: 4947 break; 4948 } 4949 } 4950 4951 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr) 4952 { 4953 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL; 4954 } 4955 4956 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr) 4957 { 4958 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4959 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 4960 struct smu7_single_dpm_table *golden_sclk_table = 4961 &(data->golden_dpm_table.sclk_table); 4962 int value = sclk_table->dpm_levels[sclk_table->count - 1].value; 4963 int golden_value = golden_sclk_table->dpm_levels 4964 [golden_sclk_table->count - 1].value; 4965 4966 value -= golden_value; 4967 value = DIV_ROUND_UP(value * 100, golden_value); 4968 4969 return value; 4970 } 4971 4972 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 4973 { 4974 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 4975 struct smu7_single_dpm_table *golden_sclk_table = 4976 &(data->golden_dpm_table.sclk_table); 4977 struct pp_power_state *ps; 4978 struct smu7_power_state *smu7_ps; 4979 4980 if (value > 20) 4981 value = 20; 4982 4983 ps = hwmgr->request_ps; 4984 4985 if (ps == NULL) 4986 return -EINVAL; 4987 4988 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 4989 4990 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock = 4991 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * 4992 value / 100 + 4993 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; 4994 4995 return 0; 4996 } 4997 4998 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr) 4999 { 5000 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5001 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5002 struct smu7_single_dpm_table *golden_mclk_table = 5003 &(data->golden_dpm_table.mclk_table); 5004 int value = mclk_table->dpm_levels[mclk_table->count - 1].value; 5005 int golden_value = golden_mclk_table->dpm_levels 5006 [golden_mclk_table->count - 1].value; 5007 5008 value -= golden_value; 5009 value = DIV_ROUND_UP(value * 100, golden_value); 5010 5011 return value; 5012 } 5013 5014 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) 5015 { 5016 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5017 struct smu7_single_dpm_table *golden_mclk_table = 5018 &(data->golden_dpm_table.mclk_table); 5019 struct pp_power_state *ps; 5020 struct smu7_power_state *smu7_ps; 5021 5022 if (value > 20) 5023 value = 20; 5024 5025 ps = hwmgr->request_ps; 5026 5027 if (ps == NULL) 5028 return -EINVAL; 5029 5030 smu7_ps = cast_phw_smu7_power_state(&ps->hardware); 5031 5032 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock = 5033 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * 5034 value / 100 + 5035 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; 5036 5037 return 0; 5038 } 5039 5040 5041 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5042 { 5043 struct phm_ppt_v1_information *table_info = 5044 (struct phm_ppt_v1_information *)hwmgr->pptable; 5045 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL; 5046 struct phm_clock_voltage_dependency_table *sclk_table; 5047 int i; 5048 5049 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5050 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL) 5051 return -EINVAL; 5052 dep_sclk_table = table_info->vdd_dep_on_sclk; 5053 for (i = 0; i < dep_sclk_table->count; i++) 5054 clocks->clock[i] = dep_sclk_table->entries[i].clk * 10; 5055 clocks->count = dep_sclk_table->count; 5056 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5057 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; 5058 for (i = 0; i < sclk_table->count; i++) 5059 clocks->clock[i] = sclk_table->entries[i].clk * 10; 5060 clocks->count = sclk_table->count; 5061 } 5062 5063 return 0; 5064 } 5065 5066 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk) 5067 { 5068 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5069 5070 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY) 5071 return data->mem_latency_high; 5072 else if (clk >= MEM_FREQ_HIGH_LATENCY) 5073 return data->mem_latency_low; 5074 else 5075 return MEM_LATENCY_ERR; 5076 } 5077 5078 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks) 5079 { 5080 struct phm_ppt_v1_information *table_info = 5081 (struct phm_ppt_v1_information *)hwmgr->pptable; 5082 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table; 5083 int i; 5084 struct phm_clock_voltage_dependency_table *mclk_table; 5085 5086 if (hwmgr->pp_table_version == PP_TABLE_V1) { 5087 if (table_info == NULL) 5088 return -EINVAL; 5089 dep_mclk_table = table_info->vdd_dep_on_mclk; 5090 for (i = 0; i < dep_mclk_table->count; i++) { 5091 clocks->clock[i] = dep_mclk_table->entries[i].clk * 10; 5092 clocks->latency[i] = smu7_get_mem_latency(hwmgr, 5093 dep_mclk_table->entries[i].clk); 5094 } 5095 clocks->count = dep_mclk_table->count; 5096 } else if (hwmgr->pp_table_version == PP_TABLE_V0) { 5097 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; 5098 for (i = 0; i < mclk_table->count; i++) 5099 clocks->clock[i] = mclk_table->entries[i].clk * 10; 5100 clocks->count = mclk_table->count; 5101 } 5102 return 0; 5103 } 5104 5105 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, 5106 struct amd_pp_clocks *clocks) 5107 { 5108 switch (type) { 5109 case amd_pp_sys_clock: 5110 smu7_get_sclks(hwmgr, clocks); 5111 break; 5112 case amd_pp_mem_clock: 5113 smu7_get_mclks(hwmgr, clocks); 5114 break; 5115 default: 5116 return -EINVAL; 5117 } 5118 5119 return 0; 5120 } 5121 5122 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr, 5123 struct pp_clock_levels_with_latency *clocks) 5124 { 5125 struct phm_ppt_v1_information *table_info = 5126 (struct phm_ppt_v1_information *)hwmgr->pptable; 5127 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5128 table_info->vdd_dep_on_sclk; 5129 int i; 5130 5131 clocks->num_levels = 0; 5132 for (i = 0; i < dep_sclk_table->count; i++) { 5133 if (dep_sclk_table->entries[i].clk) { 5134 clocks->data[clocks->num_levels].clocks_in_khz = 5135 dep_sclk_table->entries[i].clk * 10; 5136 clocks->num_levels++; 5137 } 5138 } 5139 5140 return 0; 5141 } 5142 5143 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr, 5144 struct pp_clock_levels_with_latency *clocks) 5145 { 5146 struct phm_ppt_v1_information *table_info = 5147 (struct phm_ppt_v1_information *)hwmgr->pptable; 5148 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5149 table_info->vdd_dep_on_mclk; 5150 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5151 int i; 5152 5153 clocks->num_levels = 0; 5154 data->mclk_latency_table.count = 0; 5155 for (i = 0; i < dep_mclk_table->count; i++) { 5156 if (dep_mclk_table->entries[i].clk) { 5157 clocks->data[clocks->num_levels].clocks_in_khz = 5158 dep_mclk_table->entries[i].clk * 10; 5159 data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency = 5160 dep_mclk_table->entries[i].clk; 5161 clocks->data[clocks->num_levels].latency_in_us = 5162 data->mclk_latency_table.entries[data->mclk_latency_table.count].latency = 5163 smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk); 5164 clocks->num_levels++; 5165 data->mclk_latency_table.count++; 5166 } 5167 } 5168 5169 return 0; 5170 } 5171 5172 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, 5173 enum amd_pp_clock_type type, 5174 struct pp_clock_levels_with_latency *clocks) 5175 { 5176 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5177 hwmgr->chip_id <= CHIP_VEGAM)) 5178 return -EINVAL; 5179 5180 switch (type) { 5181 case amd_pp_sys_clock: 5182 smu7_get_sclks_with_latency(hwmgr, clocks); 5183 break; 5184 case amd_pp_mem_clock: 5185 smu7_get_mclks_with_latency(hwmgr, clocks); 5186 break; 5187 default: 5188 return -EINVAL; 5189 } 5190 5191 return 0; 5192 } 5193 5194 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, 5195 void *clock_range) 5196 { 5197 struct phm_ppt_v1_information *table_info = 5198 (struct phm_ppt_v1_information *)hwmgr->pptable; 5199 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = 5200 table_info->vdd_dep_on_mclk; 5201 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = 5202 table_info->vdd_dep_on_sclk; 5203 struct polaris10_smumgr *smu_data = 5204 (struct polaris10_smumgr *)(hwmgr->smu_backend); 5205 SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table); 5206 struct dm_pp_wm_sets_with_clock_ranges *watermarks = 5207 (struct dm_pp_wm_sets_with_clock_ranges *)clock_range; 5208 uint32_t i, j, k; 5209 bool valid_entry; 5210 5211 if (!(hwmgr->chip_id >= CHIP_POLARIS10 && 5212 hwmgr->chip_id <= CHIP_VEGAM)) 5213 return -EINVAL; 5214 5215 for (i = 0; i < dep_mclk_table->count; i++) { 5216 for (j = 0; j < dep_sclk_table->count; j++) { 5217 valid_entry = false; 5218 for (k = 0; k < watermarks->num_wm_sets; k++) { 5219 if (dep_sclk_table->entries[i].clk / 10 >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz && 5220 dep_sclk_table->entries[i].clk / 10 < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz && 5221 dep_mclk_table->entries[i].clk / 10 >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz && 5222 dep_mclk_table->entries[i].clk / 10 < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz) { 5223 valid_entry = true; 5224 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id; 5225 break; 5226 } 5227 } 5228 PP_ASSERT_WITH_CODE(valid_entry, 5229 "Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.", 5230 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id); 5231 } 5232 } 5233 5234 return smu7_copy_bytes_to_smc(hwmgr, 5235 smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark), 5236 (uint8_t *)table->DisplayWatermark, 5237 sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS, 5238 SMC_RAM_END); 5239 } 5240 5241 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr, 5242 uint32_t virtual_addr_low, 5243 uint32_t virtual_addr_hi, 5244 uint32_t mc_addr_low, 5245 uint32_t mc_addr_hi, 5246 uint32_t size) 5247 { 5248 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5249 5250 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5251 data->soft_regs_start + 5252 smum_get_offsetof(hwmgr, 5253 SMU_SoftRegisters, DRAM_LOG_ADDR_H), 5254 mc_addr_hi); 5255 5256 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5257 data->soft_regs_start + 5258 smum_get_offsetof(hwmgr, 5259 SMU_SoftRegisters, DRAM_LOG_ADDR_L), 5260 mc_addr_low); 5261 5262 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5263 data->soft_regs_start + 5264 smum_get_offsetof(hwmgr, 5265 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H), 5266 virtual_addr_hi); 5267 5268 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5269 data->soft_regs_start + 5270 smum_get_offsetof(hwmgr, 5271 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L), 5272 virtual_addr_low); 5273 5274 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 5275 data->soft_regs_start + 5276 smum_get_offsetof(hwmgr, 5277 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE), 5278 size); 5279 return 0; 5280 } 5281 5282 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr, 5283 struct amd_pp_simple_clock_info *clocks) 5284 { 5285 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5286 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); 5287 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); 5288 5289 if (clocks == NULL) 5290 return -EINVAL; 5291 5292 clocks->memory_max_clock = mclk_table->count > 1 ? 5293 mclk_table->dpm_levels[mclk_table->count-1].value : 5294 mclk_table->dpm_levels[0].value; 5295 clocks->engine_max_clock = sclk_table->count > 1 ? 5296 sclk_table->dpm_levels[sclk_table->count-1].value : 5297 sclk_table->dpm_levels[0].value; 5298 return 0; 5299 } 5300 5301 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr, 5302 struct PP_TemperatureRange *thermal_data) 5303 { 5304 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5305 struct phm_ppt_v1_information *table_info = 5306 (struct phm_ppt_v1_information *)hwmgr->pptable; 5307 5308 memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange)); 5309 5310 if (hwmgr->pp_table_version == PP_TABLE_V1) 5311 thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp * 5312 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5313 else if (hwmgr->pp_table_version == PP_TABLE_V0) 5314 thermal_data->max = data->thermal_temp_setting.temperature_shutdown * 5315 PP_TEMPERATURE_UNITS_PER_CENTIGRADES; 5316 5317 return 0; 5318 } 5319 5320 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr, 5321 enum PP_OD_DPM_TABLE_COMMAND type, 5322 uint32_t clk, 5323 uint32_t voltage) 5324 { 5325 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5326 5327 if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) { 5328 pr_info("OD voltage is out of range [%d - %d] mV\n", 5329 data->odn_dpm_table.min_vddc, 5330 data->odn_dpm_table.max_vddc); 5331 return false; 5332 } 5333 5334 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) { 5335 if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk || 5336 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) { 5337 pr_info("OD engine clock is out of range [%d - %d] MHz\n", 5338 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100, 5339 hwmgr->platform_descriptor.overdriveLimit.engineClock/100); 5340 return false; 5341 } 5342 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) { 5343 if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk || 5344 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) { 5345 pr_info("OD memory clock is out of range [%d - %d] MHz\n", 5346 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100, 5347 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100); 5348 return false; 5349 } 5350 } else { 5351 return false; 5352 } 5353 5354 return true; 5355 } 5356 5357 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr, 5358 enum PP_OD_DPM_TABLE_COMMAND type, 5359 long *input, uint32_t size) 5360 { 5361 uint32_t i; 5362 struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL; 5363 struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL; 5364 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5365 5366 uint32_t input_clk; 5367 uint32_t input_vol; 5368 uint32_t input_level; 5369 5370 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage", 5371 return -EINVAL); 5372 5373 if (!hwmgr->od_enabled) { 5374 pr_info("OverDrive feature not enabled\n"); 5375 return -EINVAL; 5376 } 5377 5378 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) { 5379 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels; 5380 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk; 5381 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5382 "Failed to get ODN SCLK and Voltage tables", 5383 return -EINVAL); 5384 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) { 5385 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels; 5386 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk; 5387 5388 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend), 5389 "Failed to get ODN MCLK and Voltage tables", 5390 return -EINVAL); 5391 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) { 5392 smu7_odn_initial_default_setting(hwmgr); 5393 return 0; 5394 } else if (PP_OD_COMMIT_DPM_TABLE == type) { 5395 smu7_check_dpm_table_updated(hwmgr); 5396 return 0; 5397 } else { 5398 return -EINVAL; 5399 } 5400 5401 for (i = 0; i < size; i += 3) { 5402 if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) { 5403 pr_info("invalid clock voltage input \n"); 5404 return 0; 5405 } 5406 input_level = input[i]; 5407 input_clk = input[i+1] * 100; 5408 input_vol = input[i+2]; 5409 5410 if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) { 5411 podn_dpm_table_in_backend->entries[input_level].clock = input_clk; 5412 podn_vdd_dep_in_backend->entries[input_level].clk = input_clk; 5413 podn_dpm_table_in_backend->entries[input_level].vddc = input_vol; 5414 podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol; 5415 podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol; 5416 } else { 5417 return -EINVAL; 5418 } 5419 } 5420 5421 return 0; 5422 } 5423 5424 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf) 5425 { 5426 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5427 uint32_t i, size = 0; 5428 uint32_t len; 5429 5430 static const char *profile_name[7] = {"BOOTUP_DEFAULT", 5431 "3D_FULL_SCREEN", 5432 "POWER_SAVING", 5433 "VIDEO", 5434 "VR", 5435 "COMPUTE", 5436 "CUSTOM"}; 5437 5438 static const char *title[8] = {"NUM", 5439 "MODE_NAME", 5440 "SCLK_UP_HYST", 5441 "SCLK_DOWN_HYST", 5442 "SCLK_ACTIVE_LEVEL", 5443 "MCLK_UP_HYST", 5444 "MCLK_DOWN_HYST", 5445 "MCLK_ACTIVE_LEVEL"}; 5446 5447 if (!buf) 5448 return -EINVAL; 5449 5450 size += sprintf(buf + size, "%s %16s %16s %16s %16s %16s %16s %16s\n", 5451 title[0], title[1], title[2], title[3], 5452 title[4], title[5], title[6], title[7]); 5453 5454 len = ARRAY_SIZE(smu7_profiling); 5455 5456 for (i = 0; i < len; i++) { 5457 if (i == hwmgr->power_profile_mode) { 5458 size += sprintf(buf + size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n", 5459 i, profile_name[i], "*", 5460 data->current_profile_setting.sclk_up_hyst, 5461 data->current_profile_setting.sclk_down_hyst, 5462 data->current_profile_setting.sclk_activity, 5463 data->current_profile_setting.mclk_up_hyst, 5464 data->current_profile_setting.mclk_down_hyst, 5465 data->current_profile_setting.mclk_activity); 5466 continue; 5467 } 5468 if (smu7_profiling[i].bupdate_sclk) 5469 size += sprintf(buf + size, "%3d %16s: %8d %16d %16d ", 5470 i, profile_name[i], smu7_profiling[i].sclk_up_hyst, 5471 smu7_profiling[i].sclk_down_hyst, 5472 smu7_profiling[i].sclk_activity); 5473 else 5474 size += sprintf(buf + size, "%3d %16s: %8s %16s %16s ", 5475 i, profile_name[i], "-", "-", "-"); 5476 5477 if (smu7_profiling[i].bupdate_mclk) 5478 size += sprintf(buf + size, "%16d %16d %16d\n", 5479 smu7_profiling[i].mclk_up_hyst, 5480 smu7_profiling[i].mclk_down_hyst, 5481 smu7_profiling[i].mclk_activity); 5482 else 5483 size += sprintf(buf + size, "%16s %16s %16s\n", 5484 "-", "-", "-"); 5485 } 5486 5487 return size; 5488 } 5489 5490 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr, 5491 enum PP_SMC_POWER_PROFILE requst) 5492 { 5493 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5494 uint32_t tmp, level; 5495 5496 if (requst == PP_SMC_POWER_PROFILE_COMPUTE) { 5497 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) { 5498 level = 0; 5499 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; 5500 while (tmp >>= 1) 5501 level++; 5502 if (level > 0) 5503 smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1)); 5504 } 5505 } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) { 5506 smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask); 5507 } 5508 } 5509 5510 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size) 5511 { 5512 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); 5513 struct profile_mode_setting tmp; 5514 enum PP_SMC_POWER_PROFILE mode; 5515 5516 if (input == NULL) 5517 return -EINVAL; 5518 5519 mode = input[size]; 5520 switch (mode) { 5521 case PP_SMC_POWER_PROFILE_CUSTOM: 5522 if (size < 8 && size != 0) 5523 return -EINVAL; 5524 /* If only CUSTOM is passed in, use the saved values. Check 5525 * that we actually have a CUSTOM profile by ensuring that 5526 * the "use sclk" or the "use mclk" bits are set 5527 */ 5528 tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM]; 5529 if (size == 0) { 5530 if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0) 5531 return -EINVAL; 5532 } else { 5533 tmp.bupdate_sclk = input[0]; 5534 tmp.sclk_up_hyst = input[1]; 5535 tmp.sclk_down_hyst = input[2]; 5536 tmp.sclk_activity = input[3]; 5537 tmp.bupdate_mclk = input[4]; 5538 tmp.mclk_up_hyst = input[5]; 5539 tmp.mclk_down_hyst = input[6]; 5540 tmp.mclk_activity = input[7]; 5541 smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp; 5542 } 5543 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5544 memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting)); 5545 hwmgr->power_profile_mode = mode; 5546 } 5547 break; 5548 case PP_SMC_POWER_PROFILE_FULLSCREEN3D: 5549 case PP_SMC_POWER_PROFILE_POWERSAVING: 5550 case PP_SMC_POWER_PROFILE_VIDEO: 5551 case PP_SMC_POWER_PROFILE_VR: 5552 case PP_SMC_POWER_PROFILE_COMPUTE: 5553 if (mode == hwmgr->power_profile_mode) 5554 return 0; 5555 5556 memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting)); 5557 if (!smum_update_dpm_settings(hwmgr, &tmp)) { 5558 if (tmp.bupdate_sclk) { 5559 data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk; 5560 data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst; 5561 data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst; 5562 data->current_profile_setting.sclk_activity = tmp.sclk_activity; 5563 } 5564 if (tmp.bupdate_mclk) { 5565 data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk; 5566 data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst; 5567 data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst; 5568 data->current_profile_setting.mclk_activity = tmp.mclk_activity; 5569 } 5570 smu7_patch_compute_profile_mode(hwmgr, mode); 5571 hwmgr->power_profile_mode = mode; 5572 } 5573 break; 5574 default: 5575 return -EINVAL; 5576 } 5577 5578 return 0; 5579 } 5580 5581 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state, 5582 PHM_PerformanceLevelDesignation designation, uint32_t index, 5583 PHM_PerformanceLevel *level) 5584 { 5585 const struct smu7_power_state *ps; 5586 uint32_t i; 5587 5588 if (level == NULL || hwmgr == NULL || state == NULL) 5589 return -EINVAL; 5590 5591 ps = cast_const_phw_smu7_power_state(state); 5592 5593 i = index > ps->performance_level_count - 1 ? 5594 ps->performance_level_count - 1 : index; 5595 5596 level->coreClock = ps->performance_levels[i].engine_clock; 5597 level->memory_clock = ps->performance_levels[i].memory_clock; 5598 5599 return 0; 5600 } 5601 5602 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr) 5603 { 5604 int result; 5605 5606 result = smu7_disable_dpm_tasks(hwmgr); 5607 PP_ASSERT_WITH_CODE((0 == result), 5608 "[disable_dpm_tasks] Failed to disable DPM!", 5609 ); 5610 5611 return result; 5612 } 5613 5614 static const struct pp_hwmgr_func smu7_hwmgr_funcs = { 5615 .backend_init = &smu7_hwmgr_backend_init, 5616 .backend_fini = &smu7_hwmgr_backend_fini, 5617 .asic_setup = &smu7_setup_asic_task, 5618 .dynamic_state_management_enable = &smu7_enable_dpm_tasks, 5619 .apply_state_adjust_rules = smu7_apply_state_adjust_rules, 5620 .force_dpm_level = &smu7_force_dpm_level, 5621 .power_state_set = smu7_set_power_state_tasks, 5622 .get_power_state_size = smu7_get_power_state_size, 5623 .get_mclk = smu7_dpm_get_mclk, 5624 .get_sclk = smu7_dpm_get_sclk, 5625 .patch_boot_state = smu7_dpm_patch_boot_state, 5626 .get_pp_table_entry = smu7_get_pp_table_entry, 5627 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries, 5628 .powerdown_uvd = smu7_powerdown_uvd, 5629 .powergate_uvd = smu7_powergate_uvd, 5630 .powergate_vce = smu7_powergate_vce, 5631 .disable_clock_power_gating = smu7_disable_clock_power_gating, 5632 .update_clock_gatings = smu7_update_clock_gatings, 5633 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment, 5634 .display_config_changed = smu7_display_configuration_changed_task, 5635 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output, 5636 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output, 5637 .stop_thermal_controller = smu7_thermal_stop_thermal_controller, 5638 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info, 5639 .get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent, 5640 .set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent, 5641 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default, 5642 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm, 5643 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm, 5644 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller, 5645 .register_irq_handlers = smu7_register_irq_handlers, 5646 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration, 5647 .check_states_equal = smu7_check_states_equal, 5648 .set_fan_control_mode = smu7_set_fan_control_mode, 5649 .get_fan_control_mode = smu7_get_fan_control_mode, 5650 .force_clock_level = smu7_force_clock_level, 5651 .print_clock_levels = smu7_print_clock_levels, 5652 .powergate_gfx = smu7_powergate_gfx, 5653 .get_sclk_od = smu7_get_sclk_od, 5654 .set_sclk_od = smu7_set_sclk_od, 5655 .get_mclk_od = smu7_get_mclk_od, 5656 .set_mclk_od = smu7_set_mclk_od, 5657 .get_clock_by_type = smu7_get_clock_by_type, 5658 .get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency, 5659 .set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges, 5660 .read_sensor = smu7_read_sensor, 5661 .dynamic_state_management_disable = smu7_disable_dpm_tasks, 5662 .avfs_control = smu7_avfs_control, 5663 .disable_smc_firmware_ctf = smu7_thermal_disable_alert, 5664 .start_thermal_controller = smu7_start_thermal_controller, 5665 .notify_cac_buffer_info = smu7_notify_cac_buffer_info, 5666 .get_max_high_clocks = smu7_get_max_high_clocks, 5667 .get_thermal_temperature_range = smu7_get_thermal_temperature_range, 5668 .odn_edit_dpm_table = smu7_odn_edit_dpm_table, 5669 .set_power_limit = smu7_set_power_limit, 5670 .get_power_profile_mode = smu7_get_power_profile_mode, 5671 .set_power_profile_mode = smu7_set_power_profile_mode, 5672 .get_performance_level = smu7_get_performance_level, 5673 .get_asic_baco_capability = smu7_baco_get_capability, 5674 .get_asic_baco_state = smu7_baco_get_state, 5675 .set_asic_baco_state = smu7_baco_set_state, 5676 .power_off_asic = smu7_power_off_asic, 5677 }; 5678 5679 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock, 5680 uint32_t clock_insr) 5681 { 5682 uint8_t i; 5683 uint32_t temp; 5684 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); 5685 5686 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); 5687 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) { 5688 temp = clock >> i; 5689 5690 if (temp >= min || i == 0) 5691 break; 5692 } 5693 return i; 5694 } 5695 5696 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr) 5697 { 5698 hwmgr->hwmgr_func = &smu7_hwmgr_funcs; 5699 if (hwmgr->pp_table_version == PP_TABLE_V0) 5700 hwmgr->pptable_func = &pptable_funcs; 5701 else if (hwmgr->pp_table_version == PP_TABLE_V1) 5702 hwmgr->pptable_func = &pptable_v1_0_funcs; 5703 5704 return 0; 5705 } 5706