1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/fb.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <asm/div64.h>
30 #include <drm/amdgpu_drm.h>
31 #include "ppatomctrl.h"
32 #include "atombios.h"
33 #include "pptable_v1_0.h"
34 #include "pppcielanes.h"
35 #include "amd_pcie_helpers.h"
36 #include "hardwaremanager.h"
37 #include "process_pptables_v1_0.h"
38 #include "cgs_common.h"
39 
40 #include "smu7_common.h"
41 
42 #include "hwmgr.h"
43 #include "smu7_hwmgr.h"
44 #include "smu_ucode_xfer_vi.h"
45 #include "smu7_powertune.h"
46 #include "smu7_dyn_defaults.h"
47 #include "smu7_thermal.h"
48 #include "smu7_clockpowergating.h"
49 #include "processpptables.h"
50 #include "pp_thermal.h"
51 #include "smu7_baco.h"
52 
53 #include "ivsrcid/ivsrcid_vislands30.h"
54 
55 #define MC_CG_ARB_FREQ_F0           0x0a
56 #define MC_CG_ARB_FREQ_F1           0x0b
57 #define MC_CG_ARB_FREQ_F2           0x0c
58 #define MC_CG_ARB_FREQ_F3           0x0d
59 
60 #define MC_CG_SEQ_DRAMCONF_S0       0x05
61 #define MC_CG_SEQ_DRAMCONF_S1       0x06
62 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
63 #define MC_CG_SEQ_YCLK_RESUME       0x0a
64 
65 #define SMC_CG_IND_START            0xc0030000
66 #define SMC_CG_IND_END              0xc0040000
67 
68 #define MEM_FREQ_LOW_LATENCY        25000
69 #define MEM_FREQ_HIGH_LATENCY       80000
70 
71 #define MEM_LATENCY_HIGH            45
72 #define MEM_LATENCY_LOW             35
73 #define MEM_LATENCY_ERR             0xFFFF
74 
75 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
76 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
77 #define MC_SEQ_MISC0_GDDR5_VALUE 5
78 
79 #define PCIE_BUS_CLK                10000
80 #define TCLK                        (PCIE_BUS_CLK / 10)
81 
82 static struct profile_mode_setting smu7_profiling[7] =
83 					{{0, 0, 0, 0, 0, 0, 0, 0},
84 					 {1, 0, 100, 30, 1, 0, 100, 10},
85 					 {1, 10, 0, 30, 0, 0, 0, 0},
86 					 {0, 0, 0, 0, 1, 10, 16, 31},
87 					 {1, 0, 11, 50, 1, 0, 100, 10},
88 					 {1, 0, 5, 30, 0, 0, 0, 0},
89 					 {0, 0, 0, 0, 0, 0, 0, 0},
90 					};
91 
92 #define PPSMC_MSG_SetVBITimeout_VEGAM    ((uint16_t) 0x310)
93 
94 #define ixPWR_SVI2_PLANE1_LOAD                     0xC0200280
95 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK                    0x00000020L
96 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK                 0x00000040L
97 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT                  0x00000005
98 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT               0x00000006
99 
100 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
101 enum DPM_EVENT_SRC {
102 	DPM_EVENT_SRC_ANALOG = 0,
103 	DPM_EVENT_SRC_EXTERNAL = 1,
104 	DPM_EVENT_SRC_DIGITAL = 2,
105 	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
106 	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
107 };
108 
109 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
110 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
111 		enum pp_clock_type type, uint32_t mask);
112 
113 static struct smu7_power_state *cast_phw_smu7_power_state(
114 				  struct pp_hw_power_state *hw_ps)
115 {
116 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
117 				"Invalid Powerstate Type!",
118 				 return NULL);
119 
120 	return (struct smu7_power_state *)hw_ps;
121 }
122 
123 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
124 				 const struct pp_hw_power_state *hw_ps)
125 {
126 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
127 				"Invalid Powerstate Type!",
128 				 return NULL);
129 
130 	return (const struct smu7_power_state *)hw_ps;
131 }
132 
133 /**
134  * Find the MC microcode version and store it in the HwMgr struct
135  *
136  * @param    hwmgr  the address of the powerplay hardware manager.
137  * @return   always 0
138  */
139 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
140 {
141 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
142 
143 	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
144 
145 	return 0;
146 }
147 
148 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
149 {
150 	uint32_t speedCntl = 0;
151 
152 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
153 	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
154 			ixPCIE_LC_SPEED_CNTL);
155 	return((uint16_t)PHM_GET_FIELD(speedCntl,
156 			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
157 }
158 
159 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
160 {
161 	uint32_t link_width;
162 
163 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
164 	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
165 			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
166 
167 	PP_ASSERT_WITH_CODE((7 >= link_width),
168 			"Invalid PCIe lane width!", return 0);
169 
170 	return decode_pcie_lane_width(link_width);
171 }
172 
173 /**
174 * Enable voltage control
175 *
176 * @param    pHwMgr  the address of the powerplay hardware manager.
177 * @return   always PP_Result_OK
178 */
179 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
180 {
181 	if (hwmgr->chip_id == CHIP_VEGAM) {
182 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
183 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
184 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
185 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
186 	}
187 
188 	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
189 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
190 
191 	return 0;
192 }
193 
194 /**
195 * Checks if we want to support voltage control
196 *
197 * @param    hwmgr  the address of the powerplay hardware manager.
198 */
199 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
200 {
201 	const struct smu7_hwmgr *data =
202 			(const struct smu7_hwmgr *)(hwmgr->backend);
203 
204 	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
205 }
206 
207 /**
208 * Enable voltage control
209 *
210 * @param    hwmgr  the address of the powerplay hardware manager.
211 * @return   always 0
212 */
213 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
214 {
215 	/* enable voltage control */
216 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
217 			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
218 
219 	return 0;
220 }
221 
222 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
223 		struct phm_clock_voltage_dependency_table *voltage_dependency_table
224 		)
225 {
226 	uint32_t i;
227 
228 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
229 			"Voltage Dependency Table empty.", return -EINVAL;);
230 
231 	voltage_table->mask_low = 0;
232 	voltage_table->phase_delay = 0;
233 	voltage_table->count = voltage_dependency_table->count;
234 
235 	for (i = 0; i < voltage_dependency_table->count; i++) {
236 		voltage_table->entries[i].value =
237 			voltage_dependency_table->entries[i].v;
238 		voltage_table->entries[i].smio_low = 0;
239 	}
240 
241 	return 0;
242 }
243 
244 
245 /**
246 * Create Voltage Tables.
247 *
248 * @param    hwmgr  the address of the powerplay hardware manager.
249 * @return   always 0
250 */
251 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
252 {
253 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
254 	struct phm_ppt_v1_information *table_info =
255 			(struct phm_ppt_v1_information *)hwmgr->pptable;
256 	int result = 0;
257 	uint32_t tmp;
258 
259 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
260 		result = atomctrl_get_voltage_table_v3(hwmgr,
261 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
262 				&(data->mvdd_voltage_table));
263 		PP_ASSERT_WITH_CODE((0 == result),
264 				"Failed to retrieve MVDD table.",
265 				return result);
266 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
267 		if (hwmgr->pp_table_version == PP_TABLE_V1)
268 			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
269 					table_info->vdd_dep_on_mclk);
270 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
271 			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
272 					hwmgr->dyn_state.mvdd_dependency_on_mclk);
273 
274 		PP_ASSERT_WITH_CODE((0 == result),
275 				"Failed to retrieve SVI2 MVDD table from dependency table.",
276 				return result;);
277 	}
278 
279 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
280 		result = atomctrl_get_voltage_table_v3(hwmgr,
281 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
282 				&(data->vddci_voltage_table));
283 		PP_ASSERT_WITH_CODE((0 == result),
284 				"Failed to retrieve VDDCI table.",
285 				return result);
286 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
287 		if (hwmgr->pp_table_version == PP_TABLE_V1)
288 			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
289 					table_info->vdd_dep_on_mclk);
290 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
291 			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
292 					hwmgr->dyn_state.vddci_dependency_on_mclk);
293 		PP_ASSERT_WITH_CODE((0 == result),
294 				"Failed to retrieve SVI2 VDDCI table from dependency table.",
295 				return result);
296 	}
297 
298 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
299 		/* VDDGFX has only SVI2 voltage control */
300 		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
301 					table_info->vddgfx_lookup_table);
302 		PP_ASSERT_WITH_CODE((0 == result),
303 			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
304 	}
305 
306 
307 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
308 		result = atomctrl_get_voltage_table_v3(hwmgr,
309 					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
310 					&data->vddc_voltage_table);
311 		PP_ASSERT_WITH_CODE((0 == result),
312 			"Failed to retrieve VDDC table.", return result;);
313 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
314 
315 		if (hwmgr->pp_table_version == PP_TABLE_V0)
316 			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
317 					hwmgr->dyn_state.vddc_dependency_on_mclk);
318 		else if (hwmgr->pp_table_version == PP_TABLE_V1)
319 			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
320 				table_info->vddc_lookup_table);
321 
322 		PP_ASSERT_WITH_CODE((0 == result),
323 			"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
324 	}
325 
326 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
327 	PP_ASSERT_WITH_CODE(
328 			(data->vddc_voltage_table.count <= tmp),
329 		"Too many voltage values for VDDC. Trimming to fit state table.",
330 			phm_trim_voltage_table_to_fit_state_table(tmp,
331 						&(data->vddc_voltage_table)));
332 
333 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
334 	PP_ASSERT_WITH_CODE(
335 			(data->vddgfx_voltage_table.count <= tmp),
336 		"Too many voltage values for VDDC. Trimming to fit state table.",
337 			phm_trim_voltage_table_to_fit_state_table(tmp,
338 						&(data->vddgfx_voltage_table)));
339 
340 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
341 	PP_ASSERT_WITH_CODE(
342 			(data->vddci_voltage_table.count <= tmp),
343 		"Too many voltage values for VDDCI. Trimming to fit state table.",
344 			phm_trim_voltage_table_to_fit_state_table(tmp,
345 					&(data->vddci_voltage_table)));
346 
347 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
348 	PP_ASSERT_WITH_CODE(
349 			(data->mvdd_voltage_table.count <= tmp),
350 		"Too many voltage values for MVDD. Trimming to fit state table.",
351 			phm_trim_voltage_table_to_fit_state_table(tmp,
352 						&(data->mvdd_voltage_table)));
353 
354 	return 0;
355 }
356 
357 /**
358 * Programs static screed detection parameters
359 *
360 * @param    hwmgr  the address of the powerplay hardware manager.
361 * @return   always 0
362 */
363 static int smu7_program_static_screen_threshold_parameters(
364 							struct pp_hwmgr *hwmgr)
365 {
366 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
367 
368 	/* Set static screen threshold unit */
369 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
370 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
371 			data->static_screen_threshold_unit);
372 	/* Set static screen threshold */
373 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
374 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
375 			data->static_screen_threshold);
376 
377 	return 0;
378 }
379 
380 /**
381 * Setup display gap for glitch free memory clock switching.
382 *
383 * @param    hwmgr  the address of the powerplay hardware manager.
384 * @return   always  0
385 */
386 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
387 {
388 	uint32_t display_gap =
389 			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
390 					ixCG_DISPLAY_GAP_CNTL);
391 
392 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
393 			DISP_GAP, DISPLAY_GAP_IGNORE);
394 
395 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
396 			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
397 
398 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
399 			ixCG_DISPLAY_GAP_CNTL, display_gap);
400 
401 	return 0;
402 }
403 
404 /**
405 * Programs activity state transition voting clients
406 *
407 * @param    hwmgr  the address of the powerplay hardware manager.
408 * @return   always  0
409 */
410 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
411 {
412 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
413 	int i;
414 
415 	/* Clear reset for voting clients before enabling DPM */
416 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
417 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
418 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
419 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
420 
421 	for (i = 0; i < 8; i++)
422 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
423 					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
424 					data->voting_rights_clients[i]);
425 	return 0;
426 }
427 
428 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
429 {
430 	int i;
431 
432 	/* Reset voting clients before disabling DPM */
433 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
434 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
435 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
436 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
437 
438 	for (i = 0; i < 8; i++)
439 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
440 				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
441 
442 	return 0;
443 }
444 
445 /* Copy one arb setting to another and then switch the active set.
446  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
447  */
448 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
449 		uint32_t arb_src, uint32_t arb_dest)
450 {
451 	uint32_t mc_arb_dram_timing;
452 	uint32_t mc_arb_dram_timing2;
453 	uint32_t burst_time;
454 	uint32_t mc_cg_config;
455 
456 	switch (arb_src) {
457 	case MC_CG_ARB_FREQ_F0:
458 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
459 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
460 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
461 		break;
462 	case MC_CG_ARB_FREQ_F1:
463 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
464 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
465 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
466 		break;
467 	default:
468 		return -EINVAL;
469 	}
470 
471 	switch (arb_dest) {
472 	case MC_CG_ARB_FREQ_F0:
473 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
474 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
475 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
476 		break;
477 	case MC_CG_ARB_FREQ_F1:
478 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
479 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
480 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
481 		break;
482 	default:
483 		return -EINVAL;
484 	}
485 
486 	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
487 	mc_cg_config |= 0x0000000F;
488 	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
489 	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
490 
491 	return 0;
492 }
493 
494 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
495 {
496 	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
497 }
498 
499 /**
500 * Initial switch from ARB F0->F1
501 *
502 * @param    hwmgr  the address of the powerplay hardware manager.
503 * @return   always 0
504 * This function is to be called from the SetPowerState table.
505 */
506 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
507 {
508 	return smu7_copy_and_switch_arb_sets(hwmgr,
509 			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
510 }
511 
512 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
513 {
514 	uint32_t tmp;
515 
516 	tmp = (cgs_read_ind_register(hwmgr->device,
517 			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
518 			0x0000ff00) >> 8;
519 
520 	if (tmp == MC_CG_ARB_FREQ_F0)
521 		return 0;
522 
523 	return smu7_copy_and_switch_arb_sets(hwmgr,
524 			tmp, MC_CG_ARB_FREQ_F0);
525 }
526 
527 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
528 {
529 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
530 
531 	struct phm_ppt_v1_information *table_info =
532 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
533 	struct phm_ppt_v1_pcie_table *pcie_table = NULL;
534 
535 	uint32_t i, max_entry;
536 	uint32_t tmp;
537 
538 	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
539 			data->use_pcie_power_saving_levels), "No pcie performance levels!",
540 			return -EINVAL);
541 
542 	if (table_info != NULL)
543 		pcie_table = table_info->pcie_table;
544 
545 	if (data->use_pcie_performance_levels &&
546 			!data->use_pcie_power_saving_levels) {
547 		data->pcie_gen_power_saving = data->pcie_gen_performance;
548 		data->pcie_lane_power_saving = data->pcie_lane_performance;
549 	} else if (!data->use_pcie_performance_levels &&
550 			data->use_pcie_power_saving_levels) {
551 		data->pcie_gen_performance = data->pcie_gen_power_saving;
552 		data->pcie_lane_performance = data->pcie_lane_power_saving;
553 	}
554 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
555 	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
556 					tmp,
557 					MAX_REGULAR_DPM_NUMBER);
558 
559 	if (pcie_table != NULL) {
560 		/* max_entry is used to make sure we reserve one PCIE level
561 		 * for boot level (fix for A+A PSPP issue).
562 		 * If PCIE table from PPTable have ULV entry + 8 entries,
563 		 * then ignore the last entry.*/
564 		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
565 		for (i = 1; i < max_entry; i++) {
566 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
567 					get_pcie_gen_support(data->pcie_gen_cap,
568 							pcie_table->entries[i].gen_speed),
569 					get_pcie_lane_support(data->pcie_lane_cap,
570 							pcie_table->entries[i].lane_width));
571 		}
572 		data->dpm_table.pcie_speed_table.count = max_entry - 1;
573 		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
574 	} else {
575 		/* Hardcode Pcie Table */
576 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
577 				get_pcie_gen_support(data->pcie_gen_cap,
578 						PP_Min_PCIEGen),
579 				get_pcie_lane_support(data->pcie_lane_cap,
580 						PP_Max_PCIELane));
581 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
582 				get_pcie_gen_support(data->pcie_gen_cap,
583 						PP_Min_PCIEGen),
584 				get_pcie_lane_support(data->pcie_lane_cap,
585 						PP_Max_PCIELane));
586 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
587 				get_pcie_gen_support(data->pcie_gen_cap,
588 						PP_Max_PCIEGen),
589 				get_pcie_lane_support(data->pcie_lane_cap,
590 						PP_Max_PCIELane));
591 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
592 				get_pcie_gen_support(data->pcie_gen_cap,
593 						PP_Max_PCIEGen),
594 				get_pcie_lane_support(data->pcie_lane_cap,
595 						PP_Max_PCIELane));
596 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
597 				get_pcie_gen_support(data->pcie_gen_cap,
598 						PP_Max_PCIEGen),
599 				get_pcie_lane_support(data->pcie_lane_cap,
600 						PP_Max_PCIELane));
601 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
602 				get_pcie_gen_support(data->pcie_gen_cap,
603 						PP_Max_PCIEGen),
604 				get_pcie_lane_support(data->pcie_lane_cap,
605 						PP_Max_PCIELane));
606 
607 		data->dpm_table.pcie_speed_table.count = 6;
608 	}
609 	/* Populate last level for boot PCIE level, but do not increment count. */
610 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
611 		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
612 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
613 				get_pcie_gen_support(data->pcie_gen_cap,
614 						PP_Max_PCIEGen),
615 				data->vbios_boot_state.pcie_lane_bootup_value);
616 	} else {
617 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
618 			data->dpm_table.pcie_speed_table.count,
619 			get_pcie_gen_support(data->pcie_gen_cap,
620 					PP_Min_PCIEGen),
621 			get_pcie_lane_support(data->pcie_lane_cap,
622 					PP_Max_PCIELane));
623 	}
624 	return 0;
625 }
626 
627 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
628 {
629 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
630 
631 	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
632 
633 	phm_reset_single_dpm_table(
634 			&data->dpm_table.sclk_table,
635 				smum_get_mac_definition(hwmgr,
636 					SMU_MAX_LEVELS_GRAPHICS),
637 					MAX_REGULAR_DPM_NUMBER);
638 	phm_reset_single_dpm_table(
639 			&data->dpm_table.mclk_table,
640 			smum_get_mac_definition(hwmgr,
641 				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
642 
643 	phm_reset_single_dpm_table(
644 			&data->dpm_table.vddc_table,
645 				smum_get_mac_definition(hwmgr,
646 					SMU_MAX_LEVELS_VDDC),
647 					MAX_REGULAR_DPM_NUMBER);
648 	phm_reset_single_dpm_table(
649 			&data->dpm_table.vddci_table,
650 			smum_get_mac_definition(hwmgr,
651 				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
652 
653 	phm_reset_single_dpm_table(
654 			&data->dpm_table.mvdd_table,
655 				smum_get_mac_definition(hwmgr,
656 					SMU_MAX_LEVELS_MVDD),
657 					MAX_REGULAR_DPM_NUMBER);
658 	return 0;
659 }
660 /*
661  * This function is to initialize all DPM state tables
662  * for SMU7 based on the dependency table.
663  * Dynamic state patching function will then trim these
664  * state tables to the allowed range based
665  * on the power policy or external client requests,
666  * such as UVD request, etc.
667  */
668 
669 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
670 {
671 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
672 	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
673 		hwmgr->dyn_state.vddc_dependency_on_sclk;
674 	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
675 		hwmgr->dyn_state.vddc_dependency_on_mclk;
676 	struct phm_cac_leakage_table *std_voltage_table =
677 		hwmgr->dyn_state.cac_leakage_table;
678 	uint32_t i;
679 
680 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
681 		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
682 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
683 		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
684 
685 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
686 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
687 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
688 		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
689 
690 
691 	/* Initialize Sclk DPM table based on allow Sclk values*/
692 	data->dpm_table.sclk_table.count = 0;
693 
694 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
695 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
696 				allowed_vdd_sclk_table->entries[i].clk) {
697 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
698 				allowed_vdd_sclk_table->entries[i].clk;
699 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
700 			data->dpm_table.sclk_table.count++;
701 		}
702 	}
703 
704 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
705 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
706 	/* Initialize Mclk DPM table based on allow Mclk values */
707 	data->dpm_table.mclk_table.count = 0;
708 	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
709 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
710 			allowed_vdd_mclk_table->entries[i].clk) {
711 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
712 				allowed_vdd_mclk_table->entries[i].clk;
713 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
714 			data->dpm_table.mclk_table.count++;
715 		}
716 	}
717 
718 	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
719 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
720 		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
721 		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
722 		/* param1 is for corresponding std voltage */
723 		data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
724 	}
725 
726 	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
727 	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
728 
729 	if (NULL != allowed_vdd_mclk_table) {
730 		/* Initialize Vddci DPM table based on allow Mclk values */
731 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
732 			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
733 			data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
734 		}
735 		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
736 	}
737 
738 	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
739 
740 	if (NULL != allowed_vdd_mclk_table) {
741 		/*
742 		 * Initialize MVDD DPM table based on allow Mclk
743 		 * values
744 		 */
745 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
746 			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
747 			data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
748 		}
749 		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
750 	}
751 
752 	return 0;
753 }
754 
755 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
756 {
757 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
758 	struct phm_ppt_v1_information *table_info =
759 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
760 	uint32_t i;
761 
762 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
763 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
764 
765 	if (table_info == NULL)
766 		return -EINVAL;
767 
768 	dep_sclk_table = table_info->vdd_dep_on_sclk;
769 	dep_mclk_table = table_info->vdd_dep_on_mclk;
770 
771 	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
772 			"SCLK dependency table is missing.",
773 			return -EINVAL);
774 	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
775 			"SCLK dependency table count is 0.",
776 			return -EINVAL);
777 
778 	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
779 			"MCLK dependency table is missing.",
780 			return -EINVAL);
781 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
782 			"MCLK dependency table count is 0",
783 			return -EINVAL);
784 
785 	/* Initialize Sclk DPM table based on allow Sclk values */
786 	data->dpm_table.sclk_table.count = 0;
787 	for (i = 0; i < dep_sclk_table->count; i++) {
788 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
789 						dep_sclk_table->entries[i].clk) {
790 
791 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
792 					dep_sclk_table->entries[i].clk;
793 
794 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
795 					(i == 0) ? true : false;
796 			data->dpm_table.sclk_table.count++;
797 		}
798 	}
799 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
800 		hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
801 	/* Initialize Mclk DPM table based on allow Mclk values */
802 	data->dpm_table.mclk_table.count = 0;
803 	for (i = 0; i < dep_mclk_table->count; i++) {
804 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
805 				[data->dpm_table.mclk_table.count - 1].value !=
806 						dep_mclk_table->entries[i].clk) {
807 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
808 							dep_mclk_table->entries[i].clk;
809 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
810 							(i == 0) ? true : false;
811 			data->dpm_table.mclk_table.count++;
812 		}
813 	}
814 
815 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
816 		hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
817 	return 0;
818 }
819 
820 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
821 {
822 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
823 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
824 	struct phm_ppt_v1_information *table_info =
825 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
826 	uint32_t i;
827 
828 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
829 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
830 	struct phm_odn_performance_level *entries;
831 
832 	if (table_info == NULL)
833 		return -EINVAL;
834 
835 	dep_sclk_table = table_info->vdd_dep_on_sclk;
836 	dep_mclk_table = table_info->vdd_dep_on_mclk;
837 
838 	odn_table->odn_core_clock_dpm_levels.num_of_pl =
839 						data->golden_dpm_table.sclk_table.count;
840 	entries = odn_table->odn_core_clock_dpm_levels.entries;
841 	for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
842 		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
843 		entries[i].enabled = true;
844 		entries[i].vddc = dep_sclk_table->entries[i].vddc;
845 	}
846 
847 	smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
848 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
849 
850 	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
851 						data->golden_dpm_table.mclk_table.count;
852 	entries = odn_table->odn_memory_clock_dpm_levels.entries;
853 	for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
854 		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
855 		entries[i].enabled = true;
856 		entries[i].vddc = dep_mclk_table->entries[i].vddc;
857 	}
858 
859 	smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
860 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
861 
862 	return 0;
863 }
864 
865 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
866 {
867 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
868 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
869 	struct phm_ppt_v1_information *table_info =
870 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
871 	uint32_t min_vddc = 0;
872 	uint32_t max_vddc = 0;
873 
874 	if (!table_info)
875 		return;
876 
877 	dep_sclk_table = table_info->vdd_dep_on_sclk;
878 
879 	atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
880 
881 	if (min_vddc == 0 || min_vddc > 2000
882 		|| min_vddc > dep_sclk_table->entries[0].vddc)
883 		min_vddc = dep_sclk_table->entries[0].vddc;
884 
885 	if (max_vddc == 0 || max_vddc > 2000
886 		|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
887 		max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
888 
889 	data->odn_dpm_table.min_vddc = min_vddc;
890 	data->odn_dpm_table.max_vddc = max_vddc;
891 }
892 
893 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
894 {
895 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
896 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
897 	struct phm_ppt_v1_information *table_info =
898 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
899 	uint32_t i;
900 
901 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
902 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
903 
904 	if (table_info == NULL)
905 		return;
906 
907 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
908 		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
909 					data->dpm_table.sclk_table.dpm_levels[i].value) {
910 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
911 			break;
912 		}
913 	}
914 
915 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
916 		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
917 					data->dpm_table.mclk_table.dpm_levels[i].value) {
918 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
919 			break;
920 		}
921 	}
922 
923 	dep_table = table_info->vdd_dep_on_mclk;
924 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
925 
926 	for (i = 0; i < dep_table->count; i++) {
927 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
928 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
929 			return;
930 		}
931 	}
932 
933 	dep_table = table_info->vdd_dep_on_sclk;
934 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
935 	for (i = 0; i < dep_table->count; i++) {
936 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
937 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
938 			return;
939 		}
940 	}
941 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
942 		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
943 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
944 	}
945 }
946 
947 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
948 {
949 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
950 
951 	smu7_reset_dpm_tables(hwmgr);
952 
953 	if (hwmgr->pp_table_version == PP_TABLE_V1)
954 		smu7_setup_dpm_tables_v1(hwmgr);
955 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
956 		smu7_setup_dpm_tables_v0(hwmgr);
957 
958 	smu7_setup_default_pcie_table(hwmgr);
959 
960 	/* save a copy of the default DPM table */
961 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
962 			sizeof(struct smu7_dpm_table));
963 
964 	/* initialize ODN table */
965 	if (hwmgr->od_enabled) {
966 		if (data->odn_dpm_table.max_vddc) {
967 			smu7_check_dpm_table_updated(hwmgr);
968 		} else {
969 			smu7_setup_voltage_range_from_vbios(hwmgr);
970 			smu7_odn_initial_default_setting(hwmgr);
971 		}
972 	}
973 	return 0;
974 }
975 
976 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
977 {
978 
979 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
980 			PHM_PlatformCaps_RegulatorHot))
981 		return smum_send_msg_to_smc(hwmgr,
982 				PPSMC_MSG_EnableVRHotGPIOInterrupt,
983 				NULL);
984 
985 	return 0;
986 }
987 
988 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
989 {
990 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
991 			SCLK_PWRMGT_OFF, 0);
992 	return 0;
993 }
994 
995 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
996 {
997 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
998 
999 	if (data->ulv_supported)
1000 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1001 
1002 	return 0;
1003 }
1004 
1005 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1006 {
1007 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 
1009 	if (data->ulv_supported)
1010 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1011 
1012 	return 0;
1013 }
1014 
1015 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1016 {
1017 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1018 			PHM_PlatformCaps_SclkDeepSleep)) {
1019 		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1020 			PP_ASSERT_WITH_CODE(false,
1021 					"Attempt to enable Master Deep Sleep switch failed!",
1022 					return -EINVAL);
1023 	} else {
1024 		if (smum_send_msg_to_smc(hwmgr,
1025 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1026 				NULL)) {
1027 			PP_ASSERT_WITH_CODE(false,
1028 					"Attempt to disable Master Deep Sleep switch failed!",
1029 					return -EINVAL);
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1037 {
1038 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1039 			PHM_PlatformCaps_SclkDeepSleep)) {
1040 		if (smum_send_msg_to_smc(hwmgr,
1041 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1042 				NULL)) {
1043 			PP_ASSERT_WITH_CODE(false,
1044 					"Attempt to disable Master Deep Sleep switch failed!",
1045 					return -EINVAL);
1046 		}
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1053 {
1054 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1055 	uint32_t soft_register_value = 0;
1056 	uint32_t handshake_disables_offset = data->soft_regs_start
1057 				+ smum_get_offsetof(hwmgr,
1058 					SMU_SoftRegisters, HandshakeDisables);
1059 
1060 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1061 				CGS_IND_REG__SMC, handshake_disables_offset);
1062 	soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1063 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1064 			handshake_disables_offset, soft_register_value);
1065 	return 0;
1066 }
1067 
1068 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1069 {
1070 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1071 	uint32_t soft_register_value = 0;
1072 	uint32_t handshake_disables_offset = data->soft_regs_start
1073 				+ smum_get_offsetof(hwmgr,
1074 					SMU_SoftRegisters, HandshakeDisables);
1075 
1076 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1077 				CGS_IND_REG__SMC, handshake_disables_offset);
1078 	soft_register_value |= smum_get_mac_definition(hwmgr,
1079 					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1080 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1081 			handshake_disables_offset, soft_register_value);
1082 	return 0;
1083 }
1084 
1085 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1086 {
1087 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1088 
1089 	/* enable SCLK dpm */
1090 	if (!data->sclk_dpm_key_disabled) {
1091 		if (hwmgr->chip_id == CHIP_VEGAM)
1092 			smu7_disable_sclk_vce_handshake(hwmgr);
1093 
1094 		PP_ASSERT_WITH_CODE(
1095 		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1096 		"Failed to enable SCLK DPM during DPM Start Function!",
1097 		return -EINVAL);
1098 	}
1099 
1100 	/* enable MCLK dpm */
1101 	if (0 == data->mclk_dpm_key_disabled) {
1102 		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1103 			smu7_disable_handshake_uvd(hwmgr);
1104 
1105 		PP_ASSERT_WITH_CODE(
1106 				(0 == smum_send_msg_to_smc(hwmgr,
1107 						PPSMC_MSG_MCLKDPM_Enable,
1108 						NULL)),
1109 				"Failed to enable MCLK DPM during DPM Start Function!",
1110 				return -EINVAL);
1111 
1112 		if (hwmgr->chip_family != CHIP_VEGAM)
1113 			PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1114 
1115 
1116 		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1117 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1118 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1119 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1120 			udelay(10);
1121 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1122 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1123 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1124 		} else {
1125 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1126 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1127 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1128 			udelay(10);
1129 			if (hwmgr->chip_id == CHIP_VEGAM) {
1130 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1131 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1132 			} else {
1133 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1134 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1135 			}
1136 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1137 		}
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1144 {
1145 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1146 
1147 	/*enable general power management */
1148 
1149 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1150 			GLOBAL_PWRMGT_EN, 1);
1151 
1152 	/* enable sclk deep sleep */
1153 
1154 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1155 			DYNAMIC_PM_EN, 1);
1156 
1157 	/* prepare for PCIE DPM */
1158 
1159 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1160 			data->soft_regs_start +
1161 			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1162 						VoltageChangeTimeout), 0x1000);
1163 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1164 			SWRST_COMMAND_1, RESETLC, 0x0);
1165 
1166 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1167 		cgs_write_register(hwmgr->device, 0x1488,
1168 			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1169 
1170 	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1171 		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1172 		return -EINVAL;
1173 	}
1174 
1175 	/* enable PCIE dpm */
1176 	if (0 == data->pcie_dpm_key_disabled) {
1177 		PP_ASSERT_WITH_CODE(
1178 				(0 == smum_send_msg_to_smc(hwmgr,
1179 						PPSMC_MSG_PCIeDPM_Enable,
1180 						NULL)),
1181 				"Failed to enable pcie DPM during DPM Start Function!",
1182 				return -EINVAL);
1183 	}
1184 
1185 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1186 				PHM_PlatformCaps_Falcon_QuickTransition)) {
1187 		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1188 				PPSMC_MSG_EnableACDCGPIOInterrupt,
1189 				NULL)),
1190 				"Failed to enable AC DC GPIO Interrupt!",
1191 				);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
1197 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200 
1201 	/* disable SCLK dpm */
1202 	if (!data->sclk_dpm_key_disabled) {
1203 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1204 				"Trying to disable SCLK DPM when DPM is disabled",
1205 				return 0);
1206 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1207 	}
1208 
1209 	/* disable MCLK dpm */
1210 	if (!data->mclk_dpm_key_disabled) {
1211 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1212 				"Trying to disable MCLK DPM when DPM is disabled",
1213 				return 0);
1214 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1221 {
1222 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1223 
1224 	/* disable general power management */
1225 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1226 			GLOBAL_PWRMGT_EN, 0);
1227 	/* disable sclk deep sleep */
1228 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1229 			DYNAMIC_PM_EN, 0);
1230 
1231 	/* disable PCIE dpm */
1232 	if (!data->pcie_dpm_key_disabled) {
1233 		PP_ASSERT_WITH_CODE(
1234 				(smum_send_msg_to_smc(hwmgr,
1235 						PPSMC_MSG_PCIeDPM_Disable,
1236 						NULL) == 0),
1237 				"Failed to disable pcie DPM during DPM Stop Function!",
1238 				return -EINVAL);
1239 	}
1240 
1241 	smu7_disable_sclk_mclk_dpm(hwmgr);
1242 
1243 	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1244 			"Trying to disable voltage DPM when DPM is disabled",
1245 			return 0);
1246 
1247 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1248 
1249 	return 0;
1250 }
1251 
1252 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1253 {
1254 	bool protection;
1255 	enum DPM_EVENT_SRC src;
1256 
1257 	switch (sources) {
1258 	default:
1259 		pr_err("Unknown throttling event sources.");
1260 		fallthrough;
1261 	case 0:
1262 		protection = false;
1263 		/* src is unused */
1264 		break;
1265 	case (1 << PHM_AutoThrottleSource_Thermal):
1266 		protection = true;
1267 		src = DPM_EVENT_SRC_DIGITAL;
1268 		break;
1269 	case (1 << PHM_AutoThrottleSource_External):
1270 		protection = true;
1271 		src = DPM_EVENT_SRC_EXTERNAL;
1272 		break;
1273 	case (1 << PHM_AutoThrottleSource_External) |
1274 			(1 << PHM_AutoThrottleSource_Thermal):
1275 		protection = true;
1276 		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1277 		break;
1278 	}
1279 	/* Order matters - don't enable thermal protection for the wrong source. */
1280 	if (protection) {
1281 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1282 				DPM_EVENT_SRC, src);
1283 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1284 				THERMAL_PROTECTION_DIS,
1285 				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1286 						PHM_PlatformCaps_ThermalController));
1287 	} else
1288 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1289 				THERMAL_PROTECTION_DIS, 1);
1290 }
1291 
1292 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1293 		PHM_AutoThrottleSource source)
1294 {
1295 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1296 
1297 	if (!(data->active_auto_throttle_sources & (1 << source))) {
1298 		data->active_auto_throttle_sources |= 1 << source;
1299 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1300 	}
1301 	return 0;
1302 }
1303 
1304 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1305 {
1306 	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1307 }
1308 
1309 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1310 		PHM_AutoThrottleSource source)
1311 {
1312 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1313 
1314 	if (data->active_auto_throttle_sources & (1 << source)) {
1315 		data->active_auto_throttle_sources &= ~(1 << source);
1316 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1317 	}
1318 	return 0;
1319 }
1320 
1321 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1322 {
1323 	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1324 }
1325 
1326 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1327 {
1328 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1329 	data->pcie_performance_request = true;
1330 
1331 	return 0;
1332 }
1333 
1334 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1335 {
1336 	int tmp_result = 0;
1337 	int result = 0;
1338 
1339 	if (smu7_voltage_control(hwmgr)) {
1340 		tmp_result = smu7_enable_voltage_control(hwmgr);
1341 		PP_ASSERT_WITH_CODE(tmp_result == 0,
1342 				"Failed to enable voltage control!",
1343 				result = tmp_result);
1344 
1345 		tmp_result = smu7_construct_voltage_tables(hwmgr);
1346 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1347 				"Failed to construct voltage tables!",
1348 				result = tmp_result);
1349 	}
1350 	smum_initialize_mc_reg_table(hwmgr);
1351 
1352 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1353 			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1354 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1355 				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1356 
1357 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1358 			PHM_PlatformCaps_ThermalController))
1359 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1360 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1361 
1362 	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1363 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1364 			"Failed to program static screen threshold parameters!",
1365 			result = tmp_result);
1366 
1367 	tmp_result = smu7_enable_display_gap(hwmgr);
1368 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1369 			"Failed to enable display gap!", result = tmp_result);
1370 
1371 	tmp_result = smu7_program_voting_clients(hwmgr);
1372 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1373 			"Failed to program voting clients!", result = tmp_result);
1374 
1375 	tmp_result = smum_process_firmware_header(hwmgr);
1376 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1377 			"Failed to process firmware header!", result = tmp_result);
1378 
1379 	if (hwmgr->chip_id != CHIP_VEGAM) {
1380 		tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1381 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1382 				"Failed to initialize switch from ArbF0 to F1!",
1383 				result = tmp_result);
1384 	}
1385 
1386 	result = smu7_setup_default_dpm_tables(hwmgr);
1387 	PP_ASSERT_WITH_CODE(0 == result,
1388 			"Failed to setup default DPM tables!", return result);
1389 
1390 	tmp_result = smum_init_smc_table(hwmgr);
1391 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1392 			"Failed to initialize SMC table!", result = tmp_result);
1393 
1394 	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1395 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1396 			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1397 
1398 	smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1399 
1400 	tmp_result = smu7_enable_sclk_control(hwmgr);
1401 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1402 			"Failed to enable SCLK control!", result = tmp_result);
1403 
1404 	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1405 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1406 			"Failed to enable voltage control!", result = tmp_result);
1407 
1408 	tmp_result = smu7_enable_ulv(hwmgr);
1409 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1410 			"Failed to enable ULV!", result = tmp_result);
1411 
1412 	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1413 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1414 			"Failed to enable deep sleep master switch!", result = tmp_result);
1415 
1416 	tmp_result = smu7_enable_didt_config(hwmgr);
1417 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1418 			"Failed to enable deep sleep master switch!", result = tmp_result);
1419 
1420 	tmp_result = smu7_start_dpm(hwmgr);
1421 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1422 			"Failed to start DPM!", result = tmp_result);
1423 
1424 	tmp_result = smu7_enable_smc_cac(hwmgr);
1425 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1426 			"Failed to enable SMC CAC!", result = tmp_result);
1427 
1428 	tmp_result = smu7_enable_power_containment(hwmgr);
1429 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1430 			"Failed to enable power containment!", result = tmp_result);
1431 
1432 	tmp_result = smu7_power_control_set_level(hwmgr);
1433 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1434 			"Failed to power control set level!", result = tmp_result);
1435 
1436 	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1437 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1438 			"Failed to enable thermal auto throttle!", result = tmp_result);
1439 
1440 	tmp_result = smu7_pcie_performance_request(hwmgr);
1441 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1442 			"pcie performance request failed!", result = tmp_result);
1443 
1444 	return 0;
1445 }
1446 
1447 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1448 {
1449 	if (!hwmgr->avfs_supported)
1450 		return 0;
1451 
1452 	if (enable) {
1453 		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1454 				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1455 			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1456 					hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1457 					"Failed to enable AVFS!",
1458 					return -EINVAL);
1459 		}
1460 	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1461 			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1462 		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1463 				hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1464 				"Failed to disable AVFS!",
1465 				return -EINVAL);
1466 	}
1467 
1468 	return 0;
1469 }
1470 
1471 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1472 {
1473 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1474 
1475 	if (!hwmgr->avfs_supported)
1476 		return 0;
1477 
1478 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1479 		smu7_avfs_control(hwmgr, false);
1480 	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1481 		smu7_avfs_control(hwmgr, false);
1482 		smu7_avfs_control(hwmgr, true);
1483 	} else {
1484 		smu7_avfs_control(hwmgr, true);
1485 	}
1486 
1487 	return 0;
1488 }
1489 
1490 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1491 {
1492 	int tmp_result, result = 0;
1493 
1494 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1495 			PHM_PlatformCaps_ThermalController))
1496 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1497 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1498 
1499 	tmp_result = smu7_disable_power_containment(hwmgr);
1500 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1501 			"Failed to disable power containment!", result = tmp_result);
1502 
1503 	tmp_result = smu7_disable_smc_cac(hwmgr);
1504 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1505 			"Failed to disable SMC CAC!", result = tmp_result);
1506 
1507 	tmp_result = smu7_disable_didt_config(hwmgr);
1508 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1509 			"Failed to disable DIDT!", result = tmp_result);
1510 
1511 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1512 			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1513 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1514 			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1515 
1516 	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1517 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1518 			"Failed to disable thermal auto throttle!", result = tmp_result);
1519 
1520 	tmp_result = smu7_avfs_control(hwmgr, false);
1521 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1522 			"Failed to disable AVFS!", result = tmp_result);
1523 
1524 	tmp_result = smu7_stop_dpm(hwmgr);
1525 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1526 			"Failed to stop DPM!", result = tmp_result);
1527 
1528 	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1529 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1530 			"Failed to disable deep sleep master switch!", result = tmp_result);
1531 
1532 	tmp_result = smu7_disable_ulv(hwmgr);
1533 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1534 			"Failed to disable ULV!", result = tmp_result);
1535 
1536 	tmp_result = smu7_clear_voting_clients(hwmgr);
1537 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1538 			"Failed to clear voting clients!", result = tmp_result);
1539 
1540 	tmp_result = smu7_reset_to_default(hwmgr);
1541 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1542 			"Failed to reset to default!", result = tmp_result);
1543 
1544 	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1545 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1546 			"Failed to force to switch arbf0!", result = tmp_result);
1547 
1548 	return result;
1549 }
1550 
1551 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1552 {
1553 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1554 	struct phm_ppt_v1_information *table_info =
1555 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1556 	struct amdgpu_device *adev = hwmgr->adev;
1557 
1558 	data->dll_default_on = false;
1559 	data->mclk_dpm0_activity_target = 0xa;
1560 	data->vddc_vddgfx_delta = 300;
1561 	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1562 	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1563 	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1564 	data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1565 	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1566 	data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1567 	data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1568 	data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1569 	data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1570 	data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1571 
1572 	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1573 	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1574 	data->pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true;
1575 	/* need to set voltage control types before EVV patching */
1576 	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1577 	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1578 	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1579 	data->enable_tdc_limit_feature = true;
1580 	data->enable_pkg_pwr_tracking_feature = true;
1581 	data->force_pcie_gen = PP_PCIEGenInvalid;
1582 	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1583 	data->current_profile_setting.bupdate_sclk = 1;
1584 	data->current_profile_setting.sclk_up_hyst = 0;
1585 	data->current_profile_setting.sclk_down_hyst = 100;
1586 	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1587 	data->current_profile_setting.bupdate_mclk = 1;
1588 	data->current_profile_setting.mclk_up_hyst = 0;
1589 	data->current_profile_setting.mclk_down_hyst = 100;
1590 	data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1591 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1592 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1593 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1594 
1595 	if (hwmgr->chip_id == CHIP_POLARIS12 || hwmgr->is_kicker) {
1596 		uint8_t tmp1, tmp2;
1597 		uint16_t tmp3 = 0;
1598 		atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1599 						&tmp3);
1600 		tmp3 = (tmp3 >> 5) & 0x3;
1601 		data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1602 	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1603 		data->vddc_phase_shed_control = 1;
1604 	} else {
1605 		data->vddc_phase_shed_control = 0;
1606 	}
1607 
1608 	if (hwmgr->chip_id  == CHIP_HAWAII) {
1609 		data->thermal_temp_setting.temperature_low = 94500;
1610 		data->thermal_temp_setting.temperature_high = 95000;
1611 		data->thermal_temp_setting.temperature_shutdown = 104000;
1612 	} else {
1613 		data->thermal_temp_setting.temperature_low = 99500;
1614 		data->thermal_temp_setting.temperature_high = 100000;
1615 		data->thermal_temp_setting.temperature_shutdown = 104000;
1616 	}
1617 
1618 	data->fast_watermark_threshold = 100;
1619 	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1620 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1621 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1622 	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1623 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1624 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1625 
1626 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1627 			PHM_PlatformCaps_ControlVDDGFX)) {
1628 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1629 			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1630 			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1631 		}
1632 	}
1633 
1634 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1635 			PHM_PlatformCaps_EnableMVDDControl)) {
1636 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1637 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1638 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1639 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1640 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1641 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1642 	}
1643 
1644 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1645 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1646 			PHM_PlatformCaps_ControlVDDGFX);
1647 
1648 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1649 			PHM_PlatformCaps_ControlVDDCI)) {
1650 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1651 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1652 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1653 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1654 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1655 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1656 	}
1657 
1658 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1659 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1660 				PHM_PlatformCaps_EnableMVDDControl);
1661 
1662 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1663 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1664 				PHM_PlatformCaps_ControlVDDCI);
1665 
1666 	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1667 		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
1668 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1669 					PHM_PlatformCaps_ClockStretcher);
1670 
1671 	data->pcie_gen_performance.max = PP_PCIEGen1;
1672 	data->pcie_gen_performance.min = PP_PCIEGen3;
1673 	data->pcie_gen_power_saving.max = PP_PCIEGen1;
1674 	data->pcie_gen_power_saving.min = PP_PCIEGen3;
1675 	data->pcie_lane_performance.max = 0;
1676 	data->pcie_lane_performance.min = 16;
1677 	data->pcie_lane_power_saving.max = 0;
1678 	data->pcie_lane_power_saving.min = 16;
1679 
1680 
1681 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1682 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1683 			      PHM_PlatformCaps_UVDPowerGating);
1684 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1685 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1686 			      PHM_PlatformCaps_VCEPowerGating);
1687 }
1688 
1689 /**
1690 * Get Leakage VDDC based on leakage ID.
1691 *
1692 * @param    hwmgr  the address of the powerplay hardware manager.
1693 * @return   always 0
1694 */
1695 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
1696 {
1697 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1698 	uint16_t vv_id;
1699 	uint16_t vddc = 0;
1700 	uint16_t vddgfx = 0;
1701 	uint16_t i, j;
1702 	uint32_t sclk = 0;
1703 	struct phm_ppt_v1_information *table_info =
1704 			(struct phm_ppt_v1_information *)hwmgr->pptable;
1705 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
1706 
1707 
1708 	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
1709 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
1710 
1711 		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1712 			if ((hwmgr->pp_table_version == PP_TABLE_V1)
1713 			    && !phm_get_sclk_for_voltage_evv(hwmgr,
1714 						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
1715 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1716 							PHM_PlatformCaps_ClockStretcher)) {
1717 					sclk_table = table_info->vdd_dep_on_sclk;
1718 
1719 					for (j = 1; j < sclk_table->count; j++) {
1720 						if (sclk_table->entries[j].clk == sclk &&
1721 								sclk_table->entries[j].cks_enable == 0) {
1722 							sclk += 5000;
1723 							break;
1724 						}
1725 					}
1726 				}
1727 				if (0 == atomctrl_get_voltage_evv_on_sclk
1728 				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
1729 				     vv_id, &vddgfx)) {
1730 					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
1731 					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
1732 
1733 					/* the voltage should not be zero nor equal to leakage ID */
1734 					if (vddgfx != 0 && vddgfx != vv_id) {
1735 						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
1736 						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
1737 						data->vddcgfx_leakage.count++;
1738 					}
1739 				} else {
1740 					pr_info("Error retrieving EVV voltage value!\n");
1741 				}
1742 			}
1743 		} else {
1744 			if ((hwmgr->pp_table_version == PP_TABLE_V0)
1745 				|| !phm_get_sclk_for_voltage_evv(hwmgr,
1746 					table_info->vddc_lookup_table, vv_id, &sclk)) {
1747 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1748 						PHM_PlatformCaps_ClockStretcher)) {
1749 					if (table_info == NULL)
1750 						return -EINVAL;
1751 					sclk_table = table_info->vdd_dep_on_sclk;
1752 
1753 					for (j = 1; j < sclk_table->count; j++) {
1754 						if (sclk_table->entries[j].clk == sclk &&
1755 								sclk_table->entries[j].cks_enable == 0) {
1756 							sclk += 5000;
1757 							break;
1758 						}
1759 					}
1760 				}
1761 
1762 				if (phm_get_voltage_evv_on_sclk(hwmgr,
1763 							VOLTAGE_TYPE_VDDC,
1764 							sclk, vv_id, &vddc) == 0) {
1765 					if (vddc >= 2000 || vddc == 0)
1766 						return -EINVAL;
1767 				} else {
1768 					pr_debug("failed to retrieving EVV voltage!\n");
1769 					continue;
1770 				}
1771 
1772 				/* the voltage should not be zero nor equal to leakage ID */
1773 				if (vddc != 0 && vddc != vv_id) {
1774 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
1775 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
1776 					data->vddc_leakage.count++;
1777 				}
1778 			}
1779 		}
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 /**
1786  * Change virtual leakage voltage to actual value.
1787  *
1788  * @param     hwmgr  the address of the powerplay hardware manager.
1789  * @param     pointer to changing voltage
1790  * @param     pointer to leakage table
1791  */
1792 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
1793 		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
1794 {
1795 	uint32_t index;
1796 
1797 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
1798 	for (index = 0; index < leakage_table->count; index++) {
1799 		/* if this voltage matches a leakage voltage ID */
1800 		/* patch with actual leakage voltage */
1801 		if (leakage_table->leakage_id[index] == *voltage) {
1802 			*voltage = leakage_table->actual_voltage[index];
1803 			break;
1804 		}
1805 	}
1806 
1807 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
1808 		pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
1809 }
1810 
1811 /**
1812 * Patch voltage lookup table by EVV leakages.
1813 *
1814 * @param     hwmgr  the address of the powerplay hardware manager.
1815 * @param     pointer to voltage lookup table
1816 * @param     pointer to leakage table
1817 * @return     always 0
1818 */
1819 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
1820 		phm_ppt_v1_voltage_lookup_table *lookup_table,
1821 		struct smu7_leakage_voltage *leakage_table)
1822 {
1823 	uint32_t i;
1824 
1825 	for (i = 0; i < lookup_table->count; i++)
1826 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
1827 				&lookup_table->entries[i].us_vdd, leakage_table);
1828 
1829 	return 0;
1830 }
1831 
1832 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
1833 		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
1834 		uint16_t *vddc)
1835 {
1836 	struct phm_ppt_v1_information *table_info =
1837 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1838 	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
1839 	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
1840 			table_info->max_clock_voltage_on_dc.vddc;
1841 	return 0;
1842 }
1843 
1844 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
1845 		struct pp_hwmgr *hwmgr)
1846 {
1847 	uint8_t entry_id;
1848 	uint8_t voltage_id;
1849 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1850 	struct phm_ppt_v1_information *table_info =
1851 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1852 
1853 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1854 			table_info->vdd_dep_on_sclk;
1855 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
1856 			table_info->vdd_dep_on_mclk;
1857 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1858 			table_info->mm_dep_table;
1859 
1860 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1861 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1862 			voltage_id = sclk_table->entries[entry_id].vddInd;
1863 			sclk_table->entries[entry_id].vddgfx =
1864 				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
1865 		}
1866 	} else {
1867 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1868 			voltage_id = sclk_table->entries[entry_id].vddInd;
1869 			sclk_table->entries[entry_id].vddc =
1870 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1871 		}
1872 	}
1873 
1874 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1875 		voltage_id = mclk_table->entries[entry_id].vddInd;
1876 		mclk_table->entries[entry_id].vddc =
1877 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1878 	}
1879 
1880 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
1881 		voltage_id = mm_table->entries[entry_id].vddcInd;
1882 		mm_table->entries[entry_id].vddc =
1883 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
1884 	}
1885 
1886 	return 0;
1887 
1888 }
1889 
1890 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
1891 			phm_ppt_v1_voltage_lookup_table *look_up_table,
1892 			phm_ppt_v1_voltage_lookup_record *record)
1893 {
1894 	uint32_t i;
1895 
1896 	PP_ASSERT_WITH_CODE((NULL != look_up_table),
1897 		"Lookup Table empty.", return -EINVAL);
1898 	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
1899 		"Lookup Table empty.", return -EINVAL);
1900 
1901 	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
1902 	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
1903 		"Lookup Table is full.", return -EINVAL);
1904 
1905 	/* This is to avoid entering duplicate calculated records. */
1906 	for (i = 0; i < look_up_table->count; i++) {
1907 		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
1908 			if (look_up_table->entries[i].us_calculated == 1)
1909 				return 0;
1910 			break;
1911 		}
1912 	}
1913 
1914 	look_up_table->entries[i].us_calculated = 1;
1915 	look_up_table->entries[i].us_vdd = record->us_vdd;
1916 	look_up_table->entries[i].us_cac_low = record->us_cac_low;
1917 	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
1918 	look_up_table->entries[i].us_cac_high = record->us_cac_high;
1919 	/* Only increment the count when we're appending, not replacing duplicate entry. */
1920 	if (i == look_up_table->count)
1921 		look_up_table->count++;
1922 
1923 	return 0;
1924 }
1925 
1926 
1927 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
1928 {
1929 	uint8_t entry_id;
1930 	struct phm_ppt_v1_voltage_lookup_record v_record;
1931 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1932 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1933 
1934 	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
1935 	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
1936 
1937 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1938 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
1939 			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
1940 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1941 					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1942 			else
1943 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
1944 					sclk_table->entries[entry_id].vdd_offset;
1945 
1946 			sclk_table->entries[entry_id].vddc =
1947 				v_record.us_cac_low = v_record.us_cac_mid =
1948 				v_record.us_cac_high = v_record.us_vdd;
1949 
1950 			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
1951 		}
1952 
1953 		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
1954 			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
1955 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1956 					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
1957 			else
1958 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
1959 					mclk_table->entries[entry_id].vdd_offset;
1960 
1961 			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1962 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1963 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1964 		}
1965 	}
1966 	return 0;
1967 }
1968 
1969 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
1970 {
1971 	uint8_t entry_id;
1972 	struct phm_ppt_v1_voltage_lookup_record v_record;
1973 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1974 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
1975 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
1976 
1977 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1978 		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
1979 			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
1980 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
1981 					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
1982 			else
1983 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
1984 					mm_table->entries[entry_id].vddgfx_offset;
1985 
1986 			/* Add the calculated VDDGFX to the VDDGFX lookup table */
1987 			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
1988 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
1989 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
1990 		}
1991 	}
1992 	return 0;
1993 }
1994 
1995 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
1996 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
1997 {
1998 	uint32_t table_size, i, j;
1999 	table_size = lookup_table->count;
2000 
2001 	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2002 		"Lookup table is empty", return -EINVAL);
2003 
2004 	/* Sorting voltages */
2005 	for (i = 0; i < table_size - 1; i++) {
2006 		for (j = i + 1; j > 0; j--) {
2007 			if (lookup_table->entries[j].us_vdd <
2008 					lookup_table->entries[j - 1].us_vdd) {
2009 				swap(lookup_table->entries[j - 1],
2010 				     lookup_table->entries[j]);
2011 			}
2012 		}
2013 	}
2014 
2015 	return 0;
2016 }
2017 
2018 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2019 {
2020 	int result = 0;
2021 	int tmp_result;
2022 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2023 	struct phm_ppt_v1_information *table_info =
2024 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2025 
2026 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2027 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2028 			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2029 		if (tmp_result != 0)
2030 			result = tmp_result;
2031 
2032 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2033 			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2034 	} else {
2035 
2036 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2037 				table_info->vddc_lookup_table, &(data->vddc_leakage));
2038 		if (tmp_result)
2039 			result = tmp_result;
2040 
2041 		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2042 				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2043 		if (tmp_result)
2044 			result = tmp_result;
2045 	}
2046 
2047 	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2048 	if (tmp_result)
2049 		result = tmp_result;
2050 
2051 	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2052 	if (tmp_result)
2053 		result = tmp_result;
2054 
2055 	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2056 	if (tmp_result)
2057 		result = tmp_result;
2058 
2059 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2060 	if (tmp_result)
2061 		result = tmp_result;
2062 
2063 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2064 	if (tmp_result)
2065 		result = tmp_result;
2066 
2067 	return result;
2068 }
2069 
2070 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2071 {
2072 	struct phm_ppt_v1_information *table_info =
2073 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2074 
2075 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2076 						table_info->vdd_dep_on_sclk;
2077 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2078 						table_info->vdd_dep_on_mclk;
2079 
2080 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2081 		"VDD dependency on SCLK table is missing.",
2082 		return -EINVAL);
2083 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2084 		"VDD dependency on SCLK table has to have is missing.",
2085 		return -EINVAL);
2086 
2087 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2088 		"VDD dependency on MCLK table is missing",
2089 		return -EINVAL);
2090 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2091 		"VDD dependency on MCLK table has to have is missing.",
2092 		return -EINVAL);
2093 
2094 	table_info->max_clock_voltage_on_ac.sclk =
2095 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2096 	table_info->max_clock_voltage_on_ac.mclk =
2097 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2098 	table_info->max_clock_voltage_on_ac.vddc =
2099 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2100 	table_info->max_clock_voltage_on_ac.vddci =
2101 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2102 
2103 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2104 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2105 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2106 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2107 
2108 	return 0;
2109 }
2110 
2111 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2112 {
2113 	struct phm_ppt_v1_information *table_info =
2114 		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
2115 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2116 	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2117 	uint32_t i;
2118 	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2119 	struct amdgpu_device *adev = hwmgr->adev;
2120 
2121 	if (table_info != NULL) {
2122 		dep_mclk_table = table_info->vdd_dep_on_mclk;
2123 		lookup_table = table_info->vddc_lookup_table;
2124 	} else
2125 		return 0;
2126 
2127 	hw_revision = adev->pdev->revision;
2128 	sub_sys_id = adev->pdev->subsystem_device;
2129 	sub_vendor_id = adev->pdev->subsystem_vendor;
2130 
2131 	if (hwmgr->chip_id == CHIP_POLARIS10 && hw_revision == 0xC7 &&
2132 			((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2133 		    (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2134 		    (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2135 		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2136 			return 0;
2137 
2138 		for (i = 0; i < lookup_table->count; i++) {
2139 			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2140 				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2141 				return 0;
2142 			}
2143 		}
2144 	}
2145 	return 0;
2146 }
2147 
2148 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2149 {
2150 	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2151 	uint32_t temp_reg;
2152 	struct phm_ppt_v1_information *table_info =
2153 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2154 
2155 
2156 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2157 		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2158 		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2159 		case 0:
2160 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2161 			break;
2162 		case 1:
2163 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2164 			break;
2165 		case 2:
2166 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2167 			break;
2168 		case 3:
2169 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2170 			break;
2171 		case 4:
2172 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2173 			break;
2174 		default:
2175 			break;
2176 		}
2177 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2178 	}
2179 
2180 	if (table_info == NULL)
2181 		return 0;
2182 
2183 	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2184 		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2185 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2186 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2187 
2188 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2189 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2190 
2191 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2192 
2193 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2194 
2195 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2196 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2197 
2198 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2199 
2200 		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2201 								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2202 
2203 		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2204 		table_info->cac_dtp_table->usOperatingTempStep = 1;
2205 		table_info->cac_dtp_table->usOperatingTempHyst = 1;
2206 
2207 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2208 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2209 
2210 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2211 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2212 
2213 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2214 			       table_info->cac_dtp_table->usOperatingTempMinLimit;
2215 
2216 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2217 			       table_info->cac_dtp_table->usOperatingTempMaxLimit;
2218 
2219 		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2220 			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2221 
2222 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2223 			       table_info->cac_dtp_table->usOperatingTempStep;
2224 
2225 		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2226 			       table_info->cac_dtp_table->usTargetOperatingTemp;
2227 		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2228 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2229 					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 /**
2236  * Change virtual leakage voltage to actual value.
2237  *
2238  * @param     hwmgr  the address of the powerplay hardware manager.
2239  * @param     pointer to changing voltage
2240  * @param     pointer to leakage table
2241  */
2242 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2243 		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2244 {
2245 	uint32_t index;
2246 
2247 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2248 	for (index = 0; index < leakage_table->count; index++) {
2249 		/* if this voltage matches a leakage voltage ID */
2250 		/* patch with actual leakage voltage */
2251 		if (leakage_table->leakage_id[index] == *voltage) {
2252 			*voltage = leakage_table->actual_voltage[index];
2253 			break;
2254 		}
2255 	}
2256 
2257 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2258 		pr_err("Voltage value looks like a Leakage ID but it's not patched \n");
2259 }
2260 
2261 
2262 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2263 			      struct phm_clock_voltage_dependency_table *tab)
2264 {
2265 	uint16_t i;
2266 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2267 
2268 	if (tab)
2269 		for (i = 0; i < tab->count; i++)
2270 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2271 						&data->vddc_leakage);
2272 
2273 	return 0;
2274 }
2275 
2276 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2277 			       struct phm_clock_voltage_dependency_table *tab)
2278 {
2279 	uint16_t i;
2280 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2281 
2282 	if (tab)
2283 		for (i = 0; i < tab->count; i++)
2284 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2285 							&data->vddci_leakage);
2286 
2287 	return 0;
2288 }
2289 
2290 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2291 				  struct phm_vce_clock_voltage_dependency_table *tab)
2292 {
2293 	uint16_t i;
2294 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2295 
2296 	if (tab)
2297 		for (i = 0; i < tab->count; i++)
2298 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2299 							&data->vddc_leakage);
2300 
2301 	return 0;
2302 }
2303 
2304 
2305 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2306 				  struct phm_uvd_clock_voltage_dependency_table *tab)
2307 {
2308 	uint16_t i;
2309 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2310 
2311 	if (tab)
2312 		for (i = 0; i < tab->count; i++)
2313 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2314 							&data->vddc_leakage);
2315 
2316 	return 0;
2317 }
2318 
2319 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2320 					 struct phm_phase_shedding_limits_table *tab)
2321 {
2322 	uint16_t i;
2323 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2324 
2325 	if (tab)
2326 		for (i = 0; i < tab->count; i++)
2327 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2328 							&data->vddc_leakage);
2329 
2330 	return 0;
2331 }
2332 
2333 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2334 				   struct phm_samu_clock_voltage_dependency_table *tab)
2335 {
2336 	uint16_t i;
2337 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2338 
2339 	if (tab)
2340 		for (i = 0; i < tab->count; i++)
2341 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2342 							&data->vddc_leakage);
2343 
2344 	return 0;
2345 }
2346 
2347 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2348 				  struct phm_acp_clock_voltage_dependency_table *tab)
2349 {
2350 	uint16_t i;
2351 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2352 
2353 	if (tab)
2354 		for (i = 0; i < tab->count; i++)
2355 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2356 					&data->vddc_leakage);
2357 
2358 	return 0;
2359 }
2360 
2361 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2362 				  struct phm_clock_and_voltage_limits *tab)
2363 {
2364 	uint32_t vddc, vddci;
2365 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2366 
2367 	if (tab) {
2368 		vddc = tab->vddc;
2369 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2370 						   &data->vddc_leakage);
2371 		tab->vddc = vddc;
2372 		vddci = tab->vddci;
2373 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2374 						   &data->vddci_leakage);
2375 		tab->vddci = vddci;
2376 	}
2377 
2378 	return 0;
2379 }
2380 
2381 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2382 {
2383 	uint32_t i;
2384 	uint32_t vddc;
2385 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2386 
2387 	if (tab) {
2388 		for (i = 0; i < tab->count; i++) {
2389 			vddc = (uint32_t)(tab->entries[i].Vddc);
2390 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2391 			tab->entries[i].Vddc = (uint16_t)vddc;
2392 		}
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2399 {
2400 	int tmp;
2401 
2402 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2403 	if (tmp)
2404 		return -EINVAL;
2405 
2406 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2407 	if (tmp)
2408 		return -EINVAL;
2409 
2410 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2411 	if (tmp)
2412 		return -EINVAL;
2413 
2414 	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2415 	if (tmp)
2416 		return -EINVAL;
2417 
2418 	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2419 	if (tmp)
2420 		return -EINVAL;
2421 
2422 	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2423 	if (tmp)
2424 		return -EINVAL;
2425 
2426 	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2427 	if (tmp)
2428 		return -EINVAL;
2429 
2430 	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2431 	if (tmp)
2432 		return -EINVAL;
2433 
2434 	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2435 	if (tmp)
2436 		return -EINVAL;
2437 
2438 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2439 	if (tmp)
2440 		return -EINVAL;
2441 
2442 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2443 	if (tmp)
2444 		return -EINVAL;
2445 
2446 	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2447 	if (tmp)
2448 		return -EINVAL;
2449 
2450 	return 0;
2451 }
2452 
2453 
2454 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2455 {
2456 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2457 
2458 	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2459 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2460 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2461 
2462 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2463 		"VDDC dependency on SCLK table is missing. This table is mandatory",
2464 		return -EINVAL);
2465 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2466 		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2467 		return -EINVAL);
2468 
2469 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2470 		"VDDC dependency on MCLK table is missing. This table is mandatory",
2471 		return -EINVAL);
2472 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2473 		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
2474 		return -EINVAL);
2475 
2476 	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2477 	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2478 
2479 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2480 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2481 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2482 		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2483 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2484 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2485 
2486 	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2487 		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2488 		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2489 	}
2490 
2491 	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2492 		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2493 
2494 	return 0;
2495 }
2496 
2497 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2498 {
2499 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2500 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2501 	kfree(hwmgr->backend);
2502 	hwmgr->backend = NULL;
2503 
2504 	return 0;
2505 }
2506 
2507 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2508 {
2509 	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2510 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2511 	int i;
2512 
2513 	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2514 		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2515 			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2516 			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2517 								virtual_voltage_id,
2518 								efuse_voltage_id) == 0) {
2519 				if (vddc != 0 && vddc != virtual_voltage_id) {
2520 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2521 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2522 					data->vddc_leakage.count++;
2523 				}
2524 				if (vddci != 0 && vddci != virtual_voltage_id) {
2525 					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2526 					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2527 					data->vddci_leakage.count++;
2528 				}
2529 			}
2530 		}
2531 	}
2532 	return 0;
2533 }
2534 
2535 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2536 {
2537 	struct smu7_hwmgr *data;
2538 	int result = 0;
2539 
2540 	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2541 	if (data == NULL)
2542 		return -ENOMEM;
2543 
2544 	hwmgr->backend = data;
2545 	smu7_patch_voltage_workaround(hwmgr);
2546 	smu7_init_dpm_defaults(hwmgr);
2547 
2548 	/* Get leakage voltage based on leakage ID. */
2549 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2550 			PHM_PlatformCaps_EVV)) {
2551 		result = smu7_get_evv_voltages(hwmgr);
2552 		if (result) {
2553 			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
2554 			return -EINVAL;
2555 		}
2556 	} else {
2557 		smu7_get_elb_voltages(hwmgr);
2558 	}
2559 
2560 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
2561 		smu7_complete_dependency_tables(hwmgr);
2562 		smu7_set_private_data_based_on_pptable_v1(hwmgr);
2563 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2564 		smu7_patch_dependency_tables_with_leakage(hwmgr);
2565 		smu7_set_private_data_based_on_pptable_v0(hwmgr);
2566 	}
2567 
2568 	/* Initalize Dynamic State Adjustment Rule Settings */
2569 	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2570 
2571 	if (0 == result) {
2572 		struct amdgpu_device *adev = hwmgr->adev;
2573 
2574 		data->is_tlu_enabled = false;
2575 
2576 		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2577 							SMU7_MAX_HARDWARE_POWERLEVELS;
2578 		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2579 		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2580 
2581 		data->pcie_gen_cap = adev->pm.pcie_gen_mask;
2582 		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
2583 			data->pcie_spc_cap = 20;
2584 		data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
2585 
2586 		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
2587 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
2588 		hwmgr->platform_descriptor.clockStep.engineClock = 500;
2589 		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
2590 		smu7_thermal_parameter_init(hwmgr);
2591 	} else {
2592 		/* Ignore return value in here, we are cleaning up a mess. */
2593 		smu7_hwmgr_backend_fini(hwmgr);
2594 	}
2595 
2596 	return 0;
2597 }
2598 
2599 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
2600 {
2601 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2602 	uint32_t level, tmp;
2603 
2604 	if (!data->pcie_dpm_key_disabled) {
2605 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2606 			level = 0;
2607 			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
2608 			while (tmp >>= 1)
2609 				level++;
2610 
2611 			if (level)
2612 				smum_send_msg_to_smc_with_parameter(hwmgr,
2613 						PPSMC_MSG_PCIeDPM_ForceLevel, level,
2614 						NULL);
2615 		}
2616 	}
2617 
2618 	if (!data->sclk_dpm_key_disabled) {
2619 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2620 			level = 0;
2621 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
2622 			while (tmp >>= 1)
2623 				level++;
2624 
2625 			if (level)
2626 				smum_send_msg_to_smc_with_parameter(hwmgr,
2627 						PPSMC_MSG_SCLKDPM_SetEnabledMask,
2628 						(1 << level),
2629 						NULL);
2630 		}
2631 	}
2632 
2633 	if (!data->mclk_dpm_key_disabled) {
2634 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2635 			level = 0;
2636 			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
2637 			while (tmp >>= 1)
2638 				level++;
2639 
2640 			if (level)
2641 				smum_send_msg_to_smc_with_parameter(hwmgr,
2642 						PPSMC_MSG_MCLKDPM_SetEnabledMask,
2643 						(1 << level),
2644 						NULL);
2645 		}
2646 	}
2647 
2648 	return 0;
2649 }
2650 
2651 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
2652 {
2653 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2654 
2655 	if (hwmgr->pp_table_version == PP_TABLE_V1)
2656 		phm_apply_dal_min_voltage_request(hwmgr);
2657 /* TO DO  for v0 iceland and Ci*/
2658 
2659 	if (!data->sclk_dpm_key_disabled) {
2660 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
2661 			smum_send_msg_to_smc_with_parameter(hwmgr,
2662 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
2663 					data->dpm_level_enable_mask.sclk_dpm_enable_mask,
2664 					NULL);
2665 	}
2666 
2667 	if (!data->mclk_dpm_key_disabled) {
2668 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
2669 			smum_send_msg_to_smc_with_parameter(hwmgr,
2670 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
2671 					data->dpm_level_enable_mask.mclk_dpm_enable_mask,
2672 					NULL);
2673 	}
2674 
2675 	return 0;
2676 }
2677 
2678 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
2679 {
2680 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2681 
2682 	if (!smum_is_dpm_running(hwmgr))
2683 		return -EINVAL;
2684 
2685 	if (!data->pcie_dpm_key_disabled) {
2686 		smum_send_msg_to_smc(hwmgr,
2687 				PPSMC_MSG_PCIeDPM_UnForceLevel,
2688 				NULL);
2689 	}
2690 
2691 	return smu7_upload_dpm_level_enable_mask(hwmgr);
2692 }
2693 
2694 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
2695 {
2696 	struct smu7_hwmgr *data =
2697 			(struct smu7_hwmgr *)(hwmgr->backend);
2698 	uint32_t level;
2699 
2700 	if (!data->sclk_dpm_key_disabled)
2701 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
2702 			level = phm_get_lowest_enabled_level(hwmgr,
2703 							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
2704 			smum_send_msg_to_smc_with_parameter(hwmgr,
2705 							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
2706 							    (1 << level),
2707 							    NULL);
2708 
2709 	}
2710 
2711 	if (!data->mclk_dpm_key_disabled) {
2712 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
2713 			level = phm_get_lowest_enabled_level(hwmgr,
2714 							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
2715 			smum_send_msg_to_smc_with_parameter(hwmgr,
2716 							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
2717 							    (1 << level),
2718 							    NULL);
2719 		}
2720 	}
2721 
2722 	if (!data->pcie_dpm_key_disabled) {
2723 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
2724 			level = phm_get_lowest_enabled_level(hwmgr,
2725 							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
2726 			smum_send_msg_to_smc_with_parameter(hwmgr,
2727 							    PPSMC_MSG_PCIeDPM_ForceLevel,
2728 							    (level),
2729 							    NULL);
2730 		}
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
2737 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
2738 {
2739 	uint32_t percentage;
2740 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2741 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
2742 	int32_t tmp_mclk;
2743 	int32_t tmp_sclk;
2744 	int32_t count;
2745 
2746 	if (golden_dpm_table->mclk_table.count < 1)
2747 		return -EINVAL;
2748 
2749 	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
2750 			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2751 
2752 	if (golden_dpm_table->mclk_table.count == 1) {
2753 		percentage = 70;
2754 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
2755 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
2756 	} else {
2757 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
2758 		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
2759 	}
2760 
2761 	tmp_sclk = tmp_mclk * percentage / 100;
2762 
2763 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
2764 		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2765 			count >= 0; count--) {
2766 			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
2767 				tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk;
2768 				*sclk_mask = count;
2769 				break;
2770 			}
2771 		}
2772 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
2773 			*sclk_mask = 0;
2774 			tmp_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk;
2775 		}
2776 
2777 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2778 			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
2779 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
2780 		struct phm_ppt_v1_information *table_info =
2781 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
2782 
2783 		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
2784 			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
2785 				tmp_sclk = table_info->vdd_dep_on_sclk->entries[count].clk;
2786 				*sclk_mask = count;
2787 				break;
2788 			}
2789 		}
2790 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) {
2791 			*sclk_mask = 0;
2792 			tmp_sclk =  table_info->vdd_dep_on_sclk->entries[0].clk;
2793 		}
2794 
2795 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2796 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
2797 	}
2798 
2799 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
2800 		*mclk_mask = 0;
2801 	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2802 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
2803 
2804 	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
2805 	hwmgr->pstate_sclk = tmp_sclk;
2806 	hwmgr->pstate_mclk = tmp_mclk;
2807 
2808 	return 0;
2809 }
2810 
2811 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
2812 				enum amd_dpm_forced_level level)
2813 {
2814 	int ret = 0;
2815 	uint32_t sclk_mask = 0;
2816 	uint32_t mclk_mask = 0;
2817 	uint32_t pcie_mask = 0;
2818 
2819 	if (hwmgr->pstate_sclk == 0)
2820 		smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
2821 
2822 	switch (level) {
2823 	case AMD_DPM_FORCED_LEVEL_HIGH:
2824 		ret = smu7_force_dpm_highest(hwmgr);
2825 		break;
2826 	case AMD_DPM_FORCED_LEVEL_LOW:
2827 		ret = smu7_force_dpm_lowest(hwmgr);
2828 		break;
2829 	case AMD_DPM_FORCED_LEVEL_AUTO:
2830 		ret = smu7_unforce_dpm_levels(hwmgr);
2831 		break;
2832 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
2833 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
2834 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
2835 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
2836 		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
2837 		if (ret)
2838 			return ret;
2839 		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
2840 		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
2841 		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
2842 		break;
2843 	case AMD_DPM_FORCED_LEVEL_MANUAL:
2844 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
2845 	default:
2846 		break;
2847 	}
2848 
2849 	if (!ret) {
2850 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2851 			smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
2852 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
2853 			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
2854 	}
2855 	return ret;
2856 }
2857 
2858 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
2859 {
2860 	return sizeof(struct smu7_power_state);
2861 }
2862 
2863 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
2864 				 uint32_t vblank_time_us)
2865 {
2866 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2867 	uint32_t switch_limit_us;
2868 
2869 	switch (hwmgr->chip_id) {
2870 	case CHIP_POLARIS10:
2871 	case CHIP_POLARIS11:
2872 	case CHIP_POLARIS12:
2873 		if (hwmgr->is_kicker)
2874 			switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
2875 		else
2876 			switch_limit_us = data->is_memory_gddr5 ? 190 : 150;
2877 		break;
2878 	case CHIP_VEGAM:
2879 		switch_limit_us = 30;
2880 		break;
2881 	default:
2882 		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
2883 		break;
2884 	}
2885 
2886 	if (vblank_time_us < switch_limit_us)
2887 		return true;
2888 	else
2889 		return false;
2890 }
2891 
2892 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
2893 				struct pp_power_state *request_ps,
2894 			const struct pp_power_state *current_ps)
2895 {
2896 	struct amdgpu_device *adev = hwmgr->adev;
2897 	struct smu7_power_state *smu7_ps =
2898 				cast_phw_smu7_power_state(&request_ps->hardware);
2899 	uint32_t sclk;
2900 	uint32_t mclk;
2901 	struct PP_Clocks minimum_clocks = {0};
2902 	bool disable_mclk_switching;
2903 	bool disable_mclk_switching_for_frame_lock;
2904 	const struct phm_clock_and_voltage_limits *max_limits;
2905 	uint32_t i;
2906 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2907 	struct phm_ppt_v1_information *table_info =
2908 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2909 	int32_t count;
2910 	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
2911 
2912 	data->battery_state = (PP_StateUILabel_Battery ==
2913 			request_ps->classification.ui_label);
2914 
2915 	PP_ASSERT_WITH_CODE(smu7_ps->performance_level_count == 2,
2916 				 "VI should always have 2 performance levels",
2917 				);
2918 
2919 	max_limits = adev->pm.ac_power ?
2920 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
2921 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
2922 
2923 	/* Cap clock DPM tables at DC MAX if it is in DC. */
2924 	if (!adev->pm.ac_power) {
2925 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
2926 			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
2927 				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
2928 			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
2929 				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
2930 		}
2931 	}
2932 
2933 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
2934 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
2935 
2936 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2937 			PHM_PlatformCaps_StablePState)) {
2938 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
2939 		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
2940 
2941 		for (count = table_info->vdd_dep_on_sclk->count - 1;
2942 				count >= 0; count--) {
2943 			if (stable_pstate_sclk >=
2944 					table_info->vdd_dep_on_sclk->entries[count].clk) {
2945 				stable_pstate_sclk =
2946 						table_info->vdd_dep_on_sclk->entries[count].clk;
2947 				break;
2948 			}
2949 		}
2950 
2951 		if (count < 0)
2952 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
2953 
2954 		stable_pstate_mclk = max_limits->mclk;
2955 
2956 		minimum_clocks.engineClock = stable_pstate_sclk;
2957 		minimum_clocks.memoryClock = stable_pstate_mclk;
2958 	}
2959 
2960 	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
2961 				    hwmgr->platform_descriptor.platformCaps,
2962 				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
2963 
2964 
2965 	if (hwmgr->display_config->num_display == 0)
2966 		disable_mclk_switching = false;
2967 	else
2968 		disable_mclk_switching = ((1 < hwmgr->display_config->num_display) &&
2969 					  !hwmgr->display_config->multi_monitor_in_sync) ||
2970 			disable_mclk_switching_for_frame_lock ||
2971 			smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time);
2972 
2973 	sclk = smu7_ps->performance_levels[0].engine_clock;
2974 	mclk = smu7_ps->performance_levels[0].memory_clock;
2975 
2976 	if (disable_mclk_switching)
2977 		mclk = smu7_ps->performance_levels
2978 		[smu7_ps->performance_level_count - 1].memory_clock;
2979 
2980 	if (sclk < minimum_clocks.engineClock)
2981 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
2982 				max_limits->sclk : minimum_clocks.engineClock;
2983 
2984 	if (mclk < minimum_clocks.memoryClock)
2985 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
2986 				max_limits->mclk : minimum_clocks.memoryClock;
2987 
2988 	smu7_ps->performance_levels[0].engine_clock = sclk;
2989 	smu7_ps->performance_levels[0].memory_clock = mclk;
2990 
2991 	smu7_ps->performance_levels[1].engine_clock =
2992 		(smu7_ps->performance_levels[1].engine_clock >=
2993 				smu7_ps->performance_levels[0].engine_clock) ?
2994 						smu7_ps->performance_levels[1].engine_clock :
2995 						smu7_ps->performance_levels[0].engine_clock;
2996 
2997 	if (disable_mclk_switching) {
2998 		if (mclk < smu7_ps->performance_levels[1].memory_clock)
2999 			mclk = smu7_ps->performance_levels[1].memory_clock;
3000 
3001 		smu7_ps->performance_levels[0].memory_clock = mclk;
3002 		smu7_ps->performance_levels[1].memory_clock = mclk;
3003 	} else {
3004 		if (smu7_ps->performance_levels[1].memory_clock <
3005 				smu7_ps->performance_levels[0].memory_clock)
3006 			smu7_ps->performance_levels[1].memory_clock =
3007 					smu7_ps->performance_levels[0].memory_clock;
3008 	}
3009 
3010 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3011 			PHM_PlatformCaps_StablePState)) {
3012 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3013 			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3014 			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3015 			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3016 			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3017 		}
3018 	}
3019 	return 0;
3020 }
3021 
3022 
3023 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3024 {
3025 	struct pp_power_state  *ps;
3026 	struct smu7_power_state  *smu7_ps;
3027 
3028 	if (hwmgr == NULL)
3029 		return -EINVAL;
3030 
3031 	ps = hwmgr->request_ps;
3032 
3033 	if (ps == NULL)
3034 		return -EINVAL;
3035 
3036 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3037 
3038 	if (low)
3039 		return smu7_ps->performance_levels[0].memory_clock;
3040 	else
3041 		return smu7_ps->performance_levels
3042 				[smu7_ps->performance_level_count-1].memory_clock;
3043 }
3044 
3045 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3046 {
3047 	struct pp_power_state  *ps;
3048 	struct smu7_power_state  *smu7_ps;
3049 
3050 	if (hwmgr == NULL)
3051 		return -EINVAL;
3052 
3053 	ps = hwmgr->request_ps;
3054 
3055 	if (ps == NULL)
3056 		return -EINVAL;
3057 
3058 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3059 
3060 	if (low)
3061 		return smu7_ps->performance_levels[0].engine_clock;
3062 	else
3063 		return smu7_ps->performance_levels
3064 				[smu7_ps->performance_level_count-1].engine_clock;
3065 }
3066 
3067 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3068 					struct pp_hw_power_state *hw_ps)
3069 {
3070 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3071 	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3072 	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3073 	uint16_t size;
3074 	uint8_t frev, crev;
3075 	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3076 
3077 	/* First retrieve the Boot clocks and VDDC from the firmware info table.
3078 	 * We assume here that fw_info is unchanged if this call fails.
3079 	 */
3080 	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3081 			&size, &frev, &crev);
3082 	if (!fw_info)
3083 		/* During a test, there is no firmware info table. */
3084 		return 0;
3085 
3086 	/* Patch the state. */
3087 	data->vbios_boot_state.sclk_bootup_value =
3088 			le32_to_cpu(fw_info->ulDefaultEngineClock);
3089 	data->vbios_boot_state.mclk_bootup_value =
3090 			le32_to_cpu(fw_info->ulDefaultMemoryClock);
3091 	data->vbios_boot_state.mvdd_bootup_value =
3092 			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3093 	data->vbios_boot_state.vddc_bootup_value =
3094 			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3095 	data->vbios_boot_state.vddci_bootup_value =
3096 			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3097 	data->vbios_boot_state.pcie_gen_bootup_value =
3098 			smu7_get_current_pcie_speed(hwmgr);
3099 
3100 	data->vbios_boot_state.pcie_lane_bootup_value =
3101 			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3102 
3103 	/* set boot power state */
3104 	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3105 	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3106 	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3107 	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3108 
3109 	return 0;
3110 }
3111 
3112 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3113 {
3114 	int result;
3115 	unsigned long ret = 0;
3116 
3117 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3118 		result = pp_tables_get_num_of_entries(hwmgr, &ret);
3119 		return result ? 0 : ret;
3120 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3121 		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3122 		return result;
3123 	}
3124 	return 0;
3125 }
3126 
3127 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3128 		void *state, struct pp_power_state *power_state,
3129 		void *pp_table, uint32_t classification_flag)
3130 {
3131 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3132 	struct smu7_power_state  *smu7_power_state =
3133 			(struct smu7_power_state *)(&(power_state->hardware));
3134 	struct smu7_performance_level *performance_level;
3135 	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3136 	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3137 			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3138 	PPTable_Generic_SubTable_Header *sclk_dep_table =
3139 			(PPTable_Generic_SubTable_Header *)
3140 			(((unsigned long)powerplay_table) +
3141 				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3142 
3143 	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3144 			(ATOM_Tonga_MCLK_Dependency_Table *)
3145 			(((unsigned long)powerplay_table) +
3146 				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3147 
3148 	/* The following fields are not initialized here: id orderedList allStatesList */
3149 	power_state->classification.ui_label =
3150 			(le16_to_cpu(state_entry->usClassification) &
3151 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3152 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3153 	power_state->classification.flags = classification_flag;
3154 	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3155 
3156 	power_state->classification.temporary_state = false;
3157 	power_state->classification.to_be_deleted = false;
3158 
3159 	power_state->validation.disallowOnDC =
3160 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3161 					ATOM_Tonga_DISALLOW_ON_DC));
3162 
3163 	power_state->pcie.lanes = 0;
3164 
3165 	power_state->display.disableFrameModulation = false;
3166 	power_state->display.limitRefreshrate = false;
3167 	power_state->display.enableVariBright =
3168 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3169 					ATOM_Tonga_ENABLE_VARIBRIGHT));
3170 
3171 	power_state->validation.supportedPowerLevels = 0;
3172 	power_state->uvd_clocks.VCLK = 0;
3173 	power_state->uvd_clocks.DCLK = 0;
3174 	power_state->temperatures.min = 0;
3175 	power_state->temperatures.max = 0;
3176 
3177 	performance_level = &(smu7_power_state->performance_levels
3178 			[smu7_power_state->performance_level_count++]);
3179 
3180 	PP_ASSERT_WITH_CODE(
3181 			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3182 			"Performance levels exceeds SMC limit!",
3183 			return -EINVAL);
3184 
3185 	PP_ASSERT_WITH_CODE(
3186 			(smu7_power_state->performance_level_count <=
3187 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3188 			"Performance levels exceeds Driver limit!",
3189 			return -EINVAL);
3190 
3191 	/* Performance levels are arranged from low to high. */
3192 	performance_level->memory_clock = mclk_dep_table->entries
3193 			[state_entry->ucMemoryClockIndexLow].ulMclk;
3194 	if (sclk_dep_table->ucRevId == 0)
3195 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3196 			[state_entry->ucEngineClockIndexLow].ulSclk;
3197 	else if (sclk_dep_table->ucRevId == 1)
3198 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3199 			[state_entry->ucEngineClockIndexLow].ulSclk;
3200 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3201 			state_entry->ucPCIEGenLow);
3202 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3203 			state_entry->ucPCIELaneLow);
3204 
3205 	performance_level = &(smu7_power_state->performance_levels
3206 			[smu7_power_state->performance_level_count++]);
3207 	performance_level->memory_clock = mclk_dep_table->entries
3208 			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3209 
3210 	if (sclk_dep_table->ucRevId == 0)
3211 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3212 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3213 	else if (sclk_dep_table->ucRevId == 1)
3214 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3215 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3216 
3217 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3218 			state_entry->ucPCIEGenHigh);
3219 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3220 			state_entry->ucPCIELaneHigh);
3221 
3222 	return 0;
3223 }
3224 
3225 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3226 		unsigned long entry_index, struct pp_power_state *state)
3227 {
3228 	int result;
3229 	struct smu7_power_state *ps;
3230 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3231 	struct phm_ppt_v1_information *table_info =
3232 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3233 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3234 			table_info->vdd_dep_on_mclk;
3235 
3236 	state->hardware.magic = PHM_VIslands_Magic;
3237 
3238 	ps = (struct smu7_power_state *)(&state->hardware);
3239 
3240 	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3241 			smu7_get_pp_table_entry_callback_func_v1);
3242 
3243 	/* This is the earliest time we have all the dependency table and the VBIOS boot state
3244 	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3245 	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3246 	 */
3247 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3248 		if (dep_mclk_table->entries[0].clk !=
3249 				data->vbios_boot_state.mclk_bootup_value)
3250 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3251 					"does not match VBIOS boot MCLK level");
3252 		if (dep_mclk_table->entries[0].vddci !=
3253 				data->vbios_boot_state.vddci_bootup_value)
3254 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3255 					"does not match VBIOS boot VDDCI level");
3256 	}
3257 
3258 	/* set DC compatible flag if this state supports DC */
3259 	if (!state->validation.disallowOnDC)
3260 		ps->dc_compatible = true;
3261 
3262 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3263 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3264 
3265 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3266 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3267 
3268 	if (!result) {
3269 		uint32_t i;
3270 
3271 		switch (state->classification.ui_label) {
3272 		case PP_StateUILabel_Performance:
3273 			data->use_pcie_performance_levels = true;
3274 			for (i = 0; i < ps->performance_level_count; i++) {
3275 				if (data->pcie_gen_performance.max <
3276 						ps->performance_levels[i].pcie_gen)
3277 					data->pcie_gen_performance.max =
3278 							ps->performance_levels[i].pcie_gen;
3279 
3280 				if (data->pcie_gen_performance.min >
3281 						ps->performance_levels[i].pcie_gen)
3282 					data->pcie_gen_performance.min =
3283 							ps->performance_levels[i].pcie_gen;
3284 
3285 				if (data->pcie_lane_performance.max <
3286 						ps->performance_levels[i].pcie_lane)
3287 					data->pcie_lane_performance.max =
3288 							ps->performance_levels[i].pcie_lane;
3289 				if (data->pcie_lane_performance.min >
3290 						ps->performance_levels[i].pcie_lane)
3291 					data->pcie_lane_performance.min =
3292 							ps->performance_levels[i].pcie_lane;
3293 			}
3294 			break;
3295 		case PP_StateUILabel_Battery:
3296 			data->use_pcie_power_saving_levels = true;
3297 
3298 			for (i = 0; i < ps->performance_level_count; i++) {
3299 				if (data->pcie_gen_power_saving.max <
3300 						ps->performance_levels[i].pcie_gen)
3301 					data->pcie_gen_power_saving.max =
3302 							ps->performance_levels[i].pcie_gen;
3303 
3304 				if (data->pcie_gen_power_saving.min >
3305 						ps->performance_levels[i].pcie_gen)
3306 					data->pcie_gen_power_saving.min =
3307 							ps->performance_levels[i].pcie_gen;
3308 
3309 				if (data->pcie_lane_power_saving.max <
3310 						ps->performance_levels[i].pcie_lane)
3311 					data->pcie_lane_power_saving.max =
3312 							ps->performance_levels[i].pcie_lane;
3313 
3314 				if (data->pcie_lane_power_saving.min >
3315 						ps->performance_levels[i].pcie_lane)
3316 					data->pcie_lane_power_saving.min =
3317 							ps->performance_levels[i].pcie_lane;
3318 			}
3319 			break;
3320 		default:
3321 			break;
3322 		}
3323 	}
3324 	return 0;
3325 }
3326 
3327 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3328 					struct pp_hw_power_state *power_state,
3329 					unsigned int index, const void *clock_info)
3330 {
3331 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3332 	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
3333 	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3334 	struct smu7_performance_level *performance_level;
3335 	uint32_t engine_clock, memory_clock;
3336 	uint16_t pcie_gen_from_bios;
3337 
3338 	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3339 	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3340 
3341 	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3342 		data->highest_mclk = memory_clock;
3343 
3344 	PP_ASSERT_WITH_CODE(
3345 			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3346 			"Performance levels exceeds SMC limit!",
3347 			return -EINVAL);
3348 
3349 	PP_ASSERT_WITH_CODE(
3350 			(ps->performance_level_count <
3351 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3352 			"Performance levels exceeds Driver limit, Skip!",
3353 			return 0);
3354 
3355 	performance_level = &(ps->performance_levels
3356 			[ps->performance_level_count++]);
3357 
3358 	/* Performance levels are arranged from low to high. */
3359 	performance_level->memory_clock = memory_clock;
3360 	performance_level->engine_clock = engine_clock;
3361 
3362 	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3363 
3364 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3365 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3366 
3367 	return 0;
3368 }
3369 
3370 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3371 		unsigned long entry_index, struct pp_power_state *state)
3372 {
3373 	int result;
3374 	struct smu7_power_state *ps;
3375 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3376 	struct phm_clock_voltage_dependency_table *dep_mclk_table =
3377 			hwmgr->dyn_state.vddci_dependency_on_mclk;
3378 
3379 	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3380 
3381 	state->hardware.magic = PHM_VIslands_Magic;
3382 
3383 	ps = (struct smu7_power_state *)(&state->hardware);
3384 
3385 	result = pp_tables_get_entry(hwmgr, entry_index, state,
3386 			smu7_get_pp_table_entry_callback_func_v0);
3387 
3388 	/*
3389 	 * This is the earliest time we have all the dependency table
3390 	 * and the VBIOS boot state as
3391 	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3392 	 * state if there is only one VDDCI/MCLK level, check if it's
3393 	 * the same as VBIOS boot state
3394 	 */
3395 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3396 		if (dep_mclk_table->entries[0].clk !=
3397 				data->vbios_boot_state.mclk_bootup_value)
3398 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3399 					"does not match VBIOS boot MCLK level");
3400 		if (dep_mclk_table->entries[0].v !=
3401 				data->vbios_boot_state.vddci_bootup_value)
3402 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3403 					"does not match VBIOS boot VDDCI level");
3404 	}
3405 
3406 	/* set DC compatible flag if this state supports DC */
3407 	if (!state->validation.disallowOnDC)
3408 		ps->dc_compatible = true;
3409 
3410 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3411 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3412 
3413 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3414 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3415 
3416 	if (!result) {
3417 		uint32_t i;
3418 
3419 		switch (state->classification.ui_label) {
3420 		case PP_StateUILabel_Performance:
3421 			data->use_pcie_performance_levels = true;
3422 
3423 			for (i = 0; i < ps->performance_level_count; i++) {
3424 				if (data->pcie_gen_performance.max <
3425 						ps->performance_levels[i].pcie_gen)
3426 					data->pcie_gen_performance.max =
3427 							ps->performance_levels[i].pcie_gen;
3428 
3429 				if (data->pcie_gen_performance.min >
3430 						ps->performance_levels[i].pcie_gen)
3431 					data->pcie_gen_performance.min =
3432 							ps->performance_levels[i].pcie_gen;
3433 
3434 				if (data->pcie_lane_performance.max <
3435 						ps->performance_levels[i].pcie_lane)
3436 					data->pcie_lane_performance.max =
3437 							ps->performance_levels[i].pcie_lane;
3438 
3439 				if (data->pcie_lane_performance.min >
3440 						ps->performance_levels[i].pcie_lane)
3441 					data->pcie_lane_performance.min =
3442 							ps->performance_levels[i].pcie_lane;
3443 			}
3444 			break;
3445 		case PP_StateUILabel_Battery:
3446 			data->use_pcie_power_saving_levels = true;
3447 
3448 			for (i = 0; i < ps->performance_level_count; i++) {
3449 				if (data->pcie_gen_power_saving.max <
3450 						ps->performance_levels[i].pcie_gen)
3451 					data->pcie_gen_power_saving.max =
3452 							ps->performance_levels[i].pcie_gen;
3453 
3454 				if (data->pcie_gen_power_saving.min >
3455 						ps->performance_levels[i].pcie_gen)
3456 					data->pcie_gen_power_saving.min =
3457 							ps->performance_levels[i].pcie_gen;
3458 
3459 				if (data->pcie_lane_power_saving.max <
3460 						ps->performance_levels[i].pcie_lane)
3461 					data->pcie_lane_power_saving.max =
3462 							ps->performance_levels[i].pcie_lane;
3463 
3464 				if (data->pcie_lane_power_saving.min >
3465 						ps->performance_levels[i].pcie_lane)
3466 					data->pcie_lane_power_saving.min =
3467 							ps->performance_levels[i].pcie_lane;
3468 			}
3469 			break;
3470 		default:
3471 			break;
3472 		}
3473 	}
3474 	return 0;
3475 }
3476 
3477 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3478 		unsigned long entry_index, struct pp_power_state *state)
3479 {
3480 	if (hwmgr->pp_table_version == PP_TABLE_V0)
3481 		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3482 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
3483 		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3484 
3485 	return 0;
3486 }
3487 
3488 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3489 {
3490 	struct amdgpu_device *adev = hwmgr->adev;
3491 	int i;
3492 	u32 tmp = 0;
3493 
3494 	if (!query)
3495 		return -EINVAL;
3496 
3497 	/*
3498 	 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3499 	 *  - Hawaii
3500 	 *  - Bonaire
3501 	 *  - Fiji
3502 	 *  - Tonga
3503 	 */
3504 	if ((adev->asic_type != CHIP_HAWAII) &&
3505 	    (adev->asic_type != CHIP_BONAIRE) &&
3506 	    (adev->asic_type != CHIP_FIJI) &&
3507 	    (adev->asic_type != CHIP_TONGA)) {
3508 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3509 		*query = tmp;
3510 
3511 		if (tmp != 0)
3512 			return 0;
3513 	}
3514 
3515 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3516 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3517 							ixSMU_PM_STATUS_95, 0);
3518 
3519 	for (i = 0; i < 10; i++) {
3520 		msleep(500);
3521 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3522 		tmp = cgs_read_ind_register(hwmgr->device,
3523 						CGS_IND_REG__SMC,
3524 						ixSMU_PM_STATUS_95);
3525 		if (tmp != 0)
3526 			break;
3527 	}
3528 	*query = tmp;
3529 
3530 	return 0;
3531 }
3532 
3533 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3534 			    void *value, int *size)
3535 {
3536 	uint32_t sclk, mclk, activity_percent;
3537 	uint32_t offset, val_vid;
3538 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3539 
3540 	/* size must be at least 4 bytes for all sensors */
3541 	if (*size < 4)
3542 		return -EINVAL;
3543 
3544 	switch (idx) {
3545 	case AMDGPU_PP_SENSOR_GFX_SCLK:
3546 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
3547 		*((uint32_t *)value) = sclk;
3548 		*size = 4;
3549 		return 0;
3550 	case AMDGPU_PP_SENSOR_GFX_MCLK:
3551 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
3552 		*((uint32_t *)value) = mclk;
3553 		*size = 4;
3554 		return 0;
3555 	case AMDGPU_PP_SENSOR_GPU_LOAD:
3556 	case AMDGPU_PP_SENSOR_MEM_LOAD:
3557 		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
3558 								SMU_SoftRegisters,
3559 								(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
3560 								AverageGraphicsActivity:
3561 								AverageMemoryActivity);
3562 
3563 		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3564 		activity_percent += 0x80;
3565 		activity_percent >>= 8;
3566 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
3567 		*size = 4;
3568 		return 0;
3569 	case AMDGPU_PP_SENSOR_GPU_TEMP:
3570 		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
3571 		*size = 4;
3572 		return 0;
3573 	case AMDGPU_PP_SENSOR_UVD_POWER:
3574 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
3575 		*size = 4;
3576 		return 0;
3577 	case AMDGPU_PP_SENSOR_VCE_POWER:
3578 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
3579 		*size = 4;
3580 		return 0;
3581 	case AMDGPU_PP_SENSOR_GPU_POWER:
3582 		return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
3583 	case AMDGPU_PP_SENSOR_VDDGFX:
3584 		if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
3585 		    (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
3586 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
3587 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
3588 		else
3589 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
3590 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
3591 
3592 		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
3593 		return 0;
3594 	default:
3595 		return -EINVAL;
3596 	}
3597 }
3598 
3599 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3600 {
3601 	const struct phm_set_power_state_input *states =
3602 			(const struct phm_set_power_state_input *)input;
3603 	const struct smu7_power_state *smu7_ps =
3604 			cast_const_phw_smu7_power_state(states->pnew_state);
3605 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3606 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3607 	uint32_t sclk = smu7_ps->performance_levels
3608 			[smu7_ps->performance_level_count - 1].engine_clock;
3609 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3610 	uint32_t mclk = smu7_ps->performance_levels
3611 			[smu7_ps->performance_level_count - 1].memory_clock;
3612 	struct PP_Clocks min_clocks = {0};
3613 	uint32_t i;
3614 
3615 	for (i = 0; i < sclk_table->count; i++) {
3616 		if (sclk == sclk_table->dpm_levels[i].value)
3617 			break;
3618 	}
3619 
3620 	if (i >= sclk_table->count) {
3621 		if (sclk > sclk_table->dpm_levels[i-1].value) {
3622 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3623 			sclk_table->dpm_levels[i-1].value = sclk;
3624 		}
3625 	} else {
3626 	/* TODO: Check SCLK in DAL's minimum clocks
3627 	 * in case DeepSleep divider update is required.
3628 	 */
3629 		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3630 			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
3631 				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
3632 			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3633 	}
3634 
3635 	for (i = 0; i < mclk_table->count; i++) {
3636 		if (mclk == mclk_table->dpm_levels[i].value)
3637 			break;
3638 	}
3639 
3640 	if (i >= mclk_table->count) {
3641 		if (mclk > mclk_table->dpm_levels[i-1].value) {
3642 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3643 			mclk_table->dpm_levels[i-1].value = mclk;
3644 		}
3645 	}
3646 
3647 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
3648 		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3649 
3650 	return 0;
3651 }
3652 
3653 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3654 		const struct smu7_power_state *smu7_ps)
3655 {
3656 	uint32_t i;
3657 	uint32_t sclk, max_sclk = 0;
3658 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3659 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
3660 
3661 	for (i = 0; i < smu7_ps->performance_level_count; i++) {
3662 		sclk = smu7_ps->performance_levels[i].engine_clock;
3663 		if (max_sclk < sclk)
3664 			max_sclk = sclk;
3665 	}
3666 
3667 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
3668 		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3669 			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3670 					dpm_table->pcie_speed_table.dpm_levels
3671 					[dpm_table->pcie_speed_table.count - 1].value :
3672 					dpm_table->pcie_speed_table.dpm_levels[i].value);
3673 	}
3674 
3675 	return 0;
3676 }
3677 
3678 static int smu7_request_link_speed_change_before_state_change(
3679 		struct pp_hwmgr *hwmgr, const void *input)
3680 {
3681 	const struct phm_set_power_state_input *states =
3682 			(const struct phm_set_power_state_input *)input;
3683 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3684 	const struct smu7_power_state *smu7_nps =
3685 			cast_const_phw_smu7_power_state(states->pnew_state);
3686 	const struct smu7_power_state *polaris10_cps =
3687 			cast_const_phw_smu7_power_state(states->pcurrent_state);
3688 
3689 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
3690 	uint16_t current_link_speed;
3691 
3692 	if (data->force_pcie_gen == PP_PCIEGenInvalid)
3693 		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
3694 	else
3695 		current_link_speed = data->force_pcie_gen;
3696 
3697 	data->force_pcie_gen = PP_PCIEGenInvalid;
3698 	data->pspp_notify_required = false;
3699 
3700 	if (target_link_speed > current_link_speed) {
3701 		switch (target_link_speed) {
3702 #ifdef CONFIG_ACPI
3703 		case PP_PCIEGen3:
3704 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
3705 				break;
3706 			data->force_pcie_gen = PP_PCIEGen2;
3707 			if (current_link_speed == PP_PCIEGen2)
3708 				break;
3709 			fallthrough;
3710 		case PP_PCIEGen2:
3711 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
3712 				break;
3713 			fallthrough;
3714 #endif
3715 		default:
3716 			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
3717 			break;
3718 		}
3719 	} else {
3720 		if (target_link_speed < current_link_speed)
3721 			data->pspp_notify_required = true;
3722 	}
3723 
3724 	return 0;
3725 }
3726 
3727 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3728 {
3729 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3730 
3731 	if (0 == data->need_update_smu7_dpm_table)
3732 		return 0;
3733 
3734 	if ((0 == data->sclk_dpm_key_disabled) &&
3735 		(data->need_update_smu7_dpm_table &
3736 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3737 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3738 				"Trying to freeze SCLK DPM when DPM is disabled",
3739 				);
3740 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3741 				PPSMC_MSG_SCLKDPM_FreezeLevel,
3742 				NULL),
3743 				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3744 				return -EINVAL);
3745 	}
3746 
3747 	if ((0 == data->mclk_dpm_key_disabled) &&
3748 		(data->need_update_smu7_dpm_table &
3749 		 DPMTABLE_OD_UPDATE_MCLK)) {
3750 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3751 				"Trying to freeze MCLK DPM when DPM is disabled",
3752 				);
3753 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3754 				PPSMC_MSG_MCLKDPM_FreezeLevel,
3755 				NULL),
3756 				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3757 				return -EINVAL);
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
3764 		struct pp_hwmgr *hwmgr, const void *input)
3765 {
3766 	int result = 0;
3767 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3768 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
3769 	uint32_t count;
3770 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
3771 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
3772 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
3773 
3774 	if (0 == data->need_update_smu7_dpm_table)
3775 		return 0;
3776 
3777 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3778 		for (count = 0; count < dpm_table->sclk_table.count; count++) {
3779 			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
3780 			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
3781 		}
3782 	}
3783 
3784 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3785 		for (count = 0; count < dpm_table->mclk_table.count; count++) {
3786 			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
3787 			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
3788 		}
3789 	}
3790 
3791 	if (data->need_update_smu7_dpm_table &
3792 			(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3793 		result = smum_populate_all_graphic_levels(hwmgr);
3794 		PP_ASSERT_WITH_CODE((0 == result),
3795 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
3796 				return result);
3797 	}
3798 
3799 	if (data->need_update_smu7_dpm_table &
3800 			(DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
3801 		/*populate MCLK dpm table to SMU7 */
3802 		result = smum_populate_all_memory_levels(hwmgr);
3803 		PP_ASSERT_WITH_CODE((0 == result),
3804 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
3805 				return result);
3806 	}
3807 
3808 	return result;
3809 }
3810 
3811 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
3812 			  struct smu7_single_dpm_table *dpm_table,
3813 			uint32_t low_limit, uint32_t high_limit)
3814 {
3815 	uint32_t i;
3816 
3817 	/* force the trim if mclk_switching is disabled to prevent flicker */
3818 	bool force_trim = (low_limit == high_limit);
3819 	for (i = 0; i < dpm_table->count; i++) {
3820 	/*skip the trim if od is enabled*/
3821 		if ((!hwmgr->od_enabled || force_trim)
3822 			&& (dpm_table->dpm_levels[i].value < low_limit
3823 			|| dpm_table->dpm_levels[i].value > high_limit))
3824 			dpm_table->dpm_levels[i].enabled = false;
3825 		else
3826 			dpm_table->dpm_levels[i].enabled = true;
3827 	}
3828 
3829 	return 0;
3830 }
3831 
3832 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
3833 		const struct smu7_power_state *smu7_ps)
3834 {
3835 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3836 	uint32_t high_limit_count;
3837 
3838 	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
3839 			"power state did not have any performance level",
3840 			return -EINVAL);
3841 
3842 	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
3843 
3844 	smu7_trim_single_dpm_states(hwmgr,
3845 			&(data->dpm_table.sclk_table),
3846 			smu7_ps->performance_levels[0].engine_clock,
3847 			smu7_ps->performance_levels[high_limit_count].engine_clock);
3848 
3849 	smu7_trim_single_dpm_states(hwmgr,
3850 			&(data->dpm_table.mclk_table),
3851 			smu7_ps->performance_levels[0].memory_clock,
3852 			smu7_ps->performance_levels[high_limit_count].memory_clock);
3853 
3854 	return 0;
3855 }
3856 
3857 static int smu7_generate_dpm_level_enable_mask(
3858 		struct pp_hwmgr *hwmgr, const void *input)
3859 {
3860 	int result = 0;
3861 	const struct phm_set_power_state_input *states =
3862 			(const struct phm_set_power_state_input *)input;
3863 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3864 	const struct smu7_power_state *smu7_ps =
3865 			cast_const_phw_smu7_power_state(states->pnew_state);
3866 
3867 
3868 	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
3869 	if (result)
3870 		return result;
3871 
3872 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
3873 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
3874 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
3875 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
3876 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
3877 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
3878 
3879 	return 0;
3880 }
3881 
3882 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3883 {
3884 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3885 
3886 	if (0 == data->need_update_smu7_dpm_table)
3887 		return 0;
3888 
3889 	if ((0 == data->sclk_dpm_key_disabled) &&
3890 		(data->need_update_smu7_dpm_table &
3891 		(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3892 
3893 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3894 				"Trying to Unfreeze SCLK DPM when DPM is disabled",
3895 				);
3896 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3897 				PPSMC_MSG_SCLKDPM_UnfreezeLevel,
3898 				NULL),
3899 			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
3900 			return -EINVAL);
3901 	}
3902 
3903 	if ((0 == data->mclk_dpm_key_disabled) &&
3904 		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
3905 
3906 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
3907 				"Trying to Unfreeze MCLK DPM when DPM is disabled",
3908 				);
3909 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
3910 				PPSMC_MSG_MCLKDPM_UnfreezeLevel,
3911 				NULL),
3912 		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
3913 		    return -EINVAL);
3914 	}
3915 
3916 	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
3917 
3918 	return 0;
3919 }
3920 
3921 static int smu7_notify_link_speed_change_after_state_change(
3922 		struct pp_hwmgr *hwmgr, const void *input)
3923 {
3924 	const struct phm_set_power_state_input *states =
3925 			(const struct phm_set_power_state_input *)input;
3926 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3927 	const struct smu7_power_state *smu7_ps =
3928 			cast_const_phw_smu7_power_state(states->pnew_state);
3929 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
3930 	uint8_t  request;
3931 
3932 	if (data->pspp_notify_required) {
3933 		if (target_link_speed == PP_PCIEGen3)
3934 			request = PCIE_PERF_REQ_GEN3;
3935 		else if (target_link_speed == PP_PCIEGen2)
3936 			request = PCIE_PERF_REQ_GEN2;
3937 		else
3938 			request = PCIE_PERF_REQ_GEN1;
3939 
3940 		if (request == PCIE_PERF_REQ_GEN1 &&
3941 				smu7_get_current_pcie_speed(hwmgr) > 0)
3942 			return 0;
3943 
3944 #ifdef CONFIG_ACPI
3945 		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
3946 			if (PP_PCIEGen2 == target_link_speed)
3947 				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
3948 			else
3949 				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
3950 		}
3951 #endif
3952 	}
3953 
3954 	return 0;
3955 }
3956 
3957 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
3958 {
3959 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3960 
3961 	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
3962 		if (hwmgr->chip_id == CHIP_VEGAM)
3963 			smum_send_msg_to_smc_with_parameter(hwmgr,
3964 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
3965 					NULL);
3966 		else
3967 			smum_send_msg_to_smc_with_parameter(hwmgr,
3968 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
3969 					NULL);
3970 	}
3971 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ?  0 : -EINVAL;
3972 }
3973 
3974 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
3975 {
3976 	int tmp_result, result = 0;
3977 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3978 
3979 	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
3980 	PP_ASSERT_WITH_CODE((0 == tmp_result),
3981 			"Failed to find DPM states clocks in DPM table!",
3982 			result = tmp_result);
3983 
3984 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3985 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
3986 		tmp_result =
3987 			smu7_request_link_speed_change_before_state_change(hwmgr, input);
3988 		PP_ASSERT_WITH_CODE((0 == tmp_result),
3989 				"Failed to request link speed change before state change!",
3990 				result = tmp_result);
3991 	}
3992 
3993 	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
3994 	PP_ASSERT_WITH_CODE((0 == tmp_result),
3995 			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
3996 
3997 	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
3998 	PP_ASSERT_WITH_CODE((0 == tmp_result),
3999 			"Failed to populate and upload SCLK MCLK DPM levels!",
4000 			result = tmp_result);
4001 
4002 	/*
4003 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4004 	 * That effectively disables AVFS feature.
4005 	 */
4006 	if (hwmgr->hardcode_pp_table != NULL)
4007 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4008 
4009 	tmp_result = smu7_update_avfs(hwmgr);
4010 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4011 			"Failed to update avfs voltages!",
4012 			result = tmp_result);
4013 
4014 	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4015 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4016 			"Failed to generate DPM level enabled mask!",
4017 			result = tmp_result);
4018 
4019 	tmp_result = smum_update_sclk_threshold(hwmgr);
4020 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4021 			"Failed to update SCLK threshold!",
4022 			result = tmp_result);
4023 
4024 	tmp_result = smu7_notify_smc_display(hwmgr);
4025 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4026 			"Failed to notify smc display settings!",
4027 			result = tmp_result);
4028 
4029 	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4030 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4031 			"Failed to unfreeze SCLK MCLK DPM!",
4032 			result = tmp_result);
4033 
4034 	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4035 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4036 			"Failed to upload DPM level enabled mask!",
4037 			result = tmp_result);
4038 
4039 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4040 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4041 		tmp_result =
4042 			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4043 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4044 				"Failed to notify link speed change after state change!",
4045 				result = tmp_result);
4046 	}
4047 	data->apply_optimized_settings = false;
4048 	return result;
4049 }
4050 
4051 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4052 {
4053 	hwmgr->thermal_controller.
4054 	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4055 
4056 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4057 			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4058 			NULL);
4059 }
4060 
4061 static int
4062 smu7_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
4063 {
4064 	PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
4065 
4066 	return (smum_send_msg_to_smc(hwmgr, msg, NULL) == 0) ?  0 : -1;
4067 }
4068 
4069 static int
4070 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4071 {
4072 	if (hwmgr->display_config->num_display > 1 &&
4073 			!hwmgr->display_config->multi_monitor_in_sync)
4074 		smu7_notify_smc_display_change(hwmgr, false);
4075 
4076 	return 0;
4077 }
4078 
4079 /**
4080 * Programs the display gap
4081 *
4082 * @param    hwmgr  the address of the powerplay hardware manager.
4083 * @return   always OK
4084 */
4085 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4086 {
4087 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4088 	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4089 	uint32_t display_gap2;
4090 	uint32_t pre_vbi_time_in_us;
4091 	uint32_t frame_time_in_us;
4092 	uint32_t ref_clock, refresh_rate;
4093 
4094 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4095 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4096 
4097 	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4098 	refresh_rate = hwmgr->display_config->vrefresh;
4099 
4100 	if (0 == refresh_rate)
4101 		refresh_rate = 60;
4102 
4103 	frame_time_in_us = 1000000 / refresh_rate;
4104 
4105 	pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4106 
4107 	data->frame_time_x2 = frame_time_in_us * 2 / 100;
4108 
4109 	if (data->frame_time_x2 < 280) {
4110 		pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4111 		data->frame_time_x2 = 280;
4112 	}
4113 
4114 	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4115 
4116 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4117 
4118 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4119 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4120 							SMU_SoftRegisters,
4121 							PreVBlankGap), 0x64);
4122 
4123 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4124 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4125 							SMU_SoftRegisters,
4126 							VBlankTimeout),
4127 					(frame_time_in_us - pre_vbi_time_in_us));
4128 
4129 	return 0;
4130 }
4131 
4132 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4133 {
4134 	return smu7_program_display_gap(hwmgr);
4135 }
4136 
4137 /**
4138 *  Set maximum target operating fan output RPM
4139 *
4140 * @param    hwmgr:  the address of the powerplay hardware manager.
4141 * @param    usMaxFanRpm:  max operating fan RPM value.
4142 * @return   The response that came from the SMC.
4143 */
4144 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4145 {
4146 	hwmgr->thermal_controller.
4147 	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4148 
4149 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4150 			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4151 			NULL);
4152 }
4153 
4154 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4155 	.process = phm_irq_process,
4156 };
4157 
4158 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4159 {
4160 	struct amdgpu_irq_src *source =
4161 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4162 
4163 	if (!source)
4164 		return -ENOMEM;
4165 
4166 	source->funcs = &smu7_irq_funcs;
4167 
4168 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4169 			AMDGPU_IRQ_CLIENTID_LEGACY,
4170 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4171 			source);
4172 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4173 			AMDGPU_IRQ_CLIENTID_LEGACY,
4174 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4175 			source);
4176 
4177 	/* Register CTF(GPIO_19) interrupt */
4178 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4179 			AMDGPU_IRQ_CLIENTID_LEGACY,
4180 			VISLANDS30_IV_SRCID_GPIO_19,
4181 			source);
4182 
4183 	return 0;
4184 }
4185 
4186 static bool
4187 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4188 {
4189 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4190 	bool is_update_required = false;
4191 
4192 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4193 		is_update_required = true;
4194 
4195 	if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4196 		is_update_required = true;
4197 
4198 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4199 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4200 			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4201 			hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4202 			is_update_required = true;
4203 	}
4204 	return is_update_required;
4205 }
4206 
4207 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4208 							   const struct smu7_performance_level *pl2)
4209 {
4210 	return ((pl1->memory_clock == pl2->memory_clock) &&
4211 		  (pl1->engine_clock == pl2->engine_clock) &&
4212 		  (pl1->pcie_gen == pl2->pcie_gen) &&
4213 		  (pl1->pcie_lane == pl2->pcie_lane));
4214 }
4215 
4216 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4217 		const struct pp_hw_power_state *pstate1,
4218 		const struct pp_hw_power_state *pstate2, bool *equal)
4219 {
4220 	const struct smu7_power_state *psa;
4221 	const struct smu7_power_state *psb;
4222 	int i;
4223 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4224 
4225 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4226 		return -EINVAL;
4227 
4228 	psa = cast_const_phw_smu7_power_state(pstate1);
4229 	psb = cast_const_phw_smu7_power_state(pstate2);
4230 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4231 	if (psa->performance_level_count != psb->performance_level_count) {
4232 		*equal = false;
4233 		return 0;
4234 	}
4235 
4236 	for (i = 0; i < psa->performance_level_count; i++) {
4237 		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4238 			/* If we have found even one performance level pair that is different the states are different. */
4239 			*equal = false;
4240 			return 0;
4241 		}
4242 	}
4243 
4244 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4245 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4246 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4247 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4248 	/* For OD call, set value based on flag */
4249 	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4250 							DPMTABLE_OD_UPDATE_MCLK |
4251 							DPMTABLE_OD_UPDATE_VDDC));
4252 
4253 	return 0;
4254 }
4255 
4256 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4257 {
4258 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4259 
4260 	uint32_t tmp;
4261 
4262 	/* Read MC indirect register offset 0x9F bits [3:0] to see
4263 	 * if VBIOS has already loaded a full version of MC ucode
4264 	 * or not.
4265 	 */
4266 
4267 	smu7_get_mc_microcode_version(hwmgr);
4268 
4269 	data->need_long_memory_training = false;
4270 
4271 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4272 							ixMC_IO_DEBUG_UP_13);
4273 	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4274 
4275 	if (tmp & (1 << 23)) {
4276 		data->mem_latency_high = MEM_LATENCY_HIGH;
4277 		data->mem_latency_low = MEM_LATENCY_LOW;
4278 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4279 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4280 		    (hwmgr->chip_id == CHIP_POLARIS12))
4281 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4282 	} else {
4283 		data->mem_latency_high = 330;
4284 		data->mem_latency_low = 330;
4285 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4286 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4287 		    (hwmgr->chip_id == CHIP_POLARIS12))
4288 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4289 	}
4290 
4291 	return 0;
4292 }
4293 
4294 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4295 {
4296 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4297 
4298 	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
4299 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4300 	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
4301 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4302 	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
4303 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4304 	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
4305 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4306 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
4307 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4308 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4309 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4310 	data->clock_registers.vDLL_CNTL                  =
4311 		cgs_read_register(hwmgr->device, mmDLL_CNTL);
4312 	data->clock_registers.vMCLK_PWRMGT_CNTL          =
4313 		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4314 	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
4315 		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4316 	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
4317 		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4318 	data->clock_registers.vMPLL_FUNC_CNTL            =
4319 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4320 	data->clock_registers.vMPLL_FUNC_CNTL_1          =
4321 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4322 	data->clock_registers.vMPLL_FUNC_CNTL_2          =
4323 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4324 	data->clock_registers.vMPLL_SS1                  =
4325 		cgs_read_register(hwmgr->device, mmMPLL_SS1);
4326 	data->clock_registers.vMPLL_SS2                  =
4327 		cgs_read_register(hwmgr->device, mmMPLL_SS2);
4328 	return 0;
4329 
4330 }
4331 
4332 /**
4333  * Find out if memory is GDDR5.
4334  *
4335  * @param    hwmgr  the address of the powerplay hardware manager.
4336  * @return   always 0
4337  */
4338 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4339 {
4340 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4341 	struct amdgpu_device *adev = hwmgr->adev;
4342 
4343 	data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4344 
4345 	return 0;
4346 }
4347 
4348 /**
4349  * Enables Dynamic Power Management by SMC
4350  *
4351  * @param    hwmgr  the address of the powerplay hardware manager.
4352  * @return   always 0
4353  */
4354 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4355 {
4356 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4357 			GENERAL_PWRMGT, STATIC_PM_EN, 1);
4358 
4359 	return 0;
4360 }
4361 
4362 /**
4363  * Initialize PowerGating States for different engines
4364  *
4365  * @param    hwmgr  the address of the powerplay hardware manager.
4366  * @return   always 0
4367  */
4368 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4369 {
4370 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4371 
4372 	data->uvd_power_gated = false;
4373 	data->vce_power_gated = false;
4374 
4375 	return 0;
4376 }
4377 
4378 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4379 {
4380 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4381 
4382 	data->low_sclk_interrupt_threshold = 0;
4383 	return 0;
4384 }
4385 
4386 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4387 {
4388 	int tmp_result, result = 0;
4389 
4390 	smu7_check_mc_firmware(hwmgr);
4391 
4392 	tmp_result = smu7_read_clock_registers(hwmgr);
4393 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4394 			"Failed to read clock registers!", result = tmp_result);
4395 
4396 	tmp_result = smu7_get_memory_type(hwmgr);
4397 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4398 			"Failed to get memory type!", result = tmp_result);
4399 
4400 	tmp_result = smu7_enable_acpi_power_management(hwmgr);
4401 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4402 			"Failed to enable ACPI power management!", result = tmp_result);
4403 
4404 	tmp_result = smu7_init_power_gate_state(hwmgr);
4405 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4406 			"Failed to init power gate state!", result = tmp_result);
4407 
4408 	tmp_result = smu7_get_mc_microcode_version(hwmgr);
4409 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4410 			"Failed to get MC microcode version!", result = tmp_result);
4411 
4412 	tmp_result = smu7_init_sclk_threshold(hwmgr);
4413 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4414 			"Failed to init sclk threshold!", result = tmp_result);
4415 
4416 	return result;
4417 }
4418 
4419 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4420 		enum pp_clock_type type, uint32_t mask)
4421 {
4422 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4423 
4424 	if (mask == 0)
4425 		return -EINVAL;
4426 
4427 	switch (type) {
4428 	case PP_SCLK:
4429 		if (!data->sclk_dpm_key_disabled)
4430 			smum_send_msg_to_smc_with_parameter(hwmgr,
4431 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4432 					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4433 					NULL);
4434 		break;
4435 	case PP_MCLK:
4436 		if (!data->mclk_dpm_key_disabled)
4437 			smum_send_msg_to_smc_with_parameter(hwmgr,
4438 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4439 					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4440 					NULL);
4441 		break;
4442 	case PP_PCIE:
4443 	{
4444 		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4445 
4446 		if (!data->pcie_dpm_key_disabled) {
4447 			if (fls(tmp) != ffs(tmp))
4448 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4449 						NULL);
4450 			else
4451 				smum_send_msg_to_smc_with_parameter(hwmgr,
4452 					PPSMC_MSG_PCIeDPM_ForceLevel,
4453 					fls(tmp) - 1,
4454 					NULL);
4455 		}
4456 		break;
4457 	}
4458 	default:
4459 		break;
4460 	}
4461 
4462 	return 0;
4463 }
4464 
4465 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4466 		enum pp_clock_type type, char *buf)
4467 {
4468 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4469 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4470 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4471 	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4472 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4473 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4474 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4475 	int i, now, size = 0;
4476 	uint32_t clock, pcie_speed;
4477 
4478 	switch (type) {
4479 	case PP_SCLK:
4480 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4481 
4482 		for (i = 0; i < sclk_table->count; i++) {
4483 			if (clock > sclk_table->dpm_levels[i].value)
4484 				continue;
4485 			break;
4486 		}
4487 		now = i;
4488 
4489 		for (i = 0; i < sclk_table->count; i++)
4490 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4491 					i, sclk_table->dpm_levels[i].value / 100,
4492 					(i == now) ? "*" : "");
4493 		break;
4494 	case PP_MCLK:
4495 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4496 
4497 		for (i = 0; i < mclk_table->count; i++) {
4498 			if (clock > mclk_table->dpm_levels[i].value)
4499 				continue;
4500 			break;
4501 		}
4502 		now = i;
4503 
4504 		for (i = 0; i < mclk_table->count; i++)
4505 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4506 					i, mclk_table->dpm_levels[i].value / 100,
4507 					(i == now) ? "*" : "");
4508 		break;
4509 	case PP_PCIE:
4510 		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4511 		for (i = 0; i < pcie_table->count; i++) {
4512 			if (pcie_speed != pcie_table->dpm_levels[i].value)
4513 				continue;
4514 			break;
4515 		}
4516 		now = i;
4517 
4518 		for (i = 0; i < pcie_table->count; i++)
4519 			size += sprintf(buf + size, "%d: %s %s\n", i,
4520 					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
4521 					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
4522 					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
4523 					(i == now) ? "*" : "");
4524 		break;
4525 	case OD_SCLK:
4526 		if (hwmgr->od_enabled) {
4527 			size = sprintf(buf, "%s:\n", "OD_SCLK");
4528 			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
4529 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
4530 					i, odn_sclk_table->entries[i].clock/100,
4531 					odn_sclk_table->entries[i].vddc);
4532 		}
4533 		break;
4534 	case OD_MCLK:
4535 		if (hwmgr->od_enabled) {
4536 			size = sprintf(buf, "%s:\n", "OD_MCLK");
4537 			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
4538 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
4539 					i, odn_mclk_table->entries[i].clock/100,
4540 					odn_mclk_table->entries[i].vddc);
4541 		}
4542 		break;
4543 	case OD_RANGE:
4544 		if (hwmgr->od_enabled) {
4545 			size = sprintf(buf, "%s:\n", "OD_RANGE");
4546 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
4547 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
4548 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4549 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
4550 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
4551 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4552 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
4553 				data->odn_dpm_table.min_vddc,
4554 				data->odn_dpm_table.max_vddc);
4555 		}
4556 		break;
4557 	default:
4558 		break;
4559 	}
4560 	return size;
4561 }
4562 
4563 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4564 {
4565 	switch (mode) {
4566 	case AMD_FAN_CTRL_NONE:
4567 		smu7_fan_ctrl_set_fan_speed_percent(hwmgr, 100);
4568 		break;
4569 	case AMD_FAN_CTRL_MANUAL:
4570 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4571 			PHM_PlatformCaps_MicrocodeFanControl))
4572 			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
4573 		break;
4574 	case AMD_FAN_CTRL_AUTO:
4575 		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
4576 			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
4577 		break;
4578 	default:
4579 		break;
4580 	}
4581 }
4582 
4583 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4584 {
4585 	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
4586 }
4587 
4588 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
4589 {
4590 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4591 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4592 	struct smu7_single_dpm_table *golden_sclk_table =
4593 			&(data->golden_dpm_table.sclk_table);
4594 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
4595 	int golden_value = golden_sclk_table->dpm_levels
4596 			[golden_sclk_table->count - 1].value;
4597 
4598 	value -= golden_value;
4599 	value = DIV_ROUND_UP(value * 100, golden_value);
4600 
4601 	return value;
4602 }
4603 
4604 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4605 {
4606 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4607 	struct smu7_single_dpm_table *golden_sclk_table =
4608 			&(data->golden_dpm_table.sclk_table);
4609 	struct pp_power_state  *ps;
4610 	struct smu7_power_state  *smu7_ps;
4611 
4612 	if (value > 20)
4613 		value = 20;
4614 
4615 	ps = hwmgr->request_ps;
4616 
4617 	if (ps == NULL)
4618 		return -EINVAL;
4619 
4620 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4621 
4622 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
4623 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
4624 			value / 100 +
4625 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
4626 
4627 	return 0;
4628 }
4629 
4630 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
4631 {
4632 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4633 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4634 	struct smu7_single_dpm_table *golden_mclk_table =
4635 			&(data->golden_dpm_table.mclk_table);
4636         int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
4637 	int golden_value = golden_mclk_table->dpm_levels
4638 			[golden_mclk_table->count - 1].value;
4639 
4640 	value -= golden_value;
4641 	value = DIV_ROUND_UP(value * 100, golden_value);
4642 
4643 	return value;
4644 }
4645 
4646 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
4647 {
4648 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4649 	struct smu7_single_dpm_table *golden_mclk_table =
4650 			&(data->golden_dpm_table.mclk_table);
4651 	struct pp_power_state  *ps;
4652 	struct smu7_power_state  *smu7_ps;
4653 
4654 	if (value > 20)
4655 		value = 20;
4656 
4657 	ps = hwmgr->request_ps;
4658 
4659 	if (ps == NULL)
4660 		return -EINVAL;
4661 
4662 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
4663 
4664 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
4665 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
4666 			value / 100 +
4667 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
4668 
4669 	return 0;
4670 }
4671 
4672 
4673 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4674 {
4675 	struct phm_ppt_v1_information *table_info =
4676 			(struct phm_ppt_v1_information *)hwmgr->pptable;
4677 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
4678 	struct phm_clock_voltage_dependency_table *sclk_table;
4679 	int i;
4680 
4681 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
4682 		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
4683 			return -EINVAL;
4684 		dep_sclk_table = table_info->vdd_dep_on_sclk;
4685 		for (i = 0; i < dep_sclk_table->count; i++)
4686 			clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
4687 		clocks->count = dep_sclk_table->count;
4688 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4689 		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
4690 		for (i = 0; i < sclk_table->count; i++)
4691 			clocks->clock[i] = sclk_table->entries[i].clk * 10;
4692 		clocks->count = sclk_table->count;
4693 	}
4694 
4695 	return 0;
4696 }
4697 
4698 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
4699 {
4700 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4701 
4702 	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
4703 		return data->mem_latency_high;
4704 	else if (clk >= MEM_FREQ_HIGH_LATENCY)
4705 		return data->mem_latency_low;
4706 	else
4707 		return MEM_LATENCY_ERR;
4708 }
4709 
4710 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
4711 {
4712 	struct phm_ppt_v1_information *table_info =
4713 			(struct phm_ppt_v1_information *)hwmgr->pptable;
4714 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
4715 	int i;
4716 	struct phm_clock_voltage_dependency_table *mclk_table;
4717 
4718 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
4719 		if (table_info == NULL)
4720 			return -EINVAL;
4721 		dep_mclk_table = table_info->vdd_dep_on_mclk;
4722 		for (i = 0; i < dep_mclk_table->count; i++) {
4723 			clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
4724 			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
4725 						dep_mclk_table->entries[i].clk);
4726 		}
4727 		clocks->count = dep_mclk_table->count;
4728 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
4729 		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
4730 		for (i = 0; i < mclk_table->count; i++)
4731 			clocks->clock[i] = mclk_table->entries[i].clk * 10;
4732 		clocks->count = mclk_table->count;
4733 	}
4734 	return 0;
4735 }
4736 
4737 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
4738 						struct amd_pp_clocks *clocks)
4739 {
4740 	switch (type) {
4741 	case amd_pp_sys_clock:
4742 		smu7_get_sclks(hwmgr, clocks);
4743 		break;
4744 	case amd_pp_mem_clock:
4745 		smu7_get_mclks(hwmgr, clocks);
4746 		break;
4747 	default:
4748 		return -EINVAL;
4749 	}
4750 
4751 	return 0;
4752 }
4753 
4754 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
4755 					uint32_t virtual_addr_low,
4756 					uint32_t virtual_addr_hi,
4757 					uint32_t mc_addr_low,
4758 					uint32_t mc_addr_hi,
4759 					uint32_t size)
4760 {
4761 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4762 
4763 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4764 					data->soft_regs_start +
4765 					smum_get_offsetof(hwmgr,
4766 					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
4767 					mc_addr_hi);
4768 
4769 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4770 					data->soft_regs_start +
4771 					smum_get_offsetof(hwmgr,
4772 					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
4773 					mc_addr_low);
4774 
4775 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4776 					data->soft_regs_start +
4777 					smum_get_offsetof(hwmgr,
4778 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
4779 					virtual_addr_hi);
4780 
4781 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4782 					data->soft_regs_start +
4783 					smum_get_offsetof(hwmgr,
4784 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
4785 					virtual_addr_low);
4786 
4787 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4788 					data->soft_regs_start +
4789 					smum_get_offsetof(hwmgr,
4790 					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
4791 					size);
4792 	return 0;
4793 }
4794 
4795 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
4796 					struct amd_pp_simple_clock_info *clocks)
4797 {
4798 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4799 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4800 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4801 
4802 	if (clocks == NULL)
4803 		return -EINVAL;
4804 
4805 	clocks->memory_max_clock = mclk_table->count > 1 ?
4806 				mclk_table->dpm_levels[mclk_table->count-1].value :
4807 				mclk_table->dpm_levels[0].value;
4808 	clocks->engine_max_clock = sclk_table->count > 1 ?
4809 				sclk_table->dpm_levels[sclk_table->count-1].value :
4810 				sclk_table->dpm_levels[0].value;
4811 	return 0;
4812 }
4813 
4814 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
4815 		struct PP_TemperatureRange *thermal_data)
4816 {
4817 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4818 	struct phm_ppt_v1_information *table_info =
4819 			(struct phm_ppt_v1_information *)hwmgr->pptable;
4820 
4821 	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
4822 
4823 	if (hwmgr->pp_table_version == PP_TABLE_V1)
4824 		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
4825 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4826 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
4827 		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
4828 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
4829 
4830 	return 0;
4831 }
4832 
4833 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
4834 					enum PP_OD_DPM_TABLE_COMMAND type,
4835 					uint32_t clk,
4836 					uint32_t voltage)
4837 {
4838 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4839 
4840 	if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
4841 		pr_info("OD voltage is out of range [%d - %d] mV\n",
4842 						data->odn_dpm_table.min_vddc,
4843 						data->odn_dpm_table.max_vddc);
4844 		return false;
4845 	}
4846 
4847 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
4848 		if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
4849 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
4850 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
4851 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
4852 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
4853 			return false;
4854 		}
4855 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
4856 		if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
4857 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
4858 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
4859 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
4860 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
4861 			return false;
4862 		}
4863 	} else {
4864 		return false;
4865 	}
4866 
4867 	return true;
4868 }
4869 
4870 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
4871 					enum PP_OD_DPM_TABLE_COMMAND type,
4872 					long *input, uint32_t size)
4873 {
4874 	uint32_t i;
4875 	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
4876 	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
4877 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4878 
4879 	uint32_t input_clk;
4880 	uint32_t input_vol;
4881 	uint32_t input_level;
4882 
4883 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
4884 				return -EINVAL);
4885 
4886 	if (!hwmgr->od_enabled) {
4887 		pr_info("OverDrive feature not enabled\n");
4888 		return -EINVAL;
4889 	}
4890 
4891 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
4892 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
4893 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
4894 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
4895 				"Failed to get ODN SCLK and Voltage tables",
4896 				return -EINVAL);
4897 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
4898 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
4899 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
4900 
4901 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
4902 			"Failed to get ODN MCLK and Voltage tables",
4903 			return -EINVAL);
4904 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
4905 		smu7_odn_initial_default_setting(hwmgr);
4906 		return 0;
4907 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
4908 		smu7_check_dpm_table_updated(hwmgr);
4909 		return 0;
4910 	} else {
4911 		return -EINVAL;
4912 	}
4913 
4914 	for (i = 0; i < size; i += 3) {
4915 		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
4916 			pr_info("invalid clock voltage input \n");
4917 			return 0;
4918 		}
4919 		input_level = input[i];
4920 		input_clk = input[i+1] * 100;
4921 		input_vol = input[i+2];
4922 
4923 		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
4924 			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
4925 			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
4926 			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
4927 			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
4928 			podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
4929 		} else {
4930 			return -EINVAL;
4931 		}
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
4938 {
4939 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4940 	uint32_t i, size = 0;
4941 	uint32_t len;
4942 
4943 	static const char *profile_name[7] = {"BOOTUP_DEFAULT",
4944 					"3D_FULL_SCREEN",
4945 					"POWER_SAVING",
4946 					"VIDEO",
4947 					"VR",
4948 					"COMPUTE",
4949 					"CUSTOM"};
4950 
4951 	static const char *title[8] = {"NUM",
4952 			"MODE_NAME",
4953 			"SCLK_UP_HYST",
4954 			"SCLK_DOWN_HYST",
4955 			"SCLK_ACTIVE_LEVEL",
4956 			"MCLK_UP_HYST",
4957 			"MCLK_DOWN_HYST",
4958 			"MCLK_ACTIVE_LEVEL"};
4959 
4960 	if (!buf)
4961 		return -EINVAL;
4962 
4963 	size += sprintf(buf + size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
4964 			title[0], title[1], title[2], title[3],
4965 			title[4], title[5], title[6], title[7]);
4966 
4967 	len = ARRAY_SIZE(smu7_profiling);
4968 
4969 	for (i = 0; i < len; i++) {
4970 		if (i == hwmgr->power_profile_mode) {
4971 			size += sprintf(buf + size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
4972 			i, profile_name[i], "*",
4973 			data->current_profile_setting.sclk_up_hyst,
4974 			data->current_profile_setting.sclk_down_hyst,
4975 			data->current_profile_setting.sclk_activity,
4976 			data->current_profile_setting.mclk_up_hyst,
4977 			data->current_profile_setting.mclk_down_hyst,
4978 			data->current_profile_setting.mclk_activity);
4979 			continue;
4980 		}
4981 		if (smu7_profiling[i].bupdate_sclk)
4982 			size += sprintf(buf + size, "%3d %16s: %8d %16d %16d ",
4983 			i, profile_name[i], smu7_profiling[i].sclk_up_hyst,
4984 			smu7_profiling[i].sclk_down_hyst,
4985 			smu7_profiling[i].sclk_activity);
4986 		else
4987 			size += sprintf(buf + size, "%3d %16s: %8s %16s %16s ",
4988 			i, profile_name[i], "-", "-", "-");
4989 
4990 		if (smu7_profiling[i].bupdate_mclk)
4991 			size += sprintf(buf + size, "%16d %16d %16d\n",
4992 			smu7_profiling[i].mclk_up_hyst,
4993 			smu7_profiling[i].mclk_down_hyst,
4994 			smu7_profiling[i].mclk_activity);
4995 		else
4996 			size += sprintf(buf + size, "%16s %16s %16s\n",
4997 			"-", "-", "-");
4998 	}
4999 
5000 	return size;
5001 }
5002 
5003 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5004 					enum PP_SMC_POWER_PROFILE requst)
5005 {
5006 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5007 	uint32_t tmp, level;
5008 
5009 	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5010 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5011 			level = 0;
5012 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5013 			while (tmp >>= 1)
5014 				level++;
5015 			if (level > 0)
5016 				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5017 		}
5018 	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5019 		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5020 	}
5021 }
5022 
5023 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5024 {
5025 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5026 	struct profile_mode_setting tmp;
5027 	enum PP_SMC_POWER_PROFILE mode;
5028 
5029 	if (input == NULL)
5030 		return -EINVAL;
5031 
5032 	mode = input[size];
5033 	switch (mode) {
5034 	case PP_SMC_POWER_PROFILE_CUSTOM:
5035 		if (size < 8 && size != 0)
5036 			return -EINVAL;
5037 		/* If only CUSTOM is passed in, use the saved values. Check
5038 		 * that we actually have a CUSTOM profile by ensuring that
5039 		 * the "use sclk" or the "use mclk" bits are set
5040 		 */
5041 		tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5042 		if (size == 0) {
5043 			if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5044 				return -EINVAL;
5045 		} else {
5046 			tmp.bupdate_sclk = input[0];
5047 			tmp.sclk_up_hyst = input[1];
5048 			tmp.sclk_down_hyst = input[2];
5049 			tmp.sclk_activity = input[3];
5050 			tmp.bupdate_mclk = input[4];
5051 			tmp.mclk_up_hyst = input[5];
5052 			tmp.mclk_down_hyst = input[6];
5053 			tmp.mclk_activity = input[7];
5054 			smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5055 		}
5056 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5057 			memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5058 			hwmgr->power_profile_mode = mode;
5059 		}
5060 		break;
5061 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5062 	case PP_SMC_POWER_PROFILE_POWERSAVING:
5063 	case PP_SMC_POWER_PROFILE_VIDEO:
5064 	case PP_SMC_POWER_PROFILE_VR:
5065 	case PP_SMC_POWER_PROFILE_COMPUTE:
5066 		if (mode == hwmgr->power_profile_mode)
5067 			return 0;
5068 
5069 		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5070 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5071 			if (tmp.bupdate_sclk) {
5072 				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5073 				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5074 				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5075 				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5076 			}
5077 			if (tmp.bupdate_mclk) {
5078 				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5079 				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5080 				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5081 				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5082 			}
5083 			smu7_patch_compute_profile_mode(hwmgr, mode);
5084 			hwmgr->power_profile_mode = mode;
5085 		}
5086 		break;
5087 	default:
5088 		return -EINVAL;
5089 	}
5090 
5091 	return 0;
5092 }
5093 
5094 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5095 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5096 				PHM_PerformanceLevel *level)
5097 {
5098 	const struct smu7_power_state *ps;
5099 	uint32_t i;
5100 
5101 	if (level == NULL || hwmgr == NULL || state == NULL)
5102 		return -EINVAL;
5103 
5104 	ps = cast_const_phw_smu7_power_state(state);
5105 
5106 	i = index > ps->performance_level_count - 1 ?
5107 			ps->performance_level_count - 1 : index;
5108 
5109 	level->coreClock = ps->performance_levels[i].engine_clock;
5110 	level->memory_clock = ps->performance_levels[i].memory_clock;
5111 
5112 	return 0;
5113 }
5114 
5115 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5116 {
5117 	int result;
5118 
5119 	result = smu7_disable_dpm_tasks(hwmgr);
5120 	PP_ASSERT_WITH_CODE((0 == result),
5121 			"[disable_dpm_tasks] Failed to disable DPM!",
5122 			);
5123 
5124 	return result;
5125 }
5126 
5127 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5128 	.backend_init = &smu7_hwmgr_backend_init,
5129 	.backend_fini = &smu7_hwmgr_backend_fini,
5130 	.asic_setup = &smu7_setup_asic_task,
5131 	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5132 	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5133 	.force_dpm_level = &smu7_force_dpm_level,
5134 	.power_state_set = smu7_set_power_state_tasks,
5135 	.get_power_state_size = smu7_get_power_state_size,
5136 	.get_mclk = smu7_dpm_get_mclk,
5137 	.get_sclk = smu7_dpm_get_sclk,
5138 	.patch_boot_state = smu7_dpm_patch_boot_state,
5139 	.get_pp_table_entry = smu7_get_pp_table_entry,
5140 	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5141 	.powerdown_uvd = smu7_powerdown_uvd,
5142 	.powergate_uvd = smu7_powergate_uvd,
5143 	.powergate_vce = smu7_powergate_vce,
5144 	.disable_clock_power_gating = smu7_disable_clock_power_gating,
5145 	.update_clock_gatings = smu7_update_clock_gatings,
5146 	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5147 	.display_config_changed = smu7_display_configuration_changed_task,
5148 	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5149 	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5150 	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5151 	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5152 	.get_fan_speed_percent = smu7_fan_ctrl_get_fan_speed_percent,
5153 	.set_fan_speed_percent = smu7_fan_ctrl_set_fan_speed_percent,
5154 	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5155 	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5156 	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5157 	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5158 	.register_irq_handlers = smu7_register_irq_handlers,
5159 	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5160 	.check_states_equal = smu7_check_states_equal,
5161 	.set_fan_control_mode = smu7_set_fan_control_mode,
5162 	.get_fan_control_mode = smu7_get_fan_control_mode,
5163 	.force_clock_level = smu7_force_clock_level,
5164 	.print_clock_levels = smu7_print_clock_levels,
5165 	.powergate_gfx = smu7_powergate_gfx,
5166 	.get_sclk_od = smu7_get_sclk_od,
5167 	.set_sclk_od = smu7_set_sclk_od,
5168 	.get_mclk_od = smu7_get_mclk_od,
5169 	.set_mclk_od = smu7_set_mclk_od,
5170 	.get_clock_by_type = smu7_get_clock_by_type,
5171 	.read_sensor = smu7_read_sensor,
5172 	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5173 	.avfs_control = smu7_avfs_control,
5174 	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5175 	.start_thermal_controller = smu7_start_thermal_controller,
5176 	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5177 	.get_max_high_clocks = smu7_get_max_high_clocks,
5178 	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5179 	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5180 	.set_power_limit = smu7_set_power_limit,
5181 	.get_power_profile_mode = smu7_get_power_profile_mode,
5182 	.set_power_profile_mode = smu7_set_power_profile_mode,
5183 	.get_performance_level = smu7_get_performance_level,
5184 	.get_asic_baco_capability = smu7_baco_get_capability,
5185 	.get_asic_baco_state = smu7_baco_get_state,
5186 	.set_asic_baco_state = smu7_baco_set_state,
5187 	.power_off_asic = smu7_power_off_asic,
5188 };
5189 
5190 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5191 		uint32_t clock_insr)
5192 {
5193 	uint8_t i;
5194 	uint32_t temp;
5195 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5196 
5197 	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5198 	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
5199 		temp = clock >> i;
5200 
5201 		if (temp >= min || i == 0)
5202 			break;
5203 	}
5204 	return i;
5205 }
5206 
5207 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5208 {
5209 	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5210 	if (hwmgr->pp_table_version == PP_TABLE_V0)
5211 		hwmgr->pptable_func = &pptable_funcs;
5212 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
5213 		hwmgr->pptable_func = &pptable_v1_0_funcs;
5214 
5215 	return 0;
5216 }
5217