xref: /openbmc/linux/drivers/gpu/drm/amd/pm/powerplay/hwmgr/smu7_hwmgr.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #if IS_ENABLED(CONFIG_X86_64)
30 #include <asm/intel-family.h>
31 #endif
32 #include <drm/amdgpu_drm.h>
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "pptable_v1_0.h"
36 #include "pppcielanes.h"
37 #include "amd_pcie_helpers.h"
38 #include "hardwaremanager.h"
39 #include "process_pptables_v1_0.h"
40 #include "cgs_common.h"
41 
42 #include "smu7_common.h"
43 
44 #include "hwmgr.h"
45 #include "smu7_hwmgr.h"
46 #include "smu_ucode_xfer_vi.h"
47 #include "smu7_powertune.h"
48 #include "smu7_dyn_defaults.h"
49 #include "smu7_thermal.h"
50 #include "smu7_clockpowergating.h"
51 #include "processpptables.h"
52 #include "pp_thermal.h"
53 #include "smu7_baco.h"
54 #include "smu7_smumgr.h"
55 #include "polaris10_smumgr.h"
56 
57 #include "ivsrcid/ivsrcid_vislands30.h"
58 
59 #define MC_CG_ARB_FREQ_F0           0x0a
60 #define MC_CG_ARB_FREQ_F1           0x0b
61 #define MC_CG_ARB_FREQ_F2           0x0c
62 #define MC_CG_ARB_FREQ_F3           0x0d
63 
64 #define MC_CG_SEQ_DRAMCONF_S0       0x05
65 #define MC_CG_SEQ_DRAMCONF_S1       0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND      0x04
67 #define MC_CG_SEQ_YCLK_RESUME       0x0a
68 
69 #define SMC_CG_IND_START            0xc0030000
70 #define SMC_CG_IND_END              0xc0040000
71 
72 #define MEM_FREQ_LOW_LATENCY        25000
73 #define MEM_FREQ_HIGH_LATENCY       80000
74 
75 #define MEM_LATENCY_HIGH            45
76 #define MEM_LATENCY_LOW             35
77 #define MEM_LATENCY_ERR             0xFFFF
78 
79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
80 #define MC_SEQ_MISC0_GDDR5_MASK  0xf0000000
81 #define MC_SEQ_MISC0_GDDR5_VALUE 5
82 
83 #define PCIE_BUS_CLK                10000
84 #define TCLK                        (PCIE_BUS_CLK / 10)
85 
86 static struct profile_mode_setting smu7_profiling[7] =
87 					{{0, 0, 0, 0, 0, 0, 0, 0},
88 					 {1, 0, 100, 30, 1, 0, 100, 10},
89 					 {1, 10, 0, 30, 0, 0, 0, 0},
90 					 {0, 0, 0, 0, 1, 10, 16, 31},
91 					 {1, 0, 11, 50, 1, 0, 100, 10},
92 					 {1, 0, 5, 30, 0, 0, 0, 0},
93 					 {0, 0, 0, 0, 0, 0, 0, 0},
94 					};
95 
96 #define PPSMC_MSG_SetVBITimeout_VEGAM    ((uint16_t) 0x310)
97 
98 #define ixPWR_SVI2_PLANE1_LOAD                     0xC0200280
99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK                    0x00000020L
100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK                 0x00000040L
101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT                  0x00000005
102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT               0x00000006
103 
104 #define STRAP_EVV_REVISION_MSB		2211
105 #define STRAP_EVV_REVISION_LSB		2208
106 
107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
108 enum DPM_EVENT_SRC {
109 	DPM_EVENT_SRC_ANALOG = 0,
110 	DPM_EVENT_SRC_EXTERNAL = 1,
111 	DPM_EVENT_SRC_DIGITAL = 2,
112 	DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
113 	DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
114 };
115 
116 #define ixDIDT_SQ_EDC_CTRL                         0x0013
117 #define ixDIDT_SQ_EDC_THRESHOLD                    0x0014
118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2            0x0015
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4            0x0016
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6            0x0017
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7              0x0018
122 
123 #define ixDIDT_TD_EDC_CTRL                         0x0053
124 #define ixDIDT_TD_EDC_THRESHOLD                    0x0054
125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2            0x0055
126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4            0x0056
127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6            0x0057
128 #define ixDIDT_TD_EDC_STALL_PATTERN_7              0x0058
129 
130 #define ixDIDT_TCP_EDC_CTRL                        0x0073
131 #define ixDIDT_TCP_EDC_THRESHOLD                   0x0074
132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2           0x0075
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4           0x0076
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6           0x0077
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7             0x0078
136 
137 #define ixDIDT_DB_EDC_CTRL                         0x0033
138 #define ixDIDT_DB_EDC_THRESHOLD                    0x0034
139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2            0x0035
140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4            0x0036
141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6            0x0037
142 #define ixDIDT_DB_EDC_STALL_PATTERN_7              0x0038
143 
144 uint32_t DIDTEDCConfig_P12[] = {
145     ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
146     ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
147     ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
148     ixDIDT_SQ_EDC_STALL_PATTERN_7,
149     ixDIDT_SQ_EDC_THRESHOLD,
150     ixDIDT_SQ_EDC_CTRL,
151     ixDIDT_TD_EDC_STALL_PATTERN_1_2,
152     ixDIDT_TD_EDC_STALL_PATTERN_3_4,
153     ixDIDT_TD_EDC_STALL_PATTERN_5_6,
154     ixDIDT_TD_EDC_STALL_PATTERN_7,
155     ixDIDT_TD_EDC_THRESHOLD,
156     ixDIDT_TD_EDC_CTRL,
157     ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
158     ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
159     ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
160     ixDIDT_TCP_EDC_STALL_PATTERN_7,
161     ixDIDT_TCP_EDC_THRESHOLD,
162     ixDIDT_TCP_EDC_CTRL,
163     ixDIDT_DB_EDC_STALL_PATTERN_1_2,
164     ixDIDT_DB_EDC_STALL_PATTERN_3_4,
165     ixDIDT_DB_EDC_STALL_PATTERN_5_6,
166     ixDIDT_DB_EDC_STALL_PATTERN_7,
167     ixDIDT_DB_EDC_THRESHOLD,
168     ixDIDT_DB_EDC_CTRL,
169     0xFFFFFFFF // End of list
170 };
171 
172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
174 		enum pp_clock_type type, uint32_t mask);
175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
176 
177 static struct smu7_power_state *cast_phw_smu7_power_state(
178 				  struct pp_hw_power_state *hw_ps)
179 {
180 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
181 				"Invalid Powerstate Type!",
182 				 return NULL);
183 
184 	return (struct smu7_power_state *)hw_ps;
185 }
186 
187 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
188 				 const struct pp_hw_power_state *hw_ps)
189 {
190 	PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
191 				"Invalid Powerstate Type!",
192 				 return NULL);
193 
194 	return (const struct smu7_power_state *)hw_ps;
195 }
196 
197 /**
198  * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
199  *
200  * @hwmgr:  the address of the powerplay hardware manager.
201  * Return:   always 0
202  */
203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
204 {
205 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
206 
207 	hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
208 
209 	return 0;
210 }
211 
212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
213 {
214 	uint32_t speedCntl = 0;
215 
216 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
217 	speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
218 			ixPCIE_LC_SPEED_CNTL);
219 	return((uint16_t)PHM_GET_FIELD(speedCntl,
220 			PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
221 }
222 
223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
224 {
225 	uint32_t link_width;
226 
227 	/* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
228 	link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
229 			PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
230 
231 	PP_ASSERT_WITH_CODE((7 >= link_width),
232 			"Invalid PCIe lane width!", return 0);
233 
234 	return decode_pcie_lane_width(link_width);
235 }
236 
237 /**
238  * smu7_enable_smc_voltage_controller - Enable voltage control
239  *
240  * @hwmgr:  the address of the powerplay hardware manager.
241  * Return:   always PP_Result_OK
242  */
243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
244 {
245 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
246 	    hwmgr->chip_id <= CHIP_VEGAM) {
247 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
248 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
249 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
250 				CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
251 	}
252 
253 	if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
254 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
255 
256 	return 0;
257 }
258 
259 /**
260  * smu7_voltage_control - Checks if we want to support voltage control
261  *
262  * @hwmgr:  the address of the powerplay hardware manager.
263  */
264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
265 {
266 	const struct smu7_hwmgr *data =
267 			(const struct smu7_hwmgr *)(hwmgr->backend);
268 
269 	return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
270 }
271 
272 /**
273  * smu7_enable_voltage_control - Enable voltage control
274  *
275  * @hwmgr:  the address of the powerplay hardware manager.
276  * Return:   always 0
277  */
278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
279 {
280 	/* enable voltage control */
281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
282 			GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
283 
284 	return 0;
285 }
286 
287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
288 		struct phm_clock_voltage_dependency_table *voltage_dependency_table
289 		)
290 {
291 	uint32_t i;
292 
293 	PP_ASSERT_WITH_CODE((NULL != voltage_table),
294 			"Voltage Dependency Table empty.", return -EINVAL;);
295 
296 	voltage_table->mask_low = 0;
297 	voltage_table->phase_delay = 0;
298 	voltage_table->count = voltage_dependency_table->count;
299 
300 	for (i = 0; i < voltage_dependency_table->count; i++) {
301 		voltage_table->entries[i].value =
302 			voltage_dependency_table->entries[i].v;
303 		voltage_table->entries[i].smio_low = 0;
304 	}
305 
306 	return 0;
307 }
308 
309 
310 /**
311  * smu7_construct_voltage_tables - Create Voltage Tables.
312  *
313  * @hwmgr:  the address of the powerplay hardware manager.
314  * Return:   always 0
315  */
316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
317 {
318 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
319 	struct phm_ppt_v1_information *table_info =
320 			(struct phm_ppt_v1_information *)hwmgr->pptable;
321 	int result = 0;
322 	uint32_t tmp;
323 
324 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
325 		result = atomctrl_get_voltage_table_v3(hwmgr,
326 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
327 				&(data->mvdd_voltage_table));
328 		PP_ASSERT_WITH_CODE((0 == result),
329 				"Failed to retrieve MVDD table.",
330 				return result);
331 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
332 		if (hwmgr->pp_table_version == PP_TABLE_V1)
333 			result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
334 					table_info->vdd_dep_on_mclk);
335 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
336 			result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
337 					hwmgr->dyn_state.mvdd_dependency_on_mclk);
338 
339 		PP_ASSERT_WITH_CODE((0 == result),
340 				"Failed to retrieve SVI2 MVDD table from dependency table.",
341 				return result;);
342 	}
343 
344 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
345 		result = atomctrl_get_voltage_table_v3(hwmgr,
346 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
347 				&(data->vddci_voltage_table));
348 		PP_ASSERT_WITH_CODE((0 == result),
349 				"Failed to retrieve VDDCI table.",
350 				return result);
351 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
352 		if (hwmgr->pp_table_version == PP_TABLE_V1)
353 			result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
354 					table_info->vdd_dep_on_mclk);
355 		else if (hwmgr->pp_table_version == PP_TABLE_V0)
356 			result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
357 					hwmgr->dyn_state.vddci_dependency_on_mclk);
358 		PP_ASSERT_WITH_CODE((0 == result),
359 				"Failed to retrieve SVI2 VDDCI table from dependency table.",
360 				return result);
361 	}
362 
363 	if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
364 		/* VDDGFX has only SVI2 voltage control */
365 		result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
366 					table_info->vddgfx_lookup_table);
367 		PP_ASSERT_WITH_CODE((0 == result),
368 			"Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
369 	}
370 
371 
372 	if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
373 		result = atomctrl_get_voltage_table_v3(hwmgr,
374 					VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
375 					&data->vddc_voltage_table);
376 		PP_ASSERT_WITH_CODE((0 == result),
377 			"Failed to retrieve VDDC table.", return result;);
378 	} else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
379 
380 		if (hwmgr->pp_table_version == PP_TABLE_V0)
381 			result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
382 					hwmgr->dyn_state.vddc_dependency_on_mclk);
383 		else if (hwmgr->pp_table_version == PP_TABLE_V1)
384 			result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
385 				table_info->vddc_lookup_table);
386 
387 		PP_ASSERT_WITH_CODE((0 == result),
388 			"Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
389 	}
390 
391 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
392 	PP_ASSERT_WITH_CODE(
393 			(data->vddc_voltage_table.count <= tmp),
394 		"Too many voltage values for VDDC. Trimming to fit state table.",
395 			phm_trim_voltage_table_to_fit_state_table(tmp,
396 						&(data->vddc_voltage_table)));
397 
398 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
399 	PP_ASSERT_WITH_CODE(
400 			(data->vddgfx_voltage_table.count <= tmp),
401 		"Too many voltage values for VDDC. Trimming to fit state table.",
402 			phm_trim_voltage_table_to_fit_state_table(tmp,
403 						&(data->vddgfx_voltage_table)));
404 
405 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
406 	PP_ASSERT_WITH_CODE(
407 			(data->vddci_voltage_table.count <= tmp),
408 		"Too many voltage values for VDDCI. Trimming to fit state table.",
409 			phm_trim_voltage_table_to_fit_state_table(tmp,
410 					&(data->vddci_voltage_table)));
411 
412 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
413 	PP_ASSERT_WITH_CODE(
414 			(data->mvdd_voltage_table.count <= tmp),
415 		"Too many voltage values for MVDD. Trimming to fit state table.",
416 			phm_trim_voltage_table_to_fit_state_table(tmp,
417 						&(data->mvdd_voltage_table)));
418 
419 	return 0;
420 }
421 
422 /**
423  * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
424  *
425  * @hwmgr:  the address of the powerplay hardware manager.
426  * Return:   always 0
427  */
428 static int smu7_program_static_screen_threshold_parameters(
429 							struct pp_hwmgr *hwmgr)
430 {
431 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
432 
433 	/* Set static screen threshold unit */
434 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
435 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
436 			data->static_screen_threshold_unit);
437 	/* Set static screen threshold */
438 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
439 			CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
440 			data->static_screen_threshold);
441 
442 	return 0;
443 }
444 
445 /**
446  * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
447  *
448  * @hwmgr:  the address of the powerplay hardware manager.
449  * Return:   always  0
450  */
451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
452 {
453 	uint32_t display_gap =
454 			cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
455 					ixCG_DISPLAY_GAP_CNTL);
456 
457 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
458 			DISP_GAP, DISPLAY_GAP_IGNORE);
459 
460 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
461 			DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
462 
463 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
464 			ixCG_DISPLAY_GAP_CNTL, display_gap);
465 
466 	return 0;
467 }
468 
469 /**
470  * smu7_program_voting_clients - Programs activity state transition voting clients
471  *
472  * @hwmgr:  the address of the powerplay hardware manager.
473  * Return:   always  0
474  */
475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
476 {
477 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 	int i;
479 
480 	/* Clear reset for voting clients before enabling DPM */
481 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
482 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
483 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
484 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
485 
486 	for (i = 0; i < 8; i++)
487 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
488 					ixCG_FREQ_TRAN_VOTING_0 + i * 4,
489 					data->voting_rights_clients[i]);
490 	return 0;
491 }
492 
493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
494 {
495 	int i;
496 
497 	/* Reset voting clients before disabling DPM */
498 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
499 			SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
500 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
501 			SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
502 
503 	for (i = 0; i < 8; i++)
504 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 				ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
506 
507 	return 0;
508 }
509 
510 /* Copy one arb setting to another and then switch the active set.
511  * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
512  */
513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
514 		uint32_t arb_src, uint32_t arb_dest)
515 {
516 	uint32_t mc_arb_dram_timing;
517 	uint32_t mc_arb_dram_timing2;
518 	uint32_t burst_time;
519 	uint32_t mc_cg_config;
520 
521 	switch (arb_src) {
522 	case MC_CG_ARB_FREQ_F0:
523 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
524 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
525 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
526 		break;
527 	case MC_CG_ARB_FREQ_F1:
528 		mc_arb_dram_timing  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
529 		mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
530 		burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
531 		break;
532 	default:
533 		return -EINVAL;
534 	}
535 
536 	switch (arb_dest) {
537 	case MC_CG_ARB_FREQ_F0:
538 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
539 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
540 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
541 		break;
542 	case MC_CG_ARB_FREQ_F1:
543 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
544 		cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
545 		PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
546 		break;
547 	default:
548 		return -EINVAL;
549 	}
550 
551 	mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
552 	mc_cg_config |= 0x0000000F;
553 	cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
554 	PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
555 
556 	return 0;
557 }
558 
559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
560 {
561 	return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
562 }
563 
564 /**
565  * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
566  *
567  * @hwmgr:  the address of the powerplay hardware manager.
568  * Return:   always 0
569  * This function is to be called from the SetPowerState table.
570  */
571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
572 {
573 	return smu7_copy_and_switch_arb_sets(hwmgr,
574 			MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
575 }
576 
577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
578 {
579 	uint32_t tmp;
580 
581 	tmp = (cgs_read_ind_register(hwmgr->device,
582 			CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
583 			0x0000ff00) >> 8;
584 
585 	if (tmp == MC_CG_ARB_FREQ_F0)
586 		return 0;
587 
588 	return smu7_copy_and_switch_arb_sets(hwmgr,
589 			tmp, MC_CG_ARB_FREQ_F0);
590 }
591 
592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
593 {
594 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
595 	uint16_t pcie_gen = 0;
596 
597 	if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
598 	    adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
599 		pcie_gen = 3;
600 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
601 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
602 		pcie_gen = 2;
603 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
604 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
605 		pcie_gen = 1;
606 	else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
607 		adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
608 		pcie_gen = 0;
609 
610 	return pcie_gen;
611 }
612 
613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
614 {
615 	struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
616 	uint16_t pcie_width = 0;
617 
618 	if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
619 		pcie_width = 16;
620 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
621 		pcie_width = 12;
622 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
623 		pcie_width = 8;
624 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
625 		pcie_width = 4;
626 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
627 		pcie_width = 2;
628 	else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
629 		pcie_width = 1;
630 
631 	return pcie_width;
632 }
633 
634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
635 {
636 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
637 
638 	struct phm_ppt_v1_information *table_info =
639 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
640 	struct phm_ppt_v1_pcie_table *pcie_table = NULL;
641 
642 	uint32_t i, max_entry;
643 	uint32_t tmp;
644 
645 	PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
646 			data->use_pcie_power_saving_levels), "No pcie performance levels!",
647 			return -EINVAL);
648 
649 	if (table_info != NULL)
650 		pcie_table = table_info->pcie_table;
651 
652 	if (data->use_pcie_performance_levels &&
653 			!data->use_pcie_power_saving_levels) {
654 		data->pcie_gen_power_saving = data->pcie_gen_performance;
655 		data->pcie_lane_power_saving = data->pcie_lane_performance;
656 	} else if (!data->use_pcie_performance_levels &&
657 			data->use_pcie_power_saving_levels) {
658 		data->pcie_gen_performance = data->pcie_gen_power_saving;
659 		data->pcie_lane_performance = data->pcie_lane_power_saving;
660 	}
661 	tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
662 	phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
663 					tmp,
664 					MAX_REGULAR_DPM_NUMBER);
665 
666 	if (pcie_table != NULL) {
667 		/* max_entry is used to make sure we reserve one PCIE level
668 		 * for boot level (fix for A+A PSPP issue).
669 		 * If PCIE table from PPTable have ULV entry + 8 entries,
670 		 * then ignore the last entry.*/
671 		max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
672 		for (i = 1; i < max_entry; i++) {
673 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
674 					get_pcie_gen_support(data->pcie_gen_cap,
675 							pcie_table->entries[i].gen_speed),
676 					get_pcie_lane_support(data->pcie_lane_cap,
677 							pcie_table->entries[i].lane_width));
678 		}
679 		data->dpm_table.pcie_speed_table.count = max_entry - 1;
680 		smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
681 	} else {
682 		/* Hardcode Pcie Table */
683 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
684 				get_pcie_gen_support(data->pcie_gen_cap,
685 						PP_Min_PCIEGen),
686 				get_pcie_lane_support(data->pcie_lane_cap,
687 						PP_Max_PCIELane));
688 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
689 				get_pcie_gen_support(data->pcie_gen_cap,
690 						PP_Min_PCIEGen),
691 				get_pcie_lane_support(data->pcie_lane_cap,
692 						PP_Max_PCIELane));
693 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
694 				get_pcie_gen_support(data->pcie_gen_cap,
695 						PP_Max_PCIEGen),
696 				get_pcie_lane_support(data->pcie_lane_cap,
697 						PP_Max_PCIELane));
698 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
699 				get_pcie_gen_support(data->pcie_gen_cap,
700 						PP_Max_PCIEGen),
701 				get_pcie_lane_support(data->pcie_lane_cap,
702 						PP_Max_PCIELane));
703 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
704 				get_pcie_gen_support(data->pcie_gen_cap,
705 						PP_Max_PCIEGen),
706 				get_pcie_lane_support(data->pcie_lane_cap,
707 						PP_Max_PCIELane));
708 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
709 				get_pcie_gen_support(data->pcie_gen_cap,
710 						PP_Max_PCIEGen),
711 				get_pcie_lane_support(data->pcie_lane_cap,
712 						PP_Max_PCIELane));
713 
714 		data->dpm_table.pcie_speed_table.count = 6;
715 	}
716 	/* Populate last level for boot PCIE level, but do not increment count. */
717 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
718 		for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
719 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
720 				get_pcie_gen_support(data->pcie_gen_cap,
721 						PP_Max_PCIEGen),
722 				data->vbios_boot_state.pcie_lane_bootup_value);
723 	} else {
724 		phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
725 			data->dpm_table.pcie_speed_table.count,
726 			get_pcie_gen_support(data->pcie_gen_cap,
727 					PP_Min_PCIEGen),
728 			get_pcie_lane_support(data->pcie_lane_cap,
729 					PP_Max_PCIELane));
730 
731 		if (data->pcie_dpm_key_disabled)
732 			phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
733 				data->dpm_table.pcie_speed_table.count,
734 				smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
735 	}
736 	return 0;
737 }
738 
739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
740 {
741 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
742 
743 	memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
744 
745 	phm_reset_single_dpm_table(
746 			&data->dpm_table.sclk_table,
747 				smum_get_mac_definition(hwmgr,
748 					SMU_MAX_LEVELS_GRAPHICS),
749 					MAX_REGULAR_DPM_NUMBER);
750 	phm_reset_single_dpm_table(
751 			&data->dpm_table.mclk_table,
752 			smum_get_mac_definition(hwmgr,
753 				SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
754 
755 	phm_reset_single_dpm_table(
756 			&data->dpm_table.vddc_table,
757 				smum_get_mac_definition(hwmgr,
758 					SMU_MAX_LEVELS_VDDC),
759 					MAX_REGULAR_DPM_NUMBER);
760 	phm_reset_single_dpm_table(
761 			&data->dpm_table.vddci_table,
762 			smum_get_mac_definition(hwmgr,
763 				SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
764 
765 	phm_reset_single_dpm_table(
766 			&data->dpm_table.mvdd_table,
767 				smum_get_mac_definition(hwmgr,
768 					SMU_MAX_LEVELS_MVDD),
769 					MAX_REGULAR_DPM_NUMBER);
770 	return 0;
771 }
772 /*
773  * This function is to initialize all DPM state tables
774  * for SMU7 based on the dependency table.
775  * Dynamic state patching function will then trim these
776  * state tables to the allowed range based
777  * on the power policy or external client requests,
778  * such as UVD request, etc.
779  */
780 
781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
782 {
783 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
784 	struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
785 		hwmgr->dyn_state.vddc_dependency_on_sclk;
786 	struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
787 		hwmgr->dyn_state.vddc_dependency_on_mclk;
788 	struct phm_cac_leakage_table *std_voltage_table =
789 		hwmgr->dyn_state.cac_leakage_table;
790 	uint32_t i;
791 
792 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
793 		"SCLK dependency table is missing. This table is mandatory", return -EINVAL);
794 	PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
795 		"SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
796 
797 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
798 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
799 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
800 		"VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
801 
802 
803 	/* Initialize Sclk DPM table based on allow Sclk values*/
804 	data->dpm_table.sclk_table.count = 0;
805 
806 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
807 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
808 				allowed_vdd_sclk_table->entries[i].clk) {
809 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
810 				allowed_vdd_sclk_table->entries[i].clk;
811 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
812 			data->dpm_table.sclk_table.count++;
813 		}
814 	}
815 
816 	PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
817 		"MCLK dependency table is missing. This table is mandatory", return -EINVAL);
818 	/* Initialize Mclk DPM table based on allow Mclk values */
819 	data->dpm_table.mclk_table.count = 0;
820 	for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
821 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
822 			allowed_vdd_mclk_table->entries[i].clk) {
823 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
824 				allowed_vdd_mclk_table->entries[i].clk;
825 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
826 			data->dpm_table.mclk_table.count++;
827 		}
828 	}
829 
830 	/* Initialize Vddc DPM table based on allow Vddc values.  And populate corresponding std values. */
831 	for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
832 		data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
833 		data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
834 		/* param1 is for corresponding std voltage */
835 		data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
836 	}
837 
838 	data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
839 	allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
840 
841 	if (NULL != allowed_vdd_mclk_table) {
842 		/* Initialize Vddci DPM table based on allow Mclk values */
843 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
844 			data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
845 			data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
846 		}
847 		data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
848 	}
849 
850 	allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
851 
852 	if (NULL != allowed_vdd_mclk_table) {
853 		/*
854 		 * Initialize MVDD DPM table based on allow Mclk
855 		 * values
856 		 */
857 		for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
858 			data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
859 			data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
860 		}
861 		data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
862 	}
863 
864 	return 0;
865 }
866 
867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
868 {
869 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
870 	struct phm_ppt_v1_information *table_info =
871 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
872 	uint32_t i;
873 
874 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
875 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
876 
877 	if (table_info == NULL)
878 		return -EINVAL;
879 
880 	dep_sclk_table = table_info->vdd_dep_on_sclk;
881 	dep_mclk_table = table_info->vdd_dep_on_mclk;
882 
883 	PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
884 			"SCLK dependency table is missing.",
885 			return -EINVAL);
886 	PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
887 			"SCLK dependency table count is 0.",
888 			return -EINVAL);
889 
890 	PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
891 			"MCLK dependency table is missing.",
892 			return -EINVAL);
893 	PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
894 			"MCLK dependency table count is 0",
895 			return -EINVAL);
896 
897 	/* Initialize Sclk DPM table based on allow Sclk values */
898 	data->dpm_table.sclk_table.count = 0;
899 	for (i = 0; i < dep_sclk_table->count; i++) {
900 		if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
901 						dep_sclk_table->entries[i].clk) {
902 
903 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
904 					dep_sclk_table->entries[i].clk;
905 
906 			data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
907 					(i == 0) ? true : false;
908 			data->dpm_table.sclk_table.count++;
909 		}
910 	}
911 	if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
912 		hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
913 	/* Initialize Mclk DPM table based on allow Mclk values */
914 	data->dpm_table.mclk_table.count = 0;
915 	for (i = 0; i < dep_mclk_table->count; i++) {
916 		if (i == 0 || data->dpm_table.mclk_table.dpm_levels
917 				[data->dpm_table.mclk_table.count - 1].value !=
918 						dep_mclk_table->entries[i].clk) {
919 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
920 							dep_mclk_table->entries[i].clk;
921 			data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
922 							(i == 0) ? true : false;
923 			data->dpm_table.mclk_table.count++;
924 		}
925 	}
926 
927 	if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
928 		hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
929 	return 0;
930 }
931 
932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
933 {
934 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
935 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
936 	struct phm_ppt_v1_information *table_info =
937 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
938 	uint32_t i;
939 
940 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
941 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
942 	struct phm_odn_performance_level *entries;
943 
944 	if (table_info == NULL)
945 		return -EINVAL;
946 
947 	dep_sclk_table = table_info->vdd_dep_on_sclk;
948 	dep_mclk_table = table_info->vdd_dep_on_mclk;
949 
950 	odn_table->odn_core_clock_dpm_levels.num_of_pl =
951 						data->golden_dpm_table.sclk_table.count;
952 	entries = odn_table->odn_core_clock_dpm_levels.entries;
953 	for (i=0; i<data->golden_dpm_table.sclk_table.count; i++) {
954 		entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
955 		entries[i].enabled = true;
956 		entries[i].vddc = dep_sclk_table->entries[i].vddc;
957 	}
958 
959 	smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
960 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
961 
962 	odn_table->odn_memory_clock_dpm_levels.num_of_pl =
963 						data->golden_dpm_table.mclk_table.count;
964 	entries = odn_table->odn_memory_clock_dpm_levels.entries;
965 	for (i=0; i<data->golden_dpm_table.mclk_table.count; i++) {
966 		entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
967 		entries[i].enabled = true;
968 		entries[i].vddc = dep_mclk_table->entries[i].vddc;
969 	}
970 
971 	smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
972 		(struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
973 
974 	return 0;
975 }
976 
977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
978 {
979 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
980 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
981 	struct phm_ppt_v1_information *table_info =
982 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
983 	uint32_t min_vddc = 0;
984 	uint32_t max_vddc = 0;
985 
986 	if (!table_info)
987 		return;
988 
989 	dep_sclk_table = table_info->vdd_dep_on_sclk;
990 
991 	atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
992 
993 	if (min_vddc == 0 || min_vddc > 2000
994 		|| min_vddc > dep_sclk_table->entries[0].vddc)
995 		min_vddc = dep_sclk_table->entries[0].vddc;
996 
997 	if (max_vddc == 0 || max_vddc > 2000
998 		|| max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
999 		max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1000 
1001 	data->odn_dpm_table.min_vddc = min_vddc;
1002 	data->odn_dpm_table.max_vddc = max_vddc;
1003 }
1004 
1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1006 {
1007 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1009 	struct phm_ppt_v1_information *table_info =
1010 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 	uint32_t i;
1012 
1013 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1014 	struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1015 
1016 	if (table_info == NULL)
1017 		return;
1018 
1019 	for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1020 		if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1021 					data->dpm_table.sclk_table.dpm_levels[i].value) {
1022 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1023 			break;
1024 		}
1025 	}
1026 
1027 	for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1028 		if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1029 					data->dpm_table.mclk_table.dpm_levels[i].value) {
1030 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1031 			break;
1032 		}
1033 	}
1034 
1035 	dep_table = table_info->vdd_dep_on_mclk;
1036 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1037 
1038 	for (i = 0; i < dep_table->count; i++) {
1039 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1040 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1041 			return;
1042 		}
1043 	}
1044 
1045 	dep_table = table_info->vdd_dep_on_sclk;
1046 	odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1047 	for (i = 0; i < dep_table->count; i++) {
1048 		if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1049 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1050 			return;
1051 		}
1052 	}
1053 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1054 		data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1055 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1056 	}
1057 }
1058 
1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1060 {
1061 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1062 
1063 	smu7_reset_dpm_tables(hwmgr);
1064 
1065 	if (hwmgr->pp_table_version == PP_TABLE_V1)
1066 		smu7_setup_dpm_tables_v1(hwmgr);
1067 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
1068 		smu7_setup_dpm_tables_v0(hwmgr);
1069 
1070 	smu7_setup_default_pcie_table(hwmgr);
1071 
1072 	/* save a copy of the default DPM table */
1073 	memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1074 			sizeof(struct smu7_dpm_table));
1075 
1076 	/* initialize ODN table */
1077 	if (hwmgr->od_enabled) {
1078 		if (data->odn_dpm_table.max_vddc) {
1079 			smu7_check_dpm_table_updated(hwmgr);
1080 		} else {
1081 			smu7_setup_voltage_range_from_vbios(hwmgr);
1082 			smu7_odn_initial_default_setting(hwmgr);
1083 		}
1084 	}
1085 	return 0;
1086 }
1087 
1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1089 {
1090 
1091 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1092 			PHM_PlatformCaps_RegulatorHot))
1093 		return smum_send_msg_to_smc(hwmgr,
1094 				PPSMC_MSG_EnableVRHotGPIOInterrupt,
1095 				NULL);
1096 
1097 	return 0;
1098 }
1099 
1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1101 {
1102 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1103 			SCLK_PWRMGT_OFF, 0);
1104 	return 0;
1105 }
1106 
1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1108 {
1109 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1110 
1111 	if (data->ulv_supported)
1112 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1113 
1114 	return 0;
1115 }
1116 
1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1118 {
1119 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1120 
1121 	if (data->ulv_supported)
1122 		return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1123 
1124 	return 0;
1125 }
1126 
1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1128 {
1129 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1130 			PHM_PlatformCaps_SclkDeepSleep)) {
1131 		if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1132 			PP_ASSERT_WITH_CODE(false,
1133 					"Attempt to enable Master Deep Sleep switch failed!",
1134 					return -EINVAL);
1135 	} else {
1136 		if (smum_send_msg_to_smc(hwmgr,
1137 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1138 				NULL)) {
1139 			PP_ASSERT_WITH_CODE(false,
1140 					"Attempt to disable Master Deep Sleep switch failed!",
1141 					return -EINVAL);
1142 		}
1143 	}
1144 
1145 	return 0;
1146 }
1147 
1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1149 {
1150 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1151 			PHM_PlatformCaps_SclkDeepSleep)) {
1152 		if (smum_send_msg_to_smc(hwmgr,
1153 				PPSMC_MSG_MASTER_DeepSleep_OFF,
1154 				NULL)) {
1155 			PP_ASSERT_WITH_CODE(false,
1156 					"Attempt to disable Master Deep Sleep switch failed!",
1157 					return -EINVAL);
1158 		}
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1165 {
1166 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1167 	uint32_t soft_register_value = 0;
1168 	uint32_t handshake_disables_offset = data->soft_regs_start
1169 				+ smum_get_offsetof(hwmgr,
1170 					SMU_SoftRegisters, HandshakeDisables);
1171 
1172 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1173 				CGS_IND_REG__SMC, handshake_disables_offset);
1174 	soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1175 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1176 			handshake_disables_offset, soft_register_value);
1177 	return 0;
1178 }
1179 
1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1181 {
1182 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1183 	uint32_t soft_register_value = 0;
1184 	uint32_t handshake_disables_offset = data->soft_regs_start
1185 				+ smum_get_offsetof(hwmgr,
1186 					SMU_SoftRegisters, HandshakeDisables);
1187 
1188 	soft_register_value = cgs_read_ind_register(hwmgr->device,
1189 				CGS_IND_REG__SMC, handshake_disables_offset);
1190 	soft_register_value |= smum_get_mac_definition(hwmgr,
1191 					SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1192 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 			handshake_disables_offset, soft_register_value);
1194 	return 0;
1195 }
1196 
1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200 
1201 	/* enable SCLK dpm */
1202 	if (!data->sclk_dpm_key_disabled) {
1203 		if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1204 		    hwmgr->chip_id <= CHIP_VEGAM)
1205 			smu7_disable_sclk_vce_handshake(hwmgr);
1206 
1207 		PP_ASSERT_WITH_CODE(
1208 		(0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1209 		"Failed to enable SCLK DPM during DPM Start Function!",
1210 		return -EINVAL);
1211 	}
1212 
1213 	/* enable MCLK dpm */
1214 	if (0 == data->mclk_dpm_key_disabled) {
1215 		if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1216 			smu7_disable_handshake_uvd(hwmgr);
1217 
1218 		PP_ASSERT_WITH_CODE(
1219 				(0 == smum_send_msg_to_smc(hwmgr,
1220 						PPSMC_MSG_MCLKDPM_Enable,
1221 						NULL)),
1222 				"Failed to enable MCLK DPM during DPM Start Function!",
1223 				return -EINVAL);
1224 
1225 		if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1226 		    (hwmgr->chip_id == CHIP_POLARIS10) ||
1227 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
1228 		    (hwmgr->chip_id == CHIP_POLARIS12) ||
1229 		    (hwmgr->chip_id == CHIP_TONGA) ||
1230 		    (hwmgr->chip_id == CHIP_TOPAZ))
1231 			PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1232 
1233 
1234 		if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1235 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1236 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1237 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1238 			udelay(10);
1239 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1240 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1241 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1242 		} else {
1243 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1244 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1245 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1246 			udelay(10);
1247 			if (hwmgr->chip_id == CHIP_VEGAM) {
1248 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1249 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1250 			} else {
1251 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1252 				cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1253 			}
1254 			cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1255 		}
1256 	}
1257 
1258 	return 0;
1259 }
1260 
1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1262 {
1263 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1264 
1265 	/*enable general power management */
1266 
1267 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1268 			GLOBAL_PWRMGT_EN, 1);
1269 
1270 	/* enable sclk deep sleep */
1271 
1272 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1273 			DYNAMIC_PM_EN, 1);
1274 
1275 	/* prepare for PCIE DPM */
1276 
1277 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1278 			data->soft_regs_start +
1279 			smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1280 						VoltageChangeTimeout), 0x1000);
1281 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1282 			SWRST_COMMAND_1, RESETLC, 0x0);
1283 
1284 	if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1285 		cgs_write_register(hwmgr->device, 0x1488,
1286 			(cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1287 
1288 	if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1289 		pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1290 		return -EINVAL;
1291 	}
1292 
1293 	/* enable PCIE dpm */
1294 	if (0 == data->pcie_dpm_key_disabled) {
1295 		PP_ASSERT_WITH_CODE(
1296 				(0 == smum_send_msg_to_smc(hwmgr,
1297 						PPSMC_MSG_PCIeDPM_Enable,
1298 						NULL)),
1299 				"Failed to enable pcie DPM during DPM Start Function!",
1300 				return -EINVAL);
1301 	} else {
1302 		PP_ASSERT_WITH_CODE(
1303 				(0 == smum_send_msg_to_smc(hwmgr,
1304 						PPSMC_MSG_PCIeDPM_Disable,
1305 						NULL)),
1306 				"Failed to disable pcie DPM during DPM Start Function!",
1307 				return -EINVAL);
1308 	}
1309 
1310 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1311 				PHM_PlatformCaps_Falcon_QuickTransition)) {
1312 		PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1313 				PPSMC_MSG_EnableACDCGPIOInterrupt,
1314 				NULL)),
1315 				"Failed to enable AC DC GPIO Interrupt!",
1316 				);
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1323 {
1324 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1325 
1326 	/* disable SCLK dpm */
1327 	if (!data->sclk_dpm_key_disabled) {
1328 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1329 				"Trying to disable SCLK DPM when DPM is disabled",
1330 				return 0);
1331 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1332 	}
1333 
1334 	/* disable MCLK dpm */
1335 	if (!data->mclk_dpm_key_disabled) {
1336 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1337 				"Trying to disable MCLK DPM when DPM is disabled",
1338 				return 0);
1339 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1340 	}
1341 
1342 	return 0;
1343 }
1344 
1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1346 {
1347 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348 
1349 	/* disable general power management */
1350 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1351 			GLOBAL_PWRMGT_EN, 0);
1352 	/* disable sclk deep sleep */
1353 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1354 			DYNAMIC_PM_EN, 0);
1355 
1356 	/* disable PCIE dpm */
1357 	if (!data->pcie_dpm_key_disabled) {
1358 		PP_ASSERT_WITH_CODE(
1359 				(smum_send_msg_to_smc(hwmgr,
1360 						PPSMC_MSG_PCIeDPM_Disable,
1361 						NULL) == 0),
1362 				"Failed to disable pcie DPM during DPM Stop Function!",
1363 				return -EINVAL);
1364 	}
1365 
1366 	smu7_disable_sclk_mclk_dpm(hwmgr);
1367 
1368 	PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1369 			"Trying to disable voltage DPM when DPM is disabled",
1370 			return 0);
1371 
1372 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1373 
1374 	return 0;
1375 }
1376 
1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1378 {
1379 	bool protection;
1380 	enum DPM_EVENT_SRC src;
1381 
1382 	switch (sources) {
1383 	default:
1384 		pr_err("Unknown throttling event sources.");
1385 		fallthrough;
1386 	case 0:
1387 		protection = false;
1388 		/* src is unused */
1389 		break;
1390 	case (1 << PHM_AutoThrottleSource_Thermal):
1391 		protection = true;
1392 		src = DPM_EVENT_SRC_DIGITAL;
1393 		break;
1394 	case (1 << PHM_AutoThrottleSource_External):
1395 		protection = true;
1396 		src = DPM_EVENT_SRC_EXTERNAL;
1397 		break;
1398 	case (1 << PHM_AutoThrottleSource_External) |
1399 			(1 << PHM_AutoThrottleSource_Thermal):
1400 		protection = true;
1401 		src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1402 		break;
1403 	}
1404 	/* Order matters - don't enable thermal protection for the wrong source. */
1405 	if (protection) {
1406 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1407 				DPM_EVENT_SRC, src);
1408 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1409 				THERMAL_PROTECTION_DIS,
1410 				!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1411 						PHM_PlatformCaps_ThermalController));
1412 	} else
1413 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1414 				THERMAL_PROTECTION_DIS, 1);
1415 }
1416 
1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1418 		PHM_AutoThrottleSource source)
1419 {
1420 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1421 
1422 	if (!(data->active_auto_throttle_sources & (1 << source))) {
1423 		data->active_auto_throttle_sources |= 1 << source;
1424 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1425 	}
1426 	return 0;
1427 }
1428 
1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1430 {
1431 	return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1432 }
1433 
1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1435 		PHM_AutoThrottleSource source)
1436 {
1437 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438 
1439 	if (data->active_auto_throttle_sources & (1 << source)) {
1440 		data->active_auto_throttle_sources &= ~(1 << source);
1441 		smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1442 	}
1443 	return 0;
1444 }
1445 
1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1447 {
1448 	return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1449 }
1450 
1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1452 {
1453 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1454 	data->pcie_performance_request = true;
1455 
1456 	return 0;
1457 }
1458 
1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1460 					   uint32_t *cac_config_regs,
1461 					   AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1462 {
1463 	uint32_t data, i = 0;
1464 
1465 	while (cac_config_regs[i] != 0xFFFFFFFF) {
1466 		data = edc_leakage_table->DIDT_REG[i];
1467 		cgs_write_ind_register(hwmgr->device,
1468 				       CGS_IND_REG__DIDT,
1469 				       cac_config_regs[i],
1470 				       data);
1471 		i++;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1478 {
1479 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1480 	int ret = 0;
1481 
1482 	if (!data->disable_edc_leakage_controller &&
1483 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1484 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1485 		ret = smu7_program_edc_didt_registers(hwmgr,
1486 						      DIDTEDCConfig_P12,
1487 						      &data->edc_leakage_table);
1488 		if (ret)
1489 			return ret;
1490 
1491 		ret = smum_send_msg_to_smc(hwmgr,
1492 					   (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1493 					   NULL);
1494 	} else {
1495 		ret = smum_send_msg_to_smc(hwmgr,
1496 					   (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1497 					   NULL);
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
1504 {
1505 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1506 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
1507 	int32_t tmp_sclk, count, percentage;
1508 
1509 	if (golden_dpm_table->mclk_table.count == 1) {
1510 		percentage = 70;
1511 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value;
1512 	} else {
1513 		percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
1514 				golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1515 		hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
1516 	}
1517 
1518 	tmp_sclk = hwmgr->pstate_mclk * percentage / 100;
1519 
1520 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
1521 		struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk =
1522 			hwmgr->dyn_state.vddc_dependency_on_sclk;
1523 
1524 		for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) {
1525 			if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) {
1526 				hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk;
1527 				break;
1528 			}
1529 		}
1530 		if (count < 0)
1531 			hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk;
1532 
1533 		hwmgr->pstate_sclk_peak =
1534 			vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk;
1535 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
1536 		struct phm_ppt_v1_information *table_info =
1537 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1538 		struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk =
1539 			table_info->vdd_dep_on_sclk;
1540 
1541 		for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) {
1542 			if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) {
1543 				hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk;
1544 				break;
1545 			}
1546 		}
1547 		if (count < 0)
1548 			hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk;
1549 
1550 		hwmgr->pstate_sclk_peak =
1551 			vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk;
1552 	}
1553 
1554 	hwmgr->pstate_mclk_peak =
1555 		golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1556 
1557 	/* make sure the output is in Mhz */
1558 	hwmgr->pstate_sclk /= 100;
1559 	hwmgr->pstate_mclk /= 100;
1560 	hwmgr->pstate_sclk_peak /= 100;
1561 	hwmgr->pstate_mclk_peak /= 100;
1562 }
1563 
1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1565 {
1566 	int tmp_result = 0;
1567 	int result = 0;
1568 
1569 	if (smu7_voltage_control(hwmgr)) {
1570 		tmp_result = smu7_enable_voltage_control(hwmgr);
1571 		PP_ASSERT_WITH_CODE(tmp_result == 0,
1572 				"Failed to enable voltage control!",
1573 				result = tmp_result);
1574 
1575 		tmp_result = smu7_construct_voltage_tables(hwmgr);
1576 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1577 				"Failed to construct voltage tables!",
1578 				result = tmp_result);
1579 	}
1580 	smum_initialize_mc_reg_table(hwmgr);
1581 
1582 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1583 			PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1584 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1585 				GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1586 
1587 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1588 			PHM_PlatformCaps_ThermalController))
1589 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1590 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1591 
1592 	tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1593 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 			"Failed to program static screen threshold parameters!",
1595 			result = tmp_result);
1596 
1597 	tmp_result = smu7_enable_display_gap(hwmgr);
1598 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1599 			"Failed to enable display gap!", result = tmp_result);
1600 
1601 	tmp_result = smu7_program_voting_clients(hwmgr);
1602 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1603 			"Failed to program voting clients!", result = tmp_result);
1604 
1605 	tmp_result = smum_process_firmware_header(hwmgr);
1606 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1607 			"Failed to process firmware header!", result = tmp_result);
1608 
1609 	if (hwmgr->chip_id != CHIP_VEGAM) {
1610 		tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1611 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1612 				"Failed to initialize switch from ArbF0 to F1!",
1613 				result = tmp_result);
1614 	}
1615 
1616 	result = smu7_setup_default_dpm_tables(hwmgr);
1617 	PP_ASSERT_WITH_CODE(0 == result,
1618 			"Failed to setup default DPM tables!", return result);
1619 
1620 	tmp_result = smum_init_smc_table(hwmgr);
1621 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 			"Failed to initialize SMC table!", result = tmp_result);
1623 
1624 	tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1625 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 			"Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1627 
1628 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1629 	    hwmgr->chip_id <= CHIP_VEGAM) {
1630 		tmp_result = smu7_notify_has_display(hwmgr);
1631 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1632 				"Failed to enable display setting!", result = tmp_result);
1633 	} else {
1634 		smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1635 	}
1636 
1637 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1638 	    hwmgr->chip_id <= CHIP_VEGAM) {
1639 		tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1640 		PP_ASSERT_WITH_CODE((0 == tmp_result),
1641 				"Failed to populate edc leakage registers!", result = tmp_result);
1642 	}
1643 
1644 	tmp_result = smu7_enable_sclk_control(hwmgr);
1645 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1646 			"Failed to enable SCLK control!", result = tmp_result);
1647 
1648 	tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1649 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1650 			"Failed to enable voltage control!", result = tmp_result);
1651 
1652 	tmp_result = smu7_enable_ulv(hwmgr);
1653 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1654 			"Failed to enable ULV!", result = tmp_result);
1655 
1656 	tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1657 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1658 			"Failed to enable deep sleep master switch!", result = tmp_result);
1659 
1660 	tmp_result = smu7_enable_didt_config(hwmgr);
1661 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1662 			"Failed to enable deep sleep master switch!", result = tmp_result);
1663 
1664 	tmp_result = smu7_start_dpm(hwmgr);
1665 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1666 			"Failed to start DPM!", result = tmp_result);
1667 
1668 	tmp_result = smu7_enable_smc_cac(hwmgr);
1669 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1670 			"Failed to enable SMC CAC!", result = tmp_result);
1671 
1672 	tmp_result = smu7_enable_power_containment(hwmgr);
1673 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1674 			"Failed to enable power containment!", result = tmp_result);
1675 
1676 	tmp_result = smu7_power_control_set_level(hwmgr);
1677 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1678 			"Failed to power control set level!", result = tmp_result);
1679 
1680 	tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1681 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1682 			"Failed to enable thermal auto throttle!", result = tmp_result);
1683 
1684 	tmp_result = smu7_pcie_performance_request(hwmgr);
1685 	PP_ASSERT_WITH_CODE((0 == tmp_result),
1686 			"pcie performance request failed!", result = tmp_result);
1687 
1688 	smu7_populate_umdpstate_clocks(hwmgr);
1689 
1690 	return 0;
1691 }
1692 
1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1694 {
1695 	if (!hwmgr->avfs_supported)
1696 		return 0;
1697 
1698 	if (enable) {
1699 		if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1700 				CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1701 			PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1702 					hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1703 					"Failed to enable AVFS!",
1704 					return -EINVAL);
1705 		}
1706 	} else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1707 			CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1708 		PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1709 				hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1710 				"Failed to disable AVFS!",
1711 				return -EINVAL);
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1718 {
1719 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1720 
1721 	if (!hwmgr->avfs_supported)
1722 		return 0;
1723 
1724 	if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1725 		smu7_avfs_control(hwmgr, false);
1726 	} else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1727 		smu7_avfs_control(hwmgr, false);
1728 		smu7_avfs_control(hwmgr, true);
1729 	} else {
1730 		smu7_avfs_control(hwmgr, true);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1737 {
1738 	int tmp_result, result = 0;
1739 
1740 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1741 			PHM_PlatformCaps_ThermalController))
1742 		PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1743 				GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1744 
1745 	tmp_result = smu7_disable_power_containment(hwmgr);
1746 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1747 			"Failed to disable power containment!", result = tmp_result);
1748 
1749 	tmp_result = smu7_disable_smc_cac(hwmgr);
1750 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1751 			"Failed to disable SMC CAC!", result = tmp_result);
1752 
1753 	tmp_result = smu7_disable_didt_config(hwmgr);
1754 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1755 			"Failed to disable DIDT!", result = tmp_result);
1756 
1757 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1758 			CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1759 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1760 			GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1761 
1762 	tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1763 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1764 			"Failed to disable thermal auto throttle!", result = tmp_result);
1765 
1766 	tmp_result = smu7_avfs_control(hwmgr, false);
1767 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1768 			"Failed to disable AVFS!", result = tmp_result);
1769 
1770 	tmp_result = smu7_stop_dpm(hwmgr);
1771 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1772 			"Failed to stop DPM!", result = tmp_result);
1773 
1774 	tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1775 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1776 			"Failed to disable deep sleep master switch!", result = tmp_result);
1777 
1778 	tmp_result = smu7_disable_ulv(hwmgr);
1779 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1780 			"Failed to disable ULV!", result = tmp_result);
1781 
1782 	tmp_result = smu7_clear_voting_clients(hwmgr);
1783 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1784 			"Failed to clear voting clients!", result = tmp_result);
1785 
1786 	tmp_result = smu7_reset_to_default(hwmgr);
1787 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1788 			"Failed to reset to default!", result = tmp_result);
1789 
1790 	tmp_result = smum_stop_smc(hwmgr);
1791 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1792 			"Failed to stop smc!", result = tmp_result);
1793 
1794 	tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1795 	PP_ASSERT_WITH_CODE((tmp_result == 0),
1796 			"Failed to force to switch arbf0!", result = tmp_result);
1797 
1798 	return result;
1799 }
1800 
1801 static bool intel_core_rkl_chk(void)
1802 {
1803 #if IS_ENABLED(CONFIG_X86_64)
1804 	struct cpuinfo_x86 *c = &cpu_data(0);
1805 
1806 	return (c->x86 == 6 && c->x86_model == INTEL_FAM6_ROCKETLAKE);
1807 #else
1808 	return false;
1809 #endif
1810 }
1811 
1812 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1813 {
1814 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1815 	struct phm_ppt_v1_information *table_info =
1816 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
1817 	struct amdgpu_device *adev = hwmgr->adev;
1818 	uint8_t tmp1, tmp2;
1819 	uint16_t tmp3 = 0;
1820 
1821 	data->dll_default_on = false;
1822 	data->mclk_dpm0_activity_target = 0xa;
1823 	data->vddc_vddgfx_delta = 300;
1824 	data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1825 	data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1826 	data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1827 	data->voting_rights_clients[1]= SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1828 	data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1829 	data->voting_rights_clients[3]= SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1830 	data->voting_rights_clients[4]= SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1831 	data->voting_rights_clients[5]= SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1832 	data->voting_rights_clients[6]= SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1833 	data->voting_rights_clients[7]= SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1834 
1835 	data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1836 	data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1837 	data->pcie_dpm_key_disabled =
1838 		intel_core_rkl_chk() || !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1839 	/* need to set voltage control types before EVV patching */
1840 	data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1841 	data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1842 	data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1843 	data->enable_tdc_limit_feature = true;
1844 	data->enable_pkg_pwr_tracking_feature = true;
1845 	data->force_pcie_gen = PP_PCIEGenInvalid;
1846 	data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1847 	data->current_profile_setting.bupdate_sclk = 1;
1848 	data->current_profile_setting.sclk_up_hyst = 0;
1849 	data->current_profile_setting.sclk_down_hyst = 100;
1850 	data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1851 	data->current_profile_setting.bupdate_mclk = 1;
1852 	if (hwmgr->chip_id >= CHIP_POLARIS10) {
1853 		if (adev->gmc.vram_width == 256) {
1854 			data->current_profile_setting.mclk_up_hyst = 10;
1855 			data->current_profile_setting.mclk_down_hyst = 60;
1856 			data->current_profile_setting.mclk_activity = 25;
1857 		} else if (adev->gmc.vram_width == 128) {
1858 			data->current_profile_setting.mclk_up_hyst = 5;
1859 			data->current_profile_setting.mclk_down_hyst = 16;
1860 			data->current_profile_setting.mclk_activity = 20;
1861 		} else if (adev->gmc.vram_width == 64) {
1862 			data->current_profile_setting.mclk_up_hyst = 3;
1863 			data->current_profile_setting.mclk_down_hyst = 16;
1864 			data->current_profile_setting.mclk_activity = 20;
1865 		}
1866 	} else {
1867 		data->current_profile_setting.mclk_up_hyst = 0;
1868 		data->current_profile_setting.mclk_down_hyst = 100;
1869 		data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1870 	}
1871 	hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1872 	hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1873 	hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1874 
1875 	if (hwmgr->chip_id  == CHIP_HAWAII) {
1876 		data->thermal_temp_setting.temperature_low = 94500;
1877 		data->thermal_temp_setting.temperature_high = 95000;
1878 		data->thermal_temp_setting.temperature_shutdown = 104000;
1879 	} else {
1880 		data->thermal_temp_setting.temperature_low = 99500;
1881 		data->thermal_temp_setting.temperature_high = 100000;
1882 		data->thermal_temp_setting.temperature_shutdown = 104000;
1883 	}
1884 
1885 	data->fast_watermark_threshold = 100;
1886 	if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1887 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1888 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1889 	else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1890 			VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1891 		data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1892 
1893 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1894 			PHM_PlatformCaps_ControlVDDGFX)) {
1895 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1896 			VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1897 			data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1898 		}
1899 	}
1900 
1901 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1902 			PHM_PlatformCaps_EnableMVDDControl)) {
1903 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1904 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1905 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1906 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1907 				VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1908 			data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1909 	}
1910 
1911 	if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1912 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1913 			PHM_PlatformCaps_ControlVDDGFX);
1914 
1915 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1916 			PHM_PlatformCaps_ControlVDDCI)) {
1917 		if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1918 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1919 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1920 		else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1921 				VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1922 			data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1923 	}
1924 
1925 	if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1926 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1927 				PHM_PlatformCaps_EnableMVDDControl);
1928 
1929 	if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1930 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1931 				PHM_PlatformCaps_ControlVDDCI);
1932 
1933 	data->vddc_phase_shed_control = 1;
1934 	if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1935 	    ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1936 	    ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1937 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1938 	    ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1939 		if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1940 			atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1941 							&tmp3);
1942 			tmp3 = (tmp3 >> 5) & 0x3;
1943 			data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1944 		}
1945 	} else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1946 		data->vddc_phase_shed_control = 1;
1947 	}
1948 
1949 	if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1950 		&& (table_info->cac_dtp_table->usClockStretchAmount != 0))
1951 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1952 					PHM_PlatformCaps_ClockStretcher);
1953 
1954 	data->pcie_gen_performance.max = PP_PCIEGen1;
1955 	data->pcie_gen_performance.min = PP_PCIEGen3;
1956 	data->pcie_gen_power_saving.max = PP_PCIEGen1;
1957 	data->pcie_gen_power_saving.min = PP_PCIEGen3;
1958 	data->pcie_lane_performance.max = 0;
1959 	data->pcie_lane_performance.min = 16;
1960 	data->pcie_lane_power_saving.max = 0;
1961 	data->pcie_lane_power_saving.min = 16;
1962 
1963 
1964 	if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1965 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1966 			      PHM_PlatformCaps_UVDPowerGating);
1967 	if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1968 		phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1969 			      PHM_PlatformCaps_VCEPowerGating);
1970 
1971 	data->disable_edc_leakage_controller = true;
1972 	if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1973 	    ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1974 	    (adev->asic_type == CHIP_POLARIS12) ||
1975 	    (adev->asic_type == CHIP_VEGAM))
1976 		data->disable_edc_leakage_controller = false;
1977 
1978 	if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1979 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1980 			PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1981 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1982 			PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1983 	}
1984 
1985 	if ((adev->pdev->device == 0x699F) &&
1986 	    (adev->pdev->revision == 0xCF)) {
1987 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1988 				PHM_PlatformCaps_PowerContainment);
1989 		data->enable_tdc_limit_feature = false;
1990 		data->enable_pkg_pwr_tracking_feature = false;
1991 		data->disable_edc_leakage_controller = true;
1992 		phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1993 					PHM_PlatformCaps_ClockStretcher);
1994 	}
1995 }
1996 
1997 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1998 {
1999 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2000 	struct amdgpu_device *adev = hwmgr->adev;
2001 	uint32_t asicrev1, evv_revision, max = 0, min = 0;
2002 
2003 	atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
2004 			&evv_revision);
2005 
2006 	atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
2007 
2008 	if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
2009 	    ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
2010 		min = 1200;
2011 		max = 2500;
2012 	} else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
2013 		   ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
2014 		min = 900;
2015 		max= 2100;
2016 	} else if (hwmgr->chip_id == CHIP_POLARIS10) {
2017 		if (adev->pdev->subsystem_vendor == 0x106B) {
2018 			min = 1000;
2019 			max = 2300;
2020 		} else {
2021 			if (evv_revision == 0) {
2022 				min = 1000;
2023 				max = 2300;
2024 			} else if (evv_revision == 1) {
2025 				if (asicrev1 == 326) {
2026 					min = 1200;
2027 					max = 2500;
2028 					/* TODO: PATCH RO in VBIOS */
2029 				} else {
2030 					min = 1200;
2031 					max = 2000;
2032 				}
2033 			} else if (evv_revision == 2) {
2034 				min = 1200;
2035 				max = 2500;
2036 			}
2037 		}
2038 	} else {
2039 		min = 1100;
2040 		max = 2100;
2041 	}
2042 
2043 	data->ro_range_minimum = min;
2044 	data->ro_range_maximum = max;
2045 
2046 	/* TODO: PATCH RO in VBIOS here */
2047 
2048 	return 0;
2049 }
2050 
2051 /**
2052  * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
2053  *
2054  * @hwmgr:  the address of the powerplay hardware manager.
2055  * Return:   always 0
2056  */
2057 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
2058 {
2059 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2060 	uint16_t vv_id;
2061 	uint16_t vddc = 0;
2062 	uint16_t vddgfx = 0;
2063 	uint16_t i, j;
2064 	uint32_t sclk = 0;
2065 	struct phm_ppt_v1_information *table_info =
2066 			(struct phm_ppt_v1_information *)hwmgr->pptable;
2067 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2068 
2069 	if (hwmgr->chip_id == CHIP_POLARIS10 ||
2070 	    hwmgr->chip_id == CHIP_POLARIS11 ||
2071 	    hwmgr->chip_id == CHIP_POLARIS12)
2072 		smu7_calculate_ro_range(hwmgr);
2073 
2074 	for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2075 		vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2076 
2077 		if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2078 			if ((hwmgr->pp_table_version == PP_TABLE_V1)
2079 			    && !phm_get_sclk_for_voltage_evv(hwmgr,
2080 						table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2081 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2082 							PHM_PlatformCaps_ClockStretcher)) {
2083 					sclk_table = table_info->vdd_dep_on_sclk;
2084 
2085 					for (j = 1; j < sclk_table->count; j++) {
2086 						if (sclk_table->entries[j].clk == sclk &&
2087 								sclk_table->entries[j].cks_enable == 0) {
2088 							sclk += 5000;
2089 							break;
2090 						}
2091 					}
2092 				}
2093 				if (0 == atomctrl_get_voltage_evv_on_sclk
2094 				    (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2095 				     vv_id, &vddgfx)) {
2096 					/* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2097 					PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2098 
2099 					/* the voltage should not be zero nor equal to leakage ID */
2100 					if (vddgfx != 0 && vddgfx != vv_id) {
2101 						data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2102 						data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2103 						data->vddcgfx_leakage.count++;
2104 					}
2105 				} else {
2106 					pr_info("Error retrieving EVV voltage value!\n");
2107 				}
2108 			}
2109 		} else {
2110 			if ((hwmgr->pp_table_version == PP_TABLE_V0)
2111 				|| !phm_get_sclk_for_voltage_evv(hwmgr,
2112 					table_info->vddc_lookup_table, vv_id, &sclk)) {
2113 				if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2114 						PHM_PlatformCaps_ClockStretcher)) {
2115 					if (table_info == NULL)
2116 						return -EINVAL;
2117 					sclk_table = table_info->vdd_dep_on_sclk;
2118 
2119 					for (j = 1; j < sclk_table->count; j++) {
2120 						if (sclk_table->entries[j].clk == sclk &&
2121 								sclk_table->entries[j].cks_enable == 0) {
2122 							sclk += 5000;
2123 							break;
2124 						}
2125 					}
2126 				}
2127 
2128 				if (phm_get_voltage_evv_on_sclk(hwmgr,
2129 							VOLTAGE_TYPE_VDDC,
2130 							sclk, vv_id, &vddc) == 0) {
2131 					if (vddc >= 2000 || vddc == 0)
2132 						return -EINVAL;
2133 				} else {
2134 					pr_debug("failed to retrieving EVV voltage!\n");
2135 					continue;
2136 				}
2137 
2138 				/* the voltage should not be zero nor equal to leakage ID */
2139 				if (vddc != 0 && vddc != vv_id) {
2140 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2141 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2142 					data->vddc_leakage.count++;
2143 				}
2144 			}
2145 		}
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2153  *
2154  * @hwmgr:  the address of the powerplay hardware manager.
2155  * @voltage: pointer to changing voltage
2156  * @leakage_table: pointer to leakage table
2157  */
2158 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2159 		uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2160 {
2161 	uint32_t index;
2162 
2163 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2164 	for (index = 0; index < leakage_table->count; index++) {
2165 		/* if this voltage matches a leakage voltage ID */
2166 		/* patch with actual leakage voltage */
2167 		if (leakage_table->leakage_id[index] == *voltage) {
2168 			*voltage = leakage_table->actual_voltage[index];
2169 			break;
2170 		}
2171 	}
2172 
2173 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2174 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2175 }
2176 
2177 /**
2178  * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2179  *
2180  * @hwmgr:  the address of the powerplay hardware manager.
2181  * @lookup_table: pointer to voltage lookup table
2182  * @leakage_table: pointer to leakage table
2183  * Return:     always 0
2184  */
2185 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2186 		phm_ppt_v1_voltage_lookup_table *lookup_table,
2187 		struct smu7_leakage_voltage *leakage_table)
2188 {
2189 	uint32_t i;
2190 
2191 	for (i = 0; i < lookup_table->count; i++)
2192 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2193 				&lookup_table->entries[i].us_vdd, leakage_table);
2194 
2195 	return 0;
2196 }
2197 
2198 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2199 		struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2200 		uint16_t *vddc)
2201 {
2202 	struct phm_ppt_v1_information *table_info =
2203 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2204 	smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2205 	hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2206 			table_info->max_clock_voltage_on_dc.vddc;
2207 	return 0;
2208 }
2209 
2210 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2211 		struct pp_hwmgr *hwmgr)
2212 {
2213 	uint8_t entry_id;
2214 	uint8_t voltage_id;
2215 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2216 	struct phm_ppt_v1_information *table_info =
2217 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2218 
2219 	struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2220 			table_info->vdd_dep_on_sclk;
2221 	struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2222 			table_info->vdd_dep_on_mclk;
2223 	struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2224 			table_info->mm_dep_table;
2225 
2226 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2227 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2228 			voltage_id = sclk_table->entries[entry_id].vddInd;
2229 			sclk_table->entries[entry_id].vddgfx =
2230 				table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2231 		}
2232 	} else {
2233 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2234 			voltage_id = sclk_table->entries[entry_id].vddInd;
2235 			sclk_table->entries[entry_id].vddc =
2236 				table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2237 		}
2238 	}
2239 
2240 	for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2241 		voltage_id = mclk_table->entries[entry_id].vddInd;
2242 		mclk_table->entries[entry_id].vddc =
2243 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2244 	}
2245 
2246 	for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2247 		voltage_id = mm_table->entries[entry_id].vddcInd;
2248 		mm_table->entries[entry_id].vddc =
2249 			table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2250 	}
2251 
2252 	return 0;
2253 
2254 }
2255 
2256 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2257 			phm_ppt_v1_voltage_lookup_table *look_up_table,
2258 			phm_ppt_v1_voltage_lookup_record *record)
2259 {
2260 	uint32_t i;
2261 
2262 	PP_ASSERT_WITH_CODE((NULL != look_up_table),
2263 		"Lookup Table empty.", return -EINVAL);
2264 	PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2265 		"Lookup Table empty.", return -EINVAL);
2266 
2267 	i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2268 	PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2269 		"Lookup Table is full.", return -EINVAL);
2270 
2271 	/* This is to avoid entering duplicate calculated records. */
2272 	for (i = 0; i < look_up_table->count; i++) {
2273 		if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2274 			if (look_up_table->entries[i].us_calculated == 1)
2275 				return 0;
2276 			break;
2277 		}
2278 	}
2279 
2280 	look_up_table->entries[i].us_calculated = 1;
2281 	look_up_table->entries[i].us_vdd = record->us_vdd;
2282 	look_up_table->entries[i].us_cac_low = record->us_cac_low;
2283 	look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2284 	look_up_table->entries[i].us_cac_high = record->us_cac_high;
2285 	/* Only increment the count when we're appending, not replacing duplicate entry. */
2286 	if (i == look_up_table->count)
2287 		look_up_table->count++;
2288 
2289 	return 0;
2290 }
2291 
2292 
2293 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2294 {
2295 	uint8_t entry_id;
2296 	struct phm_ppt_v1_voltage_lookup_record v_record;
2297 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2298 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2299 
2300 	phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2301 	phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2302 
2303 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2304 		for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2305 			if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2306 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2307 					sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2308 			else
2309 				v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2310 					sclk_table->entries[entry_id].vdd_offset;
2311 
2312 			sclk_table->entries[entry_id].vddc =
2313 				v_record.us_cac_low = v_record.us_cac_mid =
2314 				v_record.us_cac_high = v_record.us_vdd;
2315 
2316 			phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2317 		}
2318 
2319 		for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2320 			if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2321 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2322 					mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2323 			else
2324 				v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2325 					mclk_table->entries[entry_id].vdd_offset;
2326 
2327 			mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2328 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2329 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2330 		}
2331 	}
2332 	return 0;
2333 }
2334 
2335 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2336 {
2337 	uint8_t entry_id;
2338 	struct phm_ppt_v1_voltage_lookup_record v_record;
2339 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2340 	struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2341 	phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2342 
2343 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2344 		for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2345 			if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2346 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2347 					mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2348 			else
2349 				v_record.us_vdd = mm_table->entries[entry_id].vddc +
2350 					mm_table->entries[entry_id].vddgfx_offset;
2351 
2352 			/* Add the calculated VDDGFX to the VDDGFX lookup table */
2353 			mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2354 				v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2355 			phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2356 		}
2357 	}
2358 	return 0;
2359 }
2360 
2361 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2362 		struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2363 {
2364 	uint32_t table_size, i, j;
2365 	table_size = lookup_table->count;
2366 
2367 	PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2368 		"Lookup table is empty", return -EINVAL);
2369 
2370 	/* Sorting voltages */
2371 	for (i = 0; i < table_size - 1; i++) {
2372 		for (j = i + 1; j > 0; j--) {
2373 			if (lookup_table->entries[j].us_vdd <
2374 					lookup_table->entries[j - 1].us_vdd) {
2375 				swap(lookup_table->entries[j - 1],
2376 				     lookup_table->entries[j]);
2377 			}
2378 		}
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2385 {
2386 	int result = 0;
2387 	int tmp_result;
2388 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2389 	struct phm_ppt_v1_information *table_info =
2390 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2391 
2392 	if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2393 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2394 			table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2395 		if (tmp_result != 0)
2396 			result = tmp_result;
2397 
2398 		smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2399 			&table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2400 	} else {
2401 
2402 		tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2403 				table_info->vddc_lookup_table, &(data->vddc_leakage));
2404 		if (tmp_result)
2405 			result = tmp_result;
2406 
2407 		tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2408 				&(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2409 		if (tmp_result)
2410 			result = tmp_result;
2411 	}
2412 
2413 	tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2414 	if (tmp_result)
2415 		result = tmp_result;
2416 
2417 	tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2418 	if (tmp_result)
2419 		result = tmp_result;
2420 
2421 	tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2422 	if (tmp_result)
2423 		result = tmp_result;
2424 
2425 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2426 	if (tmp_result)
2427 		result = tmp_result;
2428 
2429 	tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2430 	if (tmp_result)
2431 		result = tmp_result;
2432 
2433 	return result;
2434 }
2435 
2436 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2437 {
2438 	struct phm_ppt_v1_information *table_info =
2439 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2440 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2441 						table_info->vdd_dep_on_sclk;
2442 	struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2443 						table_info->vddc_lookup_table;
2444 	uint16_t highest_voltage;
2445 	uint32_t i;
2446 
2447 	highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2448 
2449 	for (i = 0; i < lookup_table->count; i++) {
2450 		if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2451 		    lookup_table->entries[i].us_vdd > highest_voltage)
2452 			highest_voltage = lookup_table->entries[i].us_vdd;
2453 	}
2454 
2455 	return highest_voltage;
2456 }
2457 
2458 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2459 {
2460 	struct phm_ppt_v1_information *table_info =
2461 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2462 
2463 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2464 						table_info->vdd_dep_on_sclk;
2465 	struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2466 						table_info->vdd_dep_on_mclk;
2467 
2468 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2469 		"VDD dependency on SCLK table is missing.",
2470 		return -EINVAL);
2471 	PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2472 		"VDD dependency on SCLK table has to have is missing.",
2473 		return -EINVAL);
2474 
2475 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2476 		"VDD dependency on MCLK table is missing",
2477 		return -EINVAL);
2478 	PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2479 		"VDD dependency on MCLK table has to have is missing.",
2480 		return -EINVAL);
2481 
2482 	table_info->max_clock_voltage_on_ac.sclk =
2483 		allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2484 	table_info->max_clock_voltage_on_ac.mclk =
2485 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2486 	if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2487 		table_info->max_clock_voltage_on_ac.vddc =
2488 			smu7_find_highest_vddc(hwmgr);
2489 	else
2490 		table_info->max_clock_voltage_on_ac.vddc =
2491 			allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2492 	table_info->max_clock_voltage_on_ac.vddci =
2493 		allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2494 
2495 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2496 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2497 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2498 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2499 
2500 	return 0;
2501 }
2502 
2503 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2504 {
2505 	struct phm_ppt_v1_information *table_info =
2506 		       (struct phm_ppt_v1_information *)(hwmgr->pptable);
2507 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2508 	struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2509 	uint32_t i;
2510 	uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2511 	struct amdgpu_device *adev = hwmgr->adev;
2512 
2513 	if (table_info != NULL) {
2514 		dep_mclk_table = table_info->vdd_dep_on_mclk;
2515 		lookup_table = table_info->vddc_lookup_table;
2516 	} else
2517 		return 0;
2518 
2519 	hw_revision = adev->pdev->revision;
2520 	sub_sys_id = adev->pdev->subsystem_device;
2521 	sub_vendor_id = adev->pdev->subsystem_vendor;
2522 
2523 	if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2524 	    ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2525 	     (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2526 	     (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2527 
2528 		PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2529 					      CGS_IND_REG__SMC,
2530 					      PWR_CKS_CNTL,
2531 					      CKS_STRETCH_AMOUNT,
2532 					      0x3);
2533 
2534 		if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2535 			return 0;
2536 
2537 		for (i = 0; i < lookup_table->count; i++) {
2538 			if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2539 				dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2540 				return 0;
2541 			}
2542 		}
2543 	}
2544 	return 0;
2545 }
2546 
2547 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2548 {
2549 	struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2550 	uint32_t temp_reg;
2551 	struct phm_ppt_v1_information *table_info =
2552 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
2553 
2554 
2555 	if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2556 		temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2557 		switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2558 		case 0:
2559 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2560 			break;
2561 		case 1:
2562 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2563 			break;
2564 		case 2:
2565 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2566 			break;
2567 		case 3:
2568 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2569 			break;
2570 		case 4:
2571 			temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2572 			break;
2573 		default:
2574 			break;
2575 		}
2576 		cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2577 	}
2578 
2579 	if (table_info == NULL)
2580 		return 0;
2581 
2582 	if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2583 		hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2584 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2585 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2586 
2587 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2588 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2589 
2590 		hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2591 
2592 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2593 
2594 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2595 			(uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2596 
2597 		hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2598 
2599 		table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2600 								(table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2601 
2602 		table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2603 		table_info->cac_dtp_table->usOperatingTempStep = 1;
2604 		table_info->cac_dtp_table->usOperatingTempHyst = 1;
2605 
2606 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2607 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2608 
2609 		hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2610 			       hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2611 
2612 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2613 			       table_info->cac_dtp_table->usOperatingTempMinLimit;
2614 
2615 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2616 			       table_info->cac_dtp_table->usOperatingTempMaxLimit;
2617 
2618 		hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2619 			       table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2620 
2621 		hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2622 			       table_info->cac_dtp_table->usOperatingTempStep;
2623 
2624 		hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2625 			       table_info->cac_dtp_table->usTargetOperatingTemp;
2626 		if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2627 			phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2628 					PHM_PlatformCaps_ODFuzzyFanControlSupport);
2629 	}
2630 
2631 	return 0;
2632 }
2633 
2634 /**
2635  * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2636  *
2637  * @hwmgr:  the address of the powerplay hardware manager.
2638  * @voltage: pointer to changing voltage
2639  * @leakage_table: pointer to leakage table
2640  */
2641 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2642 		uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2643 {
2644 	uint32_t index;
2645 
2646 	/* search for leakage voltage ID 0xff01 ~ 0xff08 */
2647 	for (index = 0; index < leakage_table->count; index++) {
2648 		/* if this voltage matches a leakage voltage ID */
2649 		/* patch with actual leakage voltage */
2650 		if (leakage_table->leakage_id[index] == *voltage) {
2651 			*voltage = leakage_table->actual_voltage[index];
2652 			break;
2653 		}
2654 	}
2655 
2656 	if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2657 		pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2658 }
2659 
2660 
2661 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2662 			      struct phm_clock_voltage_dependency_table *tab)
2663 {
2664 	uint16_t i;
2665 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2666 
2667 	if (tab)
2668 		for (i = 0; i < tab->count; i++)
2669 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2670 						&data->vddc_leakage);
2671 
2672 	return 0;
2673 }
2674 
2675 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2676 			       struct phm_clock_voltage_dependency_table *tab)
2677 {
2678 	uint16_t i;
2679 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2680 
2681 	if (tab)
2682 		for (i = 0; i < tab->count; i++)
2683 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2684 							&data->vddci_leakage);
2685 
2686 	return 0;
2687 }
2688 
2689 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2690 				  struct phm_vce_clock_voltage_dependency_table *tab)
2691 {
2692 	uint16_t i;
2693 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2694 
2695 	if (tab)
2696 		for (i = 0; i < tab->count; i++)
2697 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2698 							&data->vddc_leakage);
2699 
2700 	return 0;
2701 }
2702 
2703 
2704 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2705 				  struct phm_uvd_clock_voltage_dependency_table *tab)
2706 {
2707 	uint16_t i;
2708 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2709 
2710 	if (tab)
2711 		for (i = 0; i < tab->count; i++)
2712 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2713 							&data->vddc_leakage);
2714 
2715 	return 0;
2716 }
2717 
2718 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2719 					 struct phm_phase_shedding_limits_table *tab)
2720 {
2721 	uint16_t i;
2722 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2723 
2724 	if (tab)
2725 		for (i = 0; i < tab->count; i++)
2726 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2727 							&data->vddc_leakage);
2728 
2729 	return 0;
2730 }
2731 
2732 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2733 				   struct phm_samu_clock_voltage_dependency_table *tab)
2734 {
2735 	uint16_t i;
2736 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2737 
2738 	if (tab)
2739 		for (i = 0; i < tab->count; i++)
2740 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2741 							&data->vddc_leakage);
2742 
2743 	return 0;
2744 }
2745 
2746 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2747 				  struct phm_acp_clock_voltage_dependency_table *tab)
2748 {
2749 	uint16_t i;
2750 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2751 
2752 	if (tab)
2753 		for (i = 0; i < tab->count; i++)
2754 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2755 					&data->vddc_leakage);
2756 
2757 	return 0;
2758 }
2759 
2760 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2761 				  struct phm_clock_and_voltage_limits *tab)
2762 {
2763 	uint32_t vddc, vddci;
2764 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2765 
2766 	if (tab) {
2767 		vddc = tab->vddc;
2768 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2769 						   &data->vddc_leakage);
2770 		tab->vddc = vddc;
2771 		vddci = tab->vddci;
2772 		smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2773 						   &data->vddci_leakage);
2774 		tab->vddci = vddci;
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2781 {
2782 	uint32_t i;
2783 	uint32_t vddc;
2784 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2785 
2786 	if (tab) {
2787 		for (i = 0; i < tab->count; i++) {
2788 			vddc = (uint32_t)(tab->entries[i].Vddc);
2789 			smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2790 			tab->entries[i].Vddc = (uint16_t)vddc;
2791 		}
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2798 {
2799 	int tmp;
2800 
2801 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2802 	if (tmp)
2803 		return -EINVAL;
2804 
2805 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2806 	if (tmp)
2807 		return -EINVAL;
2808 
2809 	tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2810 	if (tmp)
2811 		return -EINVAL;
2812 
2813 	tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2814 	if (tmp)
2815 		return -EINVAL;
2816 
2817 	tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2818 	if (tmp)
2819 		return -EINVAL;
2820 
2821 	tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2822 	if (tmp)
2823 		return -EINVAL;
2824 
2825 	tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2826 	if (tmp)
2827 		return -EINVAL;
2828 
2829 	tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2830 	if (tmp)
2831 		return -EINVAL;
2832 
2833 	tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2834 	if (tmp)
2835 		return -EINVAL;
2836 
2837 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2838 	if (tmp)
2839 		return -EINVAL;
2840 
2841 	tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2842 	if (tmp)
2843 		return -EINVAL;
2844 
2845 	tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2846 	if (tmp)
2847 		return -EINVAL;
2848 
2849 	return 0;
2850 }
2851 
2852 
2853 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2854 {
2855 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2856 
2857 	struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2858 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2859 	struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2860 
2861 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2862 		"VDDC dependency on SCLK table is missing. This table is mandatory",
2863 		return -EINVAL);
2864 	PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2865 		"VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2866 		return -EINVAL);
2867 
2868 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2869 		"VDDC dependency on MCLK table is missing. This table is mandatory",
2870 		return -EINVAL);
2871 	PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2872 		"VDD dependency on MCLK table has to have is missing. This table is mandatory",
2873 		return -EINVAL);
2874 
2875 	data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2876 	data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2877 
2878 	hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2879 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2880 	hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2881 		allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2882 	hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2883 		allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2884 
2885 	if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2886 		data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2887 		data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2888 	}
2889 
2890 	if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2891 		hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2892 
2893 	return 0;
2894 }
2895 
2896 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2897 {
2898 	kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2899 	hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2900 	kfree(hwmgr->backend);
2901 	hwmgr->backend = NULL;
2902 
2903 	return 0;
2904 }
2905 
2906 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2907 {
2908 	uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2909 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2910 	int i;
2911 
2912 	if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2913 		for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2914 			virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2915 			if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2916 								virtual_voltage_id,
2917 								efuse_voltage_id) == 0) {
2918 				if (vddc != 0 && vddc != virtual_voltage_id) {
2919 					data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2920 					data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2921 					data->vddc_leakage.count++;
2922 				}
2923 				if (vddci != 0 && vddci != virtual_voltage_id) {
2924 					data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2925 					data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2926 					data->vddci_leakage.count++;
2927 				}
2928 			}
2929 		}
2930 	}
2931 	return 0;
2932 }
2933 
2934 #define LEAKAGE_ID_MSB			463
2935 #define LEAKAGE_ID_LSB			454
2936 
2937 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2938 {
2939 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2940 	uint32_t efuse;
2941 	uint16_t offset;
2942 	int ret = 0;
2943 
2944 	if (data->disable_edc_leakage_controller)
2945 		return 0;
2946 
2947 	ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2948 							 &data->edc_hilo_leakage_offset_from_vbios);
2949 	if (ret)
2950 		return ret;
2951 
2952 	if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2953 	    data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2954 		atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2955 		if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2956 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2957 		else
2958 			offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2959 
2960 		ret = atomctrl_get_edc_leakage_table(hwmgr,
2961 						     &data->edc_leakage_table,
2962 						     offset);
2963 		if (ret)
2964 			return ret;
2965 	}
2966 
2967 	return ret;
2968 }
2969 
2970 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2971 {
2972 	struct smu7_hwmgr *data;
2973 	int result = 0;
2974 
2975 	data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2976 	if (data == NULL)
2977 		return -ENOMEM;
2978 
2979 	hwmgr->backend = data;
2980 	smu7_patch_voltage_workaround(hwmgr);
2981 	smu7_init_dpm_defaults(hwmgr);
2982 
2983 	/* Get leakage voltage based on leakage ID. */
2984 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2985 			PHM_PlatformCaps_EVV)) {
2986 		result = smu7_get_evv_voltages(hwmgr);
2987 		if (result) {
2988 			pr_info("Get EVV Voltage Failed.  Abort Driver loading!\n");
2989 			return -EINVAL;
2990 		}
2991 	} else {
2992 		smu7_get_elb_voltages(hwmgr);
2993 	}
2994 
2995 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
2996 		smu7_complete_dependency_tables(hwmgr);
2997 		smu7_set_private_data_based_on_pptable_v1(hwmgr);
2998 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2999 		smu7_patch_dependency_tables_with_leakage(hwmgr);
3000 		smu7_set_private_data_based_on_pptable_v0(hwmgr);
3001 	}
3002 
3003 	/* Initalize Dynamic State Adjustment Rule Settings */
3004 	result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
3005 
3006 	if (0 == result) {
3007 		struct amdgpu_device *adev = hwmgr->adev;
3008 
3009 		data->is_tlu_enabled = false;
3010 
3011 		hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3012 							SMU7_MAX_HARDWARE_POWERLEVELS;
3013 		hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3014 		hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3015 
3016 		data->pcie_gen_cap = adev->pm.pcie_gen_mask;
3017 		if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3018 			data->pcie_spc_cap = 20;
3019 		else
3020 			data->pcie_spc_cap = 16;
3021 		data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
3022 
3023 		hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3024 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3025 		hwmgr->platform_descriptor.clockStep.engineClock = 500;
3026 		hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3027 		smu7_thermal_parameter_init(hwmgr);
3028 	} else {
3029 		/* Ignore return value in here, we are cleaning up a mess. */
3030 		smu7_hwmgr_backend_fini(hwmgr);
3031 	}
3032 
3033 	result = smu7_update_edc_leakage_table(hwmgr);
3034 	if (result)
3035 		return result;
3036 
3037 	return 0;
3038 }
3039 
3040 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
3041 {
3042 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3043 	uint32_t level, tmp;
3044 
3045 	if (!data->pcie_dpm_key_disabled) {
3046 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3047 			level = 0;
3048 			tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3049 			while (tmp >>= 1)
3050 				level++;
3051 
3052 			if (level)
3053 				smum_send_msg_to_smc_with_parameter(hwmgr,
3054 						PPSMC_MSG_PCIeDPM_ForceLevel, level,
3055 						NULL);
3056 		}
3057 	}
3058 
3059 	if (!data->sclk_dpm_key_disabled) {
3060 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3061 			level = 0;
3062 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3063 			while (tmp >>= 1)
3064 				level++;
3065 
3066 			if (level)
3067 				smum_send_msg_to_smc_with_parameter(hwmgr,
3068 						PPSMC_MSG_SCLKDPM_SetEnabledMask,
3069 						(1 << level),
3070 						NULL);
3071 		}
3072 	}
3073 
3074 	if (!data->mclk_dpm_key_disabled) {
3075 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3076 			level = 0;
3077 			tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3078 			while (tmp >>= 1)
3079 				level++;
3080 
3081 			if (level)
3082 				smum_send_msg_to_smc_with_parameter(hwmgr,
3083 						PPSMC_MSG_MCLKDPM_SetEnabledMask,
3084 						(1 << level),
3085 						NULL);
3086 		}
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3093 {
3094 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3095 
3096 	if (hwmgr->pp_table_version == PP_TABLE_V1)
3097 		phm_apply_dal_min_voltage_request(hwmgr);
3098 /* TO DO  for v0 iceland and Ci*/
3099 
3100 	if (!data->sclk_dpm_key_disabled) {
3101 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3102 			smum_send_msg_to_smc_with_parameter(hwmgr,
3103 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
3104 					data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3105 					NULL);
3106 	}
3107 
3108 	if (!data->mclk_dpm_key_disabled) {
3109 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3110 			smum_send_msg_to_smc_with_parameter(hwmgr,
3111 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
3112 					data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3113 					NULL);
3114 	}
3115 
3116 	return 0;
3117 }
3118 
3119 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3120 {
3121 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3122 
3123 	if (!smum_is_dpm_running(hwmgr))
3124 		return -EINVAL;
3125 
3126 	if (!data->pcie_dpm_key_disabled) {
3127 		smum_send_msg_to_smc(hwmgr,
3128 				PPSMC_MSG_PCIeDPM_UnForceLevel,
3129 				NULL);
3130 	}
3131 
3132 	return smu7_upload_dpm_level_enable_mask(hwmgr);
3133 }
3134 
3135 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3136 {
3137 	struct smu7_hwmgr *data =
3138 			(struct smu7_hwmgr *)(hwmgr->backend);
3139 	uint32_t level;
3140 
3141 	if (!data->sclk_dpm_key_disabled)
3142 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3143 			level = phm_get_lowest_enabled_level(hwmgr,
3144 							      data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3145 			smum_send_msg_to_smc_with_parameter(hwmgr,
3146 							    PPSMC_MSG_SCLKDPM_SetEnabledMask,
3147 							    (1 << level),
3148 							    NULL);
3149 
3150 	}
3151 
3152 	if (!data->mclk_dpm_key_disabled) {
3153 		if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3154 			level = phm_get_lowest_enabled_level(hwmgr,
3155 							      data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3156 			smum_send_msg_to_smc_with_parameter(hwmgr,
3157 							    PPSMC_MSG_MCLKDPM_SetEnabledMask,
3158 							    (1 << level),
3159 							    NULL);
3160 		}
3161 	}
3162 
3163 	if (!data->pcie_dpm_key_disabled) {
3164 		if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3165 			level = phm_get_lowest_enabled_level(hwmgr,
3166 							      data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3167 			smum_send_msg_to_smc_with_parameter(hwmgr,
3168 							    PPSMC_MSG_PCIeDPM_ForceLevel,
3169 							    (level),
3170 							    NULL);
3171 		}
3172 	}
3173 
3174 	return 0;
3175 }
3176 
3177 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3178 				uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3179 {
3180 	uint32_t percentage;
3181 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3182 	struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3183 	int32_t tmp_mclk;
3184 	int32_t tmp_sclk;
3185 	int32_t count;
3186 
3187 	if (golden_dpm_table->mclk_table.count < 1)
3188 		return -EINVAL;
3189 
3190 	percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3191 			golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3192 
3193 	if (golden_dpm_table->mclk_table.count == 1) {
3194 		percentage = 70;
3195 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3196 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3197 	} else {
3198 		tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3199 		*mclk_mask = golden_dpm_table->mclk_table.count - 2;
3200 	}
3201 
3202 	tmp_sclk = tmp_mclk * percentage / 100;
3203 
3204 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3205 		for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3206 			count >= 0; count--) {
3207 			if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3208 				*sclk_mask = count;
3209 				break;
3210 			}
3211 		}
3212 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3213 			*sclk_mask = 0;
3214 
3215 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3216 			*sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3217 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3218 		struct phm_ppt_v1_information *table_info =
3219 				(struct phm_ppt_v1_information *)(hwmgr->pptable);
3220 
3221 		for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3222 			if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3223 				*sclk_mask = count;
3224 				break;
3225 			}
3226 		}
3227 		if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3228 			*sclk_mask = 0;
3229 
3230 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3231 			*sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3232 	}
3233 
3234 	if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3235 		*mclk_mask = 0;
3236 	else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3237 		*mclk_mask = golden_dpm_table->mclk_table.count - 1;
3238 
3239 	*pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3240 
3241 	return 0;
3242 }
3243 
3244 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3245 				enum amd_dpm_forced_level level)
3246 {
3247 	int ret = 0;
3248 	uint32_t sclk_mask = 0;
3249 	uint32_t mclk_mask = 0;
3250 	uint32_t pcie_mask = 0;
3251 
3252 	switch (level) {
3253 	case AMD_DPM_FORCED_LEVEL_HIGH:
3254 		ret = smu7_force_dpm_highest(hwmgr);
3255 		break;
3256 	case AMD_DPM_FORCED_LEVEL_LOW:
3257 		ret = smu7_force_dpm_lowest(hwmgr);
3258 		break;
3259 	case AMD_DPM_FORCED_LEVEL_AUTO:
3260 		ret = smu7_unforce_dpm_levels(hwmgr);
3261 		break;
3262 	case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3263 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3264 	case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3265 	case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3266 		ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3267 		if (ret)
3268 			return ret;
3269 		smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3270 		smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3271 		smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3272 		break;
3273 	case AMD_DPM_FORCED_LEVEL_MANUAL:
3274 	case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3275 	default:
3276 		break;
3277 	}
3278 
3279 	if (!ret) {
3280 		if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3281 			smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3282 		else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3283 			smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3284 	}
3285 	return ret;
3286 }
3287 
3288 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3289 {
3290 	return sizeof(struct smu7_power_state);
3291 }
3292 
3293 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3294 				 uint32_t vblank_time_us)
3295 {
3296 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3297 	uint32_t switch_limit_us;
3298 
3299 	switch (hwmgr->chip_id) {
3300 	case CHIP_POLARIS10:
3301 	case CHIP_POLARIS11:
3302 	case CHIP_POLARIS12:
3303 		if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3304 			switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3305 		else
3306 			switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3307 		break;
3308 	case CHIP_VEGAM:
3309 		switch_limit_us = 30;
3310 		break;
3311 	default:
3312 		switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3313 		break;
3314 	}
3315 
3316 	if (vblank_time_us < switch_limit_us)
3317 		return true;
3318 	else
3319 		return false;
3320 }
3321 
3322 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3323 				struct pp_power_state *request_ps,
3324 			const struct pp_power_state *current_ps)
3325 {
3326 	struct amdgpu_device *adev = hwmgr->adev;
3327 	struct smu7_power_state *smu7_ps =
3328 				cast_phw_smu7_power_state(&request_ps->hardware);
3329 	uint32_t sclk;
3330 	uint32_t mclk;
3331 	struct PP_Clocks minimum_clocks = {0};
3332 	bool disable_mclk_switching;
3333 	bool disable_mclk_switching_for_frame_lock;
3334 	bool disable_mclk_switching_for_display;
3335 	const struct phm_clock_and_voltage_limits *max_limits;
3336 	uint32_t i;
3337 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3338 	struct phm_ppt_v1_information *table_info =
3339 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3340 	int32_t count;
3341 	int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3342 	uint32_t latency;
3343 	bool latency_allowed = false;
3344 
3345 	data->battery_state = (PP_StateUILabel_Battery ==
3346 			request_ps->classification.ui_label);
3347 	data->mclk_ignore_signal = false;
3348 
3349 	max_limits = adev->pm.ac_power ?
3350 			&(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3351 			&(hwmgr->dyn_state.max_clock_voltage_on_dc);
3352 
3353 	/* Cap clock DPM tables at DC MAX if it is in DC. */
3354 	if (!adev->pm.ac_power) {
3355 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3356 			if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3357 				smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3358 			if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3359 				smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3360 		}
3361 	}
3362 
3363 	minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3364 	minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3365 
3366 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3367 			PHM_PlatformCaps_StablePState)) {
3368 		max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3369 		stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3370 
3371 		for (count = table_info->vdd_dep_on_sclk->count - 1;
3372 				count >= 0; count--) {
3373 			if (stable_pstate_sclk >=
3374 					table_info->vdd_dep_on_sclk->entries[count].clk) {
3375 				stable_pstate_sclk =
3376 						table_info->vdd_dep_on_sclk->entries[count].clk;
3377 				break;
3378 			}
3379 		}
3380 
3381 		if (count < 0)
3382 			stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3383 
3384 		stable_pstate_mclk = max_limits->mclk;
3385 
3386 		minimum_clocks.engineClock = stable_pstate_sclk;
3387 		minimum_clocks.memoryClock = stable_pstate_mclk;
3388 	}
3389 
3390 	disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3391 				    hwmgr->platform_descriptor.platformCaps,
3392 				    PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3393 
3394 	disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3395 						!hwmgr->display_config->multi_monitor_in_sync) ||
3396 						(hwmgr->display_config->num_display &&
3397 						smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3398 
3399 	disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3400 					 disable_mclk_switching_for_display;
3401 
3402 	if (hwmgr->display_config->num_display == 0) {
3403 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3404 			data->mclk_ignore_signal = true;
3405 		else
3406 			disable_mclk_switching = false;
3407 	}
3408 
3409 	sclk = smu7_ps->performance_levels[0].engine_clock;
3410 	mclk = smu7_ps->performance_levels[0].memory_clock;
3411 
3412 	if (disable_mclk_switching &&
3413 	    (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3414 	    hwmgr->chip_id <= CHIP_VEGAM)))
3415 		mclk = smu7_ps->performance_levels
3416 		[smu7_ps->performance_level_count - 1].memory_clock;
3417 
3418 	if (sclk < minimum_clocks.engineClock)
3419 		sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3420 				max_limits->sclk : minimum_clocks.engineClock;
3421 
3422 	if (mclk < minimum_clocks.memoryClock)
3423 		mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3424 				max_limits->mclk : minimum_clocks.memoryClock;
3425 
3426 	smu7_ps->performance_levels[0].engine_clock = sclk;
3427 	smu7_ps->performance_levels[0].memory_clock = mclk;
3428 
3429 	smu7_ps->performance_levels[1].engine_clock =
3430 		(smu7_ps->performance_levels[1].engine_clock >=
3431 				smu7_ps->performance_levels[0].engine_clock) ?
3432 						smu7_ps->performance_levels[1].engine_clock :
3433 						smu7_ps->performance_levels[0].engine_clock;
3434 
3435 	if (disable_mclk_switching) {
3436 		if (mclk < smu7_ps->performance_levels[1].memory_clock)
3437 			mclk = smu7_ps->performance_levels[1].memory_clock;
3438 
3439 		if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3440 			if (disable_mclk_switching_for_display) {
3441 				/* Find the lowest MCLK frequency that is within
3442 				 * the tolerable latency defined in DAL
3443 				 */
3444 				latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3445 				for (i = 0; i < data->mclk_latency_table.count; i++) {
3446 					if (data->mclk_latency_table.entries[i].latency <= latency) {
3447 						latency_allowed = true;
3448 
3449 						if ((data->mclk_latency_table.entries[i].frequency >=
3450 								smu7_ps->performance_levels[0].memory_clock) &&
3451 						    (data->mclk_latency_table.entries[i].frequency <=
3452 								smu7_ps->performance_levels[1].memory_clock)) {
3453 							mclk = data->mclk_latency_table.entries[i].frequency;
3454 							break;
3455 						}
3456 					}
3457 				}
3458 				if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3459 					data->mclk_ignore_signal = true;
3460 				} else {
3461 					data->mclk_ignore_signal = false;
3462 				}
3463 			}
3464 
3465 			if (disable_mclk_switching_for_frame_lock)
3466 				mclk = smu7_ps->performance_levels[1].memory_clock;
3467 		}
3468 
3469 		smu7_ps->performance_levels[0].memory_clock = mclk;
3470 
3471 		if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3472 		      hwmgr->chip_id <= CHIP_VEGAM))
3473 			smu7_ps->performance_levels[1].memory_clock = mclk;
3474 	} else {
3475 		if (smu7_ps->performance_levels[1].memory_clock <
3476 				smu7_ps->performance_levels[0].memory_clock)
3477 			smu7_ps->performance_levels[1].memory_clock =
3478 					smu7_ps->performance_levels[0].memory_clock;
3479 	}
3480 
3481 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3482 			PHM_PlatformCaps_StablePState)) {
3483 		for (i = 0; i < smu7_ps->performance_level_count; i++) {
3484 			smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3485 			smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3486 			smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3487 			smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3488 		}
3489 	}
3490 	return 0;
3491 }
3492 
3493 
3494 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3495 {
3496 	struct pp_power_state  *ps;
3497 	struct smu7_power_state  *smu7_ps;
3498 
3499 	if (hwmgr == NULL)
3500 		return -EINVAL;
3501 
3502 	ps = hwmgr->request_ps;
3503 
3504 	if (ps == NULL)
3505 		return -EINVAL;
3506 
3507 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3508 
3509 	if (low)
3510 		return smu7_ps->performance_levels[0].memory_clock;
3511 	else
3512 		return smu7_ps->performance_levels
3513 				[smu7_ps->performance_level_count-1].memory_clock;
3514 }
3515 
3516 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3517 {
3518 	struct pp_power_state  *ps;
3519 	struct smu7_power_state  *smu7_ps;
3520 
3521 	if (hwmgr == NULL)
3522 		return -EINVAL;
3523 
3524 	ps = hwmgr->request_ps;
3525 
3526 	if (ps == NULL)
3527 		return -EINVAL;
3528 
3529 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3530 
3531 	if (low)
3532 		return smu7_ps->performance_levels[0].engine_clock;
3533 	else
3534 		return smu7_ps->performance_levels
3535 				[smu7_ps->performance_level_count-1].engine_clock;
3536 }
3537 
3538 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3539 					struct pp_hw_power_state *hw_ps)
3540 {
3541 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3542 	struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3543 	ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3544 	uint16_t size;
3545 	uint8_t frev, crev;
3546 	int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3547 
3548 	/* First retrieve the Boot clocks and VDDC from the firmware info table.
3549 	 * We assume here that fw_info is unchanged if this call fails.
3550 	 */
3551 	fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3552 			&size, &frev, &crev);
3553 	if (!fw_info)
3554 		/* During a test, there is no firmware info table. */
3555 		return 0;
3556 
3557 	/* Patch the state. */
3558 	data->vbios_boot_state.sclk_bootup_value =
3559 			le32_to_cpu(fw_info->ulDefaultEngineClock);
3560 	data->vbios_boot_state.mclk_bootup_value =
3561 			le32_to_cpu(fw_info->ulDefaultMemoryClock);
3562 	data->vbios_boot_state.mvdd_bootup_value =
3563 			le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3564 	data->vbios_boot_state.vddc_bootup_value =
3565 			le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3566 	data->vbios_boot_state.vddci_bootup_value =
3567 			le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3568 	data->vbios_boot_state.pcie_gen_bootup_value =
3569 			smu7_get_current_pcie_speed(hwmgr);
3570 
3571 	data->vbios_boot_state.pcie_lane_bootup_value =
3572 			(uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3573 
3574 	/* set boot power state */
3575 	ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3576 	ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3577 	ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3578 	ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3579 
3580 	return 0;
3581 }
3582 
3583 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3584 {
3585 	int result;
3586 	unsigned long ret = 0;
3587 
3588 	if (hwmgr->pp_table_version == PP_TABLE_V0) {
3589 		result = pp_tables_get_num_of_entries(hwmgr, &ret);
3590 		return result ? 0 : ret;
3591 	} else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3592 		result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3593 		return result;
3594 	}
3595 	return 0;
3596 }
3597 
3598 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3599 		void *state, struct pp_power_state *power_state,
3600 		void *pp_table, uint32_t classification_flag)
3601 {
3602 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3603 	struct smu7_power_state  *smu7_power_state =
3604 			(struct smu7_power_state *)(&(power_state->hardware));
3605 	struct smu7_performance_level *performance_level;
3606 	ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3607 	ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3608 			(ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3609 	PPTable_Generic_SubTable_Header *sclk_dep_table =
3610 			(PPTable_Generic_SubTable_Header *)
3611 			(((unsigned long)powerplay_table) +
3612 				le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3613 
3614 	ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3615 			(ATOM_Tonga_MCLK_Dependency_Table *)
3616 			(((unsigned long)powerplay_table) +
3617 				le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3618 
3619 	/* The following fields are not initialized here: id orderedList allStatesList */
3620 	power_state->classification.ui_label =
3621 			(le16_to_cpu(state_entry->usClassification) &
3622 			ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3623 			ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3624 	power_state->classification.flags = classification_flag;
3625 	/* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3626 
3627 	power_state->classification.temporary_state = false;
3628 	power_state->classification.to_be_deleted = false;
3629 
3630 	power_state->validation.disallowOnDC =
3631 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3632 					ATOM_Tonga_DISALLOW_ON_DC));
3633 
3634 	power_state->pcie.lanes = 0;
3635 
3636 	power_state->display.disableFrameModulation = false;
3637 	power_state->display.limitRefreshrate = false;
3638 	power_state->display.enableVariBright =
3639 			(0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3640 					ATOM_Tonga_ENABLE_VARIBRIGHT));
3641 
3642 	power_state->validation.supportedPowerLevels = 0;
3643 	power_state->uvd_clocks.VCLK = 0;
3644 	power_state->uvd_clocks.DCLK = 0;
3645 	power_state->temperatures.min = 0;
3646 	power_state->temperatures.max = 0;
3647 
3648 	performance_level = &(smu7_power_state->performance_levels
3649 			[smu7_power_state->performance_level_count++]);
3650 
3651 	PP_ASSERT_WITH_CODE(
3652 			(smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3653 			"Performance levels exceeds SMC limit!",
3654 			return -EINVAL);
3655 
3656 	PP_ASSERT_WITH_CODE(
3657 			(smu7_power_state->performance_level_count <
3658 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3659 			"Performance levels exceeds Driver limit!",
3660 			return -EINVAL);
3661 
3662 	/* Performance levels are arranged from low to high. */
3663 	performance_level->memory_clock = mclk_dep_table->entries
3664 			[state_entry->ucMemoryClockIndexLow].ulMclk;
3665 	if (sclk_dep_table->ucRevId == 0)
3666 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3667 			[state_entry->ucEngineClockIndexLow].ulSclk;
3668 	else if (sclk_dep_table->ucRevId == 1)
3669 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3670 			[state_entry->ucEngineClockIndexLow].ulSclk;
3671 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3672 			state_entry->ucPCIEGenLow);
3673 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3674 			state_entry->ucPCIELaneLow);
3675 
3676 	performance_level = &(smu7_power_state->performance_levels
3677 			[smu7_power_state->performance_level_count++]);
3678 	performance_level->memory_clock = mclk_dep_table->entries
3679 			[state_entry->ucMemoryClockIndexHigh].ulMclk;
3680 
3681 	if (sclk_dep_table->ucRevId == 0)
3682 		performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3683 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3684 	else if (sclk_dep_table->ucRevId == 1)
3685 		performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3686 			[state_entry->ucEngineClockIndexHigh].ulSclk;
3687 
3688 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3689 			state_entry->ucPCIEGenHigh);
3690 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3691 			state_entry->ucPCIELaneHigh);
3692 
3693 	return 0;
3694 }
3695 
3696 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3697 		unsigned long entry_index, struct pp_power_state *state)
3698 {
3699 	int result;
3700 	struct smu7_power_state *ps;
3701 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3702 	struct phm_ppt_v1_information *table_info =
3703 			(struct phm_ppt_v1_information *)(hwmgr->pptable);
3704 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3705 			table_info->vdd_dep_on_mclk;
3706 
3707 	state->hardware.magic = PHM_VIslands_Magic;
3708 
3709 	ps = (struct smu7_power_state *)(&state->hardware);
3710 
3711 	result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3712 			smu7_get_pp_table_entry_callback_func_v1);
3713 
3714 	/* This is the earliest time we have all the dependency table and the VBIOS boot state
3715 	 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3716 	 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3717 	 */
3718 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3719 		if (dep_mclk_table->entries[0].clk !=
3720 				data->vbios_boot_state.mclk_bootup_value)
3721 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3722 					"does not match VBIOS boot MCLK level");
3723 		if (dep_mclk_table->entries[0].vddci !=
3724 				data->vbios_boot_state.vddci_bootup_value)
3725 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3726 					"does not match VBIOS boot VDDCI level");
3727 	}
3728 
3729 	/* set DC compatible flag if this state supports DC */
3730 	if (!state->validation.disallowOnDC)
3731 		ps->dc_compatible = true;
3732 
3733 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3734 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3735 
3736 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3737 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3738 
3739 	if (!result) {
3740 		uint32_t i;
3741 
3742 		switch (state->classification.ui_label) {
3743 		case PP_StateUILabel_Performance:
3744 			data->use_pcie_performance_levels = true;
3745 			for (i = 0; i < ps->performance_level_count; i++) {
3746 				if (data->pcie_gen_performance.max <
3747 						ps->performance_levels[i].pcie_gen)
3748 					data->pcie_gen_performance.max =
3749 							ps->performance_levels[i].pcie_gen;
3750 
3751 				if (data->pcie_gen_performance.min >
3752 						ps->performance_levels[i].pcie_gen)
3753 					data->pcie_gen_performance.min =
3754 							ps->performance_levels[i].pcie_gen;
3755 
3756 				if (data->pcie_lane_performance.max <
3757 						ps->performance_levels[i].pcie_lane)
3758 					data->pcie_lane_performance.max =
3759 							ps->performance_levels[i].pcie_lane;
3760 				if (data->pcie_lane_performance.min >
3761 						ps->performance_levels[i].pcie_lane)
3762 					data->pcie_lane_performance.min =
3763 							ps->performance_levels[i].pcie_lane;
3764 			}
3765 			break;
3766 		case PP_StateUILabel_Battery:
3767 			data->use_pcie_power_saving_levels = true;
3768 
3769 			for (i = 0; i < ps->performance_level_count; i++) {
3770 				if (data->pcie_gen_power_saving.max <
3771 						ps->performance_levels[i].pcie_gen)
3772 					data->pcie_gen_power_saving.max =
3773 							ps->performance_levels[i].pcie_gen;
3774 
3775 				if (data->pcie_gen_power_saving.min >
3776 						ps->performance_levels[i].pcie_gen)
3777 					data->pcie_gen_power_saving.min =
3778 							ps->performance_levels[i].pcie_gen;
3779 
3780 				if (data->pcie_lane_power_saving.max <
3781 						ps->performance_levels[i].pcie_lane)
3782 					data->pcie_lane_power_saving.max =
3783 							ps->performance_levels[i].pcie_lane;
3784 
3785 				if (data->pcie_lane_power_saving.min >
3786 						ps->performance_levels[i].pcie_lane)
3787 					data->pcie_lane_power_saving.min =
3788 							ps->performance_levels[i].pcie_lane;
3789 			}
3790 			break;
3791 		default:
3792 			break;
3793 		}
3794 	}
3795 	return 0;
3796 }
3797 
3798 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3799 					struct pp_hw_power_state *power_state,
3800 					unsigned int index, const void *clock_info)
3801 {
3802 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3803 	struct smu7_power_state  *ps = cast_phw_smu7_power_state(power_state);
3804 	const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3805 	struct smu7_performance_level *performance_level;
3806 	uint32_t engine_clock, memory_clock;
3807 	uint16_t pcie_gen_from_bios;
3808 
3809 	engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3810 	memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3811 
3812 	if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3813 		data->highest_mclk = memory_clock;
3814 
3815 	PP_ASSERT_WITH_CODE(
3816 			(ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3817 			"Performance levels exceeds SMC limit!",
3818 			return -EINVAL);
3819 
3820 	PP_ASSERT_WITH_CODE(
3821 			(ps->performance_level_count <
3822 					hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3823 			"Performance levels exceeds Driver limit, Skip!",
3824 			return 0);
3825 
3826 	performance_level = &(ps->performance_levels
3827 			[ps->performance_level_count++]);
3828 
3829 	/* Performance levels are arranged from low to high. */
3830 	performance_level->memory_clock = memory_clock;
3831 	performance_level->engine_clock = engine_clock;
3832 
3833 	pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3834 
3835 	performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3836 	performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3837 
3838 	return 0;
3839 }
3840 
3841 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3842 		unsigned long entry_index, struct pp_power_state *state)
3843 {
3844 	int result;
3845 	struct smu7_power_state *ps;
3846 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3847 	struct phm_clock_voltage_dependency_table *dep_mclk_table =
3848 			hwmgr->dyn_state.vddci_dependency_on_mclk;
3849 
3850 	memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3851 
3852 	state->hardware.magic = PHM_VIslands_Magic;
3853 
3854 	ps = (struct smu7_power_state *)(&state->hardware);
3855 
3856 	result = pp_tables_get_entry(hwmgr, entry_index, state,
3857 			smu7_get_pp_table_entry_callback_func_v0);
3858 
3859 	/*
3860 	 * This is the earliest time we have all the dependency table
3861 	 * and the VBIOS boot state as
3862 	 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3863 	 * state if there is only one VDDCI/MCLK level, check if it's
3864 	 * the same as VBIOS boot state
3865 	 */
3866 	if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3867 		if (dep_mclk_table->entries[0].clk !=
3868 				data->vbios_boot_state.mclk_bootup_value)
3869 			pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3870 					"does not match VBIOS boot MCLK level");
3871 		if (dep_mclk_table->entries[0].v !=
3872 				data->vbios_boot_state.vddci_bootup_value)
3873 			pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3874 					"does not match VBIOS boot VDDCI level");
3875 	}
3876 
3877 	/* set DC compatible flag if this state supports DC */
3878 	if (!state->validation.disallowOnDC)
3879 		ps->dc_compatible = true;
3880 
3881 	if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3882 		data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3883 
3884 	ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3885 	ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3886 
3887 	if (!result) {
3888 		uint32_t i;
3889 
3890 		switch (state->classification.ui_label) {
3891 		case PP_StateUILabel_Performance:
3892 			data->use_pcie_performance_levels = true;
3893 
3894 			for (i = 0; i < ps->performance_level_count; i++) {
3895 				if (data->pcie_gen_performance.max <
3896 						ps->performance_levels[i].pcie_gen)
3897 					data->pcie_gen_performance.max =
3898 							ps->performance_levels[i].pcie_gen;
3899 
3900 				if (data->pcie_gen_performance.min >
3901 						ps->performance_levels[i].pcie_gen)
3902 					data->pcie_gen_performance.min =
3903 							ps->performance_levels[i].pcie_gen;
3904 
3905 				if (data->pcie_lane_performance.max <
3906 						ps->performance_levels[i].pcie_lane)
3907 					data->pcie_lane_performance.max =
3908 							ps->performance_levels[i].pcie_lane;
3909 
3910 				if (data->pcie_lane_performance.min >
3911 						ps->performance_levels[i].pcie_lane)
3912 					data->pcie_lane_performance.min =
3913 							ps->performance_levels[i].pcie_lane;
3914 			}
3915 			break;
3916 		case PP_StateUILabel_Battery:
3917 			data->use_pcie_power_saving_levels = true;
3918 
3919 			for (i = 0; i < ps->performance_level_count; i++) {
3920 				if (data->pcie_gen_power_saving.max <
3921 						ps->performance_levels[i].pcie_gen)
3922 					data->pcie_gen_power_saving.max =
3923 							ps->performance_levels[i].pcie_gen;
3924 
3925 				if (data->pcie_gen_power_saving.min >
3926 						ps->performance_levels[i].pcie_gen)
3927 					data->pcie_gen_power_saving.min =
3928 							ps->performance_levels[i].pcie_gen;
3929 
3930 				if (data->pcie_lane_power_saving.max <
3931 						ps->performance_levels[i].pcie_lane)
3932 					data->pcie_lane_power_saving.max =
3933 							ps->performance_levels[i].pcie_lane;
3934 
3935 				if (data->pcie_lane_power_saving.min >
3936 						ps->performance_levels[i].pcie_lane)
3937 					data->pcie_lane_power_saving.min =
3938 							ps->performance_levels[i].pcie_lane;
3939 			}
3940 			break;
3941 		default:
3942 			break;
3943 		}
3944 	}
3945 	return 0;
3946 }
3947 
3948 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3949 		unsigned long entry_index, struct pp_power_state *state)
3950 {
3951 	if (hwmgr->pp_table_version == PP_TABLE_V0)
3952 		return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3953 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
3954 		return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3955 
3956 	return 0;
3957 }
3958 
3959 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3960 {
3961 	struct amdgpu_device *adev = hwmgr->adev;
3962 	int i;
3963 	u32 tmp = 0;
3964 
3965 	if (!query)
3966 		return -EINVAL;
3967 
3968 	/*
3969 	 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3970 	 *  - Hawaii
3971 	 *  - Bonaire
3972 	 *  - Fiji
3973 	 *  - Tonga
3974 	 */
3975 	if ((adev->asic_type != CHIP_HAWAII) &&
3976 	    (adev->asic_type != CHIP_BONAIRE) &&
3977 	    (adev->asic_type != CHIP_FIJI) &&
3978 	    (adev->asic_type != CHIP_TONGA)) {
3979 		smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3980 		*query = tmp;
3981 
3982 		if (tmp != 0)
3983 			return 0;
3984 	}
3985 
3986 	smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3987 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3988 							ixSMU_PM_STATUS_95, 0);
3989 
3990 	for (i = 0; i < 10; i++) {
3991 		msleep(500);
3992 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3993 		tmp = cgs_read_ind_register(hwmgr->device,
3994 						CGS_IND_REG__SMC,
3995 						ixSMU_PM_STATUS_95);
3996 		if (tmp != 0)
3997 			break;
3998 	}
3999 	*query = tmp;
4000 
4001 	return 0;
4002 }
4003 
4004 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
4005 			    void *value, int *size)
4006 {
4007 	uint32_t sclk, mclk, activity_percent;
4008 	uint32_t offset, val_vid;
4009 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4010 
4011 	/* size must be at least 4 bytes for all sensors */
4012 	if (*size < 4)
4013 		return -EINVAL;
4014 
4015 	switch (idx) {
4016 	case AMDGPU_PP_SENSOR_GFX_SCLK:
4017 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
4018 		*((uint32_t *)value) = sclk;
4019 		*size = 4;
4020 		return 0;
4021 	case AMDGPU_PP_SENSOR_GFX_MCLK:
4022 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
4023 		*((uint32_t *)value) = mclk;
4024 		*size = 4;
4025 		return 0;
4026 	case AMDGPU_PP_SENSOR_GPU_LOAD:
4027 	case AMDGPU_PP_SENSOR_MEM_LOAD:
4028 		offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
4029 								SMU_SoftRegisters,
4030 								(idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
4031 								AverageGraphicsActivity:
4032 								AverageMemoryActivity);
4033 
4034 		activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4035 		activity_percent += 0x80;
4036 		activity_percent >>= 8;
4037 		*((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
4038 		*size = 4;
4039 		return 0;
4040 	case AMDGPU_PP_SENSOR_GPU_TEMP:
4041 		*((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
4042 		*size = 4;
4043 		return 0;
4044 	case AMDGPU_PP_SENSOR_UVD_POWER:
4045 		*((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4046 		*size = 4;
4047 		return 0;
4048 	case AMDGPU_PP_SENSOR_VCE_POWER:
4049 		*((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4050 		*size = 4;
4051 		return 0;
4052 	case AMDGPU_PP_SENSOR_GPU_POWER:
4053 		return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4054 	case AMDGPU_PP_SENSOR_VDDGFX:
4055 		if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4056 		    (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4057 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4058 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4059 		else
4060 			val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4061 					CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4062 
4063 		*((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4064 		return 0;
4065 	default:
4066 		return -EOPNOTSUPP;
4067 	}
4068 }
4069 
4070 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4071 {
4072 	const struct phm_set_power_state_input *states =
4073 			(const struct phm_set_power_state_input *)input;
4074 	const struct smu7_power_state *smu7_ps =
4075 			cast_const_phw_smu7_power_state(states->pnew_state);
4076 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4077 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4078 	uint32_t sclk = smu7_ps->performance_levels
4079 			[smu7_ps->performance_level_count - 1].engine_clock;
4080 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4081 	uint32_t mclk = smu7_ps->performance_levels
4082 			[smu7_ps->performance_level_count - 1].memory_clock;
4083 	struct PP_Clocks min_clocks = {0};
4084 	uint32_t i;
4085 
4086 	for (i = 0; i < sclk_table->count; i++) {
4087 		if (sclk == sclk_table->dpm_levels[i].value)
4088 			break;
4089 	}
4090 
4091 	if (i >= sclk_table->count) {
4092 		if (sclk > sclk_table->dpm_levels[i-1].value) {
4093 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4094 			sclk_table->dpm_levels[i-1].value = sclk;
4095 		}
4096 	} else {
4097 	/* TODO: Check SCLK in DAL's minimum clocks
4098 	 * in case DeepSleep divider update is required.
4099 	 */
4100 		if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4101 			(min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4102 				data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4103 			data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4104 	}
4105 
4106 	for (i = 0; i < mclk_table->count; i++) {
4107 		if (mclk == mclk_table->dpm_levels[i].value)
4108 			break;
4109 	}
4110 
4111 	if (i >= mclk_table->count) {
4112 		if (mclk > mclk_table->dpm_levels[i-1].value) {
4113 			data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4114 			mclk_table->dpm_levels[i-1].value = mclk;
4115 		}
4116 	}
4117 
4118 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4119 		data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4120 
4121 	return 0;
4122 }
4123 
4124 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4125 		const struct smu7_power_state *smu7_ps)
4126 {
4127 	uint32_t i;
4128 	uint32_t sclk, max_sclk = 0;
4129 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4130 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4131 
4132 	for (i = 0; i < smu7_ps->performance_level_count; i++) {
4133 		sclk = smu7_ps->performance_levels[i].engine_clock;
4134 		if (max_sclk < sclk)
4135 			max_sclk = sclk;
4136 	}
4137 
4138 	for (i = 0; i < dpm_table->sclk_table.count; i++) {
4139 		if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4140 			return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4141 					dpm_table->pcie_speed_table.dpm_levels
4142 					[dpm_table->pcie_speed_table.count - 1].value :
4143 					dpm_table->pcie_speed_table.dpm_levels[i].value);
4144 	}
4145 
4146 	return 0;
4147 }
4148 
4149 static int smu7_request_link_speed_change_before_state_change(
4150 		struct pp_hwmgr *hwmgr, const void *input)
4151 {
4152 	const struct phm_set_power_state_input *states =
4153 			(const struct phm_set_power_state_input *)input;
4154 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4155 	const struct smu7_power_state *smu7_nps =
4156 			cast_const_phw_smu7_power_state(states->pnew_state);
4157 	const struct smu7_power_state *polaris10_cps =
4158 			cast_const_phw_smu7_power_state(states->pcurrent_state);
4159 
4160 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4161 	uint16_t current_link_speed;
4162 
4163 	if (data->force_pcie_gen == PP_PCIEGenInvalid)
4164 		current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4165 	else
4166 		current_link_speed = data->force_pcie_gen;
4167 
4168 	data->force_pcie_gen = PP_PCIEGenInvalid;
4169 	data->pspp_notify_required = false;
4170 
4171 	if (target_link_speed > current_link_speed) {
4172 		switch (target_link_speed) {
4173 #ifdef CONFIG_ACPI
4174 		case PP_PCIEGen3:
4175 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4176 				break;
4177 			data->force_pcie_gen = PP_PCIEGen2;
4178 			if (current_link_speed == PP_PCIEGen2)
4179 				break;
4180 			fallthrough;
4181 		case PP_PCIEGen2:
4182 			if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4183 				break;
4184 			fallthrough;
4185 #endif
4186 		default:
4187 			data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4188 			break;
4189 		}
4190 	} else {
4191 		if (target_link_speed < current_link_speed)
4192 			data->pspp_notify_required = true;
4193 	}
4194 
4195 	return 0;
4196 }
4197 
4198 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4199 {
4200 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4201 
4202 	if (0 == data->need_update_smu7_dpm_table)
4203 		return 0;
4204 
4205 	if ((0 == data->sclk_dpm_key_disabled) &&
4206 		(data->need_update_smu7_dpm_table &
4207 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4208 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4209 				"Trying to freeze SCLK DPM when DPM is disabled",
4210 				);
4211 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4212 				PPSMC_MSG_SCLKDPM_FreezeLevel,
4213 				NULL),
4214 				"Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4215 				return -EINVAL);
4216 	}
4217 
4218 	if ((0 == data->mclk_dpm_key_disabled) &&
4219 		!data->mclk_ignore_signal &&
4220 		(data->need_update_smu7_dpm_table &
4221 		 DPMTABLE_OD_UPDATE_MCLK)) {
4222 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4223 				"Trying to freeze MCLK DPM when DPM is disabled",
4224 				);
4225 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4226 				PPSMC_MSG_MCLKDPM_FreezeLevel,
4227 				NULL),
4228 				"Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4229 				return -EINVAL);
4230 	}
4231 
4232 	return 0;
4233 }
4234 
4235 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4236 		struct pp_hwmgr *hwmgr, const void *input)
4237 {
4238 	int result = 0;
4239 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4240 	struct smu7_dpm_table *dpm_table = &data->dpm_table;
4241 	uint32_t count;
4242 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4243 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4244 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4245 
4246 	if (0 == data->need_update_smu7_dpm_table)
4247 		return 0;
4248 
4249 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4250 		for (count = 0; count < dpm_table->sclk_table.count; count++) {
4251 			dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4252 			dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4253 		}
4254 	}
4255 
4256 	if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4257 		for (count = 0; count < dpm_table->mclk_table.count; count++) {
4258 			dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4259 			dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4260 		}
4261 	}
4262 
4263 	if (data->need_update_smu7_dpm_table &
4264 			(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
4265 		result = smum_populate_all_graphic_levels(hwmgr);
4266 		PP_ASSERT_WITH_CODE((0 == result),
4267 				"Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4268 				return result);
4269 	}
4270 
4271 	if (data->need_update_smu7_dpm_table &
4272 			(DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
4273 		/*populate MCLK dpm table to SMU7 */
4274 		result = smum_populate_all_memory_levels(hwmgr);
4275 		PP_ASSERT_WITH_CODE((0 == result),
4276 				"Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4277 				return result);
4278 	}
4279 
4280 	return result;
4281 }
4282 
4283 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4284 			  struct smu7_single_dpm_table *dpm_table,
4285 			uint32_t low_limit, uint32_t high_limit)
4286 {
4287 	uint32_t i;
4288 
4289 	/* force the trim if mclk_switching is disabled to prevent flicker */
4290 	bool force_trim = (low_limit == high_limit);
4291 	for (i = 0; i < dpm_table->count; i++) {
4292 	/*skip the trim if od is enabled*/
4293 		if ((!hwmgr->od_enabled || force_trim)
4294 			&& (dpm_table->dpm_levels[i].value < low_limit
4295 			|| dpm_table->dpm_levels[i].value > high_limit))
4296 			dpm_table->dpm_levels[i].enabled = false;
4297 		else
4298 			dpm_table->dpm_levels[i].enabled = true;
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4305 		const struct smu7_power_state *smu7_ps)
4306 {
4307 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4308 	uint32_t high_limit_count;
4309 
4310 	PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4311 			"power state did not have any performance level",
4312 			return -EINVAL);
4313 
4314 	high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4315 
4316 	smu7_trim_single_dpm_states(hwmgr,
4317 			&(data->dpm_table.sclk_table),
4318 			smu7_ps->performance_levels[0].engine_clock,
4319 			smu7_ps->performance_levels[high_limit_count].engine_clock);
4320 
4321 	smu7_trim_single_dpm_states(hwmgr,
4322 			&(data->dpm_table.mclk_table),
4323 			smu7_ps->performance_levels[0].memory_clock,
4324 			smu7_ps->performance_levels[high_limit_count].memory_clock);
4325 
4326 	return 0;
4327 }
4328 
4329 static int smu7_generate_dpm_level_enable_mask(
4330 		struct pp_hwmgr *hwmgr, const void *input)
4331 {
4332 	int result = 0;
4333 	const struct phm_set_power_state_input *states =
4334 			(const struct phm_set_power_state_input *)input;
4335 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4336 	const struct smu7_power_state *smu7_ps =
4337 			cast_const_phw_smu7_power_state(states->pnew_state);
4338 
4339 
4340 	result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4341 	if (result)
4342 		return result;
4343 
4344 	data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4345 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4346 	data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4347 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4348 	data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4349 			phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4350 
4351 	return 0;
4352 }
4353 
4354 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4355 {
4356 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4357 
4358 	if (0 == data->need_update_smu7_dpm_table)
4359 		return 0;
4360 
4361 	if ((0 == data->sclk_dpm_key_disabled) &&
4362 		(data->need_update_smu7_dpm_table &
4363 		(DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4364 
4365 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4366 				"Trying to Unfreeze SCLK DPM when DPM is disabled",
4367 				);
4368 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4369 				PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4370 				NULL),
4371 			"Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4372 			return -EINVAL);
4373 	}
4374 
4375 	if ((0 == data->mclk_dpm_key_disabled) &&
4376 		!data->mclk_ignore_signal &&
4377 		(data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4378 
4379 		PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4380 				"Trying to Unfreeze MCLK DPM when DPM is disabled",
4381 				);
4382 		PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4383 				PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4384 				NULL),
4385 		    "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4386 		    return -EINVAL);
4387 	}
4388 
4389 	data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4390 
4391 	return 0;
4392 }
4393 
4394 static int smu7_notify_link_speed_change_after_state_change(
4395 		struct pp_hwmgr *hwmgr, const void *input)
4396 {
4397 	const struct phm_set_power_state_input *states =
4398 			(const struct phm_set_power_state_input *)input;
4399 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4400 	const struct smu7_power_state *smu7_ps =
4401 			cast_const_phw_smu7_power_state(states->pnew_state);
4402 	uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4403 	uint8_t  request;
4404 
4405 	if (data->pspp_notify_required) {
4406 		if (target_link_speed == PP_PCIEGen3)
4407 			request = PCIE_PERF_REQ_GEN3;
4408 		else if (target_link_speed == PP_PCIEGen2)
4409 			request = PCIE_PERF_REQ_GEN2;
4410 		else
4411 			request = PCIE_PERF_REQ_GEN1;
4412 
4413 		if (request == PCIE_PERF_REQ_GEN1 &&
4414 				smu7_get_current_pcie_speed(hwmgr) > 0)
4415 			return 0;
4416 
4417 #ifdef CONFIG_ACPI
4418 		if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4419 			if (PP_PCIEGen2 == target_link_speed)
4420 				pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4421 			else
4422 				pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4423 		}
4424 #endif
4425 	}
4426 
4427 	return 0;
4428 }
4429 
4430 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4431 {
4432 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ?  0 : -EINVAL;
4433 }
4434 
4435 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4436 {
4437 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4438 
4439 	if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4440 		if (hwmgr->chip_id == CHIP_VEGAM)
4441 			smum_send_msg_to_smc_with_parameter(hwmgr,
4442 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4443 					NULL);
4444 		else
4445 			smum_send_msg_to_smc_with_parameter(hwmgr,
4446 					(PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4447 					NULL);
4448 		data->last_sent_vbi_timeout = data->frame_time_x2;
4449 	}
4450 
4451 	return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ?  0 : -EINVAL;
4452 }
4453 
4454 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4455 {
4456 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4457 	int result = 0;
4458 
4459 	if (data->mclk_ignore_signal)
4460 		result = smu7_notify_no_display(hwmgr);
4461 	else
4462 		result = smu7_notify_has_display(hwmgr);
4463 
4464 	return result;
4465 }
4466 
4467 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4468 {
4469 	int tmp_result, result = 0;
4470 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4471 
4472 	tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4473 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4474 			"Failed to find DPM states clocks in DPM table!",
4475 			result = tmp_result);
4476 
4477 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4478 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4479 		tmp_result =
4480 			smu7_request_link_speed_change_before_state_change(hwmgr, input);
4481 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4482 				"Failed to request link speed change before state change!",
4483 				result = tmp_result);
4484 	}
4485 
4486 	tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4487 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4488 			"Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4489 
4490 	tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4491 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4492 			"Failed to populate and upload SCLK MCLK DPM levels!",
4493 			result = tmp_result);
4494 
4495 	/*
4496 	 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4497 	 * That effectively disables AVFS feature.
4498 	 */
4499 	if (hwmgr->hardcode_pp_table != NULL)
4500 		data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4501 
4502 	tmp_result = smu7_update_avfs(hwmgr);
4503 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4504 			"Failed to update avfs voltages!",
4505 			result = tmp_result);
4506 
4507 	tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4508 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4509 			"Failed to generate DPM level enabled mask!",
4510 			result = tmp_result);
4511 
4512 	tmp_result = smum_update_sclk_threshold(hwmgr);
4513 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4514 			"Failed to update SCLK threshold!",
4515 			result = tmp_result);
4516 
4517 	tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4518 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4519 			"Failed to unfreeze SCLK MCLK DPM!",
4520 			result = tmp_result);
4521 
4522 	tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4523 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4524 			"Failed to upload DPM level enabled mask!",
4525 			result = tmp_result);
4526 
4527 	tmp_result = smu7_notify_smc_display(hwmgr);
4528 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4529 			"Failed to notify smc display settings!",
4530 			result = tmp_result);
4531 
4532 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4533 			PHM_PlatformCaps_PCIEPerformanceRequest)) {
4534 		tmp_result =
4535 			smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4536 		PP_ASSERT_WITH_CODE((0 == tmp_result),
4537 				"Failed to notify link speed change after state change!",
4538 				result = tmp_result);
4539 	}
4540 	data->apply_optimized_settings = false;
4541 	return result;
4542 }
4543 
4544 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4545 {
4546 	hwmgr->thermal_controller.
4547 	advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4548 
4549 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4550 			PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4551 			NULL);
4552 }
4553 
4554 static int
4555 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4556 {
4557 	return 0;
4558 }
4559 
4560 /**
4561  * smu7_program_display_gap - Programs the display gap
4562  *
4563  * @hwmgr:  the address of the powerplay hardware manager.
4564  * Return:   always OK
4565  */
4566 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4567 {
4568 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4569 	uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4570 	uint32_t display_gap2;
4571 	uint32_t pre_vbi_time_in_us;
4572 	uint32_t frame_time_in_us;
4573 	uint32_t ref_clock, refresh_rate;
4574 
4575 	display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4576 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4577 
4578 	ref_clock =  amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4579 	refresh_rate = hwmgr->display_config->vrefresh;
4580 
4581 	if (0 == refresh_rate)
4582 		refresh_rate = 60;
4583 
4584 	frame_time_in_us = 1000000 / refresh_rate;
4585 
4586 	pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4587 
4588 	data->frame_time_x2 = frame_time_in_us * 2 / 100;
4589 
4590 	if (data->frame_time_x2 < 280) {
4591 		pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4592 		data->frame_time_x2 = 280;
4593 	}
4594 
4595 	display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4596 
4597 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4598 
4599 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4600 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4601 							SMU_SoftRegisters,
4602 							PreVBlankGap), 0x64);
4603 
4604 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4605 			data->soft_regs_start + smum_get_offsetof(hwmgr,
4606 							SMU_SoftRegisters,
4607 							VBlankTimeout),
4608 					(frame_time_in_us - pre_vbi_time_in_us));
4609 
4610 	return 0;
4611 }
4612 
4613 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4614 {
4615 	return smu7_program_display_gap(hwmgr);
4616 }
4617 
4618 /**
4619  * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4620  *
4621  * @hwmgr:  the address of the powerplay hardware manager.
4622  * @us_max_fan_rpm:  max operating fan RPM value.
4623  * Return:   The response that came from the SMC.
4624  */
4625 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4626 {
4627 	hwmgr->thermal_controller.
4628 	advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4629 
4630 	return smum_send_msg_to_smc_with_parameter(hwmgr,
4631 			PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4632 			NULL);
4633 }
4634 
4635 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4636 	.process = phm_irq_process,
4637 };
4638 
4639 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4640 {
4641 	struct amdgpu_irq_src *source =
4642 		kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4643 
4644 	if (!source)
4645 		return -ENOMEM;
4646 
4647 	source->funcs = &smu7_irq_funcs;
4648 
4649 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4650 			AMDGPU_IRQ_CLIENTID_LEGACY,
4651 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4652 			source);
4653 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4654 			AMDGPU_IRQ_CLIENTID_LEGACY,
4655 			VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4656 			source);
4657 
4658 	/* Register CTF(GPIO_19) interrupt */
4659 	amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4660 			AMDGPU_IRQ_CLIENTID_LEGACY,
4661 			VISLANDS30_IV_SRCID_GPIO_19,
4662 			source);
4663 
4664 	return 0;
4665 }
4666 
4667 static bool
4668 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4669 {
4670 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4671 	bool is_update_required = false;
4672 
4673 	if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4674 		is_update_required = true;
4675 
4676 	if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4677 		is_update_required = true;
4678 
4679 	if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4680 	    hwmgr->chip_id <= CHIP_VEGAM &&
4681 	    data->last_sent_vbi_timeout != data->frame_time_x2)
4682 		is_update_required = true;
4683 
4684 	if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4685 		if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4686 			(data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4687 			hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4688 			is_update_required = true;
4689 	}
4690 	return is_update_required;
4691 }
4692 
4693 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4694 							   const struct smu7_performance_level *pl2)
4695 {
4696 	return ((pl1->memory_clock == pl2->memory_clock) &&
4697 		  (pl1->engine_clock == pl2->engine_clock) &&
4698 		  (pl1->pcie_gen == pl2->pcie_gen) &&
4699 		  (pl1->pcie_lane == pl2->pcie_lane));
4700 }
4701 
4702 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4703 		const struct pp_hw_power_state *pstate1,
4704 		const struct pp_hw_power_state *pstate2, bool *equal)
4705 {
4706 	const struct smu7_power_state *psa;
4707 	const struct smu7_power_state *psb;
4708 	int i;
4709 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4710 
4711 	if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4712 		return -EINVAL;
4713 
4714 	psa = cast_const_phw_smu7_power_state(pstate1);
4715 	psb = cast_const_phw_smu7_power_state(pstate2);
4716 	/* If the two states don't even have the same number of performance levels they cannot be the same state. */
4717 	if (psa->performance_level_count != psb->performance_level_count) {
4718 		*equal = false;
4719 		return 0;
4720 	}
4721 
4722 	for (i = 0; i < psa->performance_level_count; i++) {
4723 		if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4724 			/* If we have found even one performance level pair that is different the states are different. */
4725 			*equal = false;
4726 			return 0;
4727 		}
4728 	}
4729 
4730 	/* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4731 	*equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4732 	*equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4733 	*equal &= (psa->sclk_threshold == psb->sclk_threshold);
4734 	/* For OD call, set value based on flag */
4735 	*equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4736 							DPMTABLE_OD_UPDATE_MCLK |
4737 							DPMTABLE_OD_UPDATE_VDDC));
4738 
4739 	return 0;
4740 }
4741 
4742 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4743 {
4744 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4745 
4746 	uint32_t tmp;
4747 
4748 	/* Read MC indirect register offset 0x9F bits [3:0] to see
4749 	 * if VBIOS has already loaded a full version of MC ucode
4750 	 * or not.
4751 	 */
4752 
4753 	smu7_get_mc_microcode_version(hwmgr);
4754 
4755 	data->need_long_memory_training = false;
4756 
4757 	cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4758 							ixMC_IO_DEBUG_UP_13);
4759 	tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4760 
4761 	if (tmp & (1 << 23)) {
4762 		data->mem_latency_high = MEM_LATENCY_HIGH;
4763 		data->mem_latency_low = MEM_LATENCY_LOW;
4764 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4765 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4766 		    (hwmgr->chip_id == CHIP_POLARIS12))
4767 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4768 	} else {
4769 		data->mem_latency_high = 330;
4770 		data->mem_latency_low = 330;
4771 		if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4772 		    (hwmgr->chip_id == CHIP_POLARIS11) ||
4773 		    (hwmgr->chip_id == CHIP_POLARIS12))
4774 			smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4775 	}
4776 
4777 	return 0;
4778 }
4779 
4780 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4781 {
4782 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4783 
4784 	data->clock_registers.vCG_SPLL_FUNC_CNTL         =
4785 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4786 	data->clock_registers.vCG_SPLL_FUNC_CNTL_2       =
4787 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4788 	data->clock_registers.vCG_SPLL_FUNC_CNTL_3       =
4789 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4790 	data->clock_registers.vCG_SPLL_FUNC_CNTL_4       =
4791 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4792 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM   =
4793 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4794 	data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4795 		cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4796 	data->clock_registers.vDLL_CNTL                  =
4797 		cgs_read_register(hwmgr->device, mmDLL_CNTL);
4798 	data->clock_registers.vMCLK_PWRMGT_CNTL          =
4799 		cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4800 	data->clock_registers.vMPLL_AD_FUNC_CNTL         =
4801 		cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4802 	data->clock_registers.vMPLL_DQ_FUNC_CNTL         =
4803 		cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4804 	data->clock_registers.vMPLL_FUNC_CNTL            =
4805 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4806 	data->clock_registers.vMPLL_FUNC_CNTL_1          =
4807 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4808 	data->clock_registers.vMPLL_FUNC_CNTL_2          =
4809 		cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4810 	data->clock_registers.vMPLL_SS1                  =
4811 		cgs_read_register(hwmgr->device, mmMPLL_SS1);
4812 	data->clock_registers.vMPLL_SS2                  =
4813 		cgs_read_register(hwmgr->device, mmMPLL_SS2);
4814 	return 0;
4815 
4816 }
4817 
4818 /**
4819  * smu7_get_memory_type - Find out if memory is GDDR5.
4820  *
4821  * @hwmgr:  the address of the powerplay hardware manager.
4822  * Return:   always 0
4823  */
4824 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4825 {
4826 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4827 	struct amdgpu_device *adev = hwmgr->adev;
4828 
4829 	data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4830 
4831 	return 0;
4832 }
4833 
4834 /**
4835  * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4836  *
4837  * @hwmgr:  the address of the powerplay hardware manager.
4838  * Return:   always 0
4839  */
4840 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4841 {
4842 	PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4843 			GENERAL_PWRMGT, STATIC_PM_EN, 1);
4844 
4845 	return 0;
4846 }
4847 
4848 /**
4849  * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4850  *
4851  * @hwmgr:  the address of the powerplay hardware manager.
4852  * Return:   always 0
4853  */
4854 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4855 {
4856 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4857 
4858 	data->uvd_power_gated = false;
4859 	data->vce_power_gated = false;
4860 
4861 	return 0;
4862 }
4863 
4864 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4865 {
4866 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4867 
4868 	data->low_sclk_interrupt_threshold = 0;
4869 	return 0;
4870 }
4871 
4872 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4873 {
4874 	int tmp_result, result = 0;
4875 
4876 	smu7_check_mc_firmware(hwmgr);
4877 
4878 	tmp_result = smu7_read_clock_registers(hwmgr);
4879 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4880 			"Failed to read clock registers!", result = tmp_result);
4881 
4882 	tmp_result = smu7_get_memory_type(hwmgr);
4883 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4884 			"Failed to get memory type!", result = tmp_result);
4885 
4886 	tmp_result = smu7_enable_acpi_power_management(hwmgr);
4887 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4888 			"Failed to enable ACPI power management!", result = tmp_result);
4889 
4890 	tmp_result = smu7_init_power_gate_state(hwmgr);
4891 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4892 			"Failed to init power gate state!", result = tmp_result);
4893 
4894 	tmp_result = smu7_get_mc_microcode_version(hwmgr);
4895 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4896 			"Failed to get MC microcode version!", result = tmp_result);
4897 
4898 	tmp_result = smu7_init_sclk_threshold(hwmgr);
4899 	PP_ASSERT_WITH_CODE((0 == tmp_result),
4900 			"Failed to init sclk threshold!", result = tmp_result);
4901 
4902 	return result;
4903 }
4904 
4905 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4906 		enum pp_clock_type type, uint32_t mask)
4907 {
4908 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4909 
4910 	if (mask == 0)
4911 		return -EINVAL;
4912 
4913 	switch (type) {
4914 	case PP_SCLK:
4915 		if (!data->sclk_dpm_key_disabled)
4916 			smum_send_msg_to_smc_with_parameter(hwmgr,
4917 					PPSMC_MSG_SCLKDPM_SetEnabledMask,
4918 					data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4919 					NULL);
4920 		break;
4921 	case PP_MCLK:
4922 		if (!data->mclk_dpm_key_disabled)
4923 			smum_send_msg_to_smc_with_parameter(hwmgr,
4924 					PPSMC_MSG_MCLKDPM_SetEnabledMask,
4925 					data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4926 					NULL);
4927 		break;
4928 	case PP_PCIE:
4929 	{
4930 		uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4931 
4932 		if (!data->pcie_dpm_key_disabled) {
4933 			if (fls(tmp) != ffs(tmp))
4934 				smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4935 						NULL);
4936 			else
4937 				smum_send_msg_to_smc_with_parameter(hwmgr,
4938 					PPSMC_MSG_PCIeDPM_ForceLevel,
4939 					fls(tmp) - 1,
4940 					NULL);
4941 		}
4942 		break;
4943 	}
4944 	default:
4945 		break;
4946 	}
4947 
4948 	return 0;
4949 }
4950 
4951 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4952 		enum pp_clock_type type, char *buf)
4953 {
4954 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4955 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4956 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4957 	struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4958 	struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4959 	struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4960 	struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4961 	int size = 0;
4962 	uint32_t i, now, clock, pcie_speed;
4963 
4964 	switch (type) {
4965 	case PP_SCLK:
4966 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4967 
4968 		for (i = 0; i < sclk_table->count; i++) {
4969 			if (clock > sclk_table->dpm_levels[i].value)
4970 				continue;
4971 			break;
4972 		}
4973 		now = i;
4974 
4975 		for (i = 0; i < sclk_table->count; i++)
4976 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4977 					i, sclk_table->dpm_levels[i].value / 100,
4978 					(i == now) ? "*" : "");
4979 		break;
4980 	case PP_MCLK:
4981 		smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4982 
4983 		for (i = 0; i < mclk_table->count; i++) {
4984 			if (clock > mclk_table->dpm_levels[i].value)
4985 				continue;
4986 			break;
4987 		}
4988 		now = i;
4989 
4990 		for (i = 0; i < mclk_table->count; i++)
4991 			size += sprintf(buf + size, "%d: %uMhz %s\n",
4992 					i, mclk_table->dpm_levels[i].value / 100,
4993 					(i == now) ? "*" : "");
4994 		break;
4995 	case PP_PCIE:
4996 		pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4997 		for (i = 0; i < pcie_table->count; i++) {
4998 			if (pcie_speed != pcie_table->dpm_levels[i].value)
4999 				continue;
5000 			break;
5001 		}
5002 		now = i;
5003 
5004 		for (i = 0; i < pcie_table->count; i++)
5005 			size += sprintf(buf + size, "%d: %s %s\n", i,
5006 					(pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
5007 					(pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
5008 					(pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
5009 					(i == now) ? "*" : "");
5010 		break;
5011 	case OD_SCLK:
5012 		if (hwmgr->od_enabled) {
5013 			size += sprintf(buf + size, "%s:\n", "OD_SCLK");
5014 			for (i = 0; i < odn_sclk_table->num_of_pl; i++)
5015 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5016 					i, odn_sclk_table->entries[i].clock/100,
5017 					odn_sclk_table->entries[i].vddc);
5018 		}
5019 		break;
5020 	case OD_MCLK:
5021 		if (hwmgr->od_enabled) {
5022 			size += sprintf(buf + size, "%s:\n", "OD_MCLK");
5023 			for (i = 0; i < odn_mclk_table->num_of_pl; i++)
5024 				size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5025 					i, odn_mclk_table->entries[i].clock/100,
5026 					odn_mclk_table->entries[i].vddc);
5027 		}
5028 		break;
5029 	case OD_RANGE:
5030 		if (hwmgr->od_enabled) {
5031 			size += sprintf(buf + size, "%s:\n", "OD_RANGE");
5032 			size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
5033 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5034 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5035 			size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
5036 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5037 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5038 			size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
5039 				data->odn_dpm_table.min_vddc,
5040 				data->odn_dpm_table.max_vddc);
5041 		}
5042 		break;
5043 	default:
5044 		break;
5045 	}
5046 	return size;
5047 }
5048 
5049 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5050 {
5051 	switch (mode) {
5052 	case AMD_FAN_CTRL_NONE:
5053 		smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5054 		break;
5055 	case AMD_FAN_CTRL_MANUAL:
5056 		if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5057 			PHM_PlatformCaps_MicrocodeFanControl))
5058 			smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5059 		break;
5060 	case AMD_FAN_CTRL_AUTO:
5061 		if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5062 			smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5063 		break;
5064 	default:
5065 		break;
5066 	}
5067 }
5068 
5069 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5070 {
5071 	return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5072 }
5073 
5074 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5075 {
5076 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5077 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5078 	struct smu7_single_dpm_table *golden_sclk_table =
5079 			&(data->golden_dpm_table.sclk_table);
5080 	int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5081 	int golden_value = golden_sclk_table->dpm_levels
5082 			[golden_sclk_table->count - 1].value;
5083 
5084 	value -= golden_value;
5085 	value = DIV_ROUND_UP(value * 100, golden_value);
5086 
5087 	return value;
5088 }
5089 
5090 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5091 {
5092 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5093 	struct smu7_single_dpm_table *golden_sclk_table =
5094 			&(data->golden_dpm_table.sclk_table);
5095 	struct pp_power_state  *ps;
5096 	struct smu7_power_state  *smu7_ps;
5097 
5098 	if (value > 20)
5099 		value = 20;
5100 
5101 	ps = hwmgr->request_ps;
5102 
5103 	if (ps == NULL)
5104 		return -EINVAL;
5105 
5106 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5107 
5108 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5109 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5110 			value / 100 +
5111 			golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5112 
5113 	return 0;
5114 }
5115 
5116 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5117 {
5118 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5119 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5120 	struct smu7_single_dpm_table *golden_mclk_table =
5121 			&(data->golden_dpm_table.mclk_table);
5122         int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5123 	int golden_value = golden_mclk_table->dpm_levels
5124 			[golden_mclk_table->count - 1].value;
5125 
5126 	value -= golden_value;
5127 	value = DIV_ROUND_UP(value * 100, golden_value);
5128 
5129 	return value;
5130 }
5131 
5132 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5133 {
5134 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5135 	struct smu7_single_dpm_table *golden_mclk_table =
5136 			&(data->golden_dpm_table.mclk_table);
5137 	struct pp_power_state  *ps;
5138 	struct smu7_power_state  *smu7_ps;
5139 
5140 	if (value > 20)
5141 		value = 20;
5142 
5143 	ps = hwmgr->request_ps;
5144 
5145 	if (ps == NULL)
5146 		return -EINVAL;
5147 
5148 	smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5149 
5150 	smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5151 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5152 			value / 100 +
5153 			golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5154 
5155 	return 0;
5156 }
5157 
5158 
5159 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5160 {
5161 	struct phm_ppt_v1_information *table_info =
5162 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5163 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5164 	struct phm_clock_voltage_dependency_table *sclk_table;
5165 	int i;
5166 
5167 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5168 		if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5169 			return -EINVAL;
5170 		dep_sclk_table = table_info->vdd_dep_on_sclk;
5171 		for (i = 0; i < dep_sclk_table->count; i++)
5172 			clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5173 		clocks->count = dep_sclk_table->count;
5174 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5175 		sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5176 		for (i = 0; i < sclk_table->count; i++)
5177 			clocks->clock[i] = sclk_table->entries[i].clk * 10;
5178 		clocks->count = sclk_table->count;
5179 	}
5180 
5181 	return 0;
5182 }
5183 
5184 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5185 {
5186 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5187 
5188 	if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5189 		return data->mem_latency_high;
5190 	else if (clk >= MEM_FREQ_HIGH_LATENCY)
5191 		return data->mem_latency_low;
5192 	else
5193 		return MEM_LATENCY_ERR;
5194 }
5195 
5196 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5197 {
5198 	struct phm_ppt_v1_information *table_info =
5199 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5200 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5201 	int i;
5202 	struct phm_clock_voltage_dependency_table *mclk_table;
5203 
5204 	if (hwmgr->pp_table_version == PP_TABLE_V1) {
5205 		if (table_info == NULL)
5206 			return -EINVAL;
5207 		dep_mclk_table = table_info->vdd_dep_on_mclk;
5208 		for (i = 0; i < dep_mclk_table->count; i++) {
5209 			clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5210 			clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5211 						dep_mclk_table->entries[i].clk);
5212 		}
5213 		clocks->count = dep_mclk_table->count;
5214 	} else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5215 		mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5216 		for (i = 0; i < mclk_table->count; i++)
5217 			clocks->clock[i] = mclk_table->entries[i].clk * 10;
5218 		clocks->count = mclk_table->count;
5219 	}
5220 	return 0;
5221 }
5222 
5223 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5224 						struct amd_pp_clocks *clocks)
5225 {
5226 	switch (type) {
5227 	case amd_pp_sys_clock:
5228 		smu7_get_sclks(hwmgr, clocks);
5229 		break;
5230 	case amd_pp_mem_clock:
5231 		smu7_get_mclks(hwmgr, clocks);
5232 		break;
5233 	default:
5234 		return -EINVAL;
5235 	}
5236 
5237 	return 0;
5238 }
5239 
5240 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5241 				       struct pp_clock_levels_with_latency *clocks)
5242 {
5243 	struct phm_ppt_v1_information *table_info =
5244 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5245 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5246 			table_info->vdd_dep_on_sclk;
5247 	int i;
5248 
5249 	clocks->num_levels = 0;
5250 	for (i = 0; i < dep_sclk_table->count; i++) {
5251 		if (dep_sclk_table->entries[i].clk) {
5252 			clocks->data[clocks->num_levels].clocks_in_khz =
5253 				dep_sclk_table->entries[i].clk * 10;
5254 			clocks->num_levels++;
5255 		}
5256 	}
5257 
5258 	return 0;
5259 }
5260 
5261 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5262 				       struct pp_clock_levels_with_latency *clocks)
5263 {
5264 	struct phm_ppt_v1_information *table_info =
5265 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5266 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5267 			table_info->vdd_dep_on_mclk;
5268 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5269 	int i;
5270 
5271 	clocks->num_levels = 0;
5272 	data->mclk_latency_table.count = 0;
5273 	for (i = 0; i < dep_mclk_table->count; i++) {
5274 		if (dep_mclk_table->entries[i].clk) {
5275 			clocks->data[clocks->num_levels].clocks_in_khz =
5276 					dep_mclk_table->entries[i].clk * 10;
5277 			data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5278 					dep_mclk_table->entries[i].clk;
5279 			clocks->data[clocks->num_levels].latency_in_us =
5280 				data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5281 					smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5282 			clocks->num_levels++;
5283 			data->mclk_latency_table.count++;
5284 		}
5285 	}
5286 
5287 	return 0;
5288 }
5289 
5290 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5291 					       enum amd_pp_clock_type type,
5292 					       struct pp_clock_levels_with_latency *clocks)
5293 {
5294 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5295 	      hwmgr->chip_id <= CHIP_VEGAM))
5296 		return -EINVAL;
5297 
5298 	switch (type) {
5299 	case amd_pp_sys_clock:
5300 		smu7_get_sclks_with_latency(hwmgr, clocks);
5301 		break;
5302 	case amd_pp_mem_clock:
5303 		smu7_get_mclks_with_latency(hwmgr, clocks);
5304 		break;
5305 	default:
5306 		return -EINVAL;
5307 	}
5308 
5309 	return 0;
5310 }
5311 
5312 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5313 						 void *clock_range)
5314 {
5315 	struct phm_ppt_v1_information *table_info =
5316 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5317 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5318 			table_info->vdd_dep_on_mclk;
5319 	struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5320 			table_info->vdd_dep_on_sclk;
5321 	struct polaris10_smumgr *smu_data =
5322 			(struct polaris10_smumgr *)(hwmgr->smu_backend);
5323 	SMU74_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
5324 	struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5325 			(struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5326 	uint32_t i, j, k;
5327 	bool valid_entry;
5328 
5329 	if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5330 	      hwmgr->chip_id <= CHIP_VEGAM))
5331 		return -EINVAL;
5332 
5333 	for (i = 0; i < dep_mclk_table->count; i++) {
5334 		for (j = 0; j < dep_sclk_table->count; j++) {
5335 			valid_entry = false;
5336 			for (k = 0; k < watermarks->num_wm_sets; k++) {
5337 				if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5338 				    dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5339 				    dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5340 				    dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5341 					valid_entry = true;
5342 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5343 					break;
5344 				}
5345 			}
5346 			PP_ASSERT_WITH_CODE(valid_entry,
5347 					"Clock is not in range of specified clock range for watermark from DAL!  Using highest water mark set.",
5348 					table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5349 		}
5350 	}
5351 
5352 	return smu7_copy_bytes_to_smc(hwmgr,
5353 				      smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5354 				      (uint8_t *)table->DisplayWatermark,
5355 				      sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5356 				      SMC_RAM_END);
5357 }
5358 
5359 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5360 					uint32_t virtual_addr_low,
5361 					uint32_t virtual_addr_hi,
5362 					uint32_t mc_addr_low,
5363 					uint32_t mc_addr_hi,
5364 					uint32_t size)
5365 {
5366 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5367 
5368 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5369 					data->soft_regs_start +
5370 					smum_get_offsetof(hwmgr,
5371 					SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5372 					mc_addr_hi);
5373 
5374 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5375 					data->soft_regs_start +
5376 					smum_get_offsetof(hwmgr,
5377 					SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5378 					mc_addr_low);
5379 
5380 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5381 					data->soft_regs_start +
5382 					smum_get_offsetof(hwmgr,
5383 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5384 					virtual_addr_hi);
5385 
5386 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5387 					data->soft_regs_start +
5388 					smum_get_offsetof(hwmgr,
5389 					SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5390 					virtual_addr_low);
5391 
5392 	cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5393 					data->soft_regs_start +
5394 					smum_get_offsetof(hwmgr,
5395 					SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5396 					size);
5397 	return 0;
5398 }
5399 
5400 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5401 					struct amd_pp_simple_clock_info *clocks)
5402 {
5403 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5404 	struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5405 	struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5406 
5407 	if (clocks == NULL)
5408 		return -EINVAL;
5409 
5410 	clocks->memory_max_clock = mclk_table->count > 1 ?
5411 				mclk_table->dpm_levels[mclk_table->count-1].value :
5412 				mclk_table->dpm_levels[0].value;
5413 	clocks->engine_max_clock = sclk_table->count > 1 ?
5414 				sclk_table->dpm_levels[sclk_table->count-1].value :
5415 				sclk_table->dpm_levels[0].value;
5416 	return 0;
5417 }
5418 
5419 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5420 		struct PP_TemperatureRange *thermal_data)
5421 {
5422 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5423 	struct phm_ppt_v1_information *table_info =
5424 			(struct phm_ppt_v1_information *)hwmgr->pptable;
5425 
5426 	memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5427 
5428 	if (hwmgr->pp_table_version == PP_TABLE_V1)
5429 		thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5430 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5431 	else if (hwmgr->pp_table_version == PP_TABLE_V0)
5432 		thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5433 			PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5434 
5435 	return 0;
5436 }
5437 
5438 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5439 					enum PP_OD_DPM_TABLE_COMMAND type,
5440 					uint32_t clk,
5441 					uint32_t voltage)
5442 {
5443 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5444 
5445 	if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5446 		pr_info("OD voltage is out of range [%d - %d] mV\n",
5447 						data->odn_dpm_table.min_vddc,
5448 						data->odn_dpm_table.max_vddc);
5449 		return false;
5450 	}
5451 
5452 	if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5453 		if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5454 			hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5455 			pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5456 				data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5457 				hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5458 			return false;
5459 		}
5460 	} else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5461 		if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5462 			hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5463 			pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5464 				data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5465 				hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5466 			return false;
5467 		}
5468 	} else {
5469 		return false;
5470 	}
5471 
5472 	return true;
5473 }
5474 
5475 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5476 					enum PP_OD_DPM_TABLE_COMMAND type,
5477 					long *input, uint32_t size)
5478 {
5479 	uint32_t i;
5480 	struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5481 	struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5482 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5483 
5484 	uint32_t input_clk;
5485 	uint32_t input_vol;
5486 	uint32_t input_level;
5487 
5488 	PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5489 				return -EINVAL);
5490 
5491 	if (!hwmgr->od_enabled) {
5492 		pr_info("OverDrive feature not enabled\n");
5493 		return -EINVAL;
5494 	}
5495 
5496 	if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5497 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5498 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5499 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5500 				"Failed to get ODN SCLK and Voltage tables",
5501 				return -EINVAL);
5502 	} else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5503 		podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5504 		podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5505 
5506 		PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5507 			"Failed to get ODN MCLK and Voltage tables",
5508 			return -EINVAL);
5509 	} else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5510 		smu7_odn_initial_default_setting(hwmgr);
5511 		return 0;
5512 	} else if (PP_OD_COMMIT_DPM_TABLE == type) {
5513 		smu7_check_dpm_table_updated(hwmgr);
5514 		return 0;
5515 	} else {
5516 		return -EINVAL;
5517 	}
5518 
5519 	for (i = 0; i < size; i += 3) {
5520 		if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5521 			pr_info("invalid clock voltage input \n");
5522 			return 0;
5523 		}
5524 		input_level = input[i];
5525 		input_clk = input[i+1] * 100;
5526 		input_vol = input[i+2];
5527 
5528 		if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5529 			podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5530 			podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5531 			podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5532 			podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5533 			podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5534 		} else {
5535 			return -EINVAL;
5536 		}
5537 	}
5538 
5539 	return 0;
5540 }
5541 
5542 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5543 {
5544 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5545 	uint32_t i, size = 0;
5546 	uint32_t len;
5547 
5548 	static const char *title[8] = {"NUM",
5549 			"MODE_NAME",
5550 			"SCLK_UP_HYST",
5551 			"SCLK_DOWN_HYST",
5552 			"SCLK_ACTIVE_LEVEL",
5553 			"MCLK_UP_HYST",
5554 			"MCLK_DOWN_HYST",
5555 			"MCLK_ACTIVE_LEVEL"};
5556 
5557 	if (!buf)
5558 		return -EINVAL;
5559 
5560 	phm_get_sysfs_buf(&buf, &size);
5561 
5562 	size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5563 			title[0], title[1], title[2], title[3],
5564 			title[4], title[5], title[6], title[7]);
5565 
5566 	len = ARRAY_SIZE(smu7_profiling);
5567 
5568 	for (i = 0; i < len; i++) {
5569 		if (i == hwmgr->power_profile_mode) {
5570 			size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5571 			i, amdgpu_pp_profile_name[i], "*",
5572 			data->current_profile_setting.sclk_up_hyst,
5573 			data->current_profile_setting.sclk_down_hyst,
5574 			data->current_profile_setting.sclk_activity,
5575 			data->current_profile_setting.mclk_up_hyst,
5576 			data->current_profile_setting.mclk_down_hyst,
5577 			data->current_profile_setting.mclk_activity);
5578 			continue;
5579 		}
5580 		if (smu7_profiling[i].bupdate_sclk)
5581 			size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5582 			i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5583 			smu7_profiling[i].sclk_down_hyst,
5584 			smu7_profiling[i].sclk_activity);
5585 		else
5586 			size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5587 			i, amdgpu_pp_profile_name[i], "-", "-", "-");
5588 
5589 		if (smu7_profiling[i].bupdate_mclk)
5590 			size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5591 			smu7_profiling[i].mclk_up_hyst,
5592 			smu7_profiling[i].mclk_down_hyst,
5593 			smu7_profiling[i].mclk_activity);
5594 		else
5595 			size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5596 			"-", "-", "-");
5597 	}
5598 
5599 	return size;
5600 }
5601 
5602 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5603 					enum PP_SMC_POWER_PROFILE requst)
5604 {
5605 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5606 	uint32_t tmp, level;
5607 
5608 	if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5609 		if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5610 			level = 0;
5611 			tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5612 			while (tmp >>= 1)
5613 				level++;
5614 			if (level > 0)
5615 				smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5616 		}
5617 	} else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5618 		smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5619 	}
5620 }
5621 
5622 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5623 {
5624 	struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5625 	struct profile_mode_setting tmp;
5626 	enum PP_SMC_POWER_PROFILE mode;
5627 
5628 	if (input == NULL)
5629 		return -EINVAL;
5630 
5631 	mode = input[size];
5632 	switch (mode) {
5633 	case PP_SMC_POWER_PROFILE_CUSTOM:
5634 		if (size < 8 && size != 0)
5635 			return -EINVAL;
5636 		/* If only CUSTOM is passed in, use the saved values. Check
5637 		 * that we actually have a CUSTOM profile by ensuring that
5638 		 * the "use sclk" or the "use mclk" bits are set
5639 		 */
5640 		tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5641 		if (size == 0) {
5642 			if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5643 				return -EINVAL;
5644 		} else {
5645 			tmp.bupdate_sclk = input[0];
5646 			tmp.sclk_up_hyst = input[1];
5647 			tmp.sclk_down_hyst = input[2];
5648 			tmp.sclk_activity = input[3];
5649 			tmp.bupdate_mclk = input[4];
5650 			tmp.mclk_up_hyst = input[5];
5651 			tmp.mclk_down_hyst = input[6];
5652 			tmp.mclk_activity = input[7];
5653 			smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5654 		}
5655 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5656 			memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5657 			hwmgr->power_profile_mode = mode;
5658 		}
5659 		break;
5660 	case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5661 	case PP_SMC_POWER_PROFILE_POWERSAVING:
5662 	case PP_SMC_POWER_PROFILE_VIDEO:
5663 	case PP_SMC_POWER_PROFILE_VR:
5664 	case PP_SMC_POWER_PROFILE_COMPUTE:
5665 		if (mode == hwmgr->power_profile_mode)
5666 			return 0;
5667 
5668 		memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5669 		if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5670 			if (tmp.bupdate_sclk) {
5671 				data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5672 				data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5673 				data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5674 				data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5675 			}
5676 			if (tmp.bupdate_mclk) {
5677 				data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5678 				data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5679 				data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5680 				data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5681 			}
5682 			smu7_patch_compute_profile_mode(hwmgr, mode);
5683 			hwmgr->power_profile_mode = mode;
5684 		}
5685 		break;
5686 	default:
5687 		return -EINVAL;
5688 	}
5689 
5690 	return 0;
5691 }
5692 
5693 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5694 				PHM_PerformanceLevelDesignation designation, uint32_t index,
5695 				PHM_PerformanceLevel *level)
5696 {
5697 	const struct smu7_power_state *ps;
5698 	uint32_t i;
5699 
5700 	if (level == NULL || hwmgr == NULL || state == NULL)
5701 		return -EINVAL;
5702 
5703 	ps = cast_const_phw_smu7_power_state(state);
5704 
5705 	i = index > ps->performance_level_count - 1 ?
5706 			ps->performance_level_count - 1 : index;
5707 
5708 	level->coreClock = ps->performance_levels[i].engine_clock;
5709 	level->memory_clock = ps->performance_levels[i].memory_clock;
5710 
5711 	return 0;
5712 }
5713 
5714 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5715 {
5716 	int result;
5717 
5718 	result = smu7_disable_dpm_tasks(hwmgr);
5719 	PP_ASSERT_WITH_CODE((0 == result),
5720 			"[disable_dpm_tasks] Failed to disable DPM!",
5721 			);
5722 
5723 	return result;
5724 }
5725 
5726 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5727 	.backend_init = &smu7_hwmgr_backend_init,
5728 	.backend_fini = &smu7_hwmgr_backend_fini,
5729 	.asic_setup = &smu7_setup_asic_task,
5730 	.dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5731 	.apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5732 	.force_dpm_level = &smu7_force_dpm_level,
5733 	.power_state_set = smu7_set_power_state_tasks,
5734 	.get_power_state_size = smu7_get_power_state_size,
5735 	.get_mclk = smu7_dpm_get_mclk,
5736 	.get_sclk = smu7_dpm_get_sclk,
5737 	.patch_boot_state = smu7_dpm_patch_boot_state,
5738 	.get_pp_table_entry = smu7_get_pp_table_entry,
5739 	.get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5740 	.powerdown_uvd = smu7_powerdown_uvd,
5741 	.powergate_uvd = smu7_powergate_uvd,
5742 	.powergate_vce = smu7_powergate_vce,
5743 	.disable_clock_power_gating = smu7_disable_clock_power_gating,
5744 	.update_clock_gatings = smu7_update_clock_gatings,
5745 	.notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5746 	.display_config_changed = smu7_display_configuration_changed_task,
5747 	.set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5748 	.set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5749 	.stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5750 	.get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5751 	.get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5752 	.set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5753 	.reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5754 	.get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5755 	.set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5756 	.uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5757 	.register_irq_handlers = smu7_register_irq_handlers,
5758 	.check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5759 	.check_states_equal = smu7_check_states_equal,
5760 	.set_fan_control_mode = smu7_set_fan_control_mode,
5761 	.get_fan_control_mode = smu7_get_fan_control_mode,
5762 	.force_clock_level = smu7_force_clock_level,
5763 	.print_clock_levels = smu7_print_clock_levels,
5764 	.powergate_gfx = smu7_powergate_gfx,
5765 	.get_sclk_od = smu7_get_sclk_od,
5766 	.set_sclk_od = smu7_set_sclk_od,
5767 	.get_mclk_od = smu7_get_mclk_od,
5768 	.set_mclk_od = smu7_set_mclk_od,
5769 	.get_clock_by_type = smu7_get_clock_by_type,
5770 	.get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5771 	.set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5772 	.read_sensor = smu7_read_sensor,
5773 	.dynamic_state_management_disable = smu7_disable_dpm_tasks,
5774 	.avfs_control = smu7_avfs_control,
5775 	.disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5776 	.start_thermal_controller = smu7_start_thermal_controller,
5777 	.notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5778 	.get_max_high_clocks = smu7_get_max_high_clocks,
5779 	.get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5780 	.odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5781 	.set_power_limit = smu7_set_power_limit,
5782 	.get_power_profile_mode = smu7_get_power_profile_mode,
5783 	.set_power_profile_mode = smu7_set_power_profile_mode,
5784 	.get_performance_level = smu7_get_performance_level,
5785 	.get_asic_baco_capability = smu7_baco_get_capability,
5786 	.get_asic_baco_state = smu7_baco_get_state,
5787 	.set_asic_baco_state = smu7_baco_set_state,
5788 	.power_off_asic = smu7_power_off_asic,
5789 };
5790 
5791 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5792 		uint32_t clock_insr)
5793 {
5794 	uint8_t i;
5795 	uint32_t temp;
5796 	uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5797 
5798 	PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5799 	for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
5800 		temp = clock >> i;
5801 
5802 		if (temp >= min || i == 0)
5803 			break;
5804 	}
5805 	return i;
5806 }
5807 
5808 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5809 {
5810 	hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5811 	if (hwmgr->pp_table_version == PP_TABLE_V0)
5812 		hwmgr->pptable_func = &pptable_funcs;
5813 	else if (hwmgr->pp_table_version == PP_TABLE_V1)
5814 		hwmgr->pptable_func = &pptable_v1_0_funcs;
5815 
5816 	return 0;
5817 }
5818