1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include "atom.h"
28 #include "ppatomctrl.h"
29 #include "atombios.h"
30 #include "cgs_common.h"
31 #include "ppevvmath.h"
32 
33 #define MEM_ID_MASK           0xff000000
34 #define MEM_ID_SHIFT          24
35 #define CLOCK_RANGE_MASK      0x00ffffff
36 #define CLOCK_RANGE_SHIFT     0
37 #define LOW_NIBBLE_MASK       0xf
38 #define DATA_EQU_PREV         0
39 #define DATA_FROM_TABLE       4
40 
41 union voltage_object_info {
42 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
43 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
44 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
45 };
46 
47 static int atomctrl_retrieve_ac_timing(
48 		uint8_t index,
49 		ATOM_INIT_REG_BLOCK *reg_block,
50 		pp_atomctrl_mc_reg_table *table)
51 {
52 	uint32_t i, j;
53 	uint8_t tmem_id;
54 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
55 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
56 
57 	uint8_t num_ranges = 0;
58 
59 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
60 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
61 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
62 
63 		if (index == tmem_id) {
64 			table->mc_reg_table_entry[num_ranges].mclk_max =
65 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
66 						CLOCK_RANGE_SHIFT);
67 
68 			for (i = 0, j = 1; i < table->last; i++) {
69 				if ((table->mc_reg_address[i].uc_pre_reg_data &
70 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
71 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
72 						(uint32_t)*((uint32_t *)reg_data + j);
73 					j++;
74 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
75 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
76 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
77 						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
78 				}
79 			}
80 			num_ranges++;
81 		}
82 
83 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
84 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
85 	}
86 
87 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
88 			"Invalid VramInfo table.", return -1);
89 	table->num_entries = num_ranges;
90 
91 	return 0;
92 }
93 
94 /**
95  * Get memory clock AC timing registers index from VBIOS table
96  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
97  * @param    reg_block the address ATOM_INIT_REG_BLOCK
98  * @param    table the address of MCRegTable
99  * @return   0
100  */
101 static int atomctrl_set_mc_reg_address_table(
102 		ATOM_INIT_REG_BLOCK *reg_block,
103 		pp_atomctrl_mc_reg_table *table)
104 {
105 	uint8_t i = 0;
106 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
107 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
108 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
109 
110 	num_entries--;        /* subtract 1 data end mark entry */
111 
112 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
113 			"Invalid VramInfo table.", return -1);
114 
115 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
116 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
117 			(i < num_entries)) {
118 		table->mc_reg_address[i].s1 =
119 			(uint16_t)(le16_to_cpu(format->usRegIndex));
120 		table->mc_reg_address[i].uc_pre_reg_data =
121 			format->ucPreRegDataLength;
122 
123 		i++;
124 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
125 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
126 	}
127 
128 	table->last = i;
129 	return 0;
130 }
131 
132 int atomctrl_initialize_mc_reg_table(
133 		struct pp_hwmgr *hwmgr,
134 		uint8_t module_index,
135 		pp_atomctrl_mc_reg_table *table)
136 {
137 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138 	ATOM_INIT_REG_BLOCK *reg_block;
139 	int result = 0;
140 	u8 frev, crev;
141 	u16 size;
142 
143 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144 		smu_atom_get_data_table(hwmgr->adev,
145 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146 
147 	if (module_index >= vram_info->ucNumOfVRAMModule) {
148 		pr_err("Invalid VramInfo table.");
149 		result = -1;
150 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151 		pr_err("Invalid VramInfo table.");
152 		result = -1;
153 	}
154 
155 	if (0 == result) {
156 		reg_block = (ATOM_INIT_REG_BLOCK *)
157 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
159 	}
160 
161 	if (0 == result) {
162 		result = atomctrl_retrieve_ac_timing(module_index,
163 					reg_block, table);
164 	}
165 
166 	return result;
167 }
168 
169 /**
170  * Set DRAM timings based on engine clock and memory clock.
171  */
172 int atomctrl_set_engine_dram_timings_rv770(
173 		struct pp_hwmgr *hwmgr,
174 		uint32_t engine_clock,
175 		uint32_t memory_clock)
176 {
177 	struct amdgpu_device *adev = hwmgr->adev;
178 
179 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
180 
181 	/* They are both in 10KHz Units. */
182 	engine_clock_parameters.ulTargetEngineClock =
183 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
184 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
185 
186 	/* in 10 khz units.*/
187 	engine_clock_parameters.sReserved.ulClock =
188 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
189 
190 	return amdgpu_atom_execute_table(adev->mode_info.atom_context,
191 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
192 			(uint32_t *)&engine_clock_parameters);
193 }
194 
195 /**
196  * Private Function to get the PowerPlay Table Address.
197  * WARNING: The tabled returned by this function is in
198  * dynamically allocated memory.
199  * The caller has to release if by calling kfree.
200  */
201 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
202 {
203 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
204 	u8 frev, crev;
205 	u16 size;
206 	union voltage_object_info *voltage_info;
207 
208 	voltage_info = (union voltage_object_info *)
209 		smu_atom_get_data_table(device, index,
210 			&size, &frev, &crev);
211 
212 	if (voltage_info != NULL)
213 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
214 	else
215 		return NULL;
216 }
217 
218 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
219 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
220 		uint8_t voltage_type, uint8_t voltage_mode)
221 {
222 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
223 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
224 	uint8_t *start = (uint8_t *)voltage_object_info_table;
225 
226 	while (offset < size) {
227 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
228 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
229 
230 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
231 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
232 			return voltage_object;
233 
234 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
235 	}
236 
237 	return NULL;
238 }
239 
240 /** atomctrl_get_memory_pll_dividers_si().
241  *
242  * @param hwmgr                 input parameter: pointer to HwMgr
243  * @param clock_value             input parameter: memory clock
244  * @param dividers                 output parameter: memory PLL dividers
245  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
246  */
247 int atomctrl_get_memory_pll_dividers_si(
248 		struct pp_hwmgr *hwmgr,
249 		uint32_t clock_value,
250 		pp_atomctrl_memory_clock_param *mpll_param,
251 		bool strobe_mode)
252 {
253 	struct amdgpu_device *adev = hwmgr->adev;
254 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
255 	int result;
256 
257 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
258 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
259 
260 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
261 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
262 		(uint32_t *)&mpll_parameters);
263 
264 	if (0 == result) {
265 		mpll_param->mpll_fb_divider.clk_frac =
266 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
267 		mpll_param->mpll_fb_divider.cl_kf =
268 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
269 		mpll_param->mpll_post_divider =
270 			(uint32_t)mpll_parameters.ucPostDiv;
271 		mpll_param->vco_mode =
272 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
273 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
274 		mpll_param->yclk_sel =
275 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
276 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
277 		mpll_param->qdr =
278 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
279 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
280 		mpll_param->half_rate =
281 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
282 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
283 		mpll_param->dll_speed =
284 			(uint32_t)(mpll_parameters.ucDllSpeed);
285 		mpll_param->bw_ctrl =
286 			(uint32_t)(mpll_parameters.ucBWCntl);
287 	}
288 
289 	return result;
290 }
291 
292 /** atomctrl_get_memory_pll_dividers_vi().
293  *
294  * @param hwmgr                 input parameter: pointer to HwMgr
295  * @param clock_value             input parameter: memory clock
296  * @param dividers               output parameter: memory PLL dividers
297  */
298 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
299 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
300 {
301 	struct amdgpu_device *adev = hwmgr->adev;
302 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
303 	int result;
304 
305 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
306 
307 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
308 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
309 			(uint32_t *)&mpll_parameters);
310 
311 	if (!result)
312 		mpll_param->mpll_post_divider =
313 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
314 
315 	return result;
316 }
317 
318 int atomctrl_get_memory_pll_dividers_ai(struct pp_hwmgr *hwmgr,
319 					uint32_t clock_value,
320 					pp_atomctrl_memory_clock_param_ai *mpll_param)
321 {
322 	struct amdgpu_device *adev = hwmgr->adev;
323 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_3 mpll_parameters = {{0}, 0, 0};
324 	int result;
325 
326 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
327 
328 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
329 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
330 			(uint32_t *)&mpll_parameters);
331 
332 	/* VEGAM's mpll takes sometime to finish computing */
333 	udelay(10);
334 
335 	if (!result) {
336 		mpll_param->ulMclk_fcw_int =
337 			le16_to_cpu(mpll_parameters.usMclk_fcw_int);
338 		mpll_param->ulMclk_fcw_frac =
339 			le16_to_cpu(mpll_parameters.usMclk_fcw_frac);
340 		mpll_param->ulClock =
341 			le32_to_cpu(mpll_parameters.ulClock.ulClock);
342 		mpll_param->ulPostDiv = mpll_parameters.ulClock.ucPostDiv;
343 	}
344 
345 	return result;
346 }
347 
348 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
349 					  uint32_t clock_value,
350 					  pp_atomctrl_clock_dividers_kong *dividers)
351 {
352 	struct amdgpu_device *adev = hwmgr->adev;
353 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
354 	int result;
355 
356 	pll_parameters.ulClock = cpu_to_le32(clock_value);
357 
358 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
359 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
360 		(uint32_t *)&pll_parameters);
361 
362 	if (0 == result) {
363 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
364 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
365 	}
366 
367 	return result;
368 }
369 
370 int atomctrl_get_engine_pll_dividers_vi(
371 		struct pp_hwmgr *hwmgr,
372 		uint32_t clock_value,
373 		pp_atomctrl_clock_dividers_vi *dividers)
374 {
375 	struct amdgpu_device *adev = hwmgr->adev;
376 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
377 	int result;
378 
379 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
380 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
381 
382 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
383 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
384 		(uint32_t *)&pll_patameters);
385 
386 	if (0 == result) {
387 		dividers->pll_post_divider =
388 			pll_patameters.ulClock.ucPostDiv;
389 		dividers->real_clock =
390 			le32_to_cpu(pll_patameters.ulClock.ulClock);
391 
392 		dividers->ul_fb_div.ul_fb_div_frac =
393 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
394 		dividers->ul_fb_div.ul_fb_div =
395 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
396 
397 		dividers->uc_pll_ref_div =
398 			pll_patameters.ucPllRefDiv;
399 		dividers->uc_pll_post_div =
400 			pll_patameters.ucPllPostDiv;
401 		dividers->uc_pll_cntl_flag =
402 			pll_patameters.ucPllCntlFlag;
403 	}
404 
405 	return result;
406 }
407 
408 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
409 		uint32_t clock_value,
410 		pp_atomctrl_clock_dividers_ai *dividers)
411 {
412 	struct amdgpu_device *adev = hwmgr->adev;
413 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
414 	int result;
415 
416 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
417 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
418 
419 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
420 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
421 		(uint32_t *)&pll_patameters);
422 
423 	if (0 == result) {
424 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
425 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
426 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
427 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
428 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
429 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
430 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
431 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
432 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
433 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
434 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
435 	}
436 	return result;
437 }
438 
439 int atomctrl_get_dfs_pll_dividers_vi(
440 		struct pp_hwmgr *hwmgr,
441 		uint32_t clock_value,
442 		pp_atomctrl_clock_dividers_vi *dividers)
443 {
444 	struct amdgpu_device *adev = hwmgr->adev;
445 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
446 	int result;
447 
448 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
449 	pll_patameters.ulClock.ucPostDiv =
450 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
451 
452 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
453 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
454 		(uint32_t *)&pll_patameters);
455 
456 	if (0 == result) {
457 		dividers->pll_post_divider =
458 			pll_patameters.ulClock.ucPostDiv;
459 		dividers->real_clock =
460 			le32_to_cpu(pll_patameters.ulClock.ulClock);
461 
462 		dividers->ul_fb_div.ul_fb_div_frac =
463 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
464 		dividers->ul_fb_div.ul_fb_div =
465 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
466 
467 		dividers->uc_pll_ref_div =
468 			pll_patameters.ucPllRefDiv;
469 		dividers->uc_pll_post_div =
470 			pll_patameters.ucPllPostDiv;
471 		dividers->uc_pll_cntl_flag =
472 			pll_patameters.ucPllCntlFlag;
473 	}
474 
475 	return result;
476 }
477 
478 /**
479  * Get the reference clock in 10KHz
480  */
481 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
482 {
483 	ATOM_FIRMWARE_INFO *fw_info;
484 	u8 frev, crev;
485 	u16 size;
486 	uint32_t clock;
487 
488 	fw_info = (ATOM_FIRMWARE_INFO *)
489 		smu_atom_get_data_table(hwmgr->adev,
490 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
491 			&size, &frev, &crev);
492 
493 	if (fw_info == NULL)
494 		clock = 2700;
495 	else
496 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
497 
498 	return clock;
499 }
500 
501 /**
502  * Returns true if the given voltage type is controlled by GPIO pins.
503  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
504  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
505  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
506  */
507 bool atomctrl_is_voltage_controlled_by_gpio_v3(
508 		struct pp_hwmgr *hwmgr,
509 		uint8_t voltage_type,
510 		uint8_t voltage_mode)
511 {
512 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
513 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
514 	bool ret;
515 
516 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
517 			"Could not find Voltage Table in BIOS.", return false;);
518 
519 	ret = (NULL != atomctrl_lookup_voltage_type_v3
520 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
521 
522 	return ret;
523 }
524 
525 int atomctrl_get_voltage_table_v3(
526 		struct pp_hwmgr *hwmgr,
527 		uint8_t voltage_type,
528 		uint8_t voltage_mode,
529 		pp_atomctrl_voltage_table *voltage_table)
530 {
531 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
532 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
533 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
534 	unsigned int i;
535 
536 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
537 			"Could not find Voltage Table in BIOS.", return -1;);
538 
539 	voltage_object = atomctrl_lookup_voltage_type_v3
540 		(voltage_info, voltage_type, voltage_mode);
541 
542 	if (voltage_object == NULL)
543 		return -1;
544 
545 	PP_ASSERT_WITH_CODE(
546 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
547 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
548 			"Too many voltage entries!",
549 			return -1;
550 			);
551 
552 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
553 		voltage_table->entries[i].value =
554 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
555 		voltage_table->entries[i].smio_low =
556 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
557 	}
558 
559 	voltage_table->mask_low    =
560 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
561 	voltage_table->count      =
562 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
563 	voltage_table->phase_delay =
564 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
565 
566 	return 0;
567 }
568 
569 static bool atomctrl_lookup_gpio_pin(
570 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
571 		const uint32_t pinId,
572 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
573 {
574 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
575 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
576 	uint8_t *start = (uint8_t *)gpio_lookup_table;
577 
578 	while (offset < size) {
579 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
580 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
581 
582 		if (pinId == pin_assignment->ucGPIO_ID) {
583 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
584 				pin_assignment->ucGpioPinBitShift;
585 			gpio_pin_assignment->us_gpio_pin_aindex =
586 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
587 			return true;
588 		}
589 
590 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
591 	}
592 
593 	return false;
594 }
595 
596 /**
597  * Private Function to get the PowerPlay Table Address.
598  * WARNING: The tabled returned by this function is in
599  * dynamically allocated memory.
600  * The caller has to release if by calling kfree.
601  */
602 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
603 {
604 	u8 frev, crev;
605 	u16 size;
606 	void *table_address;
607 
608 	table_address = (ATOM_GPIO_PIN_LUT *)
609 		smu_atom_get_data_table(device,
610 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
611 				&size, &frev, &crev);
612 
613 	PP_ASSERT_WITH_CODE((NULL != table_address),
614 			"Error retrieving BIOS Table Address!", return NULL;);
615 
616 	return (ATOM_GPIO_PIN_LUT *)table_address;
617 }
618 
619 /**
620  * Returns 1 if the given pin id find in lookup table.
621  */
622 bool atomctrl_get_pp_assign_pin(
623 		struct pp_hwmgr *hwmgr,
624 		const uint32_t pinId,
625 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
626 {
627 	bool bRet = false;
628 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
629 		get_gpio_lookup_table(hwmgr->adev);
630 
631 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
632 			"Could not find GPIO lookup Table in BIOS.", return false);
633 
634 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
635 		gpio_pin_assignment);
636 
637 	return bRet;
638 }
639 
640 int atomctrl_calculate_voltage_evv_on_sclk(
641 		struct pp_hwmgr *hwmgr,
642 		uint8_t voltage_type,
643 		uint32_t sclk,
644 		uint16_t virtual_voltage_Id,
645 		uint16_t *voltage,
646 		uint16_t dpm_level,
647 		bool debug)
648 {
649 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
650 	struct amdgpu_device *adev = hwmgr->adev;
651 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
652 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
653 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
654 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
655 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
656 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
657 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
658 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
659 
660 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
661 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
662 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
663 	fInt fLkg_FT, repeat;
664 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
665 	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
666 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
667 	fInt fSclk_margin, fSclk, fEVV_V;
668 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
669 	uint32_t ul_FT_Lkg_V0NORM;
670 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
671 	fInt fRoots[2];
672 	fInt fStepSize = GetScaledFraction(625, 100000);
673 
674 	int result;
675 
676 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
677 			smu_atom_get_data_table(hwmgr->adev,
678 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
679 					NULL, NULL, NULL);
680 
681 	if (!getASICProfilingInfo)
682 		return -1;
683 
684 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
685 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
686 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
687 		return -1;
688 
689 	/*-----------------------------------------------------------
690 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
691 	 *-----------------------------------------------------------
692 	 */
693 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
694 
695 	switch (dpm_level) {
696 	case 1:
697 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
698 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
699 		break;
700 	case 2:
701 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
702 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
703 		break;
704 	case 3:
705 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
706 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
707 		break;
708 	case 4:
709 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
710 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
711 		break;
712 	case 5:
713 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
714 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
715 		break;
716 	case 6:
717 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
718 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
719 		break;
720 	case 7:
721 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
722 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
723 		break;
724 	default:
725 		pr_err("DPM Level not supported\n");
726 		fPowerDPMx = Convert_ULONG_ToFraction(1);
727 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
728 	}
729 
730 	/*-------------------------
731 	 * DECODING FUSE VALUES
732 	 * ------------------------
733 	 */
734 	/*Decode RO_Fused*/
735 	sRO_fuse = getASICProfilingInfo->sRoFuse;
736 
737 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
738 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
739 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
740 
741 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
742 
743 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
744 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
745 			(uint32_t *)&sOutput_FuseValues);
746 
747 	if (result)
748 		return result;
749 
750 	/* Finally, the actual fuse value */
751 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
752 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
753 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
754 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
755 
756 	sCACm_fuse = getASICProfilingInfo->sCACm;
757 
758 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
759 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
760 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
761 
762 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
763 
764 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
765 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
766 			(uint32_t *)&sOutput_FuseValues);
767 
768 	if (result)
769 		return result;
770 
771 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
772 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
773 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
774 
775 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
776 
777 	sCACb_fuse = getASICProfilingInfo->sCACb;
778 
779 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
780 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
781 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
782 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
783 
784 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
785 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
786 			(uint32_t *)&sOutput_FuseValues);
787 
788 	if (result)
789 		return result;
790 
791 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
792 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
793 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
794 
795 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
796 
797 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
798 
799 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
800 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
801 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
802 
803 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
804 
805 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
806 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
807 			(uint32_t *)&sOutput_FuseValues);
808 
809 	if (result)
810 		return result;
811 
812 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
813 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
814 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
815 
816 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
817 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
818 
819 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
820 
821 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
822 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
823 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
824 
825 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
826 
827 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
828 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
829 			(uint32_t *)&sOutput_FuseValues);
830 	if (result)
831 		return result;
832 
833 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
834 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
835 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
836 	fRange = fMultiply(fRange, ConvertToFraction(-1));
837 
838 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
839 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
840 
841 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
842 
843 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
844 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
845 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
846 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
847 
848 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
849 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
850 			(uint32_t *)&sOutput_FuseValues);
851 
852 	if (result)
853 		return result;
854 
855 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
856 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
857 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
858 
859 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
860 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
861 
862 	/* Decoding the Leakage - No special struct container */
863 	/*
864 	 * usLkgEuseIndex=56
865 	 * ucLkgEfuseBitLSB=6
866 	 * ucLkgEfuseLength=10
867 	 * ulLkgEncodeLn_MaxDivMin=69077
868 	 * ulLkgEncodeMax=1000000
869 	 * ulLkgEncodeMin=1000
870 	 * ulEfuseLogisticAlpha=13
871 	 */
872 
873 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
874 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
875 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
876 
877 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
878 
879 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
880 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
881 			(uint32_t *)&sOutput_FuseValues);
882 
883 	if (result)
884 		return result;
885 
886 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
887 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
888 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
889 
890 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
891 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
892 	fLkg_FT = fFT_Lkg_V0NORM;
893 
894 	/*-------------------------------------------
895 	 * PART 2 - Grabbing all required values
896 	 *-------------------------------------------
897 	 */
898 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
899 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
900 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
901 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
902 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
903 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
904 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
905 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
906 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
907 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
908 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
909 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
910 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
911 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
912 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
913 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
914 
915 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
916 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
917 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
918 
919 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
920 
921 	fMargin_FMAX_mean = GetScaledFraction(
922 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
923 	fMargin_Plat_mean = GetScaledFraction(
924 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
925 	fMargin_FMAX_sigma = GetScaledFraction(
926 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
927 	fMargin_Plat_sigma = GetScaledFraction(
928 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
929 
930 	fMargin_DC_sigma = GetScaledFraction(
931 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
932 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
933 
934 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
935 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
936 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
937 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
938 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
939 
940 	fSclk = GetScaledFraction(sclk, 100);
941 
942 	fV_max = fDivide(GetScaledFraction(
943 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
944 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
945 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
946 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
947 	fV_FT = fDivide(GetScaledFraction(
948 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
949 	fV_min = fDivide(GetScaledFraction(
950 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
951 
952 	/*-----------------------
953 	 * PART 3
954 	 *-----------------------
955 	 */
956 
957 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
958 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
959 	fC_Term = fAdd(fMargin_RO_c,
960 			fAdd(fMultiply(fSM_A0, fLkg_FT),
961 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
962 			fAdd(fMultiply(fSM_A3, fSclk),
963 			fSubtract(fSM_A7, fRO_fused)))));
964 
965 	fVDDC_base = fSubtract(fRO_fused,
966 			fSubtract(fMargin_RO_c,
967 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
968 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
969 
970 	repeat = fSubtract(fVDDC_base,
971 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
972 
973 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
974 			fGetSquare(repeat)),
975 			fAdd(fMultiply(fMargin_RO_b, repeat),
976 			fMargin_RO_c));
977 
978 	fDC_SCLK = fSubtract(fRO_fused,
979 			fSubtract(fRO_DC_margin,
980 			fSubtract(fSM_A3,
981 			fMultiply(fSM_A2, repeat))));
982 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
983 
984 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
985 
986 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
987 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
988 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
989 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
990 
991 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
992 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
993 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
994 
995 	fSclk_margin = fAdd(fMicro_FMAX,
996 			fAdd(fMicro_CR,
997 			fAdd(fMargin_fixed,
998 			fSqrt(fAdd(fSquared_Sigma_FMAX,
999 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
1000 	/*
1001 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
1002 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
1003 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
1004 	 */
1005 
1006 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
1007 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
1008 	fC_Term = fAdd(fRO_DC_margin,
1009 			fAdd(fMultiply(fSM_A0, fLkg_FT),
1010 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
1011 			fAdd(fSclk, fSclk_margin)),
1012 			fAdd(fMultiply(fSM_A3,
1013 			fAdd(fSclk, fSclk_margin)),
1014 			fSubtract(fSM_A7, fRO_fused)))));
1015 
1016 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
1017 
1018 	if (GreaterThan(fRoots[0], fRoots[1]))
1019 		fEVV_V = fRoots[1];
1020 	else
1021 		fEVV_V = fRoots[0];
1022 
1023 	if (GreaterThan(fV_min, fEVV_V))
1024 		fEVV_V = fV_min;
1025 	else if (GreaterThan(fEVV_V, fV_max))
1026 		fEVV_V = fSubtract(fV_max, fStepSize);
1027 
1028 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
1029 
1030 	/*-----------------
1031 	 * PART 4
1032 	 *-----------------
1033 	 */
1034 
1035 	fV_x = fV_min;
1036 
1037 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1038 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1039 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1040 				fGetSquare(fV_x)), fDerateTDP);
1041 
1042 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1043 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1044 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1045 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1046 				fKt_Beta_fused, fT_prod)));
1047 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1048 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1049 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1050 				fKt_Beta_fused, fT_FT)));
1051 
1052 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1053 
1054 		fTDP_Current = fDivide(fTDP_Power, fV_x);
1055 
1056 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1057 				ConvertToFraction(10)));
1058 
1059 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1060 
1061 		if (GreaterThan(fV_max, fV_NL) &&
1062 			(GreaterThan(fV_NL, fEVV_V) ||
1063 			Equal(fV_NL, fEVV_V))) {
1064 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1065 
1066 			*voltage = (uint16_t)fV_NL.partial.real;
1067 			break;
1068 		} else
1069 			fV_x = fAdd(fV_x, fStepSize);
1070 	}
1071 
1072 	return result;
1073 }
1074 
1075 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1076  * @param hwmgr	input: pointer to hwManager
1077  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1078  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1079  *		which is define in PPTable SCLK/VDDC dependence
1080  *				table associated with this virtual_voltage_Id
1081  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1082  * @param voltage		       output: real voltage level in unit of mv
1083  */
1084 int atomctrl_get_voltage_evv_on_sclk(
1085 		struct pp_hwmgr *hwmgr,
1086 		uint8_t voltage_type,
1087 		uint32_t sclk, uint16_t virtual_voltage_Id,
1088 		uint16_t *voltage)
1089 {
1090 	struct amdgpu_device *adev = hwmgr->adev;
1091 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1092 	int result;
1093 
1094 	get_voltage_info_param_space.ucVoltageType   =
1095 		voltage_type;
1096 	get_voltage_info_param_space.ucVoltageMode   =
1097 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1098 	get_voltage_info_param_space.usVoltageLevel  =
1099 		cpu_to_le16(virtual_voltage_Id);
1100 	get_voltage_info_param_space.ulSCLKFreq      =
1101 		cpu_to_le32(sclk);
1102 
1103 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1104 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1105 			(uint32_t *)&get_voltage_info_param_space);
1106 
1107 	*voltage = result ? 0 :
1108 			le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1109 				(&get_voltage_info_param_space))->usVoltageLevel);
1110 
1111 	return result;
1112 }
1113 
1114 /**
1115  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1116  * @param hwmgr	input: pointer to hwManager
1117  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1118  * @param voltage		       output: real voltage level in unit of mv
1119  */
1120 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1121 			     uint16_t virtual_voltage_id,
1122 			     uint16_t *voltage)
1123 {
1124 	struct amdgpu_device *adev = hwmgr->adev;
1125 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1126 	int result;
1127 	int entry_id;
1128 
1129 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1130 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1131 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1132 			/* found */
1133 			break;
1134 		}
1135 	}
1136 
1137 	if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1138 	        pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1139 	        return -EINVAL;
1140 	}
1141 
1142 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1143 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1144 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1145 	get_voltage_info_param_space.ulSCLKFreq =
1146 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1147 
1148 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1149 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1150 			(uint32_t *)&get_voltage_info_param_space);
1151 
1152 	if (0 != result)
1153 		return result;
1154 
1155 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1156 				(&get_voltage_info_param_space))->usVoltageLevel);
1157 
1158 	return result;
1159 }
1160 
1161 /**
1162  * Get the mpll reference clock in 10KHz
1163  */
1164 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1165 {
1166 	ATOM_COMMON_TABLE_HEADER *fw_info;
1167 	uint32_t clock;
1168 	u8 frev, crev;
1169 	u16 size;
1170 
1171 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1172 		smu_atom_get_data_table(hwmgr->adev,
1173 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1174 				&size, &frev, &crev);
1175 
1176 	if (fw_info == NULL)
1177 		clock = 2700;
1178 	else {
1179 		if ((fw_info->ucTableFormatRevision == 2) &&
1180 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1181 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1182 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1183 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1184 		} else {
1185 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1186 				(ATOM_FIRMWARE_INFO *)fw_info;
1187 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1188 		}
1189 	}
1190 
1191 	return clock;
1192 }
1193 
1194 /**
1195  * Get the asic internal spread spectrum table
1196  */
1197 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1198 {
1199 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1200 	u8 frev, crev;
1201 	u16 size;
1202 
1203 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1204 		smu_atom_get_data_table(device,
1205 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1206 			&size, &frev, &crev);
1207 
1208 	return table;
1209 }
1210 
1211 /**
1212  * Get the asic internal spread spectrum assignment
1213  */
1214 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1215 		const uint8_t clockSource,
1216 		const uint32_t clockSpeed,
1217 		pp_atomctrl_internal_ss_info *ssEntry)
1218 {
1219 	ATOM_ASIC_INTERNAL_SS_INFO *table;
1220 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1221 	int entry_found = 0;
1222 
1223 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1224 
1225 	table = asic_internal_ss_get_ss_table(hwmgr->adev);
1226 
1227 	if (NULL == table)
1228 		return -1;
1229 
1230 	ssInfo = &table->asSpreadSpectrum[0];
1231 
1232 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1233 		le16_to_cpu(table->sHeader.usStructureSize)) {
1234 		if ((clockSource == ssInfo->ucClockIndication) &&
1235 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1236 			entry_found = 1;
1237 			break;
1238 		}
1239 
1240 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1241 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1242 	}
1243 
1244 	if (entry_found) {
1245 		ssEntry->speed_spectrum_percentage =
1246 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1247 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1248 
1249 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1250 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1251 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1252 			ssEntry->speed_spectrum_rate /= 100;
1253 		}
1254 
1255 		switch (ssInfo->ucSpreadSpectrumMode) {
1256 		case 0:
1257 			ssEntry->speed_spectrum_mode =
1258 				pp_atomctrl_spread_spectrum_mode_down;
1259 			break;
1260 		case 1:
1261 			ssEntry->speed_spectrum_mode =
1262 				pp_atomctrl_spread_spectrum_mode_center;
1263 			break;
1264 		default:
1265 			ssEntry->speed_spectrum_mode =
1266 				pp_atomctrl_spread_spectrum_mode_down;
1267 			break;
1268 		}
1269 	}
1270 
1271 	return entry_found ? 0 : 1;
1272 }
1273 
1274 /**
1275  * Get the memory clock spread spectrum info
1276  */
1277 int atomctrl_get_memory_clock_spread_spectrum(
1278 		struct pp_hwmgr *hwmgr,
1279 		const uint32_t memory_clock,
1280 		pp_atomctrl_internal_ss_info *ssInfo)
1281 {
1282 	return asic_internal_ss_get_ss_asignment(hwmgr,
1283 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1284 }
1285 /**
1286  * Get the engine clock spread spectrum info
1287  */
1288 int atomctrl_get_engine_clock_spread_spectrum(
1289 		struct pp_hwmgr *hwmgr,
1290 		const uint32_t engine_clock,
1291 		pp_atomctrl_internal_ss_info *ssInfo)
1292 {
1293 	return asic_internal_ss_get_ss_asignment(hwmgr,
1294 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1295 }
1296 
1297 int atomctrl_read_efuse(struct pp_hwmgr *hwmgr, uint16_t start_index,
1298 		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1299 {
1300 	struct amdgpu_device *adev = hwmgr->adev;
1301 	int result;
1302 	READ_EFUSE_VALUE_PARAMETER efuse_param;
1303 
1304 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1305 	efuse_param.sEfuse.ucBitShift = (uint8_t)
1306 			(start_index - ((start_index / 32) * 32));
1307 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1308 			((end_index - start_index) + 1);
1309 
1310 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1311 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1312 			(uint32_t *)&efuse_param);
1313 	*efuse = result ? 0 : le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1314 
1315 	return result;
1316 }
1317 
1318 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1319 			      uint8_t level)
1320 {
1321 	struct amdgpu_device *adev = hwmgr->adev;
1322 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1323 	int result;
1324 
1325 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1326 		memory_clock & SET_CLOCK_FREQ_MASK;
1327 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1328 		ADJUST_MC_SETTING_PARAM;
1329 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1330 
1331 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1332 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1333 		(uint32_t *)&memory_clock_parameters);
1334 
1335 	return result;
1336 }
1337 
1338 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1339 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1340 {
1341 	struct amdgpu_device *adev = hwmgr->adev;
1342 	int result;
1343 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1344 
1345 	get_voltage_info_param_space.ucVoltageType = voltage_type;
1346 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1347 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1348 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1349 
1350 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1351 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1352 			(uint32_t *)&get_voltage_info_param_space);
1353 
1354 	*voltage = result ? 0 :
1355 		le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)(&get_voltage_info_param_space))->ulVoltageLevel);
1356 
1357 	return result;
1358 }
1359 
1360 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1361 {
1362 
1363 	int i;
1364 	u8 frev, crev;
1365 	u16 size;
1366 
1367 	ATOM_SMU_INFO_V2_1 *psmu_info =
1368 		(ATOM_SMU_INFO_V2_1 *)smu_atom_get_data_table(hwmgr->adev,
1369 			GetIndexIntoMasterTable(DATA, SMU_Info),
1370 			&size, &frev, &crev);
1371 
1372 
1373 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1374 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1375 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1376 		table->entry[i].usFcw_pcc =
1377 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1378 		table->entry[i].usFcw_trans_upper =
1379 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1380 		table->entry[i].usRcw_trans_lower =
1381 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1382 	}
1383 
1384 	return 0;
1385 }
1386 
1387 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1388 				  struct pp_atom_ctrl__avfs_parameters *param)
1389 {
1390 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1391 
1392 	if (param == NULL)
1393 		return -EINVAL;
1394 
1395 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1396 			smu_atom_get_data_table(hwmgr->adev,
1397 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1398 					NULL, NULL, NULL);
1399 	if (!profile)
1400 		return -1;
1401 
1402 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1403 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1404 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1405 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1406 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1407 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1408 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1409 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1410 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1411 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1412 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1413 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1414 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1415 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1416 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1417 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1418 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1419 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1420 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1421 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1422 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1423 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1424 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1425 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1426 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1427 
1428 	return 0;
1429 }
1430 
1431 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1432 				uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1433 				uint16_t *load_line)
1434 {
1435 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1436 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->adev);
1437 
1438 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1439 
1440 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
1441 			"Could not find Voltage Table in BIOS.", return -EINVAL);
1442 
1443 	voltage_object = atomctrl_lookup_voltage_type_v3
1444 		(voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1445 
1446 	*svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1447 	*svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1448 	*load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1449 
1450 	return 0;
1451 }
1452 
1453 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1454 {
1455 	struct amdgpu_device *adev = hwmgr->adev;
1456 	SET_VOLTAGE_PS_ALLOCATION allocation;
1457 	SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1458 			(SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1459 	int result;
1460 
1461 	voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1462 
1463 	result = amdgpu_atom_execute_table(adev->mode_info.atom_context,
1464 			GetIndexIntoMasterTable(COMMAND, SetVoltage),
1465 			(uint32_t *)voltage_parameters);
1466 
1467 	*virtual_voltage_id = voltage_parameters->usVoltageLevel;
1468 
1469 	return result;
1470 }
1471 
1472 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1473 					uint16_t *vddc, uint16_t *vddci,
1474 					uint16_t virtual_voltage_id,
1475 					uint16_t efuse_voltage_id)
1476 {
1477 	int i, j;
1478 	int ix;
1479 	u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1480 	ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1481 
1482 	*vddc = 0;
1483 	*vddci = 0;
1484 
1485 	ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1486 
1487 	profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1488 			smu_atom_get_data_table(hwmgr->adev,
1489 					ix,
1490 					NULL, NULL, NULL);
1491 	if (!profile)
1492 		return -EINVAL;
1493 
1494 	if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1495 		(profile->asHeader.ucTableContentRevision >= 1) &&
1496 		(profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1497 		leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1498 		vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1499 		vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1500 		if (profile->ucElbVDDC_Num > 0) {
1501 			for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1502 				if (vddc_id_buf[i] == virtual_voltage_id) {
1503 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1504 						if (efuse_voltage_id <= leakage_bin[j]) {
1505 							*vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1506 							break;
1507 						}
1508 					}
1509 					break;
1510 				}
1511 			}
1512 		}
1513 
1514 		vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1515 		vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1516 		if (profile->ucElbVDDCI_Num > 0) {
1517 			for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1518 				if (vddci_id_buf[i] == virtual_voltage_id) {
1519 					for (j = 0; j < profile->ucLeakageBinNum; j++) {
1520 						if (efuse_voltage_id <= leakage_bin[j]) {
1521 							*vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1522 							break;
1523 						}
1524 					}
1525 					break;
1526 				}
1527 			}
1528 		}
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 void atomctrl_get_voltage_range(struct pp_hwmgr *hwmgr, uint32_t *max_vddc,
1535 							uint32_t *min_vddc)
1536 {
1537 	void *profile;
1538 
1539 	profile = smu_atom_get_data_table(hwmgr->adev,
1540 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1541 					NULL, NULL, NULL);
1542 
1543 	if (profile) {
1544 		switch (hwmgr->chip_id) {
1545 		case CHIP_TONGA:
1546 		case CHIP_FIJI:
1547 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMaxVddc) / 4;
1548 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_3 *)profile)->ulMinVddc) / 4;
1549 			return;
1550 		case CHIP_POLARIS11:
1551 		case CHIP_POLARIS10:
1552 		case CHIP_POLARIS12:
1553 			*max_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMaxVddc) / 100;
1554 			*min_vddc = le32_to_cpu(((ATOM_ASIC_PROFILING_INFO_V3_6 *)profile)->ulMinVddc) / 100;
1555 			return;
1556 		default:
1557 			break;
1558 		}
1559 	}
1560 	*max_vddc = 0;
1561 	*min_vddc = 0;
1562 }
1563