1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 
36 #define DC_LOGGER_INIT(logger)
37 
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 			.min_refresh = 120,
40 			.max_refresh = 175,
41 			.res = {
42 				{.width = 3840, .height = 2160, },
43 				{.width = 3440, .height = 1440, },
44 				{.width = 2560, .height = 1440, }},
45 };
46 
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 	.gpuvm_enable = 0,
49 	.gpuvm_max_page_table_levels = 4,
50 	.hostvm_enable = 0,
51 	.rob_buffer_size_kbytes = 128,
52 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 	.config_return_buffer_size_in_kbytes = 1280,
54 	.compressed_buffer_segment_size_in_kbytes = 64,
55 	.meta_fifo_size_in_kentries = 22,
56 	.zero_size_buffer_entries = 512,
57 	.compbuf_reserved_space_64b = 256,
58 	.compbuf_reserved_space_zs = 64,
59 	.dpp_output_buffer_pixels = 2560,
60 	.opp_output_buffer_lines = 1,
61 	.pixel_chunk_size_kbytes = 8,
62 	.alpha_pixel_chunk_size_kbytes = 4,
63 	.min_pixel_chunk_size_bytes = 1024,
64 	.dcc_meta_buffer_size_bytes = 6272,
65 	.meta_chunk_size_kbytes = 2,
66 	.min_meta_chunk_size_bytes = 256,
67 	.writeback_chunk_size_kbytes = 8,
68 	.ptoi_supported = false,
69 	.num_dsc = 4,
70 	.maximum_dsc_bits_per_component = 12,
71 	.maximum_pixels_per_line_per_dsc_unit = 6016,
72 	.dsc422_native_support = true,
73 	.is_line_buffer_bpp_fixed = true,
74 	.line_buffer_fixed_bpp = 57,
75 	.line_buffer_size_bits = 1171920,
76 	.max_line_buffer_lines = 32,
77 	.writeback_interface_buffer_size_kbytes = 90,
78 	.max_num_dpp = 4,
79 	.max_num_otg = 4,
80 	.max_num_hdmi_frl_outputs = 1,
81 	.max_num_wb = 1,
82 	.max_dchub_pscl_bw_pix_per_clk = 4,
83 	.max_pscl_lb_bw_pix_per_clk = 2,
84 	.max_lb_vscl_bw_pix_per_clk = 4,
85 	.max_vscl_hscl_bw_pix_per_clk = 4,
86 	.max_hscl_ratio = 6,
87 	.max_vscl_ratio = 6,
88 	.max_hscl_taps = 8,
89 	.max_vscl_taps = 8,
90 	.dpte_buffer_size_in_pte_reqs_luma = 64,
91 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
92 	.dispclk_ramp_margin_percent = 1,
93 	.max_inter_dcn_tile_repeaters = 8,
94 	.cursor_buffer_size = 16,
95 	.cursor_chunk_size = 2,
96 	.writeback_line_buffer_buffer_size = 0,
97 	.writeback_min_hscl_ratio = 1,
98 	.writeback_min_vscl_ratio = 1,
99 	.writeback_max_hscl_ratio = 1,
100 	.writeback_max_vscl_ratio = 1,
101 	.writeback_max_hscl_taps = 1,
102 	.writeback_max_vscl_taps = 1,
103 	.dppclk_delay_subtotal = 47,
104 	.dppclk_delay_scl = 50,
105 	.dppclk_delay_scl_lb_only = 16,
106 	.dppclk_delay_cnvc_formatter = 28,
107 	.dppclk_delay_cnvc_cursor = 6,
108 	.dispclk_delay_subtotal = 125,
109 	.dynamic_metadata_vm_enabled = false,
110 	.odm_combine_4to1_supported = false,
111 	.dcc_supported = true,
112 	.max_num_dp2p0_outputs = 2,
113 	.max_num_dp2p0_streams = 4,
114 };
115 
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 	.clock_limits = {
118 		{
119 			.state = 0,
120 			.dcfclk_mhz = 1564.0,
121 			.fabricclk_mhz = 2500.0,
122 			.dispclk_mhz = 2150.0,
123 			.dppclk_mhz = 2150.0,
124 			.phyclk_mhz = 810.0,
125 			.phyclk_d18_mhz = 667.0,
126 			.phyclk_d32_mhz = 625.0,
127 			.socclk_mhz = 1200.0,
128 			.dscclk_mhz = 716.667,
129 			.dram_speed_mts = 18000.0,
130 			.dtbclk_mhz = 1564.0,
131 		},
132 	},
133 	.num_states = 1,
134 	.sr_exit_time_us = 42.97,
135 	.sr_enter_plus_exit_time_us = 49.94,
136 	.sr_exit_z8_time_us = 285.0,
137 	.sr_enter_plus_exit_z8_time_us = 320,
138 	.writeback_latency_us = 12.0,
139 	.round_trip_ping_latency_dcfclk_cycles = 263,
140 	.urgent_latency_pixel_data_only_us = 4.0,
141 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 	.urgent_latency_vm_data_only_us = 4.0,
143 	.fclk_change_latency_us = 25,
144 	.usr_retraining_latency_us = 2,
145 	.smn_latency_us = 2,
146 	.mall_allocated_for_dcn_mbytes = 64,
147 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 	.pct_ideal_sdp_bw_after_urgent = 90.0,
151 	.pct_ideal_fabric_bw_after_urgent = 67.0,
152 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 	.max_avg_sdp_bw_use_normal_percent = 80.0,
157 	.max_avg_fabric_bw_use_normal_percent = 60.0,
158 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 	.max_avg_dram_bw_use_normal_percent = 15.0,
160 	.num_chans = 24,
161 	.dram_channel_width_bytes = 2,
162 	.fabric_datapath_to_dcn_data_return_bytes = 64,
163 	.return_bus_width_bytes = 64,
164 	.downspread_percent = 0.38,
165 	.dcn_downspread_percent = 0.5,
166 	.dram_clock_change_latency_us = 400,
167 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
168 	.do_urgent_latency_adjustment = true,
169 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172 
173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 	/* defaults */
176 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 	/* For min clocks use as reported by PM FW and report those as min */
181 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
184 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185 
186 	dc_assert_fp_enabled();
187 
188 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 	if (dcfclk_mhz_for_the_second_state)
190 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 	else
192 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 
194 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196 
197 	/* Set A - Normal - default values */
198 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208 
209 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219 
220 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 	}
242 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255 
256 /*
257  * Finds dummy_latency_index when MCLK switching using firmware based
258  * vblank stretch is enabled. This function will iterate through the
259  * table of dummy pstate latencies until the lowest value that allows
260  * dm_allow_self_refresh_and_mclk_switch to happen is found
261  */
262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 							    struct dc_state *context,
264 							    display_e2e_pipe_params_st *pipes,
265 							    int pipe_cnt,
266 							    int vlevel)
267 {
268 	const int max_latency_table_entries = 4;
269 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 	int dummy_latency_index = 0;
271 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272 
273 	dc_assert_fp_enabled();
274 
275 	while (dummy_latency_index < max_latency_table_entries) {
276 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281 
282 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 				dcn32_subvp_in_use(dc, context))
285 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286 
287 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 			break;
290 
291 		dummy_latency_index++;
292 	}
293 
294 	if (dummy_latency_index == max_latency_table_entries) {
295 		ASSERT(dummy_latency_index != max_latency_table_entries);
296 		/* If the execution gets here, it means dummy p_states are
297 		 * not possible. This should never happen and would mean
298 		 * something is severely wrong.
299 		 * Here we reset dummy_latency_index to 3, because it is
300 		 * better to have underflows than system crashes.
301 		 */
302 		dummy_latency_index = max_latency_table_entries - 1;
303 	}
304 
305 	return dummy_latency_index;
306 }
307 
308 /**
309  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310  * and populate pipe_ctx with those params.
311  * @dc: [in] current dc state
312  * @context: [in] new dc state
313  * @pipes: [in] DML pipe params array
314  * @pipe_cnt: [in] DML pipe count
315  *
316  * This function must be called AFTER the phantom pipes are added to context
317  * and run through DML (so that the DLG params for the phantom pipes can be
318  * populated), and BEFORE we program the timing for the phantom pipes.
319  */
320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 					      struct dc_state *context,
322 					      display_e2e_pipe_params_st *pipes,
323 					      int pipe_cnt)
324 {
325 	uint32_t i, pipe_idx;
326 
327 	dc_assert_fp_enabled();
328 
329 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331 
332 		if (!pipe->stream)
333 			continue;
334 
335 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 			pipes[pipe_idx].pipe.dest.vstartup_start =
337 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 			pipes[pipe_idx].pipe.dest.vupdate_offset =
339 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 			pipes[pipe_idx].pipe.dest.vupdate_width =
341 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 			pipes[pipe_idx].pipe.dest.vready_offset =
343 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 		}
346 		pipe_idx++;
347 	}
348 }
349 
350 /**
351  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352  * @context: [in] New DC state to be programmed
353  * @pipe_e2e: [in] DML pipe end to end context
354  *
355  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357  * determined by DPPClk requirements
358  *
359  * This function follows the same policy as DML:
360  * - Check for ODM combine requirements / policy first
361  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362  *   MPC is required
363  *
364  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365  */
366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 				  display_e2e_pipe_params_st *pipe_e2e)
368 {
369 	double pscl_throughput;
370 	double pscl_throughput_chroma;
371 	double dpp_clk_single_dpp, clock;
372 	double clk_frequency = 0.0;
373 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 	bool total_available_pipes_support = false;
375 	uint32_t number_of_dpp = 0;
376 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 	double req_dispclk_per_surface = 0;
378 	uint8_t num_splits = 0;
379 
380 	dc_assert_fp_enabled();
381 
382 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 			pipe_e2e->pipe.dest.hactive,
384 			pipe_e2e->dout.output_format,
385 			pipe_e2e->dout.output_type,
386 			pipe_e2e->pipe.dest.odm_combine_policy,
387 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 			pipe_e2e->dout.dsc_enable != 0,
390 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 			context->bw_ctx.dml.ip.max_num_dpp,
392 			pipe_e2e->pipe.dest.pixel_rate_mhz,
393 			context->bw_ctx.dml.soc.dcn_downspread_percent,
394 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 			pipe_e2e->dout.dsc_slices,
397 			/* Output */
398 			&total_available_pipes_support,
399 			&number_of_dpp,
400 			&odm_mode,
401 			&req_dispclk_per_surface);
402 
403 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 			pipe_e2e->pipe.dest.pixel_rate_mhz,
410 			pipe_e2e->pipe.src.source_format,
411 			pipe_e2e->pipe.scale_taps.htaps,
412 			pipe_e2e->pipe.scale_taps.htaps_c,
413 			pipe_e2e->pipe.scale_taps.vtaps,
414 			pipe_e2e->pipe.scale_taps.vtaps_c,
415 			/* Output */
416 			&pscl_throughput, &pscl_throughput_chroma,
417 			&dpp_clk_single_dpp);
418 
419 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420 
421 	if (clock > 0)
422 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423 
424 	if (odm_mode == dm_odm_combine_mode_2to1)
425 		num_splits = 1;
426 	else if (odm_mode == dm_odm_combine_mode_4to1)
427 		num_splits = 3;
428 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 		num_splits = 1;
430 
431 	return num_splits;
432 }
433 
434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 	float memory_bw_kbytes_sec;
437 	float fabric_bw_kbytes_sec;
438 	float sdp_bw_kbytes_sec;
439 	float limiting_bw_kbytes_sec;
440 
441 	memory_bw_kbytes_sec = entry->dram_speed_mts *
442 				dcn3_2_soc.num_chans *
443 				dcn3_2_soc.dram_channel_width_bytes *
444 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445 
446 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 				dcn3_2_soc.return_bus_width_bytes *
448 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449 
450 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 				dcn3_2_soc.return_bus_width_bytes *
452 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453 
454 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455 
456 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458 
459 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461 
462 	return limiting_bw_kbytes_sec;
463 }
464 
465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 	if (entry->dcfclk_mhz > 0) {
468 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469 
470 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 	} else if (entry->fabricclk_mhz > 0) {
474 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475 
476 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 	} else if (entry->dram_speed_mts > 0) {
480 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482 
483 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 	}
486 }
487 
488 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 				    unsigned int *num_entries,
490 				    struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 	int i = 0;
493 	int index = 0;
494 
495 	dc_assert_fp_enabled();
496 
497 	if (*num_entries == 0) {
498 		table[0] = *entry;
499 		(*num_entries)++;
500 	} else {
501 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
502 			index++;
503 			if (index >= *num_entries)
504 				break;
505 		}
506 
507 		for (i = *num_entries; i > index; i--)
508 			table[i] = table[i - 1];
509 
510 		table[index] = *entry;
511 		(*num_entries)++;
512 	}
513 }
514 
515 /**
516  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
517  * @dc: current dc state
518  * @context: new dc state
519  * @ref_pipe: Main pipe for the phantom stream
520  * @phantom_stream: target phantom stream state
521  * @pipes: DML pipe params
522  * @pipe_cnt: number of DML pipes
523  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
524  *
525  * Set timing params of the phantom stream based on calculated output from DML.
526  * This function first gets the DML pipe index using the DC pipe index, then
527  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
528  * lines required for SubVP MCLK switching and assigns to the phantom stream
529  * accordingly.
530  *
531  * - The number of SubVP lines calculated in DML does not take into account
532  * FW processing delays and required pstate allow width, so we must include
533  * that separately.
534  *
535  * - Set phantom backporch = vstartup of main pipe
536  */
537 void dcn32_set_phantom_stream_timing(struct dc *dc,
538 				     struct dc_state *context,
539 				     struct pipe_ctx *ref_pipe,
540 				     struct dc_stream_state *phantom_stream,
541 				     display_e2e_pipe_params_st *pipes,
542 				     unsigned int pipe_cnt,
543 				     unsigned int dc_pipe_idx)
544 {
545 	unsigned int i, pipe_idx;
546 	struct pipe_ctx *pipe;
547 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
548 	unsigned int num_dpp;
549 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
550 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
551 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
552 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
553 	struct dc_stream_state *main_stream = ref_pipe->stream;
554 
555 	dc_assert_fp_enabled();
556 
557 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
558 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
559 		pipe = &context->res_ctx.pipe_ctx[i];
560 
561 		if (!pipe->stream)
562 			continue;
563 
564 		if (i == dc_pipe_idx)
565 			break;
566 
567 		pipe_idx++;
568 	}
569 
570 	// Calculate lines required for pstate allow width and FW processing delays
571 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
572 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
573 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
574 			(double)ref_pipe->stream->timing.h_total;
575 
576 	// Update clks_cfg for calling into recalculate
577 	pipes[0].clks_cfg.voltage = vlevel;
578 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
579 	pipes[0].clks_cfg.socclk_mhz = socclk;
580 
581 	// DML calculation for MALL region doesn't take into account FW delay
582 	// and required pstate allow width for multi-display cases
583 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
584 	 * to 2 swaths (i.e. 16 lines)
585 	 */
586 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
587 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
588 
589 	// W/A for DCC corruption with certain high resolution timings.
590 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
591 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
592 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
593 
594 	/* dc->debug.subvp_extra_lines 0 by default*/
595 	phantom_vactive += dc->debug.subvp_extra_lines;
596 
597 	// For backporch of phantom pipe, use vstartup of the main pipe
598 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
599 
600 	phantom_stream->dst.y = 0;
601 	phantom_stream->dst.height = phantom_vactive;
602 	/* When scaling, DML provides the end to end required number of lines for MALL.
603 	 * dst.height is always correct for this case, but src.height is not which causes a
604 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
605 	 * phantom for this case.
606 	 */
607 	phantom_stream->src.y = 0;
608 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
609 
610 	phantom_stream->timing.v_addressable = phantom_vactive;
611 	phantom_stream->timing.v_front_porch = 1;
612 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
613 						phantom_stream->timing.v_front_porch +
614 						phantom_stream->timing.v_sync_width +
615 						phantom_bp;
616 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
617 }
618 
619 /**
620  * dcn32_get_num_free_pipes - Calculate number of free pipes
621  * @dc: current dc state
622  * @context: new dc state
623  *
624  * This function assumes that a "used" pipe is a pipe that has
625  * both a stream and a plane assigned to it.
626  *
627  * Return: Number of free pipes available in the context
628  */
629 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
630 {
631 	unsigned int i;
632 	unsigned int free_pipes = 0;
633 	unsigned int num_pipes = 0;
634 
635 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
636 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
637 
638 		if (pipe->stream && !pipe->top_pipe) {
639 			while (pipe) {
640 				num_pipes++;
641 				pipe = pipe->bottom_pipe;
642 			}
643 		}
644 	}
645 
646 	free_pipes = dc->res_pool->pipe_count - num_pipes;
647 	return free_pipes;
648 }
649 
650 /**
651  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
652  * @dc: current dc state
653  * @context: new dc state
654  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
655  *
656  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
657  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
658  * we are forcing SubVP P-State switching on the current config.
659  *
660  * The number of pipes used for the chosen surface must be less than or equal to the
661  * number of free pipes available.
662  *
663  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
664  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
665  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
666  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
667  *
668  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
669  */
670 static bool dcn32_assign_subvp_pipe(struct dc *dc,
671 				    struct dc_state *context,
672 				    unsigned int *index)
673 {
674 	unsigned int i, pipe_idx;
675 	unsigned int max_frame_time = 0;
676 	bool valid_assignment_found = false;
677 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
678 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
679 
680 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
681 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
682 		unsigned int num_pipes = 0;
683 		unsigned int refresh_rate = 0;
684 
685 		if (!pipe->stream)
686 			continue;
687 
688 		// Round up
689 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
690 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
691 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
692 		/* SubVP pipe candidate requirements:
693 		 * - Refresh rate < 120hz
694 		 * - Not able to switch in vactive naturally (switching in active means the
695 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
696 		 *   to combine this with SubVP can cause issues with the scheduling).
697 		 * - Not TMZ surface
698 		 */
699 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
700 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
701 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
702 				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
703 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
704 				!pipe->plane_state->address.tmz_surface &&
705 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
706 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
707 						dcn32_allow_subvp_with_active_margin(pipe)))) {
708 			while (pipe) {
709 				num_pipes++;
710 				pipe = pipe->bottom_pipe;
711 			}
712 
713 			pipe = &context->res_ctx.pipe_ctx[i];
714 			if (num_pipes <= free_pipes) {
715 				struct dc_stream_state *stream = pipe->stream;
716 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
717 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
718 				if (frame_us > max_frame_time) {
719 					*index = i;
720 					max_frame_time = frame_us;
721 					valid_assignment_found = true;
722 				}
723 			}
724 		}
725 		pipe_idx++;
726 	}
727 	return valid_assignment_found;
728 }
729 
730 /**
731  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
732  * @dc: current dc state
733  * @context: new dc state
734  *
735  * This function returns true if there are enough free pipes
736  * to create the required phantom pipes for any given stream
737  * (that does not already have phantom pipe assigned).
738  *
739  * e.g. For a 2 stream config where the first stream uses one
740  * pipe and the second stream uses 2 pipes (i.e. pipe split),
741  * this function will return true because there is 1 remaining
742  * pipe which can be used as the phantom pipe for the non pipe
743  * split pipe.
744  *
745  * Return:
746  * True if there are enough free pipes to assign phantom pipes to at least one
747  * stream that does not already have phantom pipes assigned. Otherwise false.
748  */
749 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
750 {
751 	unsigned int i, split_cnt, free_pipes;
752 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
753 	bool subvp_possible = false;
754 
755 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
756 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
757 
758 		// Find the minimum pipe split count for non SubVP pipes
759 		if (resource_is_pipe_type(pipe, OPP_HEAD) &&
760 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
761 			split_cnt = 0;
762 			while (pipe) {
763 				split_cnt++;
764 				pipe = pipe->bottom_pipe;
765 			}
766 
767 			if (split_cnt < min_pipe_split)
768 				min_pipe_split = split_cnt;
769 		}
770 	}
771 
772 	free_pipes = dcn32_get_num_free_pipes(dc, context);
773 
774 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
775 	// should not equal to the pipe_count)
776 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
777 		subvp_possible = true;
778 
779 	return subvp_possible;
780 }
781 
782 /**
783  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
784  * @dc: current dc state
785  * @context: new dc state
786  *
787  * High level algorithm:
788  * 1. Find longest microschedule length (in us) between the two SubVP pipes
789  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
790  * pipes still allows for the maximum microschedule to fit in the active
791  * region for both pipes.
792  *
793  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
794  */
795 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 	struct pipe_ctx *subvp_pipes[2];
798 	struct dc_stream_state *phantom = NULL;
799 	uint32_t microschedule_lines = 0;
800 	uint32_t index = 0;
801 	uint32_t i;
802 	uint32_t max_microschedule_us = 0;
803 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
804 
805 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
806 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
807 		uint32_t time_us = 0;
808 
809 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
810 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
811 		 */
812 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
813 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
814 			phantom = pipe->stream->mall_stream_config.paired_stream;
815 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
816 					phantom->timing.v_addressable;
817 
818 			// Round up when calculating microschedule time (+ 1 at the end)
819 			time_us = (microschedule_lines * phantom->timing.h_total) /
820 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
821 						dc->caps.subvp_prefetch_end_to_mall_start_us +
822 						dc->caps.subvp_fw_processing_delay_us + 1;
823 			if (time_us > max_microschedule_us)
824 				max_microschedule_us = time_us;
825 
826 			subvp_pipes[index] = pipe;
827 			index++;
828 
829 			// Maximum 2 SubVP pipes
830 			if (index == 2)
831 				break;
832 		}
833 	}
834 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
835 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
836 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
837 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
838 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
839 			subvp_pipes[0]->stream->timing.h_total) /
840 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
841 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
842 			subvp_pipes[1]->stream->timing.h_total) /
843 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
844 
845 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
846 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
847 		return true;
848 
849 	return false;
850 }
851 
852 /**
853  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
854  * @dc: current dc state
855  * @context: new dc state
856  *
857  * High level algorithm:
858  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
859  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
860  * (the margin is equal to the MALL region + DRR margin (500us))
861  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
862  * then report the configuration as supported
863  *
864  * Return: True if the SubVP + DRR config is schedulable, false otherwise
865  */
866 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
867 {
868 	bool schedulable = false;
869 	uint32_t i;
870 	struct pipe_ctx *pipe = NULL;
871 	struct pipe_ctx *drr_pipe = NULL;
872 	struct dc_crtc_timing *main_timing = NULL;
873 	struct dc_crtc_timing *phantom_timing = NULL;
874 	struct dc_crtc_timing *drr_timing = NULL;
875 	int16_t prefetch_us = 0;
876 	int16_t mall_region_us = 0;
877 	int16_t drr_frame_us = 0;	// nominal frame time
878 	int16_t subvp_active_us = 0;
879 	int16_t stretched_drr_us = 0;
880 	int16_t drr_stretched_vblank_us = 0;
881 	int16_t max_vblank_mallregion = 0;
882 
883 	// Find SubVP pipe
884 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
885 		pipe = &context->res_ctx.pipe_ctx[i];
886 
887 		// We check for master pipe, but it shouldn't matter since we only need
888 		// the pipe for timing info (stream should be same for any pipe splits)
889 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
890 				!resource_is_pipe_type(pipe, DPP_PIPE))
891 			continue;
892 
893 		// Find the SubVP pipe
894 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
895 			break;
896 	}
897 
898 	// Find the DRR pipe
899 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
900 		drr_pipe = &context->res_ctx.pipe_ctx[i];
901 
902 		// We check for master pipe only
903 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
904 				!resource_is_pipe_type(pipe, DPP_PIPE))
905 			continue;
906 
907 		if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
908 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
909 			break;
910 	}
911 
912 	main_timing = &pipe->stream->timing;
913 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
914 	drr_timing = &drr_pipe->stream->timing;
915 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
916 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
917 			dc->caps.subvp_prefetch_end_to_mall_start_us;
918 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
919 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
920 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
921 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
922 	// P-State allow width and FW delays already included phantom_timing->v_addressable
923 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
924 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
925 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
926 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
927 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
928 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
929 
930 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
931 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
932 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
933 	 * and the max of (VBLANK blanking time, MALL region)).
934 	 */
935 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
936 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
937 		schedulable = true;
938 
939 	return schedulable;
940 }
941 
942 
943 /**
944  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
945  * @dc: current dc state
946  * @context: new dc state
947  *
948  * High level algorithm:
949  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
950  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
951  * then report the configuration as supported
952  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
953  *
954  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
955  */
956 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
957 {
958 	struct pipe_ctx *pipe = NULL;
959 	struct pipe_ctx *subvp_pipe = NULL;
960 	bool found = false;
961 	bool schedulable = false;
962 	uint32_t i = 0;
963 	uint8_t vblank_index = 0;
964 	uint16_t prefetch_us = 0;
965 	uint16_t mall_region_us = 0;
966 	uint16_t vblank_frame_us = 0;
967 	uint16_t subvp_active_us = 0;
968 	uint16_t vblank_blank_us = 0;
969 	uint16_t max_vblank_mallregion = 0;
970 	struct dc_crtc_timing *main_timing = NULL;
971 	struct dc_crtc_timing *phantom_timing = NULL;
972 	struct dc_crtc_timing *vblank_timing = NULL;
973 
974 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
975 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
976 	 * is supported, it is either a single VBLANK case or two VBLANK
977 	 * displays which are synchronized (in which case they have identical
978 	 * timings).
979 	 */
980 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
981 		pipe = &context->res_ctx.pipe_ctx[i];
982 
983 		// We check for master pipe, but it shouldn't matter since we only need
984 		// the pipe for timing info (stream should be same for any pipe splits)
985 		if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
986 				!resource_is_pipe_type(pipe, DPP_PIPE))
987 			continue;
988 
989 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
990 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
991 			vblank_index = i;
992 			found = true;
993 		}
994 
995 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
996 			subvp_pipe = pipe;
997 	}
998 	if (found) {
999 		main_timing = &subvp_pipe->stream->timing;
1000 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1001 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1002 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1003 		// Also include the prefetch end to mallstart delay time
1004 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1005 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1006 				dc->caps.subvp_prefetch_end_to_mall_start_us;
1007 		// P-State allow width and FW delays already included phantom_timing->v_addressable
1008 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1009 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1010 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1011 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1012 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1013 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1014 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1015 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
1016 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1017 
1018 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1019 		// and the max of (VBLANK blanking time, MALL region)
1020 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1021 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1022 			schedulable = true;
1023 	}
1024 	return schedulable;
1025 }
1026 
1027 /**
1028  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1029  *
1030  * @dc: Current DC state
1031  * @context: New DC state to be programmed
1032  *
1033  * SubVP + SubVP is admissible under the following conditions:
1034  * - All SubVP pipes are < 120Hz OR
1035  * - All SubVP pipes are >= 120hz
1036  *
1037  * Return: True if admissible, false otherwise
1038  */
1039 static bool subvp_subvp_admissable(struct dc *dc,
1040 				struct dc_state *context)
1041 {
1042 	bool result = false;
1043 	uint32_t i;
1044 	uint8_t subvp_count = 0;
1045 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1046 	uint64_t refresh_rate = 0;
1047 
1048 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1049 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1050 
1051 		if (!pipe->stream)
1052 			continue;
1053 
1054 		if (pipe->plane_state && !pipe->top_pipe &&
1055 				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1056 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1057 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
1058 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1059 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1060 
1061 			if ((uint32_t)refresh_rate < min_refresh)
1062 				min_refresh = (uint32_t)refresh_rate;
1063 			if ((uint32_t)refresh_rate > max_refresh)
1064 				max_refresh = (uint32_t)refresh_rate;
1065 			subvp_count++;
1066 		}
1067 	}
1068 
1069 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1070 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1071 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1072 		result = true;
1073 
1074 	return result;
1075 }
1076 
1077 /**
1078  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1079  * and handle static analysis based on the case.
1080  * @dc: current dc state
1081  * @context: new dc state
1082  * @vlevel: Voltage level calculated by DML
1083  *
1084  * Three cases:
1085  * 1. SubVP + SubVP
1086  * 2. SubVP + VBLANK (DRR checked internally)
1087  * 3. SubVP + VACTIVE (currently unsupported)
1088  *
1089  * Return: True if statically schedulable, false otherwise
1090  */
1091 static bool subvp_validate_static_schedulability(struct dc *dc,
1092 				struct dc_state *context,
1093 				int vlevel)
1094 {
1095 	bool schedulable = false;
1096 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1097 	uint32_t i, pipe_idx;
1098 	uint8_t subvp_count = 0;
1099 	uint8_t vactive_count = 0;
1100 	uint8_t non_subvp_pipes = 0;
1101 
1102 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1103 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1104 
1105 		if (!pipe->stream)
1106 			continue;
1107 
1108 		if (pipe->plane_state && !pipe->top_pipe) {
1109 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1110 				subvp_count++;
1111 			if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1112 				non_subvp_pipes++;
1113 			}
1114 		}
1115 
1116 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1117 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1118 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1119 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1120 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1121 			vactive_count++;
1122 		}
1123 		pipe_idx++;
1124 	}
1125 
1126 	if (subvp_count == 2) {
1127 		// Static schedulability check for SubVP + SubVP case
1128 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1129 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1130 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1131 		schedulable = true;
1132 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1133 		if (dcn32_subvp_drr_admissable(dc, context))
1134 			schedulable = subvp_drr_schedulable(dc, context);
1135 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1136 			schedulable = subvp_vblank_schedulable(dc, context);
1137 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1138 			vactive_count > 0) {
1139 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1140 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1141 		// SubVP + VACTIVE currently unsupported
1142 		schedulable = false;
1143 	}
1144 	return schedulable;
1145 }
1146 
1147 static void dcn32_full_validate_bw_helper(struct dc *dc,
1148 				   struct dc_state *context,
1149 				   display_e2e_pipe_params_st *pipes,
1150 				   int *vlevel,
1151 				   int *split,
1152 				   bool *merge,
1153 				   int *pipe_cnt)
1154 {
1155 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1156 	unsigned int dc_pipe_idx = 0;
1157 	int i = 0;
1158 	bool found_supported_config = false;
1159 
1160 	dc_assert_fp_enabled();
1161 
1162 	/*
1163 	 * DML favors voltage over p-state, but we're more interested in
1164 	 * supporting p-state over voltage. We can't support p-state in
1165 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1166 	 * Override present for testing.
1167 	 */
1168 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1169 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1170 			dm_prefetch_support_uclk_fclk_and_stutter;
1171 	else
1172 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1173 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1174 
1175 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1176 	/* This may adjust vlevel and maxMpcComb */
1177 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1178 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1179 		vba->VoltageLevel = *vlevel;
1180 	}
1181 
1182 	/* Conditions for setting up phantom pipes for SubVP:
1183 	 * 1. Not force disable SubVP
1184 	 * 2. Full update (i.e. !fast_validate)
1185 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1186 	 * 4. Display configuration passes validation
1187 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1188 	 */
1189 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1190 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1191 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1192 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1193 	    dc->debug.force_subvp_mclk_switch)) {
1194 
1195 		dcn32_merge_pipes_for_subvp(dc, context);
1196 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1197 
1198 		/* to re-initialize viewport after the pipe merge */
1199 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1200 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1201 
1202 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1203 				continue;
1204 
1205 			resource_build_scaling_params(pipe_ctx);
1206 		}
1207 
1208 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1209 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1210 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1211 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1212 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1213 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1214 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1215 			 * enough to support MCLK switching.
1216 			 */
1217 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1218 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1219 					dm_prefetch_support_uclk_fclk_and_stutter) {
1220 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1221 								dm_prefetch_support_fclk_and_stutter;
1222 				/* There are params (such as FabricClock) that need to be recalculated
1223 				 * after validation fails (otherwise it will be 0). Calculation for
1224 				 * phantom vactive requires call into DML, so we must ensure all the
1225 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1226 				 */
1227 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1228 			}
1229 
1230 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1231 
1232 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1233 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1234 			// so the phantom pipe DLG params can be assigned correctly.
1235 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1236 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1237 
1238 			/* Check that vlevel requested supports pstate or not
1239 			 * if not, select the lowest vlevel that supports it
1240 			 */
1241 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1242 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1243 					*vlevel = i;
1244 					break;
1245 				}
1246 			}
1247 
1248 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1249 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1250 				found_supported_config = true;
1251 			if (found_supported_config) {
1252 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1253 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1254 					/* find lowest vlevel that supports the config */
1255 					for (i = *vlevel; i >= 0; i--) {
1256 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1257 							*vlevel = i;
1258 						} else {
1259 							break;
1260 						}
1261 					}
1262 				}
1263 			}
1264 		}
1265 
1266 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1267 		// remove phantom pipes and repopulate dml pipes
1268 		if (!found_supported_config) {
1269 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1270 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1271 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1272 
1273 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1274 			/* This may adjust vlevel and maxMpcComb */
1275 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1276 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1277 				vba->VoltageLevel = *vlevel;
1278 			}
1279 		} else {
1280 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1281 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1282 
1283 			/* Call validate_apply_pipe_split flags after calling DML getters for
1284 			 * phantom dlg params, or some of the VBA params indicating pipe split
1285 			 * can be overwritten by the getters.
1286 			 *
1287 			 * When setting up SubVP config, all pipes are merged before attempting to
1288 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1289 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1290 			 */
1291 			memset(split, 0, MAX_PIPES * sizeof(int));
1292 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1293 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1294 			vba->VoltageLevel = *vlevel;
1295 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1296 			// until driver has acquired the DMCUB lock to do it safely.
1297 		}
1298 	}
1299 }
1300 
1301 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1302 {
1303 	int i;
1304 
1305 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1306 		if (!context->res_ctx.pipe_ctx[i].stream)
1307 			continue;
1308 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1309 			return true;
1310 	}
1311 	return false;
1312 }
1313 
1314 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1315 {
1316 	struct dc_crtc_timing patched_crtc_timing;
1317 	uint32_t asic_blank_end   = 0;
1318 	uint32_t asic_blank_start = 0;
1319 	uint32_t newVstartup	  = 0;
1320 
1321 	patched_crtc_timing = *dc_crtc_timing;
1322 
1323 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1324 		if (patched_crtc_timing.v_front_porch < 2)
1325 			patched_crtc_timing.v_front_porch = 2;
1326 	} else {
1327 		if (patched_crtc_timing.v_front_porch < 1)
1328 			patched_crtc_timing.v_front_porch = 1;
1329 	}
1330 
1331 	/* blank_start = frame end - front porch */
1332 	asic_blank_start = patched_crtc_timing.v_total -
1333 					patched_crtc_timing.v_front_porch;
1334 
1335 	/* blank_end = blank_start - active */
1336 	asic_blank_end = asic_blank_start -
1337 					patched_crtc_timing.v_border_bottom -
1338 					patched_crtc_timing.v_addressable -
1339 					patched_crtc_timing.v_border_top;
1340 
1341 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1342 
1343 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1344 }
1345 
1346 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1347 				       display_e2e_pipe_params_st *pipes,
1348 				       int pipe_cnt, int vlevel)
1349 {
1350 	int i, pipe_idx, active_hubp_count = 0;
1351 	bool usr_retraining_support = false;
1352 	bool unbounded_req_enabled = false;
1353 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1354 
1355 	dc_assert_fp_enabled();
1356 
1357 	/* Writeback MCIF_WB arbitration parameters */
1358 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1359 
1360 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1361 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1362 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1363 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1364 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1365 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1366 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1367 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1368 					!= dm_dram_clock_change_unsupported;
1369 
1370 	/* Pstate change might not be supported by hardware, but it might be
1371 	 * possible with firmware driven vertical blank stretching.
1372 	 */
1373 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1374 
1375 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1376 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1377 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1378 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1379 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1380 	else
1381 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1382 
1383 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1384 	ASSERT(usr_retraining_support);
1385 
1386 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1387 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1388 
1389 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1390 
1391 	if (unbounded_req_enabled && pipe_cnt > 1) {
1392 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1393 		ASSERT(false);
1394 		unbounded_req_enabled = false;
1395 	}
1396 
1397 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1398 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1399 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1400 
1401 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1402 		if (!context->res_ctx.pipe_ctx[i].stream)
1403 			continue;
1404 		if (context->res_ctx.pipe_ctx[i].plane_state)
1405 			active_hubp_count++;
1406 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1407 				pipe_idx);
1408 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1409 				pipe_idx);
1410 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1411 				pipe_idx);
1412 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1413 				pipe_idx);
1414 
1415 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1416 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1417 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1418 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1419 		} else {
1420 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1421 							pipe_idx);
1422 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1423 		}
1424 
1425 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1426 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1427 		if (context->res_ctx.pipe_ctx[i].plane_state)
1428 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1429 		else
1430 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1431 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1432 
1433 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1434 
1435 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1436 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1437 		else
1438 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1439 
1440 		/* MALL Allocation Sizes */
1441 		/* count from active, top pipes per plane only */
1442 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1443 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1444 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1445 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1446 			/* SS: all active surfaces stored in MALL */
1447 			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1448 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1449 
1450 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1451 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1452 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1453 				}
1454 			} else {
1455 				/* SUBVP: phantom surfaces only stored in MALL */
1456 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1457 			}
1458 		}
1459 
1460 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1461 			dcn20_adjust_freesync_v_startup(
1462 				&context->res_ctx.pipe_ctx[i].stream->timing,
1463 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1464 
1465 		pipe_idx++;
1466 	}
1467 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1468 	if (!active_hubp_count) {
1469 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1470 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1471 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1472 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1473 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1474 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1475 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1476 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1477 	}
1478 	/*save a original dppclock copy*/
1479 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1480 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1481 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1482 			* 1000;
1483 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1484 			* 1000;
1485 
1486 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1487 
1488 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1489 
1490 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1491 		if (context->res_ctx.pipe_ctx[i].stream)
1492 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1493 	}
1494 
1495 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1496 
1497 		if (!context->res_ctx.pipe_ctx[i].stream)
1498 			continue;
1499 
1500 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1501 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1502 				pipe_cnt, pipe_idx);
1503 
1504 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1505 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1506 		pipe_idx++;
1507 	}
1508 }
1509 
1510 static struct pipe_ctx *dcn32_find_split_pipe(
1511 		struct dc *dc,
1512 		struct dc_state *context,
1513 		int old_index)
1514 {
1515 	struct pipe_ctx *pipe = NULL;
1516 	int i;
1517 
1518 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1519 		pipe = &context->res_ctx.pipe_ctx[old_index];
1520 		pipe->pipe_idx = old_index;
1521 	}
1522 
1523 	if (!pipe)
1524 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1525 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1526 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1527 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1528 					pipe = &context->res_ctx.pipe_ctx[i];
1529 					pipe->pipe_idx = i;
1530 					break;
1531 				}
1532 			}
1533 		}
1534 
1535 	/*
1536 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1537 	 * Add for debugging transient underflow during topology updates:
1538 	 * ASSERT(pipe);
1539 	 */
1540 	if (!pipe)
1541 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1542 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1543 				pipe = &context->res_ctx.pipe_ctx[i];
1544 				pipe->pipe_idx = i;
1545 				break;
1546 			}
1547 		}
1548 
1549 	return pipe;
1550 }
1551 
1552 static bool dcn32_split_stream_for_mpc_or_odm(
1553 		const struct dc *dc,
1554 		struct resource_context *res_ctx,
1555 		struct pipe_ctx *pri_pipe,
1556 		struct pipe_ctx *sec_pipe,
1557 		bool odm)
1558 {
1559 	int pipe_idx = sec_pipe->pipe_idx;
1560 	const struct resource_pool *pool = dc->res_pool;
1561 
1562 	DC_LOGGER_INIT(dc->ctx->logger);
1563 
1564 	if (odm && pri_pipe->plane_state) {
1565 		/* ODM + window MPO, where MPO window is on left half only */
1566 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1567 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1568 
1569 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1570 					__func__,
1571 					pri_pipe->pipe_idx);
1572 			return true;
1573 		}
1574 
1575 		/* ODM + window MPO, where MPO window is on right half only */
1576 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1577 
1578 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1579 					__func__,
1580 					pri_pipe->pipe_idx);
1581 			return true;
1582 		}
1583 	}
1584 
1585 	*sec_pipe = *pri_pipe;
1586 
1587 	sec_pipe->pipe_idx = pipe_idx;
1588 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1589 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1590 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1591 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1592 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1593 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1594 	sec_pipe->stream_res.dsc = NULL;
1595 	if (odm) {
1596 		if (pri_pipe->next_odm_pipe) {
1597 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1598 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1599 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1600 		}
1601 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1602 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1603 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1604 		}
1605 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1606 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1607 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1608 		}
1609 		pri_pipe->next_odm_pipe = sec_pipe;
1610 		sec_pipe->prev_odm_pipe = pri_pipe;
1611 		ASSERT(sec_pipe->top_pipe == NULL);
1612 
1613 		if (!sec_pipe->top_pipe)
1614 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1615 		else
1616 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1617 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1618 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1619 			ASSERT(sec_pipe->stream_res.dsc);
1620 			if (sec_pipe->stream_res.dsc == NULL)
1621 				return false;
1622 		}
1623 	} else {
1624 		if (pri_pipe->bottom_pipe) {
1625 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1626 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1627 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1628 		}
1629 		pri_pipe->bottom_pipe = sec_pipe;
1630 		sec_pipe->top_pipe = pri_pipe;
1631 
1632 		ASSERT(pri_pipe->plane_state);
1633 	}
1634 
1635 	return true;
1636 }
1637 
1638 bool dcn32_internal_validate_bw(struct dc *dc,
1639 				struct dc_state *context,
1640 				display_e2e_pipe_params_st *pipes,
1641 				int *pipe_cnt_out,
1642 				int *vlevel_out,
1643 				bool fast_validate)
1644 {
1645 	bool out = false;
1646 	bool repopulate_pipes = false;
1647 	int split[MAX_PIPES] = { 0 };
1648 	bool merge[MAX_PIPES] = { false };
1649 	bool newly_split[MAX_PIPES] = { false };
1650 	int pipe_cnt, i, pipe_idx;
1651 	int vlevel = context->bw_ctx.dml.soc.num_states;
1652 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1653 
1654 	dc_assert_fp_enabled();
1655 
1656 	ASSERT(pipes);
1657 	if (!pipes)
1658 		return false;
1659 
1660 	// For each full update, remove all existing phantom pipes first
1661 	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1662 
1663 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1664 
1665 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1666 
1667 	if (!pipe_cnt) {
1668 		out = true;
1669 		goto validate_out;
1670 	}
1671 
1672 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1673 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1674 
1675 	if (!fast_validate)
1676 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1677 
1678 	if (fast_validate ||
1679 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1680 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1681 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1682 		/*
1683 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1684 		 * tried alternate prefetch modes during full validation.
1685 		 *
1686 		 * If mode is unsupported or there is no p-state support, then
1687 		 * fall back to favouring voltage.
1688 		 *
1689 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1690 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1691 		 */
1692 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1693 			dm_prefetch_support_none;
1694 
1695 		context->bw_ctx.dml.validate_max_state = fast_validate;
1696 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1697 
1698 		context->bw_ctx.dml.validate_max_state = false;
1699 
1700 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1701 			memset(split, 0, sizeof(split));
1702 			memset(merge, 0, sizeof(merge));
1703 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1704 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1705 			vba->VoltageLevel = vlevel;
1706 		}
1707 	}
1708 
1709 	dml_log_mode_support_params(&context->bw_ctx.dml);
1710 
1711 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1712 		goto validate_fail;
1713 
1714 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1715 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1716 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1717 
1718 		if (!pipe->stream)
1719 			continue;
1720 
1721 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1722 				&& !dc->config.enable_windowed_mpo_odm
1723 				&& pipe->plane_state && mpo_pipe
1724 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
1725 						&pipe->stream->src,
1726 						sizeof(struct rect)) != 0) {
1727 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1728 			goto validate_fail;
1729 		}
1730 		pipe_idx++;
1731 	}
1732 
1733 	/* merge pipes if necessary */
1734 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1735 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1736 
1737 		/*skip pipes that don't need merging*/
1738 		if (!merge[i])
1739 			continue;
1740 
1741 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1742 		if (pipe->prev_odm_pipe) {
1743 			/*split off odm pipe*/
1744 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1745 			if (pipe->next_odm_pipe)
1746 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1747 
1748 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1749 			if (pipe->bottom_pipe) {
1750 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1751 					/*MPC split rules will handle this case*/
1752 					pipe->bottom_pipe->top_pipe = NULL;
1753 				} else {
1754 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1755 					 * the previous ODM pipe and its associated stream assets
1756 					 */
1757 					if (pipe->prev_odm_pipe->bottom_pipe) {
1758 						/* 3 plane MPO*/
1759 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1760 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1761 					} else {
1762 						/* 2 plane MPO*/
1763 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1764 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1765 					}
1766 
1767 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1768 				}
1769 			}
1770 
1771 			if (pipe->top_pipe) {
1772 				pipe->top_pipe->bottom_pipe = NULL;
1773 			}
1774 
1775 			pipe->bottom_pipe = NULL;
1776 			pipe->next_odm_pipe = NULL;
1777 			pipe->plane_state = NULL;
1778 			pipe->stream = NULL;
1779 			pipe->top_pipe = NULL;
1780 			pipe->prev_odm_pipe = NULL;
1781 			if (pipe->stream_res.dsc)
1782 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1783 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1784 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1785 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1786 			repopulate_pipes = true;
1787 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1788 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1789 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1790 
1791 			top_pipe->bottom_pipe = bottom_pipe;
1792 			if (bottom_pipe)
1793 				bottom_pipe->top_pipe = top_pipe;
1794 
1795 			pipe->top_pipe = NULL;
1796 			pipe->bottom_pipe = NULL;
1797 			pipe->plane_state = NULL;
1798 			pipe->stream = NULL;
1799 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1800 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1801 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1802 			repopulate_pipes = true;
1803 		} else
1804 			ASSERT(0); /* Should never try to merge master pipe */
1805 
1806 	}
1807 
1808 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1809 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1810 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1811 		struct pipe_ctx *hsplit_pipe = NULL;
1812 		bool odm;
1813 		int old_index = -1;
1814 
1815 		if (!pipe->stream || newly_split[i])
1816 			continue;
1817 
1818 		pipe_idx++;
1819 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1820 
1821 		if (!pipe->plane_state && !odm)
1822 			continue;
1823 
1824 		if (split[i]) {
1825 			if (odm) {
1826 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1827 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1828 				else if (old_pipe->next_odm_pipe)
1829 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1830 			} else {
1831 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1832 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1833 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1834 				else if (old_pipe->bottom_pipe &&
1835 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1836 					old_index = old_pipe->bottom_pipe->pipe_idx;
1837 			}
1838 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1839 			ASSERT(hsplit_pipe);
1840 			if (!hsplit_pipe)
1841 				goto validate_fail;
1842 
1843 			if (!dcn32_split_stream_for_mpc_or_odm(
1844 					dc, &context->res_ctx,
1845 					pipe, hsplit_pipe, odm))
1846 				goto validate_fail;
1847 
1848 			newly_split[hsplit_pipe->pipe_idx] = true;
1849 			repopulate_pipes = true;
1850 		}
1851 		if (split[i] == 4) {
1852 			struct pipe_ctx *pipe_4to1;
1853 
1854 			if (odm && old_pipe->next_odm_pipe)
1855 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1856 			else if (!odm && old_pipe->bottom_pipe &&
1857 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1858 				old_index = old_pipe->bottom_pipe->pipe_idx;
1859 			else
1860 				old_index = -1;
1861 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1862 			ASSERT(pipe_4to1);
1863 			if (!pipe_4to1)
1864 				goto validate_fail;
1865 			if (!dcn32_split_stream_for_mpc_or_odm(
1866 					dc, &context->res_ctx,
1867 					pipe, pipe_4to1, odm))
1868 				goto validate_fail;
1869 			newly_split[pipe_4to1->pipe_idx] = true;
1870 
1871 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1872 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1873 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1874 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1875 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1876 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1877 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1878 			else
1879 				old_index = -1;
1880 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1881 			ASSERT(pipe_4to1);
1882 			if (!pipe_4to1)
1883 				goto validate_fail;
1884 			if (!dcn32_split_stream_for_mpc_or_odm(
1885 					dc, &context->res_ctx,
1886 					hsplit_pipe, pipe_4to1, odm))
1887 				goto validate_fail;
1888 			newly_split[pipe_4to1->pipe_idx] = true;
1889 		}
1890 		if (odm)
1891 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1892 	}
1893 
1894 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1895 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1896 
1897 		if (pipe->plane_state) {
1898 			if (!resource_build_scaling_params(pipe))
1899 				goto validate_fail;
1900 		}
1901 	}
1902 
1903 	/* Actual dsc count per stream dsc validation*/
1904 	if (!dcn20_validate_dsc(dc, context)) {
1905 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1906 		goto validate_fail;
1907 	}
1908 
1909 	if (repopulate_pipes) {
1910 		int flag_max_mpc_comb = vba->maxMpcComb;
1911 		int flag_vlevel = vlevel;
1912 		int i;
1913 
1914 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1915 
1916 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1917 		 * we have to re-calculate the DET allocation and run through DML once more to
1918 		 * ensure all the params are calculated correctly. We do not need to run the
1919 		 * pipe split check again after this call (pipes are already split / merged).
1920 		 * */
1921 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1922 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1923 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1924 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1925 			/* failed after DET size changes */
1926 			goto validate_fail;
1927 		} else if (flag_max_mpc_comb == 0 &&
1928 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1929 			/* check the context constructed with pipe split flags is still valid*/
1930 			bool flags_valid = false;
1931 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1932 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1933 					vba->maxMpcComb = flag_max_mpc_comb;
1934 					vba->VoltageLevel = i;
1935 					vlevel = i;
1936 					flags_valid = true;
1937 				}
1938 			}
1939 
1940 			/* this should never happen */
1941 			if (!flags_valid)
1942 				goto validate_fail;
1943 		}
1944 	}
1945 	*vlevel_out = vlevel;
1946 	*pipe_cnt_out = pipe_cnt;
1947 
1948 	out = true;
1949 	goto validate_out;
1950 
1951 validate_fail:
1952 	out = false;
1953 
1954 validate_out:
1955 	return out;
1956 }
1957 
1958 
1959 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1960 				display_e2e_pipe_params_st *pipes,
1961 				int pipe_cnt,
1962 				int vlevel)
1963 {
1964 	int i, pipe_idx, vlevel_temp = 0;
1965 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1966 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1967 	double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
1968 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1969 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1970 			dm_dram_clock_change_unsupported;
1971 	unsigned int dummy_latency_index = 0;
1972 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1973 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1974 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1975 	unsigned int min_dram_speed_mts_margin;
1976 	bool need_fclk_lat_as_dummy = false;
1977 	bool is_subvp_p_drr = false;
1978 	struct dc_stream_state *fpo_candidate_stream = NULL;
1979 
1980 	dc_assert_fp_enabled();
1981 
1982 	/* need to find dummy latency index for subvp */
1983 	if (subvp_in_use) {
1984 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1985 		if (!pstate_en) {
1986 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1987 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1988 			pstate_en = true;
1989 			is_subvp_p_drr = true;
1990 		}
1991 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1992 						context, pipes, pipe_cnt, vlevel);
1993 
1994 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1995 		 * scheduled correctly to account for dummy pstate.
1996 		 */
1997 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1998 			need_fclk_lat_as_dummy = true;
1999 			context->bw_ctx.dml.soc.fclk_change_latency_us =
2000 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2001 		}
2002 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2003 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2004 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2005 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2006 		if (is_subvp_p_drr) {
2007 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2008 		}
2009 	}
2010 
2011 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2012 	for (i = 0; i < context->stream_count; i++) {
2013 		if (context->streams[i])
2014 			context->streams[i]->fpo_in_use = false;
2015 	}
2016 
2017 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2018 			pstate_en && vlevel != 0)) {
2019 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2020 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2021 		if (fpo_candidate_stream) {
2022 			fpo_candidate_stream->fpo_in_use = true;
2023 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2024 		}
2025 
2026 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2027 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2028 				context, pipes, pipe_cnt, vlevel);
2029 
2030 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2031 			 * we reinstate the original dram_clock_change_latency_us on the context
2032 			 * and all variables that may have changed up to this point, except the
2033 			 * newly found dummy_latency_index
2034 			 */
2035 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2036 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2037 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2038 			 * prefetch is scheduled correctly to account for dummy pstate.
2039 			 */
2040 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2041 				need_fclk_lat_as_dummy = true;
2042 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2043 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2044 			}
2045 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2046 			if (vlevel_temp < vlevel) {
2047 				vlevel = vlevel_temp;
2048 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2049 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2050 				pstate_en = true;
2051 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2052 			} else {
2053 				/* Restore FCLK latency and re-run validation to go back to original validation
2054 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2055 				 * voltage level)
2056 				 */
2057 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2058 				for (i = 0; i < context->stream_count; i++) {
2059 					if (context->streams[i])
2060 						context->streams[i]->fpo_in_use = false;
2061 				}
2062 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2063 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2064 			}
2065 		}
2066 	}
2067 
2068 	/* Set B:
2069 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2070 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2071 	 * calculations to cover bootup clocks.
2072 	 * DCFCLK: soc.clock_limits[2] when available
2073 	 * UCLK: soc.clock_limits[2] when available
2074 	 */
2075 	if (dcn3_2_soc.num_states > 2) {
2076 		vlevel_temp = 2;
2077 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2078 	} else
2079 		dcfclk = 615; //DCFCLK Vmin_lv
2080 
2081 	pipes[0].clks_cfg.voltage = vlevel_temp;
2082 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2083 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2084 
2085 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2086 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2087 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2088 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2089 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2090 	}
2091 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2092 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2098 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2099 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2100 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2101 
2102 	/* Set D:
2103 	 * All clocks min.
2104 	 * DCFCLK: Min, as reported by PM FW when available
2105 	 * UCLK  : Min, as reported by PM FW when available
2106 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2107 	 */
2108 
2109 	/*
2110 	if (dcn3_2_soc.num_states > 2) {
2111 		vlevel_temp = 0;
2112 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2113 	} else
2114 		dcfclk = 615; //DCFCLK Vmin_lv
2115 
2116 	pipes[0].clks_cfg.voltage = vlevel_temp;
2117 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2118 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2119 
2120 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2121 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2122 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2123 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2124 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2125 	}
2126 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2127 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2133 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2134 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2135 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2136 	*/
2137 
2138 	/* Set C, for Dummy P-State:
2139 	 * All clocks min.
2140 	 * DCFCLK: Min, as reported by PM FW, when available
2141 	 * UCLK  : Min,  as reported by PM FW, when available
2142 	 * pstate latency as per UCLK state dummy pstate latency
2143 	 */
2144 
2145 	// For Set A and Set C use values from validation
2146 	pipes[0].clks_cfg.voltage = vlevel;
2147 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2148 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2149 
2150 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2151 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2152 	}
2153 
2154 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2155 		min_dram_speed_mts = dram_speed_from_validation;
2156 		min_dram_speed_mts_margin = 160;
2157 
2158 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2159 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2160 
2161 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2162 			dm_dram_clock_change_unsupported) {
2163 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2164 
2165 			min_dram_speed_mts =
2166 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2167 		}
2168 
2169 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2170 			/* find largest table entry that is lower than dram speed,
2171 			 * but lower than DPM0 still uses DPM0
2172 			 */
2173 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2174 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2175 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2176 					break;
2177 		}
2178 
2179 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2180 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2181 
2182 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2183 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2184 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2185 	}
2186 
2187 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2188 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2192 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2193 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2194 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2195 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2196 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2197 	 * value.
2198 	 */
2199 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2200 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2201 
2202 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2203 		/* The only difference between A and C is p-state latency, if p-state is not supported
2204 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2205 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2206 		 */
2207 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2208 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2209 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2210 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2211 		 */
2212 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2213 	} else {
2214 		/* Set A:
2215 		 * All clocks min.
2216 		 * DCFCLK: Min, as reported by PM FW, when available
2217 		 * UCLK: Min, as reported by PM FW, when available
2218 		 */
2219 
2220 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2221 		 */
2222 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2223 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2224 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2225 
2226 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2227 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 	}
2237 
2238 	/* Make set D = set A since we do not optimized watermarks for MALL */
2239 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2240 
2241 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2242 		if (!context->res_ctx.pipe_ctx[i].stream)
2243 			continue;
2244 
2245 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2246 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2247 
2248 		if (dc->config.forced_clocks) {
2249 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2250 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2251 		}
2252 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2253 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2254 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2255 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2256 
2257 		pipe_idx++;
2258 	}
2259 
2260 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2261 
2262 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2263 	if (need_fclk_lat_as_dummy)
2264 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2265 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2266 
2267 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2268 
2269 	if (!pstate_en)
2270 		/* Restore full p-state latency */
2271 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2272 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2273 
2274 	/* revert fclk lat changes if required */
2275 	if (need_fclk_lat_as_dummy)
2276 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2277 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2278 }
2279 
2280 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2281 		unsigned int *optimal_dcfclk,
2282 		unsigned int *optimal_fclk)
2283 {
2284 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2285 
2286 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2287 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2288 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2289 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2290 
2291 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2292 
2293 	if (optimal_fclk)
2294 		*optimal_fclk = bw_from_dram /
2295 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2296 
2297 	if (optimal_dcfclk)
2298 		*optimal_dcfclk =  bw_from_dram /
2299 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2300 }
2301 
2302 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2303 		unsigned int index)
2304 {
2305 	int i;
2306 
2307 	if (*num_entries == 0)
2308 		return;
2309 
2310 	for (i = index; i < *num_entries - 1; i++) {
2311 		table[i] = table[i + 1];
2312 	}
2313 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2314 }
2315 
2316 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2317 {
2318 	int i;
2319 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2320 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2321 
2322 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2323 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2324 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2325 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2326 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2327 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2328 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2329 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2330 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2331 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2332 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2333 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2334 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2335 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2336 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2337 	}
2338 
2339 	/* Scan through clock values we currently have and if they are 0,
2340 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2341 	 *
2342 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2343 	 *  0, will cause it to skip building the clock table.
2344 	 */
2345 	if (max_dcfclk_mhz == 0)
2346 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2347 	if (max_dispclk_mhz == 0)
2348 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2349 	if (max_dtbclk_mhz == 0)
2350 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2351 	if (max_uclk_mhz == 0)
2352 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2353 }
2354 
2355 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2356 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2357 {
2358 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2359 	*first_entry = *second_entry;
2360 	*second_entry = temp_entry;
2361 }
2362 
2363 /*
2364  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2365  */
2366 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2367 {
2368 	unsigned int start_index = 0;
2369 	unsigned int end_index = 0;
2370 	unsigned int current_bw = 0;
2371 
2372 	for (int i = 0; i < (*num_entries - 1); i++) {
2373 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2374 			current_bw = table[i].net_bw_in_kbytes_sec;
2375 			start_index = i;
2376 			end_index = ++i;
2377 
2378 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2379 				end_index = ++i;
2380 		}
2381 
2382 		if (start_index != end_index) {
2383 			for (int j = start_index; j < end_index; j++) {
2384 				for (int k = start_index; k < end_index; k++) {
2385 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2386 						swap_table_entries(&table[k], &table[k+1]);
2387 				}
2388 			}
2389 		}
2390 
2391 		start_index = 0;
2392 		end_index = 0;
2393 
2394 	}
2395 }
2396 
2397 /*
2398  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2399  *                               and remove entries that do not
2400  */
2401 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2402 {
2403 	for (int i = 0; i < (*num_entries - 1); i++) {
2404 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2405 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2406 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2407 				remove_entry_from_table_at_index(table, num_entries, i);
2408 		}
2409 	}
2410 }
2411 
2412 /*
2413  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2414  * Input:
2415  *	max_clk_limit - struct containing the desired clock timings
2416  * Output:
2417  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2418  * Return: 0 upon success, non-zero for failure
2419  */
2420 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2421 		struct clk_limit_table_entry *curr_clk_limit)
2422 {
2423 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2424 		return -1; //invalid parameters
2425 
2426 	//only overwrite if desired max clock frequency is initialized
2427 	if (max_clk_limit->dcfclk_mhz != 0)
2428 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2429 
2430 	if (max_clk_limit->fclk_mhz != 0)
2431 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2432 
2433 	if (max_clk_limit->memclk_mhz != 0)
2434 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2435 
2436 	if (max_clk_limit->socclk_mhz != 0)
2437 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2438 
2439 	if (max_clk_limit->dtbclk_mhz != 0)
2440 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2441 
2442 	if (max_clk_limit->dispclk_mhz != 0)
2443 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2444 
2445 	return 0;
2446 }
2447 
2448 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2449 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2450 {
2451 	int i, j;
2452 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2453 	struct clk_limit_table_entry max_clk_data = {0};
2454 
2455 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2456 
2457 	static const unsigned int num_dcfclk_stas = 5;
2458 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2459 
2460 	unsigned int num_uclk_dpms = 0;
2461 	unsigned int num_fclk_dpms = 0;
2462 	unsigned int num_dcfclk_dpms = 0;
2463 
2464 	unsigned int num_dc_uclk_dpms = 0;
2465 	unsigned int num_dc_fclk_dpms = 0;
2466 	unsigned int num_dc_dcfclk_dpms = 0;
2467 
2468 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2469 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2470 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2471 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2472 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2473 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2474 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2475 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2476 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2477 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2478 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2479 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2480 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2481 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2482 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2483 
2484 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2485 			num_uclk_dpms++;
2486 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2487 				num_dc_uclk_dpms++;
2488 		}
2489 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2490 			num_fclk_dpms++;
2491 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2492 				num_dc_fclk_dpms++;
2493 		}
2494 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2495 			num_dcfclk_dpms++;
2496 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2497 				num_dc_dcfclk_dpms++;
2498 		}
2499 	}
2500 
2501 	if (!disable_dc_mode_overwrite) {
2502 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2503 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2504 		num_uclk_dpms = num_dc_uclk_dpms;
2505 		num_fclk_dpms = num_dc_fclk_dpms;
2506 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2507 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2508 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2509 	}
2510 
2511 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2512 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2513 
2514 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2515 		return -1;
2516 
2517 	if (max_clk_data.dppclk_mhz == 0)
2518 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2519 
2520 	if (max_clk_data.fclk_mhz == 0)
2521 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2522 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2523 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2524 
2525 	if (max_clk_data.phyclk_mhz == 0)
2526 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2527 
2528 	*num_entries = 0;
2529 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2530 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2531 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2532 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2533 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2534 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2535 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2536 
2537 	// Insert all the DCFCLK STAs
2538 	for (i = 0; i < num_dcfclk_stas; i++) {
2539 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2540 		entry.fabricclk_mhz = 0;
2541 		entry.dram_speed_mts = 0;
2542 
2543 		get_optimal_ntuple(&entry);
2544 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2545 		insert_entry_into_table_sorted(table, num_entries, &entry);
2546 	}
2547 
2548 	// Insert the max DCFCLK
2549 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2550 	entry.fabricclk_mhz = 0;
2551 	entry.dram_speed_mts = 0;
2552 
2553 	get_optimal_ntuple(&entry);
2554 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2555 	insert_entry_into_table_sorted(table, num_entries, &entry);
2556 
2557 	// Insert the UCLK DPMS
2558 	for (i = 0; i < num_uclk_dpms; i++) {
2559 		entry.dcfclk_mhz = 0;
2560 		entry.fabricclk_mhz = 0;
2561 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2562 
2563 		get_optimal_ntuple(&entry);
2564 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2565 		insert_entry_into_table_sorted(table, num_entries, &entry);
2566 	}
2567 
2568 	// If FCLK is coarse grained, insert individual DPMs.
2569 	if (num_fclk_dpms > 2) {
2570 		for (i = 0; i < num_fclk_dpms; i++) {
2571 			entry.dcfclk_mhz = 0;
2572 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2573 			entry.dram_speed_mts = 0;
2574 
2575 			get_optimal_ntuple(&entry);
2576 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2577 			insert_entry_into_table_sorted(table, num_entries, &entry);
2578 		}
2579 	}
2580 	// If FCLK fine grained, only insert max
2581 	else {
2582 		entry.dcfclk_mhz = 0;
2583 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2584 		entry.dram_speed_mts = 0;
2585 
2586 		get_optimal_ntuple(&entry);
2587 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2588 		insert_entry_into_table_sorted(table, num_entries, &entry);
2589 	}
2590 
2591 	// At this point, the table contains all "points of interest" based on
2592 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2593 	// ratios (by derate, are exact).
2594 
2595 	// Remove states that require higher clocks than are supported
2596 	for (i = *num_entries - 1; i >= 0 ; i--) {
2597 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2598 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2599 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2600 			remove_entry_from_table_at_index(table, num_entries, i);
2601 	}
2602 
2603 	// Insert entry with all max dc limits without bandwidth matching
2604 	if (!disable_dc_mode_overwrite) {
2605 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2606 
2607 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2608 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2609 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2610 
2611 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2612 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2613 
2614 		sort_entries_with_same_bw(table, num_entries);
2615 		remove_inconsistent_entries(table, num_entries);
2616 	}
2617 
2618 	// At this point, the table only contains supported points of interest
2619 	// it could be used as is, but some states may be redundant due to
2620 	// coarse grained nature of some clocks, so we want to round up to
2621 	// coarse grained DPMs and remove duplicates.
2622 
2623 	// Round up UCLKs
2624 	for (i = *num_entries - 1; i >= 0 ; i--) {
2625 		for (j = 0; j < num_uclk_dpms; j++) {
2626 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2627 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2628 				break;
2629 			}
2630 		}
2631 	}
2632 
2633 	// If FCLK is coarse grained, round up to next DPMs
2634 	if (num_fclk_dpms > 2) {
2635 		for (i = *num_entries - 1; i >= 0 ; i--) {
2636 			for (j = 0; j < num_fclk_dpms; j++) {
2637 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2638 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2639 					break;
2640 				}
2641 			}
2642 		}
2643 	}
2644 	// Otherwise, round up to minimum.
2645 	else {
2646 		for (i = *num_entries - 1; i >= 0 ; i--) {
2647 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2648 				table[i].fabricclk_mhz = min_fclk_mhz;
2649 			}
2650 		}
2651 	}
2652 
2653 	// Round DCFCLKs up to minimum
2654 	for (i = *num_entries - 1; i >= 0 ; i--) {
2655 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2656 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2657 		}
2658 	}
2659 
2660 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2661 	i = 0;
2662 	while (i < *num_entries - 1) {
2663 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2664 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2665 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2666 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2667 		else
2668 			i++;
2669 	}
2670 
2671 	// Fix up the state indicies
2672 	for (i = *num_entries - 1; i >= 0 ; i--) {
2673 		table[i].state = i;
2674 	}
2675 
2676 	return 0;
2677 }
2678 
2679 /*
2680  * dcn32_update_bw_bounding_box
2681  *
2682  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2683  * spreadsheet with actual values as per dGPU SKU:
2684  * - with passed few options from dc->config
2685  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2686  *   need to get it from PM FW)
2687  * - with passed latency values (passed in ns units) in dc-> bb override for
2688  *   debugging purposes
2689  * - with passed latencies from VBIOS (in 100_ns units) if available for
2690  *   certain dGPU SKU
2691  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2692  *   of the same ASIC)
2693  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2694  *   FW for different clocks (which might differ for certain dGPU SKU of the
2695  *   same ASIC)
2696  */
2697 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2698 {
2699 	dc_assert_fp_enabled();
2700 
2701 	/* Overrides from dc->config options */
2702 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2703 
2704 	/* Override from passed dc->bb_overrides if available*/
2705 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2706 			&& dc->bb_overrides.sr_exit_time_ns) {
2707 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2708 	}
2709 
2710 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2711 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2712 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2713 		dcn3_2_soc.sr_enter_plus_exit_time_us =
2714 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2715 	}
2716 
2717 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2718 		&& dc->bb_overrides.urgent_latency_ns) {
2719 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2720 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2721 	}
2722 
2723 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2724 			!= dc->bb_overrides.dram_clock_change_latency_ns
2725 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
2726 		dcn3_2_soc.dram_clock_change_latency_us =
2727 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2728 	}
2729 
2730 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2731 			!= dc->bb_overrides.fclk_clock_change_latency_ns
2732 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2733 		dcn3_2_soc.fclk_change_latency_us =
2734 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2735 	}
2736 
2737 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2738 			!= dc->bb_overrides.dummy_clock_change_latency_ns
2739 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2740 		dcn3_2_soc.dummy_pstate_latency_us =
2741 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2742 	}
2743 
2744 	/* Override from VBIOS if VBIOS bb_info available */
2745 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2746 		struct bp_soc_bb_info bb_info = {0};
2747 
2748 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2749 			if (bb_info.dram_clock_change_latency_100ns > 0)
2750 				dcn3_2_soc.dram_clock_change_latency_us =
2751 					bb_info.dram_clock_change_latency_100ns * 10;
2752 
2753 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2754 				dcn3_2_soc.sr_enter_plus_exit_time_us =
2755 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
2756 
2757 			if (bb_info.dram_sr_exit_latency_100ns > 0)
2758 				dcn3_2_soc.sr_exit_time_us =
2759 					bb_info.dram_sr_exit_latency_100ns * 10;
2760 		}
2761 	}
2762 
2763 	/* Override from VBIOS for num_chan */
2764 	if (dc->ctx->dc_bios->vram_info.num_chans) {
2765 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2766 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2767 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2768 	}
2769 
2770 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2771 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2772 
2773 	/* DML DSC delay factor workaround */
2774 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2775 
2776 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2777 
2778 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2779 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2780 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2781 
2782 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2783 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2784 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2785 			unsigned int i = 0, j = 0, num_states = 0;
2786 
2787 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2788 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2789 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2790 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2791 			unsigned int min_dcfclk = UINT_MAX;
2792 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2793 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2794 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2795 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2796 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2797 
2798 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2799 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2800 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2801 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2802 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2803 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2804 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2805 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2806 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2807 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2808 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2809 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2810 			}
2811 			if (min_dcfclk > dcfclk_sta_targets[0])
2812 				dcfclk_sta_targets[0] = min_dcfclk;
2813 			if (!max_dcfclk_mhz)
2814 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2815 			if (!max_dispclk_mhz)
2816 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2817 			if (!max_dppclk_mhz)
2818 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2819 			if (!max_phyclk_mhz)
2820 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2821 
2822 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2823 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2824 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2825 				num_dcfclk_sta_targets++;
2826 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2827 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2828 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2829 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2830 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2831 						break;
2832 					}
2833 				}
2834 				// Update size of array since we "removed" duplicates
2835 				num_dcfclk_sta_targets = i + 1;
2836 			}
2837 
2838 			num_uclk_states = bw_params->clk_table.num_entries;
2839 
2840 			// Calculate optimal dcfclk for each uclk
2841 			for (i = 0; i < num_uclk_states; i++) {
2842 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2843 						&optimal_dcfclk_for_uclk[i], NULL);
2844 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2845 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2846 				}
2847 			}
2848 
2849 			// Calculate optimal uclk for each dcfclk sta target
2850 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2851 				for (j = 0; j < num_uclk_states; j++) {
2852 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2853 						optimal_uclk_for_dcfclk_sta_targets[i] =
2854 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2855 						break;
2856 					}
2857 				}
2858 			}
2859 
2860 			i = 0;
2861 			j = 0;
2862 			// create the final dcfclk and uclk table
2863 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2864 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2865 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2866 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2867 				} else {
2868 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2869 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2870 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2871 					} else {
2872 						j = num_uclk_states;
2873 					}
2874 				}
2875 			}
2876 
2877 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2878 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2879 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2880 			}
2881 
2882 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2883 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2884 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2885 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2886 			}
2887 
2888 			dcn3_2_soc.num_states = num_states;
2889 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2890 				dcn3_2_soc.clock_limits[i].state = i;
2891 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2892 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2893 
2894 				/* Fill all states with max values of all these clocks */
2895 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2896 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2897 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2898 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2899 
2900 				/* Populate from bw_params for DTBCLK, SOCCLK */
2901 				if (i > 0) {
2902 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2903 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2904 					} else {
2905 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2906 					}
2907 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2908 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2909 				}
2910 
2911 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2912 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2913 				else
2914 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2915 
2916 				if (!dram_speed_mts[i] && i > 0)
2917 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2918 				else
2919 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2920 
2921 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2922 				/* PHYCLK_D18, PHYCLK_D32 */
2923 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2924 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2925 			}
2926 		} else {
2927 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2928 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2929 		}
2930 
2931 		/* Re-init DML with updated bb */
2932 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2933 		if (dc->current_state)
2934 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2935 	}
2936 }
2937 
2938 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2939 				  int pipe_cnt)
2940 {
2941 	dc_assert_fp_enabled();
2942 
2943 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2944 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2945 }
2946 
2947 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2948 {
2949 	bool allow = false;
2950 	uint32_t refresh_rate = 0;
2951 
2952 	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2953 	 * only for now. There must be no scaling as well.
2954 	 *
2955 	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2956 	 * for p-state switching.
2957 	 */
2958 	if (pipe->stream && pipe->plane_state) {
2959 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2960 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2961 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2962 		if (pipe->stream->timing.v_addressable == 1440 &&
2963 				pipe->stream->timing.h_addressable == 2560 &&
2964 				refresh_rate >= 55 && refresh_rate <= 65 &&
2965 				pipe->plane_state->src_rect.height == 1440 &&
2966 				pipe->plane_state->src_rect.width == 2560 &&
2967 				pipe->plane_state->dst_rect.height == 1440 &&
2968 				pipe->plane_state->dst_rect.width == 2560)
2969 			allow = true;
2970 	}
2971 	return allow;
2972 }
2973 
2974 /**
2975  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2976  *
2977  * @dc: Current DC state
2978  * @context: New DC state to be programmed
2979  * @pipe: Pipe to be considered for use in subvp
2980  *
2981  * On high refresh rate display configs, we will allow subvp under the following conditions:
2982  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2983  * 2. Refresh rate is between 120hz - 165hz
2984  * 3. No scaling
2985  * 4. Freesync is inactive
2986  * 5. For single display cases, freesync must be disabled
2987  *
2988  * Return: True if pipe can be used for subvp, false otherwise
2989  */
2990 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
2991 {
2992 	bool allow = false;
2993 	uint32_t refresh_rate = 0;
2994 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
2995 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
2996 	uint32_t min_refresh = subvp_max_refresh;
2997 	uint32_t i;
2998 
2999 	/* Only allow SubVP on high refresh displays if all connected displays
3000 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3001 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3002 	 */
3003 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3004 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3005 
3006 		if (!pipe_ctx->stream)
3007 			continue;
3008 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3009 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3010 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3011 
3012 		if (refresh_rate < min_refresh)
3013 			min_refresh = refresh_rate;
3014 	}
3015 
3016 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3017 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3018 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3019 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3020 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3021 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3022 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3023 				uint32_t width = subvp_high_refresh_list.res[i].width;
3024 				uint32_t height = subvp_high_refresh_list.res[i].height;
3025 
3026 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3027 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3028 						allow = true;
3029 						break;
3030 					}
3031 				}
3032 			}
3033 		}
3034 	}
3035 	return allow;
3036 }
3037 
3038 /**
3039  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3040  *
3041  * @dc: Current DC state
3042  * @context: New DC state to be programmed
3043  *
3044  * Return: Max vratio for prefetch
3045  */
3046 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3047 {
3048 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3049 	int i;
3050 
3051 	/* For single display MPO configs, allow the max vratio to be 8
3052 	 * if any plane is YUV420 format
3053 	 */
3054 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3055 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3056 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3057 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3058 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3059 			}
3060 		}
3061 	}
3062 	return max_vratio_pre;
3063 }
3064 
3065 /**
3066  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3067  *
3068  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3069  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3070  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3071  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3072  *
3073  *
3074  * @dc: current dc state
3075  * @context: new dc state
3076  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3077  *
3078  * Return: void
3079  */
3080 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3081 {
3082 	unsigned int i, pipe_idx;
3083 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3084 
3085 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3086 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3087 
3088 		if (!pipe->stream)
3089 			continue;
3090 
3091 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3092 			*fpo_candidate_stream = pipe->stream;
3093 			break;
3094 		}
3095 		pipe_idx++;
3096 	}
3097 }
3098 
3099 /**
3100  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3101  *
3102  * @dc: current dc state
3103  * @context: new dc state
3104  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3105  *
3106  * Return: True if VACTIVE display is found, false otherwise
3107  */
3108 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3109 {
3110 	unsigned int i, pipe_idx;
3111 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3112 	bool vactive_found = false;
3113 	unsigned int blank_us = 0;
3114 
3115 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3116 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3117 
3118 		if (!pipe->stream)
3119 			continue;
3120 
3121 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3122 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3123 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3124 				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3125 			vactive_found = true;
3126 			break;
3127 		}
3128 		pipe_idx++;
3129 	}
3130 	return vactive_found;
3131 }
3132 
3133 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3134 {
3135 	dc_assert_fp_enabled();
3136 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3137 }
3138 
3139 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3140 {
3141 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3142 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3143 			dc->dml.soc.num_chans <= 8) {
3144 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3145 
3146 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3147 				num_mclk_levels > 1) {
3148 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3149 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3150 		}
3151 	}
3152 }
3153