1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 
36 #define DC_LOGGER_INIT(logger)
37 
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 			.min_refresh = 120,
40 			.max_refresh = 165,
41 			.res = {
42 				{.width = 3840, .height = 2160, },
43 				{.width = 3440, .height = 1440, },
44 				{.width = 2560, .height = 1440, }},
45 };
46 
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 	.gpuvm_enable = 0,
49 	.gpuvm_max_page_table_levels = 4,
50 	.hostvm_enable = 0,
51 	.rob_buffer_size_kbytes = 128,
52 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 	.config_return_buffer_size_in_kbytes = 1280,
54 	.compressed_buffer_segment_size_in_kbytes = 64,
55 	.meta_fifo_size_in_kentries = 22,
56 	.zero_size_buffer_entries = 512,
57 	.compbuf_reserved_space_64b = 256,
58 	.compbuf_reserved_space_zs = 64,
59 	.dpp_output_buffer_pixels = 2560,
60 	.opp_output_buffer_lines = 1,
61 	.pixel_chunk_size_kbytes = 8,
62 	.alpha_pixel_chunk_size_kbytes = 4,
63 	.min_pixel_chunk_size_bytes = 1024,
64 	.dcc_meta_buffer_size_bytes = 6272,
65 	.meta_chunk_size_kbytes = 2,
66 	.min_meta_chunk_size_bytes = 256,
67 	.writeback_chunk_size_kbytes = 8,
68 	.ptoi_supported = false,
69 	.num_dsc = 4,
70 	.maximum_dsc_bits_per_component = 12,
71 	.maximum_pixels_per_line_per_dsc_unit = 6016,
72 	.dsc422_native_support = true,
73 	.is_line_buffer_bpp_fixed = true,
74 	.line_buffer_fixed_bpp = 57,
75 	.line_buffer_size_bits = 1171920,
76 	.max_line_buffer_lines = 32,
77 	.writeback_interface_buffer_size_kbytes = 90,
78 	.max_num_dpp = 4,
79 	.max_num_otg = 4,
80 	.max_num_hdmi_frl_outputs = 1,
81 	.max_num_wb = 1,
82 	.max_dchub_pscl_bw_pix_per_clk = 4,
83 	.max_pscl_lb_bw_pix_per_clk = 2,
84 	.max_lb_vscl_bw_pix_per_clk = 4,
85 	.max_vscl_hscl_bw_pix_per_clk = 4,
86 	.max_hscl_ratio = 6,
87 	.max_vscl_ratio = 6,
88 	.max_hscl_taps = 8,
89 	.max_vscl_taps = 8,
90 	.dpte_buffer_size_in_pte_reqs_luma = 64,
91 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
92 	.dispclk_ramp_margin_percent = 1,
93 	.max_inter_dcn_tile_repeaters = 8,
94 	.cursor_buffer_size = 16,
95 	.cursor_chunk_size = 2,
96 	.writeback_line_buffer_buffer_size = 0,
97 	.writeback_min_hscl_ratio = 1,
98 	.writeback_min_vscl_ratio = 1,
99 	.writeback_max_hscl_ratio = 1,
100 	.writeback_max_vscl_ratio = 1,
101 	.writeback_max_hscl_taps = 1,
102 	.writeback_max_vscl_taps = 1,
103 	.dppclk_delay_subtotal = 47,
104 	.dppclk_delay_scl = 50,
105 	.dppclk_delay_scl_lb_only = 16,
106 	.dppclk_delay_cnvc_formatter = 28,
107 	.dppclk_delay_cnvc_cursor = 6,
108 	.dispclk_delay_subtotal = 125,
109 	.dynamic_metadata_vm_enabled = false,
110 	.odm_combine_4to1_supported = false,
111 	.dcc_supported = true,
112 	.max_num_dp2p0_outputs = 2,
113 	.max_num_dp2p0_streams = 4,
114 };
115 
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 	.clock_limits = {
118 		{
119 			.state = 0,
120 			.dcfclk_mhz = 1564.0,
121 			.fabricclk_mhz = 2500.0,
122 			.dispclk_mhz = 2150.0,
123 			.dppclk_mhz = 2150.0,
124 			.phyclk_mhz = 810.0,
125 			.phyclk_d18_mhz = 667.0,
126 			.phyclk_d32_mhz = 625.0,
127 			.socclk_mhz = 1200.0,
128 			.dscclk_mhz = 716.667,
129 			.dram_speed_mts = 18000.0,
130 			.dtbclk_mhz = 1564.0,
131 		},
132 	},
133 	.num_states = 1,
134 	.sr_exit_time_us = 42.97,
135 	.sr_enter_plus_exit_time_us = 49.94,
136 	.sr_exit_z8_time_us = 285.0,
137 	.sr_enter_plus_exit_z8_time_us = 320,
138 	.writeback_latency_us = 12.0,
139 	.round_trip_ping_latency_dcfclk_cycles = 263,
140 	.urgent_latency_pixel_data_only_us = 4.0,
141 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 	.urgent_latency_vm_data_only_us = 4.0,
143 	.fclk_change_latency_us = 25,
144 	.usr_retraining_latency_us = 2,
145 	.smn_latency_us = 2,
146 	.mall_allocated_for_dcn_mbytes = 64,
147 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 	.pct_ideal_sdp_bw_after_urgent = 90.0,
151 	.pct_ideal_fabric_bw_after_urgent = 67.0,
152 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 	.max_avg_sdp_bw_use_normal_percent = 80.0,
157 	.max_avg_fabric_bw_use_normal_percent = 60.0,
158 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 	.max_avg_dram_bw_use_normal_percent = 15.0,
160 	.num_chans = 24,
161 	.dram_channel_width_bytes = 2,
162 	.fabric_datapath_to_dcn_data_return_bytes = 64,
163 	.return_bus_width_bytes = 64,
164 	.downspread_percent = 0.38,
165 	.dcn_downspread_percent = 0.5,
166 	.dram_clock_change_latency_us = 400,
167 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
168 	.do_urgent_latency_adjustment = true,
169 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172 
173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 	/* defaults */
176 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 	/* For min clocks use as reported by PM FW and report those as min */
181 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
184 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185 
186 	dc_assert_fp_enabled();
187 
188 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 	if (dcfclk_mhz_for_the_second_state)
190 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 	else
192 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 
194 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196 
197 	/* Set A - Normal - default values */
198 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208 
209 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219 
220 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 	}
242 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255 
256 /*
257  * Finds dummy_latency_index when MCLK switching using firmware based
258  * vblank stretch is enabled. This function will iterate through the
259  * table of dummy pstate latencies until the lowest value that allows
260  * dm_allow_self_refresh_and_mclk_switch to happen is found
261  */
262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 							    struct dc_state *context,
264 							    display_e2e_pipe_params_st *pipes,
265 							    int pipe_cnt,
266 							    int vlevel)
267 {
268 	const int max_latency_table_entries = 4;
269 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 	int dummy_latency_index = 0;
271 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272 
273 	dc_assert_fp_enabled();
274 
275 	while (dummy_latency_index < max_latency_table_entries) {
276 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281 
282 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 				dcn32_subvp_in_use(dc, context))
285 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286 
287 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 			break;
290 
291 		dummy_latency_index++;
292 	}
293 
294 	if (dummy_latency_index == max_latency_table_entries) {
295 		ASSERT(dummy_latency_index != max_latency_table_entries);
296 		/* If the execution gets here, it means dummy p_states are
297 		 * not possible. This should never happen and would mean
298 		 * something is severely wrong.
299 		 * Here we reset dummy_latency_index to 3, because it is
300 		 * better to have underflows than system crashes.
301 		 */
302 		dummy_latency_index = max_latency_table_entries - 1;
303 	}
304 
305 	return dummy_latency_index;
306 }
307 
308 /**
309  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310  * and populate pipe_ctx with those params.
311  * @dc: [in] current dc state
312  * @context: [in] new dc state
313  * @pipes: [in] DML pipe params array
314  * @pipe_cnt: [in] DML pipe count
315  *
316  * This function must be called AFTER the phantom pipes are added to context
317  * and run through DML (so that the DLG params for the phantom pipes can be
318  * populated), and BEFORE we program the timing for the phantom pipes.
319  */
320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 					      struct dc_state *context,
322 					      display_e2e_pipe_params_st *pipes,
323 					      int pipe_cnt)
324 {
325 	uint32_t i, pipe_idx;
326 
327 	dc_assert_fp_enabled();
328 
329 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331 
332 		if (!pipe->stream)
333 			continue;
334 
335 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 			pipes[pipe_idx].pipe.dest.vstartup_start =
337 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 			pipes[pipe_idx].pipe.dest.vupdate_offset =
339 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 			pipes[pipe_idx].pipe.dest.vupdate_width =
341 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 			pipes[pipe_idx].pipe.dest.vready_offset =
343 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 		}
346 		pipe_idx++;
347 	}
348 }
349 
350 /**
351  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352  * @context: [in] New DC state to be programmed
353  * @pipe_e2e: [in] DML pipe end to end context
354  *
355  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357  * determined by DPPClk requirements
358  *
359  * This function follows the same policy as DML:
360  * - Check for ODM combine requirements / policy first
361  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362  *   MPC is required
363  *
364  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365  */
366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 				  display_e2e_pipe_params_st *pipe_e2e)
368 {
369 	double pscl_throughput;
370 	double pscl_throughput_chroma;
371 	double dpp_clk_single_dpp, clock;
372 	double clk_frequency = 0.0;
373 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 	bool total_available_pipes_support = false;
375 	uint32_t number_of_dpp = 0;
376 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 	double req_dispclk_per_surface = 0;
378 	uint8_t num_splits = 0;
379 
380 	dc_assert_fp_enabled();
381 
382 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 			pipe_e2e->pipe.dest.hactive,
384 			pipe_e2e->dout.output_format,
385 			pipe_e2e->dout.output_type,
386 			pipe_e2e->pipe.dest.odm_combine_policy,
387 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 			pipe_e2e->dout.dsc_enable != 0,
390 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 			context->bw_ctx.dml.ip.max_num_dpp,
392 			pipe_e2e->pipe.dest.pixel_rate_mhz,
393 			context->bw_ctx.dml.soc.dcn_downspread_percent,
394 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 			pipe_e2e->dout.dsc_slices,
397 			/* Output */
398 			&total_available_pipes_support,
399 			&number_of_dpp,
400 			&odm_mode,
401 			&req_dispclk_per_surface);
402 
403 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 			pipe_e2e->pipe.dest.pixel_rate_mhz,
410 			pipe_e2e->pipe.src.source_format,
411 			pipe_e2e->pipe.scale_taps.htaps,
412 			pipe_e2e->pipe.scale_taps.htaps_c,
413 			pipe_e2e->pipe.scale_taps.vtaps,
414 			pipe_e2e->pipe.scale_taps.vtaps_c,
415 			/* Output */
416 			&pscl_throughput, &pscl_throughput_chroma,
417 			&dpp_clk_single_dpp);
418 
419 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420 
421 	if (clock > 0)
422 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423 
424 	if (odm_mode == dm_odm_combine_mode_2to1)
425 		num_splits = 1;
426 	else if (odm_mode == dm_odm_combine_mode_4to1)
427 		num_splits = 3;
428 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 		num_splits = 1;
430 
431 	return num_splits;
432 }
433 
434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 	float memory_bw_kbytes_sec;
437 	float fabric_bw_kbytes_sec;
438 	float sdp_bw_kbytes_sec;
439 	float limiting_bw_kbytes_sec;
440 
441 	memory_bw_kbytes_sec = entry->dram_speed_mts *
442 				dcn3_2_soc.num_chans *
443 				dcn3_2_soc.dram_channel_width_bytes *
444 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445 
446 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 				dcn3_2_soc.return_bus_width_bytes *
448 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449 
450 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 				dcn3_2_soc.return_bus_width_bytes *
452 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453 
454 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455 
456 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458 
459 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461 
462 	return limiting_bw_kbytes_sec;
463 }
464 
465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 	if (entry->dcfclk_mhz > 0) {
468 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469 
470 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 	} else if (entry->fabricclk_mhz > 0) {
474 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475 
476 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 	} else if (entry->dram_speed_mts > 0) {
480 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482 
483 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 	}
486 }
487 
488 void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 				    unsigned int *num_entries,
490 				    struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 	int i = 0;
493 	int index = 0;
494 	float net_bw_of_new_state = 0;
495 
496 	dc_assert_fp_enabled();
497 
498 	get_optimal_ntuple(entry);
499 
500 	if (*num_entries == 0) {
501 		table[0] = *entry;
502 		(*num_entries)++;
503 	} else {
504 		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
505 		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
506 			index++;
507 			if (index >= *num_entries)
508 				break;
509 		}
510 
511 		for (i = *num_entries; i > index; i--)
512 			table[i] = table[i - 1];
513 
514 		table[index] = *entry;
515 		(*num_entries)++;
516 	}
517 }
518 
519 /**
520  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
521  * @dc: current dc state
522  * @context: new dc state
523  * @ref_pipe: Main pipe for the phantom stream
524  * @phantom_stream: target phantom stream state
525  * @pipes: DML pipe params
526  * @pipe_cnt: number of DML pipes
527  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
528  *
529  * Set timing params of the phantom stream based on calculated output from DML.
530  * This function first gets the DML pipe index using the DC pipe index, then
531  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
532  * lines required for SubVP MCLK switching and assigns to the phantom stream
533  * accordingly.
534  *
535  * - The number of SubVP lines calculated in DML does not take into account
536  * FW processing delays and required pstate allow width, so we must include
537  * that separately.
538  *
539  * - Set phantom backporch = vstartup of main pipe
540  */
541 void dcn32_set_phantom_stream_timing(struct dc *dc,
542 				     struct dc_state *context,
543 				     struct pipe_ctx *ref_pipe,
544 				     struct dc_stream_state *phantom_stream,
545 				     display_e2e_pipe_params_st *pipes,
546 				     unsigned int pipe_cnt,
547 				     unsigned int dc_pipe_idx)
548 {
549 	unsigned int i, pipe_idx;
550 	struct pipe_ctx *pipe;
551 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
552 	unsigned int num_dpp;
553 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
554 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
555 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
556 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
557 	struct dc_stream_state *main_stream = ref_pipe->stream;
558 
559 	dc_assert_fp_enabled();
560 
561 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
562 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
563 		pipe = &context->res_ctx.pipe_ctx[i];
564 
565 		if (!pipe->stream)
566 			continue;
567 
568 		if (i == dc_pipe_idx)
569 			break;
570 
571 		pipe_idx++;
572 	}
573 
574 	// Calculate lines required for pstate allow width and FW processing delays
575 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
576 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
577 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
578 			(double)ref_pipe->stream->timing.h_total;
579 
580 	// Update clks_cfg for calling into recalculate
581 	pipes[0].clks_cfg.voltage = vlevel;
582 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
583 	pipes[0].clks_cfg.socclk_mhz = socclk;
584 
585 	// DML calculation for MALL region doesn't take into account FW delay
586 	// and required pstate allow width for multi-display cases
587 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
588 	 * to 2 swaths (i.e. 16 lines)
589 	 */
590 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
591 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
592 
593 	// W/A for DCC corruption with certain high resolution timings.
594 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
595 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
596 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
597 
598 	/* dc->debug.subvp_extra_lines 0 by default*/
599 	phantom_vactive += dc->debug.subvp_extra_lines;
600 
601 	// For backporch of phantom pipe, use vstartup of the main pipe
602 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
603 
604 	phantom_stream->dst.y = 0;
605 	phantom_stream->dst.height = phantom_vactive;
606 	/* When scaling, DML provides the end to end required number of lines for MALL.
607 	 * dst.height is always correct for this case, but src.height is not which causes a
608 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
609 	 * phantom for this case.
610 	 */
611 	phantom_stream->src.y = 0;
612 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
613 
614 	phantom_stream->timing.v_addressable = phantom_vactive;
615 	phantom_stream->timing.v_front_porch = 1;
616 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
617 						phantom_stream->timing.v_front_porch +
618 						phantom_stream->timing.v_sync_width +
619 						phantom_bp;
620 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
621 }
622 
623 /**
624  * dcn32_get_num_free_pipes - Calculate number of free pipes
625  * @dc: current dc state
626  * @context: new dc state
627  *
628  * This function assumes that a "used" pipe is a pipe that has
629  * both a stream and a plane assigned to it.
630  *
631  * Return: Number of free pipes available in the context
632  */
633 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
634 {
635 	unsigned int i;
636 	unsigned int free_pipes = 0;
637 	unsigned int num_pipes = 0;
638 
639 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
640 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
641 
642 		if (pipe->stream && !pipe->top_pipe) {
643 			while (pipe) {
644 				num_pipes++;
645 				pipe = pipe->bottom_pipe;
646 			}
647 		}
648 	}
649 
650 	free_pipes = dc->res_pool->pipe_count - num_pipes;
651 	return free_pipes;
652 }
653 
654 /**
655  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
656  * @dc: current dc state
657  * @context: new dc state
658  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
659  *
660  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
661  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
662  * we are forcing SubVP P-State switching on the current config.
663  *
664  * The number of pipes used for the chosen surface must be less than or equal to the
665  * number of free pipes available.
666  *
667  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
668  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
669  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
670  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
671  *
672  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
673  */
674 static bool dcn32_assign_subvp_pipe(struct dc *dc,
675 				    struct dc_state *context,
676 				    unsigned int *index)
677 {
678 	unsigned int i, pipe_idx;
679 	unsigned int max_frame_time = 0;
680 	bool valid_assignment_found = false;
681 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
682 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
683 
684 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
685 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
686 		unsigned int num_pipes = 0;
687 		unsigned int refresh_rate = 0;
688 
689 		if (!pipe->stream)
690 			continue;
691 
692 		// Round up
693 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
694 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
695 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
696 		/* SubVP pipe candidate requirements:
697 		 * - Refresh rate < 120hz
698 		 * - Not able to switch in vactive naturally (switching in active means the
699 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
700 		 *   to combine this with SubVP can cause issues with the scheduling).
701 		 * - Not TMZ surface
702 		 */
703 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
704 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
705 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
706 				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
707 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
708 				!pipe->plane_state->address.tmz_surface &&
709 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
710 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
711 						dcn32_allow_subvp_with_active_margin(pipe)))) {
712 			while (pipe) {
713 				num_pipes++;
714 				pipe = pipe->bottom_pipe;
715 			}
716 
717 			pipe = &context->res_ctx.pipe_ctx[i];
718 			if (num_pipes <= free_pipes) {
719 				struct dc_stream_state *stream = pipe->stream;
720 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
721 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
722 				if (frame_us > max_frame_time) {
723 					*index = i;
724 					max_frame_time = frame_us;
725 					valid_assignment_found = true;
726 				}
727 			}
728 		}
729 		pipe_idx++;
730 	}
731 	return valid_assignment_found;
732 }
733 
734 /**
735  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
736  * @dc: current dc state
737  * @context: new dc state
738  *
739  * This function returns true if there are enough free pipes
740  * to create the required phantom pipes for any given stream
741  * (that does not already have phantom pipe assigned).
742  *
743  * e.g. For a 2 stream config where the first stream uses one
744  * pipe and the second stream uses 2 pipes (i.e. pipe split),
745  * this function will return true because there is 1 remaining
746  * pipe which can be used as the phantom pipe for the non pipe
747  * split pipe.
748  *
749  * Return:
750  * True if there are enough free pipes to assign phantom pipes to at least one
751  * stream that does not already have phantom pipes assigned. Otherwise false.
752  */
753 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
754 {
755 	unsigned int i, split_cnt, free_pipes;
756 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
757 	bool subvp_possible = false;
758 
759 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
760 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
761 
762 		// Find the minimum pipe split count for non SubVP pipes
763 		if (pipe->stream && !pipe->top_pipe &&
764 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
765 			split_cnt = 0;
766 			while (pipe) {
767 				split_cnt++;
768 				pipe = pipe->bottom_pipe;
769 			}
770 
771 			if (split_cnt < min_pipe_split)
772 				min_pipe_split = split_cnt;
773 		}
774 	}
775 
776 	free_pipes = dcn32_get_num_free_pipes(dc, context);
777 
778 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
779 	// should not equal to the pipe_count)
780 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
781 		subvp_possible = true;
782 
783 	return subvp_possible;
784 }
785 
786 /**
787  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
788  * @dc: current dc state
789  * @context: new dc state
790  *
791  * High level algorithm:
792  * 1. Find longest microschedule length (in us) between the two SubVP pipes
793  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
794  * pipes still allows for the maximum microschedule to fit in the active
795  * region for both pipes.
796  *
797  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
798  */
799 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
800 {
801 	struct pipe_ctx *subvp_pipes[2];
802 	struct dc_stream_state *phantom = NULL;
803 	uint32_t microschedule_lines = 0;
804 	uint32_t index = 0;
805 	uint32_t i;
806 	uint32_t max_microschedule_us = 0;
807 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
808 
809 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
810 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
811 		uint32_t time_us = 0;
812 
813 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
814 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
815 		 */
816 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
817 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
818 			phantom = pipe->stream->mall_stream_config.paired_stream;
819 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
820 					phantom->timing.v_addressable;
821 
822 			// Round up when calculating microschedule time (+ 1 at the end)
823 			time_us = (microschedule_lines * phantom->timing.h_total) /
824 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
825 						dc->caps.subvp_prefetch_end_to_mall_start_us +
826 						dc->caps.subvp_fw_processing_delay_us + 1;
827 			if (time_us > max_microschedule_us)
828 				max_microschedule_us = time_us;
829 
830 			subvp_pipes[index] = pipe;
831 			index++;
832 
833 			// Maximum 2 SubVP pipes
834 			if (index == 2)
835 				break;
836 		}
837 	}
838 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
839 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
840 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
841 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
842 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
843 			subvp_pipes[0]->stream->timing.h_total) /
844 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
845 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
846 			subvp_pipes[1]->stream->timing.h_total) /
847 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
848 
849 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
850 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
851 		return true;
852 
853 	return false;
854 }
855 
856 /**
857  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
858  * @dc: current dc state
859  * @context: new dc state
860  *
861  * High level algorithm:
862  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
863  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
864  * (the margin is equal to the MALL region + DRR margin (500us))
865  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
866  * then report the configuration as supported
867  *
868  * Return: True if the SubVP + DRR config is schedulable, false otherwise
869  */
870 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
871 {
872 	bool schedulable = false;
873 	uint32_t i;
874 	struct pipe_ctx *pipe = NULL;
875 	struct pipe_ctx *drr_pipe = NULL;
876 	struct dc_crtc_timing *main_timing = NULL;
877 	struct dc_crtc_timing *phantom_timing = NULL;
878 	struct dc_crtc_timing *drr_timing = NULL;
879 	int16_t prefetch_us = 0;
880 	int16_t mall_region_us = 0;
881 	int16_t drr_frame_us = 0;	// nominal frame time
882 	int16_t subvp_active_us = 0;
883 	int16_t stretched_drr_us = 0;
884 	int16_t drr_stretched_vblank_us = 0;
885 	int16_t max_vblank_mallregion = 0;
886 
887 	// Find SubVP pipe
888 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
889 		pipe = &context->res_ctx.pipe_ctx[i];
890 
891 		// We check for master pipe, but it shouldn't matter since we only need
892 		// the pipe for timing info (stream should be same for any pipe splits)
893 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
894 			continue;
895 
896 		// Find the SubVP pipe
897 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
898 			break;
899 	}
900 
901 	// Find the DRR pipe
902 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
903 		drr_pipe = &context->res_ctx.pipe_ctx[i];
904 
905 		// We check for master pipe only
906 		if (!drr_pipe->stream || !drr_pipe->plane_state || drr_pipe->top_pipe || drr_pipe->prev_odm_pipe)
907 			continue;
908 
909 		if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
910 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
911 			break;
912 	}
913 
914 	main_timing = &pipe->stream->timing;
915 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
916 	drr_timing = &drr_pipe->stream->timing;
917 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
918 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
919 			dc->caps.subvp_prefetch_end_to_mall_start_us;
920 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
921 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
922 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
923 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
924 	// P-State allow width and FW delays already included phantom_timing->v_addressable
925 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
926 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
927 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
928 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
929 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
930 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
931 
932 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
933 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
934 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
935 	 * and the max of (VBLANK blanking time, MALL region)).
936 	 */
937 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
938 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
939 		schedulable = true;
940 
941 	return schedulable;
942 }
943 
944 
945 /**
946  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
947  * @dc: current dc state
948  * @context: new dc state
949  *
950  * High level algorithm:
951  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
952  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
953  * then report the configuration as supported
954  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
955  *
956  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
957  */
958 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
959 {
960 	struct pipe_ctx *pipe = NULL;
961 	struct pipe_ctx *subvp_pipe = NULL;
962 	bool found = false;
963 	bool schedulable = false;
964 	uint32_t i = 0;
965 	uint8_t vblank_index = 0;
966 	uint16_t prefetch_us = 0;
967 	uint16_t mall_region_us = 0;
968 	uint16_t vblank_frame_us = 0;
969 	uint16_t subvp_active_us = 0;
970 	uint16_t vblank_blank_us = 0;
971 	uint16_t max_vblank_mallregion = 0;
972 	struct dc_crtc_timing *main_timing = NULL;
973 	struct dc_crtc_timing *phantom_timing = NULL;
974 	struct dc_crtc_timing *vblank_timing = NULL;
975 
976 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
977 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
978 	 * is supported, it is either a single VBLANK case or two VBLANK
979 	 * displays which are synchronized (in which case they have identical
980 	 * timings).
981 	 */
982 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
983 		pipe = &context->res_ctx.pipe_ctx[i];
984 
985 		// We check for master pipe, but it shouldn't matter since we only need
986 		// the pipe for timing info (stream should be same for any pipe splits)
987 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
988 			continue;
989 
990 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
991 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
992 			vblank_index = i;
993 			found = true;
994 		}
995 
996 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
997 			subvp_pipe = pipe;
998 	}
999 	if (found) {
1000 		main_timing = &subvp_pipe->stream->timing;
1001 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1002 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1003 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1004 		// Also include the prefetch end to mallstart delay time
1005 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1006 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1007 				dc->caps.subvp_prefetch_end_to_mall_start_us;
1008 		// P-State allow width and FW delays already included phantom_timing->v_addressable
1009 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1010 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1011 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1012 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1013 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1014 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1015 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1016 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
1017 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1018 
1019 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1020 		// and the max of (VBLANK blanking time, MALL region)
1021 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1022 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1023 			schedulable = true;
1024 	}
1025 	return schedulable;
1026 }
1027 
1028 /**
1029  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1030  *
1031  * @dc: Current DC state
1032  * @context: New DC state to be programmed
1033  *
1034  * SubVP + SubVP is admissible under the following conditions:
1035  * - All SubVP pipes are < 120Hz OR
1036  * - All SubVP pipes are >= 120hz
1037  *
1038  * Return: True if admissible, false otherwise
1039  */
1040 static bool subvp_subvp_admissable(struct dc *dc,
1041 				struct dc_state *context)
1042 {
1043 	bool result = false;
1044 	uint32_t i;
1045 	uint8_t subvp_count = 0;
1046 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1047 	uint32_t refresh_rate = 0;
1048 
1049 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1050 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1051 
1052 		if (!pipe->stream)
1053 			continue;
1054 
1055 		if (pipe->plane_state && !pipe->top_pipe &&
1056 				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1057 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
1058 					pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
1059 					/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
1060 			if (refresh_rate < min_refresh)
1061 				min_refresh = refresh_rate;
1062 			if (refresh_rate > max_refresh)
1063 				max_refresh = refresh_rate;
1064 			subvp_count++;
1065 		}
1066 	}
1067 
1068 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1069 			(min_refresh >= 120 && max_refresh >= 120)))
1070 		result = true;
1071 
1072 	return result;
1073 }
1074 
1075 /**
1076  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1077  * and handle static analysis based on the case.
1078  * @dc: current dc state
1079  * @context: new dc state
1080  * @vlevel: Voltage level calculated by DML
1081  *
1082  * Three cases:
1083  * 1. SubVP + SubVP
1084  * 2. SubVP + VBLANK (DRR checked internally)
1085  * 3. SubVP + VACTIVE (currently unsupported)
1086  *
1087  * Return: True if statically schedulable, false otherwise
1088  */
1089 static bool subvp_validate_static_schedulability(struct dc *dc,
1090 				struct dc_state *context,
1091 				int vlevel)
1092 {
1093 	bool schedulable = false;
1094 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1095 	uint32_t i, pipe_idx;
1096 	uint8_t subvp_count = 0;
1097 	uint8_t vactive_count = 0;
1098 	uint8_t non_subvp_pipes = 0;
1099 
1100 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1101 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1102 
1103 		if (!pipe->stream)
1104 			continue;
1105 
1106 		if (pipe->plane_state && !pipe->top_pipe) {
1107 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1108 				subvp_count++;
1109 			if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1110 				non_subvp_pipes++;
1111 			}
1112 		}
1113 
1114 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1115 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1116 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1117 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1118 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1119 			vactive_count++;
1120 		}
1121 		pipe_idx++;
1122 	}
1123 
1124 	if (subvp_count == 2) {
1125 		// Static schedulability check for SubVP + SubVP case
1126 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1127 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1128 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1129 		schedulable = true;
1130 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1131 		if (dcn32_subvp_drr_admissable(dc, context))
1132 			schedulable = subvp_drr_schedulable(dc, context);
1133 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1134 			schedulable = subvp_vblank_schedulable(dc, context);
1135 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1136 			vactive_count > 0) {
1137 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1138 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1139 		// SubVP + VACTIVE currently unsupported
1140 		schedulable = false;
1141 	}
1142 	return schedulable;
1143 }
1144 
1145 static void dcn32_full_validate_bw_helper(struct dc *dc,
1146 				   struct dc_state *context,
1147 				   display_e2e_pipe_params_st *pipes,
1148 				   int *vlevel,
1149 				   int *split,
1150 				   bool *merge,
1151 				   int *pipe_cnt)
1152 {
1153 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1154 	unsigned int dc_pipe_idx = 0;
1155 	int i = 0;
1156 	bool found_supported_config = false;
1157 
1158 	dc_assert_fp_enabled();
1159 
1160 	/*
1161 	 * DML favors voltage over p-state, but we're more interested in
1162 	 * supporting p-state over voltage. We can't support p-state in
1163 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1164 	 * Override present for testing.
1165 	 */
1166 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1167 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1168 			dm_prefetch_support_uclk_fclk_and_stutter;
1169 	else
1170 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1171 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1172 
1173 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1174 	/* This may adjust vlevel and maxMpcComb */
1175 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1176 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1177 		vba->VoltageLevel = *vlevel;
1178 	}
1179 
1180 	/* Conditions for setting up phantom pipes for SubVP:
1181 	 * 1. Not force disable SubVP
1182 	 * 2. Full update (i.e. !fast_validate)
1183 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1184 	 * 4. Display configuration passes validation
1185 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1186 	 */
1187 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1188 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1189 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1190 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1191 	    dc->debug.force_subvp_mclk_switch)) {
1192 
1193 		dcn32_merge_pipes_for_subvp(dc, context);
1194 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1195 
1196 		/* to re-initialize viewport after the pipe merge */
1197 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1198 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1199 
1200 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1201 				continue;
1202 
1203 			resource_build_scaling_params(pipe_ctx);
1204 		}
1205 
1206 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1207 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1208 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1209 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1210 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1211 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1212 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1213 			 * enough to support MCLK switching.
1214 			 */
1215 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1216 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1217 					dm_prefetch_support_uclk_fclk_and_stutter) {
1218 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1219 								dm_prefetch_support_fclk_and_stutter;
1220 				/* There are params (such as FabricClock) that need to be recalculated
1221 				 * after validation fails (otherwise it will be 0). Calculation for
1222 				 * phantom vactive requires call into DML, so we must ensure all the
1223 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1224 				 */
1225 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1226 			}
1227 
1228 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1229 
1230 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1231 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1232 			// so the phantom pipe DLG params can be assigned correctly.
1233 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1234 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1235 
1236 			/* Check that vlevel requested supports pstate or not
1237 			 * if not, select the lowest vlevel that supports it
1238 			 */
1239 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1240 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1241 					*vlevel = i;
1242 					break;
1243 				}
1244 			}
1245 
1246 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1247 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1248 				found_supported_config = true;
1249 			if (found_supported_config) {
1250 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1251 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1252 					/* find lowest vlevel that supports the config */
1253 					for (i = *vlevel; i >= 0; i--) {
1254 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1255 							*vlevel = i;
1256 						} else {
1257 							break;
1258 						}
1259 					}
1260 				}
1261 			}
1262 		}
1263 
1264 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1265 		// remove phantom pipes and repopulate dml pipes
1266 		if (!found_supported_config) {
1267 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1268 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1269 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1270 
1271 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1272 			/* This may adjust vlevel and maxMpcComb */
1273 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1274 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1275 				vba->VoltageLevel = *vlevel;
1276 			}
1277 		} else {
1278 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1279 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1280 
1281 			/* Call validate_apply_pipe_split flags after calling DML getters for
1282 			 * phantom dlg params, or some of the VBA params indicating pipe split
1283 			 * can be overwritten by the getters.
1284 			 *
1285 			 * When setting up SubVP config, all pipes are merged before attempting to
1286 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1287 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1288 			 */
1289 			memset(split, 0, MAX_PIPES * sizeof(int));
1290 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1291 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1292 			vba->VoltageLevel = *vlevel;
1293 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1294 			// until driver has acquired the DMCUB lock to do it safely.
1295 		}
1296 	}
1297 }
1298 
1299 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1300 {
1301 	int i;
1302 
1303 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1304 		if (!context->res_ctx.pipe_ctx[i].stream)
1305 			continue;
1306 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1307 			return true;
1308 	}
1309 	return false;
1310 }
1311 
1312 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1313 {
1314 	struct dc_crtc_timing patched_crtc_timing;
1315 	uint32_t asic_blank_end   = 0;
1316 	uint32_t asic_blank_start = 0;
1317 	uint32_t newVstartup	  = 0;
1318 
1319 	patched_crtc_timing = *dc_crtc_timing;
1320 
1321 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1322 		if (patched_crtc_timing.v_front_porch < 2)
1323 			patched_crtc_timing.v_front_porch = 2;
1324 	} else {
1325 		if (patched_crtc_timing.v_front_porch < 1)
1326 			patched_crtc_timing.v_front_porch = 1;
1327 	}
1328 
1329 	/* blank_start = frame end - front porch */
1330 	asic_blank_start = patched_crtc_timing.v_total -
1331 					patched_crtc_timing.v_front_porch;
1332 
1333 	/* blank_end = blank_start - active */
1334 	asic_blank_end = asic_blank_start -
1335 					patched_crtc_timing.v_border_bottom -
1336 					patched_crtc_timing.v_addressable -
1337 					patched_crtc_timing.v_border_top;
1338 
1339 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1340 
1341 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1342 }
1343 
1344 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1345 				       display_e2e_pipe_params_st *pipes,
1346 				       int pipe_cnt, int vlevel)
1347 {
1348 	int i, pipe_idx, active_hubp_count = 0;
1349 	bool usr_retraining_support = false;
1350 	bool unbounded_req_enabled = false;
1351 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1352 
1353 	dc_assert_fp_enabled();
1354 
1355 	/* Writeback MCIF_WB arbitration parameters */
1356 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1357 
1358 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1359 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1360 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1361 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1362 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1363 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1364 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1365 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1366 					!= dm_dram_clock_change_unsupported;
1367 
1368 	/* Pstate change might not be supported by hardware, but it might be
1369 	 * possible with firmware driven vertical blank stretching.
1370 	 */
1371 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1372 
1373 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1374 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1375 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1376 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1377 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1378 	else
1379 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1380 
1381 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1382 	ASSERT(usr_retraining_support);
1383 
1384 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1385 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1386 
1387 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1388 
1389 	if (unbounded_req_enabled && pipe_cnt > 1) {
1390 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1391 		ASSERT(false);
1392 		unbounded_req_enabled = false;
1393 	}
1394 
1395 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1396 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1397 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1398 
1399 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1400 		if (!context->res_ctx.pipe_ctx[i].stream)
1401 			continue;
1402 		if (context->res_ctx.pipe_ctx[i].plane_state)
1403 			active_hubp_count++;
1404 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1405 				pipe_idx);
1406 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1407 				pipe_idx);
1408 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1409 				pipe_idx);
1410 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1411 				pipe_idx);
1412 
1413 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1414 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1415 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1416 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1417 		} else {
1418 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1419 							pipe_idx);
1420 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1421 		}
1422 
1423 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1424 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1425 		if (context->res_ctx.pipe_ctx[i].plane_state)
1426 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1427 		else
1428 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1429 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1430 
1431 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1432 
1433 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1434 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1435 		else
1436 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1437 
1438 		/* MALL Allocation Sizes */
1439 		/* count from active, top pipes per plane only */
1440 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1441 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1442 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1443 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1444 			/* SS: all active surfaces stored in MALL */
1445 			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1446 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1447 
1448 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1449 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1450 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1451 				}
1452 			} else {
1453 				/* SUBVP: phantom surfaces only stored in MALL */
1454 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1455 			}
1456 		}
1457 
1458 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1459 			dcn20_adjust_freesync_v_startup(
1460 				&context->res_ctx.pipe_ctx[i].stream->timing,
1461 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1462 
1463 		pipe_idx++;
1464 	}
1465 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1466 	if (!active_hubp_count) {
1467 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1468 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1469 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1470 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1471 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1472 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1473 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1474 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1475 	}
1476 	/*save a original dppclock copy*/
1477 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1478 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1479 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1480 			* 1000;
1481 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1482 			* 1000;
1483 
1484 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1485 
1486 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1487 
1488 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1489 		if (context->res_ctx.pipe_ctx[i].stream)
1490 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1491 	}
1492 
1493 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1494 
1495 		if (!context->res_ctx.pipe_ctx[i].stream)
1496 			continue;
1497 
1498 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1499 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1500 				pipe_cnt, pipe_idx);
1501 
1502 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1503 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1504 		pipe_idx++;
1505 	}
1506 }
1507 
1508 static struct pipe_ctx *dcn32_find_split_pipe(
1509 		struct dc *dc,
1510 		struct dc_state *context,
1511 		int old_index)
1512 {
1513 	struct pipe_ctx *pipe = NULL;
1514 	int i;
1515 
1516 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1517 		pipe = &context->res_ctx.pipe_ctx[old_index];
1518 		pipe->pipe_idx = old_index;
1519 	}
1520 
1521 	if (!pipe)
1522 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1523 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1524 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1525 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1526 					pipe = &context->res_ctx.pipe_ctx[i];
1527 					pipe->pipe_idx = i;
1528 					break;
1529 				}
1530 			}
1531 		}
1532 
1533 	/*
1534 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1535 	 * Add for debugging transient underflow during topology updates:
1536 	 * ASSERT(pipe);
1537 	 */
1538 	if (!pipe)
1539 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1540 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1541 				pipe = &context->res_ctx.pipe_ctx[i];
1542 				pipe->pipe_idx = i;
1543 				break;
1544 			}
1545 		}
1546 
1547 	return pipe;
1548 }
1549 
1550 static bool dcn32_split_stream_for_mpc_or_odm(
1551 		const struct dc *dc,
1552 		struct resource_context *res_ctx,
1553 		struct pipe_ctx *pri_pipe,
1554 		struct pipe_ctx *sec_pipe,
1555 		bool odm)
1556 {
1557 	int pipe_idx = sec_pipe->pipe_idx;
1558 	const struct resource_pool *pool = dc->res_pool;
1559 
1560 	DC_LOGGER_INIT(dc->ctx->logger);
1561 
1562 	if (odm && pri_pipe->plane_state) {
1563 		/* ODM + window MPO, where MPO window is on left half only */
1564 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1565 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1566 
1567 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1568 					__func__,
1569 					pri_pipe->pipe_idx);
1570 			return true;
1571 		}
1572 
1573 		/* ODM + window MPO, where MPO window is on right half only */
1574 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1575 
1576 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1577 					__func__,
1578 					pri_pipe->pipe_idx);
1579 			return true;
1580 		}
1581 	}
1582 
1583 	*sec_pipe = *pri_pipe;
1584 
1585 	sec_pipe->pipe_idx = pipe_idx;
1586 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1587 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1588 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1589 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1590 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1591 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1592 	sec_pipe->stream_res.dsc = NULL;
1593 	if (odm) {
1594 		if (pri_pipe->next_odm_pipe) {
1595 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1596 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1597 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1598 		}
1599 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1600 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1601 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1602 		}
1603 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1604 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1605 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1606 		}
1607 		pri_pipe->next_odm_pipe = sec_pipe;
1608 		sec_pipe->prev_odm_pipe = pri_pipe;
1609 		ASSERT(sec_pipe->top_pipe == NULL);
1610 
1611 		if (!sec_pipe->top_pipe)
1612 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1613 		else
1614 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1615 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1616 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1617 			ASSERT(sec_pipe->stream_res.dsc);
1618 			if (sec_pipe->stream_res.dsc == NULL)
1619 				return false;
1620 		}
1621 	} else {
1622 		if (pri_pipe->bottom_pipe) {
1623 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1624 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1625 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1626 		}
1627 		pri_pipe->bottom_pipe = sec_pipe;
1628 		sec_pipe->top_pipe = pri_pipe;
1629 
1630 		ASSERT(pri_pipe->plane_state);
1631 	}
1632 
1633 	return true;
1634 }
1635 
1636 bool dcn32_internal_validate_bw(struct dc *dc,
1637 				struct dc_state *context,
1638 				display_e2e_pipe_params_st *pipes,
1639 				int *pipe_cnt_out,
1640 				int *vlevel_out,
1641 				bool fast_validate)
1642 {
1643 	bool out = false;
1644 	bool repopulate_pipes = false;
1645 	int split[MAX_PIPES] = { 0 };
1646 	bool merge[MAX_PIPES] = { false };
1647 	bool newly_split[MAX_PIPES] = { false };
1648 	int pipe_cnt, i, pipe_idx;
1649 	int vlevel = context->bw_ctx.dml.soc.num_states;
1650 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1651 
1652 	dc_assert_fp_enabled();
1653 
1654 	ASSERT(pipes);
1655 	if (!pipes)
1656 		return false;
1657 
1658 	// For each full update, remove all existing phantom pipes first
1659 	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1660 
1661 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1662 
1663 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1664 
1665 	if (!pipe_cnt) {
1666 		out = true;
1667 		goto validate_out;
1668 	}
1669 
1670 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1671 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1672 
1673 	if (!fast_validate)
1674 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1675 
1676 	if (fast_validate ||
1677 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1678 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1679 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1680 		/*
1681 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1682 		 * tried alternate prefetch modes during full validation.
1683 		 *
1684 		 * If mode is unsupported or there is no p-state support, then
1685 		 * fall back to favouring voltage.
1686 		 *
1687 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1688 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1689 		 */
1690 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1691 			dm_prefetch_support_none;
1692 
1693 		context->bw_ctx.dml.validate_max_state = fast_validate;
1694 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1695 
1696 		context->bw_ctx.dml.validate_max_state = false;
1697 
1698 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1699 			memset(split, 0, sizeof(split));
1700 			memset(merge, 0, sizeof(merge));
1701 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1702 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1703 			vba->VoltageLevel = vlevel;
1704 		}
1705 	}
1706 
1707 	dml_log_mode_support_params(&context->bw_ctx.dml);
1708 
1709 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1710 		goto validate_fail;
1711 
1712 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1713 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1714 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1715 
1716 		if (!pipe->stream)
1717 			continue;
1718 
1719 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1720 				&& !dc->config.enable_windowed_mpo_odm
1721 				&& pipe->plane_state && mpo_pipe
1722 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1723 						&pipe->plane_res.scl_data.recout,
1724 						sizeof(struct rect)) != 0) {
1725 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1726 			goto validate_fail;
1727 		}
1728 		pipe_idx++;
1729 	}
1730 
1731 	/* merge pipes if necessary */
1732 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1733 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1734 
1735 		/*skip pipes that don't need merging*/
1736 		if (!merge[i])
1737 			continue;
1738 
1739 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1740 		if (pipe->prev_odm_pipe) {
1741 			/*split off odm pipe*/
1742 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1743 			if (pipe->next_odm_pipe)
1744 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1745 
1746 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1747 			if (pipe->bottom_pipe) {
1748 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1749 					/*MPC split rules will handle this case*/
1750 					pipe->bottom_pipe->top_pipe = NULL;
1751 				} else {
1752 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1753 					 * the previous ODM pipe and its associated stream assets
1754 					 */
1755 					if (pipe->prev_odm_pipe->bottom_pipe) {
1756 						/* 3 plane MPO*/
1757 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1758 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1759 					} else {
1760 						/* 2 plane MPO*/
1761 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1762 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1763 					}
1764 
1765 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1766 				}
1767 			}
1768 
1769 			if (pipe->top_pipe) {
1770 				pipe->top_pipe->bottom_pipe = NULL;
1771 			}
1772 
1773 			pipe->bottom_pipe = NULL;
1774 			pipe->next_odm_pipe = NULL;
1775 			pipe->plane_state = NULL;
1776 			pipe->stream = NULL;
1777 			pipe->top_pipe = NULL;
1778 			pipe->prev_odm_pipe = NULL;
1779 			if (pipe->stream_res.dsc)
1780 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1781 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1782 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1783 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1784 			repopulate_pipes = true;
1785 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1786 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1787 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1788 
1789 			top_pipe->bottom_pipe = bottom_pipe;
1790 			if (bottom_pipe)
1791 				bottom_pipe->top_pipe = top_pipe;
1792 
1793 			pipe->top_pipe = NULL;
1794 			pipe->bottom_pipe = NULL;
1795 			pipe->plane_state = NULL;
1796 			pipe->stream = NULL;
1797 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1798 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1799 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1800 			repopulate_pipes = true;
1801 		} else
1802 			ASSERT(0); /* Should never try to merge master pipe */
1803 
1804 	}
1805 
1806 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1807 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1808 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1809 		struct pipe_ctx *hsplit_pipe = NULL;
1810 		bool odm;
1811 		int old_index = -1;
1812 
1813 		if (!pipe->stream || newly_split[i])
1814 			continue;
1815 
1816 		pipe_idx++;
1817 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1818 
1819 		if (!pipe->plane_state && !odm)
1820 			continue;
1821 
1822 		if (split[i]) {
1823 			if (odm) {
1824 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1825 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1826 				else if (old_pipe->next_odm_pipe)
1827 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1828 			} else {
1829 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1830 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1831 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1832 				else if (old_pipe->bottom_pipe &&
1833 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1834 					old_index = old_pipe->bottom_pipe->pipe_idx;
1835 			}
1836 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1837 			ASSERT(hsplit_pipe);
1838 			if (!hsplit_pipe)
1839 				goto validate_fail;
1840 
1841 			if (!dcn32_split_stream_for_mpc_or_odm(
1842 					dc, &context->res_ctx,
1843 					pipe, hsplit_pipe, odm))
1844 				goto validate_fail;
1845 
1846 			newly_split[hsplit_pipe->pipe_idx] = true;
1847 			repopulate_pipes = true;
1848 		}
1849 		if (split[i] == 4) {
1850 			struct pipe_ctx *pipe_4to1;
1851 
1852 			if (odm && old_pipe->next_odm_pipe)
1853 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1854 			else if (!odm && old_pipe->bottom_pipe &&
1855 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1856 				old_index = old_pipe->bottom_pipe->pipe_idx;
1857 			else
1858 				old_index = -1;
1859 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1860 			ASSERT(pipe_4to1);
1861 			if (!pipe_4to1)
1862 				goto validate_fail;
1863 			if (!dcn32_split_stream_for_mpc_or_odm(
1864 					dc, &context->res_ctx,
1865 					pipe, pipe_4to1, odm))
1866 				goto validate_fail;
1867 			newly_split[pipe_4to1->pipe_idx] = true;
1868 
1869 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1870 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1871 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1872 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1873 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1874 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1875 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1876 			else
1877 				old_index = -1;
1878 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1879 			ASSERT(pipe_4to1);
1880 			if (!pipe_4to1)
1881 				goto validate_fail;
1882 			if (!dcn32_split_stream_for_mpc_or_odm(
1883 					dc, &context->res_ctx,
1884 					hsplit_pipe, pipe_4to1, odm))
1885 				goto validate_fail;
1886 			newly_split[pipe_4to1->pipe_idx] = true;
1887 		}
1888 		if (odm)
1889 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1890 	}
1891 
1892 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1893 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1894 
1895 		if (pipe->plane_state) {
1896 			if (!resource_build_scaling_params(pipe))
1897 				goto validate_fail;
1898 		}
1899 	}
1900 
1901 	/* Actual dsc count per stream dsc validation*/
1902 	if (!dcn20_validate_dsc(dc, context)) {
1903 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1904 		goto validate_fail;
1905 	}
1906 
1907 	if (repopulate_pipes) {
1908 		int flag_max_mpc_comb = vba->maxMpcComb;
1909 		int flag_vlevel = vlevel;
1910 		int i;
1911 
1912 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1913 
1914 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1915 		 * we have to re-calculate the DET allocation and run through DML once more to
1916 		 * ensure all the params are calculated correctly. We do not need to run the
1917 		 * pipe split check again after this call (pipes are already split / merged).
1918 		 * */
1919 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1920 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1921 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1922 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1923 			/* failed after DET size changes */
1924 			goto validate_fail;
1925 		} else if (flag_max_mpc_comb == 0 &&
1926 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1927 			/* check the context constructed with pipe split flags is still valid*/
1928 			bool flags_valid = false;
1929 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1930 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1931 					vba->maxMpcComb = flag_max_mpc_comb;
1932 					vba->VoltageLevel = i;
1933 					vlevel = i;
1934 					flags_valid = true;
1935 				}
1936 			}
1937 
1938 			/* this should never happen */
1939 			if (!flags_valid)
1940 				goto validate_fail;
1941 		}
1942 	}
1943 	*vlevel_out = vlevel;
1944 	*pipe_cnt_out = pipe_cnt;
1945 
1946 	out = true;
1947 	goto validate_out;
1948 
1949 validate_fail:
1950 	out = false;
1951 
1952 validate_out:
1953 	return out;
1954 }
1955 
1956 
1957 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1958 				display_e2e_pipe_params_st *pipes,
1959 				int pipe_cnt,
1960 				int vlevel)
1961 {
1962 	int i, pipe_idx, vlevel_temp = 0;
1963 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1964 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1965 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1966 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1967 			dm_dram_clock_change_unsupported;
1968 	unsigned int dummy_latency_index = 0;
1969 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1970 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1971 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1972 	unsigned int min_dram_speed_mts_margin;
1973 	bool need_fclk_lat_as_dummy = false;
1974 	bool is_subvp_p_drr = false;
1975 	struct dc_stream_state *fpo_candidate_stream = NULL;
1976 
1977 	dc_assert_fp_enabled();
1978 
1979 	/* need to find dummy latency index for subvp */
1980 	if (subvp_in_use) {
1981 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1982 		if (!pstate_en) {
1983 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1984 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1985 			pstate_en = true;
1986 			is_subvp_p_drr = true;
1987 		}
1988 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1989 						context, pipes, pipe_cnt, vlevel);
1990 
1991 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1992 		 * scheduled correctly to account for dummy pstate.
1993 		 */
1994 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1995 			need_fclk_lat_as_dummy = true;
1996 			context->bw_ctx.dml.soc.fclk_change_latency_us =
1997 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1998 		}
1999 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2000 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2001 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2002 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2003 		if (is_subvp_p_drr) {
2004 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2005 		}
2006 	}
2007 
2008 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2009 	for (i = 0; i < context->stream_count; i++) {
2010 		if (context->streams[i])
2011 			context->streams[i]->fpo_in_use = false;
2012 	}
2013 
2014 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2015 			pstate_en && vlevel != 0)) {
2016 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2017 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2018 		if (fpo_candidate_stream) {
2019 			fpo_candidate_stream->fpo_in_use = true;
2020 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2021 		}
2022 
2023 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2024 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2025 				context, pipes, pipe_cnt, vlevel);
2026 
2027 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2028 			 * we reinstate the original dram_clock_change_latency_us on the context
2029 			 * and all variables that may have changed up to this point, except the
2030 			 * newly found dummy_latency_index
2031 			 */
2032 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2033 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2034 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2035 			 * prefetch is scheduled correctly to account for dummy pstate.
2036 			 */
2037 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2038 				need_fclk_lat_as_dummy = true;
2039 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2040 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2041 			}
2042 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2043 			if (vlevel_temp < vlevel) {
2044 				vlevel = vlevel_temp;
2045 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2046 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2047 				pstate_en = true;
2048 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2049 			} else {
2050 				/* Restore FCLK latency and re-run validation to go back to original validation
2051 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2052 				 * voltage level)
2053 				 */
2054 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2055 				for (i = 0; i < context->stream_count; i++) {
2056 					if (context->streams[i])
2057 						context->streams[i]->fpo_in_use = false;
2058 				}
2059 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2060 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2061 			}
2062 		}
2063 	}
2064 
2065 	/* Set B:
2066 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2067 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2068 	 * calculations to cover bootup clocks.
2069 	 * DCFCLK: soc.clock_limits[2] when available
2070 	 * UCLK: soc.clock_limits[2] when available
2071 	 */
2072 	if (dcn3_2_soc.num_states > 2) {
2073 		vlevel_temp = 2;
2074 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2075 	} else
2076 		dcfclk = 615; //DCFCLK Vmin_lv
2077 
2078 	pipes[0].clks_cfg.voltage = vlevel_temp;
2079 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2080 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2081 
2082 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2083 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2084 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2085 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2086 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2087 	}
2088 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2089 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2090 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2091 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2092 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2098 
2099 	/* Set D:
2100 	 * All clocks min.
2101 	 * DCFCLK: Min, as reported by PM FW when available
2102 	 * UCLK  : Min, as reported by PM FW when available
2103 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2104 	 */
2105 
2106 	/*
2107 	if (dcn3_2_soc.num_states > 2) {
2108 		vlevel_temp = 0;
2109 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2110 	} else
2111 		dcfclk = 615; //DCFCLK Vmin_lv
2112 
2113 	pipes[0].clks_cfg.voltage = vlevel_temp;
2114 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2115 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2116 
2117 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2118 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2119 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2120 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2121 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2122 	}
2123 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2124 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2125 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2126 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2127 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2133 	*/
2134 
2135 	/* Set C, for Dummy P-State:
2136 	 * All clocks min.
2137 	 * DCFCLK: Min, as reported by PM FW, when available
2138 	 * UCLK  : Min,  as reported by PM FW, when available
2139 	 * pstate latency as per UCLK state dummy pstate latency
2140 	 */
2141 
2142 	// For Set A and Set C use values from validation
2143 	pipes[0].clks_cfg.voltage = vlevel;
2144 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2145 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2146 
2147 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2148 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2149 	}
2150 
2151 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2152 		min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2153 		min_dram_speed_mts_margin = 160;
2154 
2155 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2156 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2157 
2158 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2159 			dm_dram_clock_change_unsupported) {
2160 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2161 
2162 			min_dram_speed_mts =
2163 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2164 		}
2165 
2166 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2167 			/* find largest table entry that is lower than dram speed,
2168 			 * but lower than DPM0 still uses DPM0
2169 			 */
2170 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2171 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2172 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2173 					break;
2174 		}
2175 
2176 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2177 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2178 
2179 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2180 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2181 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2182 	}
2183 
2184 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2185 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2186 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2187 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2188 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2192 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2193 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2194 	 * value.
2195 	 */
2196 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2197 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2198 
2199 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2200 		/* The only difference between A and C is p-state latency, if p-state is not supported
2201 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2202 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2203 		 */
2204 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2205 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2206 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2207 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2208 		 */
2209 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2210 	} else {
2211 		/* Set A:
2212 		 * All clocks min.
2213 		 * DCFCLK: Min, as reported by PM FW, when available
2214 		 * UCLK: Min, as reported by PM FW, when available
2215 		 */
2216 
2217 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2218 		 */
2219 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2220 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2221 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2222 
2223 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2224 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2225 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2226 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2227 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 	}
2234 
2235 	/* Make set D = set A since we do not optimized watermarks for MALL */
2236 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2237 
2238 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2239 		if (!context->res_ctx.pipe_ctx[i].stream)
2240 			continue;
2241 
2242 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2243 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2244 
2245 		if (dc->config.forced_clocks) {
2246 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2247 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2248 		}
2249 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2250 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2251 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2252 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2253 
2254 		pipe_idx++;
2255 	}
2256 
2257 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2258 
2259 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2260 	if (need_fclk_lat_as_dummy)
2261 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2262 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2263 
2264 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2265 
2266 	if (!pstate_en)
2267 		/* Restore full p-state latency */
2268 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2269 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2270 
2271 	/* revert fclk lat changes if required */
2272 	if (need_fclk_lat_as_dummy)
2273 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2274 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2275 }
2276 
2277 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2278 		unsigned int *optimal_dcfclk,
2279 		unsigned int *optimal_fclk)
2280 {
2281 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2282 
2283 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2284 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2285 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2286 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2287 
2288 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2289 
2290 	if (optimal_fclk)
2291 		*optimal_fclk = bw_from_dram /
2292 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2293 
2294 	if (optimal_dcfclk)
2295 		*optimal_dcfclk =  bw_from_dram /
2296 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2297 }
2298 
2299 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2300 		unsigned int index)
2301 {
2302 	int i;
2303 
2304 	if (*num_entries == 0)
2305 		return;
2306 
2307 	for (i = index; i < *num_entries - 1; i++) {
2308 		table[i] = table[i + 1];
2309 	}
2310 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2311 }
2312 
2313 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2314 {
2315 	int i;
2316 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2317 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2318 
2319 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2320 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2321 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2322 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2323 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2324 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2325 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2326 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2327 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2328 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2329 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2330 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2331 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2332 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2333 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2334 	}
2335 
2336 	/* Scan through clock values we currently have and if they are 0,
2337 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2338 	 *
2339 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2340 	 *  0, will cause it to skip building the clock table.
2341 	 */
2342 	if (max_dcfclk_mhz == 0)
2343 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2344 	if (max_dispclk_mhz == 0)
2345 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2346 	if (max_dtbclk_mhz == 0)
2347 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2348 	if (max_uclk_mhz == 0)
2349 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2350 }
2351 
2352 /*
2353  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2354  * Input:
2355  *	max_clk_limit - struct containing the desired clock timings
2356  * Output:
2357  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2358  * Return: 0 upon success, non-zero for failure
2359  */
2360 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2361 		struct clk_limit_table_entry *curr_clk_limit)
2362 {
2363 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2364 		return -1; //invalid parameters
2365 
2366 	//only overwrite if desired max clock frequency is initialized
2367 	if (max_clk_limit->dcfclk_mhz != 0)
2368 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2369 
2370 	if (max_clk_limit->fclk_mhz != 0)
2371 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2372 
2373 	if (max_clk_limit->memclk_mhz != 0)
2374 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2375 
2376 	if (max_clk_limit->socclk_mhz != 0)
2377 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2378 
2379 	if (max_clk_limit->dtbclk_mhz != 0)
2380 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2381 
2382 	if (max_clk_limit->dispclk_mhz != 0)
2383 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2384 
2385 	return 0;
2386 }
2387 
2388 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2389 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2390 {
2391 	int i, j;
2392 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2393 	struct clk_limit_table_entry max_clk_data = {0};
2394 
2395 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2396 
2397 	static const unsigned int num_dcfclk_stas = 5;
2398 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2399 
2400 	unsigned int num_uclk_dpms = 0;
2401 	unsigned int num_fclk_dpms = 0;
2402 	unsigned int num_dcfclk_dpms = 0;
2403 
2404 	unsigned int num_dc_uclk_dpms = 0;
2405 	unsigned int num_dc_fclk_dpms = 0;
2406 	unsigned int num_dc_dcfclk_dpms = 0;
2407 
2408 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2409 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2410 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2411 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2412 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2413 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2414 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2415 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2416 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2417 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2418 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2419 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2420 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2421 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2422 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2423 
2424 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2425 			num_uclk_dpms++;
2426 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2427 				num_dc_uclk_dpms++;
2428 		}
2429 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2430 			num_fclk_dpms++;
2431 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2432 				num_dc_fclk_dpms++;
2433 		}
2434 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2435 			num_dcfclk_dpms++;
2436 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2437 				num_dc_dcfclk_dpms++;
2438 		}
2439 	}
2440 
2441 	if (!disable_dc_mode_overwrite) {
2442 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2443 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2444 		num_uclk_dpms = num_dc_uclk_dpms;
2445 		num_fclk_dpms = num_dc_fclk_dpms;
2446 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2447 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2448 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2449 	}
2450 
2451 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2452 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2453 
2454 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2455 		return -1;
2456 
2457 	if (max_clk_data.dppclk_mhz == 0)
2458 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2459 
2460 	if (max_clk_data.fclk_mhz == 0)
2461 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2462 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2463 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2464 
2465 	if (max_clk_data.phyclk_mhz == 0)
2466 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2467 
2468 	*num_entries = 0;
2469 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2470 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2471 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2472 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2473 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2474 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2475 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2476 
2477 	// Insert all the DCFCLK STAs
2478 	for (i = 0; i < num_dcfclk_stas; i++) {
2479 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2480 		entry.fabricclk_mhz = 0;
2481 		entry.dram_speed_mts = 0;
2482 
2483 		insert_entry_into_table_sorted(table, num_entries, &entry);
2484 	}
2485 
2486 	// Insert the max DCFCLK
2487 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2488 	entry.fabricclk_mhz = 0;
2489 	entry.dram_speed_mts = 0;
2490 
2491 	insert_entry_into_table_sorted(table, num_entries, &entry);
2492 
2493 	// Insert the UCLK DPMS
2494 	for (i = 0; i < num_uclk_dpms; i++) {
2495 		entry.dcfclk_mhz = 0;
2496 		entry.fabricclk_mhz = 0;
2497 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2498 
2499 		insert_entry_into_table_sorted(table, num_entries, &entry);
2500 	}
2501 
2502 	// If FCLK is coarse grained, insert individual DPMs.
2503 	if (num_fclk_dpms > 2) {
2504 		for (i = 0; i < num_fclk_dpms; i++) {
2505 			entry.dcfclk_mhz = 0;
2506 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2507 			entry.dram_speed_mts = 0;
2508 
2509 			insert_entry_into_table_sorted(table, num_entries, &entry);
2510 		}
2511 	}
2512 	// If FCLK fine grained, only insert max
2513 	else {
2514 		entry.dcfclk_mhz = 0;
2515 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2516 		entry.dram_speed_mts = 0;
2517 
2518 		insert_entry_into_table_sorted(table, num_entries, &entry);
2519 	}
2520 
2521 	// At this point, the table contains all "points of interest" based on
2522 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2523 	// ratios (by derate, are exact).
2524 
2525 	// Remove states that require higher clocks than are supported
2526 	for (i = *num_entries - 1; i >= 0 ; i--) {
2527 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2528 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2529 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2530 			remove_entry_from_table_at_index(table, num_entries, i);
2531 	}
2532 
2533 	// At this point, the table only contains supported points of interest
2534 	// it could be used as is, but some states may be redundant due to
2535 	// coarse grained nature of some clocks, so we want to round up to
2536 	// coarse grained DPMs and remove duplicates.
2537 
2538 	// Round up UCLKs
2539 	for (i = *num_entries - 1; i >= 0 ; i--) {
2540 		for (j = 0; j < num_uclk_dpms; j++) {
2541 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2542 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2543 				break;
2544 			}
2545 		}
2546 	}
2547 
2548 	// If FCLK is coarse grained, round up to next DPMs
2549 	if (num_fclk_dpms > 2) {
2550 		for (i = *num_entries - 1; i >= 0 ; i--) {
2551 			for (j = 0; j < num_fclk_dpms; j++) {
2552 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2553 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2554 					break;
2555 				}
2556 			}
2557 		}
2558 	}
2559 	// Otherwise, round up to minimum.
2560 	else {
2561 		for (i = *num_entries - 1; i >= 0 ; i--) {
2562 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2563 				table[i].fabricclk_mhz = min_fclk_mhz;
2564 			}
2565 		}
2566 	}
2567 
2568 	// Round DCFCLKs up to minimum
2569 	for (i = *num_entries - 1; i >= 0 ; i--) {
2570 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2571 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2572 		}
2573 	}
2574 
2575 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2576 	i = 0;
2577 	while (i < *num_entries - 1) {
2578 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2579 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2580 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2581 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2582 		else
2583 			i++;
2584 	}
2585 
2586 	// Fix up the state indicies
2587 	for (i = *num_entries - 1; i >= 0 ; i--) {
2588 		table[i].state = i;
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 /*
2595  * dcn32_update_bw_bounding_box
2596  *
2597  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2598  * spreadsheet with actual values as per dGPU SKU:
2599  * - with passed few options from dc->config
2600  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2601  *   need to get it from PM FW)
2602  * - with passed latency values (passed in ns units) in dc-> bb override for
2603  *   debugging purposes
2604  * - with passed latencies from VBIOS (in 100_ns units) if available for
2605  *   certain dGPU SKU
2606  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2607  *   of the same ASIC)
2608  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2609  *   FW for different clocks (which might differ for certain dGPU SKU of the
2610  *   same ASIC)
2611  */
2612 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2613 {
2614 	dc_assert_fp_enabled();
2615 
2616 	/* Overrides from dc->config options */
2617 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2618 
2619 	/* Override from passed dc->bb_overrides if available*/
2620 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2621 			&& dc->bb_overrides.sr_exit_time_ns) {
2622 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2623 	}
2624 
2625 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2626 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2627 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2628 		dcn3_2_soc.sr_enter_plus_exit_time_us =
2629 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2630 	}
2631 
2632 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2633 		&& dc->bb_overrides.urgent_latency_ns) {
2634 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2635 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2636 	}
2637 
2638 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2639 			!= dc->bb_overrides.dram_clock_change_latency_ns
2640 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
2641 		dcn3_2_soc.dram_clock_change_latency_us =
2642 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2643 	}
2644 
2645 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2646 			!= dc->bb_overrides.fclk_clock_change_latency_ns
2647 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2648 		dcn3_2_soc.fclk_change_latency_us =
2649 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2650 	}
2651 
2652 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2653 			!= dc->bb_overrides.dummy_clock_change_latency_ns
2654 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2655 		dcn3_2_soc.dummy_pstate_latency_us =
2656 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2657 	}
2658 
2659 	/* Override from VBIOS if VBIOS bb_info available */
2660 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2661 		struct bp_soc_bb_info bb_info = {0};
2662 
2663 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2664 			if (bb_info.dram_clock_change_latency_100ns > 0)
2665 				dcn3_2_soc.dram_clock_change_latency_us =
2666 					bb_info.dram_clock_change_latency_100ns * 10;
2667 
2668 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2669 				dcn3_2_soc.sr_enter_plus_exit_time_us =
2670 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
2671 
2672 			if (bb_info.dram_sr_exit_latency_100ns > 0)
2673 				dcn3_2_soc.sr_exit_time_us =
2674 					bb_info.dram_sr_exit_latency_100ns * 10;
2675 		}
2676 	}
2677 
2678 	/* Override from VBIOS for num_chan */
2679 	if (dc->ctx->dc_bios->vram_info.num_chans) {
2680 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2681 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2682 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2683 	}
2684 
2685 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2686 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2687 
2688 	/* DML DSC delay factor workaround */
2689 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2690 
2691 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2692 
2693 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2694 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2695 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2696 
2697 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2698 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2699 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2700 			unsigned int i = 0, j = 0, num_states = 0;
2701 
2702 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2703 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2704 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2705 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2706 			unsigned int min_dcfclk = UINT_MAX;
2707 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2708 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2709 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2710 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2711 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2712 
2713 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2714 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2715 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2716 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2717 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2718 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2719 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2720 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2721 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2722 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2723 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2724 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2725 			}
2726 			if (min_dcfclk > dcfclk_sta_targets[0])
2727 				dcfclk_sta_targets[0] = min_dcfclk;
2728 			if (!max_dcfclk_mhz)
2729 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2730 			if (!max_dispclk_mhz)
2731 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2732 			if (!max_dppclk_mhz)
2733 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2734 			if (!max_phyclk_mhz)
2735 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2736 
2737 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2738 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2739 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2740 				num_dcfclk_sta_targets++;
2741 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2742 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2743 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2744 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2745 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2746 						break;
2747 					}
2748 				}
2749 				// Update size of array since we "removed" duplicates
2750 				num_dcfclk_sta_targets = i + 1;
2751 			}
2752 
2753 			num_uclk_states = bw_params->clk_table.num_entries;
2754 
2755 			// Calculate optimal dcfclk for each uclk
2756 			for (i = 0; i < num_uclk_states; i++) {
2757 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2758 						&optimal_dcfclk_for_uclk[i], NULL);
2759 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2760 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2761 				}
2762 			}
2763 
2764 			// Calculate optimal uclk for each dcfclk sta target
2765 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2766 				for (j = 0; j < num_uclk_states; j++) {
2767 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2768 						optimal_uclk_for_dcfclk_sta_targets[i] =
2769 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2770 						break;
2771 					}
2772 				}
2773 			}
2774 
2775 			i = 0;
2776 			j = 0;
2777 			// create the final dcfclk and uclk table
2778 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2779 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2780 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2781 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2782 				} else {
2783 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2784 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2785 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2786 					} else {
2787 						j = num_uclk_states;
2788 					}
2789 				}
2790 			}
2791 
2792 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2793 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2794 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2795 			}
2796 
2797 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2798 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2799 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2800 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2801 			}
2802 
2803 			dcn3_2_soc.num_states = num_states;
2804 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2805 				dcn3_2_soc.clock_limits[i].state = i;
2806 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2807 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2808 
2809 				/* Fill all states with max values of all these clocks */
2810 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2811 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2812 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2813 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2814 
2815 				/* Populate from bw_params for DTBCLK, SOCCLK */
2816 				if (i > 0) {
2817 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2818 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2819 					} else {
2820 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2821 					}
2822 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2823 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2824 				}
2825 
2826 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2827 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2828 				else
2829 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2830 
2831 				if (!dram_speed_mts[i] && i > 0)
2832 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2833 				else
2834 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2835 
2836 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2837 				/* PHYCLK_D18, PHYCLK_D32 */
2838 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2839 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2840 			}
2841 		} else {
2842 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2843 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2844 		}
2845 
2846 		/* Re-init DML with updated bb */
2847 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2848 		if (dc->current_state)
2849 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2850 	}
2851 }
2852 
2853 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2854 				  int pipe_cnt)
2855 {
2856 	dc_assert_fp_enabled();
2857 
2858 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2859 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2860 }
2861 
2862 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2863 {
2864 	bool allow = false;
2865 	uint32_t refresh_rate = 0;
2866 
2867 	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2868 	 * only for now. There must be no scaling as well.
2869 	 *
2870 	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2871 	 * for p-state switching.
2872 	 */
2873 	if (pipe->stream && pipe->plane_state) {
2874 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2875 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2876 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2877 		if (pipe->stream->timing.v_addressable == 1440 &&
2878 				pipe->stream->timing.h_addressable == 2560 &&
2879 				refresh_rate >= 55 && refresh_rate <= 65 &&
2880 				pipe->plane_state->src_rect.height == 1440 &&
2881 				pipe->plane_state->src_rect.width == 2560 &&
2882 				pipe->plane_state->dst_rect.height == 1440 &&
2883 				pipe->plane_state->dst_rect.width == 2560)
2884 			allow = true;
2885 	}
2886 	return allow;
2887 }
2888 
2889 /**
2890  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2891  *
2892  * @dc: Current DC state
2893  * @context: New DC state to be programmed
2894  * @pipe: Pipe to be considered for use in subvp
2895  *
2896  * On high refresh rate display configs, we will allow subvp under the following conditions:
2897  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2898  * 2. Refresh rate is between 120hz - 165hz
2899  * 3. No scaling
2900  * 4. Freesync is inactive
2901  * 5. For single display cases, freesync must be disabled
2902  *
2903  * Return: True if pipe can be used for subvp, false otherwise
2904  */
2905 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
2906 {
2907 	bool allow = false;
2908 	uint32_t refresh_rate = 0;
2909 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
2910 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
2911 	uint32_t min_refresh = subvp_max_refresh;
2912 	uint32_t i;
2913 
2914 	/* Only allow SubVP on high refresh displays if all connected displays
2915 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
2916 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
2917 	 */
2918 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2919 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2920 
2921 		if (!pipe_ctx->stream)
2922 			continue;
2923 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
2924 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
2925 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
2926 
2927 		if (refresh_rate < min_refresh)
2928 			min_refresh = refresh_rate;
2929 	}
2930 
2931 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
2932 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
2933 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2934 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2935 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2936 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
2937 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
2938 				uint32_t width = subvp_high_refresh_list.res[i].width;
2939 				uint32_t height = subvp_high_refresh_list.res[i].height;
2940 
2941 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
2942 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
2943 						allow = true;
2944 						break;
2945 					}
2946 				}
2947 			}
2948 		}
2949 	}
2950 	return allow;
2951 }
2952 
2953 /**
2954  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
2955  *
2956  * @dc: Current DC state
2957  * @context: New DC state to be programmed
2958  *
2959  * Return: Max vratio for prefetch
2960  */
2961 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
2962 {
2963 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
2964 	int i;
2965 
2966 	/* For single display MPO configs, allow the max vratio to be 8
2967 	 * if any plane is YUV420 format
2968 	 */
2969 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
2970 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
2971 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
2972 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
2973 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
2974 			}
2975 		}
2976 	}
2977 	return max_vratio_pre;
2978 }
2979 
2980 /**
2981  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
2982  *
2983  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
2984  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
2985  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
2986  * ActiveMargin <= 0 to be the FPO stream candidate if found.
2987  *
2988  *
2989  * @dc: current dc state
2990  * @context: new dc state
2991  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
2992  *
2993  * Return: void
2994  */
2995 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
2996 {
2997 	unsigned int i, pipe_idx;
2998 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2999 
3000 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3001 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3002 
3003 		if (!pipe->stream)
3004 			continue;
3005 
3006 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3007 			*fpo_candidate_stream = pipe->stream;
3008 			break;
3009 		}
3010 		pipe_idx++;
3011 	}
3012 }
3013 
3014 /**
3015  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3016  *
3017  * @dc: current dc state
3018  * @context: new dc state
3019  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3020  *
3021  * Return: True if VACTIVE display is found, false otherwise
3022  */
3023 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3024 {
3025 	unsigned int i, pipe_idx;
3026 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3027 	bool vactive_found = false;
3028 	unsigned int blank_us = 0;
3029 
3030 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3031 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3032 
3033 		if (!pipe->stream)
3034 			continue;
3035 
3036 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3037 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3038 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3039 				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3040 			vactive_found = true;
3041 			break;
3042 		}
3043 		pipe_idx++;
3044 	}
3045 	return vactive_found;
3046 }
3047 
3048 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3049 {
3050 	dc_assert_fp_enabled();
3051 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3052 }
3053 
3054 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3055 {
3056 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3057 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3058 			dc->dml.soc.num_chans <= 8) {
3059 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3060 
3061 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3062 				num_mclk_levels > 1) {
3063 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3064 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3065 		}
3066 	}
3067 }
3068