1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dc_link_dp.h"
28 #include "dcn32/dcn32_resource.h"
29 #include "dcn20/dcn20_resource.h"
30 #include "display_mode_vba_util_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 
35 #define DC_LOGGER_INIT(logger)
36 
37 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
38 	.gpuvm_enable = 0,
39 	.gpuvm_max_page_table_levels = 4,
40 	.hostvm_enable = 0,
41 	.rob_buffer_size_kbytes = 128,
42 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
43 	.config_return_buffer_size_in_kbytes = 1280,
44 	.compressed_buffer_segment_size_in_kbytes = 64,
45 	.meta_fifo_size_in_kentries = 22,
46 	.zero_size_buffer_entries = 512,
47 	.compbuf_reserved_space_64b = 256,
48 	.compbuf_reserved_space_zs = 64,
49 	.dpp_output_buffer_pixels = 2560,
50 	.opp_output_buffer_lines = 1,
51 	.pixel_chunk_size_kbytes = 8,
52 	.alpha_pixel_chunk_size_kbytes = 4,
53 	.min_pixel_chunk_size_bytes = 1024,
54 	.dcc_meta_buffer_size_bytes = 6272,
55 	.meta_chunk_size_kbytes = 2,
56 	.min_meta_chunk_size_bytes = 256,
57 	.writeback_chunk_size_kbytes = 8,
58 	.ptoi_supported = false,
59 	.num_dsc = 4,
60 	.maximum_dsc_bits_per_component = 12,
61 	.maximum_pixels_per_line_per_dsc_unit = 6016,
62 	.dsc422_native_support = true,
63 	.is_line_buffer_bpp_fixed = true,
64 	.line_buffer_fixed_bpp = 57,
65 	.line_buffer_size_bits = 1171920,
66 	.max_line_buffer_lines = 32,
67 	.writeback_interface_buffer_size_kbytes = 90,
68 	.max_num_dpp = 4,
69 	.max_num_otg = 4,
70 	.max_num_hdmi_frl_outputs = 1,
71 	.max_num_wb = 1,
72 	.max_dchub_pscl_bw_pix_per_clk = 4,
73 	.max_pscl_lb_bw_pix_per_clk = 2,
74 	.max_lb_vscl_bw_pix_per_clk = 4,
75 	.max_vscl_hscl_bw_pix_per_clk = 4,
76 	.max_hscl_ratio = 6,
77 	.max_vscl_ratio = 6,
78 	.max_hscl_taps = 8,
79 	.max_vscl_taps = 8,
80 	.dpte_buffer_size_in_pte_reqs_luma = 64,
81 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
82 	.dispclk_ramp_margin_percent = 1,
83 	.max_inter_dcn_tile_repeaters = 8,
84 	.cursor_buffer_size = 16,
85 	.cursor_chunk_size = 2,
86 	.writeback_line_buffer_buffer_size = 0,
87 	.writeback_min_hscl_ratio = 1,
88 	.writeback_min_vscl_ratio = 1,
89 	.writeback_max_hscl_ratio = 1,
90 	.writeback_max_vscl_ratio = 1,
91 	.writeback_max_hscl_taps = 1,
92 	.writeback_max_vscl_taps = 1,
93 	.dppclk_delay_subtotal = 47,
94 	.dppclk_delay_scl = 50,
95 	.dppclk_delay_scl_lb_only = 16,
96 	.dppclk_delay_cnvc_formatter = 28,
97 	.dppclk_delay_cnvc_cursor = 6,
98 	.dispclk_delay_subtotal = 125,
99 	.dynamic_metadata_vm_enabled = false,
100 	.odm_combine_4to1_supported = false,
101 	.dcc_supported = true,
102 	.max_num_dp2p0_outputs = 2,
103 	.max_num_dp2p0_streams = 4,
104 };
105 
106 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
107 	.clock_limits = {
108 		{
109 			.state = 0,
110 			.dcfclk_mhz = 1564.0,
111 			.fabricclk_mhz = 400.0,
112 			.dispclk_mhz = 2150.0,
113 			.dppclk_mhz = 2150.0,
114 			.phyclk_mhz = 810.0,
115 			.phyclk_d18_mhz = 667.0,
116 			.phyclk_d32_mhz = 625.0,
117 			.socclk_mhz = 1200.0,
118 			.dscclk_mhz = 716.667,
119 			.dram_speed_mts = 16000.0,
120 			.dtbclk_mhz = 1564.0,
121 		},
122 	},
123 	.num_states = 1,
124 	.sr_exit_time_us = 20.16,
125 	.sr_enter_plus_exit_time_us = 27.13,
126 	.sr_exit_z8_time_us = 285.0,
127 	.sr_enter_plus_exit_z8_time_us = 320,
128 	.writeback_latency_us = 12.0,
129 	.round_trip_ping_latency_dcfclk_cycles = 263,
130 	.urgent_latency_pixel_data_only_us = 4.0,
131 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
132 	.urgent_latency_vm_data_only_us = 4.0,
133 	.fclk_change_latency_us = 20,
134 	.usr_retraining_latency_us = 2,
135 	.smn_latency_us = 2,
136 	.mall_allocated_for_dcn_mbytes = 64,
137 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
138 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
139 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
140 	.pct_ideal_sdp_bw_after_urgent = 100.0,
141 	.pct_ideal_fabric_bw_after_urgent = 67.0,
142 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
143 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
144 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
145 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
146 	.max_avg_sdp_bw_use_normal_percent = 80.0,
147 	.max_avg_fabric_bw_use_normal_percent = 60.0,
148 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
149 	.max_avg_dram_bw_use_normal_percent = 15.0,
150 	.num_chans = 8,
151 	.dram_channel_width_bytes = 2,
152 	.fabric_datapath_to_dcn_data_return_bytes = 64,
153 	.return_bus_width_bytes = 64,
154 	.downspread_percent = 0.38,
155 	.dcn_downspread_percent = 0.5,
156 	.dram_clock_change_latency_us = 400,
157 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
158 	.do_urgent_latency_adjustment = true,
159 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
160 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
161 };
162 
163 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
164 {
165 	/* defaults */
166 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
167 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
168 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
169 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
170 	/* For min clocks use as reported by PM FW and report those as min */
171 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
172 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
173 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
174 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
175 
176 	dc_assert_fp_enabled();
177 
178 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
179 	if (dcfclk_mhz_for_the_second_state)
180 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
181 	else
182 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 
184 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
185 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
186 
187 	/* Set A - Normal - default values */
188 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
189 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
190 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
191 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
192 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
193 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
194 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
195 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
196 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
197 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
198 
199 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
208 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
209 
210 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
211 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
212 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
213 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
214 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 38;
215 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
216 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
217 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
218 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
219 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
220 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
221 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
222 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
223 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
224 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 38;
225 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
226 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
227 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
228 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
229 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
230 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
231 	}
232 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
233 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
234 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
235 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
236 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
237 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
238 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
239 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
240 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
241 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
242 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
243 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
244 }
245 
246 /**
247  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
248  * and populate pipe_ctx with those params.
249  *
250  * This function must be called AFTER the phantom pipes are added to context
251  * and run through DML (so that the DLG params for the phantom pipes can be
252  * populated), and BEFORE we program the timing for the phantom pipes.
253  *
254  * @dc: [in] current dc state
255  * @context: [in] new dc state
256  * @pipes: [in] DML pipe params array
257  * @pipe_cnt: [in] DML pipe count
258  */
259 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
260 					      struct dc_state *context,
261 					      display_e2e_pipe_params_st *pipes,
262 					      int pipe_cnt)
263 {
264 	uint32_t i, pipe_idx;
265 
266 	dc_assert_fp_enabled();
267 
268 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
269 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
270 
271 		if (!pipe->stream)
272 			continue;
273 
274 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
275 			pipes[pipe_idx].pipe.dest.vstartup_start =
276 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
277 			pipes[pipe_idx].pipe.dest.vupdate_offset =
278 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
279 			pipes[pipe_idx].pipe.dest.vupdate_width =
280 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
281 			pipes[pipe_idx].pipe.dest.vready_offset =
282 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
283 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
284 		}
285 		pipe_idx++;
286 	}
287 }
288 
289 bool dcn32_predict_pipe_split(struct dc_state *context, display_pipe_params_st pipe, int index)
290 {
291 	double pscl_throughput;
292 	double pscl_throughput_chroma;
293 	double dpp_clk_single_dpp, clock;
294 	double clk_frequency = 0.0;
295 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
296 
297 	dc_assert_fp_enabled();
298 
299 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe.scale_ratio_depth.hscl_ratio,
300 							pipe.scale_ratio_depth.hscl_ratio_c,
301 							pipe.scale_ratio_depth.vscl_ratio,
302 							pipe.scale_ratio_depth.vscl_ratio_c,
303 							context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
304 							context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
305 							pipe.dest.pixel_rate_mhz,
306 							pipe.src.source_format,
307 							pipe.scale_taps.htaps,
308 							pipe.scale_taps.htaps_c,
309 							pipe.scale_taps.vtaps,
310 							pipe.scale_taps.vtaps_c,
311 							/* Output */
312 							&pscl_throughput, &pscl_throughput_chroma,
313 							&dpp_clk_single_dpp);
314 
315 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
316 
317 	if (clock > 0)
318 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0));
319 
320 	if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[index].dppclk_mhz)
321 		return true;
322 	else
323 		return false;
324 }
325 
326 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
327 {
328 	float memory_bw_kbytes_sec;
329 	float fabric_bw_kbytes_sec;
330 	float sdp_bw_kbytes_sec;
331 	float limiting_bw_kbytes_sec;
332 
333 	memory_bw_kbytes_sec = entry->dram_speed_mts *
334 				dcn3_2_soc.num_chans *
335 				dcn3_2_soc.dram_channel_width_bytes *
336 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
337 
338 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
339 				dcn3_2_soc.return_bus_width_bytes *
340 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
341 
342 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
343 				dcn3_2_soc.return_bus_width_bytes *
344 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
345 
346 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
347 
348 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
349 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
350 
351 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
352 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
353 
354 	return limiting_bw_kbytes_sec;
355 }
356 
357 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
358 {
359 	if (entry->dcfclk_mhz > 0) {
360 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
361 
362 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
363 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
364 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
365 	} else if (entry->fabricclk_mhz > 0) {
366 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
367 
368 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
369 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
370 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
371 	} else if (entry->dram_speed_mts > 0) {
372 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
373 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
374 
375 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
376 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
377 	}
378 }
379 
380 void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
381 				    unsigned int *num_entries,
382 				    struct _vcs_dpi_voltage_scaling_st *entry)
383 {
384 	int i = 0;
385 	int index = 0;
386 	float net_bw_of_new_state = 0;
387 
388 	dc_assert_fp_enabled();
389 
390 	get_optimal_ntuple(entry);
391 
392 	if (*num_entries == 0) {
393 		table[0] = *entry;
394 		(*num_entries)++;
395 	} else {
396 		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
397 		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
398 			index++;
399 			if (index >= *num_entries)
400 				break;
401 		}
402 
403 		for (i = *num_entries; i > index; i--)
404 			table[i] = table[i - 1];
405 
406 		table[index] = *entry;
407 		(*num_entries)++;
408 	}
409 }
410 
411 /**
412  * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream
413  *
414  * Set timing params of the phantom stream based on calculated output from DML.
415  * This function first gets the DML pipe index using the DC pipe index, then
416  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
417  * lines required for SubVP MCLK switching and assigns to the phantom stream
418  * accordingly.
419  *
420  * - The number of SubVP lines calculated in DML does not take into account
421  * FW processing delays and required pstate allow width, so we must include
422  * that separately.
423  *
424  * - Set phantom backporch = vstartup of main pipe
425  *
426  * @dc: current dc state
427  * @context: new dc state
428  * @ref_pipe: Main pipe for the phantom stream
429  * @pipes: DML pipe params
430  * @pipe_cnt: number of DML pipes
431  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
432  */
433 void dcn32_set_phantom_stream_timing(struct dc *dc,
434 				     struct dc_state *context,
435 				     struct pipe_ctx *ref_pipe,
436 				     struct dc_stream_state *phantom_stream,
437 				     display_e2e_pipe_params_st *pipes,
438 				     unsigned int pipe_cnt,
439 				     unsigned int dc_pipe_idx)
440 {
441 	unsigned int i, pipe_idx;
442 	struct pipe_ctx *pipe;
443 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
444 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
445 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
446 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
447 
448 	dc_assert_fp_enabled();
449 
450 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
451 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
452 		pipe = &context->res_ctx.pipe_ctx[i];
453 
454 		if (!pipe->stream)
455 			continue;
456 
457 		if (i == dc_pipe_idx)
458 			break;
459 
460 		pipe_idx++;
461 	}
462 
463 	// Calculate lines required for pstate allow width and FW processing delays
464 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
465 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
466 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
467 			(double)ref_pipe->stream->timing.h_total;
468 
469 	// Update clks_cfg for calling into recalculate
470 	pipes[0].clks_cfg.voltage = vlevel;
471 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
472 	pipes[0].clks_cfg.socclk_mhz = socclk;
473 
474 	// DML calculation for MALL region doesn't take into account FW delay
475 	// and required pstate allow width for multi-display cases
476 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
477 				pstate_width_fw_delay_lines;
478 
479 	// For backporch of phantom pipe, use vstartup of the main pipe
480 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
481 
482 	phantom_stream->dst.y = 0;
483 	phantom_stream->dst.height = phantom_vactive;
484 	phantom_stream->src.y = 0;
485 	phantom_stream->src.height = phantom_vactive;
486 
487 	phantom_stream->timing.v_addressable = phantom_vactive;
488 	phantom_stream->timing.v_front_porch = 1;
489 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
490 						phantom_stream->timing.v_front_porch +
491 						phantom_stream->timing.v_sync_width +
492 						phantom_bp;
493 }
494 
495 /**
496  * dcn32_get_num_free_pipes: Calculate number of free pipes
497  *
498  * This function assumes that a "used" pipe is a pipe that has
499  * both a stream and a plane assigned to it.
500  *
501  * @dc: current dc state
502  * @context: new dc state
503  *
504  * Return:
505  * Number of free pipes available in the context
506  */
507 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
508 {
509 	unsigned int i;
510 	unsigned int free_pipes = 0;
511 	unsigned int num_pipes = 0;
512 
513 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
514 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
515 
516 		if (pipe->stream && !pipe->top_pipe) {
517 			while (pipe) {
518 				num_pipes++;
519 				pipe = pipe->bottom_pipe;
520 			}
521 		}
522 	}
523 
524 	free_pipes = dc->res_pool->pipe_count - num_pipes;
525 	return free_pipes;
526 }
527 
528 /**
529  * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP.
530  *
531  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
532  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
533  * we are forcing SubVP P-State switching on the current config.
534  *
535  * The number of pipes used for the chosen surface must be less than or equal to the
536  * number of free pipes available.
537  *
538  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
539  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
540  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
541  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
542  *
543  * @param dc: current dc state
544  * @param context: new dc state
545  * @param index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
546  *
547  * Return:
548  * True if a valid pipe assignment was found for Sub-VP. Otherwise false.
549  */
550 static bool dcn32_assign_subvp_pipe(struct dc *dc,
551 				    struct dc_state *context,
552 				    unsigned int *index)
553 {
554 	unsigned int i, pipe_idx;
555 	unsigned int max_frame_time = 0;
556 	bool valid_assignment_found = false;
557 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
558 	bool current_assignment_freesync = false;
559 
560 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
561 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
562 		unsigned int num_pipes = 0;
563 		unsigned int refresh_rate = 0;
564 
565 		if (!pipe->stream)
566 			continue;
567 
568 		// Round up
569 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
570 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
571 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
572 		if (pipe->plane_state && !pipe->top_pipe &&
573 				pipe->stream->mall_stream_config.type == SUBVP_NONE && refresh_rate < 120) {
574 			while (pipe) {
575 				num_pipes++;
576 				pipe = pipe->bottom_pipe;
577 			}
578 
579 			pipe = &context->res_ctx.pipe_ctx[i];
580 			if (num_pipes <= free_pipes) {
581 				struct dc_stream_state *stream = pipe->stream;
582 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
583 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
584 				if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
585 					*index = i;
586 					max_frame_time = frame_us;
587 					valid_assignment_found = true;
588 					current_assignment_freesync = false;
589 				/* For the 2-Freesync display case, still choose the one with the
590 			     * longest frame time
591 			     */
592 				} else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
593 						(current_assignment_freesync && frame_us > max_frame_time))) {
594 					*index = i;
595 					valid_assignment_found = true;
596 					current_assignment_freesync = true;
597 				}
598 			}
599 		}
600 		pipe_idx++;
601 	}
602 	return valid_assignment_found;
603 }
604 
605 /**
606  * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP.
607  *
608  * This function returns true if there are enough free pipes
609  * to create the required phantom pipes for any given stream
610  * (that does not already have phantom pipe assigned).
611  *
612  * e.g. For a 2 stream config where the first stream uses one
613  * pipe and the second stream uses 2 pipes (i.e. pipe split),
614  * this function will return true because there is 1 remaining
615  * pipe which can be used as the phantom pipe for the non pipe
616  * split pipe.
617  *
618  * @dc: current dc state
619  * @context: new dc state
620  *
621  * Return:
622  * True if there are enough free pipes to assign phantom pipes to at least one
623  * stream that does not already have phantom pipes assigned. Otherwise false.
624  */
625 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
626 {
627 	unsigned int i, split_cnt, free_pipes;
628 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
629 	bool subvp_possible = false;
630 
631 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
632 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
633 
634 		// Find the minimum pipe split count for non SubVP pipes
635 		if (pipe->stream && !pipe->top_pipe &&
636 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
637 			split_cnt = 0;
638 			while (pipe) {
639 				split_cnt++;
640 				pipe = pipe->bottom_pipe;
641 			}
642 
643 			if (split_cnt < min_pipe_split)
644 				min_pipe_split = split_cnt;
645 		}
646 	}
647 
648 	free_pipes = dcn32_get_num_free_pipes(dc, context);
649 
650 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
651 	// should not equal to the pipe_count)
652 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
653 		subvp_possible = true;
654 
655 	return subvp_possible;
656 }
657 
658 /**
659  * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable
660  *
661  * High level algorithm:
662  * 1. Find longest microschedule length (in us) between the two SubVP pipes
663  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
664  * pipes still allows for the maximum microschedule to fit in the active
665  * region for both pipes.
666  *
667  * @dc: current dc state
668  * @context: new dc state
669  *
670  * Return:
671  * bool - True if the SubVP + SubVP config is schedulable, false otherwise
672  */
673 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
674 {
675 	struct pipe_ctx *subvp_pipes[2];
676 	struct dc_stream_state *phantom = NULL;
677 	uint32_t microschedule_lines = 0;
678 	uint32_t index = 0;
679 	uint32_t i;
680 	uint32_t max_microschedule_us = 0;
681 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
682 
683 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
684 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
685 		uint32_t time_us = 0;
686 
687 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
688 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
689 		 */
690 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
691 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
692 			phantom = pipe->stream->mall_stream_config.paired_stream;
693 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
694 					phantom->timing.v_addressable;
695 
696 			// Round up when calculating microschedule time (+ 1 at the end)
697 			time_us = (microschedule_lines * phantom->timing.h_total) /
698 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
699 						dc->caps.subvp_prefetch_end_to_mall_start_us +
700 						dc->caps.subvp_fw_processing_delay_us + 1;
701 			if (time_us > max_microschedule_us)
702 				max_microschedule_us = time_us;
703 
704 			subvp_pipes[index] = pipe;
705 			index++;
706 
707 			// Maximum 2 SubVP pipes
708 			if (index == 2)
709 				break;
710 		}
711 	}
712 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
713 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
714 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
715 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
716 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
717 			subvp_pipes[0]->stream->timing.h_total) /
718 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
719 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
720 			subvp_pipes[1]->stream->timing.h_total) /
721 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
722 
723 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
724 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
725 		return true;
726 
727 	return false;
728 }
729 
730 /**
731  * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable
732  *
733  * High level algorithm:
734  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
735  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
736  * (the margin is equal to the MALL region + DRR margin (500us))
737  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
738  * then report the configuration as supported
739  *
740  * @dc: current dc state
741  * @context: new dc state
742  * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
743  *
744  * Return:
745  * bool - True if the SubVP + DRR config is schedulable, false otherwise
746  */
747 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
748 {
749 	bool schedulable = false;
750 	uint32_t i;
751 	struct pipe_ctx *pipe = NULL;
752 	struct dc_crtc_timing *main_timing = NULL;
753 	struct dc_crtc_timing *phantom_timing = NULL;
754 	struct dc_crtc_timing *drr_timing = NULL;
755 	int16_t prefetch_us = 0;
756 	int16_t mall_region_us = 0;
757 	int16_t drr_frame_us = 0;	// nominal frame time
758 	int16_t subvp_active_us = 0;
759 	int16_t stretched_drr_us = 0;
760 	int16_t drr_stretched_vblank_us = 0;
761 	int16_t max_vblank_mallregion = 0;
762 
763 	// Find SubVP pipe
764 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
765 		pipe = &context->res_ctx.pipe_ctx[i];
766 
767 		// We check for master pipe, but it shouldn't matter since we only need
768 		// the pipe for timing info (stream should be same for any pipe splits)
769 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
770 			continue;
771 
772 		// Find the SubVP pipe
773 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
774 			break;
775 	}
776 
777 	main_timing = &pipe->stream->timing;
778 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
779 	drr_timing = &drr_pipe->stream->timing;
780 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
781 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
782 			dc->caps.subvp_prefetch_end_to_mall_start_us;
783 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
784 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
785 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
786 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
787 	// P-State allow width and FW delays already included phantom_timing->v_addressable
788 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
789 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
790 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
791 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
792 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
793 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
794 
795 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
796 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
797 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
798 	 * and the max of (VBLANK blanking time, MALL region)).
799 	 */
800 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
801 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
802 		schedulable = true;
803 
804 	return schedulable;
805 }
806 
807 
808 /**
809  * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable
810  *
811  * High level algorithm:
812  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
813  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
814  * then report the configuration as supported
815  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
816  *
817  * @dc: current dc state
818  * @context: new dc state
819  *
820  * Return:
821  * bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
822  */
823 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
824 {
825 	struct pipe_ctx *pipe = NULL;
826 	struct pipe_ctx *subvp_pipe = NULL;
827 	bool found = false;
828 	bool schedulable = false;
829 	uint32_t i = 0;
830 	uint8_t vblank_index = 0;
831 	uint16_t prefetch_us = 0;
832 	uint16_t mall_region_us = 0;
833 	uint16_t vblank_frame_us = 0;
834 	uint16_t subvp_active_us = 0;
835 	uint16_t vblank_blank_us = 0;
836 	uint16_t max_vblank_mallregion = 0;
837 	struct dc_crtc_timing *main_timing = NULL;
838 	struct dc_crtc_timing *phantom_timing = NULL;
839 	struct dc_crtc_timing *vblank_timing = NULL;
840 
841 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
842 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
843 	 * is supported, it is either a single VBLANK case or two VBLANK
844 	 * displays which are synchronized (in which case they have identical
845 	 * timings).
846 	 */
847 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
848 		pipe = &context->res_ctx.pipe_ctx[i];
849 
850 		// We check for master pipe, but it shouldn't matter since we only need
851 		// the pipe for timing info (stream should be same for any pipe splits)
852 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
853 			continue;
854 
855 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
856 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
857 			vblank_index = i;
858 			found = true;
859 		}
860 
861 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
862 			subvp_pipe = pipe;
863 	}
864 	// Use ignore_msa_timing_param flag to identify as DRR
865 	if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
866 		// SUBVP + DRR case
867 		schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
868 	} else if (found) {
869 		main_timing = &subvp_pipe->stream->timing;
870 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
871 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
872 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
873 		// Also include the prefetch end to mallstart delay time
874 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
875 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
876 				dc->caps.subvp_prefetch_end_to_mall_start_us;
877 		// P-State allow width and FW delays already included phantom_timing->v_addressable
878 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
879 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
880 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
881 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
882 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
883 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
884 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
885 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
886 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
887 
888 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
889 		// and the max of (VBLANK blanking time, MALL region)
890 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
891 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
892 			schedulable = true;
893 	}
894 	return schedulable;
895 }
896 
897 /**
898  * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle
899  * static analysis based on the case.
900  *
901  * Three cases:
902  * 1. SubVP + SubVP
903  * 2. SubVP + VBLANK (DRR checked internally)
904  * 3. SubVP + VACTIVE (currently unsupported)
905  *
906  * @dc: current dc state
907  * @context: new dc state
908  * @vlevel: Voltage level calculated by DML
909  *
910  * Return:
911  * bool - True if statically schedulable, false otherwise
912  */
913 static bool subvp_validate_static_schedulability(struct dc *dc,
914 				struct dc_state *context,
915 				int vlevel)
916 {
917 	bool schedulable = true;	// true by default for single display case
918 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
919 	uint32_t i, pipe_idx;
920 	uint8_t subvp_count = 0;
921 	uint8_t vactive_count = 0;
922 
923 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
924 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
925 
926 		if (!pipe->stream)
927 			continue;
928 
929 		if (pipe->plane_state && !pipe->top_pipe &&
930 				pipe->stream->mall_stream_config.type == SUBVP_MAIN)
931 			subvp_count++;
932 
933 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
934 		// switching (SubVP + VACTIVE unsupported). In situations where we force
935 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
936 		if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
937 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
938 			vactive_count++;
939 		}
940 		pipe_idx++;
941 	}
942 
943 	if (subvp_count == 2) {
944 		// Static schedulability check for SubVP + SubVP case
945 		schedulable = subvp_subvp_schedulable(dc, context);
946 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
947 		// Static schedulability check for SubVP + VBLANK case. Also handle the case where
948 		// DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
949 		if (vactive_count > 0)
950 			schedulable = false;
951 		else
952 			schedulable = subvp_vblank_schedulable(dc, context);
953 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
954 			vactive_count > 0) {
955 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
956 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
957 		// SubVP + VACTIVE currently unsupported
958 		schedulable = false;
959 	}
960 	return schedulable;
961 }
962 
963 static void dcn32_full_validate_bw_helper(struct dc *dc,
964 				   struct dc_state *context,
965 				   display_e2e_pipe_params_st *pipes,
966 				   int *vlevel,
967 				   int *split,
968 				   bool *merge,
969 				   int *pipe_cnt)
970 {
971 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
972 	unsigned int dc_pipe_idx = 0;
973 	bool found_supported_config = false;
974 	struct pipe_ctx *pipe = NULL;
975 	uint32_t non_subvp_pipes = 0;
976 	bool drr_pipe_found = false;
977 	uint32_t drr_pipe_index = 0;
978 	uint32_t i = 0;
979 
980 	dc_assert_fp_enabled();
981 
982 	/*
983 	 * DML favors voltage over p-state, but we're more interested in
984 	 * supporting p-state over voltage. We can't support p-state in
985 	 * prefetch mode > 0 so try capping the prefetch mode to start.
986 	 */
987 	context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
988 			dm_prefetch_support_uclk_fclk_and_stutter;
989 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
990 	/* This may adjust vlevel and maxMpcComb */
991 	if (*vlevel < context->bw_ctx.dml.soc.num_states)
992 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
993 
994 	/* Conditions for setting up phantom pipes for SubVP:
995 	 * 1. Not force disable SubVP
996 	 * 2. Full update (i.e. !fast_validate)
997 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
998 	 * 4. Display configuration passes validation
999 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1000 	 */
1001 	if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1002 	    !dcn32_mpo_in_use(context) && (*vlevel == context->bw_ctx.dml.soc.num_states ||
1003 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1004 	    dc->debug.force_subvp_mclk_switch)) {
1005 
1006 		dcn32_merge_pipes_for_subvp(dc, context);
1007 
1008 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1009 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1010 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1011 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1012 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1013 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1014 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1015 			 * enough to support MCLK switching.
1016 			 */
1017 			if (*vlevel == context->bw_ctx.dml.soc.num_states) {
1018 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1019 								dm_prefetch_support_stutter;
1020 				/* There are params (such as FabricClock) that need to be recalculated
1021 				 * after validation fails (otherwise it will be 0). Calculation for
1022 				 * phantom vactive requires call into DML, so we must ensure all the
1023 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1024 				 */
1025 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1026 			}
1027 
1028 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1029 
1030 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1031 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1032 			// so the phantom pipe DLG params can be assigned correctly.
1033 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1034 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1035 
1036 			if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1037 			    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1038 			    && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1039 				found_supported_config = true;
1040 			} else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1041 					vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1042 				/* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
1043 				 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
1044 				 * at it's native refresh rate / timing.
1045 				 */
1046 				for (i = 0; i < dc->res_pool->pipe_count; i++) {
1047 					pipe = &context->res_ctx.pipe_ctx[i];
1048 					if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1049 					    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1050 						non_subvp_pipes++;
1051 						// Use ignore_msa_timing_param flag to identify as DRR
1052 						if (pipe->stream->ignore_msa_timing_param) {
1053 							drr_pipe_found = true;
1054 							drr_pipe_index = i;
1055 						}
1056 					}
1057 				}
1058 				// If there is only 1 remaining non SubVP pipe that is DRR, check static
1059 				// schedulability for SubVP + DRR.
1060 				if (non_subvp_pipes == 1 && drr_pipe_found) {
1061 					found_supported_config = subvp_drr_schedulable(dc, context,
1062 										       &context->res_ctx.pipe_ctx[drr_pipe_index]);
1063 				}
1064 			}
1065 		}
1066 
1067 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1068 		// remove phantom pipes and repopulate dml pipes
1069 		if (!found_supported_config) {
1070 			dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1071 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1072 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1073 		} else {
1074 			// only call dcn20_validate_apply_pipe_split_flags if we found a supported config
1075 			memset(split, 0, MAX_PIPES * sizeof(int));
1076 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1077 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1078 
1079 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1080 			DC_FP_START();
1081 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1082 			DC_FP_END();
1083 
1084 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1085 			// until driver has acquired the DMCUB lock to do it safely.
1086 		}
1087 	}
1088 }
1089 
1090 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1091 {
1092 	int i;
1093 
1094 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1095 		if (!context->res_ctx.pipe_ctx[i].stream)
1096 			continue;
1097 		if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1098 			return true;
1099 	}
1100 	return false;
1101 }
1102 
1103 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1104 				       display_e2e_pipe_params_st *pipes,
1105 				       int pipe_cnt, int vlevel)
1106 {
1107 	int i, pipe_idx;
1108 	bool usr_retraining_support = false;
1109 	bool unbounded_req_enabled = false;
1110 
1111 	dc_assert_fp_enabled();
1112 
1113 	/* Writeback MCIF_WB arbitration parameters */
1114 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1115 
1116 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1117 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1118 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1119 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1120 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1121 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1122 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1123 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1124 					!= dm_dram_clock_change_unsupported;
1125 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1126 
1127 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1128 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1129 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1130 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1131 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1132 	else
1133 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1134 
1135 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1136 	ASSERT(usr_retraining_support);
1137 
1138 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1139 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1140 
1141 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1142 
1143 	if (unbounded_req_enabled && pipe_cnt > 1) {
1144 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1145 		ASSERT(false);
1146 		unbounded_req_enabled = false;
1147 	}
1148 
1149 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1150 		if (!context->res_ctx.pipe_ctx[i].stream)
1151 			continue;
1152 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1153 				pipe_idx);
1154 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1155 				pipe_idx);
1156 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1157 				pipe_idx);
1158 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1159 				pipe_idx);
1160 
1161 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1162 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1163 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1164 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1165 		} else {
1166 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1167 							pipe_idx);
1168 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1169 		}
1170 
1171 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1172 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1173 		context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1174 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1175 		pipe_idx++;
1176 	}
1177 	/*save a original dppclock copy*/
1178 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1179 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1180 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1181 			* 1000;
1182 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1183 			* 1000;
1184 
1185 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1186 
1187 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1188 		if (context->res_ctx.pipe_ctx[i].stream)
1189 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1190 	}
1191 
1192 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1193 
1194 		if (!context->res_ctx.pipe_ctx[i].stream)
1195 			continue;
1196 
1197 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1198 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1199 				pipe_cnt, pipe_idx);
1200 
1201 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1202 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1203 		pipe_idx++;
1204 	}
1205 }
1206 
1207 static struct pipe_ctx *dcn32_find_split_pipe(
1208 		struct dc *dc,
1209 		struct dc_state *context,
1210 		int old_index)
1211 {
1212 	struct pipe_ctx *pipe = NULL;
1213 	int i;
1214 
1215 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1216 		pipe = &context->res_ctx.pipe_ctx[old_index];
1217 		pipe->pipe_idx = old_index;
1218 	}
1219 
1220 	if (!pipe)
1221 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1222 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1223 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1224 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1225 					pipe = &context->res_ctx.pipe_ctx[i];
1226 					pipe->pipe_idx = i;
1227 					break;
1228 				}
1229 			}
1230 		}
1231 
1232 	/*
1233 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1234 	 * Add for debugging transient underflow during topology updates:
1235 	 * ASSERT(pipe);
1236 	 */
1237 	if (!pipe)
1238 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1239 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1240 				pipe = &context->res_ctx.pipe_ctx[i];
1241 				pipe->pipe_idx = i;
1242 				break;
1243 			}
1244 		}
1245 
1246 	return pipe;
1247 }
1248 
1249 static bool dcn32_split_stream_for_mpc_or_odm(
1250 		const struct dc *dc,
1251 		struct resource_context *res_ctx,
1252 		struct pipe_ctx *pri_pipe,
1253 		struct pipe_ctx *sec_pipe,
1254 		bool odm)
1255 {
1256 	int pipe_idx = sec_pipe->pipe_idx;
1257 	const struct resource_pool *pool = dc->res_pool;
1258 
1259 	DC_LOGGER_INIT(dc->ctx->logger);
1260 
1261 	if (odm && pri_pipe->plane_state) {
1262 		/* ODM + window MPO, where MPO window is on left half only */
1263 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1264 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1265 
1266 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1267 					__func__,
1268 					pri_pipe->pipe_idx);
1269 			return true;
1270 		}
1271 
1272 		/* ODM + window MPO, where MPO window is on right half only */
1273 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1274 
1275 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1276 					__func__,
1277 					pri_pipe->pipe_idx);
1278 			return true;
1279 		}
1280 	}
1281 
1282 	*sec_pipe = *pri_pipe;
1283 
1284 	sec_pipe->pipe_idx = pipe_idx;
1285 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1286 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1287 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1288 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1289 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1290 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1291 	sec_pipe->stream_res.dsc = NULL;
1292 	if (odm) {
1293 		if (pri_pipe->next_odm_pipe) {
1294 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1295 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1296 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1297 		}
1298 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1299 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1300 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1301 		}
1302 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1303 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1304 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1305 		}
1306 		pri_pipe->next_odm_pipe = sec_pipe;
1307 		sec_pipe->prev_odm_pipe = pri_pipe;
1308 		ASSERT(sec_pipe->top_pipe == NULL);
1309 
1310 		if (!sec_pipe->top_pipe)
1311 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1312 		else
1313 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1314 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1315 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1316 			ASSERT(sec_pipe->stream_res.dsc);
1317 			if (sec_pipe->stream_res.dsc == NULL)
1318 				return false;
1319 		}
1320 	} else {
1321 		if (pri_pipe->bottom_pipe) {
1322 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1323 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1324 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1325 		}
1326 		pri_pipe->bottom_pipe = sec_pipe;
1327 		sec_pipe->top_pipe = pri_pipe;
1328 
1329 		ASSERT(pri_pipe->plane_state);
1330 	}
1331 
1332 	return true;
1333 }
1334 
1335 bool dcn32_internal_validate_bw(struct dc *dc,
1336 				struct dc_state *context,
1337 				display_e2e_pipe_params_st *pipes,
1338 				int *pipe_cnt_out,
1339 				int *vlevel_out,
1340 				bool fast_validate)
1341 {
1342 	bool out = false;
1343 	bool repopulate_pipes = false;
1344 	int split[MAX_PIPES] = { 0 };
1345 	bool merge[MAX_PIPES] = { false };
1346 	bool newly_split[MAX_PIPES] = { false };
1347 	int pipe_cnt, i, pipe_idx, vlevel;
1348 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1349 
1350 	dc_assert_fp_enabled();
1351 
1352 	ASSERT(pipes);
1353 	if (!pipes)
1354 		return false;
1355 
1356 	// For each full update, remove all existing phantom pipes first
1357 	dc->res_pool->funcs->remove_phantom_pipes(dc, context);
1358 
1359 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1360 
1361 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1362 
1363 	if (!pipe_cnt) {
1364 		out = true;
1365 		goto validate_out;
1366 	}
1367 
1368 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1369 
1370 	if (!fast_validate) {
1371 		DC_FP_START();
1372 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1373 		DC_FP_END();
1374 	}
1375 
1376 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1377 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1378 		/*
1379 		 * If mode is unsupported or there's still no p-state support then
1380 		 * fall back to favoring voltage.
1381 		 *
1382 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, try if
1383 		 * supported with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1384 		 */
1385 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1386 				dm_prefetch_support_fclk_and_stutter;
1387 
1388 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1389 
1390 		/* Last attempt with Prefetch mode 2 (dm_prefetch_support_stutter == 3) */
1391 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1392 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1393 				dm_prefetch_support_stutter;
1394 			vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1395 		}
1396 
1397 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1398 			memset(split, 0, sizeof(split));
1399 			memset(merge, 0, sizeof(merge));
1400 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1401 		}
1402 	}
1403 
1404 	dml_log_mode_support_params(&context->bw_ctx.dml);
1405 
1406 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1407 		goto validate_fail;
1408 
1409 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1410 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1411 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1412 
1413 		if (!pipe->stream)
1414 			continue;
1415 
1416 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1417 				&& !dc->config.enable_windowed_mpo_odm
1418 				&& pipe->plane_state && mpo_pipe
1419 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1420 						&pipe->plane_res.scl_data.recout,
1421 						sizeof(struct rect)) != 0) {
1422 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1423 			goto validate_fail;
1424 		}
1425 		pipe_idx++;
1426 	}
1427 
1428 	/* merge pipes if necessary */
1429 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1430 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1431 
1432 		/*skip pipes that don't need merging*/
1433 		if (!merge[i])
1434 			continue;
1435 
1436 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1437 		if (pipe->prev_odm_pipe) {
1438 			/*split off odm pipe*/
1439 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1440 			if (pipe->next_odm_pipe)
1441 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1442 
1443 			pipe->bottom_pipe = NULL;
1444 			pipe->next_odm_pipe = NULL;
1445 			pipe->plane_state = NULL;
1446 			pipe->stream = NULL;
1447 			pipe->top_pipe = NULL;
1448 			pipe->prev_odm_pipe = NULL;
1449 			if (pipe->stream_res.dsc)
1450 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1451 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1452 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1453 			repopulate_pipes = true;
1454 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1455 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1456 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1457 
1458 			top_pipe->bottom_pipe = bottom_pipe;
1459 			if (bottom_pipe)
1460 				bottom_pipe->top_pipe = top_pipe;
1461 
1462 			pipe->top_pipe = NULL;
1463 			pipe->bottom_pipe = NULL;
1464 			pipe->plane_state = NULL;
1465 			pipe->stream = NULL;
1466 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1467 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1468 			repopulate_pipes = true;
1469 		} else
1470 			ASSERT(0); /* Should never try to merge master pipe */
1471 
1472 	}
1473 
1474 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1475 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1476 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1477 		struct pipe_ctx *hsplit_pipe = NULL;
1478 		bool odm;
1479 		int old_index = -1;
1480 
1481 		if (!pipe->stream || newly_split[i])
1482 			continue;
1483 
1484 		pipe_idx++;
1485 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1486 
1487 		if (!pipe->plane_state && !odm)
1488 			continue;
1489 
1490 		if (split[i]) {
1491 			if (odm) {
1492 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1493 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1494 				else if (old_pipe->next_odm_pipe)
1495 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1496 			} else {
1497 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1498 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1499 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1500 				else if (old_pipe->bottom_pipe &&
1501 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1502 					old_index = old_pipe->bottom_pipe->pipe_idx;
1503 			}
1504 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1505 			ASSERT(hsplit_pipe);
1506 			if (!hsplit_pipe)
1507 				goto validate_fail;
1508 
1509 			if (!dcn32_split_stream_for_mpc_or_odm(
1510 					dc, &context->res_ctx,
1511 					pipe, hsplit_pipe, odm))
1512 				goto validate_fail;
1513 
1514 			newly_split[hsplit_pipe->pipe_idx] = true;
1515 			repopulate_pipes = true;
1516 		}
1517 		if (split[i] == 4) {
1518 			struct pipe_ctx *pipe_4to1;
1519 
1520 			if (odm && old_pipe->next_odm_pipe)
1521 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1522 			else if (!odm && old_pipe->bottom_pipe &&
1523 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1524 				old_index = old_pipe->bottom_pipe->pipe_idx;
1525 			else
1526 				old_index = -1;
1527 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1528 			ASSERT(pipe_4to1);
1529 			if (!pipe_4to1)
1530 				goto validate_fail;
1531 			if (!dcn32_split_stream_for_mpc_or_odm(
1532 					dc, &context->res_ctx,
1533 					pipe, pipe_4to1, odm))
1534 				goto validate_fail;
1535 			newly_split[pipe_4to1->pipe_idx] = true;
1536 
1537 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1538 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1539 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1540 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1541 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1542 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1543 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1544 			else
1545 				old_index = -1;
1546 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1547 			ASSERT(pipe_4to1);
1548 			if (!pipe_4to1)
1549 				goto validate_fail;
1550 			if (!dcn32_split_stream_for_mpc_or_odm(
1551 					dc, &context->res_ctx,
1552 					hsplit_pipe, pipe_4to1, odm))
1553 				goto validate_fail;
1554 			newly_split[pipe_4to1->pipe_idx] = true;
1555 		}
1556 		if (odm)
1557 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1558 	}
1559 
1560 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1561 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1562 
1563 		if (pipe->plane_state) {
1564 			if (!resource_build_scaling_params(pipe))
1565 				goto validate_fail;
1566 		}
1567 	}
1568 
1569 	/* Actual dsc count per stream dsc validation*/
1570 	if (!dcn20_validate_dsc(dc, context)) {
1571 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1572 		goto validate_fail;
1573 	}
1574 
1575 	if (repopulate_pipes)
1576 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1577 	*vlevel_out = vlevel;
1578 	*pipe_cnt_out = pipe_cnt;
1579 
1580 	out = true;
1581 	goto validate_out;
1582 
1583 validate_fail:
1584 	out = false;
1585 
1586 validate_out:
1587 	return out;
1588 }
1589 
1590 
1591 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1592 				display_e2e_pipe_params_st *pipes,
1593 				int pipe_cnt,
1594 				int vlevel)
1595 {
1596 	int i, pipe_idx, vlevel_temp = 0;
1597 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1598 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1599 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1600 			dm_dram_clock_change_unsupported;
1601 	unsigned int dummy_latency_index = 0;
1602 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1603 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1604 	unsigned int min_dram_speed_mts_margin;
1605 
1606 	dc_assert_fp_enabled();
1607 
1608 	// Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
1609 	if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
1610 		context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1611 		pstate_en = true;
1612 	}
1613 
1614 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1615 
1616 	if (!pstate_en) {
1617 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1618 		context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching =
1619 			dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1620 
1621 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1622 			dummy_latency_index = dcn30_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1623 				context, pipes, pipe_cnt, vlevel);
1624 
1625 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
1626 			 * we reinstate the original dram_clock_change_latency_us on the context
1627 			 * and all variables that may have changed up to this point, except the
1628 			 * newly found dummy_latency_index
1629 			 */
1630 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1631 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1632 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
1633 			maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1634 			dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1635 			pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] !=
1636 					dm_dram_clock_change_unsupported;
1637 		}
1638 	}
1639 
1640 	/* Set B:
1641 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
1642 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
1643 	 * calculations to cover bootup clocks.
1644 	 * DCFCLK: soc.clock_limits[2] when available
1645 	 * UCLK: soc.clock_limits[2] when available
1646 	 */
1647 	if (dcn3_2_soc.num_states > 2) {
1648 		vlevel_temp = 2;
1649 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
1650 	} else
1651 		dcfclk = 615; //DCFCLK Vmin_lv
1652 
1653 	pipes[0].clks_cfg.voltage = vlevel_temp;
1654 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1655 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1656 
1657 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
1658 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
1659 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
1660 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
1661 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
1662 	}
1663 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1664 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1665 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1666 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1667 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1668 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1669 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1670 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1671 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1672 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1673 
1674 	/* Set D:
1675 	 * All clocks min.
1676 	 * DCFCLK: Min, as reported by PM FW when available
1677 	 * UCLK  : Min, as reported by PM FW when available
1678 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
1679 	 */
1680 
1681 	if (dcn3_2_soc.num_states > 2) {
1682 		vlevel_temp = 0;
1683 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
1684 	} else
1685 		dcfclk = 615; //DCFCLK Vmin_lv
1686 
1687 	pipes[0].clks_cfg.voltage = vlevel_temp;
1688 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
1689 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
1690 
1691 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
1692 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
1693 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
1694 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
1695 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
1696 	}
1697 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1698 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1699 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1700 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1701 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1702 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1703 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1704 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1705 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1706 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1707 
1708 	/* Set C, for Dummy P-State:
1709 	 * All clocks min.
1710 	 * DCFCLK: Min, as reported by PM FW, when available
1711 	 * UCLK  : Min,  as reported by PM FW, when available
1712 	 * pstate latency as per UCLK state dummy pstate latency
1713 	 */
1714 
1715 	// For Set A and Set C use values from validation
1716 	pipes[0].clks_cfg.voltage = vlevel;
1717 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
1718 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
1719 
1720 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
1721 		min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1722 		min_dram_speed_mts_margin = 160;
1723 
1724 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1725 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
1726 
1727 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
1728 			dm_dram_clock_change_unsupported) {
1729 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries - 1;
1730 
1731 			min_dram_speed_mts =
1732 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
1733 		}
1734 
1735 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1736 			/* find largest table entry that is lower than dram speed,
1737 			 * but lower than DPM0 still uses DPM0
1738 			 */
1739 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
1740 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
1741 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
1742 					break;
1743 		}
1744 
1745 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1746 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1747 
1748 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
1749 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
1750 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
1751 	}
1752 
1753 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1754 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1755 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1756 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1757 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1758 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1759 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1760 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1761 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1762 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1763 
1764 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
1765 		/* The only difference between A and C is p-state latency, if p-state is not supported
1766 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
1767 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
1768 		 */
1769 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
1770 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
1771 	} else {
1772 		/* Set A:
1773 		 * All clocks min.
1774 		 * DCFCLK: Min, as reported by PM FW, when available
1775 		 * UCLK: Min, as reported by PM FW, when available
1776 		 */
1777 		dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1778 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1779 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1780 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1781 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1782 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1783 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1784 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1785 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1786 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1787 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
1788 	}
1789 
1790 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1791 		if (!context->res_ctx.pipe_ctx[i].stream)
1792 			continue;
1793 
1794 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
1795 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1796 
1797 		if (dc->config.forced_clocks) {
1798 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
1799 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
1800 		}
1801 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
1802 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
1803 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1804 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
1805 
1806 		pipe_idx++;
1807 	}
1808 
1809 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
1810 
1811 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
1812 
1813 	if (!pstate_en)
1814 		/* Restore full p-state latency */
1815 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1816 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1817 
1818 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching)
1819 		dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1820 }
1821 
1822 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
1823 		unsigned int *optimal_dcfclk,
1824 		unsigned int *optimal_fclk)
1825 {
1826 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
1827 
1828 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
1829 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
1830 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
1831 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
1832 
1833 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
1834 
1835 	if (optimal_fclk)
1836 		*optimal_fclk = bw_from_dram /
1837 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1838 
1839 	if (optimal_dcfclk)
1840 		*optimal_dcfclk =  bw_from_dram /
1841 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
1842 }
1843 
1844 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
1845 		unsigned int index)
1846 {
1847 	int i;
1848 
1849 	if (*num_entries == 0)
1850 		return;
1851 
1852 	for (i = index; i < *num_entries - 1; i++) {
1853 		table[i] = table[i + 1];
1854 	}
1855 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
1856 }
1857 
1858 static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
1859 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
1860 {
1861 	int i, j;
1862 	struct _vcs_dpi_voltage_scaling_st entry = {0};
1863 
1864 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
1865 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
1866 
1867 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
1868 
1869 	static const unsigned int num_dcfclk_stas = 5;
1870 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
1871 
1872 	unsigned int num_uclk_dpms = 0;
1873 	unsigned int num_fclk_dpms = 0;
1874 	unsigned int num_dcfclk_dpms = 0;
1875 
1876 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
1877 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
1878 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
1879 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
1880 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
1881 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
1882 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
1883 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
1884 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
1885 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
1886 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
1887 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
1888 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
1889 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
1890 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
1891 
1892 		if (bw_params->clk_table.entries[i].memclk_mhz > 0)
1893 			num_uclk_dpms++;
1894 		if (bw_params->clk_table.entries[i].fclk_mhz > 0)
1895 			num_fclk_dpms++;
1896 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
1897 			num_dcfclk_dpms++;
1898 	}
1899 
1900 	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
1901 		return -1;
1902 
1903 	if (max_dppclk_mhz == 0)
1904 		max_dppclk_mhz = max_dispclk_mhz;
1905 
1906 	if (max_fclk_mhz == 0)
1907 		max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
1908 
1909 	if (max_phyclk_mhz == 0)
1910 		max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
1911 
1912 	*num_entries = 0;
1913 	entry.dispclk_mhz = max_dispclk_mhz;
1914 	entry.dscclk_mhz = max_dispclk_mhz / 3;
1915 	entry.dppclk_mhz = max_dppclk_mhz;
1916 	entry.dtbclk_mhz = max_dtbclk_mhz;
1917 	entry.phyclk_mhz = max_phyclk_mhz;
1918 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
1919 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
1920 
1921 	// Insert all the DCFCLK STAs
1922 	for (i = 0; i < num_dcfclk_stas; i++) {
1923 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
1924 		entry.fabricclk_mhz = 0;
1925 		entry.dram_speed_mts = 0;
1926 
1927 		DC_FP_START();
1928 		insert_entry_into_table_sorted(table, num_entries, &entry);
1929 		DC_FP_END();
1930 	}
1931 
1932 	// Insert the max DCFCLK
1933 	entry.dcfclk_mhz = max_dcfclk_mhz;
1934 	entry.fabricclk_mhz = 0;
1935 	entry.dram_speed_mts = 0;
1936 
1937 	DC_FP_START();
1938 	insert_entry_into_table_sorted(table, num_entries, &entry);
1939 	DC_FP_END();
1940 
1941 	// Insert the UCLK DPMS
1942 	for (i = 0; i < num_uclk_dpms; i++) {
1943 		entry.dcfclk_mhz = 0;
1944 		entry.fabricclk_mhz = 0;
1945 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
1946 
1947 		DC_FP_START();
1948 		insert_entry_into_table_sorted(table, num_entries, &entry);
1949 		DC_FP_END();
1950 	}
1951 
1952 	// If FCLK is coarse grained, insert individual DPMs.
1953 	if (num_fclk_dpms > 2) {
1954 		for (i = 0; i < num_fclk_dpms; i++) {
1955 			entry.dcfclk_mhz = 0;
1956 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
1957 			entry.dram_speed_mts = 0;
1958 
1959 			DC_FP_START();
1960 			insert_entry_into_table_sorted(table, num_entries, &entry);
1961 			DC_FP_END();
1962 		}
1963 	}
1964 	// If FCLK fine grained, only insert max
1965 	else {
1966 		entry.dcfclk_mhz = 0;
1967 		entry.fabricclk_mhz = max_fclk_mhz;
1968 		entry.dram_speed_mts = 0;
1969 
1970 		DC_FP_START();
1971 		insert_entry_into_table_sorted(table, num_entries, &entry);
1972 		DC_FP_END();
1973 	}
1974 
1975 	// At this point, the table contains all "points of interest" based on
1976 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
1977 	// ratios (by derate, are exact).
1978 
1979 	// Remove states that require higher clocks than are supported
1980 	for (i = *num_entries - 1; i >= 0 ; i--) {
1981 		if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
1982 				table[i].fabricclk_mhz > max_fclk_mhz ||
1983 				table[i].dram_speed_mts > max_uclk_mhz * 16)
1984 			remove_entry_from_table_at_index(table, num_entries, i);
1985 	}
1986 
1987 	// At this point, the table only contains supported points of interest
1988 	// it could be used as is, but some states may be redundant due to
1989 	// coarse grained nature of some clocks, so we want to round up to
1990 	// coarse grained DPMs and remove duplicates.
1991 
1992 	// Round up UCLKs
1993 	for (i = *num_entries - 1; i >= 0 ; i--) {
1994 		for (j = 0; j < num_uclk_dpms; j++) {
1995 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
1996 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
1997 				break;
1998 			}
1999 		}
2000 	}
2001 
2002 	// If FCLK is coarse grained, round up to next DPMs
2003 	if (num_fclk_dpms > 2) {
2004 		for (i = *num_entries - 1; i >= 0 ; i--) {
2005 			for (j = 0; j < num_fclk_dpms; j++) {
2006 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2007 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2008 					break;
2009 				}
2010 			}
2011 		}
2012 	}
2013 	// Otherwise, round up to minimum.
2014 	else {
2015 		for (i = *num_entries - 1; i >= 0 ; i--) {
2016 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2017 				table[i].fabricclk_mhz = min_fclk_mhz;
2018 				break;
2019 			}
2020 		}
2021 	}
2022 
2023 	// Round DCFCLKs up to minimum
2024 	for (i = *num_entries - 1; i >= 0 ; i--) {
2025 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2026 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2027 			break;
2028 		}
2029 	}
2030 
2031 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2032 	i = 0;
2033 	while (i < *num_entries - 1) {
2034 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2035 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2036 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2037 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2038 		else
2039 			i++;
2040 	}
2041 
2042 	// Fix up the state indicies
2043 	for (i = *num_entries - 1; i >= 0 ; i--) {
2044 		table[i].state = i;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 /**
2051  * dcn32_update_bw_bounding_box
2052  *
2053  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2054  * spreadsheet with actual values as per dGPU SKU:
2055  * - with passed few options from dc->config
2056  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2057  *   need to get it from PM FW)
2058  * - with passed latency values (passed in ns units) in dc-> bb override for
2059  *   debugging purposes
2060  * - with passed latencies from VBIOS (in 100_ns units) if available for
2061  *   certain dGPU SKU
2062  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2063  *   of the same ASIC)
2064  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2065  *   FW for different clocks (which might differ for certain dGPU SKU of the
2066  *   same ASIC)
2067  */
2068 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2069 {
2070 	dc_assert_fp_enabled();
2071 
2072 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2073 		/* Overrides from dc->config options */
2074 		dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2075 
2076 		/* Override from passed dc->bb_overrides if available*/
2077 		if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2078 				&& dc->bb_overrides.sr_exit_time_ns) {
2079 			dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2080 		}
2081 
2082 		if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2083 				!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2084 				&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2085 			dcn3_2_soc.sr_enter_plus_exit_time_us =
2086 				dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2087 		}
2088 
2089 		if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2090 			&& dc->bb_overrides.urgent_latency_ns) {
2091 			dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2092 		}
2093 
2094 		if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2095 				!= dc->bb_overrides.dram_clock_change_latency_ns
2096 				&& dc->bb_overrides.dram_clock_change_latency_ns) {
2097 			dcn3_2_soc.dram_clock_change_latency_us =
2098 				dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2099 		}
2100 
2101 		if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2102 				!= dc->bb_overrides.dummy_clock_change_latency_ns
2103 				&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2104 			dcn3_2_soc.dummy_pstate_latency_us =
2105 				dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2106 		}
2107 
2108 		/* Override from VBIOS if VBIOS bb_info available */
2109 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2110 			struct bp_soc_bb_info bb_info = {0};
2111 
2112 			if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2113 				if (bb_info.dram_clock_change_latency_100ns > 0)
2114 					dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
2115 
2116 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2117 				dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
2118 
2119 			if (bb_info.dram_sr_exit_latency_100ns > 0)
2120 				dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
2121 			}
2122 		}
2123 
2124 		/* Override from VBIOS for num_chan */
2125 		if (dc->ctx->dc_bios->vram_info.num_chans)
2126 			dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2127 
2128 		if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2129 			dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2130 
2131 	}
2132 
2133 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2134 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2135 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2136 
2137 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2138 	if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2139 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2140 			unsigned int i = 0, j = 0, num_states = 0;
2141 
2142 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2143 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2144 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2145 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2146 			unsigned int min_dcfclk = UINT_MAX;
2147 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2148 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2149 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2150 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2151 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2152 
2153 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2154 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2155 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2156 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2157 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2158 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2159 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2160 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2161 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2162 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2163 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2164 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2165 			}
2166 			if (min_dcfclk > dcfclk_sta_targets[0])
2167 				dcfclk_sta_targets[0] = min_dcfclk;
2168 			if (!max_dcfclk_mhz)
2169 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2170 			if (!max_dispclk_mhz)
2171 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2172 			if (!max_dppclk_mhz)
2173 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2174 			if (!max_phyclk_mhz)
2175 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2176 
2177 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2178 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2179 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2180 				num_dcfclk_sta_targets++;
2181 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2182 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2183 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2184 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2185 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2186 						break;
2187 					}
2188 				}
2189 				// Update size of array since we "removed" duplicates
2190 				num_dcfclk_sta_targets = i + 1;
2191 			}
2192 
2193 			num_uclk_states = bw_params->clk_table.num_entries;
2194 
2195 			// Calculate optimal dcfclk for each uclk
2196 			for (i = 0; i < num_uclk_states; i++) {
2197 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2198 						&optimal_dcfclk_for_uclk[i], NULL);
2199 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2200 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2201 				}
2202 			}
2203 
2204 			// Calculate optimal uclk for each dcfclk sta target
2205 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2206 				for (j = 0; j < num_uclk_states; j++) {
2207 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2208 						optimal_uclk_for_dcfclk_sta_targets[i] =
2209 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2210 						break;
2211 					}
2212 				}
2213 			}
2214 
2215 			i = 0;
2216 			j = 0;
2217 			// create the final dcfclk and uclk table
2218 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2219 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2220 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2221 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2222 				} else {
2223 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2224 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2225 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2226 					} else {
2227 						j = num_uclk_states;
2228 					}
2229 				}
2230 			}
2231 
2232 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2233 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2234 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2235 			}
2236 
2237 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2238 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2239 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2240 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2241 			}
2242 
2243 			dcn3_2_soc.num_states = num_states;
2244 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2245 				dcn3_2_soc.clock_limits[i].state = i;
2246 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2247 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2248 
2249 				/* Fill all states with max values of all these clocks */
2250 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2251 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2252 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2253 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2254 
2255 				/* Populate from bw_params for DTBCLK, SOCCLK */
2256 				if (i > 0) {
2257 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2258 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2259 					} else {
2260 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2261 					}
2262 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2263 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2264 				}
2265 
2266 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2267 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2268 				else
2269 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2270 
2271 				if (!dram_speed_mts[i] && i > 0)
2272 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2273 				else
2274 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2275 
2276 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2277 				/* PHYCLK_D18, PHYCLK_D32 */
2278 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2279 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2280 			}
2281 		} else {
2282 			build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2283 		}
2284 
2285 		/* Re-init DML with updated bb */
2286 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2287 		if (dc->current_state)
2288 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2289 	}
2290 }
2291 
2292