1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 
36 #define DC_LOGGER_INIT(logger)
37 
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 			.min_refresh = 120,
40 			.max_refresh = 175,
41 			.res = {
42 				{.width = 3840, .height = 2160, },
43 				{.width = 3440, .height = 1440, },
44 				{.width = 2560, .height = 1440, }},
45 };
46 
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 	.gpuvm_enable = 0,
49 	.gpuvm_max_page_table_levels = 4,
50 	.hostvm_enable = 0,
51 	.rob_buffer_size_kbytes = 128,
52 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 	.config_return_buffer_size_in_kbytes = 1280,
54 	.compressed_buffer_segment_size_in_kbytes = 64,
55 	.meta_fifo_size_in_kentries = 22,
56 	.zero_size_buffer_entries = 512,
57 	.compbuf_reserved_space_64b = 256,
58 	.compbuf_reserved_space_zs = 64,
59 	.dpp_output_buffer_pixels = 2560,
60 	.opp_output_buffer_lines = 1,
61 	.pixel_chunk_size_kbytes = 8,
62 	.alpha_pixel_chunk_size_kbytes = 4,
63 	.min_pixel_chunk_size_bytes = 1024,
64 	.dcc_meta_buffer_size_bytes = 6272,
65 	.meta_chunk_size_kbytes = 2,
66 	.min_meta_chunk_size_bytes = 256,
67 	.writeback_chunk_size_kbytes = 8,
68 	.ptoi_supported = false,
69 	.num_dsc = 4,
70 	.maximum_dsc_bits_per_component = 12,
71 	.maximum_pixels_per_line_per_dsc_unit = 6016,
72 	.dsc422_native_support = true,
73 	.is_line_buffer_bpp_fixed = true,
74 	.line_buffer_fixed_bpp = 57,
75 	.line_buffer_size_bits = 1171920,
76 	.max_line_buffer_lines = 32,
77 	.writeback_interface_buffer_size_kbytes = 90,
78 	.max_num_dpp = 4,
79 	.max_num_otg = 4,
80 	.max_num_hdmi_frl_outputs = 1,
81 	.max_num_wb = 1,
82 	.max_dchub_pscl_bw_pix_per_clk = 4,
83 	.max_pscl_lb_bw_pix_per_clk = 2,
84 	.max_lb_vscl_bw_pix_per_clk = 4,
85 	.max_vscl_hscl_bw_pix_per_clk = 4,
86 	.max_hscl_ratio = 6,
87 	.max_vscl_ratio = 6,
88 	.max_hscl_taps = 8,
89 	.max_vscl_taps = 8,
90 	.dpte_buffer_size_in_pte_reqs_luma = 64,
91 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
92 	.dispclk_ramp_margin_percent = 1,
93 	.max_inter_dcn_tile_repeaters = 8,
94 	.cursor_buffer_size = 16,
95 	.cursor_chunk_size = 2,
96 	.writeback_line_buffer_buffer_size = 0,
97 	.writeback_min_hscl_ratio = 1,
98 	.writeback_min_vscl_ratio = 1,
99 	.writeback_max_hscl_ratio = 1,
100 	.writeback_max_vscl_ratio = 1,
101 	.writeback_max_hscl_taps = 1,
102 	.writeback_max_vscl_taps = 1,
103 	.dppclk_delay_subtotal = 47,
104 	.dppclk_delay_scl = 50,
105 	.dppclk_delay_scl_lb_only = 16,
106 	.dppclk_delay_cnvc_formatter = 28,
107 	.dppclk_delay_cnvc_cursor = 6,
108 	.dispclk_delay_subtotal = 125,
109 	.dynamic_metadata_vm_enabled = false,
110 	.odm_combine_4to1_supported = false,
111 	.dcc_supported = true,
112 	.max_num_dp2p0_outputs = 2,
113 	.max_num_dp2p0_streams = 4,
114 };
115 
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 	.clock_limits = {
118 		{
119 			.state = 0,
120 			.dcfclk_mhz = 1564.0,
121 			.fabricclk_mhz = 2500.0,
122 			.dispclk_mhz = 2150.0,
123 			.dppclk_mhz = 2150.0,
124 			.phyclk_mhz = 810.0,
125 			.phyclk_d18_mhz = 667.0,
126 			.phyclk_d32_mhz = 625.0,
127 			.socclk_mhz = 1200.0,
128 			.dscclk_mhz = 716.667,
129 			.dram_speed_mts = 18000.0,
130 			.dtbclk_mhz = 1564.0,
131 		},
132 	},
133 	.num_states = 1,
134 	.sr_exit_time_us = 42.97,
135 	.sr_enter_plus_exit_time_us = 49.94,
136 	.sr_exit_z8_time_us = 285.0,
137 	.sr_enter_plus_exit_z8_time_us = 320,
138 	.writeback_latency_us = 12.0,
139 	.round_trip_ping_latency_dcfclk_cycles = 263,
140 	.urgent_latency_pixel_data_only_us = 4.0,
141 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 	.urgent_latency_vm_data_only_us = 4.0,
143 	.fclk_change_latency_us = 25,
144 	.usr_retraining_latency_us = 2,
145 	.smn_latency_us = 2,
146 	.mall_allocated_for_dcn_mbytes = 64,
147 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 	.pct_ideal_sdp_bw_after_urgent = 90.0,
151 	.pct_ideal_fabric_bw_after_urgent = 67.0,
152 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 	.max_avg_sdp_bw_use_normal_percent = 80.0,
157 	.max_avg_fabric_bw_use_normal_percent = 60.0,
158 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 	.max_avg_dram_bw_use_normal_percent = 15.0,
160 	.num_chans = 24,
161 	.dram_channel_width_bytes = 2,
162 	.fabric_datapath_to_dcn_data_return_bytes = 64,
163 	.return_bus_width_bytes = 64,
164 	.downspread_percent = 0.38,
165 	.dcn_downspread_percent = 0.5,
166 	.dram_clock_change_latency_us = 400,
167 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
168 	.do_urgent_latency_adjustment = true,
169 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172 
173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 	/* defaults */
176 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 	/* For min clocks use as reported by PM FW and report those as min */
181 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
184 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185 
186 	dc_assert_fp_enabled();
187 
188 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 	if (dcfclk_mhz_for_the_second_state)
190 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 	else
192 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 
194 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196 
197 	/* Set A - Normal - default values */
198 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208 
209 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219 
220 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 	}
242 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255 
256 /*
257  * Finds dummy_latency_index when MCLK switching using firmware based
258  * vblank stretch is enabled. This function will iterate through the
259  * table of dummy pstate latencies until the lowest value that allows
260  * dm_allow_self_refresh_and_mclk_switch to happen is found
261  */
262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 							    struct dc_state *context,
264 							    display_e2e_pipe_params_st *pipes,
265 							    int pipe_cnt,
266 							    int vlevel)
267 {
268 	const int max_latency_table_entries = 4;
269 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 	int dummy_latency_index = 0;
271 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272 
273 	dc_assert_fp_enabled();
274 
275 	while (dummy_latency_index < max_latency_table_entries) {
276 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281 
282 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 				dcn32_subvp_in_use(dc, context))
285 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286 
287 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 			break;
290 
291 		dummy_latency_index++;
292 	}
293 
294 	if (dummy_latency_index == max_latency_table_entries) {
295 		ASSERT(dummy_latency_index != max_latency_table_entries);
296 		/* If the execution gets here, it means dummy p_states are
297 		 * not possible. This should never happen and would mean
298 		 * something is severely wrong.
299 		 * Here we reset dummy_latency_index to 3, because it is
300 		 * better to have underflows than system crashes.
301 		 */
302 		dummy_latency_index = max_latency_table_entries - 1;
303 	}
304 
305 	return dummy_latency_index;
306 }
307 
308 /**
309  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310  * and populate pipe_ctx with those params.
311  * @dc: [in] current dc state
312  * @context: [in] new dc state
313  * @pipes: [in] DML pipe params array
314  * @pipe_cnt: [in] DML pipe count
315  *
316  * This function must be called AFTER the phantom pipes are added to context
317  * and run through DML (so that the DLG params for the phantom pipes can be
318  * populated), and BEFORE we program the timing for the phantom pipes.
319  */
320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 					      struct dc_state *context,
322 					      display_e2e_pipe_params_st *pipes,
323 					      int pipe_cnt)
324 {
325 	uint32_t i, pipe_idx;
326 
327 	dc_assert_fp_enabled();
328 
329 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331 
332 		if (!pipe->stream)
333 			continue;
334 
335 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 			pipes[pipe_idx].pipe.dest.vstartup_start =
337 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 			pipes[pipe_idx].pipe.dest.vupdate_offset =
339 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 			pipes[pipe_idx].pipe.dest.vupdate_width =
341 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 			pipes[pipe_idx].pipe.dest.vready_offset =
343 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 		}
346 		pipe_idx++;
347 	}
348 }
349 
350 /**
351  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352  * @context: [in] New DC state to be programmed
353  * @pipe_e2e: [in] DML pipe end to end context
354  *
355  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357  * determined by DPPClk requirements
358  *
359  * This function follows the same policy as DML:
360  * - Check for ODM combine requirements / policy first
361  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362  *   MPC is required
363  *
364  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365  */
366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 				  display_e2e_pipe_params_st *pipe_e2e)
368 {
369 	double pscl_throughput;
370 	double pscl_throughput_chroma;
371 	double dpp_clk_single_dpp, clock;
372 	double clk_frequency = 0.0;
373 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 	bool total_available_pipes_support = false;
375 	uint32_t number_of_dpp = 0;
376 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 	double req_dispclk_per_surface = 0;
378 	uint8_t num_splits = 0;
379 
380 	dc_assert_fp_enabled();
381 
382 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 			pipe_e2e->pipe.dest.hactive,
384 			pipe_e2e->dout.output_format,
385 			pipe_e2e->dout.output_type,
386 			pipe_e2e->pipe.dest.odm_combine_policy,
387 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 			pipe_e2e->dout.dsc_enable != 0,
390 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 			context->bw_ctx.dml.ip.max_num_dpp,
392 			pipe_e2e->pipe.dest.pixel_rate_mhz,
393 			context->bw_ctx.dml.soc.dcn_downspread_percent,
394 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 			pipe_e2e->dout.dsc_slices,
397 			/* Output */
398 			&total_available_pipes_support,
399 			&number_of_dpp,
400 			&odm_mode,
401 			&req_dispclk_per_surface);
402 
403 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 			pipe_e2e->pipe.dest.pixel_rate_mhz,
410 			pipe_e2e->pipe.src.source_format,
411 			pipe_e2e->pipe.scale_taps.htaps,
412 			pipe_e2e->pipe.scale_taps.htaps_c,
413 			pipe_e2e->pipe.scale_taps.vtaps,
414 			pipe_e2e->pipe.scale_taps.vtaps_c,
415 			/* Output */
416 			&pscl_throughput, &pscl_throughput_chroma,
417 			&dpp_clk_single_dpp);
418 
419 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420 
421 	if (clock > 0)
422 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423 
424 	if (odm_mode == dm_odm_combine_mode_2to1)
425 		num_splits = 1;
426 	else if (odm_mode == dm_odm_combine_mode_4to1)
427 		num_splits = 3;
428 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 		num_splits = 1;
430 
431 	return num_splits;
432 }
433 
434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 	float memory_bw_kbytes_sec;
437 	float fabric_bw_kbytes_sec;
438 	float sdp_bw_kbytes_sec;
439 	float limiting_bw_kbytes_sec;
440 
441 	memory_bw_kbytes_sec = entry->dram_speed_mts *
442 				dcn3_2_soc.num_chans *
443 				dcn3_2_soc.dram_channel_width_bytes *
444 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445 
446 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 				dcn3_2_soc.return_bus_width_bytes *
448 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449 
450 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 				dcn3_2_soc.return_bus_width_bytes *
452 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453 
454 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455 
456 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458 
459 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461 
462 	return limiting_bw_kbytes_sec;
463 }
464 
465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 	if (entry->dcfclk_mhz > 0) {
468 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469 
470 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 	} else if (entry->fabricclk_mhz > 0) {
474 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475 
476 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 	} else if (entry->dram_speed_mts > 0) {
480 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482 
483 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 	}
486 }
487 
488 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 				    unsigned int *num_entries,
490 				    struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 	int i = 0;
493 	int index = 0;
494 
495 	dc_assert_fp_enabled();
496 
497 	if (*num_entries == 0) {
498 		table[0] = *entry;
499 		(*num_entries)++;
500 	} else {
501 		while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
502 			index++;
503 			if (index >= *num_entries)
504 				break;
505 		}
506 
507 		for (i = *num_entries; i > index; i--)
508 			table[i] = table[i - 1];
509 
510 		table[index] = *entry;
511 		(*num_entries)++;
512 	}
513 }
514 
515 /**
516  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
517  * @dc: current dc state
518  * @context: new dc state
519  * @ref_pipe: Main pipe for the phantom stream
520  * @phantom_stream: target phantom stream state
521  * @pipes: DML pipe params
522  * @pipe_cnt: number of DML pipes
523  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
524  *
525  * Set timing params of the phantom stream based on calculated output from DML.
526  * This function first gets the DML pipe index using the DC pipe index, then
527  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
528  * lines required for SubVP MCLK switching and assigns to the phantom stream
529  * accordingly.
530  *
531  * - The number of SubVP lines calculated in DML does not take into account
532  * FW processing delays and required pstate allow width, so we must include
533  * that separately.
534  *
535  * - Set phantom backporch = vstartup of main pipe
536  */
537 void dcn32_set_phantom_stream_timing(struct dc *dc,
538 				     struct dc_state *context,
539 				     struct pipe_ctx *ref_pipe,
540 				     struct dc_stream_state *phantom_stream,
541 				     display_e2e_pipe_params_st *pipes,
542 				     unsigned int pipe_cnt,
543 				     unsigned int dc_pipe_idx)
544 {
545 	unsigned int i, pipe_idx;
546 	struct pipe_ctx *pipe;
547 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
548 	unsigned int num_dpp;
549 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
550 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
551 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
552 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
553 	struct dc_stream_state *main_stream = ref_pipe->stream;
554 
555 	dc_assert_fp_enabled();
556 
557 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
558 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
559 		pipe = &context->res_ctx.pipe_ctx[i];
560 
561 		if (!pipe->stream)
562 			continue;
563 
564 		if (i == dc_pipe_idx)
565 			break;
566 
567 		pipe_idx++;
568 	}
569 
570 	// Calculate lines required for pstate allow width and FW processing delays
571 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
572 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
573 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
574 			(double)ref_pipe->stream->timing.h_total;
575 
576 	// Update clks_cfg for calling into recalculate
577 	pipes[0].clks_cfg.voltage = vlevel;
578 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
579 	pipes[0].clks_cfg.socclk_mhz = socclk;
580 
581 	// DML calculation for MALL region doesn't take into account FW delay
582 	// and required pstate allow width for multi-display cases
583 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
584 	 * to 2 swaths (i.e. 16 lines)
585 	 */
586 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
587 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
588 
589 	// W/A for DCC corruption with certain high resolution timings.
590 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
591 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
592 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
593 
594 	/* dc->debug.subvp_extra_lines 0 by default*/
595 	phantom_vactive += dc->debug.subvp_extra_lines;
596 
597 	// For backporch of phantom pipe, use vstartup of the main pipe
598 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
599 
600 	phantom_stream->dst.y = 0;
601 	phantom_stream->dst.height = phantom_vactive;
602 	/* When scaling, DML provides the end to end required number of lines for MALL.
603 	 * dst.height is always correct for this case, but src.height is not which causes a
604 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
605 	 * phantom for this case.
606 	 */
607 	phantom_stream->src.y = 0;
608 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
609 
610 	phantom_stream->timing.v_addressable = phantom_vactive;
611 	phantom_stream->timing.v_front_porch = 1;
612 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
613 						phantom_stream->timing.v_front_porch +
614 						phantom_stream->timing.v_sync_width +
615 						phantom_bp;
616 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
617 }
618 
619 /**
620  * dcn32_get_num_free_pipes - Calculate number of free pipes
621  * @dc: current dc state
622  * @context: new dc state
623  *
624  * This function assumes that a "used" pipe is a pipe that has
625  * both a stream and a plane assigned to it.
626  *
627  * Return: Number of free pipes available in the context
628  */
629 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
630 {
631 	unsigned int i;
632 	unsigned int free_pipes = 0;
633 	unsigned int num_pipes = 0;
634 
635 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
636 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
637 
638 		if (pipe->stream && !pipe->top_pipe) {
639 			while (pipe) {
640 				num_pipes++;
641 				pipe = pipe->bottom_pipe;
642 			}
643 		}
644 	}
645 
646 	free_pipes = dc->res_pool->pipe_count - num_pipes;
647 	return free_pipes;
648 }
649 
650 /**
651  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
652  * @dc: current dc state
653  * @context: new dc state
654  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
655  *
656  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
657  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
658  * we are forcing SubVP P-State switching on the current config.
659  *
660  * The number of pipes used for the chosen surface must be less than or equal to the
661  * number of free pipes available.
662  *
663  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
664  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
665  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
666  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
667  *
668  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
669  */
670 static bool dcn32_assign_subvp_pipe(struct dc *dc,
671 				    struct dc_state *context,
672 				    unsigned int *index)
673 {
674 	unsigned int i, pipe_idx;
675 	unsigned int max_frame_time = 0;
676 	bool valid_assignment_found = false;
677 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
678 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
679 
680 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
681 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
682 		unsigned int num_pipes = 0;
683 		unsigned int refresh_rate = 0;
684 
685 		if (!pipe->stream)
686 			continue;
687 
688 		// Round up
689 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
690 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
691 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
692 		/* SubVP pipe candidate requirements:
693 		 * - Refresh rate < 120hz
694 		 * - Not able to switch in vactive naturally (switching in active means the
695 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
696 		 *   to combine this with SubVP can cause issues with the scheduling).
697 		 * - Not TMZ surface
698 		 */
699 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
700 				!(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
701 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
702 				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
703 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
704 				!pipe->plane_state->address.tmz_surface &&
705 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
706 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
707 						dcn32_allow_subvp_with_active_margin(pipe)))) {
708 			while (pipe) {
709 				num_pipes++;
710 				pipe = pipe->bottom_pipe;
711 			}
712 
713 			pipe = &context->res_ctx.pipe_ctx[i];
714 			if (num_pipes <= free_pipes) {
715 				struct dc_stream_state *stream = pipe->stream;
716 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
717 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
718 				if (frame_us > max_frame_time) {
719 					*index = i;
720 					max_frame_time = frame_us;
721 					valid_assignment_found = true;
722 				}
723 			}
724 		}
725 		pipe_idx++;
726 	}
727 	return valid_assignment_found;
728 }
729 
730 /**
731  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
732  * @dc: current dc state
733  * @context: new dc state
734  *
735  * This function returns true if there are enough free pipes
736  * to create the required phantom pipes for any given stream
737  * (that does not already have phantom pipe assigned).
738  *
739  * e.g. For a 2 stream config where the first stream uses one
740  * pipe and the second stream uses 2 pipes (i.e. pipe split),
741  * this function will return true because there is 1 remaining
742  * pipe which can be used as the phantom pipe for the non pipe
743  * split pipe.
744  *
745  * Return:
746  * True if there are enough free pipes to assign phantom pipes to at least one
747  * stream that does not already have phantom pipes assigned. Otherwise false.
748  */
749 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
750 {
751 	unsigned int i, split_cnt, free_pipes;
752 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
753 	bool subvp_possible = false;
754 
755 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
756 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
757 
758 		// Find the minimum pipe split count for non SubVP pipes
759 		if (pipe->stream && !pipe->top_pipe &&
760 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
761 			split_cnt = 0;
762 			while (pipe) {
763 				split_cnt++;
764 				pipe = pipe->bottom_pipe;
765 			}
766 
767 			if (split_cnt < min_pipe_split)
768 				min_pipe_split = split_cnt;
769 		}
770 	}
771 
772 	free_pipes = dcn32_get_num_free_pipes(dc, context);
773 
774 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
775 	// should not equal to the pipe_count)
776 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
777 		subvp_possible = true;
778 
779 	return subvp_possible;
780 }
781 
782 /**
783  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
784  * @dc: current dc state
785  * @context: new dc state
786  *
787  * High level algorithm:
788  * 1. Find longest microschedule length (in us) between the two SubVP pipes
789  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
790  * pipes still allows for the maximum microschedule to fit in the active
791  * region for both pipes.
792  *
793  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
794  */
795 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
796 {
797 	struct pipe_ctx *subvp_pipes[2];
798 	struct dc_stream_state *phantom = NULL;
799 	uint32_t microschedule_lines = 0;
800 	uint32_t index = 0;
801 	uint32_t i;
802 	uint32_t max_microschedule_us = 0;
803 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
804 
805 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
806 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
807 		uint32_t time_us = 0;
808 
809 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
810 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
811 		 */
812 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
813 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
814 			phantom = pipe->stream->mall_stream_config.paired_stream;
815 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
816 					phantom->timing.v_addressable;
817 
818 			// Round up when calculating microschedule time (+ 1 at the end)
819 			time_us = (microschedule_lines * phantom->timing.h_total) /
820 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
821 						dc->caps.subvp_prefetch_end_to_mall_start_us +
822 						dc->caps.subvp_fw_processing_delay_us + 1;
823 			if (time_us > max_microschedule_us)
824 				max_microschedule_us = time_us;
825 
826 			subvp_pipes[index] = pipe;
827 			index++;
828 
829 			// Maximum 2 SubVP pipes
830 			if (index == 2)
831 				break;
832 		}
833 	}
834 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
835 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
836 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
837 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
838 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
839 			subvp_pipes[0]->stream->timing.h_total) /
840 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
841 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
842 			subvp_pipes[1]->stream->timing.h_total) /
843 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
844 
845 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
846 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
847 		return true;
848 
849 	return false;
850 }
851 
852 /**
853  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
854  * @dc: current dc state
855  * @context: new dc state
856  *
857  * High level algorithm:
858  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
859  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
860  * (the margin is equal to the MALL region + DRR margin (500us))
861  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
862  * then report the configuration as supported
863  *
864  * Return: True if the SubVP + DRR config is schedulable, false otherwise
865  */
866 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
867 {
868 	bool schedulable = false;
869 	uint32_t i;
870 	struct pipe_ctx *pipe = NULL;
871 	struct pipe_ctx *drr_pipe = NULL;
872 	struct dc_crtc_timing *main_timing = NULL;
873 	struct dc_crtc_timing *phantom_timing = NULL;
874 	struct dc_crtc_timing *drr_timing = NULL;
875 	int16_t prefetch_us = 0;
876 	int16_t mall_region_us = 0;
877 	int16_t drr_frame_us = 0;	// nominal frame time
878 	int16_t subvp_active_us = 0;
879 	int16_t stretched_drr_us = 0;
880 	int16_t drr_stretched_vblank_us = 0;
881 	int16_t max_vblank_mallregion = 0;
882 
883 	// Find SubVP pipe
884 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
885 		pipe = &context->res_ctx.pipe_ctx[i];
886 
887 		// We check for master pipe, but it shouldn't matter since we only need
888 		// the pipe for timing info (stream should be same for any pipe splits)
889 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
890 			continue;
891 
892 		// Find the SubVP pipe
893 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
894 			break;
895 	}
896 
897 	// Find the DRR pipe
898 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
899 		drr_pipe = &context->res_ctx.pipe_ctx[i];
900 
901 		// We check for master pipe only
902 		if (!drr_pipe->stream || !drr_pipe->plane_state || drr_pipe->top_pipe || drr_pipe->prev_odm_pipe)
903 			continue;
904 
905 		if (drr_pipe->stream->mall_stream_config.type == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
906 				(drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable))
907 			break;
908 	}
909 
910 	main_timing = &pipe->stream->timing;
911 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
912 	drr_timing = &drr_pipe->stream->timing;
913 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
914 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
915 			dc->caps.subvp_prefetch_end_to_mall_start_us;
916 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
917 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
918 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
919 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
920 	// P-State allow width and FW delays already included phantom_timing->v_addressable
921 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
922 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
923 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
924 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
925 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
926 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
927 
928 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
929 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
930 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
931 	 * and the max of (VBLANK blanking time, MALL region)).
932 	 */
933 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
934 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
935 		schedulable = true;
936 
937 	return schedulable;
938 }
939 
940 
941 /**
942  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
943  * @dc: current dc state
944  * @context: new dc state
945  *
946  * High level algorithm:
947  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
948  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
949  * then report the configuration as supported
950  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
951  *
952  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
953  */
954 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
955 {
956 	struct pipe_ctx *pipe = NULL;
957 	struct pipe_ctx *subvp_pipe = NULL;
958 	bool found = false;
959 	bool schedulable = false;
960 	uint32_t i = 0;
961 	uint8_t vblank_index = 0;
962 	uint16_t prefetch_us = 0;
963 	uint16_t mall_region_us = 0;
964 	uint16_t vblank_frame_us = 0;
965 	uint16_t subvp_active_us = 0;
966 	uint16_t vblank_blank_us = 0;
967 	uint16_t max_vblank_mallregion = 0;
968 	struct dc_crtc_timing *main_timing = NULL;
969 	struct dc_crtc_timing *phantom_timing = NULL;
970 	struct dc_crtc_timing *vblank_timing = NULL;
971 
972 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
973 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
974 	 * is supported, it is either a single VBLANK case or two VBLANK
975 	 * displays which are synchronized (in which case they have identical
976 	 * timings).
977 	 */
978 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
979 		pipe = &context->res_ctx.pipe_ctx[i];
980 
981 		// We check for master pipe, but it shouldn't matter since we only need
982 		// the pipe for timing info (stream should be same for any pipe splits)
983 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
984 			continue;
985 
986 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
987 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
988 			vblank_index = i;
989 			found = true;
990 		}
991 
992 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
993 			subvp_pipe = pipe;
994 	}
995 	if (found) {
996 		main_timing = &subvp_pipe->stream->timing;
997 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
998 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
999 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1000 		// Also include the prefetch end to mallstart delay time
1001 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1002 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1003 				dc->caps.subvp_prefetch_end_to_mall_start_us;
1004 		// P-State allow width and FW delays already included phantom_timing->v_addressable
1005 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1006 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1007 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1008 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1009 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1010 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1011 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1012 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
1013 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1014 
1015 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1016 		// and the max of (VBLANK blanking time, MALL region)
1017 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1018 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1019 			schedulable = true;
1020 	}
1021 	return schedulable;
1022 }
1023 
1024 /**
1025  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
1026  *
1027  * @dc: Current DC state
1028  * @context: New DC state to be programmed
1029  *
1030  * SubVP + SubVP is admissible under the following conditions:
1031  * - All SubVP pipes are < 120Hz OR
1032  * - All SubVP pipes are >= 120hz
1033  *
1034  * Return: True if admissible, false otherwise
1035  */
1036 static bool subvp_subvp_admissable(struct dc *dc,
1037 				struct dc_state *context)
1038 {
1039 	bool result = false;
1040 	uint32_t i;
1041 	uint8_t subvp_count = 0;
1042 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
1043 	uint64_t refresh_rate = 0;
1044 
1045 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1046 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1047 
1048 		if (!pipe->stream)
1049 			continue;
1050 
1051 		if (pipe->plane_state && !pipe->top_pipe &&
1052 				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
1053 			refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
1054 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
1055 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
1056 			refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1057 
1058 			if ((uint32_t)refresh_rate < min_refresh)
1059 				min_refresh = (uint32_t)refresh_rate;
1060 			if ((uint32_t)refresh_rate > max_refresh)
1061 				max_refresh = (uint32_t)refresh_rate;
1062 			subvp_count++;
1063 		}
1064 	}
1065 
1066 	if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1067 		(min_refresh >= subvp_high_refresh_list.min_refresh &&
1068 				max_refresh <= subvp_high_refresh_list.max_refresh)))
1069 		result = true;
1070 
1071 	return result;
1072 }
1073 
1074 /**
1075  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1076  * and handle static analysis based on the case.
1077  * @dc: current dc state
1078  * @context: new dc state
1079  * @vlevel: Voltage level calculated by DML
1080  *
1081  * Three cases:
1082  * 1. SubVP + SubVP
1083  * 2. SubVP + VBLANK (DRR checked internally)
1084  * 3. SubVP + VACTIVE (currently unsupported)
1085  *
1086  * Return: True if statically schedulable, false otherwise
1087  */
1088 static bool subvp_validate_static_schedulability(struct dc *dc,
1089 				struct dc_state *context,
1090 				int vlevel)
1091 {
1092 	bool schedulable = false;
1093 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1094 	uint32_t i, pipe_idx;
1095 	uint8_t subvp_count = 0;
1096 	uint8_t vactive_count = 0;
1097 	uint8_t non_subvp_pipes = 0;
1098 
1099 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1100 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1101 
1102 		if (!pipe->stream)
1103 			continue;
1104 
1105 		if (pipe->plane_state && !pipe->top_pipe) {
1106 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1107 				subvp_count++;
1108 			if (pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1109 				non_subvp_pipes++;
1110 			}
1111 		}
1112 
1113 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1114 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1115 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1116 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1117 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1118 			vactive_count++;
1119 		}
1120 		pipe_idx++;
1121 	}
1122 
1123 	if (subvp_count == 2) {
1124 		// Static schedulability check for SubVP + SubVP case
1125 		schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1126 	} else if (subvp_count == 1 && non_subvp_pipes == 0) {
1127 		// Single SubVP configs will be supported by default as long as it's suppported by DML
1128 		schedulable = true;
1129 	} else if (subvp_count == 1 && non_subvp_pipes == 1) {
1130 		if (dcn32_subvp_drr_admissable(dc, context))
1131 			schedulable = subvp_drr_schedulable(dc, context);
1132 		else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1133 			schedulable = subvp_vblank_schedulable(dc, context);
1134 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1135 			vactive_count > 0) {
1136 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1137 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1138 		// SubVP + VACTIVE currently unsupported
1139 		schedulable = false;
1140 	}
1141 	return schedulable;
1142 }
1143 
1144 static void dcn32_full_validate_bw_helper(struct dc *dc,
1145 				   struct dc_state *context,
1146 				   display_e2e_pipe_params_st *pipes,
1147 				   int *vlevel,
1148 				   int *split,
1149 				   bool *merge,
1150 				   int *pipe_cnt)
1151 {
1152 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1153 	unsigned int dc_pipe_idx = 0;
1154 	int i = 0;
1155 	bool found_supported_config = false;
1156 
1157 	dc_assert_fp_enabled();
1158 
1159 	/*
1160 	 * DML favors voltage over p-state, but we're more interested in
1161 	 * supporting p-state over voltage. We can't support p-state in
1162 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1163 	 * Override present for testing.
1164 	 */
1165 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1166 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1167 			dm_prefetch_support_uclk_fclk_and_stutter;
1168 	else
1169 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1170 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1171 
1172 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1173 	/* This may adjust vlevel and maxMpcComb */
1174 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1175 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1176 		vba->VoltageLevel = *vlevel;
1177 	}
1178 
1179 	/* Conditions for setting up phantom pipes for SubVP:
1180 	 * 1. Not force disable SubVP
1181 	 * 2. Full update (i.e. !fast_validate)
1182 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1183 	 * 4. Display configuration passes validation
1184 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1185 	 */
1186 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1187 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1188 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1189 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1190 	    dc->debug.force_subvp_mclk_switch)) {
1191 
1192 		dcn32_merge_pipes_for_subvp(dc, context);
1193 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1194 
1195 		/* to re-initialize viewport after the pipe merge */
1196 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1197 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1198 
1199 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1200 				continue;
1201 
1202 			resource_build_scaling_params(pipe_ctx);
1203 		}
1204 
1205 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1206 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1207 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1208 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1209 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1210 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1211 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1212 			 * enough to support MCLK switching.
1213 			 */
1214 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1215 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1216 					dm_prefetch_support_uclk_fclk_and_stutter) {
1217 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1218 								dm_prefetch_support_fclk_and_stutter;
1219 				/* There are params (such as FabricClock) that need to be recalculated
1220 				 * after validation fails (otherwise it will be 0). Calculation for
1221 				 * phantom vactive requires call into DML, so we must ensure all the
1222 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1223 				 */
1224 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1225 			}
1226 
1227 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1228 
1229 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1230 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1231 			// so the phantom pipe DLG params can be assigned correctly.
1232 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1233 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1234 
1235 			/* Check that vlevel requested supports pstate or not
1236 			 * if not, select the lowest vlevel that supports it
1237 			 */
1238 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1239 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1240 					*vlevel = i;
1241 					break;
1242 				}
1243 			}
1244 
1245 			if (*vlevel < context->bw_ctx.dml.soc.num_states
1246 			    && subvp_validate_static_schedulability(dc, context, *vlevel))
1247 				found_supported_config = true;
1248 			if (found_supported_config) {
1249 				// For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1250 				if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1251 					/* find lowest vlevel that supports the config */
1252 					for (i = *vlevel; i >= 0; i--) {
1253 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1254 							*vlevel = i;
1255 						} else {
1256 							break;
1257 						}
1258 					}
1259 				}
1260 			}
1261 		}
1262 
1263 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1264 		// remove phantom pipes and repopulate dml pipes
1265 		if (!found_supported_config) {
1266 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1267 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1268 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1269 
1270 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1271 			/* This may adjust vlevel and maxMpcComb */
1272 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1273 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1274 				vba->VoltageLevel = *vlevel;
1275 			}
1276 		} else {
1277 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1278 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1279 
1280 			/* Call validate_apply_pipe_split flags after calling DML getters for
1281 			 * phantom dlg params, or some of the VBA params indicating pipe split
1282 			 * can be overwritten by the getters.
1283 			 *
1284 			 * When setting up SubVP config, all pipes are merged before attempting to
1285 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1286 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1287 			 */
1288 			memset(split, 0, MAX_PIPES * sizeof(int));
1289 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1290 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1291 			vba->VoltageLevel = *vlevel;
1292 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1293 			// until driver has acquired the DMCUB lock to do it safely.
1294 		}
1295 	}
1296 }
1297 
1298 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1299 {
1300 	int i;
1301 
1302 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1303 		if (!context->res_ctx.pipe_ctx[i].stream)
1304 			continue;
1305 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1306 			return true;
1307 	}
1308 	return false;
1309 }
1310 
1311 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1312 {
1313 	struct dc_crtc_timing patched_crtc_timing;
1314 	uint32_t asic_blank_end   = 0;
1315 	uint32_t asic_blank_start = 0;
1316 	uint32_t newVstartup	  = 0;
1317 
1318 	patched_crtc_timing = *dc_crtc_timing;
1319 
1320 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1321 		if (patched_crtc_timing.v_front_porch < 2)
1322 			patched_crtc_timing.v_front_porch = 2;
1323 	} else {
1324 		if (patched_crtc_timing.v_front_porch < 1)
1325 			patched_crtc_timing.v_front_porch = 1;
1326 	}
1327 
1328 	/* blank_start = frame end - front porch */
1329 	asic_blank_start = patched_crtc_timing.v_total -
1330 					patched_crtc_timing.v_front_porch;
1331 
1332 	/* blank_end = blank_start - active */
1333 	asic_blank_end = asic_blank_start -
1334 					patched_crtc_timing.v_border_bottom -
1335 					patched_crtc_timing.v_addressable -
1336 					patched_crtc_timing.v_border_top;
1337 
1338 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1339 
1340 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1341 }
1342 
1343 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1344 				       display_e2e_pipe_params_st *pipes,
1345 				       int pipe_cnt, int vlevel)
1346 {
1347 	int i, pipe_idx, active_hubp_count = 0;
1348 	bool usr_retraining_support = false;
1349 	bool unbounded_req_enabled = false;
1350 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1351 
1352 	dc_assert_fp_enabled();
1353 
1354 	/* Writeback MCIF_WB arbitration parameters */
1355 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1356 
1357 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1358 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1359 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1360 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1361 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1362 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1363 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1364 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1365 					!= dm_dram_clock_change_unsupported;
1366 
1367 	/* Pstate change might not be supported by hardware, but it might be
1368 	 * possible with firmware driven vertical blank stretching.
1369 	 */
1370 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1371 
1372 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1373 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1374 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1375 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1376 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1377 	else
1378 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1379 
1380 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1381 	ASSERT(usr_retraining_support);
1382 
1383 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1384 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1385 
1386 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1387 
1388 	if (unbounded_req_enabled && pipe_cnt > 1) {
1389 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1390 		ASSERT(false);
1391 		unbounded_req_enabled = false;
1392 	}
1393 
1394 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1395 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1396 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1397 
1398 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1399 		if (!context->res_ctx.pipe_ctx[i].stream)
1400 			continue;
1401 		if (context->res_ctx.pipe_ctx[i].plane_state)
1402 			active_hubp_count++;
1403 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1404 				pipe_idx);
1405 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1406 				pipe_idx);
1407 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1408 				pipe_idx);
1409 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1410 				pipe_idx);
1411 
1412 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1413 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1414 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1415 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1416 		} else {
1417 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1418 							pipe_idx);
1419 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1420 		}
1421 
1422 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1423 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1424 		if (context->res_ctx.pipe_ctx[i].plane_state)
1425 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1426 		else
1427 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1428 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1429 
1430 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1431 
1432 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1433 			context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1434 		else
1435 			context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1436 
1437 		/* MALL Allocation Sizes */
1438 		/* count from active, top pipes per plane only */
1439 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1440 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1441 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1442 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1443 			/* SS: all active surfaces stored in MALL */
1444 			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1445 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1446 
1447 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1448 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1449 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1450 				}
1451 			} else {
1452 				/* SUBVP: phantom surfaces only stored in MALL */
1453 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1454 			}
1455 		}
1456 
1457 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1458 			dcn20_adjust_freesync_v_startup(
1459 				&context->res_ctx.pipe_ctx[i].stream->timing,
1460 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1461 
1462 		pipe_idx++;
1463 	}
1464 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1465 	if (!active_hubp_count) {
1466 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1467 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1468 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1469 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1470 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1471 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1472 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1473 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1474 	}
1475 	/*save a original dppclock copy*/
1476 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1477 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1478 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1479 			* 1000;
1480 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1481 			* 1000;
1482 
1483 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1484 
1485 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1486 
1487 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1488 		if (context->res_ctx.pipe_ctx[i].stream)
1489 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1490 	}
1491 
1492 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1493 
1494 		if (!context->res_ctx.pipe_ctx[i].stream)
1495 			continue;
1496 
1497 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1498 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1499 				pipe_cnt, pipe_idx);
1500 
1501 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1502 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1503 		pipe_idx++;
1504 	}
1505 }
1506 
1507 static struct pipe_ctx *dcn32_find_split_pipe(
1508 		struct dc *dc,
1509 		struct dc_state *context,
1510 		int old_index)
1511 {
1512 	struct pipe_ctx *pipe = NULL;
1513 	int i;
1514 
1515 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1516 		pipe = &context->res_ctx.pipe_ctx[old_index];
1517 		pipe->pipe_idx = old_index;
1518 	}
1519 
1520 	if (!pipe)
1521 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1522 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1523 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1524 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1525 					pipe = &context->res_ctx.pipe_ctx[i];
1526 					pipe->pipe_idx = i;
1527 					break;
1528 				}
1529 			}
1530 		}
1531 
1532 	/*
1533 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1534 	 * Add for debugging transient underflow during topology updates:
1535 	 * ASSERT(pipe);
1536 	 */
1537 	if (!pipe)
1538 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1539 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1540 				pipe = &context->res_ctx.pipe_ctx[i];
1541 				pipe->pipe_idx = i;
1542 				break;
1543 			}
1544 		}
1545 
1546 	return pipe;
1547 }
1548 
1549 static bool dcn32_split_stream_for_mpc_or_odm(
1550 		const struct dc *dc,
1551 		struct resource_context *res_ctx,
1552 		struct pipe_ctx *pri_pipe,
1553 		struct pipe_ctx *sec_pipe,
1554 		bool odm)
1555 {
1556 	int pipe_idx = sec_pipe->pipe_idx;
1557 	const struct resource_pool *pool = dc->res_pool;
1558 
1559 	DC_LOGGER_INIT(dc->ctx->logger);
1560 
1561 	if (odm && pri_pipe->plane_state) {
1562 		/* ODM + window MPO, where MPO window is on left half only */
1563 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1564 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1565 
1566 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1567 					__func__,
1568 					pri_pipe->pipe_idx);
1569 			return true;
1570 		}
1571 
1572 		/* ODM + window MPO, where MPO window is on right half only */
1573 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1574 
1575 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1576 					__func__,
1577 					pri_pipe->pipe_idx);
1578 			return true;
1579 		}
1580 	}
1581 
1582 	*sec_pipe = *pri_pipe;
1583 
1584 	sec_pipe->pipe_idx = pipe_idx;
1585 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1586 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1587 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1588 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1589 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1590 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1591 	sec_pipe->stream_res.dsc = NULL;
1592 	if (odm) {
1593 		if (pri_pipe->next_odm_pipe) {
1594 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1595 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1596 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1597 		}
1598 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1599 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1600 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1601 		}
1602 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1603 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1604 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1605 		}
1606 		pri_pipe->next_odm_pipe = sec_pipe;
1607 		sec_pipe->prev_odm_pipe = pri_pipe;
1608 		ASSERT(sec_pipe->top_pipe == NULL);
1609 
1610 		if (!sec_pipe->top_pipe)
1611 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1612 		else
1613 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1614 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1615 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1616 			ASSERT(sec_pipe->stream_res.dsc);
1617 			if (sec_pipe->stream_res.dsc == NULL)
1618 				return false;
1619 		}
1620 	} else {
1621 		if (pri_pipe->bottom_pipe) {
1622 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1623 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1624 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1625 		}
1626 		pri_pipe->bottom_pipe = sec_pipe;
1627 		sec_pipe->top_pipe = pri_pipe;
1628 
1629 		ASSERT(pri_pipe->plane_state);
1630 	}
1631 
1632 	return true;
1633 }
1634 
1635 bool dcn32_internal_validate_bw(struct dc *dc,
1636 				struct dc_state *context,
1637 				display_e2e_pipe_params_st *pipes,
1638 				int *pipe_cnt_out,
1639 				int *vlevel_out,
1640 				bool fast_validate)
1641 {
1642 	bool out = false;
1643 	bool repopulate_pipes = false;
1644 	int split[MAX_PIPES] = { 0 };
1645 	bool merge[MAX_PIPES] = { false };
1646 	bool newly_split[MAX_PIPES] = { false };
1647 	int pipe_cnt, i, pipe_idx;
1648 	int vlevel = context->bw_ctx.dml.soc.num_states;
1649 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1650 
1651 	dc_assert_fp_enabled();
1652 
1653 	ASSERT(pipes);
1654 	if (!pipes)
1655 		return false;
1656 
1657 	// For each full update, remove all existing phantom pipes first
1658 	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1659 
1660 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1661 
1662 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1663 
1664 	if (!pipe_cnt) {
1665 		out = true;
1666 		goto validate_out;
1667 	}
1668 
1669 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1670 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1671 
1672 	if (!fast_validate)
1673 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1674 
1675 	if (fast_validate ||
1676 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1677 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1678 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1679 		/*
1680 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1681 		 * tried alternate prefetch modes during full validation.
1682 		 *
1683 		 * If mode is unsupported or there is no p-state support, then
1684 		 * fall back to favouring voltage.
1685 		 *
1686 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1687 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1688 		 */
1689 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1690 			dm_prefetch_support_none;
1691 
1692 		context->bw_ctx.dml.validate_max_state = fast_validate;
1693 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1694 
1695 		context->bw_ctx.dml.validate_max_state = false;
1696 
1697 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1698 			memset(split, 0, sizeof(split));
1699 			memset(merge, 0, sizeof(merge));
1700 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1701 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1702 			vba->VoltageLevel = vlevel;
1703 		}
1704 	}
1705 
1706 	dml_log_mode_support_params(&context->bw_ctx.dml);
1707 
1708 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1709 		goto validate_fail;
1710 
1711 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1712 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1713 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1714 
1715 		if (!pipe->stream)
1716 			continue;
1717 
1718 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1719 				&& !dc->config.enable_windowed_mpo_odm
1720 				&& pipe->plane_state && mpo_pipe
1721 				&& memcmp(&mpo_pipe->plane_state->clip_rect,
1722 						&pipe->stream->src,
1723 						sizeof(struct rect)) != 0) {
1724 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1725 			goto validate_fail;
1726 		}
1727 		pipe_idx++;
1728 	}
1729 
1730 	/* merge pipes if necessary */
1731 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1732 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1733 
1734 		/*skip pipes that don't need merging*/
1735 		if (!merge[i])
1736 			continue;
1737 
1738 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1739 		if (pipe->prev_odm_pipe) {
1740 			/*split off odm pipe*/
1741 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1742 			if (pipe->next_odm_pipe)
1743 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1744 
1745 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1746 			if (pipe->bottom_pipe) {
1747 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1748 					/*MPC split rules will handle this case*/
1749 					pipe->bottom_pipe->top_pipe = NULL;
1750 				} else {
1751 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1752 					 * the previous ODM pipe and its associated stream assets
1753 					 */
1754 					if (pipe->prev_odm_pipe->bottom_pipe) {
1755 						/* 3 plane MPO*/
1756 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1757 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1758 					} else {
1759 						/* 2 plane MPO*/
1760 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1761 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1762 					}
1763 
1764 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1765 				}
1766 			}
1767 
1768 			if (pipe->top_pipe) {
1769 				pipe->top_pipe->bottom_pipe = NULL;
1770 			}
1771 
1772 			pipe->bottom_pipe = NULL;
1773 			pipe->next_odm_pipe = NULL;
1774 			pipe->plane_state = NULL;
1775 			pipe->stream = NULL;
1776 			pipe->top_pipe = NULL;
1777 			pipe->prev_odm_pipe = NULL;
1778 			if (pipe->stream_res.dsc)
1779 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1780 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1781 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1782 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1783 			repopulate_pipes = true;
1784 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1785 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1786 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1787 
1788 			top_pipe->bottom_pipe = bottom_pipe;
1789 			if (bottom_pipe)
1790 				bottom_pipe->top_pipe = top_pipe;
1791 
1792 			pipe->top_pipe = NULL;
1793 			pipe->bottom_pipe = NULL;
1794 			pipe->plane_state = NULL;
1795 			pipe->stream = NULL;
1796 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1797 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1798 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1799 			repopulate_pipes = true;
1800 		} else
1801 			ASSERT(0); /* Should never try to merge master pipe */
1802 
1803 	}
1804 
1805 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1806 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1807 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1808 		struct pipe_ctx *hsplit_pipe = NULL;
1809 		bool odm;
1810 		int old_index = -1;
1811 
1812 		if (!pipe->stream || newly_split[i])
1813 			continue;
1814 
1815 		pipe_idx++;
1816 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1817 
1818 		if (!pipe->plane_state && !odm)
1819 			continue;
1820 
1821 		if (split[i]) {
1822 			if (odm) {
1823 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1824 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1825 				else if (old_pipe->next_odm_pipe)
1826 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1827 			} else {
1828 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1829 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1830 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1831 				else if (old_pipe->bottom_pipe &&
1832 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1833 					old_index = old_pipe->bottom_pipe->pipe_idx;
1834 			}
1835 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1836 			ASSERT(hsplit_pipe);
1837 			if (!hsplit_pipe)
1838 				goto validate_fail;
1839 
1840 			if (!dcn32_split_stream_for_mpc_or_odm(
1841 					dc, &context->res_ctx,
1842 					pipe, hsplit_pipe, odm))
1843 				goto validate_fail;
1844 
1845 			newly_split[hsplit_pipe->pipe_idx] = true;
1846 			repopulate_pipes = true;
1847 		}
1848 		if (split[i] == 4) {
1849 			struct pipe_ctx *pipe_4to1;
1850 
1851 			if (odm && old_pipe->next_odm_pipe)
1852 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1853 			else if (!odm && old_pipe->bottom_pipe &&
1854 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1855 				old_index = old_pipe->bottom_pipe->pipe_idx;
1856 			else
1857 				old_index = -1;
1858 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1859 			ASSERT(pipe_4to1);
1860 			if (!pipe_4to1)
1861 				goto validate_fail;
1862 			if (!dcn32_split_stream_for_mpc_or_odm(
1863 					dc, &context->res_ctx,
1864 					pipe, pipe_4to1, odm))
1865 				goto validate_fail;
1866 			newly_split[pipe_4to1->pipe_idx] = true;
1867 
1868 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1869 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1870 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1871 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1872 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1873 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1874 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1875 			else
1876 				old_index = -1;
1877 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1878 			ASSERT(pipe_4to1);
1879 			if (!pipe_4to1)
1880 				goto validate_fail;
1881 			if (!dcn32_split_stream_for_mpc_or_odm(
1882 					dc, &context->res_ctx,
1883 					hsplit_pipe, pipe_4to1, odm))
1884 				goto validate_fail;
1885 			newly_split[pipe_4to1->pipe_idx] = true;
1886 		}
1887 		if (odm)
1888 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1889 	}
1890 
1891 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1892 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1893 
1894 		if (pipe->plane_state) {
1895 			if (!resource_build_scaling_params(pipe))
1896 				goto validate_fail;
1897 		}
1898 	}
1899 
1900 	/* Actual dsc count per stream dsc validation*/
1901 	if (!dcn20_validate_dsc(dc, context)) {
1902 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1903 		goto validate_fail;
1904 	}
1905 
1906 	if (repopulate_pipes) {
1907 		int flag_max_mpc_comb = vba->maxMpcComb;
1908 		int flag_vlevel = vlevel;
1909 		int i;
1910 
1911 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1912 
1913 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1914 		 * we have to re-calculate the DET allocation and run through DML once more to
1915 		 * ensure all the params are calculated correctly. We do not need to run the
1916 		 * pipe split check again after this call (pipes are already split / merged).
1917 		 * */
1918 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1919 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1920 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1921 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1922 			/* failed after DET size changes */
1923 			goto validate_fail;
1924 		} else if (flag_max_mpc_comb == 0 &&
1925 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1926 			/* check the context constructed with pipe split flags is still valid*/
1927 			bool flags_valid = false;
1928 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1929 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1930 					vba->maxMpcComb = flag_max_mpc_comb;
1931 					vba->VoltageLevel = i;
1932 					vlevel = i;
1933 					flags_valid = true;
1934 				}
1935 			}
1936 
1937 			/* this should never happen */
1938 			if (!flags_valid)
1939 				goto validate_fail;
1940 		}
1941 	}
1942 	*vlevel_out = vlevel;
1943 	*pipe_cnt_out = pipe_cnt;
1944 
1945 	out = true;
1946 	goto validate_out;
1947 
1948 validate_fail:
1949 	out = false;
1950 
1951 validate_out:
1952 	return out;
1953 }
1954 
1955 
1956 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1957 				display_e2e_pipe_params_st *pipes,
1958 				int pipe_cnt,
1959 				int vlevel)
1960 {
1961 	int i, pipe_idx, vlevel_temp = 0;
1962 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1963 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1964 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1965 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1966 			dm_dram_clock_change_unsupported;
1967 	unsigned int dummy_latency_index = 0;
1968 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1969 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1970 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1971 	unsigned int min_dram_speed_mts_margin;
1972 	bool need_fclk_lat_as_dummy = false;
1973 	bool is_subvp_p_drr = false;
1974 	struct dc_stream_state *fpo_candidate_stream = NULL;
1975 
1976 	dc_assert_fp_enabled();
1977 
1978 	/* need to find dummy latency index for subvp */
1979 	if (subvp_in_use) {
1980 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1981 		if (!pstate_en) {
1982 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1983 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1984 			pstate_en = true;
1985 			is_subvp_p_drr = true;
1986 		}
1987 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1988 						context, pipes, pipe_cnt, vlevel);
1989 
1990 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1991 		 * scheduled correctly to account for dummy pstate.
1992 		 */
1993 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1994 			need_fclk_lat_as_dummy = true;
1995 			context->bw_ctx.dml.soc.fclk_change_latency_us =
1996 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1997 		}
1998 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1999 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2000 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2001 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2002 		if (is_subvp_p_drr) {
2003 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2004 		}
2005 	}
2006 
2007 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2008 	for (i = 0; i < context->stream_count; i++) {
2009 		if (context->streams[i])
2010 			context->streams[i]->fpo_in_use = false;
2011 	}
2012 
2013 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2014 			pstate_en && vlevel != 0)) {
2015 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2016 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2017 		if (fpo_candidate_stream) {
2018 			fpo_candidate_stream->fpo_in_use = true;
2019 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2020 		}
2021 
2022 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2023 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2024 				context, pipes, pipe_cnt, vlevel);
2025 
2026 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2027 			 * we reinstate the original dram_clock_change_latency_us on the context
2028 			 * and all variables that may have changed up to this point, except the
2029 			 * newly found dummy_latency_index
2030 			 */
2031 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2032 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2033 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2034 			 * prefetch is scheduled correctly to account for dummy pstate.
2035 			 */
2036 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2037 				need_fclk_lat_as_dummy = true;
2038 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2039 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2040 			}
2041 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2042 			if (vlevel_temp < vlevel) {
2043 				vlevel = vlevel_temp;
2044 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2045 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2046 				pstate_en = true;
2047 				context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2048 			} else {
2049 				/* Restore FCLK latency and re-run validation to go back to original validation
2050 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2051 				 * voltage level)
2052 				 */
2053 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2054 				for (i = 0; i < context->stream_count; i++) {
2055 					if (context->streams[i])
2056 						context->streams[i]->fpo_in_use = false;
2057 				}
2058 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2059 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2060 			}
2061 		}
2062 	}
2063 
2064 	/* Set B:
2065 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2066 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2067 	 * calculations to cover bootup clocks.
2068 	 * DCFCLK: soc.clock_limits[2] when available
2069 	 * UCLK: soc.clock_limits[2] when available
2070 	 */
2071 	if (dcn3_2_soc.num_states > 2) {
2072 		vlevel_temp = 2;
2073 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2074 	} else
2075 		dcfclk = 615; //DCFCLK Vmin_lv
2076 
2077 	pipes[0].clks_cfg.voltage = vlevel_temp;
2078 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2079 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2080 
2081 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2082 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2083 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2084 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2085 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2086 	}
2087 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2088 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2089 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2090 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2091 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2092 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2093 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2094 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2095 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 
2098 	/* Set D:
2099 	 * All clocks min.
2100 	 * DCFCLK: Min, as reported by PM FW when available
2101 	 * UCLK  : Min, as reported by PM FW when available
2102 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2103 	 */
2104 
2105 	/*
2106 	if (dcn3_2_soc.num_states > 2) {
2107 		vlevel_temp = 0;
2108 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2109 	} else
2110 		dcfclk = 615; //DCFCLK Vmin_lv
2111 
2112 	pipes[0].clks_cfg.voltage = vlevel_temp;
2113 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2114 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2115 
2116 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2117 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2118 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2119 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2120 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2121 	}
2122 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2123 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2124 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2125 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2126 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2127 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2128 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2129 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2130 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2131 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2132 	*/
2133 
2134 	/* Set C, for Dummy P-State:
2135 	 * All clocks min.
2136 	 * DCFCLK: Min, as reported by PM FW, when available
2137 	 * UCLK  : Min,  as reported by PM FW, when available
2138 	 * pstate latency as per UCLK state dummy pstate latency
2139 	 */
2140 
2141 	// For Set A and Set C use values from validation
2142 	pipes[0].clks_cfg.voltage = vlevel;
2143 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2144 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2145 
2146 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2147 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2148 	}
2149 
2150 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2151 		min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2152 		min_dram_speed_mts_margin = 160;
2153 
2154 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2155 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2156 
2157 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2158 			dm_dram_clock_change_unsupported) {
2159 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2160 
2161 			min_dram_speed_mts =
2162 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2163 		}
2164 
2165 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2166 			/* find largest table entry that is lower than dram speed,
2167 			 * but lower than DPM0 still uses DPM0
2168 			 */
2169 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2170 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2171 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2172 					break;
2173 		}
2174 
2175 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2176 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2177 
2178 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2179 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2180 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2181 	}
2182 
2183 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2184 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2185 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2186 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2187 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2188 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2189 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2190 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2191 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2192 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2193 	 * value.
2194 	 */
2195 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2196 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2197 
2198 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2199 		/* The only difference between A and C is p-state latency, if p-state is not supported
2200 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2201 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2202 		 */
2203 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2204 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2205 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2206 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2207 		 */
2208 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2209 	} else {
2210 		/* Set A:
2211 		 * All clocks min.
2212 		 * DCFCLK: Min, as reported by PM FW, when available
2213 		 * UCLK: Min, as reported by PM FW, when available
2214 		 */
2215 
2216 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2217 		 */
2218 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2219 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2220 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2221 
2222 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2223 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2224 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2225 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2226 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2227 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2228 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2229 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2230 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2231 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 	}
2233 
2234 	/* Make set D = set A since we do not optimized watermarks for MALL */
2235 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2236 
2237 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2238 		if (!context->res_ctx.pipe_ctx[i].stream)
2239 			continue;
2240 
2241 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2242 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2243 
2244 		if (dc->config.forced_clocks) {
2245 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2246 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2247 		}
2248 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2249 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2250 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2251 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2252 
2253 		pipe_idx++;
2254 	}
2255 
2256 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2257 
2258 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2259 	if (need_fclk_lat_as_dummy)
2260 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2261 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2262 
2263 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2264 
2265 	if (!pstate_en)
2266 		/* Restore full p-state latency */
2267 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2268 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2269 
2270 	/* revert fclk lat changes if required */
2271 	if (need_fclk_lat_as_dummy)
2272 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2273 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2274 }
2275 
2276 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2277 		unsigned int *optimal_dcfclk,
2278 		unsigned int *optimal_fclk)
2279 {
2280 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2281 
2282 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2283 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2284 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2285 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2286 
2287 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2288 
2289 	if (optimal_fclk)
2290 		*optimal_fclk = bw_from_dram /
2291 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2292 
2293 	if (optimal_dcfclk)
2294 		*optimal_dcfclk =  bw_from_dram /
2295 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2296 }
2297 
2298 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2299 		unsigned int index)
2300 {
2301 	int i;
2302 
2303 	if (*num_entries == 0)
2304 		return;
2305 
2306 	for (i = index; i < *num_entries - 1; i++) {
2307 		table[i] = table[i + 1];
2308 	}
2309 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2310 }
2311 
2312 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2313 {
2314 	int i;
2315 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2316 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2317 
2318 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2319 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2320 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2321 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2322 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2323 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2324 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2325 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2326 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2327 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2328 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2329 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2330 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2331 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2332 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2333 	}
2334 
2335 	/* Scan through clock values we currently have and if they are 0,
2336 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2337 	 *
2338 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2339 	 *  0, will cause it to skip building the clock table.
2340 	 */
2341 	if (max_dcfclk_mhz == 0)
2342 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2343 	if (max_dispclk_mhz == 0)
2344 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2345 	if (max_dtbclk_mhz == 0)
2346 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2347 	if (max_uclk_mhz == 0)
2348 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2349 }
2350 
2351 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2352 		struct _vcs_dpi_voltage_scaling_st *second_entry)
2353 {
2354 	struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2355 	*first_entry = *second_entry;
2356 	*second_entry = temp_entry;
2357 }
2358 
2359 /*
2360  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2361  */
2362 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2363 {
2364 	unsigned int start_index = 0;
2365 	unsigned int end_index = 0;
2366 	unsigned int current_bw = 0;
2367 
2368 	for (int i = 0; i < (*num_entries - 1); i++) {
2369 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2370 			current_bw = table[i].net_bw_in_kbytes_sec;
2371 			start_index = i;
2372 			end_index = ++i;
2373 
2374 			while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2375 				end_index = ++i;
2376 		}
2377 
2378 		if (start_index != end_index) {
2379 			for (int j = start_index; j < end_index; j++) {
2380 				for (int k = start_index; k < end_index; k++) {
2381 					if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2382 						swap_table_entries(&table[k], &table[k+1]);
2383 				}
2384 			}
2385 		}
2386 
2387 		start_index = 0;
2388 		end_index = 0;
2389 
2390 	}
2391 }
2392 
2393 /*
2394  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2395  *                               and remove entries that do not
2396  */
2397 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2398 {
2399 	for (int i = 0; i < (*num_entries - 1); i++) {
2400 		if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2401 			if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2402 				(table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2403 				remove_entry_from_table_at_index(table, num_entries, i);
2404 		}
2405 	}
2406 }
2407 
2408 /*
2409  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2410  * Input:
2411  *	max_clk_limit - struct containing the desired clock timings
2412  * Output:
2413  *	curr_clk_limit  - struct containing the timings that need to be overwritten
2414  * Return: 0 upon success, non-zero for failure
2415  */
2416 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2417 		struct clk_limit_table_entry *curr_clk_limit)
2418 {
2419 	if (NULL == max_clk_limit || NULL == curr_clk_limit)
2420 		return -1; //invalid parameters
2421 
2422 	//only overwrite if desired max clock frequency is initialized
2423 	if (max_clk_limit->dcfclk_mhz != 0)
2424 		curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2425 
2426 	if (max_clk_limit->fclk_mhz != 0)
2427 		curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2428 
2429 	if (max_clk_limit->memclk_mhz != 0)
2430 		curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2431 
2432 	if (max_clk_limit->socclk_mhz != 0)
2433 		curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2434 
2435 	if (max_clk_limit->dtbclk_mhz != 0)
2436 		curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2437 
2438 	if (max_clk_limit->dispclk_mhz != 0)
2439 		curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2440 
2441 	return 0;
2442 }
2443 
2444 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2445 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2446 {
2447 	int i, j;
2448 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2449 	struct clk_limit_table_entry max_clk_data = {0};
2450 
2451 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2452 
2453 	static const unsigned int num_dcfclk_stas = 5;
2454 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2455 
2456 	unsigned int num_uclk_dpms = 0;
2457 	unsigned int num_fclk_dpms = 0;
2458 	unsigned int num_dcfclk_dpms = 0;
2459 
2460 	unsigned int num_dc_uclk_dpms = 0;
2461 	unsigned int num_dc_fclk_dpms = 0;
2462 	unsigned int num_dc_dcfclk_dpms = 0;
2463 
2464 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2465 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2466 			max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2467 		if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2468 			max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2469 		if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2470 			max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2471 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2472 			max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2473 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2474 			max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2475 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2476 			max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2477 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2478 			max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2479 
2480 		if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2481 			num_uclk_dpms++;
2482 			if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2483 				num_dc_uclk_dpms++;
2484 		}
2485 		if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2486 			num_fclk_dpms++;
2487 			if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2488 				num_dc_fclk_dpms++;
2489 		}
2490 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2491 			num_dcfclk_dpms++;
2492 			if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2493 				num_dc_dcfclk_dpms++;
2494 		}
2495 	}
2496 
2497 	if (!disable_dc_mode_overwrite) {
2498 		//Overwrite max frequencies with max DC mode frequencies for DC mode systems
2499 		override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2500 		num_uclk_dpms = num_dc_uclk_dpms;
2501 		num_fclk_dpms = num_dc_fclk_dpms;
2502 		num_dcfclk_dpms = num_dc_dcfclk_dpms;
2503 		bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2504 		bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2505 	}
2506 
2507 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2508 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2509 
2510 	if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2511 		return -1;
2512 
2513 	if (max_clk_data.dppclk_mhz == 0)
2514 		max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2515 
2516 	if (max_clk_data.fclk_mhz == 0)
2517 		max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2518 				dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2519 				dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2520 
2521 	if (max_clk_data.phyclk_mhz == 0)
2522 		max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2523 
2524 	*num_entries = 0;
2525 	entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2526 	entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2527 	entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2528 	entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2529 	entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2530 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2531 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2532 
2533 	// Insert all the DCFCLK STAs
2534 	for (i = 0; i < num_dcfclk_stas; i++) {
2535 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2536 		entry.fabricclk_mhz = 0;
2537 		entry.dram_speed_mts = 0;
2538 
2539 		get_optimal_ntuple(&entry);
2540 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2541 		insert_entry_into_table_sorted(table, num_entries, &entry);
2542 	}
2543 
2544 	// Insert the max DCFCLK
2545 	entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2546 	entry.fabricclk_mhz = 0;
2547 	entry.dram_speed_mts = 0;
2548 
2549 	get_optimal_ntuple(&entry);
2550 	entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2551 	insert_entry_into_table_sorted(table, num_entries, &entry);
2552 
2553 	// Insert the UCLK DPMS
2554 	for (i = 0; i < num_uclk_dpms; i++) {
2555 		entry.dcfclk_mhz = 0;
2556 		entry.fabricclk_mhz = 0;
2557 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2558 
2559 		get_optimal_ntuple(&entry);
2560 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2561 		insert_entry_into_table_sorted(table, num_entries, &entry);
2562 	}
2563 
2564 	// If FCLK is coarse grained, insert individual DPMs.
2565 	if (num_fclk_dpms > 2) {
2566 		for (i = 0; i < num_fclk_dpms; i++) {
2567 			entry.dcfclk_mhz = 0;
2568 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2569 			entry.dram_speed_mts = 0;
2570 
2571 			get_optimal_ntuple(&entry);
2572 			entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2573 			insert_entry_into_table_sorted(table, num_entries, &entry);
2574 		}
2575 	}
2576 	// If FCLK fine grained, only insert max
2577 	else {
2578 		entry.dcfclk_mhz = 0;
2579 		entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2580 		entry.dram_speed_mts = 0;
2581 
2582 		get_optimal_ntuple(&entry);
2583 		entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2584 		insert_entry_into_table_sorted(table, num_entries, &entry);
2585 	}
2586 
2587 	// At this point, the table contains all "points of interest" based on
2588 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2589 	// ratios (by derate, are exact).
2590 
2591 	// Remove states that require higher clocks than are supported
2592 	for (i = *num_entries - 1; i >= 0 ; i--) {
2593 		if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2594 				table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2595 				table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2596 			remove_entry_from_table_at_index(table, num_entries, i);
2597 	}
2598 
2599 	// Insert entry with all max dc limits without bandwidth matching
2600 	if (!disable_dc_mode_overwrite) {
2601 		struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2602 
2603 		max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2604 		max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2605 		max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2606 
2607 		max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2608 		insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2609 
2610 		sort_entries_with_same_bw(table, num_entries);
2611 		remove_inconsistent_entries(table, num_entries);
2612 	}
2613 
2614 	// At this point, the table only contains supported points of interest
2615 	// it could be used as is, but some states may be redundant due to
2616 	// coarse grained nature of some clocks, so we want to round up to
2617 	// coarse grained DPMs and remove duplicates.
2618 
2619 	// Round up UCLKs
2620 	for (i = *num_entries - 1; i >= 0 ; i--) {
2621 		for (j = 0; j < num_uclk_dpms; j++) {
2622 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2623 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2624 				break;
2625 			}
2626 		}
2627 	}
2628 
2629 	// If FCLK is coarse grained, round up to next DPMs
2630 	if (num_fclk_dpms > 2) {
2631 		for (i = *num_entries - 1; i >= 0 ; i--) {
2632 			for (j = 0; j < num_fclk_dpms; j++) {
2633 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2634 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2635 					break;
2636 				}
2637 			}
2638 		}
2639 	}
2640 	// Otherwise, round up to minimum.
2641 	else {
2642 		for (i = *num_entries - 1; i >= 0 ; i--) {
2643 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2644 				table[i].fabricclk_mhz = min_fclk_mhz;
2645 			}
2646 		}
2647 	}
2648 
2649 	// Round DCFCLKs up to minimum
2650 	for (i = *num_entries - 1; i >= 0 ; i--) {
2651 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2652 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2653 		}
2654 	}
2655 
2656 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2657 	i = 0;
2658 	while (i < *num_entries - 1) {
2659 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2660 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2661 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2662 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2663 		else
2664 			i++;
2665 	}
2666 
2667 	// Fix up the state indicies
2668 	for (i = *num_entries - 1; i >= 0 ; i--) {
2669 		table[i].state = i;
2670 	}
2671 
2672 	return 0;
2673 }
2674 
2675 /*
2676  * dcn32_update_bw_bounding_box
2677  *
2678  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2679  * spreadsheet with actual values as per dGPU SKU:
2680  * - with passed few options from dc->config
2681  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2682  *   need to get it from PM FW)
2683  * - with passed latency values (passed in ns units) in dc-> bb override for
2684  *   debugging purposes
2685  * - with passed latencies from VBIOS (in 100_ns units) if available for
2686  *   certain dGPU SKU
2687  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2688  *   of the same ASIC)
2689  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2690  *   FW for different clocks (which might differ for certain dGPU SKU of the
2691  *   same ASIC)
2692  */
2693 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2694 {
2695 	dc_assert_fp_enabled();
2696 
2697 	/* Overrides from dc->config options */
2698 	dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2699 
2700 	/* Override from passed dc->bb_overrides if available*/
2701 	if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2702 			&& dc->bb_overrides.sr_exit_time_ns) {
2703 		dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2704 	}
2705 
2706 	if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2707 			!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2708 			&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2709 		dcn3_2_soc.sr_enter_plus_exit_time_us =
2710 			dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2711 	}
2712 
2713 	if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2714 		&& dc->bb_overrides.urgent_latency_ns) {
2715 		dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2716 		dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2717 	}
2718 
2719 	if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2720 			!= dc->bb_overrides.dram_clock_change_latency_ns
2721 			&& dc->bb_overrides.dram_clock_change_latency_ns) {
2722 		dcn3_2_soc.dram_clock_change_latency_us =
2723 			dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2724 	}
2725 
2726 	if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2727 			!= dc->bb_overrides.fclk_clock_change_latency_ns
2728 			&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2729 		dcn3_2_soc.fclk_change_latency_us =
2730 			dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2731 	}
2732 
2733 	if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2734 			!= dc->bb_overrides.dummy_clock_change_latency_ns
2735 			&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2736 		dcn3_2_soc.dummy_pstate_latency_us =
2737 			dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2738 	}
2739 
2740 	/* Override from VBIOS if VBIOS bb_info available */
2741 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2742 		struct bp_soc_bb_info bb_info = {0};
2743 
2744 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2745 			if (bb_info.dram_clock_change_latency_100ns > 0)
2746 				dcn3_2_soc.dram_clock_change_latency_us =
2747 					bb_info.dram_clock_change_latency_100ns * 10;
2748 
2749 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2750 				dcn3_2_soc.sr_enter_plus_exit_time_us =
2751 					bb_info.dram_sr_enter_exit_latency_100ns * 10;
2752 
2753 			if (bb_info.dram_sr_exit_latency_100ns > 0)
2754 				dcn3_2_soc.sr_exit_time_us =
2755 					bb_info.dram_sr_exit_latency_100ns * 10;
2756 		}
2757 	}
2758 
2759 	/* Override from VBIOS for num_chan */
2760 	if (dc->ctx->dc_bios->vram_info.num_chans) {
2761 		dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2762 		dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2763 			dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2764 	}
2765 
2766 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2767 		dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2768 
2769 	/* DML DSC delay factor workaround */
2770 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2771 
2772 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2773 
2774 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2775 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2776 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2777 
2778 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2779 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2780 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2781 			unsigned int i = 0, j = 0, num_states = 0;
2782 
2783 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2784 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2785 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2786 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2787 			unsigned int min_dcfclk = UINT_MAX;
2788 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2789 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2790 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2791 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2792 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2793 
2794 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2795 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2796 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2797 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2798 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2799 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2800 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2801 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2802 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2803 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2804 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2805 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2806 			}
2807 			if (min_dcfclk > dcfclk_sta_targets[0])
2808 				dcfclk_sta_targets[0] = min_dcfclk;
2809 			if (!max_dcfclk_mhz)
2810 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2811 			if (!max_dispclk_mhz)
2812 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2813 			if (!max_dppclk_mhz)
2814 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2815 			if (!max_phyclk_mhz)
2816 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2817 
2818 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2819 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2820 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2821 				num_dcfclk_sta_targets++;
2822 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2823 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2824 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2825 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2826 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2827 						break;
2828 					}
2829 				}
2830 				// Update size of array since we "removed" duplicates
2831 				num_dcfclk_sta_targets = i + 1;
2832 			}
2833 
2834 			num_uclk_states = bw_params->clk_table.num_entries;
2835 
2836 			// Calculate optimal dcfclk for each uclk
2837 			for (i = 0; i < num_uclk_states; i++) {
2838 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2839 						&optimal_dcfclk_for_uclk[i], NULL);
2840 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2841 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2842 				}
2843 			}
2844 
2845 			// Calculate optimal uclk for each dcfclk sta target
2846 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2847 				for (j = 0; j < num_uclk_states; j++) {
2848 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2849 						optimal_uclk_for_dcfclk_sta_targets[i] =
2850 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2851 						break;
2852 					}
2853 				}
2854 			}
2855 
2856 			i = 0;
2857 			j = 0;
2858 			// create the final dcfclk and uclk table
2859 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2860 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2861 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2862 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2863 				} else {
2864 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2865 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2866 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2867 					} else {
2868 						j = num_uclk_states;
2869 					}
2870 				}
2871 			}
2872 
2873 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2874 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2875 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2876 			}
2877 
2878 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2879 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2880 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2881 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2882 			}
2883 
2884 			dcn3_2_soc.num_states = num_states;
2885 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2886 				dcn3_2_soc.clock_limits[i].state = i;
2887 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2888 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2889 
2890 				/* Fill all states with max values of all these clocks */
2891 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2892 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2893 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2894 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2895 
2896 				/* Populate from bw_params for DTBCLK, SOCCLK */
2897 				if (i > 0) {
2898 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2899 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2900 					} else {
2901 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2902 					}
2903 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2904 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2905 				}
2906 
2907 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2908 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2909 				else
2910 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2911 
2912 				if (!dram_speed_mts[i] && i > 0)
2913 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2914 				else
2915 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2916 
2917 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2918 				/* PHYCLK_D18, PHYCLK_D32 */
2919 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2920 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2921 			}
2922 		} else {
2923 			build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
2924 					dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2925 		}
2926 
2927 		/* Re-init DML with updated bb */
2928 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2929 		if (dc->current_state)
2930 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2931 	}
2932 }
2933 
2934 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2935 				  int pipe_cnt)
2936 {
2937 	dc_assert_fp_enabled();
2938 
2939 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2940 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2941 }
2942 
2943 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2944 {
2945 	bool allow = false;
2946 	uint32_t refresh_rate = 0;
2947 
2948 	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2949 	 * only for now. There must be no scaling as well.
2950 	 *
2951 	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2952 	 * for p-state switching.
2953 	 */
2954 	if (pipe->stream && pipe->plane_state) {
2955 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2956 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2957 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2958 		if (pipe->stream->timing.v_addressable == 1440 &&
2959 				pipe->stream->timing.h_addressable == 2560 &&
2960 				refresh_rate >= 55 && refresh_rate <= 65 &&
2961 				pipe->plane_state->src_rect.height == 1440 &&
2962 				pipe->plane_state->src_rect.width == 2560 &&
2963 				pipe->plane_state->dst_rect.height == 1440 &&
2964 				pipe->plane_state->dst_rect.width == 2560)
2965 			allow = true;
2966 	}
2967 	return allow;
2968 }
2969 
2970 /**
2971  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2972  *
2973  * @dc: Current DC state
2974  * @context: New DC state to be programmed
2975  * @pipe: Pipe to be considered for use in subvp
2976  *
2977  * On high refresh rate display configs, we will allow subvp under the following conditions:
2978  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2979  * 2. Refresh rate is between 120hz - 165hz
2980  * 3. No scaling
2981  * 4. Freesync is inactive
2982  * 5. For single display cases, freesync must be disabled
2983  *
2984  * Return: True if pipe can be used for subvp, false otherwise
2985  */
2986 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
2987 {
2988 	bool allow = false;
2989 	uint32_t refresh_rate = 0;
2990 	uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
2991 	uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
2992 	uint32_t min_refresh = subvp_max_refresh;
2993 	uint32_t i;
2994 
2995 	/* Only allow SubVP on high refresh displays if all connected displays
2996 	 * are considered "high refresh" (i.e. >= 120hz). We do not want to
2997 	 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
2998 	 */
2999 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3000 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3001 
3002 		if (!pipe_ctx->stream)
3003 			continue;
3004 		refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3005 				pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3006 						/ (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3007 
3008 		if (refresh_rate < min_refresh)
3009 			min_refresh = refresh_rate;
3010 	}
3011 
3012 	if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3013 			pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3014 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3015 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3016 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3017 		if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3018 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3019 				uint32_t width = subvp_high_refresh_list.res[i].width;
3020 				uint32_t height = subvp_high_refresh_list.res[i].height;
3021 
3022 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3023 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3024 						allow = true;
3025 						break;
3026 					}
3027 				}
3028 			}
3029 		}
3030 	}
3031 	return allow;
3032 }
3033 
3034 /**
3035  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3036  *
3037  * @dc: Current DC state
3038  * @context: New DC state to be programmed
3039  *
3040  * Return: Max vratio for prefetch
3041  */
3042 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3043 {
3044 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3045 	int i;
3046 
3047 	/* For single display MPO configs, allow the max vratio to be 8
3048 	 * if any plane is YUV420 format
3049 	 */
3050 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3051 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
3052 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3053 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3054 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3055 			}
3056 		}
3057 	}
3058 	return max_vratio_pre;
3059 }
3060 
3061 /**
3062  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3063  *
3064  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3065  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3066  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3067  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3068  *
3069  *
3070  * @dc: current dc state
3071  * @context: new dc state
3072  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3073  *
3074  * Return: void
3075  */
3076 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3077 {
3078 	unsigned int i, pipe_idx;
3079 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3080 
3081 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3082 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3083 
3084 		if (!pipe->stream)
3085 			continue;
3086 
3087 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3088 			*fpo_candidate_stream = pipe->stream;
3089 			break;
3090 		}
3091 		pipe_idx++;
3092 	}
3093 }
3094 
3095 /**
3096  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3097  *
3098  * @dc: current dc state
3099  * @context: new dc state
3100  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3101  *
3102  * Return: True if VACTIVE display is found, false otherwise
3103  */
3104 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3105 {
3106 	unsigned int i, pipe_idx;
3107 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3108 	bool vactive_found = false;
3109 	unsigned int blank_us = 0;
3110 
3111 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3112 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3113 
3114 		if (!pipe->stream)
3115 			continue;
3116 
3117 		blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3118 				(double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3119 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3120 				!(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3121 			vactive_found = true;
3122 			break;
3123 		}
3124 		pipe_idx++;
3125 	}
3126 	return vactive_found;
3127 }
3128 
3129 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3130 {
3131 	dc_assert_fp_enabled();
3132 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3133 }
3134 
3135 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3136 {
3137 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3138 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3139 			dc->dml.soc.num_chans <= 8) {
3140 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3141 
3142 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3143 				num_mclk_levels > 1) {
3144 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3145 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3146 		}
3147 	}
3148 }
3149