1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 
36 #define DC_LOGGER_INIT(logger)
37 
38 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
39 			.min_refresh = 120,
40 			.max_refresh = 165,
41 			.res = {
42 				{.width = 3840, .height = 2160, },
43 				{.width = 3440, .height = 1440, },
44 				{.width = 2560, .height = 1440, }},
45 };
46 
47 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
48 	.gpuvm_enable = 0,
49 	.gpuvm_max_page_table_levels = 4,
50 	.hostvm_enable = 0,
51 	.rob_buffer_size_kbytes = 128,
52 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
53 	.config_return_buffer_size_in_kbytes = 1280,
54 	.compressed_buffer_segment_size_in_kbytes = 64,
55 	.meta_fifo_size_in_kentries = 22,
56 	.zero_size_buffer_entries = 512,
57 	.compbuf_reserved_space_64b = 256,
58 	.compbuf_reserved_space_zs = 64,
59 	.dpp_output_buffer_pixels = 2560,
60 	.opp_output_buffer_lines = 1,
61 	.pixel_chunk_size_kbytes = 8,
62 	.alpha_pixel_chunk_size_kbytes = 4,
63 	.min_pixel_chunk_size_bytes = 1024,
64 	.dcc_meta_buffer_size_bytes = 6272,
65 	.meta_chunk_size_kbytes = 2,
66 	.min_meta_chunk_size_bytes = 256,
67 	.writeback_chunk_size_kbytes = 8,
68 	.ptoi_supported = false,
69 	.num_dsc = 4,
70 	.maximum_dsc_bits_per_component = 12,
71 	.maximum_pixels_per_line_per_dsc_unit = 6016,
72 	.dsc422_native_support = true,
73 	.is_line_buffer_bpp_fixed = true,
74 	.line_buffer_fixed_bpp = 57,
75 	.line_buffer_size_bits = 1171920,
76 	.max_line_buffer_lines = 32,
77 	.writeback_interface_buffer_size_kbytes = 90,
78 	.max_num_dpp = 4,
79 	.max_num_otg = 4,
80 	.max_num_hdmi_frl_outputs = 1,
81 	.max_num_wb = 1,
82 	.max_dchub_pscl_bw_pix_per_clk = 4,
83 	.max_pscl_lb_bw_pix_per_clk = 2,
84 	.max_lb_vscl_bw_pix_per_clk = 4,
85 	.max_vscl_hscl_bw_pix_per_clk = 4,
86 	.max_hscl_ratio = 6,
87 	.max_vscl_ratio = 6,
88 	.max_hscl_taps = 8,
89 	.max_vscl_taps = 8,
90 	.dpte_buffer_size_in_pte_reqs_luma = 64,
91 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
92 	.dispclk_ramp_margin_percent = 1,
93 	.max_inter_dcn_tile_repeaters = 8,
94 	.cursor_buffer_size = 16,
95 	.cursor_chunk_size = 2,
96 	.writeback_line_buffer_buffer_size = 0,
97 	.writeback_min_hscl_ratio = 1,
98 	.writeback_min_vscl_ratio = 1,
99 	.writeback_max_hscl_ratio = 1,
100 	.writeback_max_vscl_ratio = 1,
101 	.writeback_max_hscl_taps = 1,
102 	.writeback_max_vscl_taps = 1,
103 	.dppclk_delay_subtotal = 47,
104 	.dppclk_delay_scl = 50,
105 	.dppclk_delay_scl_lb_only = 16,
106 	.dppclk_delay_cnvc_formatter = 28,
107 	.dppclk_delay_cnvc_cursor = 6,
108 	.dispclk_delay_subtotal = 125,
109 	.dynamic_metadata_vm_enabled = false,
110 	.odm_combine_4to1_supported = false,
111 	.dcc_supported = true,
112 	.max_num_dp2p0_outputs = 2,
113 	.max_num_dp2p0_streams = 4,
114 };
115 
116 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
117 	.clock_limits = {
118 		{
119 			.state = 0,
120 			.dcfclk_mhz = 1564.0,
121 			.fabricclk_mhz = 2500.0,
122 			.dispclk_mhz = 2150.0,
123 			.dppclk_mhz = 2150.0,
124 			.phyclk_mhz = 810.0,
125 			.phyclk_d18_mhz = 667.0,
126 			.phyclk_d32_mhz = 625.0,
127 			.socclk_mhz = 1200.0,
128 			.dscclk_mhz = 716.667,
129 			.dram_speed_mts = 18000.0,
130 			.dtbclk_mhz = 1564.0,
131 		},
132 	},
133 	.num_states = 1,
134 	.sr_exit_time_us = 42.97,
135 	.sr_enter_plus_exit_time_us = 49.94,
136 	.sr_exit_z8_time_us = 285.0,
137 	.sr_enter_plus_exit_z8_time_us = 320,
138 	.writeback_latency_us = 12.0,
139 	.round_trip_ping_latency_dcfclk_cycles = 263,
140 	.urgent_latency_pixel_data_only_us = 4.0,
141 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
142 	.urgent_latency_vm_data_only_us = 4.0,
143 	.fclk_change_latency_us = 25,
144 	.usr_retraining_latency_us = 2,
145 	.smn_latency_us = 2,
146 	.mall_allocated_for_dcn_mbytes = 64,
147 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
148 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
149 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
150 	.pct_ideal_sdp_bw_after_urgent = 100.0,
151 	.pct_ideal_fabric_bw_after_urgent = 67.0,
152 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
153 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
154 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
155 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
156 	.max_avg_sdp_bw_use_normal_percent = 80.0,
157 	.max_avg_fabric_bw_use_normal_percent = 60.0,
158 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
159 	.max_avg_dram_bw_use_normal_percent = 15.0,
160 	.num_chans = 24,
161 	.dram_channel_width_bytes = 2,
162 	.fabric_datapath_to_dcn_data_return_bytes = 64,
163 	.return_bus_width_bytes = 64,
164 	.downspread_percent = 0.38,
165 	.dcn_downspread_percent = 0.5,
166 	.dram_clock_change_latency_us = 400,
167 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
168 	.do_urgent_latency_adjustment = true,
169 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
170 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
171 };
172 
173 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
174 {
175 	/* defaults */
176 	double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
177 	double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
178 	double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
179 	double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
180 	/* For min clocks use as reported by PM FW and report those as min */
181 	uint16_t min_uclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
182 	uint16_t min_dcfclk_mhz			= clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
183 	uint16_t setb_min_uclk_mhz		= min_uclk_mhz;
184 	uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
185 
186 	dc_assert_fp_enabled();
187 
188 	/* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
189 	if (dcfclk_mhz_for_the_second_state)
190 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
191 	else
192 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 
194 	if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
195 		setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
196 
197 	/* Set A - Normal - default values */
198 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
199 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
200 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
201 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
202 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
203 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
204 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
205 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
206 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
207 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
208 
209 	/* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
210 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
211 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
212 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
213 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
214 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
215 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
216 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
217 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
218 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
219 
220 	/* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
221 	/* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
222 	if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
223 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
224 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
225 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
226 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
227 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
228 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
229 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
230 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
231 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
232 		clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
233 		clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
234 		clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
235 		clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
236 		clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
237 		clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
238 		clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
239 		clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
240 		clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
241 	}
242 	/* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
243 	/* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
244 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
245 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
246 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
247 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
248 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
249 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
250 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
251 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
252 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
253 	clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
254 }
255 
256 /*
257  * Finds dummy_latency_index when MCLK switching using firmware based
258  * vblank stretch is enabled. This function will iterate through the
259  * table of dummy pstate latencies until the lowest value that allows
260  * dm_allow_self_refresh_and_mclk_switch to happen is found
261  */
262 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
263 							    struct dc_state *context,
264 							    display_e2e_pipe_params_st *pipes,
265 							    int pipe_cnt,
266 							    int vlevel)
267 {
268 	const int max_latency_table_entries = 4;
269 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
270 	int dummy_latency_index = 0;
271 	enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
272 
273 	dc_assert_fp_enabled();
274 
275 	while (dummy_latency_index < max_latency_table_entries) {
276 		if (temp_clock_change_support != dm_dram_clock_change_unsupported)
277 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
278 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
279 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
280 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
281 
282 		/* for subvp + DRR case, if subvp pipes are still present we support pstate */
283 		if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
284 				dcn32_subvp_in_use(dc, context))
285 			vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
286 
287 		if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
288 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
289 			break;
290 
291 		dummy_latency_index++;
292 	}
293 
294 	if (dummy_latency_index == max_latency_table_entries) {
295 		ASSERT(dummy_latency_index != max_latency_table_entries);
296 		/* If the execution gets here, it means dummy p_states are
297 		 * not possible. This should never happen and would mean
298 		 * something is severely wrong.
299 		 * Here we reset dummy_latency_index to 3, because it is
300 		 * better to have underflows than system crashes.
301 		 */
302 		dummy_latency_index = max_latency_table_entries - 1;
303 	}
304 
305 	return dummy_latency_index;
306 }
307 
308 /**
309  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
310  * and populate pipe_ctx with those params.
311  * @dc: [in] current dc state
312  * @context: [in] new dc state
313  * @pipes: [in] DML pipe params array
314  * @pipe_cnt: [in] DML pipe count
315  *
316  * This function must be called AFTER the phantom pipes are added to context
317  * and run through DML (so that the DLG params for the phantom pipes can be
318  * populated), and BEFORE we program the timing for the phantom pipes.
319  */
320 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
321 					      struct dc_state *context,
322 					      display_e2e_pipe_params_st *pipes,
323 					      int pipe_cnt)
324 {
325 	uint32_t i, pipe_idx;
326 
327 	dc_assert_fp_enabled();
328 
329 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
330 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
331 
332 		if (!pipe->stream)
333 			continue;
334 
335 		if (pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
336 			pipes[pipe_idx].pipe.dest.vstartup_start =
337 				get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
338 			pipes[pipe_idx].pipe.dest.vupdate_offset =
339 				get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
340 			pipes[pipe_idx].pipe.dest.vupdate_width =
341 				get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
342 			pipes[pipe_idx].pipe.dest.vready_offset =
343 				get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
344 			pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
345 		}
346 		pipe_idx++;
347 	}
348 }
349 
350 /**
351  * dcn32_predict_pipe_split - Predict if pipe split will occur for a given DML pipe
352  * @context: [in] New DC state to be programmed
353  * @pipe_e2e: [in] DML pipe end to end context
354  *
355  * This function takes in a DML pipe (pipe_e2e) and predicts if pipe split is required (both
356  * ODM and MPC). For pipe split, ODM combine is determined by the ODM mode, and MPC combine is
357  * determined by DPPClk requirements
358  *
359  * This function follows the same policy as DML:
360  * - Check for ODM combine requirements / policy first
361  * - MPC combine is only chosen if there is no ODM combine requirements / policy in place, and
362  *   MPC is required
363  *
364  * Return: Number of splits expected (1 for 2:1 split, 3 for 4:1 split, 0 for no splits).
365  */
366 uint8_t dcn32_predict_pipe_split(struct dc_state *context,
367 				  display_e2e_pipe_params_st *pipe_e2e)
368 {
369 	double pscl_throughput;
370 	double pscl_throughput_chroma;
371 	double dpp_clk_single_dpp, clock;
372 	double clk_frequency = 0.0;
373 	double vco_speed = context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz;
374 	bool total_available_pipes_support = false;
375 	uint32_t number_of_dpp = 0;
376 	enum odm_combine_mode odm_mode = dm_odm_combine_mode_disabled;
377 	double req_dispclk_per_surface = 0;
378 	uint8_t num_splits = 0;
379 
380 	dc_assert_fp_enabled();
381 
382 	dml32_CalculateODMMode(context->bw_ctx.dml.ip.maximum_pixels_per_line_per_dsc_unit,
383 			pipe_e2e->pipe.dest.hactive,
384 			pipe_e2e->dout.output_format,
385 			pipe_e2e->dout.output_type,
386 			pipe_e2e->pipe.dest.odm_combine_policy,
387 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
388 			context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dispclk_mhz,
389 			pipe_e2e->dout.dsc_enable != 0,
390 			0, /* TotalNumberOfActiveDPP can be 0 since we're predicting pipe split requirement */
391 			context->bw_ctx.dml.ip.max_num_dpp,
392 			pipe_e2e->pipe.dest.pixel_rate_mhz,
393 			context->bw_ctx.dml.soc.dcn_downspread_percent,
394 			context->bw_ctx.dml.ip.dispclk_ramp_margin_percent,
395 			context->bw_ctx.dml.soc.dispclk_dppclk_vco_speed_mhz,
396 			pipe_e2e->dout.dsc_slices,
397 			/* Output */
398 			&total_available_pipes_support,
399 			&number_of_dpp,
400 			&odm_mode,
401 			&req_dispclk_per_surface);
402 
403 	dml32_CalculateSinglePipeDPPCLKAndSCLThroughput(pipe_e2e->pipe.scale_ratio_depth.hscl_ratio,
404 			pipe_e2e->pipe.scale_ratio_depth.hscl_ratio_c,
405 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio,
406 			pipe_e2e->pipe.scale_ratio_depth.vscl_ratio_c,
407 			context->bw_ctx.dml.ip.max_dchub_pscl_bw_pix_per_clk,
408 			context->bw_ctx.dml.ip.max_pscl_lb_bw_pix_per_clk,
409 			pipe_e2e->pipe.dest.pixel_rate_mhz,
410 			pipe_e2e->pipe.src.source_format,
411 			pipe_e2e->pipe.scale_taps.htaps,
412 			pipe_e2e->pipe.scale_taps.htaps_c,
413 			pipe_e2e->pipe.scale_taps.vtaps,
414 			pipe_e2e->pipe.scale_taps.vtaps_c,
415 			/* Output */
416 			&pscl_throughput, &pscl_throughput_chroma,
417 			&dpp_clk_single_dpp);
418 
419 	clock = dpp_clk_single_dpp * (1 + context->bw_ctx.dml.soc.dcn_downspread_percent / 100);
420 
421 	if (clock > 0)
422 		clk_frequency = vco_speed * 4.0 / ((int)(vco_speed * 4.0) / clock);
423 
424 	if (odm_mode == dm_odm_combine_mode_2to1)
425 		num_splits = 1;
426 	else if (odm_mode == dm_odm_combine_mode_4to1)
427 		num_splits = 3;
428 	else if (clk_frequency > context->bw_ctx.dml.soc.clock_limits[context->bw_ctx.dml.soc.num_states - 1].dppclk_mhz)
429 		num_splits = 1;
430 
431 	return num_splits;
432 }
433 
434 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
435 {
436 	float memory_bw_kbytes_sec;
437 	float fabric_bw_kbytes_sec;
438 	float sdp_bw_kbytes_sec;
439 	float limiting_bw_kbytes_sec;
440 
441 	memory_bw_kbytes_sec = entry->dram_speed_mts *
442 				dcn3_2_soc.num_chans *
443 				dcn3_2_soc.dram_channel_width_bytes *
444 				((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
445 
446 	fabric_bw_kbytes_sec = entry->fabricclk_mhz *
447 				dcn3_2_soc.return_bus_width_bytes *
448 				((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
449 
450 	sdp_bw_kbytes_sec = entry->dcfclk_mhz *
451 				dcn3_2_soc.return_bus_width_bytes *
452 				((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
453 
454 	limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
455 
456 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
457 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
458 
459 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
460 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
461 
462 	return limiting_bw_kbytes_sec;
463 }
464 
465 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
466 {
467 	if (entry->dcfclk_mhz > 0) {
468 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
469 
470 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
471 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
472 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
473 	} else if (entry->fabricclk_mhz > 0) {
474 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
475 
476 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
477 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
478 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
479 	} else if (entry->dram_speed_mts > 0) {
480 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
481 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
482 
483 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
484 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
485 	}
486 }
487 
488 void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
489 				    unsigned int *num_entries,
490 				    struct _vcs_dpi_voltage_scaling_st *entry)
491 {
492 	int i = 0;
493 	int index = 0;
494 	float net_bw_of_new_state = 0;
495 
496 	dc_assert_fp_enabled();
497 
498 	get_optimal_ntuple(entry);
499 
500 	if (*num_entries == 0) {
501 		table[0] = *entry;
502 		(*num_entries)++;
503 	} else {
504 		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
505 		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
506 			index++;
507 			if (index >= *num_entries)
508 				break;
509 		}
510 
511 		for (i = *num_entries; i > index; i--)
512 			table[i] = table[i - 1];
513 
514 		table[index] = *entry;
515 		(*num_entries)++;
516 	}
517 }
518 
519 /**
520  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
521  * @dc: current dc state
522  * @context: new dc state
523  * @ref_pipe: Main pipe for the phantom stream
524  * @phantom_stream: target phantom stream state
525  * @pipes: DML pipe params
526  * @pipe_cnt: number of DML pipes
527  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
528  *
529  * Set timing params of the phantom stream based on calculated output from DML.
530  * This function first gets the DML pipe index using the DC pipe index, then
531  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
532  * lines required for SubVP MCLK switching and assigns to the phantom stream
533  * accordingly.
534  *
535  * - The number of SubVP lines calculated in DML does not take into account
536  * FW processing delays and required pstate allow width, so we must include
537  * that separately.
538  *
539  * - Set phantom backporch = vstartup of main pipe
540  */
541 void dcn32_set_phantom_stream_timing(struct dc *dc,
542 				     struct dc_state *context,
543 				     struct pipe_ctx *ref_pipe,
544 				     struct dc_stream_state *phantom_stream,
545 				     display_e2e_pipe_params_st *pipes,
546 				     unsigned int pipe_cnt,
547 				     unsigned int dc_pipe_idx)
548 {
549 	unsigned int i, pipe_idx;
550 	struct pipe_ctx *pipe;
551 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
552 	unsigned int num_dpp;
553 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
554 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
555 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
556 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
557 	struct dc_stream_state *main_stream = ref_pipe->stream;
558 
559 	dc_assert_fp_enabled();
560 
561 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
562 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
563 		pipe = &context->res_ctx.pipe_ctx[i];
564 
565 		if (!pipe->stream)
566 			continue;
567 
568 		if (i == dc_pipe_idx)
569 			break;
570 
571 		pipe_idx++;
572 	}
573 
574 	// Calculate lines required for pstate allow width and FW processing delays
575 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
576 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
577 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
578 			(double)ref_pipe->stream->timing.h_total;
579 
580 	// Update clks_cfg for calling into recalculate
581 	pipes[0].clks_cfg.voltage = vlevel;
582 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
583 	pipes[0].clks_cfg.socclk_mhz = socclk;
584 
585 	// DML calculation for MALL region doesn't take into account FW delay
586 	// and required pstate allow width for multi-display cases
587 	/* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
588 	 * to 2 swaths (i.e. 16 lines)
589 	 */
590 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
591 				pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
592 
593 	// W/A for DCC corruption with certain high resolution timings.
594 	// Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
595 	num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
596 	phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
597 
598 	/* dc->debug.subvp_extra_lines 0 by default*/
599 	phantom_vactive += dc->debug.subvp_extra_lines;
600 
601 	// For backporch of phantom pipe, use vstartup of the main pipe
602 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
603 
604 	phantom_stream->dst.y = 0;
605 	phantom_stream->dst.height = phantom_vactive;
606 	/* When scaling, DML provides the end to end required number of lines for MALL.
607 	 * dst.height is always correct for this case, but src.height is not which causes a
608 	 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
609 	 * phantom for this case.
610 	 */
611 	phantom_stream->src.y = 0;
612 	phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
613 
614 	phantom_stream->timing.v_addressable = phantom_vactive;
615 	phantom_stream->timing.v_front_porch = 1;
616 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
617 						phantom_stream->timing.v_front_porch +
618 						phantom_stream->timing.v_sync_width +
619 						phantom_bp;
620 	phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
621 }
622 
623 /**
624  * dcn32_get_num_free_pipes - Calculate number of free pipes
625  * @dc: current dc state
626  * @context: new dc state
627  *
628  * This function assumes that a "used" pipe is a pipe that has
629  * both a stream and a plane assigned to it.
630  *
631  * Return: Number of free pipes available in the context
632  */
633 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
634 {
635 	unsigned int i;
636 	unsigned int free_pipes = 0;
637 	unsigned int num_pipes = 0;
638 
639 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
640 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
641 
642 		if (pipe->stream && !pipe->top_pipe) {
643 			while (pipe) {
644 				num_pipes++;
645 				pipe = pipe->bottom_pipe;
646 			}
647 		}
648 	}
649 
650 	free_pipes = dc->res_pool->pipe_count - num_pipes;
651 	return free_pipes;
652 }
653 
654 /**
655  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
656  * @dc: current dc state
657  * @context: new dc state
658  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
659  *
660  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
661  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
662  * we are forcing SubVP P-State switching on the current config.
663  *
664  * The number of pipes used for the chosen surface must be less than or equal to the
665  * number of free pipes available.
666  *
667  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
668  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
669  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
670  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
671  *
672  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
673  */
674 static bool dcn32_assign_subvp_pipe(struct dc *dc,
675 				    struct dc_state *context,
676 				    unsigned int *index)
677 {
678 	unsigned int i, pipe_idx;
679 	unsigned int max_frame_time = 0;
680 	bool valid_assignment_found = false;
681 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
682 	bool current_assignment_freesync = false;
683 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
684 
685 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
686 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
687 		unsigned int num_pipes = 0;
688 		unsigned int refresh_rate = 0;
689 
690 		if (!pipe->stream)
691 			continue;
692 
693 		// Round up
694 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
695 				pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
696 				/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
697 		/* SubVP pipe candidate requirements:
698 		 * - Refresh rate < 120hz
699 		 * - Not able to switch in vactive naturally (switching in active means the
700 		 *   DET provides enough buffer to hide the P-State switch latency -- trying
701 		 *   to combine this with SubVP can cause issues with the scheduling).
702 		 * - Not TMZ surface
703 		 */
704 		if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
705 				(!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
706 				pipe->stream->mall_stream_config.type == SUBVP_NONE &&
707 				(refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
708 				!pipe->plane_state->address.tmz_surface &&
709 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
710 				(vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
711 						dcn32_allow_subvp_with_active_margin(pipe)))) {
712 			while (pipe) {
713 				num_pipes++;
714 				pipe = pipe->bottom_pipe;
715 			}
716 
717 			pipe = &context->res_ctx.pipe_ctx[i];
718 			if (num_pipes <= free_pipes) {
719 				struct dc_stream_state *stream = pipe->stream;
720 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
721 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
722 				if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
723 					*index = i;
724 					max_frame_time = frame_us;
725 					valid_assignment_found = true;
726 					current_assignment_freesync = false;
727 				/* For the 2-Freesync display case, still choose the one with the
728 			     * longest frame time
729 			     */
730 				} else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
731 						(current_assignment_freesync && frame_us > max_frame_time))) {
732 					*index = i;
733 					valid_assignment_found = true;
734 					current_assignment_freesync = true;
735 				}
736 			}
737 		}
738 		pipe_idx++;
739 	}
740 	return valid_assignment_found;
741 }
742 
743 /**
744  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
745  * @dc: current dc state
746  * @context: new dc state
747  *
748  * This function returns true if there are enough free pipes
749  * to create the required phantom pipes for any given stream
750  * (that does not already have phantom pipe assigned).
751  *
752  * e.g. For a 2 stream config where the first stream uses one
753  * pipe and the second stream uses 2 pipes (i.e. pipe split),
754  * this function will return true because there is 1 remaining
755  * pipe which can be used as the phantom pipe for the non pipe
756  * split pipe.
757  *
758  * Return:
759  * True if there are enough free pipes to assign phantom pipes to at least one
760  * stream that does not already have phantom pipes assigned. Otherwise false.
761  */
762 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
763 {
764 	unsigned int i, split_cnt, free_pipes;
765 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
766 	bool subvp_possible = false;
767 
768 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
769 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
770 
771 		// Find the minimum pipe split count for non SubVP pipes
772 		if (pipe->stream && !pipe->top_pipe &&
773 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
774 			split_cnt = 0;
775 			while (pipe) {
776 				split_cnt++;
777 				pipe = pipe->bottom_pipe;
778 			}
779 
780 			if (split_cnt < min_pipe_split)
781 				min_pipe_split = split_cnt;
782 		}
783 	}
784 
785 	free_pipes = dcn32_get_num_free_pipes(dc, context);
786 
787 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
788 	// should not equal to the pipe_count)
789 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
790 		subvp_possible = true;
791 
792 	return subvp_possible;
793 }
794 
795 /**
796  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
797  * @dc: current dc state
798  * @context: new dc state
799  *
800  * High level algorithm:
801  * 1. Find longest microschedule length (in us) between the two SubVP pipes
802  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
803  * pipes still allows for the maximum microschedule to fit in the active
804  * region for both pipes.
805  *
806  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
807  */
808 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
809 {
810 	struct pipe_ctx *subvp_pipes[2];
811 	struct dc_stream_state *phantom = NULL;
812 	uint32_t microschedule_lines = 0;
813 	uint32_t index = 0;
814 	uint32_t i;
815 	uint32_t max_microschedule_us = 0;
816 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
817 
818 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
819 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
820 		uint32_t time_us = 0;
821 
822 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
823 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
824 		 */
825 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
826 		    pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
827 			phantom = pipe->stream->mall_stream_config.paired_stream;
828 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
829 					phantom->timing.v_addressable;
830 
831 			// Round up when calculating microschedule time (+ 1 at the end)
832 			time_us = (microschedule_lines * phantom->timing.h_total) /
833 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
834 						dc->caps.subvp_prefetch_end_to_mall_start_us +
835 						dc->caps.subvp_fw_processing_delay_us + 1;
836 			if (time_us > max_microschedule_us)
837 				max_microschedule_us = time_us;
838 
839 			subvp_pipes[index] = pipe;
840 			index++;
841 
842 			// Maximum 2 SubVP pipes
843 			if (index == 2)
844 				break;
845 		}
846 	}
847 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
848 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
849 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
850 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
851 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
852 			subvp_pipes[0]->stream->timing.h_total) /
853 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
854 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
855 			subvp_pipes[1]->stream->timing.h_total) /
856 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
857 
858 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
859 	    (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
860 		return true;
861 
862 	return false;
863 }
864 
865 /**
866  * subvp_drr_schedulable - Determine if SubVP + DRR config is schedulable
867  * @dc: current dc state
868  * @context: new dc state
869  * @drr_pipe: DRR pipe_ctx for the SubVP + DRR config
870  *
871  * High level algorithm:
872  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
873  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
874  * (the margin is equal to the MALL region + DRR margin (500us))
875  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
876  * then report the configuration as supported
877  *
878  * Return: True if the SubVP + DRR config is schedulable, false otherwise
879  */
880 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
881 {
882 	bool schedulable = false;
883 	uint32_t i;
884 	struct pipe_ctx *pipe = NULL;
885 	struct dc_crtc_timing *main_timing = NULL;
886 	struct dc_crtc_timing *phantom_timing = NULL;
887 	struct dc_crtc_timing *drr_timing = NULL;
888 	int16_t prefetch_us = 0;
889 	int16_t mall_region_us = 0;
890 	int16_t drr_frame_us = 0;	// nominal frame time
891 	int16_t subvp_active_us = 0;
892 	int16_t stretched_drr_us = 0;
893 	int16_t drr_stretched_vblank_us = 0;
894 	int16_t max_vblank_mallregion = 0;
895 	const struct dc_config *config = &dc->config;
896 
897 	if (config->disable_subvp_drr)
898 		return false;
899 
900 	// Find SubVP pipe
901 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
902 		pipe = &context->res_ctx.pipe_ctx[i];
903 
904 		// We check for master pipe, but it shouldn't matter since we only need
905 		// the pipe for timing info (stream should be same for any pipe splits)
906 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
907 			continue;
908 
909 		// Find the SubVP pipe
910 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
911 			break;
912 	}
913 
914 	main_timing = &pipe->stream->timing;
915 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
916 	drr_timing = &drr_pipe->stream->timing;
917 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
918 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
919 			dc->caps.subvp_prefetch_end_to_mall_start_us;
920 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
921 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
922 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
923 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
924 	// P-State allow width and FW delays already included phantom_timing->v_addressable
925 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
926 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
927 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
928 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
929 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
930 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
931 
932 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
933 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
934 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
935 	 * and the max of (VBLANK blanking time, MALL region)).
936 	 */
937 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
938 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
939 		schedulable = true;
940 
941 	return schedulable;
942 }
943 
944 
945 /**
946  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
947  * @dc: current dc state
948  * @context: new dc state
949  *
950  * High level algorithm:
951  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
952  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
953  * then report the configuration as supported
954  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
955  *
956  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
957  */
958 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
959 {
960 	struct pipe_ctx *pipe = NULL;
961 	struct pipe_ctx *subvp_pipe = NULL;
962 	bool found = false;
963 	bool schedulable = false;
964 	uint32_t i = 0;
965 	uint8_t vblank_index = 0;
966 	uint16_t prefetch_us = 0;
967 	uint16_t mall_region_us = 0;
968 	uint16_t vblank_frame_us = 0;
969 	uint16_t subvp_active_us = 0;
970 	uint16_t vblank_blank_us = 0;
971 	uint16_t max_vblank_mallregion = 0;
972 	struct dc_crtc_timing *main_timing = NULL;
973 	struct dc_crtc_timing *phantom_timing = NULL;
974 	struct dc_crtc_timing *vblank_timing = NULL;
975 
976 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
977 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
978 	 * is supported, it is either a single VBLANK case or two VBLANK
979 	 * displays which are synchronized (in which case they have identical
980 	 * timings).
981 	 */
982 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
983 		pipe = &context->res_ctx.pipe_ctx[i];
984 
985 		// We check for master pipe, but it shouldn't matter since we only need
986 		// the pipe for timing info (stream should be same for any pipe splits)
987 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
988 			continue;
989 
990 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
991 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
992 			vblank_index = i;
993 			found = true;
994 		}
995 
996 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
997 			subvp_pipe = pipe;
998 	}
999 	// Use ignore_msa_timing_param and VRR active, or Freesync flag to identify as DRR On
1000 	if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param &&
1001 			(context->res_ctx.pipe_ctx[vblank_index].stream->allow_freesync ||
1002 			context->res_ctx.pipe_ctx[vblank_index].stream->vrr_active_variable)) {
1003 		// SUBVP + DRR case -- only allowed if run through DRR validation path
1004 		schedulable = false;
1005 	} else if (found) {
1006 		main_timing = &subvp_pipe->stream->timing;
1007 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
1008 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
1009 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
1010 		// Also include the prefetch end to mallstart delay time
1011 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
1012 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
1013 				dc->caps.subvp_prefetch_end_to_mall_start_us;
1014 		// P-State allow width and FW delays already included phantom_timing->v_addressable
1015 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
1016 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
1017 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
1018 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1019 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
1020 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
1021 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
1022 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
1023 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
1024 
1025 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
1026 		// and the max of (VBLANK blanking time, MALL region)
1027 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
1028 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
1029 			schedulable = true;
1030 	}
1031 	return schedulable;
1032 }
1033 
1034 /**
1035  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1036  * and handle static analysis based on the case.
1037  * @dc: current dc state
1038  * @context: new dc state
1039  * @vlevel: Voltage level calculated by DML
1040  *
1041  * Three cases:
1042  * 1. SubVP + SubVP
1043  * 2. SubVP + VBLANK (DRR checked internally)
1044  * 3. SubVP + VACTIVE (currently unsupported)
1045  *
1046  * Return: True if statically schedulable, false otherwise
1047  */
1048 static bool subvp_validate_static_schedulability(struct dc *dc,
1049 				struct dc_state *context,
1050 				int vlevel)
1051 {
1052 	bool schedulable = true;	// true by default for single display case
1053 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1054 	uint32_t i, pipe_idx;
1055 	uint8_t subvp_count = 0;
1056 	uint8_t vactive_count = 0;
1057 
1058 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1059 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1060 
1061 		if (!pipe->stream)
1062 			continue;
1063 
1064 		if (pipe->plane_state && !pipe->top_pipe &&
1065 				pipe->stream->mall_stream_config.type == SUBVP_MAIN)
1066 			subvp_count++;
1067 
1068 		// Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1069 		// switching (SubVP + VACTIVE unsupported). In situations where we force
1070 		// SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1071 		if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 &&
1072 		    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1073 			vactive_count++;
1074 		}
1075 		pipe_idx++;
1076 	}
1077 
1078 	if (subvp_count == 2) {
1079 		// Static schedulability check for SubVP + SubVP case
1080 		schedulable = subvp_subvp_schedulable(dc, context);
1081 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
1082 		// Static schedulability check for SubVP + VBLANK case. Also handle the case where
1083 		// DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
1084 		if (vactive_count > 0)
1085 			schedulable = false;
1086 		else
1087 			schedulable = subvp_vblank_schedulable(dc, context);
1088 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1089 			vactive_count > 0) {
1090 		// For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1091 		// We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1092 		// SubVP + VACTIVE currently unsupported
1093 		schedulable = false;
1094 	}
1095 	return schedulable;
1096 }
1097 
1098 static void dcn32_full_validate_bw_helper(struct dc *dc,
1099 				   struct dc_state *context,
1100 				   display_e2e_pipe_params_st *pipes,
1101 				   int *vlevel,
1102 				   int *split,
1103 				   bool *merge,
1104 				   int *pipe_cnt)
1105 {
1106 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1107 	unsigned int dc_pipe_idx = 0;
1108 	int i = 0;
1109 	bool found_supported_config = false;
1110 	struct pipe_ctx *pipe = NULL;
1111 	uint32_t non_subvp_pipes = 0;
1112 	bool drr_pipe_found = false;
1113 	uint32_t drr_pipe_index = 0;
1114 
1115 	dc_assert_fp_enabled();
1116 
1117 	/*
1118 	 * DML favors voltage over p-state, but we're more interested in
1119 	 * supporting p-state over voltage. We can't support p-state in
1120 	 * prefetch mode > 0 so try capping the prefetch mode to start.
1121 	 * Override present for testing.
1122 	 */
1123 	if (dc->debug.dml_disallow_alternate_prefetch_modes)
1124 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1125 			dm_prefetch_support_uclk_fclk_and_stutter;
1126 	else
1127 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1128 			dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1129 
1130 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1131 	/* This may adjust vlevel and maxMpcComb */
1132 	if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1133 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1134 		vba->VoltageLevel = *vlevel;
1135 	}
1136 
1137 	/* Conditions for setting up phantom pipes for SubVP:
1138 	 * 1. Not force disable SubVP
1139 	 * 2. Full update (i.e. !fast_validate)
1140 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1141 	 * 4. Display configuration passes validation
1142 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1143 	 */
1144 	if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1145 	    !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) &&
1146 		(*vlevel == context->bw_ctx.dml.soc.num_states ||
1147 	    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1148 	    dc->debug.force_subvp_mclk_switch)) {
1149 
1150 		dcn32_merge_pipes_for_subvp(dc, context);
1151 		memset(merge, 0, MAX_PIPES * sizeof(bool));
1152 
1153 		/* to re-initialize viewport after the pipe merge */
1154 		for (i = 0; i < dc->res_pool->pipe_count; i++) {
1155 			struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1156 
1157 			if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1158 				continue;
1159 
1160 			resource_build_scaling_params(pipe_ctx);
1161 		}
1162 
1163 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1164 			dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1165 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1166 			 * Adding phantom pipes won't change the validation result, so change the DML input param
1167 			 * for P-State support before adding phantom pipes and recalculating the DML result.
1168 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1169 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1170 			 * enough to support MCLK switching.
1171 			 */
1172 			if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1173 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1174 					dm_prefetch_support_uclk_fclk_and_stutter) {
1175 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1176 								dm_prefetch_support_fclk_and_stutter;
1177 				/* There are params (such as FabricClock) that need to be recalculated
1178 				 * after validation fails (otherwise it will be 0). Calculation for
1179 				 * phantom vactive requires call into DML, so we must ensure all the
1180 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
1181 				 */
1182 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1183 			}
1184 
1185 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1186 
1187 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1188 			// Populate dppclk to trigger a recalculate in dml_get_voltage_level
1189 			// so the phantom pipe DLG params can be assigned correctly.
1190 			pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1191 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1192 
1193 			/* Check that vlevel requested supports pstate or not
1194 			 * if not, select the lowest vlevel that supports it
1195 			 */
1196 			for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1197 				if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1198 					*vlevel = i;
1199 					break;
1200 				}
1201 			}
1202 
1203 			if (*vlevel < context->bw_ctx.dml.soc.num_states &&
1204 			    vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
1205 			    && subvp_validate_static_schedulability(dc, context, *vlevel)) {
1206 				found_supported_config = true;
1207 			} else if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1208 				/* Case where 1 SubVP is added, and DML reports MCLK unsupported or DRR is allowed.
1209 				 * This handles the case for SubVP + DRR, where the DRR display does not support MCLK
1210 				 * switch at it's native refresh rate / timing, or DRR is allowed for the non-subvp
1211 				 * display.
1212 				 */
1213 				for (i = 0; i < dc->res_pool->pipe_count; i++) {
1214 					pipe = &context->res_ctx.pipe_ctx[i];
1215 					if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
1216 					    pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1217 						non_subvp_pipes++;
1218 						// Use ignore_msa_timing_param flag to identify as DRR
1219 						if (pipe->stream->ignore_msa_timing_param && pipe->stream->allow_freesync) {
1220 							drr_pipe_found = true;
1221 							drr_pipe_index = i;
1222 						}
1223 					}
1224 				}
1225 				// If there is only 1 remaining non SubVP pipe that is DRR, check static
1226 				// schedulability for SubVP + DRR.
1227 				if (non_subvp_pipes == 1 && drr_pipe_found) {
1228 					/* find lowest vlevel that supports the config */
1229 					for (i = *vlevel; i >= 0; i--) {
1230 						if (vba->ModeSupport[i][vba->maxMpcComb]) {
1231 							*vlevel = i;
1232 						} else {
1233 							break;
1234 						}
1235 					}
1236 
1237 					found_supported_config = subvp_drr_schedulable(dc, context,
1238 										       &context->res_ctx.pipe_ctx[drr_pipe_index]);
1239 				}
1240 			}
1241 		}
1242 
1243 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1244 		// remove phantom pipes and repopulate dml pipes
1245 		if (!found_supported_config) {
1246 			dc->res_pool->funcs->remove_phantom_pipes(dc, context, false);
1247 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1248 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1249 
1250 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1251 			/* This may adjust vlevel and maxMpcComb */
1252 			if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1253 				*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1254 				vba->VoltageLevel = *vlevel;
1255 			}
1256 		} else {
1257 			// Most populate phantom DLG params before programming hardware / timing for phantom pipe
1258 			dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1259 
1260 			/* Call validate_apply_pipe_split flags after calling DML getters for
1261 			 * phantom dlg params, or some of the VBA params indicating pipe split
1262 			 * can be overwritten by the getters.
1263 			 *
1264 			 * When setting up SubVP config, all pipes are merged before attempting to
1265 			 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1266 			 * and phantom pipes will be split in the regular pipe splitting sequence.
1267 			 */
1268 			memset(split, 0, MAX_PIPES * sizeof(int));
1269 			memset(merge, 0, MAX_PIPES * sizeof(bool));
1270 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1271 			vba->VoltageLevel = *vlevel;
1272 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1273 			// until driver has acquired the DMCUB lock to do it safely.
1274 		}
1275 	}
1276 }
1277 
1278 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1279 {
1280 	int i;
1281 
1282 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1283 		if (!context->res_ctx.pipe_ctx[i].stream)
1284 			continue;
1285 		if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1286 			return true;
1287 	}
1288 	return false;
1289 }
1290 
1291 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1292 {
1293 	struct dc_crtc_timing patched_crtc_timing;
1294 	uint32_t asic_blank_end   = 0;
1295 	uint32_t asic_blank_start = 0;
1296 	uint32_t newVstartup	  = 0;
1297 
1298 	patched_crtc_timing = *dc_crtc_timing;
1299 
1300 	if (patched_crtc_timing.flags.INTERLACE == 1) {
1301 		if (patched_crtc_timing.v_front_porch < 2)
1302 			patched_crtc_timing.v_front_porch = 2;
1303 	} else {
1304 		if (patched_crtc_timing.v_front_porch < 1)
1305 			patched_crtc_timing.v_front_porch = 1;
1306 	}
1307 
1308 	/* blank_start = frame end - front porch */
1309 	asic_blank_start = patched_crtc_timing.v_total -
1310 					patched_crtc_timing.v_front_porch;
1311 
1312 	/* blank_end = blank_start - active */
1313 	asic_blank_end = asic_blank_start -
1314 					patched_crtc_timing.v_border_bottom -
1315 					patched_crtc_timing.v_addressable -
1316 					patched_crtc_timing.v_border_top;
1317 
1318 	newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1319 
1320 	*vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1321 }
1322 
1323 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1324 				       display_e2e_pipe_params_st *pipes,
1325 				       int pipe_cnt, int vlevel)
1326 {
1327 	int i, pipe_idx, active_hubp_count = 0;
1328 	bool usr_retraining_support = false;
1329 	bool unbounded_req_enabled = false;
1330 
1331 	dc_assert_fp_enabled();
1332 
1333 	/* Writeback MCIF_WB arbitration parameters */
1334 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1335 
1336 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1337 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1338 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1339 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1340 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1341 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1342 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
1343 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1344 					!= dm_dram_clock_change_unsupported;
1345 
1346 	/* Pstate change might not be supported by hardware, but it might be
1347 	 * possible with firmware driven vertical blank stretching.
1348 	 */
1349 	context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1350 
1351 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1352 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1353 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1354 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1355 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1356 	else
1357 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1358 
1359 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1360 	ASSERT(usr_retraining_support);
1361 
1362 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1363 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1364 
1365 	unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1366 
1367 	if (unbounded_req_enabled && pipe_cnt > 1) {
1368 		// Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1369 		ASSERT(false);
1370 		unbounded_req_enabled = false;
1371 	}
1372 
1373 	context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1374 	context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1375 	context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1376 
1377 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1378 		if (!context->res_ctx.pipe_ctx[i].stream)
1379 			continue;
1380 		if (context->res_ctx.pipe_ctx[i].plane_state)
1381 			active_hubp_count++;
1382 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1383 				pipe_idx);
1384 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1385 				pipe_idx);
1386 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1387 				pipe_idx);
1388 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1389 				pipe_idx);
1390 
1391 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
1392 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1393 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1394 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
1395 		} else {
1396 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1397 							pipe_idx);
1398 			context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1399 		}
1400 
1401 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1402 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1403 		if (context->res_ctx.pipe_ctx[i].plane_state)
1404 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1405 		else
1406 			context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1407 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1408 
1409 		context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1410 
1411 		/* MALL Allocation Sizes */
1412 		/* count from active, top pipes per plane only */
1413 		if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1414 				(context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1415 				context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1416 				context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1417 			/* SS: all active surfaces stored in MALL */
1418 			if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type != SUBVP_PHANTOM) {
1419 				context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1420 
1421 				if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1422 					/* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1423 					context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1424 				}
1425 			} else {
1426 				/* SUBVP: phantom surfaces only stored in MALL */
1427 				context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1428 			}
1429 		}
1430 
1431 		if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1432 			dcn20_adjust_freesync_v_startup(
1433 				&context->res_ctx.pipe_ctx[i].stream->timing,
1434 				&context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1435 
1436 		pipe_idx++;
1437 	}
1438 	/* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1439 	if (!active_hubp_count) {
1440 		context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1441 		context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1442 		context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1443 		context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1444 		context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1445 		context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1446 		context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1447 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1448 	}
1449 	/*save a original dppclock copy*/
1450 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1451 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1452 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1453 			* 1000;
1454 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1455 			* 1000;
1456 
1457 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1458 
1459 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1460 
1461 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1462 		if (context->res_ctx.pipe_ctx[i].stream)
1463 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1464 	}
1465 
1466 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1467 
1468 		if (!context->res_ctx.pipe_ctx[i].stream)
1469 			continue;
1470 
1471 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1472 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1473 				pipe_cnt, pipe_idx);
1474 
1475 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1476 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1477 		pipe_idx++;
1478 	}
1479 }
1480 
1481 static struct pipe_ctx *dcn32_find_split_pipe(
1482 		struct dc *dc,
1483 		struct dc_state *context,
1484 		int old_index)
1485 {
1486 	struct pipe_ctx *pipe = NULL;
1487 	int i;
1488 
1489 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1490 		pipe = &context->res_ctx.pipe_ctx[old_index];
1491 		pipe->pipe_idx = old_index;
1492 	}
1493 
1494 	if (!pipe)
1495 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1496 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1497 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1498 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1499 					pipe = &context->res_ctx.pipe_ctx[i];
1500 					pipe->pipe_idx = i;
1501 					break;
1502 				}
1503 			}
1504 		}
1505 
1506 	/*
1507 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1508 	 * Add for debugging transient underflow during topology updates:
1509 	 * ASSERT(pipe);
1510 	 */
1511 	if (!pipe)
1512 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1513 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1514 				pipe = &context->res_ctx.pipe_ctx[i];
1515 				pipe->pipe_idx = i;
1516 				break;
1517 			}
1518 		}
1519 
1520 	return pipe;
1521 }
1522 
1523 static bool dcn32_split_stream_for_mpc_or_odm(
1524 		const struct dc *dc,
1525 		struct resource_context *res_ctx,
1526 		struct pipe_ctx *pri_pipe,
1527 		struct pipe_ctx *sec_pipe,
1528 		bool odm)
1529 {
1530 	int pipe_idx = sec_pipe->pipe_idx;
1531 	const struct resource_pool *pool = dc->res_pool;
1532 
1533 	DC_LOGGER_INIT(dc->ctx->logger);
1534 
1535 	if (odm && pri_pipe->plane_state) {
1536 		/* ODM + window MPO, where MPO window is on left half only */
1537 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1538 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1539 
1540 			DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1541 					__func__,
1542 					pri_pipe->pipe_idx);
1543 			return true;
1544 		}
1545 
1546 		/* ODM + window MPO, where MPO window is on right half only */
1547 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1548 
1549 			DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1550 					__func__,
1551 					pri_pipe->pipe_idx);
1552 			return true;
1553 		}
1554 	}
1555 
1556 	*sec_pipe = *pri_pipe;
1557 
1558 	sec_pipe->pipe_idx = pipe_idx;
1559 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1560 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1561 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1562 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1563 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1564 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1565 	sec_pipe->stream_res.dsc = NULL;
1566 	if (odm) {
1567 		if (pri_pipe->next_odm_pipe) {
1568 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1569 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1570 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1571 		}
1572 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1573 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1574 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1575 		}
1576 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1577 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1578 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1579 		}
1580 		pri_pipe->next_odm_pipe = sec_pipe;
1581 		sec_pipe->prev_odm_pipe = pri_pipe;
1582 		ASSERT(sec_pipe->top_pipe == NULL);
1583 
1584 		if (!sec_pipe->top_pipe)
1585 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1586 		else
1587 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1588 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1589 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1590 			ASSERT(sec_pipe->stream_res.dsc);
1591 			if (sec_pipe->stream_res.dsc == NULL)
1592 				return false;
1593 		}
1594 	} else {
1595 		if (pri_pipe->bottom_pipe) {
1596 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1597 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1598 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1599 		}
1600 		pri_pipe->bottom_pipe = sec_pipe;
1601 		sec_pipe->top_pipe = pri_pipe;
1602 
1603 		ASSERT(pri_pipe->plane_state);
1604 	}
1605 
1606 	return true;
1607 }
1608 
1609 bool dcn32_internal_validate_bw(struct dc *dc,
1610 				struct dc_state *context,
1611 				display_e2e_pipe_params_st *pipes,
1612 				int *pipe_cnt_out,
1613 				int *vlevel_out,
1614 				bool fast_validate)
1615 {
1616 	bool out = false;
1617 	bool repopulate_pipes = false;
1618 	int split[MAX_PIPES] = { 0 };
1619 	bool merge[MAX_PIPES] = { false };
1620 	bool newly_split[MAX_PIPES] = { false };
1621 	int pipe_cnt, i, pipe_idx;
1622 	int vlevel = context->bw_ctx.dml.soc.num_states;
1623 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1624 
1625 	dc_assert_fp_enabled();
1626 
1627 	ASSERT(pipes);
1628 	if (!pipes)
1629 		return false;
1630 
1631 	// For each full update, remove all existing phantom pipes first
1632 	dc->res_pool->funcs->remove_phantom_pipes(dc, context, fast_validate);
1633 
1634 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1635 
1636 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1637 
1638 	if (!pipe_cnt) {
1639 		out = true;
1640 		goto validate_out;
1641 	}
1642 
1643 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1644 	context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1645 
1646 	if (!fast_validate)
1647 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1648 
1649 	if (fast_validate ||
1650 			(dc->debug.dml_disallow_alternate_prefetch_modes &&
1651 			(vlevel == context->bw_ctx.dml.soc.num_states ||
1652 				vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1653 		/*
1654 		 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1655 		 * tried alternate prefetch modes during full validation.
1656 		 *
1657 		 * If mode is unsupported or there is no p-state support, then
1658 		 * fall back to favouring voltage.
1659 		 *
1660 		 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1661 		 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1662 		 */
1663 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1664 			dm_prefetch_support_none;
1665 
1666 		context->bw_ctx.dml.validate_max_state = fast_validate;
1667 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1668 
1669 		context->bw_ctx.dml.validate_max_state = false;
1670 
1671 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1672 			memset(split, 0, sizeof(split));
1673 			memset(merge, 0, sizeof(merge));
1674 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1675 			// dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1676 			vba->VoltageLevel = vlevel;
1677 		}
1678 	}
1679 
1680 	dml_log_mode_support_params(&context->bw_ctx.dml);
1681 
1682 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1683 		goto validate_fail;
1684 
1685 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1686 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1687 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1688 
1689 		if (!pipe->stream)
1690 			continue;
1691 
1692 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1693 				&& !dc->config.enable_windowed_mpo_odm
1694 				&& pipe->plane_state && mpo_pipe
1695 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1696 						&pipe->plane_res.scl_data.recout,
1697 						sizeof(struct rect)) != 0) {
1698 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1699 			goto validate_fail;
1700 		}
1701 		pipe_idx++;
1702 	}
1703 
1704 	/* merge pipes if necessary */
1705 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1706 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1707 
1708 		/*skip pipes that don't need merging*/
1709 		if (!merge[i])
1710 			continue;
1711 
1712 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1713 		if (pipe->prev_odm_pipe) {
1714 			/*split off odm pipe*/
1715 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1716 			if (pipe->next_odm_pipe)
1717 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1718 
1719 			/*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
1720 			if (pipe->bottom_pipe) {
1721 				if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
1722 					/*MPC split rules will handle this case*/
1723 					pipe->bottom_pipe->top_pipe = NULL;
1724 				} else {
1725 					/* when merging an ODM pipes, the bottom MPC pipe must now point to
1726 					 * the previous ODM pipe and its associated stream assets
1727 					 */
1728 					if (pipe->prev_odm_pipe->bottom_pipe) {
1729 						/* 3 plane MPO*/
1730 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
1731 						pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
1732 					} else {
1733 						/* 2 plane MPO*/
1734 						pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
1735 						pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
1736 					}
1737 
1738 					memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
1739 				}
1740 			}
1741 
1742 			if (pipe->top_pipe) {
1743 				pipe->top_pipe->bottom_pipe = NULL;
1744 			}
1745 
1746 			pipe->bottom_pipe = NULL;
1747 			pipe->next_odm_pipe = NULL;
1748 			pipe->plane_state = NULL;
1749 			pipe->stream = NULL;
1750 			pipe->top_pipe = NULL;
1751 			pipe->prev_odm_pipe = NULL;
1752 			if (pipe->stream_res.dsc)
1753 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1754 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1755 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1756 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1757 			repopulate_pipes = true;
1758 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1759 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1760 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1761 
1762 			top_pipe->bottom_pipe = bottom_pipe;
1763 			if (bottom_pipe)
1764 				bottom_pipe->top_pipe = top_pipe;
1765 
1766 			pipe->top_pipe = NULL;
1767 			pipe->bottom_pipe = NULL;
1768 			pipe->plane_state = NULL;
1769 			pipe->stream = NULL;
1770 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1771 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1772 			memset(&pipe->link_res, 0, sizeof(pipe->link_res));
1773 			repopulate_pipes = true;
1774 		} else
1775 			ASSERT(0); /* Should never try to merge master pipe */
1776 
1777 	}
1778 
1779 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1780 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1781 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1782 		struct pipe_ctx *hsplit_pipe = NULL;
1783 		bool odm;
1784 		int old_index = -1;
1785 
1786 		if (!pipe->stream || newly_split[i])
1787 			continue;
1788 
1789 		pipe_idx++;
1790 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1791 
1792 		if (!pipe->plane_state && !odm)
1793 			continue;
1794 
1795 		if (split[i]) {
1796 			if (odm) {
1797 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1798 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1799 				else if (old_pipe->next_odm_pipe)
1800 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1801 			} else {
1802 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1803 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1804 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1805 				else if (old_pipe->bottom_pipe &&
1806 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1807 					old_index = old_pipe->bottom_pipe->pipe_idx;
1808 			}
1809 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
1810 			ASSERT(hsplit_pipe);
1811 			if (!hsplit_pipe)
1812 				goto validate_fail;
1813 
1814 			if (!dcn32_split_stream_for_mpc_or_odm(
1815 					dc, &context->res_ctx,
1816 					pipe, hsplit_pipe, odm))
1817 				goto validate_fail;
1818 
1819 			newly_split[hsplit_pipe->pipe_idx] = true;
1820 			repopulate_pipes = true;
1821 		}
1822 		if (split[i] == 4) {
1823 			struct pipe_ctx *pipe_4to1;
1824 
1825 			if (odm && old_pipe->next_odm_pipe)
1826 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1827 			else if (!odm && old_pipe->bottom_pipe &&
1828 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1829 				old_index = old_pipe->bottom_pipe->pipe_idx;
1830 			else
1831 				old_index = -1;
1832 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1833 			ASSERT(pipe_4to1);
1834 			if (!pipe_4to1)
1835 				goto validate_fail;
1836 			if (!dcn32_split_stream_for_mpc_or_odm(
1837 					dc, &context->res_ctx,
1838 					pipe, pipe_4to1, odm))
1839 				goto validate_fail;
1840 			newly_split[pipe_4to1->pipe_idx] = true;
1841 
1842 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1843 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1844 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1845 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1846 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1847 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1848 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1849 			else
1850 				old_index = -1;
1851 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
1852 			ASSERT(pipe_4to1);
1853 			if (!pipe_4to1)
1854 				goto validate_fail;
1855 			if (!dcn32_split_stream_for_mpc_or_odm(
1856 					dc, &context->res_ctx,
1857 					hsplit_pipe, pipe_4to1, odm))
1858 				goto validate_fail;
1859 			newly_split[pipe_4to1->pipe_idx] = true;
1860 		}
1861 		if (odm)
1862 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1863 	}
1864 
1865 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1866 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1867 
1868 		if (pipe->plane_state) {
1869 			if (!resource_build_scaling_params(pipe))
1870 				goto validate_fail;
1871 		}
1872 	}
1873 
1874 	/* Actual dsc count per stream dsc validation*/
1875 	if (!dcn20_validate_dsc(dc, context)) {
1876 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1877 		goto validate_fail;
1878 	}
1879 
1880 	if (repopulate_pipes) {
1881 		int flag_max_mpc_comb = vba->maxMpcComb;
1882 		int flag_vlevel = vlevel;
1883 		int i;
1884 
1885 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1886 
1887 		/* repopulate_pipes = 1 means the pipes were either split or merged. In this case
1888 		 * we have to re-calculate the DET allocation and run through DML once more to
1889 		 * ensure all the params are calculated correctly. We do not need to run the
1890 		 * pipe split check again after this call (pipes are already split / merged).
1891 		 * */
1892 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1893 					dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1894 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1895 		if (vlevel == context->bw_ctx.dml.soc.num_states) {
1896 			/* failed after DET size changes */
1897 			goto validate_fail;
1898 		} else if (flag_max_mpc_comb == 0 &&
1899 				flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
1900 			/* check the context constructed with pipe split flags is still valid*/
1901 			bool flags_valid = false;
1902 			for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1903 				if (vba->ModeSupport[i][flag_max_mpc_comb]) {
1904 					vba->maxMpcComb = flag_max_mpc_comb;
1905 					vba->VoltageLevel = i;
1906 					vlevel = i;
1907 					flags_valid = true;
1908 				}
1909 			}
1910 
1911 			/* this should never happen */
1912 			if (!flags_valid)
1913 				goto validate_fail;
1914 		}
1915 	}
1916 	*vlevel_out = vlevel;
1917 	*pipe_cnt_out = pipe_cnt;
1918 
1919 	out = true;
1920 	goto validate_out;
1921 
1922 validate_fail:
1923 	out = false;
1924 
1925 validate_out:
1926 	return out;
1927 }
1928 
1929 
1930 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
1931 				display_e2e_pipe_params_st *pipes,
1932 				int pipe_cnt,
1933 				int vlevel)
1934 {
1935 	int i, pipe_idx, vlevel_temp = 0;
1936 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
1937 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1938 	double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
1939 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
1940 			dm_dram_clock_change_unsupported;
1941 	unsigned int dummy_latency_index = 0;
1942 	int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1943 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
1944 	bool subvp_in_use = dcn32_subvp_in_use(dc, context);
1945 	unsigned int min_dram_speed_mts_margin;
1946 	bool need_fclk_lat_as_dummy = false;
1947 	bool is_subvp_p_drr = false;
1948 	struct dc_stream_state *fpo_candidate_stream = NULL;
1949 
1950 	dc_assert_fp_enabled();
1951 
1952 	/* need to find dummy latency index for subvp */
1953 	if (subvp_in_use) {
1954 		/* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
1955 		if (!pstate_en) {
1956 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1957 			context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
1958 			pstate_en = true;
1959 			is_subvp_p_drr = true;
1960 		}
1961 		dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1962 						context, pipes, pipe_cnt, vlevel);
1963 
1964 		/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
1965 		 * scheduled correctly to account for dummy pstate.
1966 		 */
1967 		if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
1968 			need_fclk_lat_as_dummy = true;
1969 			context->bw_ctx.dml.soc.fclk_change_latency_us =
1970 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
1971 		}
1972 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
1973 							dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
1974 		dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
1975 		maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
1976 		if (is_subvp_p_drr) {
1977 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
1978 		}
1979 	}
1980 
1981 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1982 	for (i = 0; i < context->stream_count; i++) {
1983 		if (context->streams[i])
1984 			context->streams[i]->fpo_in_use = false;
1985 	}
1986 
1987 	if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
1988 			pstate_en && vlevel != 0)) {
1989 		/* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
1990 		fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
1991 		if (fpo_candidate_stream) {
1992 			fpo_candidate_stream->fpo_in_use = true;
1993 			context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
1994 		}
1995 
1996 		if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
1997 			dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
1998 				context, pipes, pipe_cnt, vlevel);
1999 
2000 			/* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2001 			 * we reinstate the original dram_clock_change_latency_us on the context
2002 			 * and all variables that may have changed up to this point, except the
2003 			 * newly found dummy_latency_index
2004 			 */
2005 			context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2006 					dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2007 			/* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2008 			 * prefetch is scheduled correctly to account for dummy pstate.
2009 			 */
2010 			if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2011 				need_fclk_lat_as_dummy = true;
2012 				context->bw_ctx.dml.soc.fclk_change_latency_us =
2013 						dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2014 			}
2015 			dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2016 			if (vlevel_temp < vlevel) {
2017 				vlevel = vlevel_temp;
2018 				maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2019 				dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2020 				pstate_en = true;
2021 			} else {
2022 				/* Restore FCLK latency and re-run validation to go back to original validation
2023 				 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2024 				 * voltage level)
2025 				 */
2026 				context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2027 				for (i = 0; i < context->stream_count; i++) {
2028 					if (context->streams[i])
2029 						context->streams[i]->fpo_in_use = false;
2030 				}
2031 				context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2032 				dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2033 			}
2034 		}
2035 	}
2036 
2037 	/* Set B:
2038 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2039 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2040 	 * calculations to cover bootup clocks.
2041 	 * DCFCLK: soc.clock_limits[2] when available
2042 	 * UCLK: soc.clock_limits[2] when available
2043 	 */
2044 	if (dcn3_2_soc.num_states > 2) {
2045 		vlevel_temp = 2;
2046 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2047 	} else
2048 		dcfclk = 615; //DCFCLK Vmin_lv
2049 
2050 	pipes[0].clks_cfg.voltage = vlevel_temp;
2051 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2052 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2053 
2054 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2055 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2056 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2057 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2058 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2059 	}
2060 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2061 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2062 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2063 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2064 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2065 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2066 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2067 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2068 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2069 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2070 
2071 	/* Set D:
2072 	 * All clocks min.
2073 	 * DCFCLK: Min, as reported by PM FW when available
2074 	 * UCLK  : Min, as reported by PM FW when available
2075 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2076 	 */
2077 
2078 	/*
2079 	if (dcn3_2_soc.num_states > 2) {
2080 		vlevel_temp = 0;
2081 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2082 	} else
2083 		dcfclk = 615; //DCFCLK Vmin_lv
2084 
2085 	pipes[0].clks_cfg.voltage = vlevel_temp;
2086 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2087 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2088 
2089 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2090 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2091 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2092 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2093 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2094 	}
2095 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2096 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2097 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2098 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2099 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2100 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2101 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2102 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2103 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2104 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2105 	*/
2106 
2107 	/* Set C, for Dummy P-State:
2108 	 * All clocks min.
2109 	 * DCFCLK: Min, as reported by PM FW, when available
2110 	 * UCLK  : Min,  as reported by PM FW, when available
2111 	 * pstate latency as per UCLK state dummy pstate latency
2112 	 */
2113 
2114 	// For Set A and Set C use values from validation
2115 	pipes[0].clks_cfg.voltage = vlevel;
2116 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2117 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2118 
2119 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2120 		pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2121 	}
2122 
2123 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2124 		min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2125 		min_dram_speed_mts_margin = 160;
2126 
2127 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2128 			dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2129 
2130 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2131 			dm_dram_clock_change_unsupported) {
2132 			int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2133 
2134 			min_dram_speed_mts =
2135 				dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2136 		}
2137 
2138 		if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2139 			/* find largest table entry that is lower than dram speed,
2140 			 * but lower than DPM0 still uses DPM0
2141 			 */
2142 			for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2143 				if (min_dram_speed_mts + min_dram_speed_mts_margin >
2144 					dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2145 					break;
2146 		}
2147 
2148 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2149 			dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2150 
2151 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2152 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2153 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2154 	}
2155 
2156 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2157 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2158 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2159 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2160 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2161 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2162 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2163 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2164 	/* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2165 	 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2166 	 * value.
2167 	 */
2168 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2169 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2170 
2171 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2172 		/* The only difference between A and C is p-state latency, if p-state is not supported
2173 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2174 		 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2175 		 */
2176 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2177 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2178 		/* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2179 		 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2180 		 */
2181 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2182 	} else {
2183 		/* Set A:
2184 		 * All clocks min.
2185 		 * DCFCLK: Min, as reported by PM FW, when available
2186 		 * UCLK: Min, as reported by PM FW, when available
2187 		 */
2188 
2189 		/* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2190 		 */
2191 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2192 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2193 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2194 
2195 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2196 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2197 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2198 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2199 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2200 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2201 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2202 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2203 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2204 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2205 	}
2206 
2207 	/* Make set D = set A since we do not optimized watermarks for MALL */
2208 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2209 
2210 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2211 		if (!context->res_ctx.pipe_ctx[i].stream)
2212 			continue;
2213 
2214 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2215 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2216 
2217 		if (dc->config.forced_clocks) {
2218 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2219 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2220 		}
2221 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2222 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2223 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2224 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2225 
2226 		pipe_idx++;
2227 	}
2228 
2229 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2230 
2231 	/* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2232 	if (need_fclk_lat_as_dummy)
2233 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2234 				dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2235 
2236 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2237 
2238 	if (!pstate_en)
2239 		/* Restore full p-state latency */
2240 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2241 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2242 
2243 	/* revert fclk lat changes if required */
2244 	if (need_fclk_lat_as_dummy)
2245 		context->bw_ctx.dml.soc.fclk_change_latency_us =
2246 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2247 }
2248 
2249 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2250 		unsigned int *optimal_dcfclk,
2251 		unsigned int *optimal_fclk)
2252 {
2253 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
2254 
2255 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2256 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2257 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2258 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2259 
2260 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2261 
2262 	if (optimal_fclk)
2263 		*optimal_fclk = bw_from_dram /
2264 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2265 
2266 	if (optimal_dcfclk)
2267 		*optimal_dcfclk =  bw_from_dram /
2268 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2269 }
2270 
2271 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2272 		unsigned int index)
2273 {
2274 	int i;
2275 
2276 	if (*num_entries == 0)
2277 		return;
2278 
2279 	for (i = index; i < *num_entries - 1; i++) {
2280 		table[i] = table[i + 1];
2281 	}
2282 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2283 }
2284 
2285 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2286 {
2287 	int i;
2288 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2289 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2290 
2291 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2292 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2293 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2294 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2295 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2296 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2297 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2298 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2299 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2300 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2301 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2302 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2303 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2304 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2305 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2306 	}
2307 
2308 	/* Scan through clock values we currently have and if they are 0,
2309 	 *  then populate it with dcn3_2_soc.clock_limits[] value.
2310 	 *
2311 	 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2312 	 *  0, will cause it to skip building the clock table.
2313 	 */
2314 	if (max_dcfclk_mhz == 0)
2315 		bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2316 	if (max_dispclk_mhz == 0)
2317 		bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2318 	if (max_dtbclk_mhz == 0)
2319 		bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2320 	if (max_uclk_mhz == 0)
2321 		bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2322 }
2323 
2324 static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
2325 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2326 {
2327 	int i, j;
2328 	struct _vcs_dpi_voltage_scaling_st entry = {0};
2329 
2330 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2331 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2332 
2333 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2334 
2335 	static const unsigned int num_dcfclk_stas = 5;
2336 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2337 
2338 	unsigned int num_uclk_dpms = 0;
2339 	unsigned int num_fclk_dpms = 0;
2340 	unsigned int num_dcfclk_dpms = 0;
2341 
2342 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2343 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2344 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2345 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2346 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2347 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2348 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2349 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2350 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2351 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2352 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2353 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2354 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2355 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2356 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2357 
2358 		if (bw_params->clk_table.entries[i].memclk_mhz > 0)
2359 			num_uclk_dpms++;
2360 		if (bw_params->clk_table.entries[i].fclk_mhz > 0)
2361 			num_fclk_dpms++;
2362 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
2363 			num_dcfclk_dpms++;
2364 	}
2365 
2366 	if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2367 		min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2368 
2369 	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
2370 		return -1;
2371 
2372 	if (max_dppclk_mhz == 0)
2373 		max_dppclk_mhz = max_dispclk_mhz;
2374 
2375 	if (max_fclk_mhz == 0)
2376 		max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2377 
2378 	if (max_phyclk_mhz == 0)
2379 		max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2380 
2381 	*num_entries = 0;
2382 	entry.dispclk_mhz = max_dispclk_mhz;
2383 	entry.dscclk_mhz = max_dispclk_mhz / 3;
2384 	entry.dppclk_mhz = max_dppclk_mhz;
2385 	entry.dtbclk_mhz = max_dtbclk_mhz;
2386 	entry.phyclk_mhz = max_phyclk_mhz;
2387 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2388 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2389 
2390 	// Insert all the DCFCLK STAs
2391 	for (i = 0; i < num_dcfclk_stas; i++) {
2392 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
2393 		entry.fabricclk_mhz = 0;
2394 		entry.dram_speed_mts = 0;
2395 
2396 		insert_entry_into_table_sorted(table, num_entries, &entry);
2397 	}
2398 
2399 	// Insert the max DCFCLK
2400 	entry.dcfclk_mhz = max_dcfclk_mhz;
2401 	entry.fabricclk_mhz = 0;
2402 	entry.dram_speed_mts = 0;
2403 
2404 	insert_entry_into_table_sorted(table, num_entries, &entry);
2405 
2406 	// Insert the UCLK DPMS
2407 	for (i = 0; i < num_uclk_dpms; i++) {
2408 		entry.dcfclk_mhz = 0;
2409 		entry.fabricclk_mhz = 0;
2410 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2411 
2412 		insert_entry_into_table_sorted(table, num_entries, &entry);
2413 	}
2414 
2415 	// If FCLK is coarse grained, insert individual DPMs.
2416 	if (num_fclk_dpms > 2) {
2417 		for (i = 0; i < num_fclk_dpms; i++) {
2418 			entry.dcfclk_mhz = 0;
2419 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2420 			entry.dram_speed_mts = 0;
2421 
2422 			insert_entry_into_table_sorted(table, num_entries, &entry);
2423 		}
2424 	}
2425 	// If FCLK fine grained, only insert max
2426 	else {
2427 		entry.dcfclk_mhz = 0;
2428 		entry.fabricclk_mhz = max_fclk_mhz;
2429 		entry.dram_speed_mts = 0;
2430 
2431 		insert_entry_into_table_sorted(table, num_entries, &entry);
2432 	}
2433 
2434 	// At this point, the table contains all "points of interest" based on
2435 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2436 	// ratios (by derate, are exact).
2437 
2438 	// Remove states that require higher clocks than are supported
2439 	for (i = *num_entries - 1; i >= 0 ; i--) {
2440 		if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
2441 				table[i].fabricclk_mhz > max_fclk_mhz ||
2442 				table[i].dram_speed_mts > max_uclk_mhz * 16)
2443 			remove_entry_from_table_at_index(table, num_entries, i);
2444 	}
2445 
2446 	// At this point, the table only contains supported points of interest
2447 	// it could be used as is, but some states may be redundant due to
2448 	// coarse grained nature of some clocks, so we want to round up to
2449 	// coarse grained DPMs and remove duplicates.
2450 
2451 	// Round up UCLKs
2452 	for (i = *num_entries - 1; i >= 0 ; i--) {
2453 		for (j = 0; j < num_uclk_dpms; j++) {
2454 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2455 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2456 				break;
2457 			}
2458 		}
2459 	}
2460 
2461 	// If FCLK is coarse grained, round up to next DPMs
2462 	if (num_fclk_dpms > 2) {
2463 		for (i = *num_entries - 1; i >= 0 ; i--) {
2464 			for (j = 0; j < num_fclk_dpms; j++) {
2465 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2466 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2467 					break;
2468 				}
2469 			}
2470 		}
2471 	}
2472 	// Otherwise, round up to minimum.
2473 	else {
2474 		for (i = *num_entries - 1; i >= 0 ; i--) {
2475 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
2476 				table[i].fabricclk_mhz = min_fclk_mhz;
2477 			}
2478 		}
2479 	}
2480 
2481 	// Round DCFCLKs up to minimum
2482 	for (i = *num_entries - 1; i >= 0 ; i--) {
2483 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2484 			table[i].dcfclk_mhz = min_dcfclk_mhz;
2485 		}
2486 	}
2487 
2488 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2489 	i = 0;
2490 	while (i < *num_entries - 1) {
2491 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2492 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2493 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2494 			remove_entry_from_table_at_index(table, num_entries, i + 1);
2495 		else
2496 			i++;
2497 	}
2498 
2499 	// Fix up the state indicies
2500 	for (i = *num_entries - 1; i >= 0 ; i--) {
2501 		table[i].state = i;
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 /*
2508  * dcn32_update_bw_bounding_box
2509  *
2510  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2511  * spreadsheet with actual values as per dGPU SKU:
2512  * - with passed few options from dc->config
2513  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2514  *   need to get it from PM FW)
2515  * - with passed latency values (passed in ns units) in dc-> bb override for
2516  *   debugging purposes
2517  * - with passed latencies from VBIOS (in 100_ns units) if available for
2518  *   certain dGPU SKU
2519  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2520  *   of the same ASIC)
2521  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2522  *   FW for different clocks (which might differ for certain dGPU SKU of the
2523  *   same ASIC)
2524  */
2525 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2526 {
2527 	dc_assert_fp_enabled();
2528 
2529 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
2530 		/* Overrides from dc->config options */
2531 		dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
2532 
2533 		/* Override from passed dc->bb_overrides if available*/
2534 		if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
2535 				&& dc->bb_overrides.sr_exit_time_ns) {
2536 			dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
2537 		}
2538 
2539 		if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
2540 				!= dc->bb_overrides.sr_enter_plus_exit_time_ns
2541 				&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
2542 			dcn3_2_soc.sr_enter_plus_exit_time_us =
2543 				dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
2544 		}
2545 
2546 		if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
2547 			&& dc->bb_overrides.urgent_latency_ns) {
2548 			dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2549 			dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
2550 		}
2551 
2552 		if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
2553 				!= dc->bb_overrides.dram_clock_change_latency_ns
2554 				&& dc->bb_overrides.dram_clock_change_latency_ns) {
2555 			dcn3_2_soc.dram_clock_change_latency_us =
2556 				dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
2557 		}
2558 
2559 		if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
2560 				!= dc->bb_overrides.fclk_clock_change_latency_ns
2561 				&& dc->bb_overrides.fclk_clock_change_latency_ns) {
2562 			dcn3_2_soc.fclk_change_latency_us =
2563 				dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
2564 		}
2565 
2566 		if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
2567 				!= dc->bb_overrides.dummy_clock_change_latency_ns
2568 				&& dc->bb_overrides.dummy_clock_change_latency_ns) {
2569 			dcn3_2_soc.dummy_pstate_latency_us =
2570 				dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
2571 		}
2572 
2573 		/* Override from VBIOS if VBIOS bb_info available */
2574 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
2575 			struct bp_soc_bb_info bb_info = {0};
2576 
2577 			if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
2578 				if (bb_info.dram_clock_change_latency_100ns > 0)
2579 					dcn3_2_soc.dram_clock_change_latency_us =
2580 						bb_info.dram_clock_change_latency_100ns * 10;
2581 
2582 				if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
2583 					dcn3_2_soc.sr_enter_plus_exit_time_us =
2584 						bb_info.dram_sr_enter_exit_latency_100ns * 10;
2585 
2586 				if (bb_info.dram_sr_exit_latency_100ns > 0)
2587 					dcn3_2_soc.sr_exit_time_us =
2588 						bb_info.dram_sr_exit_latency_100ns * 10;
2589 			}
2590 		}
2591 
2592 		/* Override from VBIOS for num_chan */
2593 		if (dc->ctx->dc_bios->vram_info.num_chans) {
2594 			dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2595 			dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
2596 				dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
2597 		}
2598 
2599 		if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2600 			dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2601 	}
2602 
2603 	/* DML DSC delay factor workaround */
2604 	dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
2605 
2606 	dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
2607 
2608 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
2609 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2610 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2611 
2612 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
2613 	if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
2614 		if (dc->debug.use_legacy_soc_bb_mechanism) {
2615 			unsigned int i = 0, j = 0, num_states = 0;
2616 
2617 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2618 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2619 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2620 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2621 			unsigned int min_dcfclk = UINT_MAX;
2622 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
2623 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
2624 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2625 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
2626 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
2627 
2628 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2629 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2630 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2631 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
2632 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
2633 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
2634 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2635 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2636 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2637 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2638 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2639 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2640 			}
2641 			if (min_dcfclk > dcfclk_sta_targets[0])
2642 				dcfclk_sta_targets[0] = min_dcfclk;
2643 			if (!max_dcfclk_mhz)
2644 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2645 			if (!max_dispclk_mhz)
2646 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2647 			if (!max_dppclk_mhz)
2648 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
2649 			if (!max_phyclk_mhz)
2650 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2651 
2652 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2653 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2654 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
2655 				num_dcfclk_sta_targets++;
2656 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2657 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2658 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
2659 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
2660 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
2661 						break;
2662 					}
2663 				}
2664 				// Update size of array since we "removed" duplicates
2665 				num_dcfclk_sta_targets = i + 1;
2666 			}
2667 
2668 			num_uclk_states = bw_params->clk_table.num_entries;
2669 
2670 			// Calculate optimal dcfclk for each uclk
2671 			for (i = 0; i < num_uclk_states; i++) {
2672 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2673 						&optimal_dcfclk_for_uclk[i], NULL);
2674 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2675 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2676 				}
2677 			}
2678 
2679 			// Calculate optimal uclk for each dcfclk sta target
2680 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2681 				for (j = 0; j < num_uclk_states; j++) {
2682 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2683 						optimal_uclk_for_dcfclk_sta_targets[i] =
2684 								bw_params->clk_table.entries[j].memclk_mhz * 16;
2685 						break;
2686 					}
2687 				}
2688 			}
2689 
2690 			i = 0;
2691 			j = 0;
2692 			// create the final dcfclk and uclk table
2693 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2694 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2695 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2696 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2697 				} else {
2698 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2699 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2700 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2701 					} else {
2702 						j = num_uclk_states;
2703 					}
2704 				}
2705 			}
2706 
2707 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2708 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2709 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2710 			}
2711 
2712 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2713 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
2714 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2715 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2716 			}
2717 
2718 			dcn3_2_soc.num_states = num_states;
2719 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
2720 				dcn3_2_soc.clock_limits[i].state = i;
2721 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2722 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2723 
2724 				/* Fill all states with max values of all these clocks */
2725 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
2726 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
2727 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
2728 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
2729 
2730 				/* Populate from bw_params for DTBCLK, SOCCLK */
2731 				if (i > 0) {
2732 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
2733 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
2734 					} else {
2735 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2736 					}
2737 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
2738 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
2739 				}
2740 
2741 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
2742 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
2743 				else
2744 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
2745 
2746 				if (!dram_speed_mts[i] && i > 0)
2747 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
2748 				else
2749 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2750 
2751 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
2752 				/* PHYCLK_D18, PHYCLK_D32 */
2753 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2754 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2755 			}
2756 		} else {
2757 			build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
2758 		}
2759 
2760 		/* Re-init DML with updated bb */
2761 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2762 		if (dc->current_state)
2763 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2764 	}
2765 }
2766 
2767 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
2768 				  int pipe_cnt)
2769 {
2770 	dc_assert_fp_enabled();
2771 
2772 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
2773 	pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
2774 }
2775 
2776 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
2777 {
2778 	bool allow = false;
2779 	uint32_t refresh_rate = 0;
2780 
2781 	/* Allow subvp on displays that have active margin for 2560x1440@60hz displays
2782 	 * only for now. There must be no scaling as well.
2783 	 *
2784 	 * For now we only enable on 2560x1440@60hz displays to enable 4K60 + 1440p60 configs
2785 	 * for p-state switching.
2786 	 */
2787 	if (pipe->stream && pipe->plane_state) {
2788 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2789 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2790 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2791 		if (pipe->stream->timing.v_addressable == 1440 &&
2792 				pipe->stream->timing.h_addressable == 2560 &&
2793 				refresh_rate >= 55 && refresh_rate <= 65 &&
2794 				pipe->plane_state->src_rect.height == 1440 &&
2795 				pipe->plane_state->src_rect.width == 2560 &&
2796 				pipe->plane_state->dst_rect.height == 1440 &&
2797 				pipe->plane_state->dst_rect.width == 2560)
2798 			allow = true;
2799 	}
2800 	return allow;
2801 }
2802 
2803 /**
2804  * ************************************************************************************************
2805  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
2806  *
2807  * @param [in]: dc: Current DC state
2808  * @param [in]: context: New DC state to be programmed
2809  * @param [in]: pipe: Pipe to be considered for use in subvp
2810  *
2811  * On high refresh rate display configs, we will allow subvp under the following conditions:
2812  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
2813  * 2. Refresh rate is between 120hz - 165hz
2814  * 3. No scaling
2815  * 4. Freesync is inactive
2816  * 5. For single display cases, freesync must be disabled
2817  *
2818  * @return: True if pipe can be used for subvp, false otherwise
2819  *
2820  * ************************************************************************************************
2821  */
2822 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
2823 {
2824 	bool allow = false;
2825 	uint32_t refresh_rate = 0;
2826 	uint32_t min_refresh = subvp_high_refresh_list.min_refresh;
2827 	uint32_t max_refresh = subvp_high_refresh_list.max_refresh;
2828 	uint32_t i;
2829 
2830 	if (!dc->debug.disable_subvp_high_refresh && pipe->stream &&
2831 			pipe->plane_state && !pipe->stream->vrr_active_variable) {
2832 		refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
2833 						pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
2834 						/ (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
2835 		if (refresh_rate >= min_refresh && refresh_rate <= max_refresh) {
2836 			for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
2837 				uint32_t width = subvp_high_refresh_list.res[i].width;
2838 				uint32_t height = subvp_high_refresh_list.res[i].height;
2839 
2840 				if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
2841 					if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
2842 						allow = true;
2843 						break;
2844 					}
2845 				}
2846 			}
2847 		}
2848 	}
2849 	return allow;
2850 }
2851 
2852 /**
2853  * *******************************************************************************************
2854  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
2855  *
2856  * @param [in]: dc: Current DC state
2857  * @param [in]: context: New DC state to be programmed
2858  *
2859  * @return: Max vratio for prefetch
2860  *
2861  * *******************************************************************************************
2862  */
2863 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
2864 {
2865 	double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
2866 	int i;
2867 
2868 	/* For single display MPO configs, allow the max vratio to be 8
2869 	 * if any plane is YUV420 format
2870 	 */
2871 	if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
2872 		for (i = 0; i < context->stream_status[0].plane_count; i++) {
2873 			if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
2874 					context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
2875 				max_vratio_pre = __DML_MAX_VRATIO_PRE__;
2876 			}
2877 		}
2878 	}
2879 	return max_vratio_pre;
2880 }
2881 
2882 /**
2883  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
2884  *
2885  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
2886  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
2887  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
2888  * ActiveMargin <= 0 to be the FPO stream candidate if found.
2889  *
2890  *
2891  * @param [in]: dc - current dc state
2892  * @param [in]: context - new dc state
2893  * @param [out]: fpo_candidate_stream - pointer to FPO stream candidate if one is found
2894  *
2895  * Return: void
2896  */
2897 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
2898 {
2899 	unsigned int i, pipe_idx;
2900 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2901 
2902 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2903 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2904 
2905 		if (!pipe->stream)
2906 			continue;
2907 
2908 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
2909 			*fpo_candidate_stream = pipe->stream;
2910 			break;
2911 		}
2912 		pipe_idx++;
2913 	}
2914 }
2915 
2916 /**
2917  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
2918  *
2919  * @param [in]: dc - current dc state
2920  * @param [in]: context - new dc state
2921  * @param [in]: vactive_margin_req_us - The vactive marign required for a vactive pipe to be
2922  *                                      considered "found"
2923  *
2924  * Return: True if VACTIVE display is found, false otherwise
2925  */
2926 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
2927 {
2928 	unsigned int i, pipe_idx;
2929 	const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2930 	bool vactive_found = false;
2931 
2932 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2933 		const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2934 
2935 		if (!pipe->stream)
2936 			continue;
2937 
2938 		if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us) {
2939 			vactive_found = true;
2940 			break;
2941 		}
2942 		pipe_idx++;
2943 	}
2944 	return vactive_found;
2945 }
2946 
2947 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
2948 {
2949 	dc_assert_fp_enabled();
2950 	dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
2951 }
2952 
2953 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
2954 {
2955 	// WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
2956 	if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
2957 			dc->dml.soc.num_chans <= 8) {
2958 		int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
2959 
2960 		if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
2961 				num_mclk_levels > 1) {
2962 			context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
2963 			context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
2964 		}
2965 	}
2966 }
2967