xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource.c (revision f4356947f0297b0962fdd197672db7edf9f58be6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73 
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76 
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91 
92 #define DC_LOGGER_INIT(logger)
93 
94 enum dcn32_clk_src_array_id {
95 	DCN32_CLK_SRC_PLL0,
96 	DCN32_CLK_SRC_PLL1,
97 	DCN32_CLK_SRC_PLL2,
98 	DCN32_CLK_SRC_PLL3,
99 	DCN32_CLK_SRC_PLL4,
100 	DCN32_CLK_SRC_TOTAL
101 };
102 
103 /* begin *********************
104  * macros to expend register list macro defined in HW object header file
105  */
106 
107 /* DCN */
108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
109 
110 #define BASE(seg) BASE_INNER(seg)
111 
112 #define SR(reg_name)\
113 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
114 					reg ## reg_name
115 #define SR_ARR(reg_name, id) \
116 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
117 
118 #define SR_ARR_INIT(reg_name, id, value) \
119 	REG_STRUCT[id].reg_name = value
120 
121 #define SRI(reg_name, block, id)\
122 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 		reg ## block ## id ## _ ## reg_name
124 
125 #define SRI_ARR(reg_name, block, id)\
126 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 		reg ## block ## id ## _ ## reg_name
128 
129 #define SR_ARR_I2C(reg_name, id) \
130 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
131 
132 #define SRI_ARR_I2C(reg_name, block, id)\
133 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
134 		reg ## block ## id ## _ ## reg_name
135 
136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
137 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 		reg ## block ## id ## _ ## reg_name
139 
140 #define SRI2(reg_name, block, id)\
141 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
142 		reg ## reg_name
143 #define SRI2_ARR(reg_name, block, id)\
144 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
145 		reg ## reg_name
146 
147 #define SRIR(var_name, reg_name, block, id)\
148 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
149 		reg ## block ## id ## _ ## reg_name
150 
151 #define SRII(reg_name, block, id)\
152 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 					reg ## block ## id ## _ ## reg_name
154 
155 #define SRII_ARR_2(reg_name, block, id, inst)\
156 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 		reg ## block ## id ## _ ## reg_name
158 
159 #define SRII_MPC_RMU(reg_name, block, id)\
160 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 		reg ## block ## id ## _ ## reg_name
162 
163 #define SRII_DWB(reg_name, temp_name, block, id)\
164 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
165 		reg ## block ## id ## _ ## temp_name
166 
167 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
168 	.field_name = reg_name ## __ ## field_name ## post_fix
169 
170 #define DCCG_SRII(reg_name, block, id)\
171 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
172 		reg ## block ## id ## _ ## reg_name
173 
174 #define VUPDATE_SRII(reg_name, block, id)\
175 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
176 		reg ## reg_name ## _ ## block ## id
177 
178 /* NBIO */
179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
180 
181 #define NBIO_BASE(seg) \
182 	NBIO_BASE_INNER(seg)
183 
184 #define NBIO_SR(reg_name)\
185 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
186 			regBIF_BX0_ ## reg_name
187 #define NBIO_SR_ARR(reg_name, id)\
188 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
189 		regBIF_BX0_ ## reg_name
190 
191 #undef CTX
192 #define CTX ctx
193 #define REG(reg_name) \
194 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
195 
196 static struct bios_registers bios_regs;
197 
198 #define bios_regs_init() \
199 		( \
200 		NBIO_SR(BIOS_SCRATCH_3),\
201 		NBIO_SR(BIOS_SCRATCH_6)\
202 		)
203 
204 #define clk_src_regs_init(index, pllid)\
205 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
206 
207 static struct dce110_clk_src_regs clk_src_regs[5];
208 
209 static const struct dce110_clk_src_shift cs_shift = {
210 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
211 };
212 
213 static const struct dce110_clk_src_mask cs_mask = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
215 };
216 
217 #define abm_regs_init(id)\
218 		ABM_DCN32_REG_LIST_RI(id)
219 
220 static struct dce_abm_registers abm_regs[4];
221 
222 static const struct dce_abm_shift abm_shift = {
223 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
224 };
225 
226 static const struct dce_abm_mask abm_mask = {
227 		ABM_MASK_SH_LIST_DCN32(_MASK)
228 };
229 
230 #define audio_regs_init(id)\
231 		AUD_COMMON_REG_LIST_RI(id)
232 
233 static struct dce_audio_registers audio_regs[5];
234 
235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
236 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
237 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
238 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
239 
240 static const struct dce_audio_shift audio_shift = {
241 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
242 };
243 
244 static const struct dce_audio_mask audio_mask = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
246 };
247 
248 #define vpg_regs_init(id)\
249 	VPG_DCN3_REG_LIST_RI(id)
250 
251 static struct dcn30_vpg_registers vpg_regs[10];
252 
253 static const struct dcn30_vpg_shift vpg_shift = {
254 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
255 };
256 
257 static const struct dcn30_vpg_mask vpg_mask = {
258 	DCN3_VPG_MASK_SH_LIST(_MASK)
259 };
260 
261 #define afmt_regs_init(id)\
262 	AFMT_DCN3_REG_LIST_RI(id)
263 
264 static struct dcn30_afmt_registers afmt_regs[6];
265 
266 static const struct dcn30_afmt_shift afmt_shift = {
267 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
268 };
269 
270 static const struct dcn30_afmt_mask afmt_mask = {
271 	DCN3_AFMT_MASK_SH_LIST(_MASK)
272 };
273 
274 #define apg_regs_init(id)\
275 	APG_DCN31_REG_LIST_RI(id)
276 
277 static struct dcn31_apg_registers apg_regs[4];
278 
279 static const struct dcn31_apg_shift apg_shift = {
280 	DCN31_APG_MASK_SH_LIST(__SHIFT)
281 };
282 
283 static const struct dcn31_apg_mask apg_mask = {
284 		DCN31_APG_MASK_SH_LIST(_MASK)
285 };
286 
287 #define stream_enc_regs_init(id)\
288 	SE_DCN32_REG_LIST_RI(id)
289 
290 static struct dcn10_stream_enc_registers stream_enc_regs[5];
291 
292 static const struct dcn10_stream_encoder_shift se_shift = {
293 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
294 };
295 
296 static const struct dcn10_stream_encoder_mask se_mask = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
298 };
299 
300 
301 #define aux_regs_init(id)\
302 	DCN2_AUX_REG_LIST_RI(id)
303 
304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
305 
306 #define hpd_regs_init(id)\
307 	HPD_REG_LIST_RI(id)
308 
309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
310 
311 #define link_regs_init(id, phyid)\
312 	( \
313 	LE_DCN31_REG_LIST_RI(id), \
314 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
315 	)
316 	/*DPCS_DCN31_REG_LIST(id),*/ \
317 
318 static struct dcn10_link_enc_registers link_enc_regs[5];
319 
320 static const struct dcn10_link_enc_shift le_shift = {
321 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
322 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
323 };
324 
325 static const struct dcn10_link_enc_mask le_mask = {
326 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
327 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
328 };
329 
330 #define hpo_dp_stream_encoder_reg_init(id)\
331 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
332 
333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
334 
335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
336 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
337 };
338 
339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
340 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
341 };
342 
343 
344 #define hpo_dp_link_encoder_reg_init(id)\
345 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
346 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
347 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
348 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
349 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
350 
351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
352 
353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
354 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
355 };
356 
357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
358 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
359 };
360 
361 #define dpp_regs_init(id)\
362 	DPP_REG_LIST_DCN30_COMMON_RI(id)
363 
364 static struct dcn3_dpp_registers dpp_regs[4];
365 
366 static const struct dcn3_dpp_shift tf_shift = {
367 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
368 };
369 
370 static const struct dcn3_dpp_mask tf_mask = {
371 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
372 };
373 
374 
375 #define opp_regs_init(id)\
376 	OPP_REG_LIST_DCN30_RI(id)
377 
378 static struct dcn20_opp_registers opp_regs[4];
379 
380 static const struct dcn20_opp_shift opp_shift = {
381 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
382 };
383 
384 static const struct dcn20_opp_mask opp_mask = {
385 	OPP_MASK_SH_LIST_DCN20(_MASK)
386 };
387 
388 #define aux_engine_regs_init(id)\
389 	( \
390 	AUX_COMMON_REG_LIST0_RI(id), \
391 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
392 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
393 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
394 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
395 	)
396 
397 static struct dce110_aux_registers aux_engine_regs[5];
398 
399 static const struct dce110_aux_registers_shift aux_shift = {
400 	DCN_AUX_MASK_SH_LIST(__SHIFT)
401 };
402 
403 static const struct dce110_aux_registers_mask aux_mask = {
404 	DCN_AUX_MASK_SH_LIST(_MASK)
405 };
406 
407 #define dwbc_regs_dcn3_init(id)\
408 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
409 
410 static struct dcn30_dwbc_registers dwbc30_regs[1];
411 
412 static const struct dcn30_dwbc_shift dwbc30_shift = {
413 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
414 };
415 
416 static const struct dcn30_dwbc_mask dwbc30_mask = {
417 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
418 };
419 
420 #define mcif_wb_regs_dcn3_init(id)\
421 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
422 
423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
424 
425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
426 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
427 };
428 
429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
430 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
431 };
432 
433 #define dsc_regsDCN20_init(id)\
434 	DSC_REG_LIST_DCN20_RI(id)
435 
436 static struct dcn20_dsc_registers dsc_regs[4];
437 
438 static const struct dcn20_dsc_shift dsc_shift = {
439 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
440 };
441 
442 static const struct dcn20_dsc_mask dsc_mask = {
443 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
444 };
445 
446 static struct dcn30_mpc_registers mpc_regs;
447 
448 #define dcn_mpc_regs_init() \
449 	MPC_REG_LIST_DCN3_2_RI(0),\
450 	MPC_REG_LIST_DCN3_2_RI(1),\
451 	MPC_REG_LIST_DCN3_2_RI(2),\
452 	MPC_REG_LIST_DCN3_2_RI(3),\
453 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
454 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
455 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
456 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
457 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
458 
459 static const struct dcn30_mpc_shift mpc_shift = {
460 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
461 };
462 
463 static const struct dcn30_mpc_mask mpc_mask = {
464 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
465 };
466 
467 #define optc_regs_init(id)\
468 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
469 
470 static struct dcn_optc_registers optc_regs[4];
471 
472 static const struct dcn_optc_shift optc_shift = {
473 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
474 };
475 
476 static const struct dcn_optc_mask optc_mask = {
477 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
478 };
479 
480 #define hubp_regs_init(id)\
481 	HUBP_REG_LIST_DCN32_RI(id)
482 
483 static struct dcn_hubp2_registers hubp_regs[4];
484 
485 
486 static const struct dcn_hubp2_shift hubp_shift = {
487 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
488 };
489 
490 static const struct dcn_hubp2_mask hubp_mask = {
491 		HUBP_MASK_SH_LIST_DCN32(_MASK)
492 };
493 
494 static struct dcn_hubbub_registers hubbub_reg;
495 #define hubbub_reg_init()\
496 		HUBBUB_REG_LIST_DCN32_RI(0)
497 
498 static const struct dcn_hubbub_shift hubbub_shift = {
499 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
500 };
501 
502 static const struct dcn_hubbub_mask hubbub_mask = {
503 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
504 };
505 
506 static struct dccg_registers dccg_regs;
507 
508 #define dccg_regs_init()\
509 	DCCG_REG_LIST_DCN32_RI()
510 
511 static const struct dccg_shift dccg_shift = {
512 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
513 };
514 
515 static const struct dccg_mask dccg_mask = {
516 		DCCG_MASK_SH_LIST_DCN32(_MASK)
517 };
518 
519 
520 #define SRII2(reg_name_pre, reg_name_post, id)\
521 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
522 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
523 			reg ## reg_name_pre ## id ## _ ## reg_name_post
524 
525 
526 #define HWSEQ_DCN32_REG_LIST()\
527 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
528 	SR(DIO_MEM_PWR_CTRL), \
529 	SR(ODM_MEM_PWR_CTRL3), \
530 	SR(MMHUBBUB_MEM_PWR_CNTL), \
531 	SR(DCCG_GATE_DISABLE_CNTL), \
532 	SR(DCCG_GATE_DISABLE_CNTL2), \
533 	SR(DCFCLK_CNTL),\
534 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
535 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
536 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
537 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
538 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
539 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
540 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
541 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
542 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
543 	SR(MICROSECOND_TIME_BASE_DIV), \
544 	SR(MILLISECOND_TIME_BASE_DIV), \
545 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
546 	SR(RBBMIF_TIMEOUT_DIS), \
547 	SR(RBBMIF_TIMEOUT_DIS_2), \
548 	SR(DCHUBBUB_CRC_CTRL), \
549 	SR(DPP_TOP0_DPP_CRC_CTRL), \
550 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
551 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
552 	SR(MPC_CRC_CTRL), \
553 	SR(MPC_CRC_RESULT_GB), \
554 	SR(MPC_CRC_RESULT_C), \
555 	SR(MPC_CRC_RESULT_AR), \
556 	SR(DOMAIN0_PG_CONFIG), \
557 	SR(DOMAIN1_PG_CONFIG), \
558 	SR(DOMAIN2_PG_CONFIG), \
559 	SR(DOMAIN3_PG_CONFIG), \
560 	SR(DOMAIN16_PG_CONFIG), \
561 	SR(DOMAIN17_PG_CONFIG), \
562 	SR(DOMAIN18_PG_CONFIG), \
563 	SR(DOMAIN19_PG_CONFIG), \
564 	SR(DOMAIN0_PG_STATUS), \
565 	SR(DOMAIN1_PG_STATUS), \
566 	SR(DOMAIN2_PG_STATUS), \
567 	SR(DOMAIN3_PG_STATUS), \
568 	SR(DOMAIN16_PG_STATUS), \
569 	SR(DOMAIN17_PG_STATUS), \
570 	SR(DOMAIN18_PG_STATUS), \
571 	SR(DOMAIN19_PG_STATUS), \
572 	SR(D1VGA_CONTROL), \
573 	SR(D2VGA_CONTROL), \
574 	SR(D3VGA_CONTROL), \
575 	SR(D4VGA_CONTROL), \
576 	SR(D5VGA_CONTROL), \
577 	SR(D6VGA_CONTROL), \
578 	SR(DC_IP_REQUEST_CNTL), \
579 	SR(AZALIA_AUDIO_DTO), \
580 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
581 
582 static struct dce_hwseq_registers hwseq_reg;
583 
584 #define hwseq_reg_init()\
585 	HWSEQ_DCN32_REG_LIST()
586 
587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
588 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
589 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
590 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
591 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
592 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
593 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
594 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
607 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
608 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
609 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
610 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
615 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
616 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
617 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
618 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
619 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
620 
621 static const struct dce_hwseq_shift hwseq_shift = {
622 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
623 };
624 
625 static const struct dce_hwseq_mask hwseq_mask = {
626 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
627 };
628 #define vmid_regs_init(id)\
629 		DCN20_VMID_REG_LIST_RI(id)
630 
631 static struct dcn_vmid_registers vmid_regs[16];
632 
633 static const struct dcn20_vmid_shift vmid_shifts = {
634 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
635 };
636 
637 static const struct dcn20_vmid_mask vmid_masks = {
638 		DCN20_VMID_MASK_SH_LIST(_MASK)
639 };
640 
641 static const struct resource_caps res_cap_dcn32 = {
642 	.num_timing_generator = 4,
643 	.num_opp = 4,
644 	.num_video_plane = 4,
645 	.num_audio = 5,
646 	.num_stream_encoder = 5,
647 	.num_hpo_dp_stream_encoder = 4,
648 	.num_hpo_dp_link_encoder = 2,
649 	.num_pll = 5,
650 	.num_dwb = 1,
651 	.num_ddc = 5,
652 	.num_vmid = 16,
653 	.num_mpc_3dlut = 4,
654 	.num_dsc = 4,
655 };
656 
657 static const struct dc_plane_cap plane_cap = {
658 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
659 	.per_pixel_alpha = true,
660 
661 	.pixel_format_support = {
662 			.argb8888 = true,
663 			.nv12 = true,
664 			.fp16 = true,
665 			.p010 = true,
666 			.ayuv = false,
667 	},
668 
669 	.max_upscale_factor = {
670 			.argb8888 = 16000,
671 			.nv12 = 16000,
672 			.fp16 = 16000
673 	},
674 
675 	// 6:1 downscaling ratio: 1000/6 = 166.666
676 	.max_downscale_factor = {
677 			.argb8888 = 167,
678 			.nv12 = 167,
679 			.fp16 = 167
680 	},
681 	64,
682 	64
683 };
684 
685 static const struct dc_debug_options debug_defaults_drv = {
686 	.disable_dmcu = true,
687 	.force_abm_enable = false,
688 	.timing_trace = false,
689 	.clock_trace = true,
690 	.disable_pplib_clock_request = false,
691 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
692 	.force_single_disp_pipe_split = false,
693 	.disable_dcc = DCC_ENABLE,
694 	.vsr_support = true,
695 	.performance_trace = false,
696 	.max_downscale_src_width = 7680,/*upto 8K*/
697 	.disable_pplib_wm_range = false,
698 	.scl_reset_length10 = true,
699 	.sanity_checks = false,
700 	.underflow_assert_delay_us = 0xFFFFFFFF,
701 	.dwb_fi_phase = -1, // -1 = disable,
702 	.dmub_command_table = true,
703 	.enable_mem_low_power = {
704 		.bits = {
705 			.vga = false,
706 			.i2c = false,
707 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
708 			.dscl = false,
709 			.cm = false,
710 			.mpc = false,
711 			.optc = true,
712 		}
713 	},
714 	.use_max_lb = true,
715 	.force_disable_subvp = false,
716 	.exit_idle_opt_for_cursor_updates = true,
717 	.enable_single_display_2to1_odm_policy = true,
718 
719 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
720 	.enable_double_buffered_dsc_pg_support = true,
721 	.enable_dp_dig_pixel_rate_div_policy = 1,
722 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
723 	.alloc_extra_way_for_cursor = true,
724 	.min_prefetch_in_strobe_ns = 60000, // 60us
725 	.disable_unbounded_requesting = false,
726 	.override_dispclk_programming = true,
727 	.disable_fpo_optimizations = false,
728 	.fpo_vactive_margin_us = 2000, // 2000us
729 	.disable_fpo_vactive = true,
730 	.disable_boot_optimizations = false,
731 };
732 
733 static const struct dc_debug_options debug_defaults_diags = {
734 	.disable_dmcu = true,
735 	.force_abm_enable = false,
736 	.timing_trace = true,
737 	.clock_trace = true,
738 	.disable_dpp_power_gate = true,
739 	.disable_hubp_power_gate = true,
740 	.disable_dsc_power_gate = true,
741 	.disable_clock_gate = true,
742 	.disable_pplib_clock_request = true,
743 	.disable_pplib_wm_range = true,
744 	.disable_stutter = false,
745 	.scl_reset_length10 = true,
746 	.dwb_fi_phase = -1, // -1 = disable
747 	.dmub_command_table = true,
748 	.enable_tri_buf = true,
749 	.use_max_lb = true,
750 	.force_disable_subvp = true
751 };
752 
753 static struct dce_aux *dcn32_aux_engine_create(
754 	struct dc_context *ctx,
755 	uint32_t inst)
756 {
757 	struct aux_engine_dce110 *aux_engine =
758 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
759 
760 	if (!aux_engine)
761 		return NULL;
762 
763 #undef REG_STRUCT
764 #define REG_STRUCT aux_engine_regs
765 	aux_engine_regs_init(0),
766 	aux_engine_regs_init(1),
767 	aux_engine_regs_init(2),
768 	aux_engine_regs_init(3),
769 	aux_engine_regs_init(4);
770 
771 	dce110_aux_engine_construct(aux_engine, ctx, inst,
772 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
773 				    &aux_engine_regs[inst],
774 					&aux_mask,
775 					&aux_shift,
776 					ctx->dc->caps.extended_aux_timeout_support);
777 
778 	return &aux_engine->base;
779 }
780 #define i2c_inst_regs_init(id)\
781 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
782 
783 static struct dce_i2c_registers i2c_hw_regs[5];
784 
785 static const struct dce_i2c_shift i2c_shifts = {
786 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
787 };
788 
789 static const struct dce_i2c_mask i2c_masks = {
790 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
791 };
792 
793 static struct dce_i2c_hw *dcn32_i2c_hw_create(
794 	struct dc_context *ctx,
795 	uint32_t inst)
796 {
797 	struct dce_i2c_hw *dce_i2c_hw =
798 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
799 
800 	if (!dce_i2c_hw)
801 		return NULL;
802 
803 #undef REG_STRUCT
804 #define REG_STRUCT i2c_hw_regs
805 	i2c_inst_regs_init(1),
806 	i2c_inst_regs_init(2),
807 	i2c_inst_regs_init(3),
808 	i2c_inst_regs_init(4),
809 	i2c_inst_regs_init(5);
810 
811 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
812 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
813 
814 	return dce_i2c_hw;
815 }
816 
817 static struct clock_source *dcn32_clock_source_create(
818 		struct dc_context *ctx,
819 		struct dc_bios *bios,
820 		enum clock_source_id id,
821 		const struct dce110_clk_src_regs *regs,
822 		bool dp_clk_src)
823 {
824 	struct dce110_clk_src *clk_src =
825 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
826 
827 	if (!clk_src)
828 		return NULL;
829 
830 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
831 			regs, &cs_shift, &cs_mask)) {
832 		clk_src->base.dp_clk_src = dp_clk_src;
833 		return &clk_src->base;
834 	}
835 
836 	kfree(clk_src);
837 	BREAK_TO_DEBUGGER();
838 	return NULL;
839 }
840 
841 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
842 {
843 	int i;
844 
845 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
846 					  GFP_KERNEL);
847 
848 	if (!hubbub2)
849 		return NULL;
850 
851 #undef REG_STRUCT
852 #define REG_STRUCT hubbub_reg
853 	hubbub_reg_init();
854 
855 #undef REG_STRUCT
856 #define REG_STRUCT vmid_regs
857 	vmid_regs_init(0),
858 	vmid_regs_init(1),
859 	vmid_regs_init(2),
860 	vmid_regs_init(3),
861 	vmid_regs_init(4),
862 	vmid_regs_init(5),
863 	vmid_regs_init(6),
864 	vmid_regs_init(7),
865 	vmid_regs_init(8),
866 	vmid_regs_init(9),
867 	vmid_regs_init(10),
868 	vmid_regs_init(11),
869 	vmid_regs_init(12),
870 	vmid_regs_init(13),
871 	vmid_regs_init(14),
872 	vmid_regs_init(15);
873 
874 	hubbub32_construct(hubbub2, ctx,
875 			&hubbub_reg,
876 			&hubbub_shift,
877 			&hubbub_mask,
878 			ctx->dc->dml.ip.det_buffer_size_kbytes,
879 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
880 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
881 
882 
883 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
884 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
885 
886 		vmid->ctx = ctx;
887 
888 		vmid->regs = &vmid_regs[i];
889 		vmid->shifts = &vmid_shifts;
890 		vmid->masks = &vmid_masks;
891 	}
892 
893 	return &hubbub2->base;
894 }
895 
896 static struct hubp *dcn32_hubp_create(
897 	struct dc_context *ctx,
898 	uint32_t inst)
899 {
900 	struct dcn20_hubp *hubp2 =
901 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
902 
903 	if (!hubp2)
904 		return NULL;
905 
906 #undef REG_STRUCT
907 #define REG_STRUCT hubp_regs
908 	hubp_regs_init(0),
909 	hubp_regs_init(1),
910 	hubp_regs_init(2),
911 	hubp_regs_init(3);
912 
913 	if (hubp32_construct(hubp2, ctx, inst,
914 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
915 		return &hubp2->base;
916 
917 	BREAK_TO_DEBUGGER();
918 	kfree(hubp2);
919 	return NULL;
920 }
921 
922 static void dcn32_dpp_destroy(struct dpp **dpp)
923 {
924 	kfree(TO_DCN30_DPP(*dpp));
925 	*dpp = NULL;
926 }
927 
928 static struct dpp *dcn32_dpp_create(
929 	struct dc_context *ctx,
930 	uint32_t inst)
931 {
932 	struct dcn3_dpp *dpp3 =
933 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
934 
935 	if (!dpp3)
936 		return NULL;
937 
938 #undef REG_STRUCT
939 #define REG_STRUCT dpp_regs
940 	dpp_regs_init(0),
941 	dpp_regs_init(1),
942 	dpp_regs_init(2),
943 	dpp_regs_init(3);
944 
945 	if (dpp32_construct(dpp3, ctx, inst,
946 			&dpp_regs[inst], &tf_shift, &tf_mask))
947 		return &dpp3->base;
948 
949 	BREAK_TO_DEBUGGER();
950 	kfree(dpp3);
951 	return NULL;
952 }
953 
954 static struct mpc *dcn32_mpc_create(
955 		struct dc_context *ctx,
956 		int num_mpcc,
957 		int num_rmu)
958 {
959 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
960 					  GFP_KERNEL);
961 
962 	if (!mpc30)
963 		return NULL;
964 
965 #undef REG_STRUCT
966 #define REG_STRUCT mpc_regs
967 	dcn_mpc_regs_init();
968 
969 	dcn32_mpc_construct(mpc30, ctx,
970 			&mpc_regs,
971 			&mpc_shift,
972 			&mpc_mask,
973 			num_mpcc,
974 			num_rmu);
975 
976 	return &mpc30->base;
977 }
978 
979 static struct output_pixel_processor *dcn32_opp_create(
980 	struct dc_context *ctx, uint32_t inst)
981 {
982 	struct dcn20_opp *opp2 =
983 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
984 
985 	if (!opp2) {
986 		BREAK_TO_DEBUGGER();
987 		return NULL;
988 	}
989 
990 #undef REG_STRUCT
991 #define REG_STRUCT opp_regs
992 	opp_regs_init(0),
993 	opp_regs_init(1),
994 	opp_regs_init(2),
995 	opp_regs_init(3);
996 
997 	dcn20_opp_construct(opp2, ctx, inst,
998 			&opp_regs[inst], &opp_shift, &opp_mask);
999 	return &opp2->base;
1000 }
1001 
1002 
1003 static struct timing_generator *dcn32_timing_generator_create(
1004 		struct dc_context *ctx,
1005 		uint32_t instance)
1006 {
1007 	struct optc *tgn10 =
1008 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1009 
1010 	if (!tgn10)
1011 		return NULL;
1012 
1013 #undef REG_STRUCT
1014 #define REG_STRUCT optc_regs
1015 	optc_regs_init(0),
1016 	optc_regs_init(1),
1017 	optc_regs_init(2),
1018 	optc_regs_init(3);
1019 
1020 	tgn10->base.inst = instance;
1021 	tgn10->base.ctx = ctx;
1022 
1023 	tgn10->tg_regs = &optc_regs[instance];
1024 	tgn10->tg_shift = &optc_shift;
1025 	tgn10->tg_mask = &optc_mask;
1026 
1027 	dcn32_timing_generator_init(tgn10);
1028 
1029 	return &tgn10->base;
1030 }
1031 
1032 static const struct encoder_feature_support link_enc_feature = {
1033 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1034 		.max_hdmi_pixel_clock = 600000,
1035 		.hdmi_ycbcr420_supported = true,
1036 		.dp_ycbcr420_supported = true,
1037 		.fec_supported = true,
1038 		.flags.bits.IS_HBR2_CAPABLE = true,
1039 		.flags.bits.IS_HBR3_CAPABLE = true,
1040 		.flags.bits.IS_TPS3_CAPABLE = true,
1041 		.flags.bits.IS_TPS4_CAPABLE = true
1042 };
1043 
1044 static struct link_encoder *dcn32_link_encoder_create(
1045 	struct dc_context *ctx,
1046 	const struct encoder_init_data *enc_init_data)
1047 {
1048 	struct dcn20_link_encoder *enc20 =
1049 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1050 
1051 	if (!enc20)
1052 		return NULL;
1053 
1054 #undef REG_STRUCT
1055 #define REG_STRUCT link_enc_aux_regs
1056 	aux_regs_init(0),
1057 	aux_regs_init(1),
1058 	aux_regs_init(2),
1059 	aux_regs_init(3),
1060 	aux_regs_init(4);
1061 
1062 #undef REG_STRUCT
1063 #define REG_STRUCT link_enc_hpd_regs
1064 	hpd_regs_init(0),
1065 	hpd_regs_init(1),
1066 	hpd_regs_init(2),
1067 	hpd_regs_init(3),
1068 	hpd_regs_init(4);
1069 
1070 #undef REG_STRUCT
1071 #define REG_STRUCT link_enc_regs
1072 	link_regs_init(0, A),
1073 	link_regs_init(1, B),
1074 	link_regs_init(2, C),
1075 	link_regs_init(3, D),
1076 	link_regs_init(4, E);
1077 
1078 	dcn32_link_encoder_construct(enc20,
1079 			enc_init_data,
1080 			&link_enc_feature,
1081 			&link_enc_regs[enc_init_data->transmitter],
1082 			&link_enc_aux_regs[enc_init_data->channel - 1],
1083 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1084 			&le_shift,
1085 			&le_mask);
1086 
1087 	return &enc20->enc10.base;
1088 }
1089 
1090 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1091 {
1092 	struct dcn31_panel_cntl *panel_cntl =
1093 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1094 
1095 	if (!panel_cntl)
1096 		return NULL;
1097 
1098 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1099 
1100 	return &panel_cntl->base;
1101 }
1102 
1103 static void read_dce_straps(
1104 	struct dc_context *ctx,
1105 	struct resource_straps *straps)
1106 {
1107 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1108 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1109 
1110 }
1111 
1112 static struct audio *dcn32_create_audio(
1113 		struct dc_context *ctx, unsigned int inst)
1114 {
1115 
1116 #undef REG_STRUCT
1117 #define REG_STRUCT audio_regs
1118 	audio_regs_init(0),
1119 	audio_regs_init(1),
1120 	audio_regs_init(2),
1121 	audio_regs_init(3),
1122 	audio_regs_init(4);
1123 
1124 	return dce_audio_create(ctx, inst,
1125 			&audio_regs[inst], &audio_shift, &audio_mask);
1126 }
1127 
1128 static struct vpg *dcn32_vpg_create(
1129 	struct dc_context *ctx,
1130 	uint32_t inst)
1131 {
1132 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1133 
1134 	if (!vpg3)
1135 		return NULL;
1136 
1137 #undef REG_STRUCT
1138 #define REG_STRUCT vpg_regs
1139 	vpg_regs_init(0),
1140 	vpg_regs_init(1),
1141 	vpg_regs_init(2),
1142 	vpg_regs_init(3),
1143 	vpg_regs_init(4),
1144 	vpg_regs_init(5),
1145 	vpg_regs_init(6),
1146 	vpg_regs_init(7),
1147 	vpg_regs_init(8),
1148 	vpg_regs_init(9);
1149 
1150 	vpg3_construct(vpg3, ctx, inst,
1151 			&vpg_regs[inst],
1152 			&vpg_shift,
1153 			&vpg_mask);
1154 
1155 	return &vpg3->base;
1156 }
1157 
1158 static struct afmt *dcn32_afmt_create(
1159 	struct dc_context *ctx,
1160 	uint32_t inst)
1161 {
1162 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1163 
1164 	if (!afmt3)
1165 		return NULL;
1166 
1167 #undef REG_STRUCT
1168 #define REG_STRUCT afmt_regs
1169 	afmt_regs_init(0),
1170 	afmt_regs_init(1),
1171 	afmt_regs_init(2),
1172 	afmt_regs_init(3),
1173 	afmt_regs_init(4),
1174 	afmt_regs_init(5);
1175 
1176 	afmt3_construct(afmt3, ctx, inst,
1177 			&afmt_regs[inst],
1178 			&afmt_shift,
1179 			&afmt_mask);
1180 
1181 	return &afmt3->base;
1182 }
1183 
1184 static struct apg *dcn31_apg_create(
1185 	struct dc_context *ctx,
1186 	uint32_t inst)
1187 {
1188 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1189 
1190 	if (!apg31)
1191 		return NULL;
1192 
1193 #undef REG_STRUCT
1194 #define REG_STRUCT apg_regs
1195 	apg_regs_init(0),
1196 	apg_regs_init(1),
1197 	apg_regs_init(2),
1198 	apg_regs_init(3);
1199 
1200 	apg31_construct(apg31, ctx, inst,
1201 			&apg_regs[inst],
1202 			&apg_shift,
1203 			&apg_mask);
1204 
1205 	return &apg31->base;
1206 }
1207 
1208 static struct stream_encoder *dcn32_stream_encoder_create(
1209 	enum engine_id eng_id,
1210 	struct dc_context *ctx)
1211 {
1212 	struct dcn10_stream_encoder *enc1;
1213 	struct vpg *vpg;
1214 	struct afmt *afmt;
1215 	int vpg_inst;
1216 	int afmt_inst;
1217 
1218 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1219 	if (eng_id <= ENGINE_ID_DIGF) {
1220 		vpg_inst = eng_id;
1221 		afmt_inst = eng_id;
1222 	} else
1223 		return NULL;
1224 
1225 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1226 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1227 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1228 
1229 	if (!enc1 || !vpg || !afmt) {
1230 		kfree(enc1);
1231 		kfree(vpg);
1232 		kfree(afmt);
1233 		return NULL;
1234 	}
1235 
1236 #undef REG_STRUCT
1237 #define REG_STRUCT stream_enc_regs
1238 	stream_enc_regs_init(0),
1239 	stream_enc_regs_init(1),
1240 	stream_enc_regs_init(2),
1241 	stream_enc_regs_init(3),
1242 	stream_enc_regs_init(4);
1243 
1244 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1245 					eng_id, vpg, afmt,
1246 					&stream_enc_regs[eng_id],
1247 					&se_shift, &se_mask);
1248 
1249 	return &enc1->base;
1250 }
1251 
1252 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1253 	enum engine_id eng_id,
1254 	struct dc_context *ctx)
1255 {
1256 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1257 	struct vpg *vpg;
1258 	struct apg *apg;
1259 	uint32_t hpo_dp_inst;
1260 	uint32_t vpg_inst;
1261 	uint32_t apg_inst;
1262 
1263 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1264 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1265 
1266 	/* Mapping of VPG register blocks to HPO DP block instance:
1267 	 * VPG[6] -> HPO_DP[0]
1268 	 * VPG[7] -> HPO_DP[1]
1269 	 * VPG[8] -> HPO_DP[2]
1270 	 * VPG[9] -> HPO_DP[3]
1271 	 */
1272 	vpg_inst = hpo_dp_inst + 6;
1273 
1274 	/* Mapping of APG register blocks to HPO DP block instance:
1275 	 * APG[0] -> HPO_DP[0]
1276 	 * APG[1] -> HPO_DP[1]
1277 	 * APG[2] -> HPO_DP[2]
1278 	 * APG[3] -> HPO_DP[3]
1279 	 */
1280 	apg_inst = hpo_dp_inst;
1281 
1282 	/* allocate HPO stream encoder and create VPG sub-block */
1283 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1284 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1285 	apg = dcn31_apg_create(ctx, apg_inst);
1286 
1287 	if (!hpo_dp_enc31 || !vpg || !apg) {
1288 		kfree(hpo_dp_enc31);
1289 		kfree(vpg);
1290 		kfree(apg);
1291 		return NULL;
1292 	}
1293 
1294 #undef REG_STRUCT
1295 #define REG_STRUCT hpo_dp_stream_enc_regs
1296 	hpo_dp_stream_encoder_reg_init(0),
1297 	hpo_dp_stream_encoder_reg_init(1),
1298 	hpo_dp_stream_encoder_reg_init(2),
1299 	hpo_dp_stream_encoder_reg_init(3);
1300 
1301 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1302 					hpo_dp_inst, eng_id, vpg, apg,
1303 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1304 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1305 
1306 	return &hpo_dp_enc31->base;
1307 }
1308 
1309 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1310 	uint8_t inst,
1311 	struct dc_context *ctx)
1312 {
1313 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1314 
1315 	/* allocate HPO link encoder */
1316 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1317 
1318 #undef REG_STRUCT
1319 #define REG_STRUCT hpo_dp_link_enc_regs
1320 	hpo_dp_link_encoder_reg_init(0),
1321 	hpo_dp_link_encoder_reg_init(1);
1322 
1323 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1324 					&hpo_dp_link_enc_regs[inst],
1325 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1326 
1327 	return &hpo_dp_enc31->base;
1328 }
1329 
1330 static struct dce_hwseq *dcn32_hwseq_create(
1331 	struct dc_context *ctx)
1332 {
1333 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1334 
1335 #undef REG_STRUCT
1336 #define REG_STRUCT hwseq_reg
1337 	hwseq_reg_init();
1338 
1339 	if (hws) {
1340 		hws->ctx = ctx;
1341 		hws->regs = &hwseq_reg;
1342 		hws->shifts = &hwseq_shift;
1343 		hws->masks = &hwseq_mask;
1344 	}
1345 	return hws;
1346 }
1347 static const struct resource_create_funcs res_create_funcs = {
1348 	.read_dce_straps = read_dce_straps,
1349 	.create_audio = dcn32_create_audio,
1350 	.create_stream_encoder = dcn32_stream_encoder_create,
1351 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1352 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1353 	.create_hwseq = dcn32_hwseq_create,
1354 };
1355 
1356 static const struct resource_create_funcs res_create_maximus_funcs = {
1357 	.read_dce_straps = NULL,
1358 	.create_audio = NULL,
1359 	.create_stream_encoder = NULL,
1360 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1361 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1362 	.create_hwseq = dcn32_hwseq_create,
1363 };
1364 
1365 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1366 {
1367 	unsigned int i;
1368 
1369 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1370 		if (pool->base.stream_enc[i] != NULL) {
1371 			if (pool->base.stream_enc[i]->vpg != NULL) {
1372 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1373 				pool->base.stream_enc[i]->vpg = NULL;
1374 			}
1375 			if (pool->base.stream_enc[i]->afmt != NULL) {
1376 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1377 				pool->base.stream_enc[i]->afmt = NULL;
1378 			}
1379 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1380 			pool->base.stream_enc[i] = NULL;
1381 		}
1382 	}
1383 
1384 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1385 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1386 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1387 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1388 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1389 			}
1390 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1391 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1392 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1393 			}
1394 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1395 			pool->base.hpo_dp_stream_enc[i] = NULL;
1396 		}
1397 	}
1398 
1399 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1400 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1401 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1402 			pool->base.hpo_dp_link_enc[i] = NULL;
1403 		}
1404 	}
1405 
1406 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1407 		if (pool->base.dscs[i] != NULL)
1408 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1409 	}
1410 
1411 	if (pool->base.mpc != NULL) {
1412 		kfree(TO_DCN20_MPC(pool->base.mpc));
1413 		pool->base.mpc = NULL;
1414 	}
1415 	if (pool->base.hubbub != NULL) {
1416 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1417 		pool->base.hubbub = NULL;
1418 	}
1419 	for (i = 0; i < pool->base.pipe_count; i++) {
1420 		if (pool->base.dpps[i] != NULL)
1421 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1422 
1423 		if (pool->base.ipps[i] != NULL)
1424 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1425 
1426 		if (pool->base.hubps[i] != NULL) {
1427 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1428 			pool->base.hubps[i] = NULL;
1429 		}
1430 
1431 		if (pool->base.irqs != NULL) {
1432 			dal_irq_service_destroy(&pool->base.irqs);
1433 		}
1434 	}
1435 
1436 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1437 		if (pool->base.engines[i] != NULL)
1438 			dce110_engine_destroy(&pool->base.engines[i]);
1439 		if (pool->base.hw_i2cs[i] != NULL) {
1440 			kfree(pool->base.hw_i2cs[i]);
1441 			pool->base.hw_i2cs[i] = NULL;
1442 		}
1443 		if (pool->base.sw_i2cs[i] != NULL) {
1444 			kfree(pool->base.sw_i2cs[i]);
1445 			pool->base.sw_i2cs[i] = NULL;
1446 		}
1447 	}
1448 
1449 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1450 		if (pool->base.opps[i] != NULL)
1451 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1452 	}
1453 
1454 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1455 		if (pool->base.timing_generators[i] != NULL)	{
1456 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1457 			pool->base.timing_generators[i] = NULL;
1458 		}
1459 	}
1460 
1461 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1462 		if (pool->base.dwbc[i] != NULL) {
1463 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1464 			pool->base.dwbc[i] = NULL;
1465 		}
1466 		if (pool->base.mcif_wb[i] != NULL) {
1467 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1468 			pool->base.mcif_wb[i] = NULL;
1469 		}
1470 	}
1471 
1472 	for (i = 0; i < pool->base.audio_count; i++) {
1473 		if (pool->base.audios[i])
1474 			dce_aud_destroy(&pool->base.audios[i]);
1475 	}
1476 
1477 	for (i = 0; i < pool->base.clk_src_count; i++) {
1478 		if (pool->base.clock_sources[i] != NULL) {
1479 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1480 			pool->base.clock_sources[i] = NULL;
1481 		}
1482 	}
1483 
1484 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1485 		if (pool->base.mpc_lut[i] != NULL) {
1486 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1487 			pool->base.mpc_lut[i] = NULL;
1488 		}
1489 		if (pool->base.mpc_shaper[i] != NULL) {
1490 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1491 			pool->base.mpc_shaper[i] = NULL;
1492 		}
1493 	}
1494 
1495 	if (pool->base.dp_clock_source != NULL) {
1496 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1497 		pool->base.dp_clock_source = NULL;
1498 	}
1499 
1500 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1501 		if (pool->base.multiple_abms[i] != NULL)
1502 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1503 	}
1504 
1505 	if (pool->base.psr != NULL)
1506 		dmub_psr_destroy(&pool->base.psr);
1507 
1508 	if (pool->base.dccg != NULL)
1509 		dcn_dccg_destroy(&pool->base.dccg);
1510 
1511 	if (pool->base.oem_device != NULL) {
1512 		struct dc *dc = pool->base.oem_device->ctx->dc;
1513 
1514 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1515 	}
1516 }
1517 
1518 
1519 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1520 {
1521 	int i;
1522 	uint32_t dwb_count = pool->res_cap->num_dwb;
1523 
1524 	for (i = 0; i < dwb_count; i++) {
1525 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1526 						    GFP_KERNEL);
1527 
1528 		if (!dwbc30) {
1529 			dm_error("DC: failed to create dwbc30!\n");
1530 			return false;
1531 		}
1532 
1533 #undef REG_STRUCT
1534 #define REG_STRUCT dwbc30_regs
1535 		dwbc_regs_dcn3_init(0);
1536 
1537 		dcn30_dwbc_construct(dwbc30, ctx,
1538 				&dwbc30_regs[i],
1539 				&dwbc30_shift,
1540 				&dwbc30_mask,
1541 				i);
1542 
1543 		pool->dwbc[i] = &dwbc30->base;
1544 	}
1545 	return true;
1546 }
1547 
1548 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1549 {
1550 	int i;
1551 	uint32_t dwb_count = pool->res_cap->num_dwb;
1552 
1553 	for (i = 0; i < dwb_count; i++) {
1554 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1555 						    GFP_KERNEL);
1556 
1557 		if (!mcif_wb30) {
1558 			dm_error("DC: failed to create mcif_wb30!\n");
1559 			return false;
1560 		}
1561 
1562 #undef REG_STRUCT
1563 #define REG_STRUCT mcif_wb30_regs
1564 		mcif_wb_regs_dcn3_init(0);
1565 
1566 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1567 				&mcif_wb30_regs[i],
1568 				&mcif_wb30_shift,
1569 				&mcif_wb30_mask,
1570 				i);
1571 
1572 		pool->mcif_wb[i] = &mcif_wb30->base;
1573 	}
1574 	return true;
1575 }
1576 
1577 static struct display_stream_compressor *dcn32_dsc_create(
1578 	struct dc_context *ctx, uint32_t inst)
1579 {
1580 	struct dcn20_dsc *dsc =
1581 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1582 
1583 	if (!dsc) {
1584 		BREAK_TO_DEBUGGER();
1585 		return NULL;
1586 	}
1587 
1588 #undef REG_STRUCT
1589 #define REG_STRUCT dsc_regs
1590 	dsc_regsDCN20_init(0),
1591 	dsc_regsDCN20_init(1),
1592 	dsc_regsDCN20_init(2),
1593 	dsc_regsDCN20_init(3);
1594 
1595 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1596 
1597 	dsc->max_image_width = 6016;
1598 
1599 	return &dsc->base;
1600 }
1601 
1602 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1603 {
1604 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1605 
1606 	dcn32_resource_destruct(dcn32_pool);
1607 	kfree(dcn32_pool);
1608 	*pool = NULL;
1609 }
1610 
1611 bool dcn32_acquire_post_bldn_3dlut(
1612 		struct resource_context *res_ctx,
1613 		const struct resource_pool *pool,
1614 		int mpcc_id,
1615 		struct dc_3dlut **lut,
1616 		struct dc_transfer_func **shaper)
1617 {
1618 	bool ret = false;
1619 
1620 	ASSERT(*lut == NULL && *shaper == NULL);
1621 	*lut = NULL;
1622 	*shaper = NULL;
1623 
1624 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1625 		*lut = pool->mpc_lut[mpcc_id];
1626 		*shaper = pool->mpc_shaper[mpcc_id];
1627 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1628 		ret = true;
1629 	}
1630 	return ret;
1631 }
1632 
1633 bool dcn32_release_post_bldn_3dlut(
1634 		struct resource_context *res_ctx,
1635 		const struct resource_pool *pool,
1636 		struct dc_3dlut **lut,
1637 		struct dc_transfer_func **shaper)
1638 {
1639 	int i;
1640 	bool ret = false;
1641 
1642 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1643 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1644 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1645 			pool->mpc_lut[i]->state.raw = 0;
1646 			*lut = NULL;
1647 			*shaper = NULL;
1648 			ret = true;
1649 			break;
1650 		}
1651 	}
1652 	return ret;
1653 }
1654 
1655 static void dcn32_enable_phantom_plane(struct dc *dc,
1656 		struct dc_state *context,
1657 		struct dc_stream_state *phantom_stream,
1658 		unsigned int dc_pipe_idx)
1659 {
1660 	struct dc_plane_state *phantom_plane = NULL;
1661 	struct dc_plane_state *prev_phantom_plane = NULL;
1662 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1663 
1664 	while (curr_pipe) {
1665 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1666 			phantom_plane = prev_phantom_plane;
1667 		else
1668 			phantom_plane = dc_create_plane_state(dc);
1669 
1670 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1671 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1672 				sizeof(phantom_plane->scaling_quality));
1673 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1674 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1675 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1676 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1677 				sizeof(phantom_plane->plane_size));
1678 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1679 				sizeof(phantom_plane->tiling_info));
1680 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1681 		phantom_plane->format = curr_pipe->plane_state->format;
1682 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1683 		phantom_plane->visible = curr_pipe->plane_state->visible;
1684 
1685 		/* Shadow pipe has small viewport. */
1686 		phantom_plane->clip_rect.y = 0;
1687 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1688 
1689 		phantom_plane->is_phantom = true;
1690 
1691 		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1692 
1693 		curr_pipe = curr_pipe->bottom_pipe;
1694 		prev_phantom_plane = phantom_plane;
1695 	}
1696 }
1697 
1698 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1699 		struct dc_state *context,
1700 		display_e2e_pipe_params_st *pipes,
1701 		unsigned int pipe_cnt,
1702 		unsigned int dc_pipe_idx)
1703 {
1704 	struct dc_stream_state *phantom_stream = NULL;
1705 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1706 
1707 	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
1708 	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
1709 	phantom_stream->dpms_off = true;
1710 	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
1711 	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
1712 	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
1713 	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
1714 
1715 	/* stream has limited viewport and small timing */
1716 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1717 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1718 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1719 	DC_FP_START();
1720 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1721 	DC_FP_END();
1722 
1723 	dc_add_stream_to_ctx(dc, context, phantom_stream);
1724 	return phantom_stream;
1725 }
1726 
1727 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
1728 {
1729 	int i;
1730 	struct dc_plane_state *phantom_plane = NULL;
1731 	struct dc_stream_state *phantom_stream = NULL;
1732 
1733 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1734 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1735 
1736 		if (!pipe->top_pipe && !pipe->prev_odm_pipe &&
1737 				pipe->plane_state && pipe->stream &&
1738 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1739 			phantom_plane = pipe->plane_state;
1740 			phantom_stream = pipe->stream;
1741 
1742 			dc_plane_state_retain(phantom_plane);
1743 			dc_stream_retain(phantom_stream);
1744 		}
1745 	}
1746 }
1747 
1748 // return true if removed piped from ctx, false otherwise
1749 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
1750 {
1751 	int i;
1752 	bool removed_pipe = false;
1753 	struct dc_plane_state *phantom_plane = NULL;
1754 	struct dc_stream_state *phantom_stream = NULL;
1755 
1756 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1757 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1758 		// build scaling params for phantom pipes
1759 		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1760 			phantom_plane = pipe->plane_state;
1761 			phantom_stream = pipe->stream;
1762 
1763 			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
1764 			dc_remove_stream_from_ctx(dc, context, pipe->stream);
1765 
1766 			/* Ref count is incremented on allocation and also when added to the context.
1767 			 * Therefore we must call release for the the phantom plane and stream once
1768 			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
1769 			 */
1770 			dc_plane_state_release(phantom_plane);
1771 			dc_stream_release(phantom_stream);
1772 
1773 			removed_pipe = true;
1774 		}
1775 
1776 		/* For non-full updates, a shallow copy of the current state
1777 		 * is created. In this case we don't want to erase the current
1778 		 * state (there can be 2 HIRQL threads, one in flip, and one in
1779 		 * checkMPO) that can cause a race condition.
1780 		 *
1781 		 * This is just a workaround, needs a proper fix.
1782 		 */
1783 		if (!fast_update) {
1784 			// Clear all phantom stream info
1785 			if (pipe->stream) {
1786 				pipe->stream->mall_stream_config.type = SUBVP_NONE;
1787 				pipe->stream->mall_stream_config.paired_stream = NULL;
1788 			}
1789 
1790 			if (pipe->plane_state) {
1791 				pipe->plane_state->is_phantom = false;
1792 			}
1793 		}
1794 	}
1795 	return removed_pipe;
1796 }
1797 
1798 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1799  * require a phantom pipe / stream
1800  */
1801 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1802 		display_e2e_pipe_params_st *pipes,
1803 		unsigned int pipe_cnt,
1804 		unsigned int index)
1805 {
1806 	struct dc_stream_state *phantom_stream = NULL;
1807 	unsigned int i;
1808 
1809 	// The index of the DC pipe passed into this function is guarenteed to
1810 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1811 	// already have phantom pipe assigned, etc.) by previous checks.
1812 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1813 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1814 
1815 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1816 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1817 
1818 		// Build scaling params for phantom pipes which were newly added.
1819 		// We determine which phantom pipes were added by comparing with
1820 		// the phantom stream.
1821 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1822 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1823 			pipe->stream->use_dynamic_meta = false;
1824 			pipe->plane_state->flip_immediate = false;
1825 			if (!resource_build_scaling_params(pipe)) {
1826 				// Log / remove phantom pipes since failed to build scaling params
1827 			}
1828 		}
1829 	}
1830 }
1831 
1832 bool dcn32_validate_bandwidth(struct dc *dc,
1833 		struct dc_state *context,
1834 		bool fast_validate)
1835 {
1836 	bool out = false;
1837 
1838 	BW_VAL_TRACE_SETUP();
1839 
1840 	int vlevel = 0;
1841 	int pipe_cnt = 0;
1842 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1843 	struct mall_temp_config mall_temp_config;
1844 
1845 	/* To handle Freesync properly, setting FreeSync DML parameters
1846 	 * to its default state for the first stage of validation
1847 	 */
1848 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1849 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1850 
1851 	DC_LOGGER_INIT(dc->ctx->logger);
1852 
1853 	/* For fast validation, there are situations where a shallow copy of
1854 	 * of the dc->current_state is created for the validation. In this case
1855 	 * we want to save and restore the mall config because we always
1856 	 * teardown subvp at the beginning of validation (and don't attempt
1857 	 * to add it back if it's fast validation). If we don't restore the
1858 	 * subvp config in cases of fast validation + shallow copy of the
1859 	 * dc->current_state, the dc->current_state will have a partially
1860 	 * removed subvp state when we did not intend to remove it.
1861 	 */
1862 	if (fast_validate) {
1863 		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
1864 		dcn32_save_mall_state(dc, context, &mall_temp_config);
1865 	}
1866 
1867 	BW_VAL_TRACE_COUNT();
1868 
1869 	DC_FP_START();
1870 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1871 	DC_FP_END();
1872 
1873 	if (fast_validate)
1874 		dcn32_restore_mall_state(dc, context, &mall_temp_config);
1875 
1876 	if (pipe_cnt == 0)
1877 		goto validate_out;
1878 
1879 	if (!out)
1880 		goto validate_fail;
1881 
1882 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1883 
1884 	if (fast_validate) {
1885 		BW_VAL_TRACE_SKIP(fast);
1886 		goto validate_out;
1887 	}
1888 
1889 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1890 
1891 	BW_VAL_TRACE_END_WATERMARKS();
1892 
1893 	goto validate_out;
1894 
1895 validate_fail:
1896 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1897 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1898 
1899 	BW_VAL_TRACE_SKIP(fail);
1900 	out = false;
1901 
1902 validate_out:
1903 	kfree(pipes);
1904 
1905 	BW_VAL_TRACE_FINISH();
1906 
1907 	return out;
1908 }
1909 
1910 int dcn32_populate_dml_pipes_from_context(
1911 	struct dc *dc, struct dc_state *context,
1912 	display_e2e_pipe_params_st *pipes,
1913 	bool fast_validate)
1914 {
1915 	int i, pipe_cnt;
1916 	struct resource_context *res_ctx = &context->res_ctx;
1917 	struct pipe_ctx *pipe;
1918 	bool subvp_in_use = false;
1919 	struct dc_crtc_timing *timing;
1920 	bool vsr_odm_support = false;
1921 
1922 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1923 
1924 	/* Determine whether we will apply ODM 2to1 policy:
1925 	 * Applies to single display and where the number of planes is less than 3.
1926 	 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
1927 	 *
1928 	 * Apply pipe split policy first so we can predict the pipe split correctly
1929 	 * (dcn32_predict_pipe_split).
1930 	 */
1931 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1932 		if (!res_ctx->pipe_ctx[i].stream)
1933 			continue;
1934 		pipe = &res_ctx->pipe_ctx[i];
1935 		timing = &pipe->stream->timing;
1936 
1937 		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1938 		vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 &&
1939 				res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width);
1940 		if (context->stream_count == 1 &&
1941 				context->stream_status[0].plane_count == 1 &&
1942 				!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
1943 				is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1944 				pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1945 				dc->debug.enable_single_display_2to1_odm_policy &&
1946 				!vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr
1947 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1948 		}
1949 		pipe_cnt++;
1950 	}
1951 
1952 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1953 
1954 		if (!res_ctx->pipe_ctx[i].stream)
1955 			continue;
1956 		pipe = &res_ctx->pipe_ctx[i];
1957 		timing = &pipe->stream->timing;
1958 
1959 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1960 		DC_FP_START();
1961 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1962 		DC_FP_END();
1963 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1964 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1965 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1966 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1967 
1968 		/* Only populate DML input with subvp info for full updates.
1969 		 * This is just a workaround -- needs a proper fix.
1970 		 */
1971 		if (!fast_validate) {
1972 			switch (pipe->stream->mall_stream_config.type) {
1973 			case SUBVP_MAIN:
1974 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1975 				subvp_in_use = true;
1976 				break;
1977 			case SUBVP_PHANTOM:
1978 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1979 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1980 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1981 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1982 				break;
1983 			case SUBVP_NONE:
1984 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1985 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1986 				break;
1987 			default:
1988 				break;
1989 			}
1990 		}
1991 
1992 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1993 		if (pipes[pipe_cnt].dout.dsc_enable) {
1994 			switch (timing->display_color_depth) {
1995 			case COLOR_DEPTH_888:
1996 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1997 				break;
1998 			case COLOR_DEPTH_101010:
1999 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
2000 				break;
2001 			case COLOR_DEPTH_121212:
2002 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
2003 				break;
2004 			default:
2005 				ASSERT(0);
2006 				break;
2007 			}
2008 		}
2009 
2010 		DC_FP_START();
2011 		dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
2012 		DC_FP_END();
2013 
2014 		pipe_cnt++;
2015 	}
2016 
2017 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
2018 	 * the DET available for each pipe). Use the DET override input to maintain our driver
2019 	 * policy.
2020 	 */
2021 	dcn32_set_det_allocations(dc, context, pipes);
2022 
2023 	// In general cases we want to keep the dram clock change requirement
2024 	// (prefer configs that support MCLK switch). Only override to false
2025 	// for SubVP
2026 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
2027 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
2028 	else
2029 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
2030 
2031 	return pipe_cnt;
2032 }
2033 
2034 static struct dc_cap_funcs cap_funcs = {
2035 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2036 };
2037 
2038 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2039 				display_e2e_pipe_params_st *pipes,
2040 				int pipe_cnt,
2041 				int vlevel)
2042 {
2043     DC_FP_START();
2044     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2045     DC_FP_END();
2046 }
2047 
2048 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2049 {
2050 	DC_FP_START();
2051 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2052 	DC_FP_END();
2053 }
2054 
2055 static struct resource_funcs dcn32_res_pool_funcs = {
2056 	.destroy = dcn32_destroy_resource_pool,
2057 	.link_enc_create = dcn32_link_encoder_create,
2058 	.link_enc_create_minimal = NULL,
2059 	.panel_cntl_create = dcn32_panel_cntl_create,
2060 	.validate_bandwidth = dcn32_validate_bandwidth,
2061 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2062 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2063 	.acquire_idle_pipe_for_head_pipe_in_layer = dcn32_acquire_idle_pipe_for_head_pipe_in_layer,
2064 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2065 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2066 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2067 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2068 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2069 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2070 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2071 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2072 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2073 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2074 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2075 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2076 	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
2077 	.retain_phantom_pipes = dcn32_retain_phantom_pipes,
2078 	.save_mall_state = dcn32_save_mall_state,
2079 	.restore_mall_state = dcn32_restore_mall_state,
2080 };
2081 
2082 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2083 {
2084 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2085 	/* DCN32 support max 4 pipes */
2086 	value = value & 0xf;
2087 	return value;
2088 }
2089 
2090 
2091 static bool dcn32_resource_construct(
2092 	uint8_t num_virtual_links,
2093 	struct dc *dc,
2094 	struct dcn32_resource_pool *pool)
2095 {
2096 	int i, j;
2097 	struct dc_context *ctx = dc->ctx;
2098 	struct irq_service_init_data init_data;
2099 	struct ddc_service_init_data ddc_init_data = {0};
2100 	uint32_t pipe_fuses = 0;
2101 	uint32_t num_pipes  = 4;
2102 
2103 #undef REG_STRUCT
2104 #define REG_STRUCT bios_regs
2105 	bios_regs_init();
2106 
2107 #undef REG_STRUCT
2108 #define REG_STRUCT clk_src_regs
2109 	clk_src_regs_init(0, A),
2110 	clk_src_regs_init(1, B),
2111 	clk_src_regs_init(2, C),
2112 	clk_src_regs_init(3, D),
2113 	clk_src_regs_init(4, E);
2114 
2115 #undef REG_STRUCT
2116 #define REG_STRUCT abm_regs
2117 	abm_regs_init(0),
2118 	abm_regs_init(1),
2119 	abm_regs_init(2),
2120 	abm_regs_init(3);
2121 
2122 #undef REG_STRUCT
2123 #define REG_STRUCT dccg_regs
2124 	dccg_regs_init();
2125 
2126 	DC_FP_START();
2127 
2128 	ctx->dc_bios->regs = &bios_regs;
2129 
2130 	pool->base.res_cap = &res_cap_dcn32;
2131 	/* max number of pipes for ASIC before checking for pipe fuses */
2132 	num_pipes  = pool->base.res_cap->num_timing_generator;
2133 	pipe_fuses = read_pipe_fuses(ctx);
2134 
2135 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2136 		if (pipe_fuses & 1 << i)
2137 			num_pipes--;
2138 
2139 	if (pipe_fuses & 1)
2140 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2141 
2142 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2143 		ASSERT(0); //Entire DCN is harvested!
2144 
2145 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2146 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2147 	 */
2148 	dcn3_2_ip.max_num_dpp = num_pipes;
2149 	dcn3_2_ip.max_num_otg = num_pipes;
2150 
2151 	pool->base.funcs = &dcn32_res_pool_funcs;
2152 
2153 	/*************************************************
2154 	 *  Resource + asic cap harcoding                *
2155 	 *************************************************/
2156 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2157 	pool->base.timing_generator_count = num_pipes;
2158 	pool->base.pipe_count = num_pipes;
2159 	pool->base.mpcc_count = num_pipes;
2160 	dc->caps.max_downscale_ratio = 600;
2161 	dc->caps.i2c_speed_in_khz = 100;
2162 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2163 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2164 	dc->caps.max_cursor_size = 64;
2165 	dc->caps.min_horizontal_blanking_period = 80;
2166 	dc->caps.dmdata_alloc_size = 2048;
2167 	dc->caps.mall_size_per_mem_channel = 4;
2168 	dc->caps.mall_size_total = 0;
2169 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2170 
2171 	dc->caps.cache_line_size = 64;
2172 	dc->caps.cache_num_ways = 16;
2173 
2174 	/* Calculate the available MALL space */
2175 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2176 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2177 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2178 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2179 
2180 	dc->caps.subvp_fw_processing_delay_us = 15;
2181 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2182 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2183 	dc->caps.subvp_swath_height_margin_lines = 16;
2184 	dc->caps.subvp_pstate_allow_width_us = 20;
2185 	dc->caps.subvp_vertical_int_margin_us = 30;
2186 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2187 
2188 	dc->caps.max_slave_planes = 2;
2189 	dc->caps.max_slave_yuv_planes = 2;
2190 	dc->caps.max_slave_rgb_planes = 2;
2191 	dc->caps.post_blend_color_processing = true;
2192 	dc->caps.force_dp_tps4_for_cp2520 = true;
2193 	if (dc->config.forceHBR2CP2520)
2194 		dc->caps.force_dp_tps4_for_cp2520 = false;
2195 	dc->caps.dp_hpo = true;
2196 	dc->caps.dp_hdmi21_pcon_support = true;
2197 	dc->caps.edp_dsc_support = true;
2198 	dc->caps.extended_aux_timeout_support = true;
2199 	dc->caps.dmcub_support = true;
2200 	dc->caps.seamless_odm = true;
2201 
2202 	/* Color pipeline capabilities */
2203 	dc->caps.color.dpp.dcn_arch = 1;
2204 	dc->caps.color.dpp.input_lut_shared = 0;
2205 	dc->caps.color.dpp.icsc = 1;
2206 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2207 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2208 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2209 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2210 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2211 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2212 	dc->caps.color.dpp.post_csc = 1;
2213 	dc->caps.color.dpp.gamma_corr = 1;
2214 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2215 
2216 	dc->caps.color.dpp.hw_3d_lut = 1;
2217 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2218 	// no OGAM ROM on DCN2 and later ASICs
2219 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2220 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2221 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2222 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2223 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2224 	dc->caps.color.dpp.ocsc = 0;
2225 
2226 	dc->caps.color.mpc.gamut_remap = 1;
2227 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2228 	dc->caps.color.mpc.ogam_ram = 1;
2229 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2230 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2231 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2232 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2233 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2234 	dc->caps.color.mpc.ocsc = 1;
2235 
2236 	/* Use pipe context based otg sync logic */
2237 	dc->config.use_pipe_ctx_sync_logic = true;
2238 
2239 	/* read VBIOS LTTPR caps */
2240 	{
2241 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2242 			enum bp_result bp_query_result;
2243 			uint8_t is_vbios_lttpr_enable = 0;
2244 
2245 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2246 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2247 		}
2248 
2249 		/* interop bit is implicit */
2250 		{
2251 			dc->caps.vbios_lttpr_aware = true;
2252 		}
2253 	}
2254 
2255 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2256 		dc->debug = debug_defaults_drv;
2257 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2258 		dc->debug = debug_defaults_diags;
2259 	} else
2260 		dc->debug = debug_defaults_diags;
2261 	// Init the vm_helper
2262 	if (dc->vm_helper)
2263 		vm_helper_init(dc->vm_helper, 16);
2264 
2265 	/*************************************************
2266 	 *  Create resources                             *
2267 	 *************************************************/
2268 
2269 	/* Clock Sources for Pixel Clock*/
2270 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2271 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2272 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2273 				&clk_src_regs[0], false);
2274 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2275 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2276 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2277 				&clk_src_regs[1], false);
2278 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2279 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2280 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2281 				&clk_src_regs[2], false);
2282 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2283 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2284 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2285 				&clk_src_regs[3], false);
2286 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2287 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2288 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2289 				&clk_src_regs[4], false);
2290 
2291 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2292 
2293 	/* todo: not reuse phy_pll registers */
2294 	pool->base.dp_clock_source =
2295 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2296 				CLOCK_SOURCE_ID_DP_DTO,
2297 				&clk_src_regs[0], true);
2298 
2299 	for (i = 0; i < pool->base.clk_src_count; i++) {
2300 		if (pool->base.clock_sources[i] == NULL) {
2301 			dm_error("DC: failed to create clock sources!\n");
2302 			BREAK_TO_DEBUGGER();
2303 			goto create_fail;
2304 		}
2305 	}
2306 
2307 	/* DCCG */
2308 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2309 	if (pool->base.dccg == NULL) {
2310 		dm_error("DC: failed to create dccg!\n");
2311 		BREAK_TO_DEBUGGER();
2312 		goto create_fail;
2313 	}
2314 
2315 	/* DML */
2316 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
2317 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2318 
2319 	/* IRQ Service */
2320 	init_data.ctx = dc->ctx;
2321 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2322 	if (!pool->base.irqs)
2323 		goto create_fail;
2324 
2325 	/* HUBBUB */
2326 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2327 	if (pool->base.hubbub == NULL) {
2328 		BREAK_TO_DEBUGGER();
2329 		dm_error("DC: failed to create hubbub!\n");
2330 		goto create_fail;
2331 	}
2332 
2333 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2334 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2335 
2336 		/* if pipe is disabled, skip instance of HW pipe,
2337 		 * i.e, skip ASIC register instance
2338 		 */
2339 		if (pipe_fuses & 1 << i)
2340 			continue;
2341 
2342 		/* HUBPs */
2343 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2344 		if (pool->base.hubps[j] == NULL) {
2345 			BREAK_TO_DEBUGGER();
2346 			dm_error(
2347 				"DC: failed to create hubps!\n");
2348 			goto create_fail;
2349 		}
2350 
2351 		/* DPPs */
2352 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2353 		if (pool->base.dpps[j] == NULL) {
2354 			BREAK_TO_DEBUGGER();
2355 			dm_error(
2356 				"DC: failed to create dpps!\n");
2357 			goto create_fail;
2358 		}
2359 
2360 		/* OPPs */
2361 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2362 		if (pool->base.opps[j] == NULL) {
2363 			BREAK_TO_DEBUGGER();
2364 			dm_error(
2365 				"DC: failed to create output pixel processor!\n");
2366 			goto create_fail;
2367 		}
2368 
2369 		/* TGs */
2370 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2371 				ctx, i);
2372 		if (pool->base.timing_generators[j] == NULL) {
2373 			BREAK_TO_DEBUGGER();
2374 			dm_error("DC: failed to create tg!\n");
2375 			goto create_fail;
2376 		}
2377 
2378 		/* ABMs */
2379 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2380 				&abm_regs[i],
2381 				&abm_shift,
2382 				&abm_mask);
2383 		if (pool->base.multiple_abms[j] == NULL) {
2384 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2385 			BREAK_TO_DEBUGGER();
2386 			goto create_fail;
2387 		}
2388 
2389 		/* index for resource pool arrays for next valid pipe */
2390 		j++;
2391 	}
2392 
2393 	/* PSR */
2394 	pool->base.psr = dmub_psr_create(ctx);
2395 	if (pool->base.psr == NULL) {
2396 		dm_error("DC: failed to create psr obj!\n");
2397 		BREAK_TO_DEBUGGER();
2398 		goto create_fail;
2399 	}
2400 
2401 	/* MPCCs */
2402 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2403 	if (pool->base.mpc == NULL) {
2404 		BREAK_TO_DEBUGGER();
2405 		dm_error("DC: failed to create mpc!\n");
2406 		goto create_fail;
2407 	}
2408 
2409 	/* DSCs */
2410 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2411 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2412 		if (pool->base.dscs[i] == NULL) {
2413 			BREAK_TO_DEBUGGER();
2414 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2415 			goto create_fail;
2416 		}
2417 	}
2418 
2419 	/* DWB */
2420 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2421 		BREAK_TO_DEBUGGER();
2422 		dm_error("DC: failed to create dwbc!\n");
2423 		goto create_fail;
2424 	}
2425 
2426 	/* MMHUBBUB */
2427 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2428 		BREAK_TO_DEBUGGER();
2429 		dm_error("DC: failed to create mcif_wb!\n");
2430 		goto create_fail;
2431 	}
2432 
2433 	/* AUX and I2C */
2434 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2435 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2436 		if (pool->base.engines[i] == NULL) {
2437 			BREAK_TO_DEBUGGER();
2438 			dm_error(
2439 				"DC:failed to create aux engine!!\n");
2440 			goto create_fail;
2441 		}
2442 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2443 		if (pool->base.hw_i2cs[i] == NULL) {
2444 			BREAK_TO_DEBUGGER();
2445 			dm_error(
2446 				"DC:failed to create hw i2c!!\n");
2447 			goto create_fail;
2448 		}
2449 		pool->base.sw_i2cs[i] = NULL;
2450 	}
2451 
2452 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2453 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2454 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2455 			&res_create_funcs : &res_create_maximus_funcs)))
2456 			goto create_fail;
2457 
2458 	/* HW Sequencer init functions and Plane caps */
2459 	dcn32_hw_sequencer_init_functions(dc);
2460 
2461 	dc->caps.max_planes =  pool->base.pipe_count;
2462 
2463 	for (i = 0; i < dc->caps.max_planes; ++i)
2464 		dc->caps.planes[i] = plane_cap;
2465 
2466 	dc->cap_funcs = cap_funcs;
2467 
2468 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2469 		ddc_init_data.ctx = dc->ctx;
2470 		ddc_init_data.link = NULL;
2471 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2472 		ddc_init_data.id.enum_id = 0;
2473 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2474 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2475 	} else {
2476 		pool->base.oem_device = NULL;
2477 	}
2478 
2479 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2480 		dc->config.sdpif_request_limit_words_per_umc = 16;
2481 
2482 	DC_FP_END();
2483 
2484 	return true;
2485 
2486 create_fail:
2487 
2488 	DC_FP_END();
2489 
2490 	dcn32_resource_destruct(pool);
2491 
2492 	return false;
2493 }
2494 
2495 struct resource_pool *dcn32_create_resource_pool(
2496 		const struct dc_init_data *init_data,
2497 		struct dc *dc)
2498 {
2499 	struct dcn32_resource_pool *pool =
2500 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2501 
2502 	if (!pool)
2503 		return NULL;
2504 
2505 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2506 		return &pool->base;
2507 
2508 	BREAK_TO_DEBUGGER();
2509 	kfree(pool);
2510 	return NULL;
2511 }
2512 
2513 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2514 		struct resource_context *res_ctx,
2515 		const struct resource_pool *pool,
2516 		const struct pipe_ctx *primary_pipe)
2517 {
2518 	int i;
2519 	struct pipe_ctx *secondary_pipe = NULL;
2520 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2521 	int primary_index, preferred_pipe_idx;
2522 	struct pipe_ctx *old_primary_pipe = NULL;
2523 
2524 	/*
2525 	 * Modified from find_idle_secondary_pipe
2526 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2527 	 *  free pipe for the left side but the free pipe is being used on the
2528 	 *  right side.
2529 	 * Add check on current_state if the primary_pipe is the left side,
2530 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2531 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2532 	 * - If so, then don't use this pipe
2533 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2534 	 * - in this case, the primary pipe has already gotten a free pipe for the
2535 	 *  MPO window in the left
2536 	 * - when it tries to get a free pipe for the MPO window on the right,
2537 	 *  it will see that it is already assigned to the right side
2538 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2539 	 *  free pipe, since it will be for the right side.  So add an
2540 	 *  additional condition, that skipping the free pipe on the right only
2541 	 *  applies if the primary pipe has no bottom pipe currently assigned
2542 	 */
2543 	if (primary_pipe) {
2544 		primary_index = primary_pipe->pipe_idx;
2545 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2546 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2547 			&& (!primary_pipe->bottom_pipe))
2548 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2549 
2550 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2551 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2552 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2553 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2554 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2555 		}
2556 	}
2557 
2558 	/*
2559 	 * search backwards for the second pipe to keep pipe
2560 	 * assignment more consistent
2561 	 */
2562 	if (!secondary_pipe)
2563 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2564 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2565 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2566 				secondary_pipe = &res_ctx->pipe_ctx[i];
2567 				secondary_pipe->pipe_idx = i;
2568 				break;
2569 			}
2570 		}
2571 
2572 	return secondary_pipe;
2573 }
2574 
2575 struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2576 		struct dc_state *state,
2577 		const struct resource_pool *pool,
2578 		struct dc_stream_state *stream,
2579 		struct pipe_ctx *head_pipe)
2580 {
2581 	struct resource_context *res_ctx = &state->res_ctx;
2582 	struct pipe_ctx *idle_pipe, *pipe;
2583 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2584 	int head_index;
2585 
2586 	if (!head_pipe)
2587 		ASSERT(0);
2588 
2589 	/*
2590 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2591 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2592 	 * - If so, check if that pipe is available in the current context.
2593 	 * --  If so, reuse pipe from old_context
2594 	 */
2595 	head_index = head_pipe->pipe_idx;
2596 	pipe = &old_ctx->pipe_ctx[head_index];
2597 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2598 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2599 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2600 	} else {
2601 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2602 		if (!idle_pipe)
2603 			return NULL;
2604 	}
2605 
2606 	idle_pipe->stream = head_pipe->stream;
2607 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2608 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2609 
2610 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2611 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2612 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2613 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2614 
2615 	return idle_pipe;
2616 }
2617 
2618 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2619 {
2620 	/*
2621 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2622 	 *  but we may not be able to access all the MALL space.
2623 	 *  If the num_chans is power of 2, then we can access all
2624 	 *  of the available MALL space.  Otherwise, we can only
2625 	 *  access:
2626 	 *
2627 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2628 	 *    ((2^floor(log2(num_chans)))/num_chans)
2629 	 *
2630 	 * Calculating the MALL sizes for all available SKUs, we
2631 	 *  have come up with the follow simplified check.
2632 	 * - we have max_chans which provides the max MALL size.
2633 	 *  Each chans supports 4MB of MALL so:
2634 	 *
2635 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2636 	 *
2637 	 * - we have avail_chans which shows the number of channels
2638 	 *  we can use if we can't access the entire MALL space.
2639 	 *  It is generally half of max_chans
2640 	 * - so we use the following checks:
2641 	 *
2642 	 *   if (num_chans == max_chans), return max_chans
2643 	 *   if (num_chans < max_chans), return avail_chans
2644 	 *
2645 	 * - exception is GC_11_0_0 where we can't access max_chans,
2646 	 *  so we define max_avail_chans as the maximum available
2647 	 *  MALL space
2648 	 *
2649 	 */
2650 	int gc_11_0_0_max_chans = 48;
2651 	int gc_11_0_0_max_avail_chans = 32;
2652 	int gc_11_0_0_avail_chans = 16;
2653 	int gc_11_0_3_max_chans = 16;
2654 	int gc_11_0_3_avail_chans = 8;
2655 	int gc_11_0_2_max_chans = 8;
2656 	int gc_11_0_2_avail_chans = 4;
2657 
2658 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2659 		return (num_chans == gc_11_0_0_max_chans) ?
2660 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2661 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2662 		return (num_chans == gc_11_0_2_max_chans) ?
2663 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2664 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2665 		return (num_chans == gc_11_0_3_max_chans) ?
2666 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2667 	}
2668 }
2669