1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn32_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn32_resource.h" 35 36 #include "dcn20/dcn20_resource.h" 37 #include "dcn30/dcn30_resource.h" 38 39 #include "dcn10/dcn10_ipp.h" 40 #include "dcn30/dcn30_hubbub.h" 41 #include "dcn31/dcn31_hubbub.h" 42 #include "dcn32/dcn32_hubbub.h" 43 #include "dcn32/dcn32_mpc.h" 44 #include "dcn32_hubp.h" 45 #include "irq/dcn32/irq_service_dcn32.h" 46 #include "dcn32/dcn32_dpp.h" 47 #include "dcn32/dcn32_optc.h" 48 #include "dcn20/dcn20_hwseq.h" 49 #include "dcn30/dcn30_hwseq.h" 50 #include "dce110/dce110_hw_sequencer.h" 51 #include "dcn30/dcn30_opp.h" 52 #include "dcn20/dcn20_dsc.h" 53 #include "dcn30/dcn30_vpg.h" 54 #include "dcn30/dcn30_afmt.h" 55 #include "dcn30/dcn30_dio_stream_encoder.h" 56 #include "dcn32/dcn32_dio_stream_encoder.h" 57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h" 58 #include "dcn31/dcn31_hpo_dp_link_encoder.h" 59 #include "dcn32/dcn32_hpo_dp_link_encoder.h" 60 #include "dcn31/dcn31_apg.h" 61 #include "dcn31/dcn31_dio_link_encoder.h" 62 #include "dcn32/dcn32_dio_link_encoder.h" 63 #include "dce/dce_clock_source.h" 64 #include "dce/dce_audio.h" 65 #include "dce/dce_hwseq.h" 66 #include "clk_mgr.h" 67 #include "virtual/virtual_stream_encoder.h" 68 #include "dml/display_mode_vba.h" 69 #include "dcn32/dcn32_dccg.h" 70 #include "dcn10/dcn10_resource.h" 71 #include "link.h" 72 #include "dcn31/dcn31_panel_cntl.h" 73 74 #include "dcn30/dcn30_dwb.h" 75 #include "dcn32/dcn32_mmhubbub.h" 76 77 #include "dcn/dcn_3_2_0_offset.h" 78 #include "dcn/dcn_3_2_0_sh_mask.h" 79 #include "nbio/nbio_4_3_0_offset.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/display_mode_vba_30.h" 88 #include "vm_helper.h" 89 #include "dcn20/dcn20_vmid.h" 90 #include "dml/dcn32/dcn32_fpu.h" 91 92 #define DC_LOGGER_INIT(logger) 93 94 enum dcn32_clk_src_array_id { 95 DCN32_CLK_SRC_PLL0, 96 DCN32_CLK_SRC_PLL1, 97 DCN32_CLK_SRC_PLL2, 98 DCN32_CLK_SRC_PLL3, 99 DCN32_CLK_SRC_PLL4, 100 DCN32_CLK_SRC_TOTAL 101 }; 102 103 /* begin ********************* 104 * macros to expend register list macro defined in HW object header file 105 */ 106 107 /* DCN */ 108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg] 109 110 #define BASE(seg) BASE_INNER(seg) 111 112 #define SR(reg_name)\ 113 REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 114 reg ## reg_name 115 #define SR_ARR(reg_name, id) \ 116 REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name 117 118 #define SR_ARR_INIT(reg_name, id, value) \ 119 REG_STRUCT[id].reg_name = value 120 121 #define SRI(reg_name, block, id)\ 122 REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 123 reg ## block ## id ## _ ## reg_name 124 125 #define SRI_ARR(reg_name, block, id)\ 126 REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 127 reg ## block ## id ## _ ## reg_name 128 129 #define SR_ARR_I2C(reg_name, id) \ 130 REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name 131 132 #define SRI_ARR_I2C(reg_name, block, id)\ 133 REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 134 reg ## block ## id ## _ ## reg_name 135 136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\ 137 REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 138 reg ## block ## id ## _ ## reg_name 139 140 #define SRI2(reg_name, block, id)\ 141 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 142 reg ## reg_name 143 #define SRI2_ARR(reg_name, block, id)\ 144 REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 145 reg ## reg_name 146 147 #define SRIR(var_name, reg_name, block, id)\ 148 .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 149 reg ## block ## id ## _ ## reg_name 150 151 #define SRII(reg_name, block, id)\ 152 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 153 reg ## block ## id ## _ ## reg_name 154 155 #define SRII_ARR_2(reg_name, block, id, inst)\ 156 REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 157 reg ## block ## id ## _ ## reg_name 158 159 #define SRII_MPC_RMU(reg_name, block, id)\ 160 .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 161 reg ## block ## id ## _ ## reg_name 162 163 #define SRII_DWB(reg_name, temp_name, block, id)\ 164 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 165 reg ## block ## id ## _ ## temp_name 166 167 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 168 .field_name = reg_name ## __ ## field_name ## post_fix 169 170 #define DCCG_SRII(reg_name, block, id)\ 171 REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 172 reg ## block ## id ## _ ## reg_name 173 174 #define VUPDATE_SRII(reg_name, block, id)\ 175 REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 176 reg ## reg_name ## _ ## block ## id 177 178 /* NBIO */ 179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg] 180 181 #define NBIO_BASE(seg) \ 182 NBIO_BASE_INNER(seg) 183 184 #define NBIO_SR(reg_name)\ 185 REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 186 regBIF_BX0_ ## reg_name 187 #define NBIO_SR_ARR(reg_name, id)\ 188 REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 189 regBIF_BX0_ ## reg_name 190 191 #undef CTX 192 #define CTX ctx 193 #define REG(reg_name) \ 194 (ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) 195 196 static struct bios_registers bios_regs; 197 198 #define bios_regs_init() \ 199 ( \ 200 NBIO_SR(BIOS_SCRATCH_3),\ 201 NBIO_SR(BIOS_SCRATCH_6)\ 202 ) 203 204 #define clk_src_regs_init(index, pllid)\ 205 CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid) 206 207 static struct dce110_clk_src_regs clk_src_regs[5]; 208 209 static const struct dce110_clk_src_shift cs_shift = { 210 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 211 }; 212 213 static const struct dce110_clk_src_mask cs_mask = { 214 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 215 }; 216 217 #define abm_regs_init(id)\ 218 ABM_DCN32_REG_LIST_RI(id) 219 220 static struct dce_abm_registers abm_regs[4]; 221 222 static const struct dce_abm_shift abm_shift = { 223 ABM_MASK_SH_LIST_DCN32(__SHIFT) 224 }; 225 226 static const struct dce_abm_mask abm_mask = { 227 ABM_MASK_SH_LIST_DCN32(_MASK) 228 }; 229 230 #define audio_regs_init(id)\ 231 AUD_COMMON_REG_LIST_RI(id) 232 233 static struct dce_audio_registers audio_regs[5]; 234 235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 236 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 237 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 238 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 239 240 static const struct dce_audio_shift audio_shift = { 241 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 242 }; 243 244 static const struct dce_audio_mask audio_mask = { 245 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 246 }; 247 248 #define vpg_regs_init(id)\ 249 VPG_DCN3_REG_LIST_RI(id) 250 251 static struct dcn30_vpg_registers vpg_regs[10]; 252 253 static const struct dcn30_vpg_shift vpg_shift = { 254 DCN3_VPG_MASK_SH_LIST(__SHIFT) 255 }; 256 257 static const struct dcn30_vpg_mask vpg_mask = { 258 DCN3_VPG_MASK_SH_LIST(_MASK) 259 }; 260 261 #define afmt_regs_init(id)\ 262 AFMT_DCN3_REG_LIST_RI(id) 263 264 static struct dcn30_afmt_registers afmt_regs[6]; 265 266 static const struct dcn30_afmt_shift afmt_shift = { 267 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 268 }; 269 270 static const struct dcn30_afmt_mask afmt_mask = { 271 DCN3_AFMT_MASK_SH_LIST(_MASK) 272 }; 273 274 #define apg_regs_init(id)\ 275 APG_DCN31_REG_LIST_RI(id) 276 277 static struct dcn31_apg_registers apg_regs[4]; 278 279 static const struct dcn31_apg_shift apg_shift = { 280 DCN31_APG_MASK_SH_LIST(__SHIFT) 281 }; 282 283 static const struct dcn31_apg_mask apg_mask = { 284 DCN31_APG_MASK_SH_LIST(_MASK) 285 }; 286 287 #define stream_enc_regs_init(id)\ 288 SE_DCN32_REG_LIST_RI(id) 289 290 static struct dcn10_stream_enc_registers stream_enc_regs[5]; 291 292 static const struct dcn10_stream_encoder_shift se_shift = { 293 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 294 }; 295 296 static const struct dcn10_stream_encoder_mask se_mask = { 297 SE_COMMON_MASK_SH_LIST_DCN32(_MASK) 298 }; 299 300 301 #define aux_regs_init(id)\ 302 DCN2_AUX_REG_LIST_RI(id) 303 304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5]; 305 306 #define hpd_regs_init(id)\ 307 HPD_REG_LIST_RI(id) 308 309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5]; 310 311 #define link_regs_init(id, phyid)\ 312 ( \ 313 LE_DCN31_REG_LIST_RI(id), \ 314 UNIPHY_DCN2_REG_LIST_RI(id, phyid)\ 315 ) 316 /*DPCS_DCN31_REG_LIST(id),*/ \ 317 318 static struct dcn10_link_enc_registers link_enc_regs[5]; 319 320 static const struct dcn10_link_enc_shift le_shift = { 321 LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ 322 //DPCS_DCN31_MASK_SH_LIST(__SHIFT) 323 }; 324 325 static const struct dcn10_link_enc_mask le_mask = { 326 LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ 327 //DPCS_DCN31_MASK_SH_LIST(_MASK) 328 }; 329 330 #define hpo_dp_stream_encoder_reg_init(id)\ 331 DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id) 332 333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4]; 334 335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { 336 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) 337 }; 338 339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { 340 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) 341 }; 342 343 344 #define hpo_dp_link_encoder_reg_init(id)\ 345 DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id) 346 /*DCN3_1_RDPCSTX_REG_LIST(0),*/ 347 /*DCN3_1_RDPCSTX_REG_LIST(1),*/ 348 /*DCN3_1_RDPCSTX_REG_LIST(2),*/ 349 /*DCN3_1_RDPCSTX_REG_LIST(3),*/ 350 351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2]; 352 353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { 354 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) 355 }; 356 357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { 358 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) 359 }; 360 361 #define dpp_regs_init(id)\ 362 DPP_REG_LIST_DCN30_COMMON_RI(id) 363 364 static struct dcn3_dpp_registers dpp_regs[4]; 365 366 static const struct dcn3_dpp_shift tf_shift = { 367 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) 368 }; 369 370 static const struct dcn3_dpp_mask tf_mask = { 371 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) 372 }; 373 374 375 #define opp_regs_init(id)\ 376 OPP_REG_LIST_DCN30_RI(id) 377 378 static struct dcn20_opp_registers opp_regs[4]; 379 380 static const struct dcn20_opp_shift opp_shift = { 381 OPP_MASK_SH_LIST_DCN20(__SHIFT) 382 }; 383 384 static const struct dcn20_opp_mask opp_mask = { 385 OPP_MASK_SH_LIST_DCN20(_MASK) 386 }; 387 388 #define aux_engine_regs_init(id)\ 389 ( \ 390 AUX_COMMON_REG_LIST0_RI(id), \ 391 SR_ARR_INIT(AUXN_IMPCAL, id, 0), \ 392 SR_ARR_INIT(AUXP_IMPCAL, id, 0), \ 393 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \ 394 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\ 395 ) 396 397 static struct dce110_aux_registers aux_engine_regs[5]; 398 399 static const struct dce110_aux_registers_shift aux_shift = { 400 DCN_AUX_MASK_SH_LIST(__SHIFT) 401 }; 402 403 static const struct dce110_aux_registers_mask aux_mask = { 404 DCN_AUX_MASK_SH_LIST(_MASK) 405 }; 406 407 #define dwbc_regs_dcn3_init(id)\ 408 DWBC_COMMON_REG_LIST_DCN30_RI(id) 409 410 static struct dcn30_dwbc_registers dwbc30_regs[1]; 411 412 static const struct dcn30_dwbc_shift dwbc30_shift = { 413 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 414 }; 415 416 static const struct dcn30_dwbc_mask dwbc30_mask = { 417 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 418 }; 419 420 #define mcif_wb_regs_dcn3_init(id)\ 421 MCIF_WB_COMMON_REG_LIST_DCN32_RI(id) 422 423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1]; 424 425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 426 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 427 }; 428 429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 430 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) 431 }; 432 433 #define dsc_regsDCN20_init(id)\ 434 DSC_REG_LIST_DCN20_RI(id) 435 436 static struct dcn20_dsc_registers dsc_regs[4]; 437 438 static const struct dcn20_dsc_shift dsc_shift = { 439 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 440 }; 441 442 static const struct dcn20_dsc_mask dsc_mask = { 443 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 444 }; 445 446 static struct dcn30_mpc_registers mpc_regs; 447 448 #define dcn_mpc_regs_init() \ 449 MPC_REG_LIST_DCN3_2_RI(0),\ 450 MPC_REG_LIST_DCN3_2_RI(1),\ 451 MPC_REG_LIST_DCN3_2_RI(2),\ 452 MPC_REG_LIST_DCN3_2_RI(3),\ 453 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\ 454 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\ 455 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\ 456 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\ 457 MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0) 458 459 static const struct dcn30_mpc_shift mpc_shift = { 460 MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 461 }; 462 463 static const struct dcn30_mpc_mask mpc_mask = { 464 MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) 465 }; 466 467 #define optc_regs_init(id)\ 468 OPTC_COMMON_REG_LIST_DCN3_2_RI(id) 469 470 static struct dcn_optc_registers optc_regs[4]; 471 472 static const struct dcn_optc_shift optc_shift = { 473 OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 474 }; 475 476 static const struct dcn_optc_mask optc_mask = { 477 OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 478 }; 479 480 #define hubp_regs_init(id)\ 481 HUBP_REG_LIST_DCN32_RI(id) 482 483 static struct dcn_hubp2_registers hubp_regs[4]; 484 485 486 static const struct dcn_hubp2_shift hubp_shift = { 487 HUBP_MASK_SH_LIST_DCN32(__SHIFT) 488 }; 489 490 static const struct dcn_hubp2_mask hubp_mask = { 491 HUBP_MASK_SH_LIST_DCN32(_MASK) 492 }; 493 494 static struct dcn_hubbub_registers hubbub_reg; 495 #define hubbub_reg_init()\ 496 HUBBUB_REG_LIST_DCN32_RI(0) 497 498 static const struct dcn_hubbub_shift hubbub_shift = { 499 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) 500 }; 501 502 static const struct dcn_hubbub_mask hubbub_mask = { 503 HUBBUB_MASK_SH_LIST_DCN32(_MASK) 504 }; 505 506 static struct dccg_registers dccg_regs; 507 508 #define dccg_regs_init()\ 509 DCCG_REG_LIST_DCN32_RI() 510 511 static const struct dccg_shift dccg_shift = { 512 DCCG_MASK_SH_LIST_DCN32(__SHIFT) 513 }; 514 515 static const struct dccg_mask dccg_mask = { 516 DCCG_MASK_SH_LIST_DCN32(_MASK) 517 }; 518 519 520 #define SRII2(reg_name_pre, reg_name_post, id)\ 521 .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ 522 ## id ## _ ## reg_name_post ## _BASE_IDX) + \ 523 reg ## reg_name_pre ## id ## _ ## reg_name_post 524 525 526 #define HWSEQ_DCN32_REG_LIST()\ 527 SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ 528 SR(DIO_MEM_PWR_CTRL), \ 529 SR(ODM_MEM_PWR_CTRL3), \ 530 SR(MMHUBBUB_MEM_PWR_CNTL), \ 531 SR(DCCG_GATE_DISABLE_CNTL), \ 532 SR(DCCG_GATE_DISABLE_CNTL2), \ 533 SR(DCFCLK_CNTL),\ 534 SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ 535 SRII(PIXEL_RATE_CNTL, OTG, 0), \ 536 SRII(PIXEL_RATE_CNTL, OTG, 1),\ 537 SRII(PIXEL_RATE_CNTL, OTG, 2),\ 538 SRII(PIXEL_RATE_CNTL, OTG, 3),\ 539 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ 540 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ 541 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ 542 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ 543 SR(MICROSECOND_TIME_BASE_DIV), \ 544 SR(MILLISECOND_TIME_BASE_DIV), \ 545 SR(DISPCLK_FREQ_CHANGE_CNTL), \ 546 SR(RBBMIF_TIMEOUT_DIS), \ 547 SR(RBBMIF_TIMEOUT_DIS_2), \ 548 SR(DCHUBBUB_CRC_CTRL), \ 549 SR(DPP_TOP0_DPP_CRC_CTRL), \ 550 SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ 551 SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ 552 SR(MPC_CRC_CTRL), \ 553 SR(MPC_CRC_RESULT_GB), \ 554 SR(MPC_CRC_RESULT_C), \ 555 SR(MPC_CRC_RESULT_AR), \ 556 SR(DOMAIN0_PG_CONFIG), \ 557 SR(DOMAIN1_PG_CONFIG), \ 558 SR(DOMAIN2_PG_CONFIG), \ 559 SR(DOMAIN3_PG_CONFIG), \ 560 SR(DOMAIN16_PG_CONFIG), \ 561 SR(DOMAIN17_PG_CONFIG), \ 562 SR(DOMAIN18_PG_CONFIG), \ 563 SR(DOMAIN19_PG_CONFIG), \ 564 SR(DOMAIN0_PG_STATUS), \ 565 SR(DOMAIN1_PG_STATUS), \ 566 SR(DOMAIN2_PG_STATUS), \ 567 SR(DOMAIN3_PG_STATUS), \ 568 SR(DOMAIN16_PG_STATUS), \ 569 SR(DOMAIN17_PG_STATUS), \ 570 SR(DOMAIN18_PG_STATUS), \ 571 SR(DOMAIN19_PG_STATUS), \ 572 SR(D1VGA_CONTROL), \ 573 SR(D2VGA_CONTROL), \ 574 SR(D3VGA_CONTROL), \ 575 SR(D4VGA_CONTROL), \ 576 SR(D5VGA_CONTROL), \ 577 SR(D6VGA_CONTROL), \ 578 SR(DC_IP_REQUEST_CNTL), \ 579 SR(AZALIA_AUDIO_DTO), \ 580 SR(AZALIA_CONTROLLER_CLOCK_GATING) 581 582 static struct dce_hwseq_registers hwseq_reg; 583 584 #define hwseq_reg_init()\ 585 HWSEQ_DCN32_REG_LIST() 586 587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ 588 HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ 589 HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ 590 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 591 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 592 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 593 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 594 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 595 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 596 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 597 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 598 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 599 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 600 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 601 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 602 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 603 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 604 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 605 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 606 HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 607 HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 608 HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 609 HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 610 HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 611 HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 612 HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 613 HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 614 HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ 615 HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ 616 HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ 617 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ 618 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ 619 HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) 620 621 static const struct dce_hwseq_shift hwseq_shift = { 622 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) 623 }; 624 625 static const struct dce_hwseq_mask hwseq_mask = { 626 HWSEQ_DCN32_MASK_SH_LIST(_MASK) 627 }; 628 #define vmid_regs_init(id)\ 629 DCN20_VMID_REG_LIST_RI(id) 630 631 static struct dcn_vmid_registers vmid_regs[16]; 632 633 static const struct dcn20_vmid_shift vmid_shifts = { 634 DCN20_VMID_MASK_SH_LIST(__SHIFT) 635 }; 636 637 static const struct dcn20_vmid_mask vmid_masks = { 638 DCN20_VMID_MASK_SH_LIST(_MASK) 639 }; 640 641 static const struct resource_caps res_cap_dcn32 = { 642 .num_timing_generator = 4, 643 .num_opp = 4, 644 .num_video_plane = 4, 645 .num_audio = 5, 646 .num_stream_encoder = 5, 647 .num_hpo_dp_stream_encoder = 4, 648 .num_hpo_dp_link_encoder = 2, 649 .num_pll = 5, 650 .num_dwb = 1, 651 .num_ddc = 5, 652 .num_vmid = 16, 653 .num_mpc_3dlut = 4, 654 .num_dsc = 4, 655 }; 656 657 static const struct dc_plane_cap plane_cap = { 658 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 659 .per_pixel_alpha = true, 660 661 .pixel_format_support = { 662 .argb8888 = true, 663 .nv12 = true, 664 .fp16 = true, 665 .p010 = true, 666 .ayuv = false, 667 }, 668 669 .max_upscale_factor = { 670 .argb8888 = 16000, 671 .nv12 = 16000, 672 .fp16 = 16000 673 }, 674 675 // 6:1 downscaling ratio: 1000/6 = 166.666 676 .max_downscale_factor = { 677 .argb8888 = 167, 678 .nv12 = 167, 679 .fp16 = 167 680 }, 681 64, 682 64 683 }; 684 685 static const struct dc_debug_options debug_defaults_drv = { 686 .disable_dmcu = true, 687 .force_abm_enable = false, 688 .timing_trace = false, 689 .clock_trace = true, 690 .disable_pplib_clock_request = false, 691 .pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore 692 .force_single_disp_pipe_split = false, 693 .disable_dcc = DCC_ENABLE, 694 .vsr_support = true, 695 .performance_trace = false, 696 .max_downscale_src_width = 7680,/*upto 8K*/ 697 .disable_pplib_wm_range = false, 698 .scl_reset_length10 = true, 699 .sanity_checks = false, 700 .underflow_assert_delay_us = 0xFFFFFFFF, 701 .dwb_fi_phase = -1, // -1 = disable, 702 .dmub_command_table = true, 703 .enable_mem_low_power = { 704 .bits = { 705 .vga = false, 706 .i2c = false, 707 .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled 708 .dscl = false, 709 .cm = false, 710 .mpc = false, 711 .optc = true, 712 } 713 }, 714 .use_max_lb = true, 715 .force_disable_subvp = false, 716 .exit_idle_opt_for_cursor_updates = true, 717 .enable_single_display_2to1_odm_policy = true, 718 719 /* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/ 720 .enable_double_buffered_dsc_pg_support = true, 721 .enable_dp_dig_pixel_rate_div_policy = 1, 722 .allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback" 723 .alloc_extra_way_for_cursor = true, 724 .min_prefetch_in_strobe_ns = 60000, // 60us 725 .disable_unbounded_requesting = false, 726 .override_dispclk_programming = true, 727 .disable_fpo_optimizations = false, 728 .fpo_vactive_margin_us = 2000, // 2000us 729 .disable_fpo_vactive = false, 730 .disable_boot_optimizations = false, 731 .disable_subvp_high_refresh = false, 732 .disable_dp_plus_plus_wa = true, 733 .fpo_vactive_min_active_margin_us = 200, 734 .fpo_vactive_max_blank_us = 1000, 735 .enable_legacy_fast_update = false, 736 }; 737 738 static struct dce_aux *dcn32_aux_engine_create( 739 struct dc_context *ctx, 740 uint32_t inst) 741 { 742 struct aux_engine_dce110 *aux_engine = 743 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 744 745 if (!aux_engine) 746 return NULL; 747 748 #undef REG_STRUCT 749 #define REG_STRUCT aux_engine_regs 750 aux_engine_regs_init(0), 751 aux_engine_regs_init(1), 752 aux_engine_regs_init(2), 753 aux_engine_regs_init(3), 754 aux_engine_regs_init(4); 755 756 dce110_aux_engine_construct(aux_engine, ctx, inst, 757 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 758 &aux_engine_regs[inst], 759 &aux_mask, 760 &aux_shift, 761 ctx->dc->caps.extended_aux_timeout_support); 762 763 return &aux_engine->base; 764 } 765 #define i2c_inst_regs_init(id)\ 766 I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id) 767 768 static struct dce_i2c_registers i2c_hw_regs[5]; 769 770 static const struct dce_i2c_shift i2c_shifts = { 771 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 772 }; 773 774 static const struct dce_i2c_mask i2c_masks = { 775 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 776 }; 777 778 static struct dce_i2c_hw *dcn32_i2c_hw_create( 779 struct dc_context *ctx, 780 uint32_t inst) 781 { 782 struct dce_i2c_hw *dce_i2c_hw = 783 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 784 785 if (!dce_i2c_hw) 786 return NULL; 787 788 #undef REG_STRUCT 789 #define REG_STRUCT i2c_hw_regs 790 i2c_inst_regs_init(1), 791 i2c_inst_regs_init(2), 792 i2c_inst_regs_init(3), 793 i2c_inst_regs_init(4), 794 i2c_inst_regs_init(5); 795 796 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 797 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 798 799 return dce_i2c_hw; 800 } 801 802 static struct clock_source *dcn32_clock_source_create( 803 struct dc_context *ctx, 804 struct dc_bios *bios, 805 enum clock_source_id id, 806 const struct dce110_clk_src_regs *regs, 807 bool dp_clk_src) 808 { 809 struct dce110_clk_src *clk_src = 810 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 811 812 if (!clk_src) 813 return NULL; 814 815 if (dcn31_clk_src_construct(clk_src, ctx, bios, id, 816 regs, &cs_shift, &cs_mask)) { 817 clk_src->base.dp_clk_src = dp_clk_src; 818 return &clk_src->base; 819 } 820 821 kfree(clk_src); 822 BREAK_TO_DEBUGGER(); 823 return NULL; 824 } 825 826 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) 827 { 828 int i; 829 830 struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), 831 GFP_KERNEL); 832 833 if (!hubbub2) 834 return NULL; 835 836 #undef REG_STRUCT 837 #define REG_STRUCT hubbub_reg 838 hubbub_reg_init(); 839 840 #undef REG_STRUCT 841 #define REG_STRUCT vmid_regs 842 vmid_regs_init(0), 843 vmid_regs_init(1), 844 vmid_regs_init(2), 845 vmid_regs_init(3), 846 vmid_regs_init(4), 847 vmid_regs_init(5), 848 vmid_regs_init(6), 849 vmid_regs_init(7), 850 vmid_regs_init(8), 851 vmid_regs_init(9), 852 vmid_regs_init(10), 853 vmid_regs_init(11), 854 vmid_regs_init(12), 855 vmid_regs_init(13), 856 vmid_regs_init(14), 857 vmid_regs_init(15); 858 859 hubbub32_construct(hubbub2, ctx, 860 &hubbub_reg, 861 &hubbub_shift, 862 &hubbub_mask, 863 ctx->dc->dml.ip.det_buffer_size_kbytes, 864 ctx->dc->dml.ip.pixel_chunk_size_kbytes, 865 ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); 866 867 868 for (i = 0; i < res_cap_dcn32.num_vmid; i++) { 869 struct dcn20_vmid *vmid = &hubbub2->vmid[i]; 870 871 vmid->ctx = ctx; 872 873 vmid->regs = &vmid_regs[i]; 874 vmid->shifts = &vmid_shifts; 875 vmid->masks = &vmid_masks; 876 } 877 878 return &hubbub2->base; 879 } 880 881 static struct hubp *dcn32_hubp_create( 882 struct dc_context *ctx, 883 uint32_t inst) 884 { 885 struct dcn20_hubp *hubp2 = 886 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 887 888 if (!hubp2) 889 return NULL; 890 891 #undef REG_STRUCT 892 #define REG_STRUCT hubp_regs 893 hubp_regs_init(0), 894 hubp_regs_init(1), 895 hubp_regs_init(2), 896 hubp_regs_init(3); 897 898 if (hubp32_construct(hubp2, ctx, inst, 899 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 900 return &hubp2->base; 901 902 BREAK_TO_DEBUGGER(); 903 kfree(hubp2); 904 return NULL; 905 } 906 907 static void dcn32_dpp_destroy(struct dpp **dpp) 908 { 909 kfree(TO_DCN30_DPP(*dpp)); 910 *dpp = NULL; 911 } 912 913 static struct dpp *dcn32_dpp_create( 914 struct dc_context *ctx, 915 uint32_t inst) 916 { 917 struct dcn3_dpp *dpp3 = 918 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 919 920 if (!dpp3) 921 return NULL; 922 923 #undef REG_STRUCT 924 #define REG_STRUCT dpp_regs 925 dpp_regs_init(0), 926 dpp_regs_init(1), 927 dpp_regs_init(2), 928 dpp_regs_init(3); 929 930 if (dpp32_construct(dpp3, ctx, inst, 931 &dpp_regs[inst], &tf_shift, &tf_mask)) 932 return &dpp3->base; 933 934 BREAK_TO_DEBUGGER(); 935 kfree(dpp3); 936 return NULL; 937 } 938 939 static struct mpc *dcn32_mpc_create( 940 struct dc_context *ctx, 941 int num_mpcc, 942 int num_rmu) 943 { 944 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 945 GFP_KERNEL); 946 947 if (!mpc30) 948 return NULL; 949 950 #undef REG_STRUCT 951 #define REG_STRUCT mpc_regs 952 dcn_mpc_regs_init(); 953 954 dcn32_mpc_construct(mpc30, ctx, 955 &mpc_regs, 956 &mpc_shift, 957 &mpc_mask, 958 num_mpcc, 959 num_rmu); 960 961 return &mpc30->base; 962 } 963 964 static struct output_pixel_processor *dcn32_opp_create( 965 struct dc_context *ctx, uint32_t inst) 966 { 967 struct dcn20_opp *opp2 = 968 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 969 970 if (!opp2) { 971 BREAK_TO_DEBUGGER(); 972 return NULL; 973 } 974 975 #undef REG_STRUCT 976 #define REG_STRUCT opp_regs 977 opp_regs_init(0), 978 opp_regs_init(1), 979 opp_regs_init(2), 980 opp_regs_init(3); 981 982 dcn20_opp_construct(opp2, ctx, inst, 983 &opp_regs[inst], &opp_shift, &opp_mask); 984 return &opp2->base; 985 } 986 987 988 static struct timing_generator *dcn32_timing_generator_create( 989 struct dc_context *ctx, 990 uint32_t instance) 991 { 992 struct optc *tgn10 = 993 kzalloc(sizeof(struct optc), GFP_KERNEL); 994 995 if (!tgn10) 996 return NULL; 997 998 #undef REG_STRUCT 999 #define REG_STRUCT optc_regs 1000 optc_regs_init(0), 1001 optc_regs_init(1), 1002 optc_regs_init(2), 1003 optc_regs_init(3); 1004 1005 tgn10->base.inst = instance; 1006 tgn10->base.ctx = ctx; 1007 1008 tgn10->tg_regs = &optc_regs[instance]; 1009 tgn10->tg_shift = &optc_shift; 1010 tgn10->tg_mask = &optc_mask; 1011 1012 dcn32_timing_generator_init(tgn10); 1013 1014 return &tgn10->base; 1015 } 1016 1017 static const struct encoder_feature_support link_enc_feature = { 1018 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1019 .max_hdmi_pixel_clock = 600000, 1020 .hdmi_ycbcr420_supported = true, 1021 .dp_ycbcr420_supported = true, 1022 .fec_supported = true, 1023 .flags.bits.IS_HBR2_CAPABLE = true, 1024 .flags.bits.IS_HBR3_CAPABLE = true, 1025 .flags.bits.IS_TPS3_CAPABLE = true, 1026 .flags.bits.IS_TPS4_CAPABLE = true 1027 }; 1028 1029 static struct link_encoder *dcn32_link_encoder_create( 1030 struct dc_context *ctx, 1031 const struct encoder_init_data *enc_init_data) 1032 { 1033 struct dcn20_link_encoder *enc20 = 1034 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1035 1036 if (!enc20) 1037 return NULL; 1038 1039 #undef REG_STRUCT 1040 #define REG_STRUCT link_enc_aux_regs 1041 aux_regs_init(0), 1042 aux_regs_init(1), 1043 aux_regs_init(2), 1044 aux_regs_init(3), 1045 aux_regs_init(4); 1046 1047 #undef REG_STRUCT 1048 #define REG_STRUCT link_enc_hpd_regs 1049 hpd_regs_init(0), 1050 hpd_regs_init(1), 1051 hpd_regs_init(2), 1052 hpd_regs_init(3), 1053 hpd_regs_init(4); 1054 1055 #undef REG_STRUCT 1056 #define REG_STRUCT link_enc_regs 1057 link_regs_init(0, A), 1058 link_regs_init(1, B), 1059 link_regs_init(2, C), 1060 link_regs_init(3, D), 1061 link_regs_init(4, E); 1062 1063 dcn32_link_encoder_construct(enc20, 1064 enc_init_data, 1065 &link_enc_feature, 1066 &link_enc_regs[enc_init_data->transmitter], 1067 &link_enc_aux_regs[enc_init_data->channel - 1], 1068 &link_enc_hpd_regs[enc_init_data->hpd_source], 1069 &le_shift, 1070 &le_mask); 1071 1072 return &enc20->enc10.base; 1073 } 1074 1075 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1076 { 1077 struct dcn31_panel_cntl *panel_cntl = 1078 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); 1079 1080 if (!panel_cntl) 1081 return NULL; 1082 1083 dcn31_panel_cntl_construct(panel_cntl, init_data); 1084 1085 return &panel_cntl->base; 1086 } 1087 1088 static void read_dce_straps( 1089 struct dc_context *ctx, 1090 struct resource_straps *straps) 1091 { 1092 generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS, 1093 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1094 1095 } 1096 1097 static struct audio *dcn32_create_audio( 1098 struct dc_context *ctx, unsigned int inst) 1099 { 1100 1101 #undef REG_STRUCT 1102 #define REG_STRUCT audio_regs 1103 audio_regs_init(0), 1104 audio_regs_init(1), 1105 audio_regs_init(2), 1106 audio_regs_init(3), 1107 audio_regs_init(4); 1108 1109 return dce_audio_create(ctx, inst, 1110 &audio_regs[inst], &audio_shift, &audio_mask); 1111 } 1112 1113 static struct vpg *dcn32_vpg_create( 1114 struct dc_context *ctx, 1115 uint32_t inst) 1116 { 1117 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1118 1119 if (!vpg3) 1120 return NULL; 1121 1122 #undef REG_STRUCT 1123 #define REG_STRUCT vpg_regs 1124 vpg_regs_init(0), 1125 vpg_regs_init(1), 1126 vpg_regs_init(2), 1127 vpg_regs_init(3), 1128 vpg_regs_init(4), 1129 vpg_regs_init(5), 1130 vpg_regs_init(6), 1131 vpg_regs_init(7), 1132 vpg_regs_init(8), 1133 vpg_regs_init(9); 1134 1135 vpg3_construct(vpg3, ctx, inst, 1136 &vpg_regs[inst], 1137 &vpg_shift, 1138 &vpg_mask); 1139 1140 return &vpg3->base; 1141 } 1142 1143 static struct afmt *dcn32_afmt_create( 1144 struct dc_context *ctx, 1145 uint32_t inst) 1146 { 1147 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1148 1149 if (!afmt3) 1150 return NULL; 1151 1152 #undef REG_STRUCT 1153 #define REG_STRUCT afmt_regs 1154 afmt_regs_init(0), 1155 afmt_regs_init(1), 1156 afmt_regs_init(2), 1157 afmt_regs_init(3), 1158 afmt_regs_init(4), 1159 afmt_regs_init(5); 1160 1161 afmt3_construct(afmt3, ctx, inst, 1162 &afmt_regs[inst], 1163 &afmt_shift, 1164 &afmt_mask); 1165 1166 return &afmt3->base; 1167 } 1168 1169 static struct apg *dcn31_apg_create( 1170 struct dc_context *ctx, 1171 uint32_t inst) 1172 { 1173 struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); 1174 1175 if (!apg31) 1176 return NULL; 1177 1178 #undef REG_STRUCT 1179 #define REG_STRUCT apg_regs 1180 apg_regs_init(0), 1181 apg_regs_init(1), 1182 apg_regs_init(2), 1183 apg_regs_init(3); 1184 1185 apg31_construct(apg31, ctx, inst, 1186 &apg_regs[inst], 1187 &apg_shift, 1188 &apg_mask); 1189 1190 return &apg31->base; 1191 } 1192 1193 static struct stream_encoder *dcn32_stream_encoder_create( 1194 enum engine_id eng_id, 1195 struct dc_context *ctx) 1196 { 1197 struct dcn10_stream_encoder *enc1; 1198 struct vpg *vpg; 1199 struct afmt *afmt; 1200 int vpg_inst; 1201 int afmt_inst; 1202 1203 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1204 if (eng_id <= ENGINE_ID_DIGF) { 1205 vpg_inst = eng_id; 1206 afmt_inst = eng_id; 1207 } else 1208 return NULL; 1209 1210 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1211 vpg = dcn32_vpg_create(ctx, vpg_inst); 1212 afmt = dcn32_afmt_create(ctx, afmt_inst); 1213 1214 if (!enc1 || !vpg || !afmt) { 1215 kfree(enc1); 1216 kfree(vpg); 1217 kfree(afmt); 1218 return NULL; 1219 } 1220 1221 #undef REG_STRUCT 1222 #define REG_STRUCT stream_enc_regs 1223 stream_enc_regs_init(0), 1224 stream_enc_regs_init(1), 1225 stream_enc_regs_init(2), 1226 stream_enc_regs_init(3), 1227 stream_enc_regs_init(4); 1228 1229 dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1230 eng_id, vpg, afmt, 1231 &stream_enc_regs[eng_id], 1232 &se_shift, &se_mask); 1233 1234 return &enc1->base; 1235 } 1236 1237 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( 1238 enum engine_id eng_id, 1239 struct dc_context *ctx) 1240 { 1241 struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; 1242 struct vpg *vpg; 1243 struct apg *apg; 1244 uint32_t hpo_dp_inst; 1245 uint32_t vpg_inst; 1246 uint32_t apg_inst; 1247 1248 ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); 1249 hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; 1250 1251 /* Mapping of VPG register blocks to HPO DP block instance: 1252 * VPG[6] -> HPO_DP[0] 1253 * VPG[7] -> HPO_DP[1] 1254 * VPG[8] -> HPO_DP[2] 1255 * VPG[9] -> HPO_DP[3] 1256 */ 1257 vpg_inst = hpo_dp_inst + 6; 1258 1259 /* Mapping of APG register blocks to HPO DP block instance: 1260 * APG[0] -> HPO_DP[0] 1261 * APG[1] -> HPO_DP[1] 1262 * APG[2] -> HPO_DP[2] 1263 * APG[3] -> HPO_DP[3] 1264 */ 1265 apg_inst = hpo_dp_inst; 1266 1267 /* allocate HPO stream encoder and create VPG sub-block */ 1268 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); 1269 vpg = dcn32_vpg_create(ctx, vpg_inst); 1270 apg = dcn31_apg_create(ctx, apg_inst); 1271 1272 if (!hpo_dp_enc31 || !vpg || !apg) { 1273 kfree(hpo_dp_enc31); 1274 kfree(vpg); 1275 kfree(apg); 1276 return NULL; 1277 } 1278 1279 #undef REG_STRUCT 1280 #define REG_STRUCT hpo_dp_stream_enc_regs 1281 hpo_dp_stream_encoder_reg_init(0), 1282 hpo_dp_stream_encoder_reg_init(1), 1283 hpo_dp_stream_encoder_reg_init(2), 1284 hpo_dp_stream_encoder_reg_init(3); 1285 1286 dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, 1287 hpo_dp_inst, eng_id, vpg, apg, 1288 &hpo_dp_stream_enc_regs[hpo_dp_inst], 1289 &hpo_dp_se_shift, &hpo_dp_se_mask); 1290 1291 return &hpo_dp_enc31->base; 1292 } 1293 1294 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( 1295 uint8_t inst, 1296 struct dc_context *ctx) 1297 { 1298 struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; 1299 1300 /* allocate HPO link encoder */ 1301 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); 1302 if (!hpo_dp_enc31) 1303 return NULL; /* out of memory */ 1304 1305 #undef REG_STRUCT 1306 #define REG_STRUCT hpo_dp_link_enc_regs 1307 hpo_dp_link_encoder_reg_init(0), 1308 hpo_dp_link_encoder_reg_init(1); 1309 1310 hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, 1311 &hpo_dp_link_enc_regs[inst], 1312 &hpo_dp_le_shift, &hpo_dp_le_mask); 1313 1314 return &hpo_dp_enc31->base; 1315 } 1316 1317 static struct dce_hwseq *dcn32_hwseq_create( 1318 struct dc_context *ctx) 1319 { 1320 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1321 1322 #undef REG_STRUCT 1323 #define REG_STRUCT hwseq_reg 1324 hwseq_reg_init(); 1325 1326 if (hws) { 1327 hws->ctx = ctx; 1328 hws->regs = &hwseq_reg; 1329 hws->shifts = &hwseq_shift; 1330 hws->masks = &hwseq_mask; 1331 } 1332 return hws; 1333 } 1334 static const struct resource_create_funcs res_create_funcs = { 1335 .read_dce_straps = read_dce_straps, 1336 .create_audio = dcn32_create_audio, 1337 .create_stream_encoder = dcn32_stream_encoder_create, 1338 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1339 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1340 .create_hwseq = dcn32_hwseq_create, 1341 }; 1342 1343 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) 1344 { 1345 unsigned int i; 1346 1347 for (i = 0; i < pool->base.stream_enc_count; i++) { 1348 if (pool->base.stream_enc[i] != NULL) { 1349 if (pool->base.stream_enc[i]->vpg != NULL) { 1350 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1351 pool->base.stream_enc[i]->vpg = NULL; 1352 } 1353 if (pool->base.stream_enc[i]->afmt != NULL) { 1354 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1355 pool->base.stream_enc[i]->afmt = NULL; 1356 } 1357 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1358 pool->base.stream_enc[i] = NULL; 1359 } 1360 } 1361 1362 for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { 1363 if (pool->base.hpo_dp_stream_enc[i] != NULL) { 1364 if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { 1365 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); 1366 pool->base.hpo_dp_stream_enc[i]->vpg = NULL; 1367 } 1368 if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { 1369 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); 1370 pool->base.hpo_dp_stream_enc[i]->apg = NULL; 1371 } 1372 kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); 1373 pool->base.hpo_dp_stream_enc[i] = NULL; 1374 } 1375 } 1376 1377 for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { 1378 if (pool->base.hpo_dp_link_enc[i] != NULL) { 1379 kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); 1380 pool->base.hpo_dp_link_enc[i] = NULL; 1381 } 1382 } 1383 1384 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1385 if (pool->base.dscs[i] != NULL) 1386 dcn20_dsc_destroy(&pool->base.dscs[i]); 1387 } 1388 1389 if (pool->base.mpc != NULL) { 1390 kfree(TO_DCN20_MPC(pool->base.mpc)); 1391 pool->base.mpc = NULL; 1392 } 1393 if (pool->base.hubbub != NULL) { 1394 kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); 1395 pool->base.hubbub = NULL; 1396 } 1397 for (i = 0; i < pool->base.pipe_count; i++) { 1398 if (pool->base.dpps[i] != NULL) 1399 dcn32_dpp_destroy(&pool->base.dpps[i]); 1400 1401 if (pool->base.ipps[i] != NULL) 1402 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1403 1404 if (pool->base.hubps[i] != NULL) { 1405 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1406 pool->base.hubps[i] = NULL; 1407 } 1408 1409 if (pool->base.irqs != NULL) { 1410 dal_irq_service_destroy(&pool->base.irqs); 1411 } 1412 } 1413 1414 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1415 if (pool->base.engines[i] != NULL) 1416 dce110_engine_destroy(&pool->base.engines[i]); 1417 if (pool->base.hw_i2cs[i] != NULL) { 1418 kfree(pool->base.hw_i2cs[i]); 1419 pool->base.hw_i2cs[i] = NULL; 1420 } 1421 if (pool->base.sw_i2cs[i] != NULL) { 1422 kfree(pool->base.sw_i2cs[i]); 1423 pool->base.sw_i2cs[i] = NULL; 1424 } 1425 } 1426 1427 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1428 if (pool->base.opps[i] != NULL) 1429 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1430 } 1431 1432 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1433 if (pool->base.timing_generators[i] != NULL) { 1434 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1435 pool->base.timing_generators[i] = NULL; 1436 } 1437 } 1438 1439 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1440 if (pool->base.dwbc[i] != NULL) { 1441 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1442 pool->base.dwbc[i] = NULL; 1443 } 1444 if (pool->base.mcif_wb[i] != NULL) { 1445 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1446 pool->base.mcif_wb[i] = NULL; 1447 } 1448 } 1449 1450 for (i = 0; i < pool->base.audio_count; i++) { 1451 if (pool->base.audios[i]) 1452 dce_aud_destroy(&pool->base.audios[i]); 1453 } 1454 1455 for (i = 0; i < pool->base.clk_src_count; i++) { 1456 if (pool->base.clock_sources[i] != NULL) { 1457 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1458 pool->base.clock_sources[i] = NULL; 1459 } 1460 } 1461 1462 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1463 if (pool->base.mpc_lut[i] != NULL) { 1464 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1465 pool->base.mpc_lut[i] = NULL; 1466 } 1467 if (pool->base.mpc_shaper[i] != NULL) { 1468 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1469 pool->base.mpc_shaper[i] = NULL; 1470 } 1471 } 1472 1473 if (pool->base.dp_clock_source != NULL) { 1474 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1475 pool->base.dp_clock_source = NULL; 1476 } 1477 1478 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1479 if (pool->base.multiple_abms[i] != NULL) 1480 dce_abm_destroy(&pool->base.multiple_abms[i]); 1481 } 1482 1483 if (pool->base.psr != NULL) 1484 dmub_psr_destroy(&pool->base.psr); 1485 1486 if (pool->base.dccg != NULL) 1487 dcn_dccg_destroy(&pool->base.dccg); 1488 1489 if (pool->base.oem_device != NULL) { 1490 struct dc *dc = pool->base.oem_device->ctx->dc; 1491 1492 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1493 } 1494 } 1495 1496 1497 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1498 { 1499 int i; 1500 uint32_t dwb_count = pool->res_cap->num_dwb; 1501 1502 for (i = 0; i < dwb_count; i++) { 1503 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1504 GFP_KERNEL); 1505 1506 if (!dwbc30) { 1507 dm_error("DC: failed to create dwbc30!\n"); 1508 return false; 1509 } 1510 1511 #undef REG_STRUCT 1512 #define REG_STRUCT dwbc30_regs 1513 dwbc_regs_dcn3_init(0); 1514 1515 dcn30_dwbc_construct(dwbc30, ctx, 1516 &dwbc30_regs[i], 1517 &dwbc30_shift, 1518 &dwbc30_mask, 1519 i); 1520 1521 pool->dwbc[i] = &dwbc30->base; 1522 } 1523 return true; 1524 } 1525 1526 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1527 { 1528 int i; 1529 uint32_t dwb_count = pool->res_cap->num_dwb; 1530 1531 for (i = 0; i < dwb_count; i++) { 1532 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1533 GFP_KERNEL); 1534 1535 if (!mcif_wb30) { 1536 dm_error("DC: failed to create mcif_wb30!\n"); 1537 return false; 1538 } 1539 1540 #undef REG_STRUCT 1541 #define REG_STRUCT mcif_wb30_regs 1542 mcif_wb_regs_dcn3_init(0); 1543 1544 dcn32_mmhubbub_construct(mcif_wb30, ctx, 1545 &mcif_wb30_regs[i], 1546 &mcif_wb30_shift, 1547 &mcif_wb30_mask, 1548 i); 1549 1550 pool->mcif_wb[i] = &mcif_wb30->base; 1551 } 1552 return true; 1553 } 1554 1555 static struct display_stream_compressor *dcn32_dsc_create( 1556 struct dc_context *ctx, uint32_t inst) 1557 { 1558 struct dcn20_dsc *dsc = 1559 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1560 1561 if (!dsc) { 1562 BREAK_TO_DEBUGGER(); 1563 return NULL; 1564 } 1565 1566 #undef REG_STRUCT 1567 #define REG_STRUCT dsc_regs 1568 dsc_regsDCN20_init(0), 1569 dsc_regsDCN20_init(1), 1570 dsc_regsDCN20_init(2), 1571 dsc_regsDCN20_init(3); 1572 1573 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1574 1575 dsc->max_image_width = 6016; 1576 1577 return &dsc->base; 1578 } 1579 1580 static void dcn32_destroy_resource_pool(struct resource_pool **pool) 1581 { 1582 struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); 1583 1584 dcn32_resource_destruct(dcn32_pool); 1585 kfree(dcn32_pool); 1586 *pool = NULL; 1587 } 1588 1589 bool dcn32_acquire_post_bldn_3dlut( 1590 struct resource_context *res_ctx, 1591 const struct resource_pool *pool, 1592 int mpcc_id, 1593 struct dc_3dlut **lut, 1594 struct dc_transfer_func **shaper) 1595 { 1596 bool ret = false; 1597 1598 ASSERT(*lut == NULL && *shaper == NULL); 1599 *lut = NULL; 1600 *shaper = NULL; 1601 1602 if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { 1603 *lut = pool->mpc_lut[mpcc_id]; 1604 *shaper = pool->mpc_shaper[mpcc_id]; 1605 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; 1606 ret = true; 1607 } 1608 return ret; 1609 } 1610 1611 bool dcn32_release_post_bldn_3dlut( 1612 struct resource_context *res_ctx, 1613 const struct resource_pool *pool, 1614 struct dc_3dlut **lut, 1615 struct dc_transfer_func **shaper) 1616 { 1617 int i; 1618 bool ret = false; 1619 1620 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1621 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1622 res_ctx->is_mpc_3dlut_acquired[i] = false; 1623 pool->mpc_lut[i]->state.raw = 0; 1624 *lut = NULL; 1625 *shaper = NULL; 1626 ret = true; 1627 break; 1628 } 1629 } 1630 return ret; 1631 } 1632 1633 static void dcn32_enable_phantom_plane(struct dc *dc, 1634 struct dc_state *context, 1635 struct dc_stream_state *phantom_stream, 1636 unsigned int dc_pipe_idx) 1637 { 1638 struct dc_plane_state *phantom_plane = NULL; 1639 struct dc_plane_state *prev_phantom_plane = NULL; 1640 struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1641 1642 while (curr_pipe) { 1643 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) 1644 phantom_plane = prev_phantom_plane; 1645 else 1646 phantom_plane = dc_create_plane_state(dc); 1647 1648 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); 1649 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, 1650 sizeof(phantom_plane->scaling_quality)); 1651 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); 1652 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); 1653 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); 1654 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, 1655 sizeof(phantom_plane->plane_size)); 1656 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, 1657 sizeof(phantom_plane->tiling_info)); 1658 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); 1659 phantom_plane->format = curr_pipe->plane_state->format; 1660 phantom_plane->rotation = curr_pipe->plane_state->rotation; 1661 phantom_plane->visible = curr_pipe->plane_state->visible; 1662 1663 /* Shadow pipe has small viewport. */ 1664 phantom_plane->clip_rect.y = 0; 1665 phantom_plane->clip_rect.height = phantom_stream->src.height; 1666 1667 phantom_plane->is_phantom = true; 1668 1669 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context); 1670 1671 curr_pipe = curr_pipe->bottom_pipe; 1672 prev_phantom_plane = phantom_plane; 1673 } 1674 } 1675 1676 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, 1677 struct dc_state *context, 1678 display_e2e_pipe_params_st *pipes, 1679 unsigned int pipe_cnt, 1680 unsigned int dc_pipe_idx) 1681 { 1682 struct dc_stream_state *phantom_stream = NULL; 1683 struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1684 1685 phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink); 1686 phantom_stream->signal = SIGNAL_TYPE_VIRTUAL; 1687 phantom_stream->dpms_off = true; 1688 phantom_stream->mall_stream_config.type = SUBVP_PHANTOM; 1689 phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream; 1690 ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN; 1691 ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream; 1692 1693 /* stream has limited viewport and small timing */ 1694 memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); 1695 memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); 1696 memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); 1697 DC_FP_START(); 1698 dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); 1699 DC_FP_END(); 1700 1701 dc_add_stream_to_ctx(dc, context, phantom_stream); 1702 return phantom_stream; 1703 } 1704 1705 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context) 1706 { 1707 int i; 1708 struct dc_plane_state *phantom_plane = NULL; 1709 struct dc_stream_state *phantom_stream = NULL; 1710 1711 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1712 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1713 1714 if (resource_is_pipe_type(pipe, OTG_MASTER) && 1715 resource_is_pipe_type(pipe, DPP_PIPE) && 1716 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1717 phantom_plane = pipe->plane_state; 1718 phantom_stream = pipe->stream; 1719 1720 dc_plane_state_retain(phantom_plane); 1721 dc_stream_retain(phantom_stream); 1722 } 1723 } 1724 } 1725 1726 // return true if removed piped from ctx, false otherwise 1727 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update) 1728 { 1729 int i; 1730 bool removed_pipe = false; 1731 struct dc_plane_state *phantom_plane = NULL; 1732 struct dc_stream_state *phantom_stream = NULL; 1733 1734 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1735 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1736 // build scaling params for phantom pipes 1737 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1738 phantom_plane = pipe->plane_state; 1739 phantom_stream = pipe->stream; 1740 1741 dc_rem_all_planes_for_stream(dc, pipe->stream, context); 1742 dc_remove_stream_from_ctx(dc, context, pipe->stream); 1743 1744 /* Ref count is incremented on allocation and also when added to the context. 1745 * Therefore we must call release for the the phantom plane and stream once 1746 * they are removed from the ctx to finally decrement the refcount to 0 to free. 1747 */ 1748 dc_plane_state_release(phantom_plane); 1749 dc_stream_release(phantom_stream); 1750 1751 removed_pipe = true; 1752 } 1753 1754 /* For non-full updates, a shallow copy of the current state 1755 * is created. In this case we don't want to erase the current 1756 * state (there can be 2 HIRQL threads, one in flip, and one in 1757 * checkMPO) that can cause a race condition. 1758 * 1759 * This is just a workaround, needs a proper fix. 1760 */ 1761 if (!fast_update) { 1762 // Clear all phantom stream info 1763 if (pipe->stream) { 1764 pipe->stream->mall_stream_config.type = SUBVP_NONE; 1765 pipe->stream->mall_stream_config.paired_stream = NULL; 1766 } 1767 1768 if (pipe->plane_state) { 1769 pipe->plane_state->is_phantom = false; 1770 } 1771 } 1772 } 1773 return removed_pipe; 1774 } 1775 1776 /* TODO: Input to this function should indicate which pipe indexes (or streams) 1777 * require a phantom pipe / stream 1778 */ 1779 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, 1780 display_e2e_pipe_params_st *pipes, 1781 unsigned int pipe_cnt, 1782 unsigned int index) 1783 { 1784 struct dc_stream_state *phantom_stream = NULL; 1785 unsigned int i; 1786 1787 // The index of the DC pipe passed into this function is guarenteed to 1788 // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't 1789 // already have phantom pipe assigned, etc.) by previous checks. 1790 phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); 1791 if (!phantom_stream) 1792 return; 1793 1794 dcn32_enable_phantom_plane(dc, context, phantom_stream, index); 1795 1796 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1797 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1798 1799 // Build scaling params for phantom pipes which were newly added. 1800 // We determine which phantom pipes were added by comparing with 1801 // the phantom stream. 1802 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && 1803 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1804 pipe->stream->use_dynamic_meta = false; 1805 pipe->plane_state->flip_immediate = false; 1806 if (!resource_build_scaling_params(pipe)) { 1807 // Log / remove phantom pipes since failed to build scaling params 1808 } 1809 } 1810 } 1811 } 1812 1813 bool dcn32_validate_bandwidth(struct dc *dc, 1814 struct dc_state *context, 1815 bool fast_validate) 1816 { 1817 bool out = false; 1818 1819 BW_VAL_TRACE_SETUP(); 1820 1821 int vlevel = 0; 1822 int pipe_cnt = 0; 1823 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 1824 struct mall_temp_config mall_temp_config; 1825 1826 /* To handle Freesync properly, setting FreeSync DML parameters 1827 * to its default state for the first stage of validation 1828 */ 1829 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 1830 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; 1831 1832 DC_LOGGER_INIT(dc->ctx->logger); 1833 1834 /* For fast validation, there are situations where a shallow copy of 1835 * of the dc->current_state is created for the validation. In this case 1836 * we want to save and restore the mall config because we always 1837 * teardown subvp at the beginning of validation (and don't attempt 1838 * to add it back if it's fast validation). If we don't restore the 1839 * subvp config in cases of fast validation + shallow copy of the 1840 * dc->current_state, the dc->current_state will have a partially 1841 * removed subvp state when we did not intend to remove it. 1842 */ 1843 if (fast_validate) { 1844 memset(&mall_temp_config, 0, sizeof(mall_temp_config)); 1845 dcn32_save_mall_state(dc, context, &mall_temp_config); 1846 } 1847 1848 BW_VAL_TRACE_COUNT(); 1849 1850 if (!pipes) 1851 goto validate_fail; 1852 1853 DC_FP_START(); 1854 out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 1855 DC_FP_END(); 1856 1857 if (fast_validate) 1858 dcn32_restore_mall_state(dc, context, &mall_temp_config); 1859 1860 if (pipe_cnt == 0) 1861 goto validate_out; 1862 1863 if (!out) 1864 goto validate_fail; 1865 1866 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 1867 1868 if (fast_validate) { 1869 BW_VAL_TRACE_SKIP(fast); 1870 goto validate_out; 1871 } 1872 1873 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 1874 1875 dcn32_override_min_req_memclk(dc, context); 1876 1877 BW_VAL_TRACE_END_WATERMARKS(); 1878 1879 goto validate_out; 1880 1881 validate_fail: 1882 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 1883 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 1884 1885 BW_VAL_TRACE_SKIP(fail); 1886 out = false; 1887 1888 validate_out: 1889 kfree(pipes); 1890 1891 BW_VAL_TRACE_FINISH(); 1892 1893 return out; 1894 } 1895 1896 int dcn32_populate_dml_pipes_from_context( 1897 struct dc *dc, struct dc_state *context, 1898 display_e2e_pipe_params_st *pipes, 1899 bool fast_validate) 1900 { 1901 int i, pipe_cnt; 1902 struct resource_context *res_ctx = &context->res_ctx; 1903 struct pipe_ctx *pipe = NULL; 1904 bool subvp_in_use = false; 1905 struct dc_crtc_timing *timing; 1906 bool vsr_odm_support = false; 1907 1908 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1909 1910 /* Determine whether we will apply ODM 2to1 policy: 1911 * Applies to single display and where the number of planes is less than 3. 1912 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes. 1913 * 1914 * Apply pipe split policy first so we can predict the pipe split correctly 1915 * (dcn32_predict_pipe_split). 1916 */ 1917 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1918 if (!res_ctx->pipe_ctx[i].stream) 1919 continue; 1920 pipe = &res_ctx->pipe_ctx[i]; 1921 timing = &pipe->stream->timing; 1922 1923 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; 1924 vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 && 1925 res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width); 1926 if (context->stream_count == 1 && 1927 context->stream_status[0].plane_count == 1 && 1928 !dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) && 1929 is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) && 1930 pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ && 1931 dc->debug.enable_single_display_2to1_odm_policy && 1932 !vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr 1933 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; 1934 } 1935 pipe_cnt++; 1936 } 1937 1938 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1939 1940 if (!res_ctx->pipe_ctx[i].stream) 1941 continue; 1942 pipe = &res_ctx->pipe_ctx[i]; 1943 timing = &pipe->stream->timing; 1944 1945 pipes[pipe_cnt].pipe.src.gpuvm = true; 1946 DC_FP_START(); 1947 dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt); 1948 DC_FP_END(); 1949 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; 1950 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet 1951 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 1952 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; 1953 1954 /* Only populate DML input with subvp info for full updates. 1955 * This is just a workaround -- needs a proper fix. 1956 */ 1957 if (!fast_validate) { 1958 switch (pipe->stream->mall_stream_config.type) { 1959 case SUBVP_MAIN: 1960 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; 1961 subvp_in_use = true; 1962 break; 1963 case SUBVP_PHANTOM: 1964 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; 1965 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 1966 // Disallow unbounded req for SubVP according to DCHUB programming guide 1967 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 1968 break; 1969 case SUBVP_NONE: 1970 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; 1971 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 1972 break; 1973 default: 1974 break; 1975 } 1976 } 1977 1978 pipes[pipe_cnt].dout.dsc_input_bpc = 0; 1979 if (pipes[pipe_cnt].dout.dsc_enable) { 1980 switch (timing->display_color_depth) { 1981 case COLOR_DEPTH_888: 1982 pipes[pipe_cnt].dout.dsc_input_bpc = 8; 1983 break; 1984 case COLOR_DEPTH_101010: 1985 pipes[pipe_cnt].dout.dsc_input_bpc = 10; 1986 break; 1987 case COLOR_DEPTH_121212: 1988 pipes[pipe_cnt].dout.dsc_input_bpc = 12; 1989 break; 1990 default: 1991 ASSERT(0); 1992 break; 1993 } 1994 } 1995 1996 DC_FP_START(); 1997 dcn32_predict_pipe_split(context, &pipes[pipe_cnt]); 1998 DC_FP_END(); 1999 2000 pipe_cnt++; 2001 } 2002 2003 /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all 2004 * the DET available for each pipe). Use the DET override input to maintain our driver 2005 * policy. 2006 */ 2007 dcn32_set_det_allocations(dc, context, pipes); 2008 2009 // In general cases we want to keep the dram clock change requirement 2010 // (prefer configs that support MCLK switch). Only override to false 2011 // for SubVP 2012 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use) 2013 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false; 2014 else 2015 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; 2016 2017 return pipe_cnt; 2018 } 2019 2020 static struct dc_cap_funcs cap_funcs = { 2021 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2022 }; 2023 2024 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context, 2025 display_e2e_pipe_params_st *pipes, 2026 int pipe_cnt, 2027 int vlevel) 2028 { 2029 DC_FP_START(); 2030 dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel); 2031 DC_FP_END(); 2032 } 2033 2034 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2035 { 2036 DC_FP_START(); 2037 dcn32_update_bw_bounding_box_fpu(dc, bw_params); 2038 DC_FP_END(); 2039 } 2040 2041 static struct resource_funcs dcn32_res_pool_funcs = { 2042 .destroy = dcn32_destroy_resource_pool, 2043 .link_enc_create = dcn32_link_encoder_create, 2044 .link_enc_create_minimal = NULL, 2045 .panel_cntl_create = dcn32_panel_cntl_create, 2046 .validate_bandwidth = dcn32_validate_bandwidth, 2047 .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, 2048 .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, 2049 .acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe, 2050 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2051 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2052 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2053 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2054 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2055 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2056 .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, 2057 .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, 2058 .update_bw_bounding_box = dcn32_update_bw_bounding_box, 2059 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2060 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2061 .add_phantom_pipes = dcn32_add_phantom_pipes, 2062 .remove_phantom_pipes = dcn32_remove_phantom_pipes, 2063 .retain_phantom_pipes = dcn32_retain_phantom_pipes, 2064 .save_mall_state = dcn32_save_mall_state, 2065 .restore_mall_state = dcn32_restore_mall_state, 2066 }; 2067 2068 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2069 { 2070 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2071 /* DCN32 support max 4 pipes */ 2072 value = value & 0xf; 2073 return value; 2074 } 2075 2076 2077 static bool dcn32_resource_construct( 2078 uint8_t num_virtual_links, 2079 struct dc *dc, 2080 struct dcn32_resource_pool *pool) 2081 { 2082 int i, j; 2083 struct dc_context *ctx = dc->ctx; 2084 struct irq_service_init_data init_data; 2085 struct ddc_service_init_data ddc_init_data = {0}; 2086 uint32_t pipe_fuses = 0; 2087 uint32_t num_pipes = 4; 2088 2089 #undef REG_STRUCT 2090 #define REG_STRUCT bios_regs 2091 bios_regs_init(); 2092 2093 #undef REG_STRUCT 2094 #define REG_STRUCT clk_src_regs 2095 clk_src_regs_init(0, A), 2096 clk_src_regs_init(1, B), 2097 clk_src_regs_init(2, C), 2098 clk_src_regs_init(3, D), 2099 clk_src_regs_init(4, E); 2100 2101 #undef REG_STRUCT 2102 #define REG_STRUCT abm_regs 2103 abm_regs_init(0), 2104 abm_regs_init(1), 2105 abm_regs_init(2), 2106 abm_regs_init(3); 2107 2108 #undef REG_STRUCT 2109 #define REG_STRUCT dccg_regs 2110 dccg_regs_init(); 2111 2112 DC_FP_START(); 2113 2114 ctx->dc_bios->regs = &bios_regs; 2115 2116 pool->base.res_cap = &res_cap_dcn32; 2117 /* max number of pipes for ASIC before checking for pipe fuses */ 2118 num_pipes = pool->base.res_cap->num_timing_generator; 2119 pipe_fuses = read_pipe_fuses(ctx); 2120 2121 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) 2122 if (pipe_fuses & 1 << i) 2123 num_pipes--; 2124 2125 if (pipe_fuses & 1) 2126 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! 2127 2128 if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) 2129 ASSERT(0); //Entire DCN is harvested! 2130 2131 /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the 2132 * value will be changed, update max_num_dpp and max_num_otg for dml. 2133 */ 2134 dcn3_2_ip.max_num_dpp = num_pipes; 2135 dcn3_2_ip.max_num_otg = num_pipes; 2136 2137 pool->base.funcs = &dcn32_res_pool_funcs; 2138 2139 /************************************************* 2140 * Resource + asic cap harcoding * 2141 *************************************************/ 2142 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2143 pool->base.timing_generator_count = num_pipes; 2144 pool->base.pipe_count = num_pipes; 2145 pool->base.mpcc_count = num_pipes; 2146 dc->caps.max_downscale_ratio = 600; 2147 dc->caps.i2c_speed_in_khz = 100; 2148 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ 2149 /* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/ 2150 dc->caps.max_cursor_size = 64; 2151 dc->caps.min_horizontal_blanking_period = 80; 2152 dc->caps.dmdata_alloc_size = 2048; 2153 dc->caps.mall_size_per_mem_channel = 4; 2154 dc->caps.mall_size_total = 0; 2155 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2156 2157 dc->caps.cache_line_size = 64; 2158 dc->caps.cache_num_ways = 16; 2159 2160 /* Calculate the available MALL space */ 2161 dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall( 2162 dc, dc->ctx->dc_bios->vram_info.num_chans) * 2163 dc->caps.mall_size_per_mem_channel * 1024 * 1024; 2164 dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes; 2165 2166 dc->caps.subvp_fw_processing_delay_us = 15; 2167 dc->caps.subvp_drr_max_vblank_margin_us = 40; 2168 dc->caps.subvp_prefetch_end_to_mall_start_us = 15; 2169 dc->caps.subvp_swath_height_margin_lines = 16; 2170 dc->caps.subvp_pstate_allow_width_us = 20; 2171 dc->caps.subvp_vertical_int_margin_us = 30; 2172 dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin 2173 2174 dc->caps.max_slave_planes = 2; 2175 dc->caps.max_slave_yuv_planes = 2; 2176 dc->caps.max_slave_rgb_planes = 2; 2177 dc->caps.post_blend_color_processing = true; 2178 dc->caps.force_dp_tps4_for_cp2520 = true; 2179 if (dc->config.forceHBR2CP2520) 2180 dc->caps.force_dp_tps4_for_cp2520 = false; 2181 dc->caps.dp_hpo = true; 2182 dc->caps.dp_hdmi21_pcon_support = true; 2183 dc->caps.edp_dsc_support = true; 2184 dc->caps.extended_aux_timeout_support = true; 2185 dc->caps.dmcub_support = true; 2186 dc->caps.seamless_odm = true; 2187 dc->caps.max_v_total = (1 << 15) - 1; 2188 2189 /* Color pipeline capabilities */ 2190 dc->caps.color.dpp.dcn_arch = 1; 2191 dc->caps.color.dpp.input_lut_shared = 0; 2192 dc->caps.color.dpp.icsc = 1; 2193 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2194 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2195 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2196 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2197 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2198 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2199 dc->caps.color.dpp.post_csc = 1; 2200 dc->caps.color.dpp.gamma_corr = 1; 2201 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2202 2203 dc->caps.color.dpp.hw_3d_lut = 1; 2204 dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1 2205 // no OGAM ROM on DCN2 and later ASICs 2206 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2207 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2208 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2209 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2210 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2211 dc->caps.color.dpp.ocsc = 0; 2212 2213 dc->caps.color.mpc.gamut_remap = 1; 2214 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC 2215 dc->caps.color.mpc.ogam_ram = 1; 2216 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2217 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2218 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2219 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2220 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2221 dc->caps.color.mpc.ocsc = 1; 2222 2223 /* Use pipe context based otg sync logic */ 2224 dc->config.use_pipe_ctx_sync_logic = true; 2225 2226 dc->config.dc_mode_clk_limit_support = true; 2227 /* read VBIOS LTTPR caps */ 2228 { 2229 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2230 enum bp_result bp_query_result; 2231 uint8_t is_vbios_lttpr_enable = 0; 2232 2233 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2234 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2235 } 2236 2237 /* interop bit is implicit */ 2238 { 2239 dc->caps.vbios_lttpr_aware = true; 2240 } 2241 } 2242 2243 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2244 dc->debug = debug_defaults_drv; 2245 2246 // Init the vm_helper 2247 if (dc->vm_helper) 2248 vm_helper_init(dc->vm_helper, 16); 2249 2250 /************************************************* 2251 * Create resources * 2252 *************************************************/ 2253 2254 /* Clock Sources for Pixel Clock*/ 2255 pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = 2256 dcn32_clock_source_create(ctx, ctx->dc_bios, 2257 CLOCK_SOURCE_COMBO_PHY_PLL0, 2258 &clk_src_regs[0], false); 2259 pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = 2260 dcn32_clock_source_create(ctx, ctx->dc_bios, 2261 CLOCK_SOURCE_COMBO_PHY_PLL1, 2262 &clk_src_regs[1], false); 2263 pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = 2264 dcn32_clock_source_create(ctx, ctx->dc_bios, 2265 CLOCK_SOURCE_COMBO_PHY_PLL2, 2266 &clk_src_regs[2], false); 2267 pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = 2268 dcn32_clock_source_create(ctx, ctx->dc_bios, 2269 CLOCK_SOURCE_COMBO_PHY_PLL3, 2270 &clk_src_regs[3], false); 2271 pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = 2272 dcn32_clock_source_create(ctx, ctx->dc_bios, 2273 CLOCK_SOURCE_COMBO_PHY_PLL4, 2274 &clk_src_regs[4], false); 2275 2276 pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; 2277 2278 /* todo: not reuse phy_pll registers */ 2279 pool->base.dp_clock_source = 2280 dcn32_clock_source_create(ctx, ctx->dc_bios, 2281 CLOCK_SOURCE_ID_DP_DTO, 2282 &clk_src_regs[0], true); 2283 2284 for (i = 0; i < pool->base.clk_src_count; i++) { 2285 if (pool->base.clock_sources[i] == NULL) { 2286 dm_error("DC: failed to create clock sources!\n"); 2287 BREAK_TO_DEBUGGER(); 2288 goto create_fail; 2289 } 2290 } 2291 2292 /* DCCG */ 2293 pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2294 if (pool->base.dccg == NULL) { 2295 dm_error("DC: failed to create dccg!\n"); 2296 BREAK_TO_DEBUGGER(); 2297 goto create_fail; 2298 } 2299 2300 /* DML */ 2301 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 2302 2303 /* IRQ Service */ 2304 init_data.ctx = dc->ctx; 2305 pool->base.irqs = dal_irq_service_dcn32_create(&init_data); 2306 if (!pool->base.irqs) 2307 goto create_fail; 2308 2309 /* HUBBUB */ 2310 pool->base.hubbub = dcn32_hubbub_create(ctx); 2311 if (pool->base.hubbub == NULL) { 2312 BREAK_TO_DEBUGGER(); 2313 dm_error("DC: failed to create hubbub!\n"); 2314 goto create_fail; 2315 } 2316 2317 /* HUBPs, DPPs, OPPs, TGs, ABMs */ 2318 for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2319 2320 /* if pipe is disabled, skip instance of HW pipe, 2321 * i.e, skip ASIC register instance 2322 */ 2323 if (pipe_fuses & 1 << i) 2324 continue; 2325 2326 /* HUBPs */ 2327 pool->base.hubps[j] = dcn32_hubp_create(ctx, i); 2328 if (pool->base.hubps[j] == NULL) { 2329 BREAK_TO_DEBUGGER(); 2330 dm_error( 2331 "DC: failed to create hubps!\n"); 2332 goto create_fail; 2333 } 2334 2335 /* DPPs */ 2336 pool->base.dpps[j] = dcn32_dpp_create(ctx, i); 2337 if (pool->base.dpps[j] == NULL) { 2338 BREAK_TO_DEBUGGER(); 2339 dm_error( 2340 "DC: failed to create dpps!\n"); 2341 goto create_fail; 2342 } 2343 2344 /* OPPs */ 2345 pool->base.opps[j] = dcn32_opp_create(ctx, i); 2346 if (pool->base.opps[j] == NULL) { 2347 BREAK_TO_DEBUGGER(); 2348 dm_error( 2349 "DC: failed to create output pixel processor!\n"); 2350 goto create_fail; 2351 } 2352 2353 /* TGs */ 2354 pool->base.timing_generators[j] = dcn32_timing_generator_create( 2355 ctx, i); 2356 if (pool->base.timing_generators[j] == NULL) { 2357 BREAK_TO_DEBUGGER(); 2358 dm_error("DC: failed to create tg!\n"); 2359 goto create_fail; 2360 } 2361 2362 /* ABMs */ 2363 pool->base.multiple_abms[j] = dmub_abm_create(ctx, 2364 &abm_regs[i], 2365 &abm_shift, 2366 &abm_mask); 2367 if (pool->base.multiple_abms[j] == NULL) { 2368 dm_error("DC: failed to create abm for pipe %d!\n", i); 2369 BREAK_TO_DEBUGGER(); 2370 goto create_fail; 2371 } 2372 2373 /* index for resource pool arrays for next valid pipe */ 2374 j++; 2375 } 2376 2377 /* PSR */ 2378 pool->base.psr = dmub_psr_create(ctx); 2379 if (pool->base.psr == NULL) { 2380 dm_error("DC: failed to create psr obj!\n"); 2381 BREAK_TO_DEBUGGER(); 2382 goto create_fail; 2383 } 2384 2385 /* MPCCs */ 2386 pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); 2387 if (pool->base.mpc == NULL) { 2388 BREAK_TO_DEBUGGER(); 2389 dm_error("DC: failed to create mpc!\n"); 2390 goto create_fail; 2391 } 2392 2393 /* DSCs */ 2394 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2395 pool->base.dscs[i] = dcn32_dsc_create(ctx, i); 2396 if (pool->base.dscs[i] == NULL) { 2397 BREAK_TO_DEBUGGER(); 2398 dm_error("DC: failed to create display stream compressor %d!\n", i); 2399 goto create_fail; 2400 } 2401 } 2402 2403 /* DWB */ 2404 if (!dcn32_dwbc_create(ctx, &pool->base)) { 2405 BREAK_TO_DEBUGGER(); 2406 dm_error("DC: failed to create dwbc!\n"); 2407 goto create_fail; 2408 } 2409 2410 /* MMHUBBUB */ 2411 if (!dcn32_mmhubbub_create(ctx, &pool->base)) { 2412 BREAK_TO_DEBUGGER(); 2413 dm_error("DC: failed to create mcif_wb!\n"); 2414 goto create_fail; 2415 } 2416 2417 /* AUX and I2C */ 2418 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2419 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); 2420 if (pool->base.engines[i] == NULL) { 2421 BREAK_TO_DEBUGGER(); 2422 dm_error( 2423 "DC:failed to create aux engine!!\n"); 2424 goto create_fail; 2425 } 2426 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); 2427 if (pool->base.hw_i2cs[i] == NULL) { 2428 BREAK_TO_DEBUGGER(); 2429 dm_error( 2430 "DC:failed to create hw i2c!!\n"); 2431 goto create_fail; 2432 } 2433 pool->base.sw_i2cs[i] = NULL; 2434 } 2435 2436 /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ 2437 if (!resource_construct(num_virtual_links, dc, &pool->base, 2438 &res_create_funcs)) 2439 goto create_fail; 2440 2441 /* HW Sequencer init functions and Plane caps */ 2442 dcn32_hw_sequencer_init_functions(dc); 2443 2444 dc->caps.max_planes = pool->base.pipe_count; 2445 2446 for (i = 0; i < dc->caps.max_planes; ++i) 2447 dc->caps.planes[i] = plane_cap; 2448 2449 dc->cap_funcs = cap_funcs; 2450 2451 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2452 ddc_init_data.ctx = dc->ctx; 2453 ddc_init_data.link = NULL; 2454 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2455 ddc_init_data.id.enum_id = 0; 2456 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2457 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2458 } else { 2459 pool->base.oem_device = NULL; 2460 } 2461 2462 if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0)) 2463 dc->config.sdpif_request_limit_words_per_umc = 16; 2464 2465 DC_FP_END(); 2466 2467 return true; 2468 2469 create_fail: 2470 2471 DC_FP_END(); 2472 2473 dcn32_resource_destruct(pool); 2474 2475 return false; 2476 } 2477 2478 struct resource_pool *dcn32_create_resource_pool( 2479 const struct dc_init_data *init_data, 2480 struct dc *dc) 2481 { 2482 struct dcn32_resource_pool *pool = 2483 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); 2484 2485 if (!pool) 2486 return NULL; 2487 2488 if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) 2489 return &pool->base; 2490 2491 BREAK_TO_DEBUGGER(); 2492 kfree(pool); 2493 return NULL; 2494 } 2495 2496 /* 2497 * Find the most optimal free pipe from res_ctx, which could be used as a 2498 * secondary dpp pipe for input opp head pipe. 2499 * 2500 * a free pipe - a pipe in input res_ctx not yet used for any streams or 2501 * planes. 2502 * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending 2503 * tree. This is typical used for rendering MPO planes or additional offset 2504 * areas in MPCC combine. 2505 * 2506 * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe 2507 * ------------------------------------------------------------------------- 2508 * 2509 * PROBLEM: 2510 * 2511 * 1. There is a hardware limitation that a secondary DPP pipe cannot be 2512 * transferred from one MPC blending tree to the other in a single frame. 2513 * Otherwise it could cause glitches on the screen. 2514 * 2515 * For instance, we cannot transition from state 1 to state 2 in one frame. This 2516 * is because PIPE1 is transferred from PIPE0's MPC blending tree over to 2517 * PIPE2's MPC blending tree, which is not supported by hardware. 2518 * To support this transition we need to first remove PIPE1 from PIPE0's MPC 2519 * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree 2520 * in the next frame. This is not optimal as it will delay the flip for two 2521 * frames. 2522 * 2523 * State 1: 2524 * PIPE0 -- secondary DPP pipe --> (PIPE1) 2525 * PIPE2 -- secondary DPP pipe --> NONE 2526 * 2527 * State 2: 2528 * PIPE0 -- secondary DPP pipe --> NONE 2529 * PIPE2 -- secondary DPP pipe --> (PIPE1) 2530 * 2531 * 2. We want to in general minimize the unnecessary changes in pipe topology. 2532 * If a pipe is already added in current blending tree and there are no changes 2533 * to plane topology, we don't want to swap it with another free pipe 2534 * unnecessarily in every update. Powering up and down a pipe would require a 2535 * full update which delays the flip for 1 frame. If we use the original pipe 2536 * we don't have to toggle its power. So we can flip faster. 2537 */ 2538 static int find_optimal_free_pipe_as_secondary_dpp_pipe( 2539 const struct resource_context *cur_res_ctx, 2540 struct resource_context *new_res_ctx, 2541 const struct resource_pool *pool, 2542 const struct pipe_ctx *new_opp_head) 2543 { 2544 const struct pipe_ctx *cur_opp_head; 2545 int free_pipe_idx; 2546 2547 cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx]; 2548 free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree( 2549 cur_res_ctx, new_res_ctx, cur_opp_head); 2550 2551 /* Up until here if we have not found a free secondary pipe, we will 2552 * need to wait for at least one frame to complete the transition 2553 * sequence. 2554 */ 2555 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) 2556 free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx( 2557 cur_res_ctx, new_res_ctx, pool); 2558 2559 /* Up until here if we have not found a free secondary pipe, we will 2560 * need to wait for at least two frames to complete the transition 2561 * sequence. It really doesn't matter which pipe we decide take from 2562 * current enabled pipes. It won't save our frame time when we swap only 2563 * one pipe or more pipes. 2564 */ 2565 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) 2566 free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine( 2567 cur_res_ctx, new_res_ctx, pool); 2568 2569 if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND) 2570 free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool); 2571 2572 return free_pipe_idx; 2573 } 2574 2575 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo( 2576 struct resource_context *res_ctx, 2577 const struct resource_pool *pool, 2578 const struct pipe_ctx *primary_pipe) 2579 { 2580 int i; 2581 struct pipe_ctx *secondary_pipe = NULL; 2582 struct pipe_ctx *next_odm_mpo_pipe = NULL; 2583 int primary_index, preferred_pipe_idx; 2584 struct pipe_ctx *old_primary_pipe = NULL; 2585 2586 /* 2587 * Modified from find_idle_secondary_pipe 2588 * With windowed MPO and ODM, we want to avoid the case where we want a 2589 * free pipe for the left side but the free pipe is being used on the 2590 * right side. 2591 * Add check on current_state if the primary_pipe is the left side, 2592 * to check the right side ( primary_pipe->next_odm_pipe ) to see if 2593 * it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe ) 2594 * - If so, then don't use this pipe 2595 * EXCEPTION - 3 plane ( 2 MPO plane ) case 2596 * - in this case, the primary pipe has already gotten a free pipe for the 2597 * MPO window in the left 2598 * - when it tries to get a free pipe for the MPO window on the right, 2599 * it will see that it is already assigned to the right side 2600 * ( primary_pipe->next_odm_pipe ). But in this case, we want this 2601 * free pipe, since it will be for the right side. So add an 2602 * additional condition, that skipping the free pipe on the right only 2603 * applies if the primary pipe has no bottom pipe currently assigned 2604 */ 2605 if (primary_pipe) { 2606 primary_index = primary_pipe->pipe_idx; 2607 old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index]; 2608 if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe) 2609 && (!primary_pipe->bottom_pipe)) 2610 next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe; 2611 2612 preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx; 2613 if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) && 2614 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) { 2615 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 2616 secondary_pipe->pipe_idx = preferred_pipe_idx; 2617 } 2618 } 2619 2620 /* 2621 * search backwards for the second pipe to keep pipe 2622 * assignment more consistent 2623 */ 2624 if (!secondary_pipe) 2625 for (i = pool->pipe_count - 1; i >= 0; i--) { 2626 if ((res_ctx->pipe_ctx[i].stream == NULL) && 2627 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) { 2628 secondary_pipe = &res_ctx->pipe_ctx[i]; 2629 secondary_pipe->pipe_idx = i; 2630 break; 2631 } 2632 } 2633 2634 return secondary_pipe; 2635 } 2636 2637 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer( 2638 struct dc_state *state, 2639 const struct resource_pool *pool, 2640 struct dc_stream_state *stream, 2641 const struct pipe_ctx *head_pipe) 2642 { 2643 struct resource_context *res_ctx = &state->res_ctx; 2644 struct pipe_ctx *idle_pipe, *pipe; 2645 struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx; 2646 int head_index; 2647 2648 if (!head_pipe) 2649 ASSERT(0); 2650 2651 /* 2652 * Modified from dcn20_acquire_idle_pipe_for_layer 2653 * Check if head_pipe in old_context already has bottom_pipe allocated. 2654 * - If so, check if that pipe is available in the current context. 2655 * -- If so, reuse pipe from old_context 2656 */ 2657 head_index = head_pipe->pipe_idx; 2658 pipe = &old_ctx->pipe_ctx[head_index]; 2659 if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) { 2660 idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx]; 2661 idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx; 2662 } else { 2663 idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe); 2664 if (!idle_pipe) 2665 return NULL; 2666 } 2667 2668 idle_pipe->stream = head_pipe->stream; 2669 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2670 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2671 2672 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2673 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2674 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2675 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2676 2677 return idle_pipe; 2678 } 2679 2680 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe( 2681 const struct dc_state *cur_ctx, 2682 struct dc_state *new_ctx, 2683 const struct resource_pool *pool, 2684 const struct pipe_ctx *opp_head_pipe) 2685 { 2686 2687 int free_pipe_idx; 2688 struct pipe_ctx *free_pipe; 2689 2690 if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm) 2691 return dcn32_acquire_idle_pipe_for_head_pipe_in_layer( 2692 new_ctx, pool, opp_head_pipe->stream, opp_head_pipe); 2693 2694 free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe( 2695 &cur_ctx->res_ctx, &new_ctx->res_ctx, 2696 pool, opp_head_pipe); 2697 if (free_pipe_idx >= 0) { 2698 free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx]; 2699 free_pipe->pipe_idx = free_pipe_idx; 2700 free_pipe->stream = opp_head_pipe->stream; 2701 free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg; 2702 free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp; 2703 2704 free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx]; 2705 free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx]; 2706 free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx]; 2707 free_pipe->plane_res.mpcc_inst = 2708 pool->dpps[free_pipe->pipe_idx]->inst; 2709 } else { 2710 ASSERT(opp_head_pipe); 2711 free_pipe = NULL; 2712 } 2713 2714 return free_pipe; 2715 } 2716 2717 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans) 2718 { 2719 /* 2720 * DCN32 and DCN321 SKUs may have different sizes for MALL 2721 * but we may not be able to access all the MALL space. 2722 * If the num_chans is power of 2, then we can access all 2723 * of the available MALL space. Otherwise, we can only 2724 * access: 2725 * 2726 * max_cab_size_in_bytes = total_cache_size_in_bytes * 2727 * ((2^floor(log2(num_chans)))/num_chans) 2728 * 2729 * Calculating the MALL sizes for all available SKUs, we 2730 * have come up with the follow simplified check. 2731 * - we have max_chans which provides the max MALL size. 2732 * Each chans supports 4MB of MALL so: 2733 * 2734 * total_cache_size_in_bytes = max_chans * 4 MB 2735 * 2736 * - we have avail_chans which shows the number of channels 2737 * we can use if we can't access the entire MALL space. 2738 * It is generally half of max_chans 2739 * - so we use the following checks: 2740 * 2741 * if (num_chans == max_chans), return max_chans 2742 * if (num_chans < max_chans), return avail_chans 2743 * 2744 * - exception is GC_11_0_0 where we can't access max_chans, 2745 * so we define max_avail_chans as the maximum available 2746 * MALL space 2747 * 2748 */ 2749 int gc_11_0_0_max_chans = 48; 2750 int gc_11_0_0_max_avail_chans = 32; 2751 int gc_11_0_0_avail_chans = 16; 2752 int gc_11_0_3_max_chans = 16; 2753 int gc_11_0_3_avail_chans = 8; 2754 int gc_11_0_2_max_chans = 8; 2755 int gc_11_0_2_avail_chans = 4; 2756 2757 if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) { 2758 return (num_chans == gc_11_0_0_max_chans) ? 2759 gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans; 2760 } else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) { 2761 return (num_chans == gc_11_0_2_max_chans) ? 2762 gc_11_0_2_max_chans : gc_11_0_2_avail_chans; 2763 } else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) { 2764 return (num_chans == gc_11_0_3_max_chans) ? 2765 gc_11_0_3_max_chans : gc_11_0_3_avail_chans; 2766 } 2767 } 2768