1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn32_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn32_resource.h" 35 36 #include "dcn20/dcn20_resource.h" 37 #include "dcn30/dcn30_resource.h" 38 39 #include "dcn10/dcn10_ipp.h" 40 #include "dcn30/dcn30_hubbub.h" 41 #include "dcn31/dcn31_hubbub.h" 42 #include "dcn32/dcn32_hubbub.h" 43 #include "dcn32/dcn32_mpc.h" 44 #include "dcn32_hubp.h" 45 #include "irq/dcn32/irq_service_dcn32.h" 46 #include "dcn32/dcn32_dpp.h" 47 #include "dcn32/dcn32_optc.h" 48 #include "dcn20/dcn20_hwseq.h" 49 #include "dcn30/dcn30_hwseq.h" 50 #include "dce110/dce110_hw_sequencer.h" 51 #include "dcn30/dcn30_opp.h" 52 #include "dcn20/dcn20_dsc.h" 53 #include "dcn30/dcn30_vpg.h" 54 #include "dcn30/dcn30_afmt.h" 55 #include "dcn30/dcn30_dio_stream_encoder.h" 56 #include "dcn32/dcn32_dio_stream_encoder.h" 57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h" 58 #include "dcn31/dcn31_hpo_dp_link_encoder.h" 59 #include "dcn32/dcn32_hpo_dp_link_encoder.h" 60 #include "dc_link_dp.h" 61 #include "dcn31/dcn31_apg.h" 62 #include "dcn31/dcn31_dio_link_encoder.h" 63 #include "dcn32/dcn32_dio_link_encoder.h" 64 #include "dce/dce_clock_source.h" 65 #include "dce/dce_audio.h" 66 #include "dce/dce_hwseq.h" 67 #include "clk_mgr.h" 68 #include "virtual/virtual_stream_encoder.h" 69 #include "dml/display_mode_vba.h" 70 #include "dcn32/dcn32_dccg.h" 71 #include "dcn10/dcn10_resource.h" 72 #include "dc_link_ddc.h" 73 #include "dcn31/dcn31_panel_cntl.h" 74 75 #include "dcn30/dcn30_dwb.h" 76 #include "dcn32/dcn32_mmhubbub.h" 77 78 #include "dcn/dcn_3_2_0_offset.h" 79 #include "dcn/dcn_3_2_0_sh_mask.h" 80 #include "nbio/nbio_4_3_0_offset.h" 81 82 #include "reg_helper.h" 83 #include "dce/dmub_abm.h" 84 #include "dce/dmub_psr.h" 85 #include "dce/dce_aux.h" 86 #include "dce/dce_i2c.h" 87 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 92 #define DCN_BASE__INST0_SEG1 0x000000C0 93 #define DCN_BASE__INST0_SEG2 0x000034C0 94 #define DCN_BASE__INST0_SEG3 0x00009000 95 #define NBIO_BASE__INST0_SEG1 0x00000014 96 97 #define MAX_INSTANCE 6 98 #define MAX_SEGMENT 6 99 100 struct IP_BASE_INSTANCE { 101 unsigned int segment[MAX_SEGMENT]; 102 }; 103 104 struct IP_BASE { 105 struct IP_BASE_INSTANCE instance[MAX_INSTANCE]; 106 }; 107 108 static const struct IP_BASE DCN_BASE = { { { { 0x00000012, 0x000000C0, 0x000034C0, 0x00009000, 0x02403C00, 0 } }, 109 { { 0, 0, 0, 0, 0, 0 } }, 110 { { 0, 0, 0, 0, 0, 0 } }, 111 { { 0, 0, 0, 0, 0, 0 } }, 112 { { 0, 0, 0, 0, 0, 0 } }, 113 { { 0, 0, 0, 0, 0, 0 } } } }; 114 115 #define DC_LOGGER_INIT(logger) 116 117 #define DCN3_2_DEFAULT_DET_SIZE 256 118 #define DCN3_2_MAX_DET_SIZE 1152 119 #define DCN3_2_MIN_DET_SIZE 128 120 #define DCN3_2_MIN_COMPBUF_SIZE_KB 128 121 122 struct _vcs_dpi_ip_params_st dcn3_2_ip = { 123 .gpuvm_enable = 1, 124 .gpuvm_max_page_table_levels = 1, 125 .hostvm_enable = 0, 126 .rob_buffer_size_kbytes = 128, 127 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, 128 .config_return_buffer_size_in_kbytes = 1280, 129 .compressed_buffer_segment_size_in_kbytes = 64, 130 .meta_fifo_size_in_kentries = 22, 131 .zero_size_buffer_entries = 512, 132 .compbuf_reserved_space_64b = 256, 133 .compbuf_reserved_space_zs = 64, 134 .dpp_output_buffer_pixels = 2560, 135 .opp_output_buffer_lines = 1, 136 .pixel_chunk_size_kbytes = 8, 137 .alpha_pixel_chunk_size_kbytes = 4, // not appearing in spreadsheet, match c code from hw team 138 .min_pixel_chunk_size_bytes = 1024, 139 .dcc_meta_buffer_size_bytes = 6272, 140 .meta_chunk_size_kbytes = 2, 141 .min_meta_chunk_size_bytes = 256, 142 .writeback_chunk_size_kbytes = 8, 143 .ptoi_supported = false, 144 .num_dsc = 4, 145 .maximum_dsc_bits_per_component = 12, 146 .maximum_pixels_per_line_per_dsc_unit = 6016, 147 .dsc422_native_support = true, 148 .is_line_buffer_bpp_fixed = true, 149 .line_buffer_fixed_bpp = 57, 150 .line_buffer_size_bits = 1171920, //DPP doc, DCN3_2_DisplayMode_73.xlsm still shows as 986880 bits with 48 bpp 151 .max_line_buffer_lines = 32, 152 .writeback_interface_buffer_size_kbytes = 90, 153 .max_num_dpp = 4, 154 .max_num_otg = 4, 155 .max_num_hdmi_frl_outputs = 1, 156 .max_num_wb = 1, 157 .max_dchub_pscl_bw_pix_per_clk = 4, 158 .max_pscl_lb_bw_pix_per_clk = 2, 159 .max_lb_vscl_bw_pix_per_clk = 4, 160 .max_vscl_hscl_bw_pix_per_clk = 4, 161 .max_hscl_ratio = 6, 162 .max_vscl_ratio = 6, 163 .max_hscl_taps = 8, 164 .max_vscl_taps = 8, 165 .dpte_buffer_size_in_pte_reqs_luma = 64, 166 .dpte_buffer_size_in_pte_reqs_chroma = 34, 167 .dispclk_ramp_margin_percent = 1, 168 .max_inter_dcn_tile_repeaters = 8, 169 .cursor_buffer_size = 16, 170 .cursor_chunk_size = 2, 171 .writeback_line_buffer_buffer_size = 0, 172 .writeback_min_hscl_ratio = 1, 173 .writeback_min_vscl_ratio = 1, 174 .writeback_max_hscl_ratio = 1, 175 .writeback_max_vscl_ratio = 1, 176 .writeback_max_hscl_taps = 1, 177 .writeback_max_vscl_taps = 1, 178 .dppclk_delay_subtotal = 47, 179 .dppclk_delay_scl = 50, 180 .dppclk_delay_scl_lb_only = 16, 181 .dppclk_delay_cnvc_formatter = 28, 182 .dppclk_delay_cnvc_cursor = 6, 183 .dispclk_delay_subtotal = 125, 184 .dynamic_metadata_vm_enabled = false, 185 .odm_combine_4to1_supported = false, 186 .dcc_supported = true, 187 .max_num_dp2p0_outputs = 2, 188 .max_num_dp2p0_streams = 4, 189 }; 190 191 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { 192 .clock_limits = { 193 { 194 .state = 0, 195 .dcfclk_mhz = 1564.0, 196 .fabricclk_mhz = 400.0, 197 .dispclk_mhz = 2150.0, 198 .dppclk_mhz = 2150.0, 199 .phyclk_mhz = 810.0, 200 .phyclk_d18_mhz = 667.0, 201 .phyclk_d32_mhz = 625.0, 202 .socclk_mhz = 1200.0, 203 .dscclk_mhz = 716.667, 204 .dram_speed_mts = 1600.0, 205 .dtbclk_mhz = 1564.0, 206 }, 207 }, 208 .num_states = 1, 209 .sr_exit_time_us = 5.20, 210 .sr_enter_plus_exit_time_us = 9.60, 211 .sr_exit_z8_time_us = 285.0, 212 .sr_enter_plus_exit_z8_time_us = 320, 213 .writeback_latency_us = 12.0, 214 .round_trip_ping_latency_dcfclk_cycles = 263, 215 .urgent_latency_pixel_data_only_us = 4.0, 216 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 217 .urgent_latency_vm_data_only_us = 4.0, 218 .fclk_change_latency_us = 20, 219 .usr_retraining_latency_us = 2, 220 .smn_latency_us = 2, 221 .mall_allocated_for_dcn_mbytes = 64, 222 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 223 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 224 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 225 .pct_ideal_sdp_bw_after_urgent = 100.0, 226 .pct_ideal_fabric_bw_after_urgent = 67.0, 227 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, 228 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented 229 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented 230 .pct_ideal_dram_bw_after_urgent_strobe = 67.0, 231 .max_avg_sdp_bw_use_normal_percent = 80.0, 232 .max_avg_fabric_bw_use_normal_percent = 60.0, 233 .max_avg_dram_bw_use_normal_strobe_percent = 50.0, 234 .max_avg_dram_bw_use_normal_percent = 15.0, 235 .num_chans = 8, 236 .dram_channel_width_bytes = 2, 237 .fabric_datapath_to_dcn_data_return_bytes = 64, 238 .return_bus_width_bytes = 64, 239 .downspread_percent = 0.38, 240 .dcn_downspread_percent = 0.5, 241 .dram_clock_change_latency_us = 400, 242 .dispclk_dppclk_vco_speed_mhz = 4300.0, 243 .do_urgent_latency_adjustment = true, 244 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 245 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, 246 }; 247 248 enum dcn32_clk_src_array_id { 249 DCN32_CLK_SRC_PLL0, 250 DCN32_CLK_SRC_PLL1, 251 DCN32_CLK_SRC_PLL2, 252 DCN32_CLK_SRC_PLL3, 253 DCN32_CLK_SRC_PLL4, 254 DCN32_CLK_SRC_TOTAL 255 }; 256 257 /* begin ********************* 258 * macros to expend register list macro defined in HW object header file 259 */ 260 261 /* DCN */ 262 /* TODO awful hack. fixup dcn20_dwb.h */ 263 #undef BASE_INNER 264 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 265 266 #define BASE(seg) BASE_INNER(seg) 267 268 #define SR(reg_name)\ 269 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 270 reg ## reg_name 271 272 #define SRI(reg_name, block, id)\ 273 .reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 274 reg ## block ## id ## _ ## reg_name 275 276 #define SRI2(reg_name, block, id)\ 277 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 278 reg ## reg_name 279 280 #define SRIR(var_name, reg_name, block, id)\ 281 .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 282 reg ## block ## id ## _ ## reg_name 283 284 #define SRII(reg_name, block, id)\ 285 .reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 286 reg ## block ## id ## _ ## reg_name 287 288 #define SRII_MPC_RMU(reg_name, block, id)\ 289 .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 290 reg ## block ## id ## _ ## reg_name 291 292 #define SRII_DWB(reg_name, temp_name, block, id)\ 293 .reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 294 reg ## block ## id ## _ ## temp_name 295 296 #define DCCG_SRII(reg_name, block, id)\ 297 .block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 298 reg ## block ## id ## _ ## reg_name 299 300 #define VUPDATE_SRII(reg_name, block, id)\ 301 .reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 302 reg ## reg_name ## _ ## block ## id 303 304 /* NBIO */ 305 #define NBIO_BASE_INNER(seg) \ 306 NBIO_BASE__INST0_SEG ## seg 307 308 #define NBIO_BASE(seg) \ 309 NBIO_BASE_INNER(seg) 310 311 #define NBIO_SR(reg_name)\ 312 .reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 313 regBIF_BX0_ ## reg_name 314 315 #define CTX ctx 316 #define REG(reg_name) \ 317 (DCN_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) 318 319 static const struct bios_registers bios_regs = { 320 NBIO_SR(BIOS_SCRATCH_3), 321 NBIO_SR(BIOS_SCRATCH_6) 322 }; 323 324 #define clk_src_regs(index, pllid)\ 325 [index] = {\ 326 CS_COMMON_REG_LIST_DCN3_0(index, pllid),\ 327 } 328 329 static const struct dce110_clk_src_regs clk_src_regs[] = { 330 clk_src_regs(0, A), 331 clk_src_regs(1, B), 332 clk_src_regs(2, C), 333 clk_src_regs(3, D), 334 clk_src_regs(4, E) 335 }; 336 337 static const struct dce110_clk_src_shift cs_shift = { 338 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 339 }; 340 341 static const struct dce110_clk_src_mask cs_mask = { 342 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 343 }; 344 345 #define abm_regs(id)\ 346 [id] = {\ 347 ABM_DCN32_REG_LIST(id)\ 348 } 349 350 static const struct dce_abm_registers abm_regs[] = { 351 abm_regs(0), 352 abm_regs(1), 353 abm_regs(2), 354 abm_regs(3), 355 }; 356 357 static const struct dce_abm_shift abm_shift = { 358 ABM_MASK_SH_LIST_DCN32(__SHIFT) 359 }; 360 361 static const struct dce_abm_mask abm_mask = { 362 ABM_MASK_SH_LIST_DCN32(_MASK) 363 }; 364 365 #define audio_regs(id)\ 366 [id] = {\ 367 AUD_COMMON_REG_LIST(id)\ 368 } 369 370 static const struct dce_audio_registers audio_regs[] = { 371 audio_regs(0), 372 audio_regs(1), 373 audio_regs(2), 374 audio_regs(3), 375 audio_regs(4) 376 }; 377 378 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 379 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 380 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 381 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 382 383 static const struct dce_audio_shift audio_shift = { 384 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 385 }; 386 387 static const struct dce_audio_mask audio_mask = { 388 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 389 }; 390 391 #define vpg_regs(id)\ 392 [id] = {\ 393 VPG_DCN3_REG_LIST(id)\ 394 } 395 396 static const struct dcn30_vpg_registers vpg_regs[] = { 397 vpg_regs(0), 398 vpg_regs(1), 399 vpg_regs(2), 400 vpg_regs(3), 401 vpg_regs(4), 402 vpg_regs(5), 403 vpg_regs(6), 404 vpg_regs(7), 405 vpg_regs(8), 406 vpg_regs(9), 407 }; 408 409 static const struct dcn30_vpg_shift vpg_shift = { 410 DCN3_VPG_MASK_SH_LIST(__SHIFT) 411 }; 412 413 static const struct dcn30_vpg_mask vpg_mask = { 414 DCN3_VPG_MASK_SH_LIST(_MASK) 415 }; 416 417 #define afmt_regs(id)\ 418 [id] = {\ 419 AFMT_DCN3_REG_LIST(id)\ 420 } 421 422 static const struct dcn30_afmt_registers afmt_regs[] = { 423 afmt_regs(0), 424 afmt_regs(1), 425 afmt_regs(2), 426 afmt_regs(3), 427 afmt_regs(4), 428 afmt_regs(5) 429 }; 430 431 static const struct dcn30_afmt_shift afmt_shift = { 432 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 433 }; 434 435 static const struct dcn30_afmt_mask afmt_mask = { 436 DCN3_AFMT_MASK_SH_LIST(_MASK) 437 }; 438 439 #define apg_regs(id)\ 440 [id] = {\ 441 APG_DCN31_REG_LIST(id)\ 442 } 443 444 static const struct dcn31_apg_registers apg_regs[] = { 445 apg_regs(0), 446 apg_regs(1), 447 apg_regs(2), 448 apg_regs(3) 449 }; 450 451 static const struct dcn31_apg_shift apg_shift = { 452 DCN31_APG_MASK_SH_LIST(__SHIFT) 453 }; 454 455 static const struct dcn31_apg_mask apg_mask = { 456 DCN31_APG_MASK_SH_LIST(_MASK) 457 }; 458 459 #define stream_enc_regs(id)\ 460 [id] = {\ 461 SE_DCN32_REG_LIST(id)\ 462 } 463 464 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 465 stream_enc_regs(0), 466 stream_enc_regs(1), 467 stream_enc_regs(2), 468 stream_enc_regs(3), 469 stream_enc_regs(4) 470 }; 471 472 static const struct dcn10_stream_encoder_shift se_shift = { 473 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 474 }; 475 476 static const struct dcn10_stream_encoder_mask se_mask = { 477 SE_COMMON_MASK_SH_LIST_DCN32(_MASK) 478 }; 479 480 481 #define aux_regs(id)\ 482 [id] = {\ 483 DCN2_AUX_REG_LIST(id)\ 484 } 485 486 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 487 aux_regs(0), 488 aux_regs(1), 489 aux_regs(2), 490 aux_regs(3), 491 aux_regs(4) 492 }; 493 494 #define hpd_regs(id)\ 495 [id] = {\ 496 HPD_REG_LIST(id)\ 497 } 498 499 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 500 hpd_regs(0), 501 hpd_regs(1), 502 hpd_regs(2), 503 hpd_regs(3), 504 hpd_regs(4) 505 }; 506 507 #define link_regs(id, phyid)\ 508 [id] = {\ 509 LE_DCN31_REG_LIST(id), \ 510 UNIPHY_DCN2_REG_LIST(phyid), \ 511 /*DPCS_DCN31_REG_LIST(id),*/ \ 512 } 513 514 static const struct dcn10_link_enc_registers link_enc_regs[] = { 515 link_regs(0, A), 516 link_regs(1, B), 517 link_regs(2, C), 518 link_regs(3, D), 519 link_regs(4, E) 520 }; 521 522 static const struct dcn10_link_enc_shift le_shift = { 523 LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ 524 //DPCS_DCN31_MASK_SH_LIST(__SHIFT) 525 }; 526 527 static const struct dcn10_link_enc_mask le_mask = { 528 LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ 529 530 //DPCS_DCN31_MASK_SH_LIST(_MASK) 531 }; 532 533 #define hpo_dp_stream_encoder_reg_list(id)\ 534 [id] = {\ 535 DCN3_1_HPO_DP_STREAM_ENC_REG_LIST(id)\ 536 } 537 538 static const struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[] = { 539 hpo_dp_stream_encoder_reg_list(0), 540 hpo_dp_stream_encoder_reg_list(1), 541 hpo_dp_stream_encoder_reg_list(2), 542 hpo_dp_stream_encoder_reg_list(3), 543 }; 544 545 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { 546 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) 547 }; 548 549 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { 550 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) 551 }; 552 553 554 #define hpo_dp_link_encoder_reg_list(id)\ 555 [id] = {\ 556 DCN3_1_HPO_DP_LINK_ENC_REG_LIST(id),\ 557 /*DCN3_1_RDPCSTX_REG_LIST(0),*/\ 558 /*DCN3_1_RDPCSTX_REG_LIST(1),*/\ 559 /*DCN3_1_RDPCSTX_REG_LIST(2),*/\ 560 /*DCN3_1_RDPCSTX_REG_LIST(3),*/\ 561 /*DCN3_1_RDPCSTX_REG_LIST(4)*/\ 562 } 563 564 static const struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[] = { 565 hpo_dp_link_encoder_reg_list(0), 566 hpo_dp_link_encoder_reg_list(1), 567 }; 568 569 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { 570 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) 571 }; 572 573 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { 574 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) 575 }; 576 577 #define dpp_regs(id)\ 578 [id] = {\ 579 DPP_REG_LIST_DCN30_COMMON(id),\ 580 } 581 582 static const struct dcn3_dpp_registers dpp_regs[] = { 583 dpp_regs(0), 584 dpp_regs(1), 585 dpp_regs(2), 586 dpp_regs(3) 587 }; 588 589 static const struct dcn3_dpp_shift tf_shift = { 590 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) 591 }; 592 593 static const struct dcn3_dpp_mask tf_mask = { 594 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) 595 }; 596 597 598 #define opp_regs(id)\ 599 [id] = {\ 600 OPP_REG_LIST_DCN30(id),\ 601 } 602 603 static const struct dcn20_opp_registers opp_regs[] = { 604 opp_regs(0), 605 opp_regs(1), 606 opp_regs(2), 607 opp_regs(3) 608 }; 609 610 static const struct dcn20_opp_shift opp_shift = { 611 OPP_MASK_SH_LIST_DCN20(__SHIFT) 612 }; 613 614 static const struct dcn20_opp_mask opp_mask = { 615 OPP_MASK_SH_LIST_DCN20(_MASK) 616 }; 617 618 #define aux_engine_regs(id)\ 619 [id] = {\ 620 AUX_COMMON_REG_LIST0(id), \ 621 .AUXN_IMPCAL = 0, \ 622 .AUXP_IMPCAL = 0, \ 623 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 624 } 625 626 static const struct dce110_aux_registers aux_engine_regs[] = { 627 aux_engine_regs(0), 628 aux_engine_regs(1), 629 aux_engine_regs(2), 630 aux_engine_regs(3), 631 aux_engine_regs(4) 632 }; 633 634 static const struct dce110_aux_registers_shift aux_shift = { 635 DCN_AUX_MASK_SH_LIST(__SHIFT) 636 }; 637 638 static const struct dce110_aux_registers_mask aux_mask = { 639 DCN_AUX_MASK_SH_LIST(_MASK) 640 }; 641 642 643 #define dwbc_regs_dcn3(id)\ 644 [id] = {\ 645 DWBC_COMMON_REG_LIST_DCN30(id),\ 646 } 647 648 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 649 dwbc_regs_dcn3(0), 650 }; 651 652 static const struct dcn30_dwbc_shift dwbc30_shift = { 653 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 654 }; 655 656 static const struct dcn30_dwbc_mask dwbc30_mask = { 657 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 658 }; 659 660 #define mcif_wb_regs_dcn3(id)\ 661 [id] = {\ 662 MCIF_WB_COMMON_REG_LIST_DCN32(id),\ 663 } 664 665 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 666 mcif_wb_regs_dcn3(0) 667 }; 668 669 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 670 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 671 }; 672 673 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 674 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) 675 }; 676 677 #define dsc_regsDCN20(id)\ 678 [id] = {\ 679 DSC_REG_LIST_DCN20(id)\ 680 } 681 682 static const struct dcn20_dsc_registers dsc_regs[] = { 683 dsc_regsDCN20(0), 684 dsc_regsDCN20(1), 685 dsc_regsDCN20(2), 686 dsc_regsDCN20(3) 687 }; 688 689 static const struct dcn20_dsc_shift dsc_shift = { 690 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 691 }; 692 693 static const struct dcn20_dsc_mask dsc_mask = { 694 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 695 }; 696 697 static const struct dcn30_mpc_registers mpc_regs = { 698 MPC_REG_LIST_DCN3_0(0), 699 MPC_REG_LIST_DCN3_0(1), 700 MPC_REG_LIST_DCN3_0(2), 701 MPC_REG_LIST_DCN3_0(3), 702 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 703 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 704 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 705 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 706 MPC_MCM_REG_LIST_DCN32(0), 707 MPC_MCM_REG_LIST_DCN32(1), 708 MPC_MCM_REG_LIST_DCN32(2), 709 MPC_MCM_REG_LIST_DCN32(3), 710 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 711 }; 712 713 static const struct dcn30_mpc_shift mpc_shift = { 714 MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 715 }; 716 717 static const struct dcn30_mpc_mask mpc_mask = { 718 MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) 719 }; 720 721 #define optc_regs(id)\ 722 [id] = {OPTC_COMMON_REG_LIST_DCN3_2(id)} 723 724 //#ifdef DIAGS_BUILD 725 //static struct dcn_optc_registers optc_regs[] = { 726 //#else 727 static const struct dcn_optc_registers optc_regs[] = { 728 //#endif 729 optc_regs(0), 730 optc_regs(1), 731 optc_regs(2), 732 optc_regs(3) 733 }; 734 735 static const struct dcn_optc_shift optc_shift = { 736 OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 737 }; 738 739 static const struct dcn_optc_mask optc_mask = { 740 OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 741 }; 742 743 #define hubp_regs(id)\ 744 [id] = {\ 745 HUBP_REG_LIST_DCN32(id)\ 746 } 747 748 static const struct dcn_hubp2_registers hubp_regs[] = { 749 hubp_regs(0), 750 hubp_regs(1), 751 hubp_regs(2), 752 hubp_regs(3) 753 }; 754 755 756 static const struct dcn_hubp2_shift hubp_shift = { 757 HUBP_MASK_SH_LIST_DCN32(__SHIFT) 758 }; 759 760 static const struct dcn_hubp2_mask hubp_mask = { 761 HUBP_MASK_SH_LIST_DCN32(_MASK) 762 }; 763 static const struct dcn_hubbub_registers hubbub_reg = { 764 HUBBUB_REG_LIST_DCN32(0) 765 }; 766 767 static const struct dcn_hubbub_shift hubbub_shift = { 768 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) 769 }; 770 771 static const struct dcn_hubbub_mask hubbub_mask = { 772 HUBBUB_MASK_SH_LIST_DCN32(_MASK) 773 }; 774 775 static const struct dccg_registers dccg_regs = { 776 DCCG_REG_LIST_DCN32() 777 }; 778 779 static const struct dccg_shift dccg_shift = { 780 DCCG_MASK_SH_LIST_DCN32(__SHIFT) 781 }; 782 783 static const struct dccg_mask dccg_mask = { 784 DCCG_MASK_SH_LIST_DCN32(_MASK) 785 }; 786 787 788 #define SRII2(reg_name_pre, reg_name_post, id)\ 789 .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ 790 ## id ## _ ## reg_name_post ## _BASE_IDX) + \ 791 reg ## reg_name_pre ## id ## _ ## reg_name_post 792 793 794 #define HWSEQ_DCN32_REG_LIST()\ 795 SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ 796 SR(DIO_MEM_PWR_CTRL), \ 797 SR(ODM_MEM_PWR_CTRL3), \ 798 SR(MMHUBBUB_MEM_PWR_CNTL), \ 799 SR(DCCG_GATE_DISABLE_CNTL), \ 800 SR(DCCG_GATE_DISABLE_CNTL2), \ 801 SR(DCFCLK_CNTL),\ 802 SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ 803 SRII(PIXEL_RATE_CNTL, OTG, 0), \ 804 SRII(PIXEL_RATE_CNTL, OTG, 1),\ 805 SRII(PIXEL_RATE_CNTL, OTG, 2),\ 806 SRII(PIXEL_RATE_CNTL, OTG, 3),\ 807 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ 808 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ 809 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ 810 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ 811 SR(MICROSECOND_TIME_BASE_DIV), \ 812 SR(MILLISECOND_TIME_BASE_DIV), \ 813 SR(DISPCLK_FREQ_CHANGE_CNTL), \ 814 SR(RBBMIF_TIMEOUT_DIS), \ 815 SR(RBBMIF_TIMEOUT_DIS_2), \ 816 SR(DCHUBBUB_CRC_CTRL), \ 817 SR(DPP_TOP0_DPP_CRC_CTRL), \ 818 SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ 819 SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ 820 SR(MPC_CRC_CTRL), \ 821 SR(MPC_CRC_RESULT_GB), \ 822 SR(MPC_CRC_RESULT_C), \ 823 SR(MPC_CRC_RESULT_AR), \ 824 SR(DOMAIN0_PG_CONFIG), \ 825 SR(DOMAIN1_PG_CONFIG), \ 826 SR(DOMAIN2_PG_CONFIG), \ 827 SR(DOMAIN3_PG_CONFIG), \ 828 SR(DOMAIN16_PG_CONFIG), \ 829 SR(DOMAIN17_PG_CONFIG), \ 830 SR(DOMAIN18_PG_CONFIG), \ 831 SR(DOMAIN19_PG_CONFIG), \ 832 SR(DOMAIN0_PG_STATUS), \ 833 SR(DOMAIN1_PG_STATUS), \ 834 SR(DOMAIN2_PG_STATUS), \ 835 SR(DOMAIN3_PG_STATUS), \ 836 SR(DOMAIN16_PG_STATUS), \ 837 SR(DOMAIN17_PG_STATUS), \ 838 SR(DOMAIN18_PG_STATUS), \ 839 SR(DOMAIN19_PG_STATUS), \ 840 SR(D1VGA_CONTROL), \ 841 SR(D2VGA_CONTROL), \ 842 SR(D3VGA_CONTROL), \ 843 SR(D4VGA_CONTROL), \ 844 SR(D5VGA_CONTROL), \ 845 SR(D6VGA_CONTROL), \ 846 SR(DC_IP_REQUEST_CNTL), \ 847 SR(AZALIA_AUDIO_DTO), \ 848 SR(AZALIA_CONTROLLER_CLOCK_GATING) 849 850 static const struct dce_hwseq_registers hwseq_reg = { 851 HWSEQ_DCN32_REG_LIST() 852 }; 853 854 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ 855 HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ 856 HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ 857 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 858 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 859 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 860 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 861 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 862 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 863 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 864 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 865 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 866 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 867 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 868 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 869 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 870 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 871 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 872 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 873 HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 874 HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 875 HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 876 HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 877 HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 878 HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 879 HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 880 HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 881 HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ 882 HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ 883 HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ 884 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ 885 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ 886 HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) 887 888 static const struct dce_hwseq_shift hwseq_shift = { 889 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) 890 }; 891 892 static const struct dce_hwseq_mask hwseq_mask = { 893 HWSEQ_DCN32_MASK_SH_LIST(_MASK) 894 }; 895 #define vmid_regs(id)\ 896 [id] = {\ 897 DCN20_VMID_REG_LIST(id)\ 898 } 899 900 static const struct dcn_vmid_registers vmid_regs[] = { 901 vmid_regs(0), 902 vmid_regs(1), 903 vmid_regs(2), 904 vmid_regs(3), 905 vmid_regs(4), 906 vmid_regs(5), 907 vmid_regs(6), 908 vmid_regs(7), 909 vmid_regs(8), 910 vmid_regs(9), 911 vmid_regs(10), 912 vmid_regs(11), 913 vmid_regs(12), 914 vmid_regs(13), 915 vmid_regs(14), 916 vmid_regs(15) 917 }; 918 919 static const struct dcn20_vmid_shift vmid_shifts = { 920 DCN20_VMID_MASK_SH_LIST(__SHIFT) 921 }; 922 923 static const struct dcn20_vmid_mask vmid_masks = { 924 DCN20_VMID_MASK_SH_LIST(_MASK) 925 }; 926 927 static const struct resource_caps res_cap_dcn32 = { 928 .num_timing_generator = 4, 929 .num_opp = 4, 930 .num_video_plane = 4, 931 .num_audio = 5, 932 .num_stream_encoder = 5, 933 .num_hpo_dp_stream_encoder = 4, 934 .num_hpo_dp_link_encoder = 2, 935 .num_pll = 5, 936 .num_dwb = 1, 937 .num_ddc = 5, 938 .num_vmid = 16, 939 .num_mpc_3dlut = 4, 940 .num_dsc = 4, 941 }; 942 943 static const struct dc_plane_cap plane_cap = { 944 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 945 .blends_with_above = true, 946 .blends_with_below = true, 947 .per_pixel_alpha = true, 948 949 .pixel_format_support = { 950 .argb8888 = true, 951 .nv12 = true, 952 .fp16 = true, 953 .p010 = true, 954 .ayuv = false, 955 }, 956 957 .max_upscale_factor = { 958 .argb8888 = 16000, 959 .nv12 = 16000, 960 .fp16 = 16000 961 }, 962 963 // 6:1 downscaling ratio: 1000/6 = 166.666 964 .max_downscale_factor = { 965 .argb8888 = 167, 966 .nv12 = 167, 967 .fp16 = 167 968 }, 969 64, 970 64 971 }; 972 973 static const struct dc_debug_options debug_defaults_drv = { 974 .disable_dmcu = true, 975 .force_abm_enable = false, 976 .timing_trace = false, 977 .clock_trace = true, 978 .disable_pplib_clock_request = false, 979 .disable_idle_power_optimizations = true, 980 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 981 .force_single_disp_pipe_split = false, 982 .disable_dcc = DCC_ENABLE, 983 .vsr_support = true, 984 .performance_trace = false, 985 .max_downscale_src_width = 7680,/*upto 8K*/ 986 .disable_pplib_wm_range = false, 987 .scl_reset_length10 = true, 988 .sanity_checks = false, 989 .underflow_assert_delay_us = 0xFFFFFFFF, 990 .dwb_fi_phase = -1, // -1 = disable, 991 .dmub_command_table = true, 992 .enable_mem_low_power = { 993 .bits = { 994 .vga = false, 995 .i2c = false, 996 .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled 997 .dscl = false, 998 .cm = false, 999 .mpc = false, 1000 .optc = false, 1001 } 1002 }, 1003 .use_max_lb = true, 1004 .force_disable_subvp = true 1005 }; 1006 1007 static const struct dc_debug_options debug_defaults_diags = { 1008 .disable_dmcu = true, 1009 .force_abm_enable = false, 1010 .timing_trace = true, 1011 .clock_trace = true, 1012 .disable_dpp_power_gate = true, 1013 .disable_hubp_power_gate = true, 1014 .disable_dsc_power_gate = true, 1015 .disable_clock_gate = true, 1016 .disable_pplib_clock_request = true, 1017 .disable_pplib_wm_range = true, 1018 .disable_stutter = false, 1019 .scl_reset_length10 = true, 1020 .dwb_fi_phase = -1, // -1 = disable 1021 .dmub_command_table = true, 1022 .enable_tri_buf = true, 1023 .use_max_lb = true, 1024 .force_disable_subvp = true 1025 }; 1026 1027 static struct dce_aux *dcn32_aux_engine_create( 1028 struct dc_context *ctx, 1029 uint32_t inst) 1030 { 1031 struct aux_engine_dce110 *aux_engine = 1032 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 1033 1034 if (!aux_engine) 1035 return NULL; 1036 1037 dce110_aux_engine_construct(aux_engine, ctx, inst, 1038 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 1039 &aux_engine_regs[inst], 1040 &aux_mask, 1041 &aux_shift, 1042 ctx->dc->caps.extended_aux_timeout_support); 1043 1044 return &aux_engine->base; 1045 } 1046 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 1047 1048 static const struct dce_i2c_registers i2c_hw_regs[] = { 1049 i2c_inst_regs(1), 1050 i2c_inst_regs(2), 1051 i2c_inst_regs(3), 1052 i2c_inst_regs(4), 1053 i2c_inst_regs(5), 1054 }; 1055 1056 static const struct dce_i2c_shift i2c_shifts = { 1057 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 1058 }; 1059 1060 static const struct dce_i2c_mask i2c_masks = { 1061 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 1062 }; 1063 1064 static struct dce_i2c_hw *dcn32_i2c_hw_create( 1065 struct dc_context *ctx, 1066 uint32_t inst) 1067 { 1068 struct dce_i2c_hw *dce_i2c_hw = 1069 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 1070 1071 if (!dce_i2c_hw) 1072 return NULL; 1073 1074 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 1075 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 1076 1077 return dce_i2c_hw; 1078 } 1079 1080 static struct clock_source *dcn32_clock_source_create( 1081 struct dc_context *ctx, 1082 struct dc_bios *bios, 1083 enum clock_source_id id, 1084 const struct dce110_clk_src_regs *regs, 1085 bool dp_clk_src) 1086 { 1087 struct dce110_clk_src *clk_src = 1088 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1089 1090 if (!clk_src) 1091 return NULL; 1092 1093 if (dcn31_clk_src_construct(clk_src, ctx, bios, id, 1094 regs, &cs_shift, &cs_mask)) { 1095 clk_src->base.dp_clk_src = dp_clk_src; 1096 return &clk_src->base; 1097 } 1098 1099 BREAK_TO_DEBUGGER(); 1100 return NULL; 1101 } 1102 1103 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) 1104 { 1105 int i; 1106 1107 struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), 1108 GFP_KERNEL); 1109 1110 if (!hubbub2) 1111 return NULL; 1112 1113 hubbub32_construct(hubbub2, ctx, 1114 &hubbub_reg, 1115 &hubbub_shift, 1116 &hubbub_mask, 1117 ctx->dc->dml.ip.det_buffer_size_kbytes, 1118 ctx->dc->dml.ip.pixel_chunk_size_kbytes, 1119 ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); 1120 1121 1122 for (i = 0; i < res_cap_dcn32.num_vmid; i++) { 1123 struct dcn20_vmid *vmid = &hubbub2->vmid[i]; 1124 1125 vmid->ctx = ctx; 1126 1127 vmid->regs = &vmid_regs[i]; 1128 vmid->shifts = &vmid_shifts; 1129 vmid->masks = &vmid_masks; 1130 } 1131 1132 return &hubbub2->base; 1133 } 1134 1135 static struct hubp *dcn32_hubp_create( 1136 struct dc_context *ctx, 1137 uint32_t inst) 1138 { 1139 struct dcn20_hubp *hubp2 = 1140 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1141 1142 if (!hubp2) 1143 return NULL; 1144 1145 if (hubp32_construct(hubp2, ctx, inst, 1146 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1147 return &hubp2->base; 1148 1149 BREAK_TO_DEBUGGER(); 1150 kfree(hubp2); 1151 return NULL; 1152 } 1153 1154 static void dcn32_dpp_destroy(struct dpp **dpp) 1155 { 1156 kfree(TO_DCN30_DPP(*dpp)); 1157 *dpp = NULL; 1158 } 1159 1160 static struct dpp *dcn32_dpp_create( 1161 struct dc_context *ctx, 1162 uint32_t inst) 1163 { 1164 struct dcn3_dpp *dpp3 = 1165 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 1166 1167 if (!dpp3) 1168 return NULL; 1169 1170 if (dpp32_construct(dpp3, ctx, inst, 1171 &dpp_regs[inst], &tf_shift, &tf_mask)) 1172 return &dpp3->base; 1173 1174 BREAK_TO_DEBUGGER(); 1175 kfree(dpp3); 1176 return NULL; 1177 } 1178 1179 static struct mpc *dcn32_mpc_create( 1180 struct dc_context *ctx, 1181 int num_mpcc, 1182 int num_rmu) 1183 { 1184 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 1185 GFP_KERNEL); 1186 1187 if (!mpc30) 1188 return NULL; 1189 1190 dcn32_mpc_construct(mpc30, ctx, 1191 &mpc_regs, 1192 &mpc_shift, 1193 &mpc_mask, 1194 num_mpcc, 1195 num_rmu); 1196 1197 return &mpc30->base; 1198 } 1199 1200 static struct output_pixel_processor *dcn32_opp_create( 1201 struct dc_context *ctx, uint32_t inst) 1202 { 1203 struct dcn20_opp *opp2 = 1204 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 1205 1206 if (!opp2) { 1207 BREAK_TO_DEBUGGER(); 1208 return NULL; 1209 } 1210 1211 dcn20_opp_construct(opp2, ctx, inst, 1212 &opp_regs[inst], &opp_shift, &opp_mask); 1213 return &opp2->base; 1214 } 1215 1216 1217 static struct timing_generator *dcn32_timing_generator_create( 1218 struct dc_context *ctx, 1219 uint32_t instance) 1220 { 1221 struct optc *tgn10 = 1222 kzalloc(sizeof(struct optc), GFP_KERNEL); 1223 1224 if (!tgn10) 1225 return NULL; 1226 1227 tgn10->base.inst = instance; 1228 tgn10->base.ctx = ctx; 1229 1230 tgn10->tg_regs = &optc_regs[instance]; 1231 tgn10->tg_shift = &optc_shift; 1232 tgn10->tg_mask = &optc_mask; 1233 1234 dcn32_timing_generator_init(tgn10); 1235 1236 return &tgn10->base; 1237 } 1238 1239 static const struct encoder_feature_support link_enc_feature = { 1240 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1241 .max_hdmi_pixel_clock = 600000, 1242 .hdmi_ycbcr420_supported = true, 1243 .dp_ycbcr420_supported = true, 1244 .fec_supported = true, 1245 .flags.bits.IS_HBR2_CAPABLE = true, 1246 .flags.bits.IS_HBR3_CAPABLE = true, 1247 .flags.bits.IS_TPS3_CAPABLE = true, 1248 .flags.bits.IS_TPS4_CAPABLE = true 1249 }; 1250 1251 static struct link_encoder *dcn32_link_encoder_create( 1252 const struct encoder_init_data *enc_init_data) 1253 { 1254 struct dcn20_link_encoder *enc20 = 1255 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1256 1257 if (!enc20) 1258 return NULL; 1259 1260 dcn32_link_encoder_construct(enc20, 1261 enc_init_data, 1262 &link_enc_feature, 1263 &link_enc_regs[enc_init_data->transmitter], 1264 &link_enc_aux_regs[enc_init_data->channel - 1], 1265 &link_enc_hpd_regs[enc_init_data->hpd_source], 1266 &le_shift, 1267 &le_mask); 1268 1269 return &enc20->enc10.base; 1270 } 1271 1272 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1273 { 1274 struct dcn31_panel_cntl *panel_cntl = 1275 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); 1276 1277 if (!panel_cntl) 1278 return NULL; 1279 1280 dcn31_panel_cntl_construct(panel_cntl, init_data); 1281 1282 return &panel_cntl->base; 1283 } 1284 1285 static void read_dce_straps( 1286 struct dc_context *ctx, 1287 struct resource_straps *straps) 1288 { 1289 generic_reg_get(ctx, regDC_PINSTRAPS + BASE(regDC_PINSTRAPS_BASE_IDX), 1290 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1291 1292 } 1293 1294 static struct audio *dcn32_create_audio( 1295 struct dc_context *ctx, unsigned int inst) 1296 { 1297 return dce_audio_create(ctx, inst, 1298 &audio_regs[inst], &audio_shift, &audio_mask); 1299 } 1300 1301 static struct vpg *dcn32_vpg_create( 1302 struct dc_context *ctx, 1303 uint32_t inst) 1304 { 1305 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1306 1307 if (!vpg3) 1308 return NULL; 1309 1310 vpg3_construct(vpg3, ctx, inst, 1311 &vpg_regs[inst], 1312 &vpg_shift, 1313 &vpg_mask); 1314 1315 return &vpg3->base; 1316 } 1317 1318 static struct afmt *dcn32_afmt_create( 1319 struct dc_context *ctx, 1320 uint32_t inst) 1321 { 1322 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1323 1324 if (!afmt3) 1325 return NULL; 1326 1327 afmt3_construct(afmt3, ctx, inst, 1328 &afmt_regs[inst], 1329 &afmt_shift, 1330 &afmt_mask); 1331 1332 return &afmt3->base; 1333 } 1334 1335 static struct apg *dcn31_apg_create( 1336 struct dc_context *ctx, 1337 uint32_t inst) 1338 { 1339 struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); 1340 1341 if (!apg31) 1342 return NULL; 1343 1344 apg31_construct(apg31, ctx, inst, 1345 &apg_regs[inst], 1346 &apg_shift, 1347 &apg_mask); 1348 1349 return &apg31->base; 1350 } 1351 1352 static struct stream_encoder *dcn32_stream_encoder_create( 1353 enum engine_id eng_id, 1354 struct dc_context *ctx) 1355 { 1356 struct dcn10_stream_encoder *enc1; 1357 struct vpg *vpg; 1358 struct afmt *afmt; 1359 int vpg_inst; 1360 int afmt_inst; 1361 1362 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1363 if (eng_id <= ENGINE_ID_DIGF) { 1364 vpg_inst = eng_id; 1365 afmt_inst = eng_id; 1366 } else 1367 return NULL; 1368 1369 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1370 vpg = dcn32_vpg_create(ctx, vpg_inst); 1371 afmt = dcn32_afmt_create(ctx, afmt_inst); 1372 1373 if (!enc1 || !vpg || !afmt) { 1374 kfree(enc1); 1375 kfree(vpg); 1376 kfree(afmt); 1377 return NULL; 1378 } 1379 1380 dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1381 eng_id, vpg, afmt, 1382 &stream_enc_regs[eng_id], 1383 &se_shift, &se_mask); 1384 1385 return &enc1->base; 1386 } 1387 1388 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( 1389 enum engine_id eng_id, 1390 struct dc_context *ctx) 1391 { 1392 struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; 1393 struct vpg *vpg; 1394 struct apg *apg; 1395 uint32_t hpo_dp_inst; 1396 uint32_t vpg_inst; 1397 uint32_t apg_inst; 1398 1399 ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); 1400 hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; 1401 1402 /* Mapping of VPG register blocks to HPO DP block instance: 1403 * VPG[6] -> HPO_DP[0] 1404 * VPG[7] -> HPO_DP[1] 1405 * VPG[8] -> HPO_DP[2] 1406 * VPG[9] -> HPO_DP[3] 1407 */ 1408 vpg_inst = hpo_dp_inst + 6; 1409 1410 /* Mapping of APG register blocks to HPO DP block instance: 1411 * APG[0] -> HPO_DP[0] 1412 * APG[1] -> HPO_DP[1] 1413 * APG[2] -> HPO_DP[2] 1414 * APG[3] -> HPO_DP[3] 1415 */ 1416 apg_inst = hpo_dp_inst; 1417 1418 /* allocate HPO stream encoder and create VPG sub-block */ 1419 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); 1420 vpg = dcn32_vpg_create(ctx, vpg_inst); 1421 apg = dcn31_apg_create(ctx, apg_inst); 1422 1423 if (!hpo_dp_enc31 || !vpg || !apg) { 1424 kfree(hpo_dp_enc31); 1425 kfree(vpg); 1426 kfree(apg); 1427 return NULL; 1428 } 1429 1430 dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, 1431 hpo_dp_inst, eng_id, vpg, apg, 1432 &hpo_dp_stream_enc_regs[hpo_dp_inst], 1433 &hpo_dp_se_shift, &hpo_dp_se_mask); 1434 1435 return &hpo_dp_enc31->base; 1436 } 1437 1438 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( 1439 uint8_t inst, 1440 struct dc_context *ctx) 1441 { 1442 struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; 1443 1444 /* allocate HPO link encoder */ 1445 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); 1446 1447 hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, 1448 &hpo_dp_link_enc_regs[inst], 1449 &hpo_dp_le_shift, &hpo_dp_le_mask); 1450 1451 return &hpo_dp_enc31->base; 1452 } 1453 1454 static struct dce_hwseq *dcn32_hwseq_create( 1455 struct dc_context *ctx) 1456 { 1457 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1458 1459 if (hws) { 1460 hws->ctx = ctx; 1461 hws->regs = &hwseq_reg; 1462 hws->shifts = &hwseq_shift; 1463 hws->masks = &hwseq_mask; 1464 } 1465 return hws; 1466 } 1467 static const struct resource_create_funcs res_create_funcs = { 1468 .read_dce_straps = read_dce_straps, 1469 .create_audio = dcn32_create_audio, 1470 .create_stream_encoder = dcn32_stream_encoder_create, 1471 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1472 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1473 .create_hwseq = dcn32_hwseq_create, 1474 }; 1475 1476 static const struct resource_create_funcs res_create_maximus_funcs = { 1477 .read_dce_straps = NULL, 1478 .create_audio = NULL, 1479 .create_stream_encoder = NULL, 1480 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1481 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1482 .create_hwseq = dcn32_hwseq_create, 1483 }; 1484 1485 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) 1486 { 1487 unsigned int i; 1488 1489 for (i = 0; i < pool->base.stream_enc_count; i++) { 1490 if (pool->base.stream_enc[i] != NULL) { 1491 if (pool->base.stream_enc[i]->vpg != NULL) { 1492 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1493 pool->base.stream_enc[i]->vpg = NULL; 1494 } 1495 if (pool->base.stream_enc[i]->afmt != NULL) { 1496 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1497 pool->base.stream_enc[i]->afmt = NULL; 1498 } 1499 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1500 pool->base.stream_enc[i] = NULL; 1501 } 1502 } 1503 1504 for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { 1505 if (pool->base.hpo_dp_stream_enc[i] != NULL) { 1506 if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { 1507 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); 1508 pool->base.hpo_dp_stream_enc[i]->vpg = NULL; 1509 } 1510 if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { 1511 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); 1512 pool->base.hpo_dp_stream_enc[i]->apg = NULL; 1513 } 1514 kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); 1515 pool->base.hpo_dp_stream_enc[i] = NULL; 1516 } 1517 } 1518 1519 for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { 1520 if (pool->base.hpo_dp_link_enc[i] != NULL) { 1521 kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); 1522 pool->base.hpo_dp_link_enc[i] = NULL; 1523 } 1524 } 1525 1526 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1527 if (pool->base.dscs[i] != NULL) 1528 dcn20_dsc_destroy(&pool->base.dscs[i]); 1529 } 1530 1531 if (pool->base.mpc != NULL) { 1532 kfree(TO_DCN20_MPC(pool->base.mpc)); 1533 pool->base.mpc = NULL; 1534 } 1535 if (pool->base.hubbub != NULL) { 1536 kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); 1537 pool->base.hubbub = NULL; 1538 } 1539 for (i = 0; i < pool->base.pipe_count; i++) { 1540 if (pool->base.dpps[i] != NULL) 1541 dcn32_dpp_destroy(&pool->base.dpps[i]); 1542 1543 if (pool->base.ipps[i] != NULL) 1544 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1545 1546 if (pool->base.hubps[i] != NULL) { 1547 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1548 pool->base.hubps[i] = NULL; 1549 } 1550 1551 if (pool->base.irqs != NULL) { 1552 dal_irq_service_destroy(&pool->base.irqs); 1553 } 1554 } 1555 1556 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1557 if (pool->base.engines[i] != NULL) 1558 dce110_engine_destroy(&pool->base.engines[i]); 1559 if (pool->base.hw_i2cs[i] != NULL) { 1560 kfree(pool->base.hw_i2cs[i]); 1561 pool->base.hw_i2cs[i] = NULL; 1562 } 1563 if (pool->base.sw_i2cs[i] != NULL) { 1564 kfree(pool->base.sw_i2cs[i]); 1565 pool->base.sw_i2cs[i] = NULL; 1566 } 1567 } 1568 1569 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1570 if (pool->base.opps[i] != NULL) 1571 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1572 } 1573 1574 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1575 if (pool->base.timing_generators[i] != NULL) { 1576 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1577 pool->base.timing_generators[i] = NULL; 1578 } 1579 } 1580 1581 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1582 if (pool->base.dwbc[i] != NULL) { 1583 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1584 pool->base.dwbc[i] = NULL; 1585 } 1586 if (pool->base.mcif_wb[i] != NULL) { 1587 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1588 pool->base.mcif_wb[i] = NULL; 1589 } 1590 } 1591 1592 for (i = 0; i < pool->base.audio_count; i++) { 1593 if (pool->base.audios[i]) 1594 dce_aud_destroy(&pool->base.audios[i]); 1595 } 1596 1597 for (i = 0; i < pool->base.clk_src_count; i++) { 1598 if (pool->base.clock_sources[i] != NULL) { 1599 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1600 pool->base.clock_sources[i] = NULL; 1601 } 1602 } 1603 1604 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1605 if (pool->base.mpc_lut[i] != NULL) { 1606 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1607 pool->base.mpc_lut[i] = NULL; 1608 } 1609 if (pool->base.mpc_shaper[i] != NULL) { 1610 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1611 pool->base.mpc_shaper[i] = NULL; 1612 } 1613 } 1614 1615 if (pool->base.dp_clock_source != NULL) { 1616 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1617 pool->base.dp_clock_source = NULL; 1618 } 1619 1620 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1621 if (pool->base.multiple_abms[i] != NULL) 1622 dce_abm_destroy(&pool->base.multiple_abms[i]); 1623 } 1624 1625 if (pool->base.psr != NULL) 1626 dmub_psr_destroy(&pool->base.psr); 1627 1628 if (pool->base.dccg != NULL) 1629 dcn_dccg_destroy(&pool->base.dccg); 1630 1631 if (pool->base.oem_device != NULL) 1632 dal_ddc_service_destroy(&pool->base.oem_device); 1633 } 1634 1635 1636 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1637 { 1638 int i; 1639 uint32_t dwb_count = pool->res_cap->num_dwb; 1640 1641 for (i = 0; i < dwb_count; i++) { 1642 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1643 GFP_KERNEL); 1644 1645 if (!dwbc30) { 1646 dm_error("DC: failed to create dwbc30!\n"); 1647 return false; 1648 } 1649 1650 dcn30_dwbc_construct(dwbc30, ctx, 1651 &dwbc30_regs[i], 1652 &dwbc30_shift, 1653 &dwbc30_mask, 1654 i); 1655 1656 pool->dwbc[i] = &dwbc30->base; 1657 } 1658 return true; 1659 } 1660 1661 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1662 { 1663 int i; 1664 uint32_t dwb_count = pool->res_cap->num_dwb; 1665 1666 for (i = 0; i < dwb_count; i++) { 1667 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1668 GFP_KERNEL); 1669 1670 if (!mcif_wb30) { 1671 dm_error("DC: failed to create mcif_wb30!\n"); 1672 return false; 1673 } 1674 1675 dcn32_mmhubbub_construct(mcif_wb30, ctx, 1676 &mcif_wb30_regs[i], 1677 &mcif_wb30_shift, 1678 &mcif_wb30_mask, 1679 i); 1680 1681 pool->mcif_wb[i] = &mcif_wb30->base; 1682 } 1683 return true; 1684 } 1685 1686 static struct display_stream_compressor *dcn32_dsc_create( 1687 struct dc_context *ctx, uint32_t inst) 1688 { 1689 struct dcn20_dsc *dsc = 1690 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1691 1692 if (!dsc) { 1693 BREAK_TO_DEBUGGER(); 1694 return NULL; 1695 } 1696 1697 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1698 return &dsc->base; 1699 } 1700 1701 static void dcn32_destroy_resource_pool(struct resource_pool **pool) 1702 { 1703 struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); 1704 1705 dcn32_resource_destruct(dcn32_pool); 1706 kfree(dcn32_pool); 1707 *pool = NULL; 1708 } 1709 1710 bool dcn32_acquire_post_bldn_3dlut( 1711 struct resource_context *res_ctx, 1712 const struct resource_pool *pool, 1713 int mpcc_id, 1714 struct dc_3dlut **lut, 1715 struct dc_transfer_func **shaper) 1716 { 1717 bool ret = false; 1718 union dc_3dlut_state *state; 1719 1720 ASSERT(*lut == NULL && *shaper == NULL); 1721 *lut = NULL; 1722 *shaper = NULL; 1723 1724 if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { 1725 *lut = pool->mpc_lut[mpcc_id]; 1726 *shaper = pool->mpc_shaper[mpcc_id]; 1727 state = &pool->mpc_lut[mpcc_id]->state; 1728 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; 1729 ret = true; 1730 } 1731 return ret; 1732 } 1733 1734 bool dcn32_release_post_bldn_3dlut( 1735 struct resource_context *res_ctx, 1736 const struct resource_pool *pool, 1737 struct dc_3dlut **lut, 1738 struct dc_transfer_func **shaper) 1739 { 1740 int i; 1741 bool ret = false; 1742 1743 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1744 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1745 res_ctx->is_mpc_3dlut_acquired[i] = false; 1746 pool->mpc_lut[i]->state.raw = 0; 1747 *lut = NULL; 1748 *shaper = NULL; 1749 ret = true; 1750 break; 1751 } 1752 } 1753 return ret; 1754 } 1755 1756 /** 1757 ******************************************************************************************** 1758 * dcn32_get_num_free_pipes: Calculate number of free pipes 1759 * 1760 * This function assumes that a "used" pipe is a pipe that has 1761 * both a stream and a plane assigned to it. 1762 * 1763 * @param [in] dc: current dc state 1764 * @param [in] context: new dc state 1765 * 1766 * @return: Number of free pipes available in the context 1767 * 1768 ******************************************************************************************** 1769 */ 1770 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) 1771 { 1772 unsigned int i; 1773 unsigned int free_pipes = 0; 1774 unsigned int num_pipes = 0; 1775 1776 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1777 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1778 1779 if (pipe->stream && pipe->plane_state && !pipe->top_pipe) { 1780 while (pipe) { 1781 num_pipes++; 1782 pipe = pipe->bottom_pipe; 1783 } 1784 } 1785 } 1786 1787 free_pipes = dc->res_pool->pipe_count - num_pipes; 1788 return free_pipes; 1789 } 1790 1791 /** 1792 ******************************************************************************************** 1793 * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP. 1794 * 1795 * We enter this function if we are Sub-VP capable (i.e. enough pipes available) 1796 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if 1797 * we are forcing SubVP P-State switching on the current config. 1798 * 1799 * The number of pipes used for the chosen surface must be less than or equal to the 1800 * number of free pipes available. 1801 * 1802 * In general we choose surfaces that have ActiveDRAMClockChangeLatencyMargin <= 0 first, 1803 * then among those surfaces we choose the one with the smallest VBLANK time. We only consider 1804 * surfaces with ActiveDRAMClockChangeLatencyMargin > 0 if we are forcing a Sub-VP config. 1805 * 1806 * @param [in] dc: current dc state 1807 * @param [in] context: new dc state 1808 * @param [out] index: dc pipe index for the pipe chosen to have phantom pipes assigned 1809 * 1810 * @return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. 1811 * 1812 ******************************************************************************************** 1813 */ 1814 1815 static bool dcn32_assign_subvp_pipe(struct dc *dc, 1816 struct dc_state *context, 1817 unsigned int *index) 1818 { 1819 unsigned int i, pipe_idx; 1820 unsigned int min_vblank_us = INT_MAX; 1821 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1822 bool valid_assignment_found = false; 1823 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); 1824 1825 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1826 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1827 unsigned int num_pipes = 0; 1828 1829 if (!pipe->stream) 1830 continue; 1831 1832 if (pipe->plane_state && !pipe->top_pipe && 1833 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 1834 while (pipe) { 1835 num_pipes++; 1836 pipe = pipe->bottom_pipe; 1837 } 1838 1839 pipe = &context->res_ctx.pipe_ctx[i]; 1840 if (num_pipes <= free_pipes) { 1841 struct dc_stream_state *stream = pipe->stream; 1842 unsigned int vblank_us = ((stream->timing.v_total - stream->timing.v_addressable) * 1843 stream->timing.h_total / 1844 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; 1845 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] <= 0 && 1846 vblank_us < min_vblank_us) { 1847 *index = i; 1848 min_vblank_us = vblank_us; 1849 valid_assignment_found = true; 1850 } else if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0 && 1851 dc->debug.force_subvp_mclk_switch && !valid_assignment_found) { 1852 // Handle case for forcing Sub-VP config. In this case we can assign 1853 // phantom pipes to a surface that has active margin > 0. 1854 *index = i; 1855 valid_assignment_found = true; 1856 } 1857 } 1858 } 1859 pipe_idx++; 1860 } 1861 return valid_assignment_found; 1862 } 1863 1864 /** 1865 * *************************************************************************************** 1866 * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP. 1867 * 1868 * This function returns true if there are enough free pipes 1869 * to create the required phantom pipes for any given stream 1870 * (that does not already have phantom pipe assigned). 1871 * 1872 * e.g. For a 2 stream config where the first stream uses one 1873 * pipe and the second stream uses 2 pipes (i.e. pipe split), 1874 * this function will return true because there is 1 remaining 1875 * pipe which can be used as the phantom pipe for the non pipe 1876 * split pipe. 1877 * 1878 * @param [in] dc: current dc state 1879 * @param [in] context: new dc state 1880 * 1881 * @return: True if there are enough free pipes to assign phantom pipes to at least one 1882 * stream that does not already have phantom pipes assigned. Otherwise false. 1883 * 1884 * *************************************************************************************** 1885 */ 1886 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) 1887 { 1888 unsigned int i, split_cnt, free_pipes; 1889 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 1890 bool subvp_possible = false; 1891 1892 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1893 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1894 1895 // Find the minimum pipe split count for non SubVP pipes 1896 if (pipe->stream && pipe->plane_state && !pipe->top_pipe && 1897 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 1898 split_cnt = 0; 1899 while (pipe) { 1900 split_cnt++; 1901 pipe = pipe->bottom_pipe; 1902 } 1903 1904 if (split_cnt < min_pipe_split) 1905 min_pipe_split = split_cnt; 1906 } 1907 } 1908 1909 free_pipes = dcn32_get_num_free_pipes(dc, context); 1910 1911 // SubVP only possible if at least one pipe is being used (i.e. free_pipes 1912 // should not equal to the pipe_count) 1913 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) 1914 subvp_possible = true; 1915 1916 return subvp_possible; 1917 } 1918 1919 static void dcn32_enable_phantom_plane(struct dc *dc, 1920 struct dc_state *context, 1921 struct dc_stream_state *phantom_stream, 1922 unsigned int dc_pipe_idx) 1923 { 1924 struct dc_plane_state *phantom_plane = NULL; 1925 struct dc_plane_state *prev_phantom_plane = NULL; 1926 struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1927 1928 while (curr_pipe) { 1929 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) 1930 phantom_plane = prev_phantom_plane; 1931 else 1932 phantom_plane = dc_create_plane_state(dc); 1933 1934 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); 1935 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, 1936 sizeof(phantom_plane->scaling_quality)); 1937 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); 1938 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); 1939 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); 1940 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, 1941 sizeof(phantom_plane->plane_size)); 1942 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, 1943 sizeof(phantom_plane->tiling_info)); 1944 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); 1945 phantom_plane->format = curr_pipe->plane_state->format; 1946 phantom_plane->rotation = curr_pipe->plane_state->rotation; 1947 phantom_plane->visible = curr_pipe->plane_state->visible; 1948 1949 /* Shadow pipe has small viewport. */ 1950 phantom_plane->clip_rect.y = 0; 1951 phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable; 1952 1953 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context); 1954 1955 curr_pipe = curr_pipe->bottom_pipe; 1956 prev_phantom_plane = phantom_plane; 1957 } 1958 } 1959 1960 /** 1961 * *************************************************************************************** 1962 * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream 1963 * 1964 * Set timing params of the phantom stream based on calculated output from DML. 1965 * This function first gets the DML pipe index using the DC pipe index, then 1966 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of 1967 * lines required for SubVP MCLK switching and assigns to the phantom stream 1968 * accordingly. 1969 * 1970 * - The number of SubVP lines calculated in DML does not take into account 1971 * FW processing delays and required pstate allow width, so we must include 1972 * that separately. 1973 * 1974 * - Set phantom backporch = vstartup of main pipe 1975 * 1976 * @param [in] dc: current dc state 1977 * @param [in] context: new dc state 1978 * @param [in] ref_pipe: Main pipe for the phantom stream 1979 * @param [in] pipes: DML pipe params 1980 * @param [in] pipe_cnt: number of DML pipes 1981 * @param [in] dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) 1982 * 1983 * @return: void 1984 * 1985 * *************************************************************************************** 1986 */ 1987 static void dcn32_set_phantom_stream_timing(struct dc *dc, 1988 struct dc_state *context, 1989 struct pipe_ctx *ref_pipe, 1990 struct dc_stream_state *phantom_stream, 1991 display_e2e_pipe_params_st *pipes, 1992 unsigned int pipe_cnt, 1993 unsigned int dc_pipe_idx) 1994 { 1995 unsigned int i, pipe_idx; 1996 struct pipe_ctx *pipe; 1997 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; 1998 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; 1999 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2000 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; 2001 2002 // Find DML pipe index (pipe_idx) using dc_pipe_idx 2003 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2004 pipe = &context->res_ctx.pipe_ctx[i]; 2005 2006 if (!pipe->stream) 2007 continue; 2008 2009 if (i == dc_pipe_idx) 2010 break; 2011 2012 pipe_idx++; 2013 } 2014 2015 // Calculate lines required for pstate allow width and FW processing delays 2016 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + 2017 dc->caps.subvp_pstate_allow_width_us) / 1000000) * 2018 (ref_pipe->stream->timing.pix_clk_100hz * 100) / 2019 (double)ref_pipe->stream->timing.h_total; 2020 2021 // Update clks_cfg for calling into recalculate 2022 pipes[0].clks_cfg.voltage = vlevel; 2023 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2024 pipes[0].clks_cfg.socclk_mhz = socclk; 2025 2026 // DML calculation for MALL region doesn't take into account FW delay 2027 // and required pstate allow width for multi-display cases 2028 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + 2029 pstate_width_fw_delay_lines; 2030 2031 // For backporch of phantom pipe, use vstartup of the main pipe 2032 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2033 2034 phantom_stream->dst.y = 0; 2035 phantom_stream->dst.height = phantom_vactive; 2036 phantom_stream->src.y = 0; 2037 phantom_stream->src.height = phantom_vactive; 2038 2039 phantom_stream->timing.v_addressable = phantom_vactive; 2040 phantom_stream->timing.v_front_porch = 1; 2041 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + 2042 phantom_stream->timing.v_front_porch + 2043 phantom_stream->timing.v_sync_width + 2044 phantom_bp; 2045 } 2046 2047 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, 2048 struct dc_state *context, 2049 display_e2e_pipe_params_st *pipes, 2050 unsigned int pipe_cnt, 2051 unsigned int dc_pipe_idx) 2052 { 2053 struct dc_stream_state *phantom_stream = NULL; 2054 struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 2055 2056 phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink); 2057 phantom_stream->signal = SIGNAL_TYPE_VIRTUAL; 2058 phantom_stream->dpms_off = true; 2059 phantom_stream->mall_stream_config.type = SUBVP_PHANTOM; 2060 phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream; 2061 ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN; 2062 ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream; 2063 2064 /* stream has limited viewport and small timing */ 2065 memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); 2066 memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); 2067 memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); 2068 dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); 2069 2070 dc_add_stream_to_ctx(dc, context, phantom_stream); 2071 return phantom_stream; 2072 } 2073 2074 void dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context) 2075 { 2076 int i; 2077 bool removed_pipe = false; 2078 2079 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2080 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2081 // build scaling params for phantom pipes 2082 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 2083 dc_rem_all_planes_for_stream(dc, pipe->stream, context); 2084 dc_remove_stream_from_ctx(dc, context, pipe->stream); 2085 removed_pipe = true; 2086 } 2087 2088 // Clear all phantom stream info 2089 if (pipe->stream) { 2090 pipe->stream->mall_stream_config.type = SUBVP_NONE; 2091 pipe->stream->mall_stream_config.paired_stream = NULL; 2092 } 2093 } 2094 if (removed_pipe) 2095 dc->hwss.apply_ctx_to_hw(dc, context); 2096 } 2097 2098 /* TODO: Input to this function should indicate which pipe indexes (or streams) 2099 * require a phantom pipe / stream 2100 */ 2101 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, 2102 display_e2e_pipe_params_st *pipes, 2103 unsigned int pipe_cnt, 2104 unsigned int index) 2105 { 2106 struct dc_stream_state *phantom_stream = NULL; 2107 unsigned int i; 2108 2109 // The index of the DC pipe passed into this function is guarenteed to 2110 // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't 2111 // already have phantom pipe assigned, etc.) by previous checks. 2112 phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); 2113 dcn32_enable_phantom_plane(dc, context, phantom_stream, index); 2114 2115 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2116 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2117 2118 // Build scaling params for phantom pipes which were newly added. 2119 // We determine which phantom pipes were added by comparing with 2120 // the phantom stream. 2121 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && 2122 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 2123 pipe->stream->use_dynamic_meta = false; 2124 pipe->plane_state->flip_immediate = false; 2125 if (!resource_build_scaling_params(pipe)) { 2126 // Log / remove phantom pipes since failed to build scaling params 2127 } 2128 } 2129 } 2130 } 2131 2132 static bool dcn32_split_stream_for_mpc_or_odm( 2133 const struct dc *dc, 2134 struct resource_context *res_ctx, 2135 struct pipe_ctx *pri_pipe, 2136 struct pipe_ctx *sec_pipe, 2137 bool odm) 2138 { 2139 int pipe_idx = sec_pipe->pipe_idx; 2140 const struct resource_pool *pool = dc->res_pool; 2141 2142 if (pri_pipe->plane_state) { 2143 /* ODM + window MPO, where MPO window is on left half only */ 2144 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= 2145 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) 2146 return true; 2147 2148 /* ODM + window MPO, where MPO window is on right half only */ 2149 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.width/2) 2150 return true; 2151 } 2152 2153 *sec_pipe = *pri_pipe; 2154 2155 sec_pipe->pipe_idx = pipe_idx; 2156 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 2157 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 2158 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 2159 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 2160 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 2161 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 2162 sec_pipe->stream_res.dsc = NULL; 2163 if (odm) { 2164 if (pri_pipe->next_odm_pipe) { 2165 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 2166 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 2167 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 2168 } 2169 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 2170 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 2171 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 2172 } 2173 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 2174 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 2175 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 2176 } 2177 pri_pipe->next_odm_pipe = sec_pipe; 2178 sec_pipe->prev_odm_pipe = pri_pipe; 2179 ASSERT(sec_pipe->top_pipe == NULL); 2180 2181 if (!sec_pipe->top_pipe) 2182 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 2183 else 2184 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 2185 if (sec_pipe->stream->timing.flags.DSC == 1) { 2186 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 2187 ASSERT(sec_pipe->stream_res.dsc); 2188 if (sec_pipe->stream_res.dsc == NULL) 2189 return false; 2190 } 2191 } else { 2192 if (pri_pipe->bottom_pipe) { 2193 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 2194 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 2195 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 2196 } 2197 pri_pipe->bottom_pipe = sec_pipe; 2198 sec_pipe->top_pipe = pri_pipe; 2199 2200 ASSERT(pri_pipe->plane_state); 2201 } 2202 2203 return true; 2204 } 2205 2206 static struct pipe_ctx *dcn32_find_split_pipe( 2207 struct dc *dc, 2208 struct dc_state *context, 2209 int old_index) 2210 { 2211 struct pipe_ctx *pipe = NULL; 2212 int i; 2213 2214 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 2215 pipe = &context->res_ctx.pipe_ctx[old_index]; 2216 pipe->pipe_idx = old_index; 2217 } 2218 2219 if (!pipe) 2220 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 2221 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 2222 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 2223 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 2224 pipe = &context->res_ctx.pipe_ctx[i]; 2225 pipe->pipe_idx = i; 2226 break; 2227 } 2228 } 2229 } 2230 2231 /* 2232 * May need to fix pipes getting tossed from 1 opp to another on flip 2233 * Add for debugging transient underflow during topology updates: 2234 * ASSERT(pipe); 2235 */ 2236 if (!pipe) 2237 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 2238 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 2239 pipe = &context->res_ctx.pipe_ctx[i]; 2240 pipe->pipe_idx = i; 2241 break; 2242 } 2243 } 2244 2245 return pipe; 2246 } 2247 2248 2249 /** 2250 * *************************************************************************************** 2251 * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable 2252 * 2253 * High level algorithm: 2254 * 1. Find longest microschedule length (in us) between the two SubVP pipes 2255 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both 2256 * pipes still allows for the maximum microschedule to fit in the active 2257 * region for both pipes. 2258 * 2259 * @param [in] dc: current dc state 2260 * @param [in] context: new dc state 2261 * 2262 * @return: bool - True if the SubVP + SubVP config is schedulable, false otherwise 2263 * 2264 * *************************************************************************************** 2265 */ 2266 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) 2267 { 2268 struct pipe_ctx *subvp_pipes[2]; 2269 struct dc_stream_state *phantom = NULL; 2270 uint32_t microschedule_lines = 0; 2271 uint32_t index = 0; 2272 uint32_t i; 2273 uint32_t max_microschedule_us = 0; 2274 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; 2275 2276 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2277 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2278 uint32_t time_us = 0; 2279 2280 /* Loop to calculate the maximum microschedule time between the two SubVP pipes, 2281 * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. 2282 */ 2283 if (pipe->stream && pipe->plane_state && !pipe->top_pipe && 2284 pipe->stream->mall_stream_config.type == SUBVP_MAIN) { 2285 phantom = pipe->stream->mall_stream_config.paired_stream; 2286 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + 2287 phantom->timing.v_addressable; 2288 2289 // Round up when calculating microschedule time 2290 time_us = ((microschedule_lines * phantom->timing.h_total + 2291 phantom->timing.pix_clk_100hz * 100 - 1) / 2292 (double)(phantom->timing.pix_clk_100hz * 100)) * 1000000 + 2293 dc->caps.subvp_prefetch_end_to_mall_start_us + 2294 dc->caps.subvp_fw_processing_delay_us; 2295 if (time_us > max_microschedule_us) 2296 max_microschedule_us = time_us; 2297 2298 subvp_pipes[index] = pipe; 2299 index++; 2300 2301 // Maximum 2 SubVP pipes 2302 if (index == 2) 2303 break; 2304 } 2305 } 2306 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / 2307 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2308 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / 2309 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2310 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * 2311 subvp_pipes[0]->stream->timing.h_total) / 2312 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2313 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * 2314 subvp_pipes[1]->stream->timing.h_total) / 2315 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2316 2317 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && 2318 (vactive2_us - vblank1_us) / 2 > max_microschedule_us) 2319 return true; 2320 2321 return false; 2322 } 2323 2324 /** 2325 * *************************************************************************************** 2326 * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable 2327 * 2328 * High level algorithm: 2329 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe 2330 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching 2331 * (the margin is equal to the MALL region + DRR margin (500us)) 2332 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) 2333 * then report the configuration as supported 2334 * 2335 * @param [in] dc: current dc state 2336 * @param [in] context: new dc state 2337 * @param [in] drr_pipe: DRR pipe_ctx for the SubVP + DRR config 2338 * 2339 * @return: bool - True if the SubVP + DRR config is schedulable, false otherwise 2340 * 2341 * *************************************************************************************** 2342 */ 2343 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe) 2344 { 2345 bool schedulable = false; 2346 uint32_t i; 2347 struct pipe_ctx *pipe = NULL; 2348 struct dc_crtc_timing *main_timing = NULL; 2349 struct dc_crtc_timing *phantom_timing = NULL; 2350 struct dc_crtc_timing *drr_timing = NULL; 2351 int16_t prefetch_us = 0; 2352 int16_t mall_region_us = 0; 2353 int16_t drr_frame_us = 0; // nominal frame time 2354 int16_t subvp_active_us = 0; 2355 int16_t stretched_drr_us = 0; 2356 int16_t drr_stretched_vblank_us = 0; 2357 int16_t max_vblank_mallregion = 0; 2358 2359 // Find SubVP pipe 2360 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2361 pipe = &context->res_ctx.pipe_ctx[i]; 2362 2363 // We check for master pipe, but it shouldn't matter since we only need 2364 // the pipe for timing info (stream should be same for any pipe splits) 2365 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) 2366 continue; 2367 2368 // Find the SubVP pipe 2369 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2370 break; 2371 } 2372 2373 main_timing = &pipe->stream->timing; 2374 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing; 2375 drr_timing = &drr_pipe->stream->timing; 2376 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 2377 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 2378 dc->caps.subvp_prefetch_end_to_mall_start_us; 2379 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 2380 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 2381 drr_frame_us = drr_timing->v_total * drr_timing->h_total / 2382 (double)(drr_timing->pix_clk_100hz * 100) * 1000000; 2383 // P-State allow width and FW delays already included phantom_timing->v_addressable 2384 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 2385 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 2386 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; 2387 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / 2388 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); 2389 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; 2390 2391 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the 2392 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis 2393 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 2394 * and the max of (VBLANK blanking time, MALL region)). 2395 */ 2396 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && 2397 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) 2398 schedulable = true; 2399 2400 return schedulable; 2401 } 2402 2403 /** 2404 * *************************************************************************************** 2405 * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable 2406 * 2407 * High level algorithm: 2408 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe 2409 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) 2410 * then report the configuration as supported 2411 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path 2412 * 2413 * @param [in] dc: current dc state 2414 * @param [in] context: new dc state 2415 * 2416 * @return: bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise 2417 * 2418 * *************************************************************************************** 2419 */ 2420 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) 2421 { 2422 struct pipe_ctx *pipe = NULL; 2423 struct pipe_ctx *subvp_pipe = NULL; 2424 bool found = false; 2425 bool schedulable = false; 2426 uint32_t i = 0; 2427 uint8_t vblank_index = 0; 2428 int16_t prefetch_us = 0; 2429 int16_t mall_region_us = 0; 2430 int16_t vblank_frame_us = 0; 2431 int16_t subvp_active_us = 0; 2432 int16_t vblank_blank_us = 0; 2433 int16_t max_vblank_mallregion = 0; 2434 struct dc_crtc_timing *main_timing = NULL; 2435 struct dc_crtc_timing *phantom_timing = NULL; 2436 struct dc_crtc_timing *vblank_timing = NULL; 2437 2438 /* For SubVP + VBLANK/DRR cases, we assume there can only be 2439 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK 2440 * is supported, it is either a single VBLANK case or two VBLANK 2441 * displays which are synchronized (in which case they have identical 2442 * timings). 2443 */ 2444 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2445 pipe = &context->res_ctx.pipe_ctx[i]; 2446 2447 // We check for master pipe, but it shouldn't matter since we only need 2448 // the pipe for timing info (stream should be same for any pipe splits) 2449 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) 2450 continue; 2451 2452 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) { 2453 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). 2454 vblank_index = i; 2455 found = true; 2456 } 2457 2458 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2459 subvp_pipe = pipe; 2460 } 2461 // Use ignore_msa_timing_param flag to identify as DRR 2462 if (found && pipe->stream->ignore_msa_timing_param) { 2463 // SUBVP + DRR case 2464 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]); 2465 } else if (found) { 2466 main_timing = &subvp_pipe->stream->timing; 2467 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; 2468 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; 2469 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe 2470 // Also include the prefetch end to mallstart delay time 2471 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 2472 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 2473 dc->caps.subvp_prefetch_end_to_mall_start_us; 2474 // P-State allow width and FW delays already included phantom_timing->v_addressable 2475 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 2476 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 2477 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / 2478 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 2479 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / 2480 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 2481 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 2482 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 2483 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; 2484 2485 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 2486 // and the max of (VBLANK blanking time, MALL region) 2487 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) 2488 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) 2489 schedulable = true; 2490 } 2491 return schedulable; 2492 } 2493 2494 /** 2495 * ******************************************************************************************** 2496 * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle 2497 * static analysis based on the case. 2498 * 2499 * Three cases: 2500 * 1. SubVP + SubVP 2501 * 2. SubVP + VBLANK (DRR checked internally) 2502 * 3. SubVP + VACTIVE (currently unsupported) 2503 * 2504 * @param [in] dc: current dc state 2505 * @param [in] context: new dc state 2506 * @param [in] vlevel: Voltage level calculated by DML 2507 * 2508 * @return: bool - True if statically schedulable, false otherwise 2509 * 2510 * ******************************************************************************************** 2511 */ 2512 static bool subvp_validate_static_schedulability(struct dc *dc, 2513 struct dc_state *context, 2514 int vlevel) 2515 { 2516 bool schedulable = true; // true by default for single display case 2517 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2518 uint32_t i, pipe_idx; 2519 uint8_t subvp_count = 0; 2520 uint8_t vactive_count = 0; 2521 2522 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2523 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2524 2525 if (!pipe->stream) 2526 continue; 2527 2528 if (pipe->plane_state && !pipe->top_pipe && 2529 pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2530 subvp_count++; 2531 2532 // Count how many planes are capable of VACTIVE switching (SubVP + VACTIVE unsupported) 2533 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0) { 2534 vactive_count++; 2535 } 2536 pipe_idx++; 2537 } 2538 2539 if (subvp_count == 2) { 2540 // Static schedulability check for SubVP + SubVP case 2541 schedulable = subvp_subvp_schedulable(dc, context); 2542 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) { 2543 // Static schedulability check for SubVP + VBLANK case. Also handle the case where 2544 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK) 2545 if (vactive_count > 0) 2546 schedulable = false; 2547 else 2548 schedulable = subvp_vblank_schedulable(dc, context); 2549 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp) { 2550 // SubVP + VACTIVE currently unsupported 2551 schedulable = false; 2552 } 2553 return schedulable; 2554 } 2555 2556 static void dcn32_full_validate_bw_helper(struct dc *dc, 2557 struct dc_state *context, 2558 display_e2e_pipe_params_st *pipes, 2559 int *vlevel, 2560 int *split, 2561 bool *merge, 2562 int *pipe_cnt) 2563 { 2564 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2565 unsigned int dc_pipe_idx = 0; 2566 bool found_supported_config = false; 2567 struct pipe_ctx *pipe = NULL; 2568 uint32_t non_subvp_pipes = 0; 2569 bool drr_pipe_found = false; 2570 uint32_t drr_pipe_index = 0; 2571 uint32_t i = 0; 2572 2573 /* 2574 * DML favors voltage over p-state, but we're more interested in 2575 * supporting p-state over voltage. We can't support p-state in 2576 * prefetch mode > 0 so try capping the prefetch mode to start. 2577 */ 2578 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2579 dm_prefetch_support_uclk_fclk_and_stutter; 2580 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 2581 /* This may adjust vlevel and maxMpcComb */ 2582 if (*vlevel < context->bw_ctx.dml.soc.num_states) 2583 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 2584 2585 /* Conditions for setting up phantom pipes for SubVP: 2586 * 1. Not force disable SubVP 2587 * 2. Full update (i.e. !fast_validate) 2588 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) 2589 * 4. Display configuration passes validation 2590 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) 2591 */ 2592 if (!dc->debug.force_disable_subvp && 2593 (*vlevel == context->bw_ctx.dml.soc.num_states || 2594 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || 2595 dc->debug.force_subvp_mclk_switch)) { 2596 2597 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && 2598 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { 2599 2600 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); 2601 2602 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 2603 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 2604 2605 if (*vlevel < context->bw_ctx.dml.soc.num_states && 2606 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported 2607 && subvp_validate_static_schedulability(dc, context, *vlevel)) { 2608 found_supported_config = true; 2609 } else if (*vlevel < context->bw_ctx.dml.soc.num_states && 2610 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 2611 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles 2612 * the case for SubVP + DRR, where the DRR display does not support MCLK switch 2613 * at it's native refresh rate / timing. 2614 */ 2615 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2616 pipe = &context->res_ctx.pipe_ctx[i]; 2617 if (pipe->stream && pipe->plane_state && !pipe->top_pipe && 2618 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 2619 non_subvp_pipes++; 2620 // Use ignore_msa_timing_param flag to identify as DRR 2621 if (pipe->stream->ignore_msa_timing_param) { 2622 drr_pipe_found = true; 2623 drr_pipe_index = i; 2624 } 2625 } 2626 } 2627 // If there is only 1 remaining non SubVP pipe that is DRR, check static 2628 // schedulability for SubVP + DRR. 2629 if (non_subvp_pipes == 1 && drr_pipe_found) { 2630 found_supported_config = subvp_drr_schedulable(dc, 2631 context, &context->res_ctx.pipe_ctx[drr_pipe_index]); 2632 } 2633 } 2634 } 2635 2636 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) 2637 // remove phantom pipes and repopulate dml pipes 2638 if (!found_supported_config) { 2639 dc->res_pool->funcs->remove_phantom_pipes(dc, context); 2640 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 2641 } else { 2642 // only call dcn20_validate_apply_pipe_split_flags if we found a supported config 2643 memset(split, 0, MAX_PIPES * sizeof(int)); 2644 memset(merge, 0, MAX_PIPES * sizeof(bool)); 2645 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 2646 2647 // If found a supported SubVP config, phantom pipes were added to the context. 2648 // Program timing for the phantom pipes. 2649 dc->hwss.apply_ctx_to_hw(dc, context); 2650 } 2651 } 2652 } 2653 2654 static bool dcn32_internal_validate_bw( 2655 struct dc *dc, 2656 struct dc_state *context, 2657 display_e2e_pipe_params_st *pipes, 2658 int *pipe_cnt_out, 2659 int *vlevel_out, 2660 bool fast_validate) 2661 { 2662 bool out = false; 2663 bool repopulate_pipes = false; 2664 int split[MAX_PIPES] = { 0 }; 2665 bool merge[MAX_PIPES] = { false }; 2666 bool newly_split[MAX_PIPES] = { false }; 2667 int pipe_cnt, i, pipe_idx, vlevel; 2668 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2669 2670 ASSERT(pipes); 2671 if (!pipes) 2672 return false; 2673 2674 // For each full update, remove all existing phantom pipes first 2675 dc->res_pool->funcs->remove_phantom_pipes(dc, context); 2676 2677 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 2678 2679 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2680 2681 if (!pipe_cnt) { 2682 out = true; 2683 goto validate_out; 2684 } 2685 2686 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 2687 2688 if (!fast_validate) { 2689 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt); 2690 } 2691 2692 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 2693 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 2694 /* 2695 * If mode is unsupported or there's still no p-state support then 2696 * fall back to favoring voltage. 2697 * 2698 * We don't actually support prefetch mode 2, so require that we 2699 * at least support prefetch mode 1. 2700 */ 2701 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2702 dm_prefetch_support_stutter; 2703 2704 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2705 if (vlevel < context->bw_ctx.dml.soc.num_states) { 2706 memset(split, 0, MAX_PIPES * sizeof(int)); 2707 memset(merge, 0, MAX_PIPES * sizeof(bool)); 2708 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 2709 } 2710 } 2711 2712 dml_log_mode_support_params(&context->bw_ctx.dml); 2713 2714 if (vlevel == context->bw_ctx.dml.soc.num_states) 2715 goto validate_fail; 2716 2717 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2718 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2719 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 2720 2721 if (!pipe->stream) 2722 continue; 2723 2724 /* We only support full screen mpo with ODM */ 2725 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 2726 && pipe->plane_state && mpo_pipe 2727 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 2728 &pipe->plane_res.scl_data.recout, 2729 sizeof(struct rect)) != 0) { 2730 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 2731 goto validate_fail; 2732 } 2733 pipe_idx++; 2734 } 2735 2736 /* merge pipes if necessary */ 2737 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2738 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2739 2740 /*skip pipes that don't need merging*/ 2741 if (!merge[i]) 2742 continue; 2743 2744 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 2745 if (pipe->prev_odm_pipe) { 2746 /*split off odm pipe*/ 2747 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 2748 if (pipe->next_odm_pipe) 2749 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 2750 2751 pipe->bottom_pipe = NULL; 2752 pipe->next_odm_pipe = NULL; 2753 pipe->plane_state = NULL; 2754 pipe->stream = NULL; 2755 pipe->top_pipe = NULL; 2756 pipe->prev_odm_pipe = NULL; 2757 if (pipe->stream_res.dsc) 2758 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 2759 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2760 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2761 repopulate_pipes = true; 2762 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2763 struct pipe_ctx *top_pipe = pipe->top_pipe; 2764 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 2765 2766 top_pipe->bottom_pipe = bottom_pipe; 2767 if (bottom_pipe) 2768 bottom_pipe->top_pipe = top_pipe; 2769 2770 pipe->top_pipe = NULL; 2771 pipe->bottom_pipe = NULL; 2772 pipe->plane_state = NULL; 2773 pipe->stream = NULL; 2774 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2775 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2776 repopulate_pipes = true; 2777 } else 2778 ASSERT(0); /* Should never try to merge master pipe */ 2779 2780 } 2781 2782 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2783 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2784 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2785 struct pipe_ctx *hsplit_pipe = NULL; 2786 bool odm; 2787 int old_index = -1; 2788 2789 if (!pipe->stream || newly_split[i]) 2790 continue; 2791 2792 pipe_idx++; 2793 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2794 2795 if (!pipe->plane_state && !odm) 2796 continue; 2797 2798 if (split[i]) { 2799 if (odm) { 2800 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2801 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2802 else if (old_pipe->next_odm_pipe) 2803 old_index = old_pipe->next_odm_pipe->pipe_idx; 2804 } else { 2805 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2806 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2807 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2808 else if (old_pipe->bottom_pipe && 2809 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2810 old_index = old_pipe->bottom_pipe->pipe_idx; 2811 } 2812 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); 2813 ASSERT(hsplit_pipe); 2814 if (!hsplit_pipe) 2815 goto validate_fail; 2816 2817 if (!dcn32_split_stream_for_mpc_or_odm( 2818 dc, &context->res_ctx, 2819 pipe, hsplit_pipe, odm)) 2820 goto validate_fail; 2821 2822 newly_split[hsplit_pipe->pipe_idx] = true; 2823 repopulate_pipes = true; 2824 } 2825 if (split[i] == 4) { 2826 struct pipe_ctx *pipe_4to1; 2827 2828 if (odm && old_pipe->next_odm_pipe) 2829 old_index = old_pipe->next_odm_pipe->pipe_idx; 2830 else if (!odm && old_pipe->bottom_pipe && 2831 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2832 old_index = old_pipe->bottom_pipe->pipe_idx; 2833 else 2834 old_index = -1; 2835 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2836 ASSERT(pipe_4to1); 2837 if (!pipe_4to1) 2838 goto validate_fail; 2839 if (!dcn32_split_stream_for_mpc_or_odm( 2840 dc, &context->res_ctx, 2841 pipe, pipe_4to1, odm)) 2842 goto validate_fail; 2843 newly_split[pipe_4to1->pipe_idx] = true; 2844 2845 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2846 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2847 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2848 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2849 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2850 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2851 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2852 else 2853 old_index = -1; 2854 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2855 ASSERT(pipe_4to1); 2856 if (!pipe_4to1) 2857 goto validate_fail; 2858 if (!dcn32_split_stream_for_mpc_or_odm( 2859 dc, &context->res_ctx, 2860 hsplit_pipe, pipe_4to1, odm)) 2861 goto validate_fail; 2862 newly_split[pipe_4to1->pipe_idx] = true; 2863 } 2864 if (odm) 2865 dcn20_build_mapped_resource(dc, context, pipe->stream); 2866 } 2867 2868 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2869 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2870 2871 if (pipe->plane_state) { 2872 if (!resource_build_scaling_params(pipe)) 2873 goto validate_fail; 2874 } 2875 } 2876 2877 /* Actual dsc count per stream dsc validation*/ 2878 if (!dcn20_validate_dsc(dc, context)) { 2879 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2880 goto validate_fail; 2881 } 2882 2883 if (repopulate_pipes) 2884 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2885 *vlevel_out = vlevel; 2886 *pipe_cnt_out = pipe_cnt; 2887 2888 out = true; 2889 goto validate_out; 2890 2891 validate_fail: 2892 out = false; 2893 2894 validate_out: 2895 return out; 2896 } 2897 2898 bool dcn32_validate_bandwidth(struct dc *dc, 2899 struct dc_state *context, 2900 bool fast_validate) 2901 { 2902 bool out = false; 2903 2904 BW_VAL_TRACE_SETUP(); 2905 2906 int vlevel = 0; 2907 int pipe_cnt = 0; 2908 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2909 DC_LOGGER_INIT(dc->ctx->logger); 2910 2911 BW_VAL_TRACE_COUNT(); 2912 2913 DC_FP_START(); 2914 out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2915 DC_FP_END(); 2916 2917 if (pipe_cnt == 0) 2918 goto validate_out; 2919 2920 if (!out) 2921 goto validate_fail; 2922 2923 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2924 2925 if (fast_validate) { 2926 BW_VAL_TRACE_SKIP(fast); 2927 goto validate_out; 2928 } 2929 2930 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2931 2932 BW_VAL_TRACE_END_WATERMARKS(); 2933 2934 goto validate_out; 2935 2936 validate_fail: 2937 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2938 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2939 2940 BW_VAL_TRACE_SKIP(fail); 2941 out = false; 2942 2943 validate_out: 2944 kfree(pipes); 2945 2946 BW_VAL_TRACE_FINISH(); 2947 2948 return out; 2949 } 2950 2951 2952 static bool is_dual_plane(enum surface_pixel_format format) 2953 { 2954 return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA; 2955 } 2956 2957 int dcn32_populate_dml_pipes_from_context( 2958 struct dc *dc, struct dc_state *context, 2959 display_e2e_pipe_params_st *pipes, 2960 bool fast_validate) 2961 { 2962 int i, pipe_cnt; 2963 struct resource_context *res_ctx = &context->res_ctx; 2964 struct pipe_ctx *pipe; 2965 2966 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 2967 2968 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 2969 struct dc_crtc_timing *timing; 2970 2971 if (!res_ctx->pipe_ctx[i].stream) 2972 continue; 2973 pipe = &res_ctx->pipe_ctx[i]; 2974 timing = &pipe->stream->timing; 2975 2976 pipes[pipe_cnt].pipe.src.gpuvm = true; 2977 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; 2978 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; 2979 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; 2980 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet 2981 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 2982 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; 2983 2984 switch (pipe->stream->mall_stream_config.type) { 2985 case SUBVP_MAIN: 2986 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; 2987 break; 2988 case SUBVP_PHANTOM: 2989 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; 2990 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_enable; 2991 break; 2992 case SUBVP_NONE: 2993 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; 2994 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 2995 break; 2996 default: 2997 break; 2998 } 2999 3000 pipes[pipe_cnt].dout.dsc_input_bpc = 0; 3001 if (pipes[pipe_cnt].dout.dsc_enable) { 3002 switch (timing->display_color_depth) { 3003 case COLOR_DEPTH_888: 3004 pipes[pipe_cnt].dout.dsc_input_bpc = 8; 3005 break; 3006 case COLOR_DEPTH_101010: 3007 pipes[pipe_cnt].dout.dsc_input_bpc = 10; 3008 break; 3009 case COLOR_DEPTH_121212: 3010 pipes[pipe_cnt].dout.dsc_input_bpc = 12; 3011 break; 3012 default: 3013 ASSERT(0); 3014 break; 3015 } 3016 } 3017 pipe_cnt++; 3018 } 3019 3020 switch (pipe_cnt) { 3021 case 1: 3022 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE; 3023 if (pipe->plane_state && !dc->debug.disable_z9_mpc) { 3024 if (!is_dual_plane(pipe->plane_state->format)) { 3025 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE; 3026 pipes[0].pipe.src.unbounded_req_mode = true; 3027 if (pipe->plane_state->src_rect.width >= 5120 && 3028 pipe->plane_state->src_rect.height >= 2880) 3029 context->bw_ctx.dml.ip.det_buffer_size_kbytes = 320; // 5K or higher 3030 } 3031 } 3032 break; 3033 case 2: 3034 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE / 2; // 576 KB (9 segments) 3035 break; 3036 case 3: 3037 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_MAX_DET_SIZE / 3; // 384 KB (6 segments) 3038 break; 3039 case 4: 3040 default: 3041 context->bw_ctx.dml.ip.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE; // 256 KB (4 segments) 3042 break; 3043 } 3044 3045 return pipe_cnt; 3046 } 3047 3048 void dcn32_calculate_wm_and_dlg_fp( 3049 struct dc *dc, struct dc_state *context, 3050 display_e2e_pipe_params_st *pipes, 3051 int pipe_cnt, 3052 int vlevel) 3053 { 3054 int i, pipe_idx, vlevel_temp = 0; 3055 3056 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3057 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 3058 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 3059 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 3060 dm_dram_clock_change_unsupported; 3061 3062 /* Set B: 3063 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, 3064 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark 3065 * calculations to cover bootup clocks. 3066 * DCFCLK: soc.clock_limits[2] when available 3067 * UCLK: soc.clock_limits[2] when available 3068 */ 3069 if (dcn3_2_soc.num_states > 2) { 3070 vlevel_temp = 2; 3071 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; 3072 } else 3073 dcfclk = 615; //DCFCLK Vmin_lv 3074 3075 pipes[0].clks_cfg.voltage = vlevel_temp; 3076 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 3077 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 3078 3079 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 3080 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 3081 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; 3082 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 3083 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 3084 } 3085 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3086 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3087 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3088 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3089 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3090 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3091 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3092 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3093 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3094 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3095 3096 /* Set D: 3097 * All clocks min. 3098 * DCFCLK: Min, as reported by PM FW when available 3099 * UCLK : Min, as reported by PM FW when available 3100 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) 3101 */ 3102 3103 if (dcn3_2_soc.num_states > 2) { 3104 vlevel_temp = 0; 3105 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; 3106 } else 3107 dcfclk = 615; //DCFCLK Vmin_lv 3108 3109 pipes[0].clks_cfg.voltage = vlevel_temp; 3110 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 3111 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 3112 3113 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 3114 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 3115 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; 3116 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 3117 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 3118 } 3119 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3120 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3121 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3122 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3123 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3124 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3125 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3126 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3127 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3128 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3129 3130 /* Set C, for Dummy P-State: 3131 * All clocks min. 3132 * DCFCLK: Min, as reported by PM FW, when available 3133 * UCLK : Min, as reported by PM FW, when available 3134 * pstate latency as per UCLK state dummy pstate latency 3135 */ 3136 3137 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 3138 unsigned int min_dram_speed_mts_margin = 160; 3139 3140 if ((!pstate_en)) 3141 min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; 3142 3143 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */ 3144 for (i = 3; i > 0; i--) 3145 if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) 3146 break; 3147 3148 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 3149 context->bw_ctx.dml.soc.dummy_pstate_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 3150 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; 3151 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 3152 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 3153 } 3154 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3155 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3156 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3157 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3158 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3159 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3160 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3161 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3162 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3163 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3164 3165 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { 3166 /* The only difference between A and C is p-state latency, if p-state is not supported 3167 * with full p-state latency we want to calculate DLG based on dummy p-state latency, 3168 * Set A p-state watermark set to 0 on DCN32, when p-state unsupported, for now keep as DCN32. 3169 */ 3170 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 3171 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 3172 } else { 3173 /* Set A: 3174 * All clocks min. 3175 * DCFCLK: Min, as reported by PM FW, when available 3176 * UCLK: Min, as reported by PM FW, when available 3177 */ 3178 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 3179 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3180 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3181 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3182 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3183 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3184 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3185 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3186 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3187 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3188 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3189 } 3190 3191 pipes[0].clks_cfg.voltage = vlevel; 3192 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; 3193 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 3194 3195 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3196 if (!context->res_ctx.pipe_ctx[i].stream) 3197 continue; 3198 3199 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 3200 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 3201 3202 if (dc->config.forced_clocks) { 3203 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 3204 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 3205 } 3206 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 3207 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 3208 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 3209 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 3210 3211 pipe_idx++; 3212 } 3213 3214 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 3215 3216 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 3217 3218 if (!pstate_en) 3219 /* Restore full p-state latency */ 3220 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 3221 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 3222 } 3223 3224 static struct dc_cap_funcs cap_funcs = { 3225 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 3226 }; 3227 3228 3229 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 3230 unsigned int *optimal_dcfclk, 3231 unsigned int *optimal_fclk) 3232 { 3233 double bw_from_dram, bw_from_dram1, bw_from_dram2; 3234 3235 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * 3236 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); 3237 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * 3238 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); 3239 3240 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 3241 3242 if (optimal_fclk) 3243 *optimal_fclk = bw_from_dram / 3244 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 3245 3246 if (optimal_dcfclk) 3247 *optimal_dcfclk = bw_from_dram / 3248 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 3249 } 3250 3251 void dcn32_calculate_wm_and_dlg( 3252 struct dc *dc, struct dc_state *context, 3253 display_e2e_pipe_params_st *pipes, 3254 int pipe_cnt, 3255 int vlevel) 3256 { 3257 DC_FP_START(); 3258 dcn32_calculate_wm_and_dlg_fp( 3259 dc, context, 3260 pipes, 3261 pipe_cnt, 3262 vlevel); 3263 DC_FP_END(); 3264 } 3265 3266 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) 3267 { 3268 int i; 3269 3270 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3271 if (!context->res_ctx.pipe_ctx[i].stream) 3272 continue; 3273 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) 3274 return true; 3275 } 3276 return false; 3277 } 3278 3279 void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, 3280 int pipe_cnt, int vlevel) 3281 { 3282 int i, pipe_idx; 3283 bool usr_retraining_support = false; 3284 3285 /* Writeback MCIF_WB arbitration parameters */ 3286 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); 3287 3288 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; 3289 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; 3290 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; 3291 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 3292 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; 3293 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; 3294 context->bw_ctx.bw.dcn.clk.p_state_change_support = 3295 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] 3296 != dm_dram_clock_change_unsupported; 3297 3298 /* 3299 * TODO: needs FAMS 3300 * Pstate change might not be supported by hardware, but it might be 3301 * possible with firmware driven vertical blank stretching. 3302 */ 3303 // context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; 3304 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 3305 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); 3306 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) 3307 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; 3308 else 3309 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 3310 3311 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 3312 ASSERT(usr_retraining_support); 3313 3314 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) 3315 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; 3316 3317 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3318 if (!context->res_ctx.pipe_ctx[i].stream) 3319 continue; 3320 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, 3321 pipe_idx); 3322 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 3323 pipe_idx); 3324 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, 3325 pipe_idx); 3326 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 3327 pipe_idx); 3328 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) { 3329 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests 3330 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; 3331 context->res_ctx.pipe_ctx[i].unbounded_req = false; 3332 } else { 3333 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 3334 context->bw_ctx.dml.ip.det_buffer_size_kbytes; 3335 context->res_ctx.pipe_ctx[i].unbounded_req = pipes[pipe_idx].pipe.src.unbounded_req_mode; 3336 } 3337 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 3338 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 3339 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 3340 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; 3341 pipe_idx++; 3342 } 3343 /*save a original dppclock copy*/ 3344 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; 3345 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; 3346 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz 3347 * 1000; 3348 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz 3349 * 1000; 3350 3351 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes 3352 - context->bw_ctx.dml.ip.det_buffer_size_kbytes * pipe_idx; 3353 3354 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3355 3356 if (!context->res_ctx.pipe_ctx[i].stream) 3357 continue; 3358 3359 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, 3360 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, 3361 pipe_cnt, pipe_idx); 3362 3363 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, 3364 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 3365 3366 pipe_idx++; 3367 } 3368 } 3369 3370 /* dcn32_update_bw_bounding_box 3371 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet 3372 * with actual values as per dGPU SKU: 3373 * -with passed few options from dc->config 3374 * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW) 3375 * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes 3376 * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU 3377 * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC) 3378 * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different 3379 * clocks (which might differ for certain dGPU SKU of the same ASIC) 3380 */ 3381 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 3382 { 3383 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 3384 3385 /* Overrides from dc->config options */ 3386 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 3387 3388 /* Override from passed dc->bb_overrides if available*/ 3389 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns 3390 && dc->bb_overrides.sr_exit_time_ns) { 3391 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; 3392 } 3393 3394 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) 3395 != dc->bb_overrides.sr_enter_plus_exit_time_ns 3396 && dc->bb_overrides.sr_enter_plus_exit_time_ns) { 3397 dcn3_2_soc.sr_enter_plus_exit_time_us = 3398 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; 3399 } 3400 3401 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns 3402 && dc->bb_overrides.urgent_latency_ns) { 3403 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3404 } 3405 3406 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) 3407 != dc->bb_overrides.dram_clock_change_latency_ns 3408 && dc->bb_overrides.dram_clock_change_latency_ns) { 3409 dcn3_2_soc.dram_clock_change_latency_us = 3410 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; 3411 } 3412 3413 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) 3414 != dc->bb_overrides.dummy_clock_change_latency_ns 3415 && dc->bb_overrides.dummy_clock_change_latency_ns) { 3416 dcn3_2_soc.dummy_pstate_latency_us = 3417 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; 3418 } 3419 3420 /* Override from VBIOS if VBIOS bb_info available */ 3421 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 3422 struct bp_soc_bb_info bb_info = {0}; 3423 3424 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 3425 if (bb_info.dram_clock_change_latency_100ns > 0) 3426 dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; 3427 3428 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 3429 dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; 3430 3431 if (bb_info.dram_sr_exit_latency_100ns > 0) 3432 dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; 3433 } 3434 } 3435 3436 /* Override from VBIOS for num_chan */ 3437 if (dc->ctx->dc_bios->vram_info.num_chans) 3438 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 3439 3440 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 3441 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 3442 3443 } 3444 3445 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ 3446 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3447 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3448 3449 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ 3450 if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) { 3451 unsigned int i = 0, j = 0, num_states = 0; 3452 3453 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 3454 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 3455 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 3456 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 3457 3458 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {615, 906, 1324, 1564}; 3459 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; 3460 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; 3461 3462 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 3463 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 3464 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 3465 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 3466 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 3467 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 3468 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 3469 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 3470 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 3471 } 3472 if (!max_dcfclk_mhz) 3473 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3474 if (!max_dispclk_mhz) 3475 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 3476 if (!max_dppclk_mhz) 3477 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; 3478 if (!max_phyclk_mhz) 3479 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 3480 3481 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3482 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 3483 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; 3484 num_dcfclk_sta_targets++; 3485 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3486 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 3487 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3488 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { 3489 dcfclk_sta_targets[i] = max_dcfclk_mhz; 3490 break; 3491 } 3492 } 3493 // Update size of array since we "removed" duplicates 3494 num_dcfclk_sta_targets = i + 1; 3495 } 3496 3497 num_uclk_states = bw_params->clk_table.num_entries; 3498 3499 // Calculate optimal dcfclk for each uclk 3500 for (i = 0; i < num_uclk_states; i++) { 3501 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 3502 &optimal_dcfclk_for_uclk[i], NULL); 3503 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 3504 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 3505 } 3506 } 3507 3508 // Calculate optimal uclk for each dcfclk sta target 3509 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3510 for (j = 0; j < num_uclk_states; j++) { 3511 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 3512 optimal_uclk_for_dcfclk_sta_targets[i] = 3513 bw_params->clk_table.entries[j].memclk_mhz * 16; 3514 break; 3515 } 3516 } 3517 } 3518 3519 i = 0; 3520 j = 0; 3521 // create the final dcfclk and uclk table 3522 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 3523 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 3524 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3525 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3526 } else { 3527 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3528 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3529 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3530 } else { 3531 j = num_uclk_states; 3532 } 3533 } 3534 } 3535 3536 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 3537 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3538 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3539 } 3540 3541 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 3542 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3543 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3544 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3545 } 3546 3547 dcn3_2_soc.num_states = num_states; 3548 for (i = 0; i < dcn3_2_soc.num_states; i++) { 3549 dcn3_2_soc.clock_limits[i].state = i; 3550 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 3551 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 3552 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 3553 3554 /* Fill all states with max values of all these clocks */ 3555 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; 3556 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; 3557 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; 3558 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; 3559 3560 /* Populate from bw_params for DTBCLK, SOCCLK */ 3561 if (!bw_params->clk_table.entries[i].dtbclk_mhz && i > 0) 3562 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; 3563 else 3564 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3565 3566 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) 3567 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; 3568 else 3569 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; 3570 3571 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ 3572 /* PHYCLK_D18, PHYCLK_D32 */ 3573 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 3574 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 3575 } 3576 3577 /* Re-init DML with updated bb */ 3578 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3579 if (dc->current_state) 3580 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3581 } 3582 } 3583 3584 static struct resource_funcs dcn32_res_pool_funcs = { 3585 .destroy = dcn32_destroy_resource_pool, 3586 .link_enc_create = dcn32_link_encoder_create, 3587 .link_enc_create_minimal = NULL, 3588 .panel_cntl_create = dcn32_panel_cntl_create, 3589 .validate_bandwidth = dcn32_validate_bandwidth, 3590 .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, 3591 .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, 3592 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 3593 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 3594 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 3595 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 3596 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 3597 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 3598 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 3599 .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, 3600 .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, 3601 .update_bw_bounding_box = dcn32_update_bw_bounding_box, 3602 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 3603 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 3604 .add_phantom_pipes = dcn32_add_phantom_pipes, 3605 .remove_phantom_pipes = dcn32_remove_phantom_pipes, 3606 }; 3607 3608 3609 static bool dcn32_resource_construct( 3610 uint8_t num_virtual_links, 3611 struct dc *dc, 3612 struct dcn32_resource_pool *pool) 3613 { 3614 int i, j; 3615 struct dc_context *ctx = dc->ctx; 3616 struct irq_service_init_data init_data; 3617 struct ddc_service_init_data ddc_init_data = {0}; 3618 uint32_t pipe_fuses = 0; 3619 uint32_t num_pipes = 4; 3620 3621 DC_FP_START(); 3622 3623 ctx->dc_bios->regs = &bios_regs; 3624 3625 pool->base.res_cap = &res_cap_dcn32; 3626 /* max number of pipes for ASIC before checking for pipe fuses */ 3627 num_pipes = pool->base.res_cap->num_timing_generator; 3628 pipe_fuses = REG_READ(CC_DC_PIPE_DIS); 3629 3630 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) 3631 if (pipe_fuses & 1 << i) 3632 num_pipes--; 3633 3634 if (pipe_fuses & 1) 3635 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! 3636 3637 if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) 3638 ASSERT(0); //Entire DCN is harvested! 3639 3640 /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the 3641 * value will be changed, update max_num_dpp and max_num_otg for dml. 3642 */ 3643 dcn3_2_ip.max_num_dpp = num_pipes; 3644 dcn3_2_ip.max_num_otg = num_pipes; 3645 3646 pool->base.funcs = &dcn32_res_pool_funcs; 3647 3648 /************************************************* 3649 * Resource + asic cap harcoding * 3650 *************************************************/ 3651 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 3652 pool->base.timing_generator_count = num_pipes; 3653 pool->base.pipe_count = num_pipes; 3654 pool->base.mpcc_count = num_pipes; 3655 dc->caps.max_downscale_ratio = 600; 3656 dc->caps.i2c_speed_in_khz = 100; 3657 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ 3658 dc->caps.max_cursor_size = 256; 3659 dc->caps.min_horizontal_blanking_period = 80; 3660 dc->caps.dmdata_alloc_size = 2048; 3661 dc->caps.mall_size_per_mem_channel = 0; 3662 dc->caps.mall_size_total = 0; 3663 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 3664 3665 dc->caps.cache_line_size = 64; 3666 dc->caps.cache_num_ways = 16; 3667 dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64 3668 dc->caps.subvp_fw_processing_delay_us = 15; 3669 dc->caps.subvp_prefetch_end_to_mall_start_us = 15; 3670 dc->caps.subvp_pstate_allow_width_us = 20; 3671 dc->caps.subvp_vertical_int_margin_us = 30; 3672 3673 dc->caps.max_slave_planes = 2; 3674 dc->caps.max_slave_yuv_planes = 2; 3675 dc->caps.max_slave_rgb_planes = 2; 3676 dc->caps.post_blend_color_processing = true; 3677 dc->caps.force_dp_tps4_for_cp2520 = true; 3678 dc->caps.dp_hpo = true; 3679 dc->caps.edp_dsc_support = true; 3680 dc->caps.extended_aux_timeout_support = true; 3681 dc->caps.dmcub_support = true; 3682 3683 /* Color pipeline capabilities */ 3684 dc->caps.color.dpp.dcn_arch = 1; 3685 dc->caps.color.dpp.input_lut_shared = 0; 3686 dc->caps.color.dpp.icsc = 1; 3687 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 3688 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 3689 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 3690 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 3691 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 3692 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 3693 dc->caps.color.dpp.post_csc = 1; 3694 dc->caps.color.dpp.gamma_corr = 1; 3695 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 3696 3697 dc->caps.color.dpp.hw_3d_lut = 1; 3698 dc->caps.color.dpp.ogam_ram = 0; //Blnd Gam also removed 3699 // no OGAM ROM on DCN2 and later ASICs 3700 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 3701 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 3702 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 3703 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 3704 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 3705 dc->caps.color.dpp.ocsc = 0; 3706 3707 dc->caps.color.mpc.gamut_remap = 1; 3708 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC 3709 dc->caps.color.mpc.ogam_ram = 1; 3710 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 3711 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 3712 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 3713 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 3714 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 3715 dc->caps.color.mpc.ocsc = 1; 3716 3717 /* Use pipe context based otg sync logic */ 3718 dc->config.use_pipe_ctx_sync_logic = true; 3719 3720 /* read VBIOS LTTPR caps */ 3721 { 3722 if (ctx->dc_bios->funcs->get_lttpr_caps) { 3723 enum bp_result bp_query_result; 3724 uint8_t is_vbios_lttpr_enable = 0; 3725 3726 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 3727 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 3728 } 3729 3730 /* interop bit is implicit */ 3731 { 3732 dc->caps.vbios_lttpr_aware = true; 3733 } 3734 } 3735 3736 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 3737 dc->debug = debug_defaults_drv; 3738 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 3739 dc->debug = debug_defaults_diags; 3740 } else 3741 dc->debug = debug_defaults_diags; 3742 // Init the vm_helper 3743 if (dc->vm_helper) 3744 vm_helper_init(dc->vm_helper, 16); 3745 3746 /************************************************* 3747 * Create resources * 3748 *************************************************/ 3749 3750 /* Clock Sources for Pixel Clock*/ 3751 pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = 3752 dcn32_clock_source_create(ctx, ctx->dc_bios, 3753 CLOCK_SOURCE_COMBO_PHY_PLL0, 3754 &clk_src_regs[0], false); 3755 pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = 3756 dcn32_clock_source_create(ctx, ctx->dc_bios, 3757 CLOCK_SOURCE_COMBO_PHY_PLL1, 3758 &clk_src_regs[1], false); 3759 pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = 3760 dcn32_clock_source_create(ctx, ctx->dc_bios, 3761 CLOCK_SOURCE_COMBO_PHY_PLL2, 3762 &clk_src_regs[2], false); 3763 pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = 3764 dcn32_clock_source_create(ctx, ctx->dc_bios, 3765 CLOCK_SOURCE_COMBO_PHY_PLL3, 3766 &clk_src_regs[3], false); 3767 pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = 3768 dcn32_clock_source_create(ctx, ctx->dc_bios, 3769 CLOCK_SOURCE_COMBO_PHY_PLL4, 3770 &clk_src_regs[4], false); 3771 3772 pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; 3773 3774 /* todo: not reuse phy_pll registers */ 3775 pool->base.dp_clock_source = 3776 dcn32_clock_source_create(ctx, ctx->dc_bios, 3777 CLOCK_SOURCE_ID_DP_DTO, 3778 &clk_src_regs[0], true); 3779 3780 for (i = 0; i < pool->base.clk_src_count; i++) { 3781 if (pool->base.clock_sources[i] == NULL) { 3782 dm_error("DC: failed to create clock sources!\n"); 3783 BREAK_TO_DEBUGGER(); 3784 goto create_fail; 3785 } 3786 } 3787 3788 /* DCCG */ 3789 pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 3790 if (pool->base.dccg == NULL) { 3791 dm_error("DC: failed to create dccg!\n"); 3792 BREAK_TO_DEBUGGER(); 3793 goto create_fail; 3794 } 3795 3796 /* DML */ 3797 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) 3798 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3799 3800 /* IRQ Service */ 3801 init_data.ctx = dc->ctx; 3802 pool->base.irqs = dal_irq_service_dcn32_create(&init_data); 3803 if (!pool->base.irqs) 3804 goto create_fail; 3805 3806 /* HUBBUB */ 3807 pool->base.hubbub = dcn32_hubbub_create(ctx); 3808 if (pool->base.hubbub == NULL) { 3809 BREAK_TO_DEBUGGER(); 3810 dm_error("DC: failed to create hubbub!\n"); 3811 goto create_fail; 3812 } 3813 3814 /* HUBPs, DPPs, OPPs, TGs, ABMs */ 3815 for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { 3816 3817 /* if pipe is disabled, skip instance of HW pipe, 3818 * i.e, skip ASIC register instance 3819 */ 3820 if (pipe_fuses & 1 << i) 3821 continue; 3822 3823 /* HUBPs */ 3824 pool->base.hubps[j] = dcn32_hubp_create(ctx, i); 3825 if (pool->base.hubps[j] == NULL) { 3826 BREAK_TO_DEBUGGER(); 3827 dm_error( 3828 "DC: failed to create hubps!\n"); 3829 goto create_fail; 3830 } 3831 3832 /* DPPs */ 3833 pool->base.dpps[j] = dcn32_dpp_create(ctx, i); 3834 if (pool->base.dpps[j] == NULL) { 3835 BREAK_TO_DEBUGGER(); 3836 dm_error( 3837 "DC: failed to create dpps!\n"); 3838 goto create_fail; 3839 } 3840 3841 /* OPPs */ 3842 pool->base.opps[j] = dcn32_opp_create(ctx, i); 3843 if (pool->base.opps[j] == NULL) { 3844 BREAK_TO_DEBUGGER(); 3845 dm_error( 3846 "DC: failed to create output pixel processor!\n"); 3847 goto create_fail; 3848 } 3849 3850 /* TGs */ 3851 pool->base.timing_generators[j] = dcn32_timing_generator_create( 3852 ctx, i); 3853 if (pool->base.timing_generators[j] == NULL) { 3854 BREAK_TO_DEBUGGER(); 3855 dm_error("DC: failed to create tg!\n"); 3856 goto create_fail; 3857 } 3858 3859 /* ABMs */ 3860 pool->base.multiple_abms[j] = dmub_abm_create(ctx, 3861 &abm_regs[i], 3862 &abm_shift, 3863 &abm_mask); 3864 if (pool->base.multiple_abms[j] == NULL) { 3865 dm_error("DC: failed to create abm for pipe %d!\n", i); 3866 BREAK_TO_DEBUGGER(); 3867 goto create_fail; 3868 } 3869 3870 /* index for resource pool arrays for next valid pipe */ 3871 j++; 3872 } 3873 3874 /* PSR */ 3875 pool->base.psr = dmub_psr_create(ctx); 3876 if (pool->base.psr == NULL) { 3877 dm_error("DC: failed to create psr obj!\n"); 3878 BREAK_TO_DEBUGGER(); 3879 goto create_fail; 3880 } 3881 3882 /* MPCCs */ 3883 pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); 3884 if (pool->base.mpc == NULL) { 3885 BREAK_TO_DEBUGGER(); 3886 dm_error("DC: failed to create mpc!\n"); 3887 goto create_fail; 3888 } 3889 3890 /* DSCs */ 3891 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 3892 pool->base.dscs[i] = dcn32_dsc_create(ctx, i); 3893 if (pool->base.dscs[i] == NULL) { 3894 BREAK_TO_DEBUGGER(); 3895 dm_error("DC: failed to create display stream compressor %d!\n", i); 3896 goto create_fail; 3897 } 3898 } 3899 3900 /* DWB */ 3901 if (!dcn32_dwbc_create(ctx, &pool->base)) { 3902 BREAK_TO_DEBUGGER(); 3903 dm_error("DC: failed to create dwbc!\n"); 3904 goto create_fail; 3905 } 3906 3907 /* MMHUBBUB */ 3908 if (!dcn32_mmhubbub_create(ctx, &pool->base)) { 3909 BREAK_TO_DEBUGGER(); 3910 dm_error("DC: failed to create mcif_wb!\n"); 3911 goto create_fail; 3912 } 3913 3914 /* AUX and I2C */ 3915 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 3916 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); 3917 if (pool->base.engines[i] == NULL) { 3918 BREAK_TO_DEBUGGER(); 3919 dm_error( 3920 "DC:failed to create aux engine!!\n"); 3921 goto create_fail; 3922 } 3923 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); 3924 if (pool->base.hw_i2cs[i] == NULL) { 3925 BREAK_TO_DEBUGGER(); 3926 dm_error( 3927 "DC:failed to create hw i2c!!\n"); 3928 goto create_fail; 3929 } 3930 pool->base.sw_i2cs[i] = NULL; 3931 } 3932 3933 /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ 3934 if (!resource_construct(num_virtual_links, dc, &pool->base, 3935 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 3936 &res_create_funcs : &res_create_maximus_funcs))) 3937 goto create_fail; 3938 3939 /* HW Sequencer init functions and Plane caps */ 3940 dcn32_hw_sequencer_init_functions(dc); 3941 3942 dc->caps.max_planes = pool->base.pipe_count; 3943 3944 for (i = 0; i < dc->caps.max_planes; ++i) 3945 dc->caps.planes[i] = plane_cap; 3946 3947 dc->cap_funcs = cap_funcs; 3948 3949 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 3950 ddc_init_data.ctx = dc->ctx; 3951 ddc_init_data.link = NULL; 3952 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 3953 ddc_init_data.id.enum_id = 0; 3954 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 3955 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 3956 } else { 3957 pool->base.oem_device = NULL; 3958 } 3959 3960 DC_FP_END(); 3961 3962 return true; 3963 3964 create_fail: 3965 3966 DC_FP_END(); 3967 3968 dcn32_resource_destruct(pool); 3969 3970 return false; 3971 } 3972 3973 struct resource_pool *dcn32_create_resource_pool( 3974 const struct dc_init_data *init_data, 3975 struct dc *dc) 3976 { 3977 struct dcn32_resource_pool *pool = 3978 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); 3979 3980 if (!pool) 3981 return NULL; 3982 3983 if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) 3984 return &pool->base; 3985 3986 BREAK_TO_DEBUGGER(); 3987 kfree(pool); 3988 return NULL; 3989 } 3990