xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73 
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76 
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91 
92 #define DC_LOGGER_INIT(logger)
93 
94 enum dcn32_clk_src_array_id {
95 	DCN32_CLK_SRC_PLL0,
96 	DCN32_CLK_SRC_PLL1,
97 	DCN32_CLK_SRC_PLL2,
98 	DCN32_CLK_SRC_PLL3,
99 	DCN32_CLK_SRC_PLL4,
100 	DCN32_CLK_SRC_TOTAL
101 };
102 
103 /* begin *********************
104  * macros to expend register list macro defined in HW object header file
105  */
106 
107 /* DCN */
108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
109 
110 #define BASE(seg) BASE_INNER(seg)
111 
112 #define SR(reg_name)\
113 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
114 					reg ## reg_name
115 #define SR_ARR(reg_name, id) \
116 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
117 
118 #define SR_ARR_INIT(reg_name, id, value) \
119 	REG_STRUCT[id].reg_name = value
120 
121 #define SRI(reg_name, block, id)\
122 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 		reg ## block ## id ## _ ## reg_name
124 
125 #define SRI_ARR(reg_name, block, id)\
126 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 		reg ## block ## id ## _ ## reg_name
128 
129 #define SR_ARR_I2C(reg_name, id) \
130 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
131 
132 #define SRI_ARR_I2C(reg_name, block, id)\
133 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
134 		reg ## block ## id ## _ ## reg_name
135 
136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
137 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 		reg ## block ## id ## _ ## reg_name
139 
140 #define SRI2(reg_name, block, id)\
141 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
142 		reg ## reg_name
143 #define SRI2_ARR(reg_name, block, id)\
144 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
145 		reg ## reg_name
146 
147 #define SRIR(var_name, reg_name, block, id)\
148 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
149 		reg ## block ## id ## _ ## reg_name
150 
151 #define SRII(reg_name, block, id)\
152 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 					reg ## block ## id ## _ ## reg_name
154 
155 #define SRII_ARR_2(reg_name, block, id, inst)\
156 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 		reg ## block ## id ## _ ## reg_name
158 
159 #define SRII_MPC_RMU(reg_name, block, id)\
160 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 		reg ## block ## id ## _ ## reg_name
162 
163 #define SRII_DWB(reg_name, temp_name, block, id)\
164 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
165 		reg ## block ## id ## _ ## temp_name
166 
167 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
168 	.field_name = reg_name ## __ ## field_name ## post_fix
169 
170 #define DCCG_SRII(reg_name, block, id)\
171 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
172 		reg ## block ## id ## _ ## reg_name
173 
174 #define VUPDATE_SRII(reg_name, block, id)\
175 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
176 		reg ## reg_name ## _ ## block ## id
177 
178 /* NBIO */
179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
180 
181 #define NBIO_BASE(seg) \
182 	NBIO_BASE_INNER(seg)
183 
184 #define NBIO_SR(reg_name)\
185 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
186 			regBIF_BX0_ ## reg_name
187 #define NBIO_SR_ARR(reg_name, id)\
188 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
189 		regBIF_BX0_ ## reg_name
190 
191 #undef CTX
192 #define CTX ctx
193 #define REG(reg_name) \
194 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
195 
196 static struct bios_registers bios_regs;
197 
198 #define bios_regs_init() \
199 		( \
200 		NBIO_SR(BIOS_SCRATCH_3),\
201 		NBIO_SR(BIOS_SCRATCH_6)\
202 		)
203 
204 #define clk_src_regs_init(index, pllid)\
205 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
206 
207 static struct dce110_clk_src_regs clk_src_regs[5];
208 
209 static const struct dce110_clk_src_shift cs_shift = {
210 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
211 };
212 
213 static const struct dce110_clk_src_mask cs_mask = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
215 };
216 
217 #define abm_regs_init(id)\
218 		ABM_DCN32_REG_LIST_RI(id)
219 
220 static struct dce_abm_registers abm_regs[4];
221 
222 static const struct dce_abm_shift abm_shift = {
223 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
224 };
225 
226 static const struct dce_abm_mask abm_mask = {
227 		ABM_MASK_SH_LIST_DCN32(_MASK)
228 };
229 
230 #define audio_regs_init(id)\
231 		AUD_COMMON_REG_LIST_RI(id)
232 
233 static struct dce_audio_registers audio_regs[5];
234 
235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
236 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
237 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
238 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
239 
240 static const struct dce_audio_shift audio_shift = {
241 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
242 };
243 
244 static const struct dce_audio_mask audio_mask = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
246 };
247 
248 #define vpg_regs_init(id)\
249 	VPG_DCN3_REG_LIST_RI(id)
250 
251 static struct dcn30_vpg_registers vpg_regs[10];
252 
253 static const struct dcn30_vpg_shift vpg_shift = {
254 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
255 };
256 
257 static const struct dcn30_vpg_mask vpg_mask = {
258 	DCN3_VPG_MASK_SH_LIST(_MASK)
259 };
260 
261 #define afmt_regs_init(id)\
262 	AFMT_DCN3_REG_LIST_RI(id)
263 
264 static struct dcn30_afmt_registers afmt_regs[6];
265 
266 static const struct dcn30_afmt_shift afmt_shift = {
267 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
268 };
269 
270 static const struct dcn30_afmt_mask afmt_mask = {
271 	DCN3_AFMT_MASK_SH_LIST(_MASK)
272 };
273 
274 #define apg_regs_init(id)\
275 	APG_DCN31_REG_LIST_RI(id)
276 
277 static struct dcn31_apg_registers apg_regs[4];
278 
279 static const struct dcn31_apg_shift apg_shift = {
280 	DCN31_APG_MASK_SH_LIST(__SHIFT)
281 };
282 
283 static const struct dcn31_apg_mask apg_mask = {
284 		DCN31_APG_MASK_SH_LIST(_MASK)
285 };
286 
287 #define stream_enc_regs_init(id)\
288 	SE_DCN32_REG_LIST_RI(id)
289 
290 static struct dcn10_stream_enc_registers stream_enc_regs[5];
291 
292 static const struct dcn10_stream_encoder_shift se_shift = {
293 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
294 };
295 
296 static const struct dcn10_stream_encoder_mask se_mask = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
298 };
299 
300 
301 #define aux_regs_init(id)\
302 	DCN2_AUX_REG_LIST_RI(id)
303 
304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
305 
306 #define hpd_regs_init(id)\
307 	HPD_REG_LIST_RI(id)
308 
309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
310 
311 #define link_regs_init(id, phyid)\
312 	( \
313 	LE_DCN31_REG_LIST_RI(id), \
314 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
315 	)
316 	/*DPCS_DCN31_REG_LIST(id),*/ \
317 
318 static struct dcn10_link_enc_registers link_enc_regs[5];
319 
320 static const struct dcn10_link_enc_shift le_shift = {
321 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
322 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
323 };
324 
325 static const struct dcn10_link_enc_mask le_mask = {
326 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
327 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
328 };
329 
330 #define hpo_dp_stream_encoder_reg_init(id)\
331 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
332 
333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
334 
335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
336 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
337 };
338 
339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
340 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
341 };
342 
343 
344 #define hpo_dp_link_encoder_reg_init(id)\
345 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
346 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
347 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
348 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
349 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
350 
351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
352 
353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
354 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
355 };
356 
357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
358 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
359 };
360 
361 #define dpp_regs_init(id)\
362 	DPP_REG_LIST_DCN30_COMMON_RI(id)
363 
364 static struct dcn3_dpp_registers dpp_regs[4];
365 
366 static const struct dcn3_dpp_shift tf_shift = {
367 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
368 };
369 
370 static const struct dcn3_dpp_mask tf_mask = {
371 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
372 };
373 
374 
375 #define opp_regs_init(id)\
376 	OPP_REG_LIST_DCN30_RI(id)
377 
378 static struct dcn20_opp_registers opp_regs[4];
379 
380 static const struct dcn20_opp_shift opp_shift = {
381 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
382 };
383 
384 static const struct dcn20_opp_mask opp_mask = {
385 	OPP_MASK_SH_LIST_DCN20(_MASK)
386 };
387 
388 #define aux_engine_regs_init(id)\
389 	( \
390 	AUX_COMMON_REG_LIST0_RI(id), \
391 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
392 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
393 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
394 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
395 	)
396 
397 static struct dce110_aux_registers aux_engine_regs[5];
398 
399 static const struct dce110_aux_registers_shift aux_shift = {
400 	DCN_AUX_MASK_SH_LIST(__SHIFT)
401 };
402 
403 static const struct dce110_aux_registers_mask aux_mask = {
404 	DCN_AUX_MASK_SH_LIST(_MASK)
405 };
406 
407 #define dwbc_regs_dcn3_init(id)\
408 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
409 
410 static struct dcn30_dwbc_registers dwbc30_regs[1];
411 
412 static const struct dcn30_dwbc_shift dwbc30_shift = {
413 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
414 };
415 
416 static const struct dcn30_dwbc_mask dwbc30_mask = {
417 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
418 };
419 
420 #define mcif_wb_regs_dcn3_init(id)\
421 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
422 
423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
424 
425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
426 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
427 };
428 
429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
430 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
431 };
432 
433 #define dsc_regsDCN20_init(id)\
434 	DSC_REG_LIST_DCN20_RI(id)
435 
436 static struct dcn20_dsc_registers dsc_regs[4];
437 
438 static const struct dcn20_dsc_shift dsc_shift = {
439 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
440 };
441 
442 static const struct dcn20_dsc_mask dsc_mask = {
443 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
444 };
445 
446 static struct dcn30_mpc_registers mpc_regs;
447 
448 #define dcn_mpc_regs_init() \
449 	MPC_REG_LIST_DCN3_2_RI(0),\
450 	MPC_REG_LIST_DCN3_2_RI(1),\
451 	MPC_REG_LIST_DCN3_2_RI(2),\
452 	MPC_REG_LIST_DCN3_2_RI(3),\
453 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
454 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
455 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
456 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
457 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
458 
459 static const struct dcn30_mpc_shift mpc_shift = {
460 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
461 };
462 
463 static const struct dcn30_mpc_mask mpc_mask = {
464 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
465 };
466 
467 #define optc_regs_init(id)\
468 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
469 
470 static struct dcn_optc_registers optc_regs[4];
471 
472 static const struct dcn_optc_shift optc_shift = {
473 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
474 };
475 
476 static const struct dcn_optc_mask optc_mask = {
477 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
478 };
479 
480 #define hubp_regs_init(id)\
481 	HUBP_REG_LIST_DCN32_RI(id)
482 
483 static struct dcn_hubp2_registers hubp_regs[4];
484 
485 
486 static const struct dcn_hubp2_shift hubp_shift = {
487 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
488 };
489 
490 static const struct dcn_hubp2_mask hubp_mask = {
491 		HUBP_MASK_SH_LIST_DCN32(_MASK)
492 };
493 
494 static struct dcn_hubbub_registers hubbub_reg;
495 #define hubbub_reg_init()\
496 		HUBBUB_REG_LIST_DCN32_RI(0)
497 
498 static const struct dcn_hubbub_shift hubbub_shift = {
499 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
500 };
501 
502 static const struct dcn_hubbub_mask hubbub_mask = {
503 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
504 };
505 
506 static struct dccg_registers dccg_regs;
507 
508 #define dccg_regs_init()\
509 	DCCG_REG_LIST_DCN32_RI()
510 
511 static const struct dccg_shift dccg_shift = {
512 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
513 };
514 
515 static const struct dccg_mask dccg_mask = {
516 		DCCG_MASK_SH_LIST_DCN32(_MASK)
517 };
518 
519 
520 #define SRII2(reg_name_pre, reg_name_post, id)\
521 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
522 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
523 			reg ## reg_name_pre ## id ## _ ## reg_name_post
524 
525 
526 #define HWSEQ_DCN32_REG_LIST()\
527 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
528 	SR(DIO_MEM_PWR_CTRL), \
529 	SR(ODM_MEM_PWR_CTRL3), \
530 	SR(MMHUBBUB_MEM_PWR_CNTL), \
531 	SR(DCCG_GATE_DISABLE_CNTL), \
532 	SR(DCCG_GATE_DISABLE_CNTL2), \
533 	SR(DCFCLK_CNTL),\
534 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
535 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
536 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
537 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
538 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
539 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
540 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
541 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
542 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
543 	SR(MICROSECOND_TIME_BASE_DIV), \
544 	SR(MILLISECOND_TIME_BASE_DIV), \
545 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
546 	SR(RBBMIF_TIMEOUT_DIS), \
547 	SR(RBBMIF_TIMEOUT_DIS_2), \
548 	SR(DCHUBBUB_CRC_CTRL), \
549 	SR(DPP_TOP0_DPP_CRC_CTRL), \
550 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
551 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
552 	SR(MPC_CRC_CTRL), \
553 	SR(MPC_CRC_RESULT_GB), \
554 	SR(MPC_CRC_RESULT_C), \
555 	SR(MPC_CRC_RESULT_AR), \
556 	SR(DOMAIN0_PG_CONFIG), \
557 	SR(DOMAIN1_PG_CONFIG), \
558 	SR(DOMAIN2_PG_CONFIG), \
559 	SR(DOMAIN3_PG_CONFIG), \
560 	SR(DOMAIN16_PG_CONFIG), \
561 	SR(DOMAIN17_PG_CONFIG), \
562 	SR(DOMAIN18_PG_CONFIG), \
563 	SR(DOMAIN19_PG_CONFIG), \
564 	SR(DOMAIN0_PG_STATUS), \
565 	SR(DOMAIN1_PG_STATUS), \
566 	SR(DOMAIN2_PG_STATUS), \
567 	SR(DOMAIN3_PG_STATUS), \
568 	SR(DOMAIN16_PG_STATUS), \
569 	SR(DOMAIN17_PG_STATUS), \
570 	SR(DOMAIN18_PG_STATUS), \
571 	SR(DOMAIN19_PG_STATUS), \
572 	SR(D1VGA_CONTROL), \
573 	SR(D2VGA_CONTROL), \
574 	SR(D3VGA_CONTROL), \
575 	SR(D4VGA_CONTROL), \
576 	SR(D5VGA_CONTROL), \
577 	SR(D6VGA_CONTROL), \
578 	SR(DC_IP_REQUEST_CNTL), \
579 	SR(AZALIA_AUDIO_DTO), \
580 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
581 
582 static struct dce_hwseq_registers hwseq_reg;
583 
584 #define hwseq_reg_init()\
585 	HWSEQ_DCN32_REG_LIST()
586 
587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
588 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
589 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
590 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
591 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
592 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
593 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
594 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
607 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
608 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
609 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
610 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
615 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
616 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
617 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
618 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
619 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
620 
621 static const struct dce_hwseq_shift hwseq_shift = {
622 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
623 };
624 
625 static const struct dce_hwseq_mask hwseq_mask = {
626 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
627 };
628 #define vmid_regs_init(id)\
629 		DCN20_VMID_REG_LIST_RI(id)
630 
631 static struct dcn_vmid_registers vmid_regs[16];
632 
633 static const struct dcn20_vmid_shift vmid_shifts = {
634 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
635 };
636 
637 static const struct dcn20_vmid_mask vmid_masks = {
638 		DCN20_VMID_MASK_SH_LIST(_MASK)
639 };
640 
641 static const struct resource_caps res_cap_dcn32 = {
642 	.num_timing_generator = 4,
643 	.num_opp = 4,
644 	.num_video_plane = 4,
645 	.num_audio = 5,
646 	.num_stream_encoder = 5,
647 	.num_hpo_dp_stream_encoder = 4,
648 	.num_hpo_dp_link_encoder = 2,
649 	.num_pll = 5,
650 	.num_dwb = 1,
651 	.num_ddc = 5,
652 	.num_vmid = 16,
653 	.num_mpc_3dlut = 4,
654 	.num_dsc = 4,
655 };
656 
657 static const struct dc_plane_cap plane_cap = {
658 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
659 	.per_pixel_alpha = true,
660 
661 	.pixel_format_support = {
662 			.argb8888 = true,
663 			.nv12 = true,
664 			.fp16 = true,
665 			.p010 = true,
666 			.ayuv = false,
667 	},
668 
669 	.max_upscale_factor = {
670 			.argb8888 = 16000,
671 			.nv12 = 16000,
672 			.fp16 = 16000
673 	},
674 
675 	// 6:1 downscaling ratio: 1000/6 = 166.666
676 	.max_downscale_factor = {
677 			.argb8888 = 167,
678 			.nv12 = 167,
679 			.fp16 = 167
680 	},
681 	64,
682 	64
683 };
684 
685 static const struct dc_debug_options debug_defaults_drv = {
686 	.disable_dmcu = true,
687 	.force_abm_enable = false,
688 	.timing_trace = false,
689 	.clock_trace = true,
690 	.disable_pplib_clock_request = false,
691 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
692 	.force_single_disp_pipe_split = false,
693 	.disable_dcc = DCC_ENABLE,
694 	.vsr_support = true,
695 	.performance_trace = false,
696 	.max_downscale_src_width = 7680,/*upto 8K*/
697 	.disable_pplib_wm_range = false,
698 	.scl_reset_length10 = true,
699 	.sanity_checks = false,
700 	.underflow_assert_delay_us = 0xFFFFFFFF,
701 	.dwb_fi_phase = -1, // -1 = disable,
702 	.dmub_command_table = true,
703 	.enable_mem_low_power = {
704 		.bits = {
705 			.vga = false,
706 			.i2c = false,
707 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
708 			.dscl = false,
709 			.cm = false,
710 			.mpc = false,
711 			.optc = true,
712 		}
713 	},
714 	.use_max_lb = true,
715 	.force_disable_subvp = false,
716 	.exit_idle_opt_for_cursor_updates = true,
717 	.enable_single_display_2to1_odm_policy = true,
718 
719 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
720 	.enable_double_buffered_dsc_pg_support = true,
721 	.enable_dp_dig_pixel_rate_div_policy = 1,
722 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
723 	.alloc_extra_way_for_cursor = true,
724 	.min_prefetch_in_strobe_ns = 60000, // 60us
725 	.disable_unbounded_requesting = false,
726 	.override_dispclk_programming = true,
727 	.disable_fpo_optimizations = false,
728 	.fpo_vactive_margin_us = 2000, // 2000us
729 	.disable_fpo_vactive = false,
730 	.disable_boot_optimizations = false,
731 	.disable_subvp_high_refresh = false,
732 	.disable_dp_plus_plus_wa = true,
733 	.fpo_vactive_min_active_margin_us = 200,
734 	.fpo_vactive_max_blank_us = 1000,
735 	.enable_legacy_fast_update = false,
736 };
737 
738 static struct dce_aux *dcn32_aux_engine_create(
739 	struct dc_context *ctx,
740 	uint32_t inst)
741 {
742 	struct aux_engine_dce110 *aux_engine =
743 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
744 
745 	if (!aux_engine)
746 		return NULL;
747 
748 #undef REG_STRUCT
749 #define REG_STRUCT aux_engine_regs
750 	aux_engine_regs_init(0),
751 	aux_engine_regs_init(1),
752 	aux_engine_regs_init(2),
753 	aux_engine_regs_init(3),
754 	aux_engine_regs_init(4);
755 
756 	dce110_aux_engine_construct(aux_engine, ctx, inst,
757 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
758 				    &aux_engine_regs[inst],
759 					&aux_mask,
760 					&aux_shift,
761 					ctx->dc->caps.extended_aux_timeout_support);
762 
763 	return &aux_engine->base;
764 }
765 #define i2c_inst_regs_init(id)\
766 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
767 
768 static struct dce_i2c_registers i2c_hw_regs[5];
769 
770 static const struct dce_i2c_shift i2c_shifts = {
771 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
772 };
773 
774 static const struct dce_i2c_mask i2c_masks = {
775 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
776 };
777 
778 static struct dce_i2c_hw *dcn32_i2c_hw_create(
779 	struct dc_context *ctx,
780 	uint32_t inst)
781 {
782 	struct dce_i2c_hw *dce_i2c_hw =
783 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
784 
785 	if (!dce_i2c_hw)
786 		return NULL;
787 
788 #undef REG_STRUCT
789 #define REG_STRUCT i2c_hw_regs
790 	i2c_inst_regs_init(1),
791 	i2c_inst_regs_init(2),
792 	i2c_inst_regs_init(3),
793 	i2c_inst_regs_init(4),
794 	i2c_inst_regs_init(5);
795 
796 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
797 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
798 
799 	return dce_i2c_hw;
800 }
801 
802 static struct clock_source *dcn32_clock_source_create(
803 		struct dc_context *ctx,
804 		struct dc_bios *bios,
805 		enum clock_source_id id,
806 		const struct dce110_clk_src_regs *regs,
807 		bool dp_clk_src)
808 {
809 	struct dce110_clk_src *clk_src =
810 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
811 
812 	if (!clk_src)
813 		return NULL;
814 
815 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
816 			regs, &cs_shift, &cs_mask)) {
817 		clk_src->base.dp_clk_src = dp_clk_src;
818 		return &clk_src->base;
819 	}
820 
821 	kfree(clk_src);
822 	BREAK_TO_DEBUGGER();
823 	return NULL;
824 }
825 
826 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
827 {
828 	int i;
829 
830 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
831 					  GFP_KERNEL);
832 
833 	if (!hubbub2)
834 		return NULL;
835 
836 #undef REG_STRUCT
837 #define REG_STRUCT hubbub_reg
838 	hubbub_reg_init();
839 
840 #undef REG_STRUCT
841 #define REG_STRUCT vmid_regs
842 	vmid_regs_init(0),
843 	vmid_regs_init(1),
844 	vmid_regs_init(2),
845 	vmid_regs_init(3),
846 	vmid_regs_init(4),
847 	vmid_regs_init(5),
848 	vmid_regs_init(6),
849 	vmid_regs_init(7),
850 	vmid_regs_init(8),
851 	vmid_regs_init(9),
852 	vmid_regs_init(10),
853 	vmid_regs_init(11),
854 	vmid_regs_init(12),
855 	vmid_regs_init(13),
856 	vmid_regs_init(14),
857 	vmid_regs_init(15);
858 
859 	hubbub32_construct(hubbub2, ctx,
860 			&hubbub_reg,
861 			&hubbub_shift,
862 			&hubbub_mask,
863 			ctx->dc->dml.ip.det_buffer_size_kbytes,
864 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
865 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
866 
867 
868 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
869 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
870 
871 		vmid->ctx = ctx;
872 
873 		vmid->regs = &vmid_regs[i];
874 		vmid->shifts = &vmid_shifts;
875 		vmid->masks = &vmid_masks;
876 	}
877 
878 	return &hubbub2->base;
879 }
880 
881 static struct hubp *dcn32_hubp_create(
882 	struct dc_context *ctx,
883 	uint32_t inst)
884 {
885 	struct dcn20_hubp *hubp2 =
886 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
887 
888 	if (!hubp2)
889 		return NULL;
890 
891 #undef REG_STRUCT
892 #define REG_STRUCT hubp_regs
893 	hubp_regs_init(0),
894 	hubp_regs_init(1),
895 	hubp_regs_init(2),
896 	hubp_regs_init(3);
897 
898 	if (hubp32_construct(hubp2, ctx, inst,
899 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
900 		return &hubp2->base;
901 
902 	BREAK_TO_DEBUGGER();
903 	kfree(hubp2);
904 	return NULL;
905 }
906 
907 static void dcn32_dpp_destroy(struct dpp **dpp)
908 {
909 	kfree(TO_DCN30_DPP(*dpp));
910 	*dpp = NULL;
911 }
912 
913 static struct dpp *dcn32_dpp_create(
914 	struct dc_context *ctx,
915 	uint32_t inst)
916 {
917 	struct dcn3_dpp *dpp3 =
918 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
919 
920 	if (!dpp3)
921 		return NULL;
922 
923 #undef REG_STRUCT
924 #define REG_STRUCT dpp_regs
925 	dpp_regs_init(0),
926 	dpp_regs_init(1),
927 	dpp_regs_init(2),
928 	dpp_regs_init(3);
929 
930 	if (dpp32_construct(dpp3, ctx, inst,
931 			&dpp_regs[inst], &tf_shift, &tf_mask))
932 		return &dpp3->base;
933 
934 	BREAK_TO_DEBUGGER();
935 	kfree(dpp3);
936 	return NULL;
937 }
938 
939 static struct mpc *dcn32_mpc_create(
940 		struct dc_context *ctx,
941 		int num_mpcc,
942 		int num_rmu)
943 {
944 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
945 					  GFP_KERNEL);
946 
947 	if (!mpc30)
948 		return NULL;
949 
950 #undef REG_STRUCT
951 #define REG_STRUCT mpc_regs
952 	dcn_mpc_regs_init();
953 
954 	dcn32_mpc_construct(mpc30, ctx,
955 			&mpc_regs,
956 			&mpc_shift,
957 			&mpc_mask,
958 			num_mpcc,
959 			num_rmu);
960 
961 	return &mpc30->base;
962 }
963 
964 static struct output_pixel_processor *dcn32_opp_create(
965 	struct dc_context *ctx, uint32_t inst)
966 {
967 	struct dcn20_opp *opp2 =
968 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
969 
970 	if (!opp2) {
971 		BREAK_TO_DEBUGGER();
972 		return NULL;
973 	}
974 
975 #undef REG_STRUCT
976 #define REG_STRUCT opp_regs
977 	opp_regs_init(0),
978 	opp_regs_init(1),
979 	opp_regs_init(2),
980 	opp_regs_init(3);
981 
982 	dcn20_opp_construct(opp2, ctx, inst,
983 			&opp_regs[inst], &opp_shift, &opp_mask);
984 	return &opp2->base;
985 }
986 
987 
988 static struct timing_generator *dcn32_timing_generator_create(
989 		struct dc_context *ctx,
990 		uint32_t instance)
991 {
992 	struct optc *tgn10 =
993 		kzalloc(sizeof(struct optc), GFP_KERNEL);
994 
995 	if (!tgn10)
996 		return NULL;
997 
998 #undef REG_STRUCT
999 #define REG_STRUCT optc_regs
1000 	optc_regs_init(0),
1001 	optc_regs_init(1),
1002 	optc_regs_init(2),
1003 	optc_regs_init(3);
1004 
1005 	tgn10->base.inst = instance;
1006 	tgn10->base.ctx = ctx;
1007 
1008 	tgn10->tg_regs = &optc_regs[instance];
1009 	tgn10->tg_shift = &optc_shift;
1010 	tgn10->tg_mask = &optc_mask;
1011 
1012 	dcn32_timing_generator_init(tgn10);
1013 
1014 	return &tgn10->base;
1015 }
1016 
1017 static const struct encoder_feature_support link_enc_feature = {
1018 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1019 		.max_hdmi_pixel_clock = 600000,
1020 		.hdmi_ycbcr420_supported = true,
1021 		.dp_ycbcr420_supported = true,
1022 		.fec_supported = true,
1023 		.flags.bits.IS_HBR2_CAPABLE = true,
1024 		.flags.bits.IS_HBR3_CAPABLE = true,
1025 		.flags.bits.IS_TPS3_CAPABLE = true,
1026 		.flags.bits.IS_TPS4_CAPABLE = true
1027 };
1028 
1029 static struct link_encoder *dcn32_link_encoder_create(
1030 	struct dc_context *ctx,
1031 	const struct encoder_init_data *enc_init_data)
1032 {
1033 	struct dcn20_link_encoder *enc20 =
1034 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1035 
1036 	if (!enc20)
1037 		return NULL;
1038 
1039 #undef REG_STRUCT
1040 #define REG_STRUCT link_enc_aux_regs
1041 	aux_regs_init(0),
1042 	aux_regs_init(1),
1043 	aux_regs_init(2),
1044 	aux_regs_init(3),
1045 	aux_regs_init(4);
1046 
1047 #undef REG_STRUCT
1048 #define REG_STRUCT link_enc_hpd_regs
1049 	hpd_regs_init(0),
1050 	hpd_regs_init(1),
1051 	hpd_regs_init(2),
1052 	hpd_regs_init(3),
1053 	hpd_regs_init(4);
1054 
1055 #undef REG_STRUCT
1056 #define REG_STRUCT link_enc_regs
1057 	link_regs_init(0, A),
1058 	link_regs_init(1, B),
1059 	link_regs_init(2, C),
1060 	link_regs_init(3, D),
1061 	link_regs_init(4, E);
1062 
1063 	dcn32_link_encoder_construct(enc20,
1064 			enc_init_data,
1065 			&link_enc_feature,
1066 			&link_enc_regs[enc_init_data->transmitter],
1067 			&link_enc_aux_regs[enc_init_data->channel - 1],
1068 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1069 			&le_shift,
1070 			&le_mask);
1071 
1072 	return &enc20->enc10.base;
1073 }
1074 
1075 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1076 {
1077 	struct dcn31_panel_cntl *panel_cntl =
1078 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1079 
1080 	if (!panel_cntl)
1081 		return NULL;
1082 
1083 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1084 
1085 	return &panel_cntl->base;
1086 }
1087 
1088 static void read_dce_straps(
1089 	struct dc_context *ctx,
1090 	struct resource_straps *straps)
1091 {
1092 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1093 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1094 
1095 }
1096 
1097 static struct audio *dcn32_create_audio(
1098 		struct dc_context *ctx, unsigned int inst)
1099 {
1100 
1101 #undef REG_STRUCT
1102 #define REG_STRUCT audio_regs
1103 	audio_regs_init(0),
1104 	audio_regs_init(1),
1105 	audio_regs_init(2),
1106 	audio_regs_init(3),
1107 	audio_regs_init(4);
1108 
1109 	return dce_audio_create(ctx, inst,
1110 			&audio_regs[inst], &audio_shift, &audio_mask);
1111 }
1112 
1113 static struct vpg *dcn32_vpg_create(
1114 	struct dc_context *ctx,
1115 	uint32_t inst)
1116 {
1117 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1118 
1119 	if (!vpg3)
1120 		return NULL;
1121 
1122 #undef REG_STRUCT
1123 #define REG_STRUCT vpg_regs
1124 	vpg_regs_init(0),
1125 	vpg_regs_init(1),
1126 	vpg_regs_init(2),
1127 	vpg_regs_init(3),
1128 	vpg_regs_init(4),
1129 	vpg_regs_init(5),
1130 	vpg_regs_init(6),
1131 	vpg_regs_init(7),
1132 	vpg_regs_init(8),
1133 	vpg_regs_init(9);
1134 
1135 	vpg3_construct(vpg3, ctx, inst,
1136 			&vpg_regs[inst],
1137 			&vpg_shift,
1138 			&vpg_mask);
1139 
1140 	return &vpg3->base;
1141 }
1142 
1143 static struct afmt *dcn32_afmt_create(
1144 	struct dc_context *ctx,
1145 	uint32_t inst)
1146 {
1147 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1148 
1149 	if (!afmt3)
1150 		return NULL;
1151 
1152 #undef REG_STRUCT
1153 #define REG_STRUCT afmt_regs
1154 	afmt_regs_init(0),
1155 	afmt_regs_init(1),
1156 	afmt_regs_init(2),
1157 	afmt_regs_init(3),
1158 	afmt_regs_init(4),
1159 	afmt_regs_init(5);
1160 
1161 	afmt3_construct(afmt3, ctx, inst,
1162 			&afmt_regs[inst],
1163 			&afmt_shift,
1164 			&afmt_mask);
1165 
1166 	return &afmt3->base;
1167 }
1168 
1169 static struct apg *dcn31_apg_create(
1170 	struct dc_context *ctx,
1171 	uint32_t inst)
1172 {
1173 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1174 
1175 	if (!apg31)
1176 		return NULL;
1177 
1178 #undef REG_STRUCT
1179 #define REG_STRUCT apg_regs
1180 	apg_regs_init(0),
1181 	apg_regs_init(1),
1182 	apg_regs_init(2),
1183 	apg_regs_init(3);
1184 
1185 	apg31_construct(apg31, ctx, inst,
1186 			&apg_regs[inst],
1187 			&apg_shift,
1188 			&apg_mask);
1189 
1190 	return &apg31->base;
1191 }
1192 
1193 static struct stream_encoder *dcn32_stream_encoder_create(
1194 	enum engine_id eng_id,
1195 	struct dc_context *ctx)
1196 {
1197 	struct dcn10_stream_encoder *enc1;
1198 	struct vpg *vpg;
1199 	struct afmt *afmt;
1200 	int vpg_inst;
1201 	int afmt_inst;
1202 
1203 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1204 	if (eng_id <= ENGINE_ID_DIGF) {
1205 		vpg_inst = eng_id;
1206 		afmt_inst = eng_id;
1207 	} else
1208 		return NULL;
1209 
1210 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1211 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1212 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1213 
1214 	if (!enc1 || !vpg || !afmt) {
1215 		kfree(enc1);
1216 		kfree(vpg);
1217 		kfree(afmt);
1218 		return NULL;
1219 	}
1220 
1221 #undef REG_STRUCT
1222 #define REG_STRUCT stream_enc_regs
1223 	stream_enc_regs_init(0),
1224 	stream_enc_regs_init(1),
1225 	stream_enc_regs_init(2),
1226 	stream_enc_regs_init(3),
1227 	stream_enc_regs_init(4);
1228 
1229 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1230 					eng_id, vpg, afmt,
1231 					&stream_enc_regs[eng_id],
1232 					&se_shift, &se_mask);
1233 
1234 	return &enc1->base;
1235 }
1236 
1237 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1238 	enum engine_id eng_id,
1239 	struct dc_context *ctx)
1240 {
1241 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1242 	struct vpg *vpg;
1243 	struct apg *apg;
1244 	uint32_t hpo_dp_inst;
1245 	uint32_t vpg_inst;
1246 	uint32_t apg_inst;
1247 
1248 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1249 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1250 
1251 	/* Mapping of VPG register blocks to HPO DP block instance:
1252 	 * VPG[6] -> HPO_DP[0]
1253 	 * VPG[7] -> HPO_DP[1]
1254 	 * VPG[8] -> HPO_DP[2]
1255 	 * VPG[9] -> HPO_DP[3]
1256 	 */
1257 	vpg_inst = hpo_dp_inst + 6;
1258 
1259 	/* Mapping of APG register blocks to HPO DP block instance:
1260 	 * APG[0] -> HPO_DP[0]
1261 	 * APG[1] -> HPO_DP[1]
1262 	 * APG[2] -> HPO_DP[2]
1263 	 * APG[3] -> HPO_DP[3]
1264 	 */
1265 	apg_inst = hpo_dp_inst;
1266 
1267 	/* allocate HPO stream encoder and create VPG sub-block */
1268 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1269 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1270 	apg = dcn31_apg_create(ctx, apg_inst);
1271 
1272 	if (!hpo_dp_enc31 || !vpg || !apg) {
1273 		kfree(hpo_dp_enc31);
1274 		kfree(vpg);
1275 		kfree(apg);
1276 		return NULL;
1277 	}
1278 
1279 #undef REG_STRUCT
1280 #define REG_STRUCT hpo_dp_stream_enc_regs
1281 	hpo_dp_stream_encoder_reg_init(0),
1282 	hpo_dp_stream_encoder_reg_init(1),
1283 	hpo_dp_stream_encoder_reg_init(2),
1284 	hpo_dp_stream_encoder_reg_init(3);
1285 
1286 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1287 					hpo_dp_inst, eng_id, vpg, apg,
1288 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1289 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1290 
1291 	return &hpo_dp_enc31->base;
1292 }
1293 
1294 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1295 	uint8_t inst,
1296 	struct dc_context *ctx)
1297 {
1298 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1299 
1300 	/* allocate HPO link encoder */
1301 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1302 
1303 #undef REG_STRUCT
1304 #define REG_STRUCT hpo_dp_link_enc_regs
1305 	hpo_dp_link_encoder_reg_init(0),
1306 	hpo_dp_link_encoder_reg_init(1);
1307 
1308 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1309 					&hpo_dp_link_enc_regs[inst],
1310 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1311 
1312 	return &hpo_dp_enc31->base;
1313 }
1314 
1315 static struct dce_hwseq *dcn32_hwseq_create(
1316 	struct dc_context *ctx)
1317 {
1318 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1319 
1320 #undef REG_STRUCT
1321 #define REG_STRUCT hwseq_reg
1322 	hwseq_reg_init();
1323 
1324 	if (hws) {
1325 		hws->ctx = ctx;
1326 		hws->regs = &hwseq_reg;
1327 		hws->shifts = &hwseq_shift;
1328 		hws->masks = &hwseq_mask;
1329 	}
1330 	return hws;
1331 }
1332 static const struct resource_create_funcs res_create_funcs = {
1333 	.read_dce_straps = read_dce_straps,
1334 	.create_audio = dcn32_create_audio,
1335 	.create_stream_encoder = dcn32_stream_encoder_create,
1336 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1337 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1338 	.create_hwseq = dcn32_hwseq_create,
1339 };
1340 
1341 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1342 {
1343 	unsigned int i;
1344 
1345 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1346 		if (pool->base.stream_enc[i] != NULL) {
1347 			if (pool->base.stream_enc[i]->vpg != NULL) {
1348 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1349 				pool->base.stream_enc[i]->vpg = NULL;
1350 			}
1351 			if (pool->base.stream_enc[i]->afmt != NULL) {
1352 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1353 				pool->base.stream_enc[i]->afmt = NULL;
1354 			}
1355 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1356 			pool->base.stream_enc[i] = NULL;
1357 		}
1358 	}
1359 
1360 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1361 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1362 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1363 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1364 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1365 			}
1366 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1367 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1368 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1369 			}
1370 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1371 			pool->base.hpo_dp_stream_enc[i] = NULL;
1372 		}
1373 	}
1374 
1375 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1376 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1377 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1378 			pool->base.hpo_dp_link_enc[i] = NULL;
1379 		}
1380 	}
1381 
1382 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1383 		if (pool->base.dscs[i] != NULL)
1384 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1385 	}
1386 
1387 	if (pool->base.mpc != NULL) {
1388 		kfree(TO_DCN20_MPC(pool->base.mpc));
1389 		pool->base.mpc = NULL;
1390 	}
1391 	if (pool->base.hubbub != NULL) {
1392 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1393 		pool->base.hubbub = NULL;
1394 	}
1395 	for (i = 0; i < pool->base.pipe_count; i++) {
1396 		if (pool->base.dpps[i] != NULL)
1397 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1398 
1399 		if (pool->base.ipps[i] != NULL)
1400 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1401 
1402 		if (pool->base.hubps[i] != NULL) {
1403 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1404 			pool->base.hubps[i] = NULL;
1405 		}
1406 
1407 		if (pool->base.irqs != NULL) {
1408 			dal_irq_service_destroy(&pool->base.irqs);
1409 		}
1410 	}
1411 
1412 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1413 		if (pool->base.engines[i] != NULL)
1414 			dce110_engine_destroy(&pool->base.engines[i]);
1415 		if (pool->base.hw_i2cs[i] != NULL) {
1416 			kfree(pool->base.hw_i2cs[i]);
1417 			pool->base.hw_i2cs[i] = NULL;
1418 		}
1419 		if (pool->base.sw_i2cs[i] != NULL) {
1420 			kfree(pool->base.sw_i2cs[i]);
1421 			pool->base.sw_i2cs[i] = NULL;
1422 		}
1423 	}
1424 
1425 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1426 		if (pool->base.opps[i] != NULL)
1427 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1428 	}
1429 
1430 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1431 		if (pool->base.timing_generators[i] != NULL)	{
1432 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1433 			pool->base.timing_generators[i] = NULL;
1434 		}
1435 	}
1436 
1437 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1438 		if (pool->base.dwbc[i] != NULL) {
1439 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1440 			pool->base.dwbc[i] = NULL;
1441 		}
1442 		if (pool->base.mcif_wb[i] != NULL) {
1443 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1444 			pool->base.mcif_wb[i] = NULL;
1445 		}
1446 	}
1447 
1448 	for (i = 0; i < pool->base.audio_count; i++) {
1449 		if (pool->base.audios[i])
1450 			dce_aud_destroy(&pool->base.audios[i]);
1451 	}
1452 
1453 	for (i = 0; i < pool->base.clk_src_count; i++) {
1454 		if (pool->base.clock_sources[i] != NULL) {
1455 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1456 			pool->base.clock_sources[i] = NULL;
1457 		}
1458 	}
1459 
1460 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1461 		if (pool->base.mpc_lut[i] != NULL) {
1462 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1463 			pool->base.mpc_lut[i] = NULL;
1464 		}
1465 		if (pool->base.mpc_shaper[i] != NULL) {
1466 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1467 			pool->base.mpc_shaper[i] = NULL;
1468 		}
1469 	}
1470 
1471 	if (pool->base.dp_clock_source != NULL) {
1472 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1473 		pool->base.dp_clock_source = NULL;
1474 	}
1475 
1476 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1477 		if (pool->base.multiple_abms[i] != NULL)
1478 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1479 	}
1480 
1481 	if (pool->base.psr != NULL)
1482 		dmub_psr_destroy(&pool->base.psr);
1483 
1484 	if (pool->base.dccg != NULL)
1485 		dcn_dccg_destroy(&pool->base.dccg);
1486 
1487 	if (pool->base.oem_device != NULL) {
1488 		struct dc *dc = pool->base.oem_device->ctx->dc;
1489 
1490 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1491 	}
1492 }
1493 
1494 
1495 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1496 {
1497 	int i;
1498 	uint32_t dwb_count = pool->res_cap->num_dwb;
1499 
1500 	for (i = 0; i < dwb_count; i++) {
1501 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1502 						    GFP_KERNEL);
1503 
1504 		if (!dwbc30) {
1505 			dm_error("DC: failed to create dwbc30!\n");
1506 			return false;
1507 		}
1508 
1509 #undef REG_STRUCT
1510 #define REG_STRUCT dwbc30_regs
1511 		dwbc_regs_dcn3_init(0);
1512 
1513 		dcn30_dwbc_construct(dwbc30, ctx,
1514 				&dwbc30_regs[i],
1515 				&dwbc30_shift,
1516 				&dwbc30_mask,
1517 				i);
1518 
1519 		pool->dwbc[i] = &dwbc30->base;
1520 	}
1521 	return true;
1522 }
1523 
1524 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1525 {
1526 	int i;
1527 	uint32_t dwb_count = pool->res_cap->num_dwb;
1528 
1529 	for (i = 0; i < dwb_count; i++) {
1530 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1531 						    GFP_KERNEL);
1532 
1533 		if (!mcif_wb30) {
1534 			dm_error("DC: failed to create mcif_wb30!\n");
1535 			return false;
1536 		}
1537 
1538 #undef REG_STRUCT
1539 #define REG_STRUCT mcif_wb30_regs
1540 		mcif_wb_regs_dcn3_init(0);
1541 
1542 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1543 				&mcif_wb30_regs[i],
1544 				&mcif_wb30_shift,
1545 				&mcif_wb30_mask,
1546 				i);
1547 
1548 		pool->mcif_wb[i] = &mcif_wb30->base;
1549 	}
1550 	return true;
1551 }
1552 
1553 static struct display_stream_compressor *dcn32_dsc_create(
1554 	struct dc_context *ctx, uint32_t inst)
1555 {
1556 	struct dcn20_dsc *dsc =
1557 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1558 
1559 	if (!dsc) {
1560 		BREAK_TO_DEBUGGER();
1561 		return NULL;
1562 	}
1563 
1564 #undef REG_STRUCT
1565 #define REG_STRUCT dsc_regs
1566 	dsc_regsDCN20_init(0),
1567 	dsc_regsDCN20_init(1),
1568 	dsc_regsDCN20_init(2),
1569 	dsc_regsDCN20_init(3);
1570 
1571 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1572 
1573 	dsc->max_image_width = 6016;
1574 
1575 	return &dsc->base;
1576 }
1577 
1578 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1579 {
1580 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1581 
1582 	dcn32_resource_destruct(dcn32_pool);
1583 	kfree(dcn32_pool);
1584 	*pool = NULL;
1585 }
1586 
1587 bool dcn32_acquire_post_bldn_3dlut(
1588 		struct resource_context *res_ctx,
1589 		const struct resource_pool *pool,
1590 		int mpcc_id,
1591 		struct dc_3dlut **lut,
1592 		struct dc_transfer_func **shaper)
1593 {
1594 	bool ret = false;
1595 
1596 	ASSERT(*lut == NULL && *shaper == NULL);
1597 	*lut = NULL;
1598 	*shaper = NULL;
1599 
1600 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1601 		*lut = pool->mpc_lut[mpcc_id];
1602 		*shaper = pool->mpc_shaper[mpcc_id];
1603 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1604 		ret = true;
1605 	}
1606 	return ret;
1607 }
1608 
1609 bool dcn32_release_post_bldn_3dlut(
1610 		struct resource_context *res_ctx,
1611 		const struct resource_pool *pool,
1612 		struct dc_3dlut **lut,
1613 		struct dc_transfer_func **shaper)
1614 {
1615 	int i;
1616 	bool ret = false;
1617 
1618 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1619 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1620 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1621 			pool->mpc_lut[i]->state.raw = 0;
1622 			*lut = NULL;
1623 			*shaper = NULL;
1624 			ret = true;
1625 			break;
1626 		}
1627 	}
1628 	return ret;
1629 }
1630 
1631 static void dcn32_enable_phantom_plane(struct dc *dc,
1632 		struct dc_state *context,
1633 		struct dc_stream_state *phantom_stream,
1634 		unsigned int dc_pipe_idx)
1635 {
1636 	struct dc_plane_state *phantom_plane = NULL;
1637 	struct dc_plane_state *prev_phantom_plane = NULL;
1638 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1639 
1640 	while (curr_pipe) {
1641 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1642 			phantom_plane = prev_phantom_plane;
1643 		else
1644 			phantom_plane = dc_create_plane_state(dc);
1645 
1646 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1647 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1648 				sizeof(phantom_plane->scaling_quality));
1649 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1650 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1651 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1652 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1653 				sizeof(phantom_plane->plane_size));
1654 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1655 				sizeof(phantom_plane->tiling_info));
1656 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1657 		phantom_plane->format = curr_pipe->plane_state->format;
1658 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1659 		phantom_plane->visible = curr_pipe->plane_state->visible;
1660 
1661 		/* Shadow pipe has small viewport. */
1662 		phantom_plane->clip_rect.y = 0;
1663 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1664 
1665 		phantom_plane->is_phantom = true;
1666 
1667 		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1668 
1669 		curr_pipe = curr_pipe->bottom_pipe;
1670 		prev_phantom_plane = phantom_plane;
1671 	}
1672 }
1673 
1674 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1675 		struct dc_state *context,
1676 		display_e2e_pipe_params_st *pipes,
1677 		unsigned int pipe_cnt,
1678 		unsigned int dc_pipe_idx)
1679 {
1680 	struct dc_stream_state *phantom_stream = NULL;
1681 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1682 
1683 	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
1684 	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
1685 	phantom_stream->dpms_off = true;
1686 	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
1687 	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
1688 	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
1689 	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
1690 
1691 	/* stream has limited viewport and small timing */
1692 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1693 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1694 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1695 	DC_FP_START();
1696 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1697 	DC_FP_END();
1698 
1699 	dc_add_stream_to_ctx(dc, context, phantom_stream);
1700 	return phantom_stream;
1701 }
1702 
1703 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
1704 {
1705 	int i;
1706 	struct dc_plane_state *phantom_plane = NULL;
1707 	struct dc_stream_state *phantom_stream = NULL;
1708 
1709 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1710 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1711 
1712 		if (resource_is_pipe_type(pipe, OTG_MASTER) &&
1713 				resource_is_pipe_type(pipe, DPP_PIPE) &&
1714 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1715 			phantom_plane = pipe->plane_state;
1716 			phantom_stream = pipe->stream;
1717 
1718 			dc_plane_state_retain(phantom_plane);
1719 			dc_stream_retain(phantom_stream);
1720 		}
1721 	}
1722 }
1723 
1724 // return true if removed piped from ctx, false otherwise
1725 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
1726 {
1727 	int i;
1728 	bool removed_pipe = false;
1729 	struct dc_plane_state *phantom_plane = NULL;
1730 	struct dc_stream_state *phantom_stream = NULL;
1731 
1732 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1733 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1734 		// build scaling params for phantom pipes
1735 		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1736 			phantom_plane = pipe->plane_state;
1737 			phantom_stream = pipe->stream;
1738 
1739 			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
1740 			dc_remove_stream_from_ctx(dc, context, pipe->stream);
1741 
1742 			/* Ref count is incremented on allocation and also when added to the context.
1743 			 * Therefore we must call release for the the phantom plane and stream once
1744 			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
1745 			 */
1746 			dc_plane_state_release(phantom_plane);
1747 			dc_stream_release(phantom_stream);
1748 
1749 			removed_pipe = true;
1750 		}
1751 
1752 		/* For non-full updates, a shallow copy of the current state
1753 		 * is created. In this case we don't want to erase the current
1754 		 * state (there can be 2 HIRQL threads, one in flip, and one in
1755 		 * checkMPO) that can cause a race condition.
1756 		 *
1757 		 * This is just a workaround, needs a proper fix.
1758 		 */
1759 		if (!fast_update) {
1760 			// Clear all phantom stream info
1761 			if (pipe->stream) {
1762 				pipe->stream->mall_stream_config.type = SUBVP_NONE;
1763 				pipe->stream->mall_stream_config.paired_stream = NULL;
1764 			}
1765 
1766 			if (pipe->plane_state) {
1767 				pipe->plane_state->is_phantom = false;
1768 			}
1769 		}
1770 	}
1771 	return removed_pipe;
1772 }
1773 
1774 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1775  * require a phantom pipe / stream
1776  */
1777 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1778 		display_e2e_pipe_params_st *pipes,
1779 		unsigned int pipe_cnt,
1780 		unsigned int index)
1781 {
1782 	struct dc_stream_state *phantom_stream = NULL;
1783 	unsigned int i;
1784 
1785 	// The index of the DC pipe passed into this function is guarenteed to
1786 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1787 	// already have phantom pipe assigned, etc.) by previous checks.
1788 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1789 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1790 
1791 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1792 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1793 
1794 		// Build scaling params for phantom pipes which were newly added.
1795 		// We determine which phantom pipes were added by comparing with
1796 		// the phantom stream.
1797 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1798 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1799 			pipe->stream->use_dynamic_meta = false;
1800 			pipe->plane_state->flip_immediate = false;
1801 			if (!resource_build_scaling_params(pipe)) {
1802 				// Log / remove phantom pipes since failed to build scaling params
1803 			}
1804 		}
1805 	}
1806 }
1807 
1808 bool dcn32_validate_bandwidth(struct dc *dc,
1809 		struct dc_state *context,
1810 		bool fast_validate)
1811 {
1812 	bool out = false;
1813 
1814 	BW_VAL_TRACE_SETUP();
1815 
1816 	int vlevel = 0;
1817 	int pipe_cnt = 0;
1818 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1819 	struct mall_temp_config mall_temp_config;
1820 
1821 	/* To handle Freesync properly, setting FreeSync DML parameters
1822 	 * to its default state for the first stage of validation
1823 	 */
1824 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1825 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1826 
1827 	DC_LOGGER_INIT(dc->ctx->logger);
1828 
1829 	/* For fast validation, there are situations where a shallow copy of
1830 	 * of the dc->current_state is created for the validation. In this case
1831 	 * we want to save and restore the mall config because we always
1832 	 * teardown subvp at the beginning of validation (and don't attempt
1833 	 * to add it back if it's fast validation). If we don't restore the
1834 	 * subvp config in cases of fast validation + shallow copy of the
1835 	 * dc->current_state, the dc->current_state will have a partially
1836 	 * removed subvp state when we did not intend to remove it.
1837 	 */
1838 	if (fast_validate) {
1839 		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
1840 		dcn32_save_mall_state(dc, context, &mall_temp_config);
1841 	}
1842 
1843 	BW_VAL_TRACE_COUNT();
1844 
1845 	DC_FP_START();
1846 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1847 	DC_FP_END();
1848 
1849 	if (fast_validate)
1850 		dcn32_restore_mall_state(dc, context, &mall_temp_config);
1851 
1852 	if (pipe_cnt == 0)
1853 		goto validate_out;
1854 
1855 	if (!out)
1856 		goto validate_fail;
1857 
1858 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1859 
1860 	if (fast_validate) {
1861 		BW_VAL_TRACE_SKIP(fast);
1862 		goto validate_out;
1863 	}
1864 
1865 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1866 
1867 	dcn32_override_min_req_memclk(dc, context);
1868 
1869 	BW_VAL_TRACE_END_WATERMARKS();
1870 
1871 	goto validate_out;
1872 
1873 validate_fail:
1874 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1875 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1876 
1877 	BW_VAL_TRACE_SKIP(fail);
1878 	out = false;
1879 
1880 validate_out:
1881 	kfree(pipes);
1882 
1883 	BW_VAL_TRACE_FINISH();
1884 
1885 	return out;
1886 }
1887 
1888 int dcn32_populate_dml_pipes_from_context(
1889 	struct dc *dc, struct dc_state *context,
1890 	display_e2e_pipe_params_st *pipes,
1891 	bool fast_validate)
1892 {
1893 	int i, pipe_cnt;
1894 	struct resource_context *res_ctx = &context->res_ctx;
1895 	struct pipe_ctx *pipe = NULL;
1896 	bool subvp_in_use = false;
1897 	struct dc_crtc_timing *timing;
1898 	bool vsr_odm_support = false;
1899 
1900 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1901 
1902 	/* Determine whether we will apply ODM 2to1 policy:
1903 	 * Applies to single display and where the number of planes is less than 3.
1904 	 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
1905 	 *
1906 	 * Apply pipe split policy first so we can predict the pipe split correctly
1907 	 * (dcn32_predict_pipe_split).
1908 	 */
1909 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1910 		if (!res_ctx->pipe_ctx[i].stream)
1911 			continue;
1912 		pipe = &res_ctx->pipe_ctx[i];
1913 		timing = &pipe->stream->timing;
1914 
1915 		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1916 		vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 &&
1917 				res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width);
1918 		if (context->stream_count == 1 &&
1919 				context->stream_status[0].plane_count == 1 &&
1920 				!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
1921 				is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1922 				pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1923 				dc->debug.enable_single_display_2to1_odm_policy &&
1924 				!vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr
1925 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1926 		}
1927 		pipe_cnt++;
1928 	}
1929 
1930 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1931 
1932 		if (!res_ctx->pipe_ctx[i].stream)
1933 			continue;
1934 		pipe = &res_ctx->pipe_ctx[i];
1935 		timing = &pipe->stream->timing;
1936 
1937 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1938 		DC_FP_START();
1939 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1940 		DC_FP_END();
1941 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1942 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1943 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1944 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1945 
1946 		/* Only populate DML input with subvp info for full updates.
1947 		 * This is just a workaround -- needs a proper fix.
1948 		 */
1949 		if (!fast_validate) {
1950 			switch (pipe->stream->mall_stream_config.type) {
1951 			case SUBVP_MAIN:
1952 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1953 				subvp_in_use = true;
1954 				break;
1955 			case SUBVP_PHANTOM:
1956 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1957 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1958 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1959 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1960 				break;
1961 			case SUBVP_NONE:
1962 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1963 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1964 				break;
1965 			default:
1966 				break;
1967 			}
1968 		}
1969 
1970 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1971 		if (pipes[pipe_cnt].dout.dsc_enable) {
1972 			switch (timing->display_color_depth) {
1973 			case COLOR_DEPTH_888:
1974 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1975 				break;
1976 			case COLOR_DEPTH_101010:
1977 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1978 				break;
1979 			case COLOR_DEPTH_121212:
1980 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1981 				break;
1982 			default:
1983 				ASSERT(0);
1984 				break;
1985 			}
1986 		}
1987 
1988 		DC_FP_START();
1989 		dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
1990 		DC_FP_END();
1991 
1992 		pipe_cnt++;
1993 	}
1994 
1995 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1996 	 * the DET available for each pipe). Use the DET override input to maintain our driver
1997 	 * policy.
1998 	 */
1999 	dcn32_set_det_allocations(dc, context, pipes);
2000 
2001 	// In general cases we want to keep the dram clock change requirement
2002 	// (prefer configs that support MCLK switch). Only override to false
2003 	// for SubVP
2004 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
2005 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
2006 	else
2007 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
2008 
2009 	return pipe_cnt;
2010 }
2011 
2012 static struct dc_cap_funcs cap_funcs = {
2013 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2014 };
2015 
2016 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2017 				display_e2e_pipe_params_st *pipes,
2018 				int pipe_cnt,
2019 				int vlevel)
2020 {
2021     DC_FP_START();
2022     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2023     DC_FP_END();
2024 }
2025 
2026 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2027 {
2028 	DC_FP_START();
2029 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2030 	DC_FP_END();
2031 }
2032 
2033 static struct resource_funcs dcn32_res_pool_funcs = {
2034 	.destroy = dcn32_destroy_resource_pool,
2035 	.link_enc_create = dcn32_link_encoder_create,
2036 	.link_enc_create_minimal = NULL,
2037 	.panel_cntl_create = dcn32_panel_cntl_create,
2038 	.validate_bandwidth = dcn32_validate_bandwidth,
2039 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2040 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2041 	.acquire_free_pipe_as_secondary_dpp_pipe = dcn32_acquire_free_pipe_as_secondary_dpp_pipe,
2042 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2043 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2044 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2045 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2046 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2047 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2048 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2049 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2050 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2051 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2052 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2053 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2054 	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
2055 	.retain_phantom_pipes = dcn32_retain_phantom_pipes,
2056 	.save_mall_state = dcn32_save_mall_state,
2057 	.restore_mall_state = dcn32_restore_mall_state,
2058 };
2059 
2060 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2061 {
2062 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2063 	/* DCN32 support max 4 pipes */
2064 	value = value & 0xf;
2065 	return value;
2066 }
2067 
2068 
2069 static bool dcn32_resource_construct(
2070 	uint8_t num_virtual_links,
2071 	struct dc *dc,
2072 	struct dcn32_resource_pool *pool)
2073 {
2074 	int i, j;
2075 	struct dc_context *ctx = dc->ctx;
2076 	struct irq_service_init_data init_data;
2077 	struct ddc_service_init_data ddc_init_data = {0};
2078 	uint32_t pipe_fuses = 0;
2079 	uint32_t num_pipes  = 4;
2080 
2081 #undef REG_STRUCT
2082 #define REG_STRUCT bios_regs
2083 	bios_regs_init();
2084 
2085 #undef REG_STRUCT
2086 #define REG_STRUCT clk_src_regs
2087 	clk_src_regs_init(0, A),
2088 	clk_src_regs_init(1, B),
2089 	clk_src_regs_init(2, C),
2090 	clk_src_regs_init(3, D),
2091 	clk_src_regs_init(4, E);
2092 
2093 #undef REG_STRUCT
2094 #define REG_STRUCT abm_regs
2095 	abm_regs_init(0),
2096 	abm_regs_init(1),
2097 	abm_regs_init(2),
2098 	abm_regs_init(3);
2099 
2100 #undef REG_STRUCT
2101 #define REG_STRUCT dccg_regs
2102 	dccg_regs_init();
2103 
2104 	DC_FP_START();
2105 
2106 	ctx->dc_bios->regs = &bios_regs;
2107 
2108 	pool->base.res_cap = &res_cap_dcn32;
2109 	/* max number of pipes for ASIC before checking for pipe fuses */
2110 	num_pipes  = pool->base.res_cap->num_timing_generator;
2111 	pipe_fuses = read_pipe_fuses(ctx);
2112 
2113 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2114 		if (pipe_fuses & 1 << i)
2115 			num_pipes--;
2116 
2117 	if (pipe_fuses & 1)
2118 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2119 
2120 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2121 		ASSERT(0); //Entire DCN is harvested!
2122 
2123 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2124 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2125 	 */
2126 	dcn3_2_ip.max_num_dpp = num_pipes;
2127 	dcn3_2_ip.max_num_otg = num_pipes;
2128 
2129 	pool->base.funcs = &dcn32_res_pool_funcs;
2130 
2131 	/*************************************************
2132 	 *  Resource + asic cap harcoding                *
2133 	 *************************************************/
2134 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2135 	pool->base.timing_generator_count = num_pipes;
2136 	pool->base.pipe_count = num_pipes;
2137 	pool->base.mpcc_count = num_pipes;
2138 	dc->caps.max_downscale_ratio = 600;
2139 	dc->caps.i2c_speed_in_khz = 100;
2140 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2141 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2142 	dc->caps.max_cursor_size = 64;
2143 	dc->caps.min_horizontal_blanking_period = 80;
2144 	dc->caps.dmdata_alloc_size = 2048;
2145 	dc->caps.mall_size_per_mem_channel = 4;
2146 	dc->caps.mall_size_total = 0;
2147 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2148 
2149 	dc->caps.cache_line_size = 64;
2150 	dc->caps.cache_num_ways = 16;
2151 
2152 	/* Calculate the available MALL space */
2153 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2154 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2155 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2156 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2157 
2158 	dc->caps.subvp_fw_processing_delay_us = 15;
2159 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2160 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2161 	dc->caps.subvp_swath_height_margin_lines = 16;
2162 	dc->caps.subvp_pstate_allow_width_us = 20;
2163 	dc->caps.subvp_vertical_int_margin_us = 30;
2164 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2165 
2166 	dc->caps.max_slave_planes = 2;
2167 	dc->caps.max_slave_yuv_planes = 2;
2168 	dc->caps.max_slave_rgb_planes = 2;
2169 	dc->caps.post_blend_color_processing = true;
2170 	dc->caps.force_dp_tps4_for_cp2520 = true;
2171 	if (dc->config.forceHBR2CP2520)
2172 		dc->caps.force_dp_tps4_for_cp2520 = false;
2173 	dc->caps.dp_hpo = true;
2174 	dc->caps.dp_hdmi21_pcon_support = true;
2175 	dc->caps.edp_dsc_support = true;
2176 	dc->caps.extended_aux_timeout_support = true;
2177 	dc->caps.dmcub_support = true;
2178 	dc->caps.seamless_odm = true;
2179 	dc->caps.max_v_total = (1 << 15) - 1;
2180 
2181 	/* Color pipeline capabilities */
2182 	dc->caps.color.dpp.dcn_arch = 1;
2183 	dc->caps.color.dpp.input_lut_shared = 0;
2184 	dc->caps.color.dpp.icsc = 1;
2185 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2186 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2187 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2188 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2189 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2190 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2191 	dc->caps.color.dpp.post_csc = 1;
2192 	dc->caps.color.dpp.gamma_corr = 1;
2193 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2194 
2195 	dc->caps.color.dpp.hw_3d_lut = 1;
2196 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2197 	// no OGAM ROM on DCN2 and later ASICs
2198 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2199 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2200 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2201 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2202 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2203 	dc->caps.color.dpp.ocsc = 0;
2204 
2205 	dc->caps.color.mpc.gamut_remap = 1;
2206 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2207 	dc->caps.color.mpc.ogam_ram = 1;
2208 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2209 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2210 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2211 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2212 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2213 	dc->caps.color.mpc.ocsc = 1;
2214 
2215 	/* Use pipe context based otg sync logic */
2216 	dc->config.use_pipe_ctx_sync_logic = true;
2217 
2218 	dc->config.dc_mode_clk_limit_support = true;
2219 	/* read VBIOS LTTPR caps */
2220 	{
2221 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2222 			enum bp_result bp_query_result;
2223 			uint8_t is_vbios_lttpr_enable = 0;
2224 
2225 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2226 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2227 		}
2228 
2229 		/* interop bit is implicit */
2230 		{
2231 			dc->caps.vbios_lttpr_aware = true;
2232 		}
2233 	}
2234 
2235 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2236 		dc->debug = debug_defaults_drv;
2237 
2238 	// Init the vm_helper
2239 	if (dc->vm_helper)
2240 		vm_helper_init(dc->vm_helper, 16);
2241 
2242 	/*************************************************
2243 	 *  Create resources                             *
2244 	 *************************************************/
2245 
2246 	/* Clock Sources for Pixel Clock*/
2247 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2248 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2249 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2250 				&clk_src_regs[0], false);
2251 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2252 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2253 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2254 				&clk_src_regs[1], false);
2255 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2256 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2257 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2258 				&clk_src_regs[2], false);
2259 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2260 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2261 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2262 				&clk_src_regs[3], false);
2263 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2264 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2265 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2266 				&clk_src_regs[4], false);
2267 
2268 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2269 
2270 	/* todo: not reuse phy_pll registers */
2271 	pool->base.dp_clock_source =
2272 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2273 				CLOCK_SOURCE_ID_DP_DTO,
2274 				&clk_src_regs[0], true);
2275 
2276 	for (i = 0; i < pool->base.clk_src_count; i++) {
2277 		if (pool->base.clock_sources[i] == NULL) {
2278 			dm_error("DC: failed to create clock sources!\n");
2279 			BREAK_TO_DEBUGGER();
2280 			goto create_fail;
2281 		}
2282 	}
2283 
2284 	/* DCCG */
2285 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2286 	if (pool->base.dccg == NULL) {
2287 		dm_error("DC: failed to create dccg!\n");
2288 		BREAK_TO_DEBUGGER();
2289 		goto create_fail;
2290 	}
2291 
2292 	/* DML */
2293 	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2294 
2295 	/* IRQ Service */
2296 	init_data.ctx = dc->ctx;
2297 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2298 	if (!pool->base.irqs)
2299 		goto create_fail;
2300 
2301 	/* HUBBUB */
2302 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2303 	if (pool->base.hubbub == NULL) {
2304 		BREAK_TO_DEBUGGER();
2305 		dm_error("DC: failed to create hubbub!\n");
2306 		goto create_fail;
2307 	}
2308 
2309 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2310 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2311 
2312 		/* if pipe is disabled, skip instance of HW pipe,
2313 		 * i.e, skip ASIC register instance
2314 		 */
2315 		if (pipe_fuses & 1 << i)
2316 			continue;
2317 
2318 		/* HUBPs */
2319 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2320 		if (pool->base.hubps[j] == NULL) {
2321 			BREAK_TO_DEBUGGER();
2322 			dm_error(
2323 				"DC: failed to create hubps!\n");
2324 			goto create_fail;
2325 		}
2326 
2327 		/* DPPs */
2328 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2329 		if (pool->base.dpps[j] == NULL) {
2330 			BREAK_TO_DEBUGGER();
2331 			dm_error(
2332 				"DC: failed to create dpps!\n");
2333 			goto create_fail;
2334 		}
2335 
2336 		/* OPPs */
2337 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2338 		if (pool->base.opps[j] == NULL) {
2339 			BREAK_TO_DEBUGGER();
2340 			dm_error(
2341 				"DC: failed to create output pixel processor!\n");
2342 			goto create_fail;
2343 		}
2344 
2345 		/* TGs */
2346 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2347 				ctx, i);
2348 		if (pool->base.timing_generators[j] == NULL) {
2349 			BREAK_TO_DEBUGGER();
2350 			dm_error("DC: failed to create tg!\n");
2351 			goto create_fail;
2352 		}
2353 
2354 		/* ABMs */
2355 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2356 				&abm_regs[i],
2357 				&abm_shift,
2358 				&abm_mask);
2359 		if (pool->base.multiple_abms[j] == NULL) {
2360 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2361 			BREAK_TO_DEBUGGER();
2362 			goto create_fail;
2363 		}
2364 
2365 		/* index for resource pool arrays for next valid pipe */
2366 		j++;
2367 	}
2368 
2369 	/* PSR */
2370 	pool->base.psr = dmub_psr_create(ctx);
2371 	if (pool->base.psr == NULL) {
2372 		dm_error("DC: failed to create psr obj!\n");
2373 		BREAK_TO_DEBUGGER();
2374 		goto create_fail;
2375 	}
2376 
2377 	/* MPCCs */
2378 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2379 	if (pool->base.mpc == NULL) {
2380 		BREAK_TO_DEBUGGER();
2381 		dm_error("DC: failed to create mpc!\n");
2382 		goto create_fail;
2383 	}
2384 
2385 	/* DSCs */
2386 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2387 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2388 		if (pool->base.dscs[i] == NULL) {
2389 			BREAK_TO_DEBUGGER();
2390 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2391 			goto create_fail;
2392 		}
2393 	}
2394 
2395 	/* DWB */
2396 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2397 		BREAK_TO_DEBUGGER();
2398 		dm_error("DC: failed to create dwbc!\n");
2399 		goto create_fail;
2400 	}
2401 
2402 	/* MMHUBBUB */
2403 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2404 		BREAK_TO_DEBUGGER();
2405 		dm_error("DC: failed to create mcif_wb!\n");
2406 		goto create_fail;
2407 	}
2408 
2409 	/* AUX and I2C */
2410 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2411 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2412 		if (pool->base.engines[i] == NULL) {
2413 			BREAK_TO_DEBUGGER();
2414 			dm_error(
2415 				"DC:failed to create aux engine!!\n");
2416 			goto create_fail;
2417 		}
2418 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2419 		if (pool->base.hw_i2cs[i] == NULL) {
2420 			BREAK_TO_DEBUGGER();
2421 			dm_error(
2422 				"DC:failed to create hw i2c!!\n");
2423 			goto create_fail;
2424 		}
2425 		pool->base.sw_i2cs[i] = NULL;
2426 	}
2427 
2428 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2429 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2430 			&res_create_funcs))
2431 		goto create_fail;
2432 
2433 	/* HW Sequencer init functions and Plane caps */
2434 	dcn32_hw_sequencer_init_functions(dc);
2435 
2436 	dc->caps.max_planes =  pool->base.pipe_count;
2437 
2438 	for (i = 0; i < dc->caps.max_planes; ++i)
2439 		dc->caps.planes[i] = plane_cap;
2440 
2441 	dc->cap_funcs = cap_funcs;
2442 
2443 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2444 		ddc_init_data.ctx = dc->ctx;
2445 		ddc_init_data.link = NULL;
2446 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2447 		ddc_init_data.id.enum_id = 0;
2448 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2449 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2450 	} else {
2451 		pool->base.oem_device = NULL;
2452 	}
2453 
2454 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2455 		dc->config.sdpif_request_limit_words_per_umc = 16;
2456 
2457 	DC_FP_END();
2458 
2459 	return true;
2460 
2461 create_fail:
2462 
2463 	DC_FP_END();
2464 
2465 	dcn32_resource_destruct(pool);
2466 
2467 	return false;
2468 }
2469 
2470 struct resource_pool *dcn32_create_resource_pool(
2471 		const struct dc_init_data *init_data,
2472 		struct dc *dc)
2473 {
2474 	struct dcn32_resource_pool *pool =
2475 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2476 
2477 	if (!pool)
2478 		return NULL;
2479 
2480 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2481 		return &pool->base;
2482 
2483 	BREAK_TO_DEBUGGER();
2484 	kfree(pool);
2485 	return NULL;
2486 }
2487 
2488 /*
2489  * Find the most optimal free pipe from res_ctx, which could be used as a
2490  * secondary dpp pipe for input opp head pipe.
2491  *
2492  * a free pipe - a pipe in input res_ctx not yet used for any streams or
2493  * planes.
2494  * secondary dpp pipe - a pipe gets inserted to a head OPP pipe's MPC blending
2495  * tree. This is typical used for rendering MPO planes or additional offset
2496  * areas in MPCC combine.
2497  *
2498  * Hardware Transition Minimization Algorithm for Finding a Secondary DPP Pipe
2499  * -------------------------------------------------------------------------
2500  *
2501  * PROBLEM:
2502  *
2503  * 1. There is a hardware limitation that a secondary DPP pipe cannot be
2504  * transferred from one MPC blending tree to the other in a single frame.
2505  * Otherwise it could cause glitches on the screen.
2506  *
2507  * For instance, we cannot transition from state 1 to state 2 in one frame. This
2508  * is because PIPE1 is transferred from PIPE0's MPC blending tree over to
2509  * PIPE2's MPC blending tree, which is not supported by hardware.
2510  * To support this transition we need to first remove PIPE1 from PIPE0's MPC
2511  * blending tree in one frame and then insert PIPE1 to PIPE2's MPC blending tree
2512  * in the next frame. This is not optimal as it will delay the flip for two
2513  * frames.
2514  *
2515  *	State 1:
2516  *	PIPE0 -- secondary DPP pipe --> (PIPE1)
2517  *	PIPE2 -- secondary DPP pipe --> NONE
2518  *
2519  *	State 2:
2520  *	PIPE0 -- secondary DPP pipe --> NONE
2521  *	PIPE2 -- secondary DPP pipe --> (PIPE1)
2522  *
2523  * 2. We want to in general minimize the unnecessary changes in pipe topology.
2524  * If a pipe is already added in current blending tree and there are no changes
2525  * to plane topology, we don't want to swap it with another free pipe
2526  * unnecessarily in every update. Powering up and down a pipe would require a
2527  * full update which delays the flip for 1 frame. If we use the original pipe
2528  * we don't have to toggle its power. So we can flip faster.
2529  */
2530 static int find_optimal_free_pipe_as_secondary_dpp_pipe(
2531 		const struct resource_context *cur_res_ctx,
2532 		struct resource_context *new_res_ctx,
2533 		const struct resource_pool *pool,
2534 		const struct pipe_ctx *new_opp_head)
2535 {
2536 	const struct pipe_ctx *cur_opp_head;
2537 	int free_pipe_idx;
2538 
2539 	cur_opp_head = &cur_res_ctx->pipe_ctx[new_opp_head->pipe_idx];
2540 	free_pipe_idx = resource_find_free_pipe_used_in_cur_mpc_blending_tree(
2541 			cur_res_ctx, new_res_ctx, cur_opp_head);
2542 
2543 	/* Up until here if we have not found a free secondary pipe, we will
2544 	 * need to wait for at least one frame to complete the transition
2545 	 * sequence.
2546 	 */
2547 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2548 		free_pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
2549 				cur_res_ctx, new_res_ctx, pool);
2550 
2551 	/* Up until here if we have not found a free secondary pipe, we will
2552 	 * need to wait for at least two frames to complete the transition
2553 	 * sequence. It really doesn't matter which pipe we decide take from
2554 	 * current enabled pipes. It won't save our frame time when we swap only
2555 	 * one pipe or more pipes.
2556 	 */
2557 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2558 		free_pipe_idx = resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
2559 				cur_res_ctx, new_res_ctx, pool);
2560 
2561 	if (free_pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
2562 		free_pipe_idx = resource_find_any_free_pipe(new_res_ctx, pool);
2563 
2564 	return free_pipe_idx;
2565 }
2566 
2567 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2568 		struct resource_context *res_ctx,
2569 		const struct resource_pool *pool,
2570 		const struct pipe_ctx *primary_pipe)
2571 {
2572 	int i;
2573 	struct pipe_ctx *secondary_pipe = NULL;
2574 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2575 	int primary_index, preferred_pipe_idx;
2576 	struct pipe_ctx *old_primary_pipe = NULL;
2577 
2578 	/*
2579 	 * Modified from find_idle_secondary_pipe
2580 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2581 	 *  free pipe for the left side but the free pipe is being used on the
2582 	 *  right side.
2583 	 * Add check on current_state if the primary_pipe is the left side,
2584 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2585 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2586 	 * - If so, then don't use this pipe
2587 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2588 	 * - in this case, the primary pipe has already gotten a free pipe for the
2589 	 *  MPO window in the left
2590 	 * - when it tries to get a free pipe for the MPO window on the right,
2591 	 *  it will see that it is already assigned to the right side
2592 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2593 	 *  free pipe, since it will be for the right side.  So add an
2594 	 *  additional condition, that skipping the free pipe on the right only
2595 	 *  applies if the primary pipe has no bottom pipe currently assigned
2596 	 */
2597 	if (primary_pipe) {
2598 		primary_index = primary_pipe->pipe_idx;
2599 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2600 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2601 			&& (!primary_pipe->bottom_pipe))
2602 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2603 
2604 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2605 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2606 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2607 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2608 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2609 		}
2610 	}
2611 
2612 	/*
2613 	 * search backwards for the second pipe to keep pipe
2614 	 * assignment more consistent
2615 	 */
2616 	if (!secondary_pipe)
2617 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2618 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2619 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2620 				secondary_pipe = &res_ctx->pipe_ctx[i];
2621 				secondary_pipe->pipe_idx = i;
2622 				break;
2623 			}
2624 		}
2625 
2626 	return secondary_pipe;
2627 }
2628 
2629 static struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2630 		struct dc_state *state,
2631 		const struct resource_pool *pool,
2632 		struct dc_stream_state *stream,
2633 		const struct pipe_ctx *head_pipe)
2634 {
2635 	struct resource_context *res_ctx = &state->res_ctx;
2636 	struct pipe_ctx *idle_pipe, *pipe;
2637 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2638 	int head_index;
2639 
2640 	if (!head_pipe)
2641 		ASSERT(0);
2642 
2643 	/*
2644 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2645 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2646 	 * - If so, check if that pipe is available in the current context.
2647 	 * --  If so, reuse pipe from old_context
2648 	 */
2649 	head_index = head_pipe->pipe_idx;
2650 	pipe = &old_ctx->pipe_ctx[head_index];
2651 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2652 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2653 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2654 	} else {
2655 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2656 		if (!idle_pipe)
2657 			return NULL;
2658 	}
2659 
2660 	idle_pipe->stream = head_pipe->stream;
2661 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2662 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2663 
2664 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2665 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2666 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2667 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2668 
2669 	return idle_pipe;
2670 }
2671 
2672 struct pipe_ctx *dcn32_acquire_free_pipe_as_secondary_dpp_pipe(
2673 		const struct dc_state *cur_ctx,
2674 		struct dc_state *new_ctx,
2675 		const struct resource_pool *pool,
2676 		const struct pipe_ctx *opp_head_pipe)
2677 {
2678 
2679 	int free_pipe_idx;
2680 	struct pipe_ctx *free_pipe;
2681 
2682 	if (!opp_head_pipe->stream->ctx->dc->config.enable_windowed_mpo_odm)
2683 		return dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2684 				new_ctx, pool, opp_head_pipe->stream, opp_head_pipe);
2685 
2686 	free_pipe_idx = find_optimal_free_pipe_as_secondary_dpp_pipe(
2687 					&cur_ctx->res_ctx, &new_ctx->res_ctx,
2688 					pool, opp_head_pipe);
2689 	if (free_pipe_idx >= 0) {
2690 		free_pipe = &new_ctx->res_ctx.pipe_ctx[free_pipe_idx];
2691 		free_pipe->pipe_idx = free_pipe_idx;
2692 		free_pipe->stream = opp_head_pipe->stream;
2693 		free_pipe->stream_res.tg = opp_head_pipe->stream_res.tg;
2694 		free_pipe->stream_res.opp = opp_head_pipe->stream_res.opp;
2695 
2696 		free_pipe->plane_res.hubp = pool->hubps[free_pipe->pipe_idx];
2697 		free_pipe->plane_res.ipp = pool->ipps[free_pipe->pipe_idx];
2698 		free_pipe->plane_res.dpp = pool->dpps[free_pipe->pipe_idx];
2699 		free_pipe->plane_res.mpcc_inst =
2700 				pool->dpps[free_pipe->pipe_idx]->inst;
2701 	} else {
2702 		ASSERT(opp_head_pipe);
2703 		free_pipe = NULL;
2704 	}
2705 
2706 	return free_pipe;
2707 }
2708 
2709 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2710 {
2711 	/*
2712 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2713 	 *  but we may not be able to access all the MALL space.
2714 	 *  If the num_chans is power of 2, then we can access all
2715 	 *  of the available MALL space.  Otherwise, we can only
2716 	 *  access:
2717 	 *
2718 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2719 	 *    ((2^floor(log2(num_chans)))/num_chans)
2720 	 *
2721 	 * Calculating the MALL sizes for all available SKUs, we
2722 	 *  have come up with the follow simplified check.
2723 	 * - we have max_chans which provides the max MALL size.
2724 	 *  Each chans supports 4MB of MALL so:
2725 	 *
2726 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2727 	 *
2728 	 * - we have avail_chans which shows the number of channels
2729 	 *  we can use if we can't access the entire MALL space.
2730 	 *  It is generally half of max_chans
2731 	 * - so we use the following checks:
2732 	 *
2733 	 *   if (num_chans == max_chans), return max_chans
2734 	 *   if (num_chans < max_chans), return avail_chans
2735 	 *
2736 	 * - exception is GC_11_0_0 where we can't access max_chans,
2737 	 *  so we define max_avail_chans as the maximum available
2738 	 *  MALL space
2739 	 *
2740 	 */
2741 	int gc_11_0_0_max_chans = 48;
2742 	int gc_11_0_0_max_avail_chans = 32;
2743 	int gc_11_0_0_avail_chans = 16;
2744 	int gc_11_0_3_max_chans = 16;
2745 	int gc_11_0_3_avail_chans = 8;
2746 	int gc_11_0_2_max_chans = 8;
2747 	int gc_11_0_2_avail_chans = 4;
2748 
2749 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2750 		return (num_chans == gc_11_0_0_max_chans) ?
2751 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2752 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2753 		return (num_chans == gc_11_0_2_max_chans) ?
2754 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2755 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2756 		return (num_chans == gc_11_0_3_max_chans) ?
2757 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2758 	}
2759 }
2760