xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dc_link_dp.h"
61 #include "dcn31/dcn31_apg.h"
62 #include "dcn31/dcn31_dio_link_encoder.h"
63 #include "dcn32/dcn32_dio_link_encoder.h"
64 #include "dce/dce_clock_source.h"
65 #include "dce/dce_audio.h"
66 #include "dce/dce_hwseq.h"
67 #include "clk_mgr.h"
68 #include "virtual/virtual_stream_encoder.h"
69 #include "dml/display_mode_vba.h"
70 #include "dcn32/dcn32_dccg.h"
71 #include "dcn10/dcn10_resource.h"
72 #include "dc_link_ddc.h"
73 #include "dcn31/dcn31_panel_cntl.h"
74 
75 #include "dcn30/dcn30_dwb.h"
76 #include "dcn32/dcn32_mmhubbub.h"
77 
78 #include "dcn/dcn_3_2_0_offset.h"
79 #include "dcn/dcn_3_2_0_sh_mask.h"
80 #include "nbio/nbio_4_3_0_offset.h"
81 
82 #include "reg_helper.h"
83 #include "dce/dmub_abm.h"
84 #include "dce/dmub_psr.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "dml/dcn32/dcn32_fpu.h"
92 
93 #define DC_LOGGER_INIT(logger)
94 
95 enum dcn32_clk_src_array_id {
96 	DCN32_CLK_SRC_PLL0,
97 	DCN32_CLK_SRC_PLL1,
98 	DCN32_CLK_SRC_PLL2,
99 	DCN32_CLK_SRC_PLL3,
100 	DCN32_CLK_SRC_PLL4,
101 	DCN32_CLK_SRC_TOTAL
102 };
103 
104 /* begin *********************
105  * macros to expend register list macro defined in HW object header file
106  */
107 
108 /* DCN */
109 /* TODO awful hack. fixup dcn20_dwb.h */
110 #undef BASE_INNER
111 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
112 
113 #define BASE(seg) BASE_INNER(seg)
114 
115 #define SR(reg_name)\
116 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
117 					reg ## reg_name
118 #define SR_ARR(reg_name, id) \
119 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
120 
121 #define SR_ARR_INIT(reg_name, id, value) \
122 	REG_STRUCT[id].reg_name = value
123 
124 #define SRI(reg_name, block, id)\
125 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
126 		reg ## block ## id ## _ ## reg_name
127 
128 #define SRI_ARR(reg_name, block, id)\
129 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
130 		reg ## block ## id ## _ ## reg_name
131 
132 #define SR_ARR_I2C(reg_name, id) \
133 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
134 
135 #define SRI_ARR_I2C(reg_name, block, id)\
136 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 		reg ## block ## id ## _ ## reg_name
138 
139 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
140 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
141 		reg ## block ## id ## _ ## reg_name
142 
143 #define SRI2(reg_name, block, id)\
144 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
145 		reg ## reg_name
146 #define SRI2_ARR(reg_name, block, id)\
147 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
148 		reg ## reg_name
149 
150 #define SRIR(var_name, reg_name, block, id)\
151 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
152 		reg ## block ## id ## _ ## reg_name
153 
154 #define SRII(reg_name, block, id)\
155 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
156 					reg ## block ## id ## _ ## reg_name
157 
158 #define SRII_ARR_2(reg_name, block, id, inst)\
159 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
160 		reg ## block ## id ## _ ## reg_name
161 
162 #define SRII_MPC_RMU(reg_name, block, id)\
163 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
164 		reg ## block ## id ## _ ## reg_name
165 
166 #define SRII_DWB(reg_name, temp_name, block, id)\
167 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
168 		reg ## block ## id ## _ ## temp_name
169 
170 #define DCCG_SRII(reg_name, block, id)\
171 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
172 		reg ## block ## id ## _ ## reg_name
173 
174 #define VUPDATE_SRII(reg_name, block, id)\
175 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
176 		reg ## reg_name ## _ ## block ## id
177 
178 /* NBIO */
179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
180 
181 #define NBIO_BASE(seg) \
182 	NBIO_BASE_INNER(seg)
183 
184 #define NBIO_SR(reg_name)\
185 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
186 			regBIF_BX0_ ## reg_name
187 #define NBIO_SR_ARR(reg_name, id)\
188 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
189 		regBIF_BX0_ ## reg_name
190 
191 #undef CTX
192 #define CTX ctx
193 #define REG(reg_name) \
194 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
195 
196 static struct bios_registers bios_regs;
197 
198 #define bios_regs_init() \
199 		( \
200 		NBIO_SR(BIOS_SCRATCH_3),\
201 		NBIO_SR(BIOS_SCRATCH_6)\
202 		)
203 
204 #define clk_src_regs_init(index, pllid)\
205 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
206 
207 static struct dce110_clk_src_regs clk_src_regs[5];
208 
209 static const struct dce110_clk_src_shift cs_shift = {
210 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
211 };
212 
213 static const struct dce110_clk_src_mask cs_mask = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
215 };
216 
217 #define abm_regs_init(id)\
218 		ABM_DCN32_REG_LIST_RI(id)
219 
220 static struct dce_abm_registers abm_regs[4];
221 
222 static const struct dce_abm_shift abm_shift = {
223 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
224 };
225 
226 static const struct dce_abm_mask abm_mask = {
227 		ABM_MASK_SH_LIST_DCN32(_MASK)
228 };
229 
230 #define audio_regs_init(id)\
231 		AUD_COMMON_REG_LIST_RI(id)
232 
233 static struct dce_audio_registers audio_regs[5];
234 
235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
236 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
237 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
238 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
239 
240 static const struct dce_audio_shift audio_shift = {
241 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
242 };
243 
244 static const struct dce_audio_mask audio_mask = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
246 };
247 
248 #define vpg_regs_init(id)\
249 	VPG_DCN3_REG_LIST_RI(id)
250 
251 static struct dcn30_vpg_registers vpg_regs[10];
252 
253 static const struct dcn30_vpg_shift vpg_shift = {
254 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
255 };
256 
257 static const struct dcn30_vpg_mask vpg_mask = {
258 	DCN3_VPG_MASK_SH_LIST(_MASK)
259 };
260 
261 #define afmt_regs_init(id)\
262 	AFMT_DCN3_REG_LIST_RI(id)
263 
264 static struct dcn30_afmt_registers afmt_regs[6];
265 
266 static const struct dcn30_afmt_shift afmt_shift = {
267 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
268 };
269 
270 static const struct dcn30_afmt_mask afmt_mask = {
271 	DCN3_AFMT_MASK_SH_LIST(_MASK)
272 };
273 
274 #define apg_regs_init(id)\
275 	APG_DCN31_REG_LIST_RI(id)
276 
277 static struct dcn31_apg_registers apg_regs[4];
278 
279 static const struct dcn31_apg_shift apg_shift = {
280 	DCN31_APG_MASK_SH_LIST(__SHIFT)
281 };
282 
283 static const struct dcn31_apg_mask apg_mask = {
284 		DCN31_APG_MASK_SH_LIST(_MASK)
285 };
286 
287 #define stream_enc_regs_init(id)\
288 	SE_DCN32_REG_LIST_RI(id)
289 
290 static struct dcn10_stream_enc_registers stream_enc_regs[5];
291 
292 static const struct dcn10_stream_encoder_shift se_shift = {
293 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
294 };
295 
296 static const struct dcn10_stream_encoder_mask se_mask = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
298 };
299 
300 
301 #define aux_regs_init(id)\
302 	DCN2_AUX_REG_LIST_RI(id)
303 
304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
305 
306 #define hpd_regs_init(id)\
307 	HPD_REG_LIST_RI(id)
308 
309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
310 
311 #define link_regs_init(id, phyid)\
312 	( \
313 	LE_DCN31_REG_LIST_RI(id), \
314 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
315 	)
316 	/*DPCS_DCN31_REG_LIST(id),*/ \
317 
318 static struct dcn10_link_enc_registers link_enc_regs[5];
319 
320 static const struct dcn10_link_enc_shift le_shift = {
321 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
322 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
323 };
324 
325 static const struct dcn10_link_enc_mask le_mask = {
326 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
327 
328 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
329 };
330 
331 #define hpo_dp_stream_encoder_reg_init(id)\
332 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
333 
334 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
335 
336 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
337 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
338 };
339 
340 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
341 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
342 };
343 
344 
345 #define hpo_dp_link_encoder_reg_init(id)\
346 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
347 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
348 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
349 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
350 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
351 
352 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
353 
354 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
355 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
356 };
357 
358 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
359 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
360 };
361 
362 #define dpp_regs_init(id)\
363 	DPP_REG_LIST_DCN30_COMMON_RI(id)
364 
365 static struct dcn3_dpp_registers dpp_regs[4];
366 
367 static const struct dcn3_dpp_shift tf_shift = {
368 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
369 };
370 
371 static const struct dcn3_dpp_mask tf_mask = {
372 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
373 };
374 
375 
376 #define opp_regs_init(id)\
377 	OPP_REG_LIST_DCN30_RI(id)
378 
379 static struct dcn20_opp_registers opp_regs[4];
380 
381 static const struct dcn20_opp_shift opp_shift = {
382 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
383 };
384 
385 static const struct dcn20_opp_mask opp_mask = {
386 	OPP_MASK_SH_LIST_DCN20(_MASK)
387 };
388 
389 #define aux_engine_regs_init(id)\
390 	( \
391 	AUX_COMMON_REG_LIST0_RI(id), \
392 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
393 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
394 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
395 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
396 	)
397 
398 static struct dce110_aux_registers aux_engine_regs[5];
399 
400 static const struct dce110_aux_registers_shift aux_shift = {
401 	DCN_AUX_MASK_SH_LIST(__SHIFT)
402 };
403 
404 static const struct dce110_aux_registers_mask aux_mask = {
405 	DCN_AUX_MASK_SH_LIST(_MASK)
406 };
407 
408 #define dwbc_regs_dcn3_init(id)\
409 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
410 
411 static struct dcn30_dwbc_registers dwbc30_regs[1];
412 
413 static const struct dcn30_dwbc_shift dwbc30_shift = {
414 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
415 };
416 
417 static const struct dcn30_dwbc_mask dwbc30_mask = {
418 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
419 };
420 
421 #define mcif_wb_regs_dcn3_init(id)\
422 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
423 
424 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
425 
426 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
427 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
428 };
429 
430 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
431 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
432 };
433 
434 #define dsc_regsDCN20_init(id)\
435 	DSC_REG_LIST_DCN20_RI(id)
436 
437 static struct dcn20_dsc_registers dsc_regs[4];
438 
439 static const struct dcn20_dsc_shift dsc_shift = {
440 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
441 };
442 
443 static const struct dcn20_dsc_mask dsc_mask = {
444 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
445 };
446 
447 static struct dcn30_mpc_registers mpc_regs;
448 
449 #define dcn_mpc_regs_init() \
450 	MPC_REG_LIST_DCN3_2_RI(0),\
451 	MPC_REG_LIST_DCN3_2_RI(1),\
452 	MPC_REG_LIST_DCN3_2_RI(2),\
453 	MPC_REG_LIST_DCN3_2_RI(3),\
454 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
455 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
456 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
457 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
458 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
459 
460 static const struct dcn30_mpc_shift mpc_shift = {
461 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
462 };
463 
464 static const struct dcn30_mpc_mask mpc_mask = {
465 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
466 };
467 
468 #define optc_regs_init(id)\
469 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
470 
471 static struct dcn_optc_registers optc_regs[4];
472 
473 static const struct dcn_optc_shift optc_shift = {
474 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
475 };
476 
477 static const struct dcn_optc_mask optc_mask = {
478 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
479 };
480 
481 #define hubp_regs_init(id)\
482 	HUBP_REG_LIST_DCN32_RI(id)
483 
484 static struct dcn_hubp2_registers hubp_regs[4];
485 
486 
487 static const struct dcn_hubp2_shift hubp_shift = {
488 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
489 };
490 
491 static const struct dcn_hubp2_mask hubp_mask = {
492 		HUBP_MASK_SH_LIST_DCN32(_MASK)
493 };
494 
495 static struct dcn_hubbub_registers hubbub_reg;
496 #define hubbub_reg_init()\
497 		HUBBUB_REG_LIST_DCN32_RI(0)
498 
499 static const struct dcn_hubbub_shift hubbub_shift = {
500 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
501 };
502 
503 static const struct dcn_hubbub_mask hubbub_mask = {
504 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
505 };
506 
507 static struct dccg_registers dccg_regs;
508 
509 #define dccg_regs_init()\
510 	DCCG_REG_LIST_DCN32_RI()
511 
512 static const struct dccg_shift dccg_shift = {
513 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
514 };
515 
516 static const struct dccg_mask dccg_mask = {
517 		DCCG_MASK_SH_LIST_DCN32(_MASK)
518 };
519 
520 
521 #define SRII2(reg_name_pre, reg_name_post, id)\
522 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
523 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
524 			reg ## reg_name_pre ## id ## _ ## reg_name_post
525 
526 
527 #define HWSEQ_DCN32_REG_LIST()\
528 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
529 	SR(DIO_MEM_PWR_CTRL), \
530 	SR(ODM_MEM_PWR_CTRL3), \
531 	SR(MMHUBBUB_MEM_PWR_CNTL), \
532 	SR(DCCG_GATE_DISABLE_CNTL), \
533 	SR(DCCG_GATE_DISABLE_CNTL2), \
534 	SR(DCFCLK_CNTL),\
535 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
536 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
537 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
538 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
539 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
540 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
541 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
542 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
543 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
544 	SR(MICROSECOND_TIME_BASE_DIV), \
545 	SR(MILLISECOND_TIME_BASE_DIV), \
546 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
547 	SR(RBBMIF_TIMEOUT_DIS), \
548 	SR(RBBMIF_TIMEOUT_DIS_2), \
549 	SR(DCHUBBUB_CRC_CTRL), \
550 	SR(DPP_TOP0_DPP_CRC_CTRL), \
551 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
552 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
553 	SR(MPC_CRC_CTRL), \
554 	SR(MPC_CRC_RESULT_GB), \
555 	SR(MPC_CRC_RESULT_C), \
556 	SR(MPC_CRC_RESULT_AR), \
557 	SR(DOMAIN0_PG_CONFIG), \
558 	SR(DOMAIN1_PG_CONFIG), \
559 	SR(DOMAIN2_PG_CONFIG), \
560 	SR(DOMAIN3_PG_CONFIG), \
561 	SR(DOMAIN16_PG_CONFIG), \
562 	SR(DOMAIN17_PG_CONFIG), \
563 	SR(DOMAIN18_PG_CONFIG), \
564 	SR(DOMAIN19_PG_CONFIG), \
565 	SR(DOMAIN0_PG_STATUS), \
566 	SR(DOMAIN1_PG_STATUS), \
567 	SR(DOMAIN2_PG_STATUS), \
568 	SR(DOMAIN3_PG_STATUS), \
569 	SR(DOMAIN16_PG_STATUS), \
570 	SR(DOMAIN17_PG_STATUS), \
571 	SR(DOMAIN18_PG_STATUS), \
572 	SR(DOMAIN19_PG_STATUS), \
573 	SR(D1VGA_CONTROL), \
574 	SR(D2VGA_CONTROL), \
575 	SR(D3VGA_CONTROL), \
576 	SR(D4VGA_CONTROL), \
577 	SR(D5VGA_CONTROL), \
578 	SR(D6VGA_CONTROL), \
579 	SR(DC_IP_REQUEST_CNTL), \
580 	SR(AZALIA_AUDIO_DTO), \
581 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
582 
583 static struct dce_hwseq_registers hwseq_reg;
584 
585 #define hwseq_reg_init()\
586 	HWSEQ_DCN32_REG_LIST()
587 
588 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
589 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
590 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
591 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
592 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
593 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
594 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
595 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
596 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
597 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
598 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
599 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
600 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
601 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
602 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
603 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
604 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
605 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
606 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
607 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
608 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
609 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
610 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
615 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
616 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
617 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
618 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
619 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
620 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
621 
622 static const struct dce_hwseq_shift hwseq_shift = {
623 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
624 };
625 
626 static const struct dce_hwseq_mask hwseq_mask = {
627 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
628 };
629 #define vmid_regs_init(id)\
630 		DCN20_VMID_REG_LIST_RI(id)
631 
632 static struct dcn_vmid_registers vmid_regs[16];
633 
634 static const struct dcn20_vmid_shift vmid_shifts = {
635 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
636 };
637 
638 static const struct dcn20_vmid_mask vmid_masks = {
639 		DCN20_VMID_MASK_SH_LIST(_MASK)
640 };
641 
642 static const struct resource_caps res_cap_dcn32 = {
643 	.num_timing_generator = 4,
644 	.num_opp = 4,
645 	.num_video_plane = 4,
646 	.num_audio = 5,
647 	.num_stream_encoder = 5,
648 	.num_hpo_dp_stream_encoder = 4,
649 	.num_hpo_dp_link_encoder = 2,
650 	.num_pll = 5,
651 	.num_dwb = 1,
652 	.num_ddc = 5,
653 	.num_vmid = 16,
654 	.num_mpc_3dlut = 4,
655 	.num_dsc = 4,
656 };
657 
658 static const struct dc_plane_cap plane_cap = {
659 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
660 	.blends_with_above = true,
661 	.blends_with_below = true,
662 	.per_pixel_alpha = true,
663 
664 	.pixel_format_support = {
665 			.argb8888 = true,
666 			.nv12 = true,
667 			.fp16 = true,
668 			.p010 = true,
669 			.ayuv = false,
670 	},
671 
672 	.max_upscale_factor = {
673 			.argb8888 = 16000,
674 			.nv12 = 16000,
675 			.fp16 = 16000
676 	},
677 
678 	// 6:1 downscaling ratio: 1000/6 = 166.666
679 	.max_downscale_factor = {
680 			.argb8888 = 167,
681 			.nv12 = 167,
682 			.fp16 = 167
683 	},
684 	64,
685 	64
686 };
687 
688 static const struct dc_debug_options debug_defaults_drv = {
689 	.disable_dmcu = true,
690 	.force_abm_enable = false,
691 	.timing_trace = false,
692 	.clock_trace = true,
693 	.disable_pplib_clock_request = false,
694 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
695 	.force_single_disp_pipe_split = false,
696 	.disable_dcc = DCC_ENABLE,
697 	.vsr_support = true,
698 	.performance_trace = false,
699 	.max_downscale_src_width = 7680,/*upto 8K*/
700 	.disable_pplib_wm_range = false,
701 	.scl_reset_length10 = true,
702 	.sanity_checks = false,
703 	.underflow_assert_delay_us = 0xFFFFFFFF,
704 	.dwb_fi_phase = -1, // -1 = disable,
705 	.dmub_command_table = true,
706 	.enable_mem_low_power = {
707 		.bits = {
708 			.vga = false,
709 			.i2c = false,
710 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
711 			.dscl = false,
712 			.cm = false,
713 			.mpc = false,
714 			.optc = true,
715 		}
716 	},
717 	.use_max_lb = true,
718 	.force_disable_subvp = false,
719 	.exit_idle_opt_for_cursor_updates = true,
720 	.enable_single_display_2to1_odm_policy = true,
721 
722 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
723 	.enable_double_buffered_dsc_pg_support = true,
724 	.enable_dp_dig_pixel_rate_div_policy = 1,
725 	.allow_sw_cursor_fallback = false,
726 	.alloc_extra_way_for_cursor = true,
727 };
728 
729 static const struct dc_debug_options debug_defaults_diags = {
730 	.disable_dmcu = true,
731 	.force_abm_enable = false,
732 	.timing_trace = true,
733 	.clock_trace = true,
734 	.disable_dpp_power_gate = true,
735 	.disable_hubp_power_gate = true,
736 	.disable_dsc_power_gate = true,
737 	.disable_clock_gate = true,
738 	.disable_pplib_clock_request = true,
739 	.disable_pplib_wm_range = true,
740 	.disable_stutter = false,
741 	.scl_reset_length10 = true,
742 	.dwb_fi_phase = -1, // -1 = disable
743 	.dmub_command_table = true,
744 	.enable_tri_buf = true,
745 	.use_max_lb = true,
746 	.force_disable_subvp = true
747 };
748 
749 static struct dce_aux *dcn32_aux_engine_create(
750 	struct dc_context *ctx,
751 	uint32_t inst)
752 {
753 	struct aux_engine_dce110 *aux_engine =
754 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
755 
756 	if (!aux_engine)
757 		return NULL;
758 
759 #undef REG_STRUCT
760 #define REG_STRUCT aux_engine_regs
761 	aux_engine_regs_init(0),
762 	aux_engine_regs_init(1),
763 	aux_engine_regs_init(2),
764 	aux_engine_regs_init(3),
765 	aux_engine_regs_init(4);
766 
767 	dce110_aux_engine_construct(aux_engine, ctx, inst,
768 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
769 				    &aux_engine_regs[inst],
770 					&aux_mask,
771 					&aux_shift,
772 					ctx->dc->caps.extended_aux_timeout_support);
773 
774 	return &aux_engine->base;
775 }
776 #define i2c_inst_regs_init(id)\
777 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
778 
779 static struct dce_i2c_registers i2c_hw_regs[5];
780 
781 static const struct dce_i2c_shift i2c_shifts = {
782 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
783 };
784 
785 static const struct dce_i2c_mask i2c_masks = {
786 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
787 };
788 
789 static struct dce_i2c_hw *dcn32_i2c_hw_create(
790 	struct dc_context *ctx,
791 	uint32_t inst)
792 {
793 	struct dce_i2c_hw *dce_i2c_hw =
794 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
795 
796 	if (!dce_i2c_hw)
797 		return NULL;
798 
799 #undef REG_STRUCT
800 #define REG_STRUCT i2c_hw_regs
801 	i2c_inst_regs_init(1),
802 	i2c_inst_regs_init(2),
803 	i2c_inst_regs_init(3),
804 	i2c_inst_regs_init(4),
805 	i2c_inst_regs_init(5);
806 
807 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
808 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
809 
810 	return dce_i2c_hw;
811 }
812 
813 static struct clock_source *dcn32_clock_source_create(
814 		struct dc_context *ctx,
815 		struct dc_bios *bios,
816 		enum clock_source_id id,
817 		const struct dce110_clk_src_regs *regs,
818 		bool dp_clk_src)
819 {
820 	struct dce110_clk_src *clk_src =
821 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
822 
823 	if (!clk_src)
824 		return NULL;
825 
826 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
827 			regs, &cs_shift, &cs_mask)) {
828 		clk_src->base.dp_clk_src = dp_clk_src;
829 		return &clk_src->base;
830 	}
831 
832 	BREAK_TO_DEBUGGER();
833 	return NULL;
834 }
835 
836 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
837 {
838 	int i;
839 
840 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
841 					  GFP_KERNEL);
842 
843 	if (!hubbub2)
844 		return NULL;
845 
846 #undef REG_STRUCT
847 #define REG_STRUCT hubbub_reg
848 	hubbub_reg_init();
849 
850 #undef REG_STRUCT
851 #define REG_STRUCT vmid_regs
852 	vmid_regs_init(0),
853 	vmid_regs_init(1),
854 	vmid_regs_init(2),
855 	vmid_regs_init(3),
856 	vmid_regs_init(4),
857 	vmid_regs_init(5),
858 	vmid_regs_init(6),
859 	vmid_regs_init(7),
860 	vmid_regs_init(8),
861 	vmid_regs_init(9),
862 	vmid_regs_init(10),
863 	vmid_regs_init(11),
864 	vmid_regs_init(12),
865 	vmid_regs_init(13),
866 	vmid_regs_init(14),
867 	vmid_regs_init(15);
868 
869 	hubbub32_construct(hubbub2, ctx,
870 			&hubbub_reg,
871 			&hubbub_shift,
872 			&hubbub_mask,
873 			ctx->dc->dml.ip.det_buffer_size_kbytes,
874 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
875 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
876 
877 
878 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
879 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
880 
881 		vmid->ctx = ctx;
882 
883 		vmid->regs = &vmid_regs[i];
884 		vmid->shifts = &vmid_shifts;
885 		vmid->masks = &vmid_masks;
886 	}
887 
888 	return &hubbub2->base;
889 }
890 
891 static struct hubp *dcn32_hubp_create(
892 	struct dc_context *ctx,
893 	uint32_t inst)
894 {
895 	struct dcn20_hubp *hubp2 =
896 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
897 
898 	if (!hubp2)
899 		return NULL;
900 
901 #undef REG_STRUCT
902 #define REG_STRUCT hubp_regs
903 	hubp_regs_init(0),
904 	hubp_regs_init(1),
905 	hubp_regs_init(2),
906 	hubp_regs_init(3);
907 
908 	if (hubp32_construct(hubp2, ctx, inst,
909 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
910 		return &hubp2->base;
911 
912 	BREAK_TO_DEBUGGER();
913 	kfree(hubp2);
914 	return NULL;
915 }
916 
917 static void dcn32_dpp_destroy(struct dpp **dpp)
918 {
919 	kfree(TO_DCN30_DPP(*dpp));
920 	*dpp = NULL;
921 }
922 
923 static struct dpp *dcn32_dpp_create(
924 	struct dc_context *ctx,
925 	uint32_t inst)
926 {
927 	struct dcn3_dpp *dpp3 =
928 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
929 
930 	if (!dpp3)
931 		return NULL;
932 
933 #undef REG_STRUCT
934 #define REG_STRUCT dpp_regs
935 	dpp_regs_init(0),
936 	dpp_regs_init(1),
937 	dpp_regs_init(2),
938 	dpp_regs_init(3);
939 
940 	if (dpp32_construct(dpp3, ctx, inst,
941 			&dpp_regs[inst], &tf_shift, &tf_mask))
942 		return &dpp3->base;
943 
944 	BREAK_TO_DEBUGGER();
945 	kfree(dpp3);
946 	return NULL;
947 }
948 
949 static struct mpc *dcn32_mpc_create(
950 		struct dc_context *ctx,
951 		int num_mpcc,
952 		int num_rmu)
953 {
954 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
955 					  GFP_KERNEL);
956 
957 	if (!mpc30)
958 		return NULL;
959 
960 #undef REG_STRUCT
961 #define REG_STRUCT mpc_regs
962 	dcn_mpc_regs_init();
963 
964 	dcn32_mpc_construct(mpc30, ctx,
965 			&mpc_regs,
966 			&mpc_shift,
967 			&mpc_mask,
968 			num_mpcc,
969 			num_rmu);
970 
971 	return &mpc30->base;
972 }
973 
974 static struct output_pixel_processor *dcn32_opp_create(
975 	struct dc_context *ctx, uint32_t inst)
976 {
977 	struct dcn20_opp *opp2 =
978 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
979 
980 	if (!opp2) {
981 		BREAK_TO_DEBUGGER();
982 		return NULL;
983 	}
984 
985 #undef REG_STRUCT
986 #define REG_STRUCT opp_regs
987 	opp_regs_init(0),
988 	opp_regs_init(1),
989 	opp_regs_init(2),
990 	opp_regs_init(3);
991 
992 	dcn20_opp_construct(opp2, ctx, inst,
993 			&opp_regs[inst], &opp_shift, &opp_mask);
994 	return &opp2->base;
995 }
996 
997 
998 static struct timing_generator *dcn32_timing_generator_create(
999 		struct dc_context *ctx,
1000 		uint32_t instance)
1001 {
1002 	struct optc *tgn10 =
1003 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1004 
1005 	if (!tgn10)
1006 		return NULL;
1007 
1008 #undef REG_STRUCT
1009 #define REG_STRUCT optc_regs
1010 	optc_regs_init(0),
1011 	optc_regs_init(1),
1012 	optc_regs_init(2),
1013 	optc_regs_init(3);
1014 
1015 	tgn10->base.inst = instance;
1016 	tgn10->base.ctx = ctx;
1017 
1018 	tgn10->tg_regs = &optc_regs[instance];
1019 	tgn10->tg_shift = &optc_shift;
1020 	tgn10->tg_mask = &optc_mask;
1021 
1022 	dcn32_timing_generator_init(tgn10);
1023 
1024 	return &tgn10->base;
1025 }
1026 
1027 static const struct encoder_feature_support link_enc_feature = {
1028 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1029 		.max_hdmi_pixel_clock = 600000,
1030 		.hdmi_ycbcr420_supported = true,
1031 		.dp_ycbcr420_supported = true,
1032 		.fec_supported = true,
1033 		.flags.bits.IS_HBR2_CAPABLE = true,
1034 		.flags.bits.IS_HBR3_CAPABLE = true,
1035 		.flags.bits.IS_TPS3_CAPABLE = true,
1036 		.flags.bits.IS_TPS4_CAPABLE = true
1037 };
1038 
1039 static struct link_encoder *dcn32_link_encoder_create(
1040 	struct dc_context *ctx,
1041 	const struct encoder_init_data *enc_init_data)
1042 {
1043 	struct dcn20_link_encoder *enc20 =
1044 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1045 
1046 	if (!enc20)
1047 		return NULL;
1048 
1049 #undef REG_STRUCT
1050 #define REG_STRUCT link_enc_aux_regs
1051 	aux_regs_init(0),
1052 	aux_regs_init(1),
1053 	aux_regs_init(2),
1054 	aux_regs_init(3),
1055 	aux_regs_init(4);
1056 
1057 #undef REG_STRUCT
1058 #define REG_STRUCT link_enc_hpd_regs
1059 	hpd_regs_init(0),
1060 	hpd_regs_init(1),
1061 	hpd_regs_init(2),
1062 	hpd_regs_init(3),
1063 	hpd_regs_init(4);
1064 
1065 #undef REG_STRUCT
1066 #define REG_STRUCT link_enc_regs
1067 	link_regs_init(0, A),
1068 	link_regs_init(1, B),
1069 	link_regs_init(2, C),
1070 	link_regs_init(3, D),
1071 	link_regs_init(4, E);
1072 
1073 	dcn32_link_encoder_construct(enc20,
1074 			enc_init_data,
1075 			&link_enc_feature,
1076 			&link_enc_regs[enc_init_data->transmitter],
1077 			&link_enc_aux_regs[enc_init_data->channel - 1],
1078 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1079 			&le_shift,
1080 			&le_mask);
1081 
1082 	return &enc20->enc10.base;
1083 }
1084 
1085 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1086 {
1087 	struct dcn31_panel_cntl *panel_cntl =
1088 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1089 
1090 	if (!panel_cntl)
1091 		return NULL;
1092 
1093 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1094 
1095 	return &panel_cntl->base;
1096 }
1097 
1098 static void read_dce_straps(
1099 	struct dc_context *ctx,
1100 	struct resource_straps *straps)
1101 {
1102 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1103 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1104 
1105 }
1106 
1107 static struct audio *dcn32_create_audio(
1108 		struct dc_context *ctx, unsigned int inst)
1109 {
1110 
1111 #undef REG_STRUCT
1112 #define REG_STRUCT audio_regs
1113 	audio_regs_init(0),
1114 	audio_regs_init(1),
1115 	audio_regs_init(2),
1116 	audio_regs_init(3),
1117 	audio_regs_init(4);
1118 
1119 	return dce_audio_create(ctx, inst,
1120 			&audio_regs[inst], &audio_shift, &audio_mask);
1121 }
1122 
1123 static struct vpg *dcn32_vpg_create(
1124 	struct dc_context *ctx,
1125 	uint32_t inst)
1126 {
1127 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1128 
1129 	if (!vpg3)
1130 		return NULL;
1131 
1132 #undef REG_STRUCT
1133 #define REG_STRUCT vpg_regs
1134 	vpg_regs_init(0),
1135 	vpg_regs_init(1),
1136 	vpg_regs_init(2),
1137 	vpg_regs_init(3),
1138 	vpg_regs_init(4),
1139 	vpg_regs_init(5),
1140 	vpg_regs_init(6),
1141 	vpg_regs_init(7),
1142 	vpg_regs_init(8),
1143 	vpg_regs_init(9);
1144 
1145 	vpg3_construct(vpg3, ctx, inst,
1146 			&vpg_regs[inst],
1147 			&vpg_shift,
1148 			&vpg_mask);
1149 
1150 	return &vpg3->base;
1151 }
1152 
1153 static struct afmt *dcn32_afmt_create(
1154 	struct dc_context *ctx,
1155 	uint32_t inst)
1156 {
1157 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1158 
1159 	if (!afmt3)
1160 		return NULL;
1161 
1162 #undef REG_STRUCT
1163 #define REG_STRUCT afmt_regs
1164 	afmt_regs_init(0),
1165 	afmt_regs_init(1),
1166 	afmt_regs_init(2),
1167 	afmt_regs_init(3),
1168 	afmt_regs_init(4),
1169 	afmt_regs_init(5);
1170 
1171 	afmt3_construct(afmt3, ctx, inst,
1172 			&afmt_regs[inst],
1173 			&afmt_shift,
1174 			&afmt_mask);
1175 
1176 	return &afmt3->base;
1177 }
1178 
1179 static struct apg *dcn31_apg_create(
1180 	struct dc_context *ctx,
1181 	uint32_t inst)
1182 {
1183 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1184 
1185 	if (!apg31)
1186 		return NULL;
1187 
1188 #undef REG_STRUCT
1189 #define REG_STRUCT apg_regs
1190 	apg_regs_init(0),
1191 	apg_regs_init(1),
1192 	apg_regs_init(2),
1193 	apg_regs_init(3);
1194 
1195 	apg31_construct(apg31, ctx, inst,
1196 			&apg_regs[inst],
1197 			&apg_shift,
1198 			&apg_mask);
1199 
1200 	return &apg31->base;
1201 }
1202 
1203 static struct stream_encoder *dcn32_stream_encoder_create(
1204 	enum engine_id eng_id,
1205 	struct dc_context *ctx)
1206 {
1207 	struct dcn10_stream_encoder *enc1;
1208 	struct vpg *vpg;
1209 	struct afmt *afmt;
1210 	int vpg_inst;
1211 	int afmt_inst;
1212 
1213 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1214 	if (eng_id <= ENGINE_ID_DIGF) {
1215 		vpg_inst = eng_id;
1216 		afmt_inst = eng_id;
1217 	} else
1218 		return NULL;
1219 
1220 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1221 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1222 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1223 
1224 	if (!enc1 || !vpg || !afmt) {
1225 		kfree(enc1);
1226 		kfree(vpg);
1227 		kfree(afmt);
1228 		return NULL;
1229 	}
1230 
1231 #undef REG_STRUCT
1232 #define REG_STRUCT stream_enc_regs
1233 	stream_enc_regs_init(0),
1234 	stream_enc_regs_init(1),
1235 	stream_enc_regs_init(2),
1236 	stream_enc_regs_init(3),
1237 	stream_enc_regs_init(4);
1238 
1239 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1240 					eng_id, vpg, afmt,
1241 					&stream_enc_regs[eng_id],
1242 					&se_shift, &se_mask);
1243 
1244 	return &enc1->base;
1245 }
1246 
1247 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1248 	enum engine_id eng_id,
1249 	struct dc_context *ctx)
1250 {
1251 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1252 	struct vpg *vpg;
1253 	struct apg *apg;
1254 	uint32_t hpo_dp_inst;
1255 	uint32_t vpg_inst;
1256 	uint32_t apg_inst;
1257 
1258 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1259 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1260 
1261 	/* Mapping of VPG register blocks to HPO DP block instance:
1262 	 * VPG[6] -> HPO_DP[0]
1263 	 * VPG[7] -> HPO_DP[1]
1264 	 * VPG[8] -> HPO_DP[2]
1265 	 * VPG[9] -> HPO_DP[3]
1266 	 */
1267 	vpg_inst = hpo_dp_inst + 6;
1268 
1269 	/* Mapping of APG register blocks to HPO DP block instance:
1270 	 * APG[0] -> HPO_DP[0]
1271 	 * APG[1] -> HPO_DP[1]
1272 	 * APG[2] -> HPO_DP[2]
1273 	 * APG[3] -> HPO_DP[3]
1274 	 */
1275 	apg_inst = hpo_dp_inst;
1276 
1277 	/* allocate HPO stream encoder and create VPG sub-block */
1278 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1279 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1280 	apg = dcn31_apg_create(ctx, apg_inst);
1281 
1282 	if (!hpo_dp_enc31 || !vpg || !apg) {
1283 		kfree(hpo_dp_enc31);
1284 		kfree(vpg);
1285 		kfree(apg);
1286 		return NULL;
1287 	}
1288 
1289 #undef REG_STRUCT
1290 #define REG_STRUCT hpo_dp_stream_enc_regs
1291 	hpo_dp_stream_encoder_reg_init(0),
1292 	hpo_dp_stream_encoder_reg_init(1),
1293 	hpo_dp_stream_encoder_reg_init(2),
1294 	hpo_dp_stream_encoder_reg_init(3);
1295 
1296 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1297 					hpo_dp_inst, eng_id, vpg, apg,
1298 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1299 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1300 
1301 	return &hpo_dp_enc31->base;
1302 }
1303 
1304 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1305 	uint8_t inst,
1306 	struct dc_context *ctx)
1307 {
1308 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1309 
1310 	/* allocate HPO link encoder */
1311 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1312 
1313 #undef REG_STRUCT
1314 #define REG_STRUCT hpo_dp_link_enc_regs
1315 	hpo_dp_link_encoder_reg_init(0),
1316 	hpo_dp_link_encoder_reg_init(1);
1317 
1318 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1319 					&hpo_dp_link_enc_regs[inst],
1320 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1321 
1322 	return &hpo_dp_enc31->base;
1323 }
1324 
1325 static struct dce_hwseq *dcn32_hwseq_create(
1326 	struct dc_context *ctx)
1327 {
1328 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1329 
1330 #undef REG_STRUCT
1331 #define REG_STRUCT hwseq_reg
1332 	hwseq_reg_init();
1333 
1334 	if (hws) {
1335 		hws->ctx = ctx;
1336 		hws->regs = &hwseq_reg;
1337 		hws->shifts = &hwseq_shift;
1338 		hws->masks = &hwseq_mask;
1339 	}
1340 	return hws;
1341 }
1342 static const struct resource_create_funcs res_create_funcs = {
1343 	.read_dce_straps = read_dce_straps,
1344 	.create_audio = dcn32_create_audio,
1345 	.create_stream_encoder = dcn32_stream_encoder_create,
1346 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1347 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1348 	.create_hwseq = dcn32_hwseq_create,
1349 };
1350 
1351 static const struct resource_create_funcs res_create_maximus_funcs = {
1352 	.read_dce_straps = NULL,
1353 	.create_audio = NULL,
1354 	.create_stream_encoder = NULL,
1355 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1356 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1357 	.create_hwseq = dcn32_hwseq_create,
1358 };
1359 
1360 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1361 {
1362 	unsigned int i;
1363 
1364 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1365 		if (pool->base.stream_enc[i] != NULL) {
1366 			if (pool->base.stream_enc[i]->vpg != NULL) {
1367 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1368 				pool->base.stream_enc[i]->vpg = NULL;
1369 			}
1370 			if (pool->base.stream_enc[i]->afmt != NULL) {
1371 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1372 				pool->base.stream_enc[i]->afmt = NULL;
1373 			}
1374 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1375 			pool->base.stream_enc[i] = NULL;
1376 		}
1377 	}
1378 
1379 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1380 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1381 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1382 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1383 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1384 			}
1385 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1386 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1387 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1388 			}
1389 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1390 			pool->base.hpo_dp_stream_enc[i] = NULL;
1391 		}
1392 	}
1393 
1394 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1395 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1396 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1397 			pool->base.hpo_dp_link_enc[i] = NULL;
1398 		}
1399 	}
1400 
1401 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1402 		if (pool->base.dscs[i] != NULL)
1403 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1404 	}
1405 
1406 	if (pool->base.mpc != NULL) {
1407 		kfree(TO_DCN20_MPC(pool->base.mpc));
1408 		pool->base.mpc = NULL;
1409 	}
1410 	if (pool->base.hubbub != NULL) {
1411 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1412 		pool->base.hubbub = NULL;
1413 	}
1414 	for (i = 0; i < pool->base.pipe_count; i++) {
1415 		if (pool->base.dpps[i] != NULL)
1416 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1417 
1418 		if (pool->base.ipps[i] != NULL)
1419 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1420 
1421 		if (pool->base.hubps[i] != NULL) {
1422 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1423 			pool->base.hubps[i] = NULL;
1424 		}
1425 
1426 		if (pool->base.irqs != NULL) {
1427 			dal_irq_service_destroy(&pool->base.irqs);
1428 		}
1429 	}
1430 
1431 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1432 		if (pool->base.engines[i] != NULL)
1433 			dce110_engine_destroy(&pool->base.engines[i]);
1434 		if (pool->base.hw_i2cs[i] != NULL) {
1435 			kfree(pool->base.hw_i2cs[i]);
1436 			pool->base.hw_i2cs[i] = NULL;
1437 		}
1438 		if (pool->base.sw_i2cs[i] != NULL) {
1439 			kfree(pool->base.sw_i2cs[i]);
1440 			pool->base.sw_i2cs[i] = NULL;
1441 		}
1442 	}
1443 
1444 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1445 		if (pool->base.opps[i] != NULL)
1446 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1447 	}
1448 
1449 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1450 		if (pool->base.timing_generators[i] != NULL)	{
1451 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1452 			pool->base.timing_generators[i] = NULL;
1453 		}
1454 	}
1455 
1456 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1457 		if (pool->base.dwbc[i] != NULL) {
1458 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1459 			pool->base.dwbc[i] = NULL;
1460 		}
1461 		if (pool->base.mcif_wb[i] != NULL) {
1462 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1463 			pool->base.mcif_wb[i] = NULL;
1464 		}
1465 	}
1466 
1467 	for (i = 0; i < pool->base.audio_count; i++) {
1468 		if (pool->base.audios[i])
1469 			dce_aud_destroy(&pool->base.audios[i]);
1470 	}
1471 
1472 	for (i = 0; i < pool->base.clk_src_count; i++) {
1473 		if (pool->base.clock_sources[i] != NULL) {
1474 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1475 			pool->base.clock_sources[i] = NULL;
1476 		}
1477 	}
1478 
1479 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1480 		if (pool->base.mpc_lut[i] != NULL) {
1481 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1482 			pool->base.mpc_lut[i] = NULL;
1483 		}
1484 		if (pool->base.mpc_shaper[i] != NULL) {
1485 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1486 			pool->base.mpc_shaper[i] = NULL;
1487 		}
1488 	}
1489 
1490 	if (pool->base.dp_clock_source != NULL) {
1491 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1492 		pool->base.dp_clock_source = NULL;
1493 	}
1494 
1495 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1496 		if (pool->base.multiple_abms[i] != NULL)
1497 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1498 	}
1499 
1500 	if (pool->base.psr != NULL)
1501 		dmub_psr_destroy(&pool->base.psr);
1502 
1503 	if (pool->base.dccg != NULL)
1504 		dcn_dccg_destroy(&pool->base.dccg);
1505 
1506 	if (pool->base.oem_device != NULL)
1507 		dal_ddc_service_destroy(&pool->base.oem_device);
1508 }
1509 
1510 
1511 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1512 {
1513 	int i;
1514 	uint32_t dwb_count = pool->res_cap->num_dwb;
1515 
1516 	for (i = 0; i < dwb_count; i++) {
1517 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1518 						    GFP_KERNEL);
1519 
1520 		if (!dwbc30) {
1521 			dm_error("DC: failed to create dwbc30!\n");
1522 			return false;
1523 		}
1524 
1525 #undef REG_STRUCT
1526 #define REG_STRUCT dwbc30_regs
1527 		dwbc_regs_dcn3_init(0);
1528 
1529 		dcn30_dwbc_construct(dwbc30, ctx,
1530 				&dwbc30_regs[i],
1531 				&dwbc30_shift,
1532 				&dwbc30_mask,
1533 				i);
1534 
1535 		pool->dwbc[i] = &dwbc30->base;
1536 	}
1537 	return true;
1538 }
1539 
1540 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1541 {
1542 	int i;
1543 	uint32_t dwb_count = pool->res_cap->num_dwb;
1544 
1545 	for (i = 0; i < dwb_count; i++) {
1546 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1547 						    GFP_KERNEL);
1548 
1549 		if (!mcif_wb30) {
1550 			dm_error("DC: failed to create mcif_wb30!\n");
1551 			return false;
1552 		}
1553 
1554 #undef REG_STRUCT
1555 #define REG_STRUCT mcif_wb30_regs
1556 		mcif_wb_regs_dcn3_init(0);
1557 
1558 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1559 				&mcif_wb30_regs[i],
1560 				&mcif_wb30_shift,
1561 				&mcif_wb30_mask,
1562 				i);
1563 
1564 		pool->mcif_wb[i] = &mcif_wb30->base;
1565 	}
1566 	return true;
1567 }
1568 
1569 static struct display_stream_compressor *dcn32_dsc_create(
1570 	struct dc_context *ctx, uint32_t inst)
1571 {
1572 	struct dcn20_dsc *dsc =
1573 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1574 
1575 	if (!dsc) {
1576 		BREAK_TO_DEBUGGER();
1577 		return NULL;
1578 	}
1579 
1580 #undef REG_STRUCT
1581 #define REG_STRUCT dsc_regs
1582 	dsc_regsDCN20_init(0),
1583 	dsc_regsDCN20_init(1),
1584 	dsc_regsDCN20_init(2),
1585 	dsc_regsDCN20_init(3);
1586 
1587 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1588 
1589 	dsc->max_image_width = 6016;
1590 
1591 	return &dsc->base;
1592 }
1593 
1594 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1595 {
1596 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1597 
1598 	dcn32_resource_destruct(dcn32_pool);
1599 	kfree(dcn32_pool);
1600 	*pool = NULL;
1601 }
1602 
1603 bool dcn32_acquire_post_bldn_3dlut(
1604 		struct resource_context *res_ctx,
1605 		const struct resource_pool *pool,
1606 		int mpcc_id,
1607 		struct dc_3dlut **lut,
1608 		struct dc_transfer_func **shaper)
1609 {
1610 	bool ret = false;
1611 	union dc_3dlut_state *state;
1612 
1613 	ASSERT(*lut == NULL && *shaper == NULL);
1614 	*lut = NULL;
1615 	*shaper = NULL;
1616 
1617 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1618 		*lut = pool->mpc_lut[mpcc_id];
1619 		*shaper = pool->mpc_shaper[mpcc_id];
1620 		state = &pool->mpc_lut[mpcc_id]->state;
1621 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1622 		ret = true;
1623 	}
1624 	return ret;
1625 }
1626 
1627 bool dcn32_release_post_bldn_3dlut(
1628 		struct resource_context *res_ctx,
1629 		const struct resource_pool *pool,
1630 		struct dc_3dlut **lut,
1631 		struct dc_transfer_func **shaper)
1632 {
1633 	int i;
1634 	bool ret = false;
1635 
1636 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1637 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1638 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1639 			pool->mpc_lut[i]->state.raw = 0;
1640 			*lut = NULL;
1641 			*shaper = NULL;
1642 			ret = true;
1643 			break;
1644 		}
1645 	}
1646 	return ret;
1647 }
1648 
1649 static void dcn32_enable_phantom_plane(struct dc *dc,
1650 		struct dc_state *context,
1651 		struct dc_stream_state *phantom_stream,
1652 		unsigned int dc_pipe_idx)
1653 {
1654 	struct dc_plane_state *phantom_plane = NULL;
1655 	struct dc_plane_state *prev_phantom_plane = NULL;
1656 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1657 
1658 	while (curr_pipe) {
1659 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1660 			phantom_plane = prev_phantom_plane;
1661 		else
1662 			phantom_plane = dc_create_plane_state(dc);
1663 
1664 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1665 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1666 				sizeof(phantom_plane->scaling_quality));
1667 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1668 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1669 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1670 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1671 				sizeof(phantom_plane->plane_size));
1672 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1673 				sizeof(phantom_plane->tiling_info));
1674 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1675 		phantom_plane->format = curr_pipe->plane_state->format;
1676 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1677 		phantom_plane->visible = curr_pipe->plane_state->visible;
1678 
1679 		/* Shadow pipe has small viewport. */
1680 		phantom_plane->clip_rect.y = 0;
1681 		phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable;
1682 
1683 		phantom_plane->is_phantom = true;
1684 
1685 		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1686 
1687 		curr_pipe = curr_pipe->bottom_pipe;
1688 		prev_phantom_plane = phantom_plane;
1689 	}
1690 }
1691 
1692 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1693 		struct dc_state *context,
1694 		display_e2e_pipe_params_st *pipes,
1695 		unsigned int pipe_cnt,
1696 		unsigned int dc_pipe_idx)
1697 {
1698 	struct dc_stream_state *phantom_stream = NULL;
1699 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1700 
1701 	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
1702 	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
1703 	phantom_stream->dpms_off = true;
1704 	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
1705 	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
1706 	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
1707 	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
1708 
1709 	/* stream has limited viewport and small timing */
1710 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1711 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1712 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1713 	DC_FP_START();
1714 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1715 	DC_FP_END();
1716 
1717 	dc_add_stream_to_ctx(dc, context, phantom_stream);
1718 	return phantom_stream;
1719 }
1720 
1721 // return true if removed piped from ctx, false otherwise
1722 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context)
1723 {
1724 	int i;
1725 	bool removed_pipe = false;
1726 	struct dc_plane_state *phantom_plane = NULL;
1727 	struct dc_stream_state *phantom_stream = NULL;
1728 
1729 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1730 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1731 		// build scaling params for phantom pipes
1732 		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1733 			phantom_plane = pipe->plane_state;
1734 			phantom_stream = pipe->stream;
1735 
1736 			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
1737 			dc_remove_stream_from_ctx(dc, context, pipe->stream);
1738 
1739 			/* Ref count is incremented on allocation and also when added to the context.
1740 			 * Therefore we must call release for the the phantom plane and stream once
1741 			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
1742 			 */
1743 			dc_plane_state_release(phantom_plane);
1744 			dc_stream_release(phantom_stream);
1745 
1746 			removed_pipe = true;
1747 		}
1748 
1749 		// Clear all phantom stream info
1750 		if (pipe->stream) {
1751 			pipe->stream->mall_stream_config.type = SUBVP_NONE;
1752 			pipe->stream->mall_stream_config.paired_stream = NULL;
1753 		}
1754 
1755 		if (pipe->plane_state) {
1756 			pipe->plane_state->is_phantom = false;
1757 		}
1758 	}
1759 	return removed_pipe;
1760 }
1761 
1762 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1763  * require a phantom pipe / stream
1764  */
1765 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1766 		display_e2e_pipe_params_st *pipes,
1767 		unsigned int pipe_cnt,
1768 		unsigned int index)
1769 {
1770 	struct dc_stream_state *phantom_stream = NULL;
1771 	unsigned int i;
1772 
1773 	// The index of the DC pipe passed into this function is guarenteed to
1774 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1775 	// already have phantom pipe assigned, etc.) by previous checks.
1776 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1777 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1778 
1779 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1780 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1781 
1782 		// Build scaling params for phantom pipes which were newly added.
1783 		// We determine which phantom pipes were added by comparing with
1784 		// the phantom stream.
1785 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1786 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1787 			pipe->stream->use_dynamic_meta = false;
1788 			pipe->plane_state->flip_immediate = false;
1789 			if (!resource_build_scaling_params(pipe)) {
1790 				// Log / remove phantom pipes since failed to build scaling params
1791 			}
1792 		}
1793 	}
1794 }
1795 
1796 bool dcn32_validate_bandwidth(struct dc *dc,
1797 		struct dc_state *context,
1798 		bool fast_validate)
1799 {
1800 	bool out = false;
1801 
1802 	BW_VAL_TRACE_SETUP();
1803 
1804 	int vlevel = 0;
1805 	int pipe_cnt = 0;
1806 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1807 	struct mall_temp_config mall_temp_config;
1808 
1809 	/* To handle Freesync properly, setting FreeSync DML parameters
1810 	 * to its default state for the first stage of validation
1811 	 */
1812 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1813 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1814 
1815 	DC_LOGGER_INIT(dc->ctx->logger);
1816 
1817 	/* For fast validation, there are situations where a shallow copy of
1818 	 * of the dc->current_state is created for the validation. In this case
1819 	 * we want to save and restore the mall config because we always
1820 	 * teardown subvp at the beginning of validation (and don't attempt
1821 	 * to add it back if it's fast validation). If we don't restore the
1822 	 * subvp config in cases of fast validation + shallow copy of the
1823 	 * dc->current_state, the dc->current_state will have a partially
1824 	 * removed subvp state when we did not intend to remove it.
1825 	 */
1826 	if (fast_validate) {
1827 		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
1828 		dcn32_save_mall_state(dc, context, &mall_temp_config);
1829 	}
1830 
1831 	BW_VAL_TRACE_COUNT();
1832 
1833 	DC_FP_START();
1834 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1835 	DC_FP_END();
1836 
1837 	if (fast_validate)
1838 		dcn32_restore_mall_state(dc, context, &mall_temp_config);
1839 
1840 	if (pipe_cnt == 0)
1841 		goto validate_out;
1842 
1843 	if (!out)
1844 		goto validate_fail;
1845 
1846 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1847 
1848 	if (fast_validate) {
1849 		BW_VAL_TRACE_SKIP(fast);
1850 		goto validate_out;
1851 	}
1852 
1853 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1854 
1855 	BW_VAL_TRACE_END_WATERMARKS();
1856 
1857 	goto validate_out;
1858 
1859 validate_fail:
1860 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1861 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1862 
1863 	BW_VAL_TRACE_SKIP(fail);
1864 	out = false;
1865 
1866 validate_out:
1867 	kfree(pipes);
1868 
1869 	BW_VAL_TRACE_FINISH();
1870 
1871 	return out;
1872 }
1873 
1874 int dcn32_populate_dml_pipes_from_context(
1875 	struct dc *dc, struct dc_state *context,
1876 	display_e2e_pipe_params_st *pipes,
1877 	bool fast_validate)
1878 {
1879 	int i, pipe_cnt;
1880 	struct resource_context *res_ctx = &context->res_ctx;
1881 	struct pipe_ctx *pipe;
1882 	bool subvp_in_use = false;
1883 	uint8_t is_pipe_split_expected[MAX_PIPES] = {0};
1884 	struct dc_crtc_timing *timing;
1885 
1886 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1887 
1888 	/* Determine whether we will apply ODM 2to1 policy:
1889 	 * Applies to single display and where the number of planes is less than 3.
1890 	 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
1891 	 *
1892 	 * Apply pipe split policy first so we can predict the pipe split correctly
1893 	 * (dcn32_predict_pipe_split).
1894 	 */
1895 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1896 		if (!res_ctx->pipe_ctx[i].stream)
1897 			continue;
1898 		pipe = &res_ctx->pipe_ctx[i];
1899 		timing = &pipe->stream->timing;
1900 
1901 		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1902 		if (context->stream_count == 1 &&
1903 				context->stream_status[0].plane_count <= 1 &&
1904 				!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
1905 				is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1906 				pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1907 				dc->debug.enable_single_display_2to1_odm_policy) {
1908 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1909 		}
1910 		pipe_cnt++;
1911 	}
1912 
1913 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1914 
1915 		if (!res_ctx->pipe_ctx[i].stream)
1916 			continue;
1917 		pipe = &res_ctx->pipe_ctx[i];
1918 		timing = &pipe->stream->timing;
1919 
1920 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1921 		pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
1922 		pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
1923 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1924 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1925 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1926 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1927 
1928 		switch (pipe->stream->mall_stream_config.type) {
1929 		case SUBVP_MAIN:
1930 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1931 			subvp_in_use = true;
1932 			break;
1933 		case SUBVP_PHANTOM:
1934 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1935 			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1936 			// Disallow unbounded req for SubVP according to DCHUB programming guide
1937 			pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1938 			break;
1939 		case SUBVP_NONE:
1940 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1941 			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1942 			break;
1943 		default:
1944 			break;
1945 		}
1946 
1947 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1948 		if (pipes[pipe_cnt].dout.dsc_enable) {
1949 			switch (timing->display_color_depth) {
1950 			case COLOR_DEPTH_888:
1951 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
1952 				break;
1953 			case COLOR_DEPTH_101010:
1954 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
1955 				break;
1956 			case COLOR_DEPTH_121212:
1957 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
1958 				break;
1959 			default:
1960 				ASSERT(0);
1961 				break;
1962 			}
1963 		}
1964 
1965 		DC_FP_START();
1966 		is_pipe_split_expected[i] = dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
1967 		DC_FP_END();
1968 
1969 		pipe_cnt++;
1970 	}
1971 
1972 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
1973 	 * the DET available for each pipe). Use the DET override input to maintain our driver
1974 	 * policy.
1975 	 */
1976 	dcn32_set_det_allocations(dc, context, pipes);
1977 
1978 	// In general cases we want to keep the dram clock change requirement
1979 	// (prefer configs that support MCLK switch). Only override to false
1980 	// for SubVP
1981 	if (subvp_in_use)
1982 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
1983 	else
1984 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1985 
1986 	return pipe_cnt;
1987 }
1988 
1989 static struct dc_cap_funcs cap_funcs = {
1990 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1991 };
1992 
1993 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
1994 				display_e2e_pipe_params_st *pipes,
1995 				int pipe_cnt,
1996 				int vlevel)
1997 {
1998     DC_FP_START();
1999     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2000     DC_FP_END();
2001 }
2002 
2003 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2004 {
2005 	DC_FP_START();
2006 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2007 	DC_FP_END();
2008 }
2009 
2010 static struct resource_funcs dcn32_res_pool_funcs = {
2011 	.destroy = dcn32_destroy_resource_pool,
2012 	.link_enc_create = dcn32_link_encoder_create,
2013 	.link_enc_create_minimal = NULL,
2014 	.panel_cntl_create = dcn32_panel_cntl_create,
2015 	.validate_bandwidth = dcn32_validate_bandwidth,
2016 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2017 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2018 	.acquire_idle_pipe_for_head_pipe_in_layer = dcn32_acquire_idle_pipe_for_head_pipe_in_layer,
2019 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2020 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2021 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2022 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2023 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2024 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2025 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2026 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2027 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2028 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2029 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2030 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2031 	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
2032 };
2033 
2034 
2035 static bool dcn32_resource_construct(
2036 	uint8_t num_virtual_links,
2037 	struct dc *dc,
2038 	struct dcn32_resource_pool *pool)
2039 {
2040 	int i, j;
2041 	struct dc_context *ctx = dc->ctx;
2042 	struct irq_service_init_data init_data;
2043 	struct ddc_service_init_data ddc_init_data = {0};
2044 	uint32_t pipe_fuses = 0;
2045 	uint32_t num_pipes  = 4;
2046 
2047 	#undef REG_STRUCT
2048 	#define REG_STRUCT bios_regs
2049 		bios_regs_init();
2050 
2051 	#undef REG_STRUCT
2052 	#define REG_STRUCT clk_src_regs
2053 		clk_src_regs_init(0, A),
2054 		clk_src_regs_init(1, B),
2055 		clk_src_regs_init(2, C),
2056 		clk_src_regs_init(3, D),
2057 		clk_src_regs_init(4, E);
2058 	#undef REG_STRUCT
2059 	#define REG_STRUCT abm_regs
2060 		abm_regs_init(0),
2061 		abm_regs_init(1),
2062 		abm_regs_init(2),
2063 		abm_regs_init(3);
2064 
2065 	#undef REG_STRUCT
2066 	#define REG_STRUCT dccg_regs
2067 		dccg_regs_init();
2068 
2069 	DC_FP_START();
2070 
2071 	ctx->dc_bios->regs = &bios_regs;
2072 
2073 	pool->base.res_cap = &res_cap_dcn32;
2074 	/* max number of pipes for ASIC before checking for pipe fuses */
2075 	num_pipes  = pool->base.res_cap->num_timing_generator;
2076 	pipe_fuses = REG_READ(CC_DC_PIPE_DIS);
2077 
2078 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2079 		if (pipe_fuses & 1 << i)
2080 			num_pipes--;
2081 
2082 	if (pipe_fuses & 1)
2083 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2084 
2085 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2086 		ASSERT(0); //Entire DCN is harvested!
2087 
2088 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2089 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2090 	 */
2091 	dcn3_2_ip.max_num_dpp = num_pipes;
2092 	dcn3_2_ip.max_num_otg = num_pipes;
2093 
2094 	pool->base.funcs = &dcn32_res_pool_funcs;
2095 
2096 	/*************************************************
2097 	 *  Resource + asic cap harcoding                *
2098 	 *************************************************/
2099 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2100 	pool->base.timing_generator_count = num_pipes;
2101 	pool->base.pipe_count = num_pipes;
2102 	pool->base.mpcc_count = num_pipes;
2103 	dc->caps.max_downscale_ratio = 600;
2104 	dc->caps.i2c_speed_in_khz = 100;
2105 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2106 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2107 	dc->caps.max_cursor_size = 64;
2108 	dc->caps.min_horizontal_blanking_period = 80;
2109 	dc->caps.dmdata_alloc_size = 2048;
2110 	dc->caps.mall_size_per_mem_channel = 0;
2111 	dc->caps.mall_size_total = 0;
2112 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2113 
2114 	dc->caps.cache_line_size = 64;
2115 	dc->caps.cache_num_ways = 16;
2116 	dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64
2117 	dc->caps.subvp_fw_processing_delay_us = 15;
2118 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2119 	dc->caps.subvp_swath_height_margin_lines = 16;
2120 	dc->caps.subvp_pstate_allow_width_us = 20;
2121 	dc->caps.subvp_vertical_int_margin_us = 30;
2122 
2123 	dc->caps.max_slave_planes = 2;
2124 	dc->caps.max_slave_yuv_planes = 2;
2125 	dc->caps.max_slave_rgb_planes = 2;
2126 	dc->caps.post_blend_color_processing = true;
2127 	dc->caps.force_dp_tps4_for_cp2520 = true;
2128 	dc->caps.dp_hpo = true;
2129 	dc->caps.dp_hdmi21_pcon_support = true;
2130 	dc->caps.edp_dsc_support = true;
2131 	dc->caps.extended_aux_timeout_support = true;
2132 	dc->caps.dmcub_support = true;
2133 
2134 	/* Color pipeline capabilities */
2135 	dc->caps.color.dpp.dcn_arch = 1;
2136 	dc->caps.color.dpp.input_lut_shared = 0;
2137 	dc->caps.color.dpp.icsc = 1;
2138 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2139 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2140 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2141 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2142 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2143 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2144 	dc->caps.color.dpp.post_csc = 1;
2145 	dc->caps.color.dpp.gamma_corr = 1;
2146 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2147 
2148 	dc->caps.color.dpp.hw_3d_lut = 1;
2149 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2150 	// no OGAM ROM on DCN2 and later ASICs
2151 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2152 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2153 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2154 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2155 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2156 	dc->caps.color.dpp.ocsc = 0;
2157 
2158 	dc->caps.color.mpc.gamut_remap = 1;
2159 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2160 	dc->caps.color.mpc.ogam_ram = 1;
2161 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2162 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2163 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2164 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2165 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2166 	dc->caps.color.mpc.ocsc = 1;
2167 
2168 	/* Use pipe context based otg sync logic */
2169 	dc->config.use_pipe_ctx_sync_logic = true;
2170 
2171 	/* read VBIOS LTTPR caps */
2172 	{
2173 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2174 			enum bp_result bp_query_result;
2175 			uint8_t is_vbios_lttpr_enable = 0;
2176 
2177 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2178 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2179 		}
2180 
2181 		/* interop bit is implicit */
2182 		{
2183 			dc->caps.vbios_lttpr_aware = true;
2184 		}
2185 	}
2186 
2187 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2188 		dc->debug = debug_defaults_drv;
2189 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2190 		dc->debug = debug_defaults_diags;
2191 	} else
2192 		dc->debug = debug_defaults_diags;
2193 	// Init the vm_helper
2194 	if (dc->vm_helper)
2195 		vm_helper_init(dc->vm_helper, 16);
2196 
2197 	/*************************************************
2198 	 *  Create resources                             *
2199 	 *************************************************/
2200 
2201 	/* Clock Sources for Pixel Clock*/
2202 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2203 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2204 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2205 				&clk_src_regs[0], false);
2206 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2207 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2208 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2209 				&clk_src_regs[1], false);
2210 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2211 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2212 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2213 				&clk_src_regs[2], false);
2214 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2215 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2216 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2217 				&clk_src_regs[3], false);
2218 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2219 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2220 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2221 				&clk_src_regs[4], false);
2222 
2223 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2224 
2225 	/* todo: not reuse phy_pll registers */
2226 	pool->base.dp_clock_source =
2227 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2228 				CLOCK_SOURCE_ID_DP_DTO,
2229 				&clk_src_regs[0], true);
2230 
2231 	for (i = 0; i < pool->base.clk_src_count; i++) {
2232 		if (pool->base.clock_sources[i] == NULL) {
2233 			dm_error("DC: failed to create clock sources!\n");
2234 			BREAK_TO_DEBUGGER();
2235 			goto create_fail;
2236 		}
2237 	}
2238 
2239 	/* DCCG */
2240 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2241 	if (pool->base.dccg == NULL) {
2242 		dm_error("DC: failed to create dccg!\n");
2243 		BREAK_TO_DEBUGGER();
2244 		goto create_fail;
2245 	}
2246 
2247 	/* DML */
2248 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
2249 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2250 
2251 	/* IRQ Service */
2252 	init_data.ctx = dc->ctx;
2253 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2254 	if (!pool->base.irqs)
2255 		goto create_fail;
2256 
2257 	/* HUBBUB */
2258 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2259 	if (pool->base.hubbub == NULL) {
2260 		BREAK_TO_DEBUGGER();
2261 		dm_error("DC: failed to create hubbub!\n");
2262 		goto create_fail;
2263 	}
2264 
2265 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2266 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2267 
2268 		/* if pipe is disabled, skip instance of HW pipe,
2269 		 * i.e, skip ASIC register instance
2270 		 */
2271 		if (pipe_fuses & 1 << i)
2272 			continue;
2273 
2274 		/* HUBPs */
2275 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2276 		if (pool->base.hubps[j] == NULL) {
2277 			BREAK_TO_DEBUGGER();
2278 			dm_error(
2279 				"DC: failed to create hubps!\n");
2280 			goto create_fail;
2281 		}
2282 
2283 		/* DPPs */
2284 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2285 		if (pool->base.dpps[j] == NULL) {
2286 			BREAK_TO_DEBUGGER();
2287 			dm_error(
2288 				"DC: failed to create dpps!\n");
2289 			goto create_fail;
2290 		}
2291 
2292 		/* OPPs */
2293 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2294 		if (pool->base.opps[j] == NULL) {
2295 			BREAK_TO_DEBUGGER();
2296 			dm_error(
2297 				"DC: failed to create output pixel processor!\n");
2298 			goto create_fail;
2299 		}
2300 
2301 		/* TGs */
2302 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2303 				ctx, i);
2304 		if (pool->base.timing_generators[j] == NULL) {
2305 			BREAK_TO_DEBUGGER();
2306 			dm_error("DC: failed to create tg!\n");
2307 			goto create_fail;
2308 		}
2309 
2310 		/* ABMs */
2311 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2312 				&abm_regs[i],
2313 				&abm_shift,
2314 				&abm_mask);
2315 		if (pool->base.multiple_abms[j] == NULL) {
2316 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2317 			BREAK_TO_DEBUGGER();
2318 			goto create_fail;
2319 		}
2320 
2321 		/* index for resource pool arrays for next valid pipe */
2322 		j++;
2323 	}
2324 
2325 	/* PSR */
2326 	pool->base.psr = dmub_psr_create(ctx);
2327 	if (pool->base.psr == NULL) {
2328 		dm_error("DC: failed to create psr obj!\n");
2329 		BREAK_TO_DEBUGGER();
2330 		goto create_fail;
2331 	}
2332 
2333 	/* MPCCs */
2334 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2335 	if (pool->base.mpc == NULL) {
2336 		BREAK_TO_DEBUGGER();
2337 		dm_error("DC: failed to create mpc!\n");
2338 		goto create_fail;
2339 	}
2340 
2341 	/* DSCs */
2342 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2343 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2344 		if (pool->base.dscs[i] == NULL) {
2345 			BREAK_TO_DEBUGGER();
2346 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2347 			goto create_fail;
2348 		}
2349 	}
2350 
2351 	/* DWB */
2352 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2353 		BREAK_TO_DEBUGGER();
2354 		dm_error("DC: failed to create dwbc!\n");
2355 		goto create_fail;
2356 	}
2357 
2358 	/* MMHUBBUB */
2359 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2360 		BREAK_TO_DEBUGGER();
2361 		dm_error("DC: failed to create mcif_wb!\n");
2362 		goto create_fail;
2363 	}
2364 
2365 	/* AUX and I2C */
2366 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2367 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2368 		if (pool->base.engines[i] == NULL) {
2369 			BREAK_TO_DEBUGGER();
2370 			dm_error(
2371 				"DC:failed to create aux engine!!\n");
2372 			goto create_fail;
2373 		}
2374 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2375 		if (pool->base.hw_i2cs[i] == NULL) {
2376 			BREAK_TO_DEBUGGER();
2377 			dm_error(
2378 				"DC:failed to create hw i2c!!\n");
2379 			goto create_fail;
2380 		}
2381 		pool->base.sw_i2cs[i] = NULL;
2382 	}
2383 
2384 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2385 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2386 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2387 			&res_create_funcs : &res_create_maximus_funcs)))
2388 			goto create_fail;
2389 
2390 	/* HW Sequencer init functions and Plane caps */
2391 	dcn32_hw_sequencer_init_functions(dc);
2392 
2393 	dc->caps.max_planes =  pool->base.pipe_count;
2394 
2395 	for (i = 0; i < dc->caps.max_planes; ++i)
2396 		dc->caps.planes[i] = plane_cap;
2397 
2398 	dc->cap_funcs = cap_funcs;
2399 
2400 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2401 		ddc_init_data.ctx = dc->ctx;
2402 		ddc_init_data.link = NULL;
2403 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2404 		ddc_init_data.id.enum_id = 0;
2405 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2406 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2407 	} else {
2408 		pool->base.oem_device = NULL;
2409 	}
2410 
2411 	DC_FP_END();
2412 
2413 	return true;
2414 
2415 create_fail:
2416 
2417 	DC_FP_END();
2418 
2419 	dcn32_resource_destruct(pool);
2420 
2421 	return false;
2422 }
2423 
2424 struct resource_pool *dcn32_create_resource_pool(
2425 		const struct dc_init_data *init_data,
2426 		struct dc *dc)
2427 {
2428 	struct dcn32_resource_pool *pool =
2429 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2430 
2431 	if (!pool)
2432 		return NULL;
2433 
2434 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2435 		return &pool->base;
2436 
2437 	BREAK_TO_DEBUGGER();
2438 	kfree(pool);
2439 	return NULL;
2440 }
2441 
2442 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2443 		struct resource_context *res_ctx,
2444 		const struct resource_pool *pool,
2445 		const struct pipe_ctx *primary_pipe)
2446 {
2447 	int i;
2448 	struct pipe_ctx *secondary_pipe = NULL;
2449 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2450 	int primary_index, preferred_pipe_idx;
2451 	struct pipe_ctx *old_primary_pipe = NULL;
2452 
2453 	/*
2454 	 * Modified from find_idle_secondary_pipe
2455 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2456 	 *  free pipe for the left side but the free pipe is being used on the
2457 	 *  right side.
2458 	 * Add check on current_state if the primary_pipe is the left side,
2459 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2460 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2461 	 * - If so, then don't use this pipe
2462 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2463 	 * - in this case, the primary pipe has already gotten a free pipe for the
2464 	 *  MPO window in the left
2465 	 * - when it tries to get a free pipe for the MPO window on the right,
2466 	 *  it will see that it is already assigned to the right side
2467 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2468 	 *  free pipe, since it will be for the right side.  So add an
2469 	 *  additional condition, that skipping the free pipe on the right only
2470 	 *  applies if the primary pipe has no bottom pipe currently assigned
2471 	 */
2472 	if (primary_pipe) {
2473 		primary_index = primary_pipe->pipe_idx;
2474 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2475 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2476 			&& (!primary_pipe->bottom_pipe))
2477 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2478 
2479 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2480 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2481 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2482 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2483 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2484 		}
2485 	}
2486 
2487 	/*
2488 	 * search backwards for the second pipe to keep pipe
2489 	 * assignment more consistent
2490 	 */
2491 	if (!secondary_pipe)
2492 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2493 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2494 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2495 				secondary_pipe = &res_ctx->pipe_ctx[i];
2496 				secondary_pipe->pipe_idx = i;
2497 				break;
2498 			}
2499 		}
2500 
2501 	return secondary_pipe;
2502 }
2503 
2504 struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2505 		struct dc_state *state,
2506 		const struct resource_pool *pool,
2507 		struct dc_stream_state *stream,
2508 		struct pipe_ctx *head_pipe)
2509 {
2510 	struct resource_context *res_ctx = &state->res_ctx;
2511 	struct pipe_ctx *idle_pipe, *pipe;
2512 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2513 	int head_index;
2514 
2515 	if (!head_pipe)
2516 		ASSERT(0);
2517 
2518 	/*
2519 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2520 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2521 	 * - If so, check if that pipe is available in the current context.
2522 	 * --  If so, reuse pipe from old_context
2523 	 */
2524 	head_index = head_pipe->pipe_idx;
2525 	pipe = &old_ctx->pipe_ctx[head_index];
2526 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2527 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2528 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2529 	} else {
2530 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2531 		if (!idle_pipe)
2532 			return NULL;
2533 	}
2534 
2535 	idle_pipe->stream = head_pipe->stream;
2536 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2537 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2538 
2539 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2540 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2541 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2542 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2543 
2544 	return idle_pipe;
2545 }
2546