1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dc_link_dp.h"
61 #include "dcn31/dcn31_apg.h"
62 #include "dcn31/dcn31_dio_link_encoder.h"
63 #include "dcn32/dcn32_dio_link_encoder.h"
64 #include "dce/dce_clock_source.h"
65 #include "dce/dce_audio.h"
66 #include "dce/dce_hwseq.h"
67 #include "clk_mgr.h"
68 #include "virtual/virtual_stream_encoder.h"
69 #include "dml/display_mode_vba.h"
70 #include "dcn32/dcn32_dccg.h"
71 #include "dcn10/dcn10_resource.h"
72 #include "dc_link_ddc.h"
73 #include "dcn31/dcn31_panel_cntl.h"
74 
75 #include "dcn30/dcn30_dwb.h"
76 #include "dcn32/dcn32_mmhubbub.h"
77 
78 #include "dcn/dcn_3_2_0_offset.h"
79 #include "dcn/dcn_3_2_0_sh_mask.h"
80 #include "nbio/nbio_4_3_0_offset.h"
81 
82 #include "reg_helper.h"
83 #include "dce/dmub_abm.h"
84 #include "dce/dmub_psr.h"
85 #include "dce/dce_aux.h"
86 #include "dce/dce_i2c.h"
87 
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 
92 #define DCN_BASE__INST0_SEG1                       0x000000C0
93 #define DCN_BASE__INST0_SEG2                       0x000034C0
94 #define DCN_BASE__INST0_SEG3                       0x00009000
95 #define NBIO_BASE__INST0_SEG1                      0x00000014
96 
97 #define MAX_INSTANCE                                        6
98 #define MAX_SEGMENT                                         6
99 
100 struct IP_BASE_INSTANCE {
101 	unsigned int segment[MAX_SEGMENT];
102 };
103 
104 struct IP_BASE {
105 	struct IP_BASE_INSTANCE instance[MAX_INSTANCE];
106 };
107 
108 static const struct IP_BASE DCN_BASE = { { { { 0x00000012, 0x000000C0, 0x000034C0, 0x00009000, 0x02403C00, 0 } },
109 					{ { 0, 0, 0, 0, 0, 0 } },
110 					{ { 0, 0, 0, 0, 0, 0 } },
111 					{ { 0, 0, 0, 0, 0, 0 } },
112 					{ { 0, 0, 0, 0, 0, 0 } },
113 					{ { 0, 0, 0, 0, 0, 0 } } } };
114 
115 #define DC_LOGGER_INIT(logger)
116 
117 #define DCN3_2_DEFAULT_DET_SIZE 256
118 #define DCN3_2_MAX_DET_SIZE 1152
119 #define DCN3_2_MIN_DET_SIZE 128
120 #define DCN3_2_MIN_COMPBUF_SIZE_KB 128
121 
122 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
123 	.gpuvm_enable = 1,
124 	.gpuvm_max_page_table_levels = 4,
125 	.hostvm_enable = 0,
126 	.rob_buffer_size_kbytes = 128,
127 	.det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
128 	.config_return_buffer_size_in_kbytes = 1280,
129 	.compressed_buffer_segment_size_in_kbytes = 64,
130 	.meta_fifo_size_in_kentries = 22,
131 	.zero_size_buffer_entries = 512,
132 	.compbuf_reserved_space_64b = 256,
133 	.compbuf_reserved_space_zs = 64,
134 	.dpp_output_buffer_pixels = 2560,
135 	.opp_output_buffer_lines = 1,
136 	.pixel_chunk_size_kbytes = 8,
137 	.alpha_pixel_chunk_size_kbytes = 4, // not appearing in spreadsheet, match c code from hw team
138 	.min_pixel_chunk_size_bytes = 1024,
139 	.dcc_meta_buffer_size_bytes = 6272,
140 	.meta_chunk_size_kbytes = 2,
141 	.min_meta_chunk_size_bytes = 256,
142 	.writeback_chunk_size_kbytes = 8,
143 	.ptoi_supported = false,
144 	.num_dsc = 4,
145 	.maximum_dsc_bits_per_component = 12,
146 	.maximum_pixels_per_line_per_dsc_unit = 6016,
147 	.dsc422_native_support = true,
148 	.is_line_buffer_bpp_fixed = true,
149 	.line_buffer_fixed_bpp = 57,
150 	.line_buffer_size_bits = 1171920, //DPP doc, DCN3_2_DisplayMode_73.xlsm still shows as 986880 bits with 48 bpp
151 	.max_line_buffer_lines = 32,
152 	.writeback_interface_buffer_size_kbytes = 90,
153 	.max_num_dpp = 4,
154 	.max_num_otg = 4,
155 	.max_num_hdmi_frl_outputs = 1,
156 	.max_num_wb = 1,
157 	.max_dchub_pscl_bw_pix_per_clk = 4,
158 	.max_pscl_lb_bw_pix_per_clk = 2,
159 	.max_lb_vscl_bw_pix_per_clk = 4,
160 	.max_vscl_hscl_bw_pix_per_clk = 4,
161 	.max_hscl_ratio = 6,
162 	.max_vscl_ratio = 6,
163 	.max_hscl_taps = 8,
164 	.max_vscl_taps = 8,
165 	.dpte_buffer_size_in_pte_reqs_luma = 64,
166 	.dpte_buffer_size_in_pte_reqs_chroma = 34,
167 	.dispclk_ramp_margin_percent = 1,
168 	.max_inter_dcn_tile_repeaters = 8,
169 	.cursor_buffer_size = 16,
170 	.cursor_chunk_size = 2,
171 	.writeback_line_buffer_buffer_size = 0,
172 	.writeback_min_hscl_ratio = 1,
173 	.writeback_min_vscl_ratio = 1,
174 	.writeback_max_hscl_ratio = 1,
175 	.writeback_max_vscl_ratio = 1,
176 	.writeback_max_hscl_taps = 1,
177 	.writeback_max_vscl_taps = 1,
178 	.dppclk_delay_subtotal = 47,
179 	.dppclk_delay_scl = 50,
180 	.dppclk_delay_scl_lb_only = 16,
181 	.dppclk_delay_cnvc_formatter = 28,
182 	.dppclk_delay_cnvc_cursor = 6,
183 	.dispclk_delay_subtotal = 125,
184 	.dynamic_metadata_vm_enabled = false,
185 	.odm_combine_4to1_supported = false,
186 	.dcc_supported = true,
187 	.max_num_dp2p0_outputs = 2,
188 	.max_num_dp2p0_streams = 4,
189 };
190 
191 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
192 	.clock_limits = {
193 		{
194 			.state = 0,
195 			.dcfclk_mhz = 1564.0,
196 			.fabricclk_mhz = 400.0,
197 			.dispclk_mhz = 2150.0,
198 			.dppclk_mhz = 2150.0,
199 			.phyclk_mhz = 810.0,
200 			.phyclk_d18_mhz = 667.0,
201 			.phyclk_d32_mhz = 625.0,
202 			.socclk_mhz = 1200.0,
203 			.dscclk_mhz = 716.667,
204 			.dram_speed_mts = 1600.0,
205 			.dtbclk_mhz = 1564.0,
206 		},
207 	},
208 	.num_states = 1,
209 	.sr_exit_time_us = 5.20,
210 	.sr_enter_plus_exit_time_us = 9.60,
211 	.sr_exit_z8_time_us = 285.0,
212 	.sr_enter_plus_exit_z8_time_us = 320,
213 	.writeback_latency_us = 12.0,
214 	.round_trip_ping_latency_dcfclk_cycles = 263,
215 	.urgent_latency_pixel_data_only_us = 4.0,
216 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
217 	.urgent_latency_vm_data_only_us = 4.0,
218 	.fclk_change_latency_us = 20,
219 	.usr_retraining_latency_us = 2,
220 	.smn_latency_us = 2,
221 	.mall_allocated_for_dcn_mbytes = 64,
222 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
223 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
224 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
225 	.pct_ideal_sdp_bw_after_urgent = 100.0,
226 	.pct_ideal_fabric_bw_after_urgent = 67.0,
227 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
228 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
229 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
230 	.pct_ideal_dram_bw_after_urgent_strobe = 67.0,
231 	.max_avg_sdp_bw_use_normal_percent = 80.0,
232 	.max_avg_fabric_bw_use_normal_percent = 60.0,
233 	.max_avg_dram_bw_use_normal_strobe_percent = 50.0,
234 	.max_avg_dram_bw_use_normal_percent = 15.0,
235 	.num_chans = 8,
236 	.dram_channel_width_bytes = 2,
237 	.fabric_datapath_to_dcn_data_return_bytes = 64,
238 	.return_bus_width_bytes = 64,
239 	.downspread_percent = 0.38,
240 	.dcn_downspread_percent = 0.5,
241 	.dram_clock_change_latency_us = 400,
242 	.dispclk_dppclk_vco_speed_mhz = 4300.0,
243 	.do_urgent_latency_adjustment = true,
244 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
245 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
246 };
247 
248 enum dcn32_clk_src_array_id {
249 	DCN32_CLK_SRC_PLL0,
250 	DCN32_CLK_SRC_PLL1,
251 	DCN32_CLK_SRC_PLL2,
252 	DCN32_CLK_SRC_PLL3,
253 	DCN32_CLK_SRC_PLL4,
254 	DCN32_CLK_SRC_TOTAL
255 };
256 
257 /* begin *********************
258  * macros to expend register list macro defined in HW object header file
259  */
260 
261 /* DCN */
262 /* TODO awful hack. fixup dcn20_dwb.h */
263 #undef BASE_INNER
264 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
265 
266 #define BASE(seg) BASE_INNER(seg)
267 
268 #define SR(reg_name)\
269 		.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
270 					reg ## reg_name
271 
272 #define SRI(reg_name, block, id)\
273 	.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
274 					reg ## block ## id ## _ ## reg_name
275 
276 #define SRI2(reg_name, block, id)\
277 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \
278 					reg ## reg_name
279 
280 #define SRIR(var_name, reg_name, block, id)\
281 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
282 					reg ## block ## id ## _ ## reg_name
283 
284 #define SRII(reg_name, block, id)\
285 	.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
286 					reg ## block ## id ## _ ## reg_name
287 
288 #define SRII_MPC_RMU(reg_name, block, id)\
289 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
290 					reg ## block ## id ## _ ## reg_name
291 
292 #define SRII_DWB(reg_name, temp_name, block, id)\
293 	.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
294 					reg ## block ## id ## _ ## temp_name
295 
296 #define DCCG_SRII(reg_name, block, id)\
297 	.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
298 					reg ## block ## id ## _ ## reg_name
299 
300 #define VUPDATE_SRII(reg_name, block, id)\
301 	.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
302 					reg ## reg_name ## _ ## block ## id
303 
304 /* NBIO */
305 #define NBIO_BASE_INNER(seg) \
306 	NBIO_BASE__INST0_SEG ## seg
307 
308 #define NBIO_BASE(seg) \
309 	NBIO_BASE_INNER(seg)
310 
311 #define NBIO_SR(reg_name)\
312 		.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
313 					regBIF_BX0_ ## reg_name
314 
315 #define CTX ctx
316 #define REG(reg_name) \
317 	(DCN_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
318 
319 static const struct bios_registers bios_regs = {
320 		NBIO_SR(BIOS_SCRATCH_3),
321 		NBIO_SR(BIOS_SCRATCH_6)
322 };
323 
324 #define clk_src_regs(index, pllid)\
325 [index] = {\
326 	CS_COMMON_REG_LIST_DCN3_0(index, pllid),\
327 }
328 
329 static const struct dce110_clk_src_regs clk_src_regs[] = {
330 	clk_src_regs(0, A),
331 	clk_src_regs(1, B),
332 	clk_src_regs(2, C),
333 	clk_src_regs(3, D),
334 	clk_src_regs(4, E)
335 };
336 
337 static const struct dce110_clk_src_shift cs_shift = {
338 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
339 };
340 
341 static const struct dce110_clk_src_mask cs_mask = {
342 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
343 };
344 
345 #define abm_regs(id)\
346 [id] = {\
347 		ABM_DCN32_REG_LIST(id)\
348 }
349 
350 static const struct dce_abm_registers abm_regs[] = {
351 		abm_regs(0),
352 		abm_regs(1),
353 		abm_regs(2),
354 		abm_regs(3),
355 };
356 
357 static const struct dce_abm_shift abm_shift = {
358 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
359 };
360 
361 static const struct dce_abm_mask abm_mask = {
362 		ABM_MASK_SH_LIST_DCN32(_MASK)
363 };
364 
365 #define audio_regs(id)\
366 [id] = {\
367 		AUD_COMMON_REG_LIST(id)\
368 }
369 
370 static const struct dce_audio_registers audio_regs[] = {
371 	audio_regs(0),
372 	audio_regs(1),
373 	audio_regs(2),
374 	audio_regs(3),
375 	audio_regs(4)
376 };
377 
378 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
379 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
380 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
381 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
382 
383 static const struct dce_audio_shift audio_shift = {
384 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
385 };
386 
387 static const struct dce_audio_mask audio_mask = {
388 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
389 };
390 
391 #define vpg_regs(id)\
392 [id] = {\
393 	VPG_DCN3_REG_LIST(id)\
394 }
395 
396 static const struct dcn30_vpg_registers vpg_regs[] = {
397 	vpg_regs(0),
398 	vpg_regs(1),
399 	vpg_regs(2),
400 	vpg_regs(3),
401 	vpg_regs(4),
402 	vpg_regs(5),
403 	vpg_regs(6),
404 	vpg_regs(7),
405 	vpg_regs(8),
406 	vpg_regs(9),
407 };
408 
409 static const struct dcn30_vpg_shift vpg_shift = {
410 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
411 };
412 
413 static const struct dcn30_vpg_mask vpg_mask = {
414 	DCN3_VPG_MASK_SH_LIST(_MASK)
415 };
416 
417 #define afmt_regs(id)\
418 [id] = {\
419 	AFMT_DCN3_REG_LIST(id)\
420 }
421 
422 static const struct dcn30_afmt_registers afmt_regs[] = {
423 	afmt_regs(0),
424 	afmt_regs(1),
425 	afmt_regs(2),
426 	afmt_regs(3),
427 	afmt_regs(4),
428 	afmt_regs(5)
429 };
430 
431 static const struct dcn30_afmt_shift afmt_shift = {
432 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
433 };
434 
435 static const struct dcn30_afmt_mask afmt_mask = {
436 	DCN3_AFMT_MASK_SH_LIST(_MASK)
437 };
438 
439 #define apg_regs(id)\
440 [id] = {\
441 	APG_DCN31_REG_LIST(id)\
442 }
443 
444 static const struct dcn31_apg_registers apg_regs[] = {
445 	apg_regs(0),
446 	apg_regs(1),
447 	apg_regs(2),
448 	apg_regs(3)
449 };
450 
451 static const struct dcn31_apg_shift apg_shift = {
452 	DCN31_APG_MASK_SH_LIST(__SHIFT)
453 };
454 
455 static const struct dcn31_apg_mask apg_mask = {
456 		DCN31_APG_MASK_SH_LIST(_MASK)
457 };
458 
459 #define stream_enc_regs(id)\
460 [id] = {\
461 	SE_DCN32_REG_LIST(id)\
462 }
463 
464 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
465 	stream_enc_regs(0),
466 	stream_enc_regs(1),
467 	stream_enc_regs(2),
468 	stream_enc_regs(3),
469 	stream_enc_regs(4)
470 };
471 
472 static const struct dcn10_stream_encoder_shift se_shift = {
473 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
474 };
475 
476 static const struct dcn10_stream_encoder_mask se_mask = {
477 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
478 };
479 
480 
481 #define aux_regs(id)\
482 [id] = {\
483 	DCN2_AUX_REG_LIST(id)\
484 }
485 
486 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
487 		aux_regs(0),
488 		aux_regs(1),
489 		aux_regs(2),
490 		aux_regs(3),
491 		aux_regs(4)
492 };
493 
494 #define hpd_regs(id)\
495 [id] = {\
496 	HPD_REG_LIST(id)\
497 }
498 
499 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
500 		hpd_regs(0),
501 		hpd_regs(1),
502 		hpd_regs(2),
503 		hpd_regs(3),
504 		hpd_regs(4)
505 };
506 
507 #define link_regs(id, phyid)\
508 [id] = {\
509 	LE_DCN31_REG_LIST(id), \
510 	UNIPHY_DCN2_REG_LIST(phyid), \
511 	/*DPCS_DCN31_REG_LIST(id),*/ \
512 }
513 
514 static const struct dcn10_link_enc_registers link_enc_regs[] = {
515 	link_regs(0, A),
516 	link_regs(1, B),
517 	link_regs(2, C),
518 	link_regs(3, D),
519 	link_regs(4, E)
520 };
521 
522 static const struct dcn10_link_enc_shift le_shift = {
523 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
524 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
525 };
526 
527 static const struct dcn10_link_enc_mask le_mask = {
528 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
529 
530 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
531 };
532 
533 #define hpo_dp_stream_encoder_reg_list(id)\
534 [id] = {\
535 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST(id)\
536 }
537 
538 static const struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[] = {
539 	hpo_dp_stream_encoder_reg_list(0),
540 	hpo_dp_stream_encoder_reg_list(1),
541 	hpo_dp_stream_encoder_reg_list(2),
542 	hpo_dp_stream_encoder_reg_list(3),
543 };
544 
545 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
546 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
547 };
548 
549 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
550 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
551 };
552 
553 
554 #define hpo_dp_link_encoder_reg_list(id)\
555 [id] = {\
556 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST(id),\
557 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/\
558 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/\
559 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/\
560 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/\
561 	/*DCN3_1_RDPCSTX_REG_LIST(4)*/\
562 }
563 
564 static const struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[] = {
565 	hpo_dp_link_encoder_reg_list(0),
566 	hpo_dp_link_encoder_reg_list(1),
567 };
568 
569 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
570 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
571 };
572 
573 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
574 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
575 };
576 
577 #define dpp_regs(id)\
578 [id] = {\
579 	DPP_REG_LIST_DCN30_COMMON(id),\
580 }
581 
582 static const struct dcn3_dpp_registers dpp_regs[] = {
583 	dpp_regs(0),
584 	dpp_regs(1),
585 	dpp_regs(2),
586 	dpp_regs(3)
587 };
588 
589 static const struct dcn3_dpp_shift tf_shift = {
590 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
591 };
592 
593 static const struct dcn3_dpp_mask tf_mask = {
594 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
595 };
596 
597 
598 #define opp_regs(id)\
599 [id] = {\
600 	OPP_REG_LIST_DCN30(id),\
601 }
602 
603 static const struct dcn20_opp_registers opp_regs[] = {
604 	opp_regs(0),
605 	opp_regs(1),
606 	opp_regs(2),
607 	opp_regs(3)
608 };
609 
610 static const struct dcn20_opp_shift opp_shift = {
611 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
612 };
613 
614 static const struct dcn20_opp_mask opp_mask = {
615 	OPP_MASK_SH_LIST_DCN20(_MASK)
616 };
617 
618 #define aux_engine_regs(id)\
619 [id] = {\
620 	AUX_COMMON_REG_LIST0(id), \
621 	.AUXN_IMPCAL = 0, \
622 	.AUXP_IMPCAL = 0, \
623 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
624 }
625 
626 static const struct dce110_aux_registers aux_engine_regs[] = {
627 		aux_engine_regs(0),
628 		aux_engine_regs(1),
629 		aux_engine_regs(2),
630 		aux_engine_regs(3),
631 		aux_engine_regs(4)
632 };
633 
634 static const struct dce110_aux_registers_shift aux_shift = {
635 	DCN_AUX_MASK_SH_LIST(__SHIFT)
636 };
637 
638 static const struct dce110_aux_registers_mask aux_mask = {
639 	DCN_AUX_MASK_SH_LIST(_MASK)
640 };
641 
642 
643 #define dwbc_regs_dcn3(id)\
644 [id] = {\
645 	DWBC_COMMON_REG_LIST_DCN30(id),\
646 }
647 
648 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
649 	dwbc_regs_dcn3(0),
650 };
651 
652 static const struct dcn30_dwbc_shift dwbc30_shift = {
653 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
654 };
655 
656 static const struct dcn30_dwbc_mask dwbc30_mask = {
657 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
658 };
659 
660 #define mcif_wb_regs_dcn3(id)\
661 [id] = {\
662 	MCIF_WB_COMMON_REG_LIST_DCN32(id),\
663 }
664 
665 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
666 	mcif_wb_regs_dcn3(0)
667 };
668 
669 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
670 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
671 };
672 
673 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
674 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
675 };
676 
677 #define dsc_regsDCN20(id)\
678 [id] = {\
679 	DSC_REG_LIST_DCN20(id)\
680 }
681 
682 static const struct dcn20_dsc_registers dsc_regs[] = {
683 	dsc_regsDCN20(0),
684 	dsc_regsDCN20(1),
685 	dsc_regsDCN20(2),
686 	dsc_regsDCN20(3)
687 };
688 
689 static const struct dcn20_dsc_shift dsc_shift = {
690 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
691 };
692 
693 static const struct dcn20_dsc_mask dsc_mask = {
694 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
695 };
696 
697 static const struct dcn30_mpc_registers mpc_regs = {
698 		MPC_REG_LIST_DCN3_2(0),
699 		MPC_REG_LIST_DCN3_2(1),
700 		MPC_REG_LIST_DCN3_2(2),
701 		MPC_REG_LIST_DCN3_2(3),
702 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
703 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
704 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
705 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
706 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
707 };
708 
709 static const struct dcn30_mpc_shift mpc_shift = {
710 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
711 };
712 
713 static const struct dcn30_mpc_mask mpc_mask = {
714 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
715 };
716 
717 #define optc_regs(id)\
718 [id] = {OPTC_COMMON_REG_LIST_DCN3_2(id)}
719 
720 //#ifdef DIAGS_BUILD
721 //static struct dcn_optc_registers optc_regs[] = {
722 //#else
723 static const struct dcn_optc_registers optc_regs[] = {
724 //#endif
725 	optc_regs(0),
726 	optc_regs(1),
727 	optc_regs(2),
728 	optc_regs(3)
729 };
730 
731 static const struct dcn_optc_shift optc_shift = {
732 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
733 };
734 
735 static const struct dcn_optc_mask optc_mask = {
736 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
737 };
738 
739 #define hubp_regs(id)\
740 [id] = {\
741 	HUBP_REG_LIST_DCN32(id)\
742 }
743 
744 static const struct dcn_hubp2_registers hubp_regs[] = {
745 		hubp_regs(0),
746 		hubp_regs(1),
747 		hubp_regs(2),
748 		hubp_regs(3)
749 };
750 
751 
752 static const struct dcn_hubp2_shift hubp_shift = {
753 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
754 };
755 
756 static const struct dcn_hubp2_mask hubp_mask = {
757 		HUBP_MASK_SH_LIST_DCN32(_MASK)
758 };
759 static const struct dcn_hubbub_registers hubbub_reg = {
760 		HUBBUB_REG_LIST_DCN32(0)
761 };
762 
763 static const struct dcn_hubbub_shift hubbub_shift = {
764 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
765 };
766 
767 static const struct dcn_hubbub_mask hubbub_mask = {
768 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
769 };
770 
771 static const struct dccg_registers dccg_regs = {
772 		DCCG_REG_LIST_DCN32()
773 };
774 
775 static const struct dccg_shift dccg_shift = {
776 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
777 };
778 
779 static const struct dccg_mask dccg_mask = {
780 		DCCG_MASK_SH_LIST_DCN32(_MASK)
781 };
782 
783 
784 #define SRII2(reg_name_pre, reg_name_post, id)\
785 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
786 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
787 			reg ## reg_name_pre ## id ## _ ## reg_name_post
788 
789 
790 #define HWSEQ_DCN32_REG_LIST()\
791 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
792 	SR(DIO_MEM_PWR_CTRL), \
793 	SR(ODM_MEM_PWR_CTRL3), \
794 	SR(MMHUBBUB_MEM_PWR_CNTL), \
795 	SR(DCCG_GATE_DISABLE_CNTL), \
796 	SR(DCCG_GATE_DISABLE_CNTL2), \
797 	SR(DCFCLK_CNTL),\
798 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
799 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
800 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
801 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
802 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
803 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
804 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
805 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
806 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
807 	SR(MICROSECOND_TIME_BASE_DIV), \
808 	SR(MILLISECOND_TIME_BASE_DIV), \
809 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
810 	SR(RBBMIF_TIMEOUT_DIS), \
811 	SR(RBBMIF_TIMEOUT_DIS_2), \
812 	SR(DCHUBBUB_CRC_CTRL), \
813 	SR(DPP_TOP0_DPP_CRC_CTRL), \
814 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
815 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
816 	SR(MPC_CRC_CTRL), \
817 	SR(MPC_CRC_RESULT_GB), \
818 	SR(MPC_CRC_RESULT_C), \
819 	SR(MPC_CRC_RESULT_AR), \
820 	SR(DOMAIN0_PG_CONFIG), \
821 	SR(DOMAIN1_PG_CONFIG), \
822 	SR(DOMAIN2_PG_CONFIG), \
823 	SR(DOMAIN3_PG_CONFIG), \
824 	SR(DOMAIN16_PG_CONFIG), \
825 	SR(DOMAIN17_PG_CONFIG), \
826 	SR(DOMAIN18_PG_CONFIG), \
827 	SR(DOMAIN19_PG_CONFIG), \
828 	SR(DOMAIN0_PG_STATUS), \
829 	SR(DOMAIN1_PG_STATUS), \
830 	SR(DOMAIN2_PG_STATUS), \
831 	SR(DOMAIN3_PG_STATUS), \
832 	SR(DOMAIN16_PG_STATUS), \
833 	SR(DOMAIN17_PG_STATUS), \
834 	SR(DOMAIN18_PG_STATUS), \
835 	SR(DOMAIN19_PG_STATUS), \
836 	SR(D1VGA_CONTROL), \
837 	SR(D2VGA_CONTROL), \
838 	SR(D3VGA_CONTROL), \
839 	SR(D4VGA_CONTROL), \
840 	SR(D5VGA_CONTROL), \
841 	SR(D6VGA_CONTROL), \
842 	SR(DC_IP_REQUEST_CNTL), \
843 	SR(AZALIA_AUDIO_DTO), \
844 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
845 
846 static const struct dce_hwseq_registers hwseq_reg = {
847 		HWSEQ_DCN32_REG_LIST()
848 };
849 
850 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
851 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
852 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
853 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
854 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
855 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
856 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
857 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
858 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
859 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
860 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
861 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
862 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
863 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
864 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
865 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
866 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
867 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
868 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
869 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
870 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
871 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
872 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
873 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
874 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
875 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
876 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
877 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
878 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
879 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
880 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
881 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
882 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
883 
884 static const struct dce_hwseq_shift hwseq_shift = {
885 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
886 };
887 
888 static const struct dce_hwseq_mask hwseq_mask = {
889 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
890 };
891 #define vmid_regs(id)\
892 [id] = {\
893 		DCN20_VMID_REG_LIST(id)\
894 }
895 
896 static const struct dcn_vmid_registers vmid_regs[] = {
897 	vmid_regs(0),
898 	vmid_regs(1),
899 	vmid_regs(2),
900 	vmid_regs(3),
901 	vmid_regs(4),
902 	vmid_regs(5),
903 	vmid_regs(6),
904 	vmid_regs(7),
905 	vmid_regs(8),
906 	vmid_regs(9),
907 	vmid_regs(10),
908 	vmid_regs(11),
909 	vmid_regs(12),
910 	vmid_regs(13),
911 	vmid_regs(14),
912 	vmid_regs(15)
913 };
914 
915 static const struct dcn20_vmid_shift vmid_shifts = {
916 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
917 };
918 
919 static const struct dcn20_vmid_mask vmid_masks = {
920 		DCN20_VMID_MASK_SH_LIST(_MASK)
921 };
922 
923 static const struct resource_caps res_cap_dcn32 = {
924 	.num_timing_generator = 4,
925 	.num_opp = 4,
926 	.num_video_plane = 4,
927 	.num_audio = 5,
928 	.num_stream_encoder = 5,
929 	.num_hpo_dp_stream_encoder = 4,
930 	.num_hpo_dp_link_encoder = 2,
931 	.num_pll = 5,
932 	.num_dwb = 1,
933 	.num_ddc = 5,
934 	.num_vmid = 16,
935 	.num_mpc_3dlut = 4,
936 	.num_dsc = 4,
937 };
938 
939 static const struct dc_plane_cap plane_cap = {
940 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
941 	.blends_with_above = true,
942 	.blends_with_below = true,
943 	.per_pixel_alpha = true,
944 
945 	.pixel_format_support = {
946 			.argb8888 = true,
947 			.nv12 = true,
948 			.fp16 = true,
949 			.p010 = true,
950 			.ayuv = false,
951 	},
952 
953 	.max_upscale_factor = {
954 			.argb8888 = 16000,
955 			.nv12 = 16000,
956 			.fp16 = 16000
957 	},
958 
959 	// 6:1 downscaling ratio: 1000/6 = 166.666
960 	.max_downscale_factor = {
961 			.argb8888 = 167,
962 			.nv12 = 167,
963 			.fp16 = 167
964 	},
965 	64,
966 	64
967 };
968 
969 static const struct dc_debug_options debug_defaults_drv = {
970 	.disable_dmcu = true,
971 	.force_abm_enable = false,
972 	.timing_trace = false,
973 	.clock_trace = true,
974 	.disable_pplib_clock_request = false,
975 	.disable_idle_power_optimizations = true,
976 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
977 	.force_single_disp_pipe_split = false,
978 	.disable_dcc = DCC_ENABLE,
979 	.vsr_support = true,
980 	.performance_trace = false,
981 	.max_downscale_src_width = 7680,/*upto 8K*/
982 	.disable_pplib_wm_range = false,
983 	.scl_reset_length10 = true,
984 	.sanity_checks = false,
985 	.underflow_assert_delay_us = 0xFFFFFFFF,
986 	.dwb_fi_phase = -1, // -1 = disable,
987 	.dmub_command_table = true,
988 	.enable_mem_low_power = {
989 		.bits = {
990 			.vga = false,
991 			.i2c = false,
992 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
993 			.dscl = false,
994 			.cm = false,
995 			.mpc = false,
996 			.optc = true,
997 		}
998 	},
999 	.use_max_lb = true,
1000 	.force_disable_subvp = true,
1001 	.enable_single_display_2to1_odm_policy = true,
1002 	.enable_dp_dig_pixel_rate_div_policy = 1,
1003 };
1004 
1005 static const struct dc_debug_options debug_defaults_diags = {
1006 	.disable_dmcu = true,
1007 	.force_abm_enable = false,
1008 	.timing_trace = true,
1009 	.clock_trace = true,
1010 	.disable_dpp_power_gate = true,
1011 	.disable_hubp_power_gate = true,
1012 	.disable_dsc_power_gate = true,
1013 	.disable_clock_gate = true,
1014 	.disable_pplib_clock_request = true,
1015 	.disable_pplib_wm_range = true,
1016 	.disable_stutter = false,
1017 	.scl_reset_length10 = true,
1018 	.dwb_fi_phase = -1, // -1 = disable
1019 	.dmub_command_table = true,
1020 	.enable_tri_buf = true,
1021 	.use_max_lb = true,
1022 	.force_disable_subvp = true
1023 };
1024 
1025 static struct dce_aux *dcn32_aux_engine_create(
1026 	struct dc_context *ctx,
1027 	uint32_t inst)
1028 {
1029 	struct aux_engine_dce110 *aux_engine =
1030 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
1031 
1032 	if (!aux_engine)
1033 		return NULL;
1034 
1035 	dce110_aux_engine_construct(aux_engine, ctx, inst,
1036 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
1037 				    &aux_engine_regs[inst],
1038 					&aux_mask,
1039 					&aux_shift,
1040 					ctx->dc->caps.extended_aux_timeout_support);
1041 
1042 	return &aux_engine->base;
1043 }
1044 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
1045 
1046 static const struct dce_i2c_registers i2c_hw_regs[] = {
1047 		i2c_inst_regs(1),
1048 		i2c_inst_regs(2),
1049 		i2c_inst_regs(3),
1050 		i2c_inst_regs(4),
1051 		i2c_inst_regs(5),
1052 };
1053 
1054 static const struct dce_i2c_shift i2c_shifts = {
1055 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
1056 };
1057 
1058 static const struct dce_i2c_mask i2c_masks = {
1059 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
1060 };
1061 
1062 static struct dce_i2c_hw *dcn32_i2c_hw_create(
1063 	struct dc_context *ctx,
1064 	uint32_t inst)
1065 {
1066 	struct dce_i2c_hw *dce_i2c_hw =
1067 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
1068 
1069 	if (!dce_i2c_hw)
1070 		return NULL;
1071 
1072 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
1073 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
1074 
1075 	return dce_i2c_hw;
1076 }
1077 
1078 static struct clock_source *dcn32_clock_source_create(
1079 		struct dc_context *ctx,
1080 		struct dc_bios *bios,
1081 		enum clock_source_id id,
1082 		const struct dce110_clk_src_regs *regs,
1083 		bool dp_clk_src)
1084 {
1085 	struct dce110_clk_src *clk_src =
1086 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1087 
1088 	if (!clk_src)
1089 		return NULL;
1090 
1091 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
1092 			regs, &cs_shift, &cs_mask)) {
1093 		clk_src->base.dp_clk_src = dp_clk_src;
1094 		return &clk_src->base;
1095 	}
1096 
1097 	BREAK_TO_DEBUGGER();
1098 	return NULL;
1099 }
1100 
1101 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
1102 {
1103 	int i;
1104 
1105 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
1106 					  GFP_KERNEL);
1107 
1108 	if (!hubbub2)
1109 		return NULL;
1110 
1111 	hubbub32_construct(hubbub2, ctx,
1112 			&hubbub_reg,
1113 			&hubbub_shift,
1114 			&hubbub_mask,
1115 			ctx->dc->dml.ip.det_buffer_size_kbytes,
1116 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
1117 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
1118 
1119 
1120 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
1121 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
1122 
1123 		vmid->ctx = ctx;
1124 
1125 		vmid->regs = &vmid_regs[i];
1126 		vmid->shifts = &vmid_shifts;
1127 		vmid->masks = &vmid_masks;
1128 	}
1129 
1130 	return &hubbub2->base;
1131 }
1132 
1133 static struct hubp *dcn32_hubp_create(
1134 	struct dc_context *ctx,
1135 	uint32_t inst)
1136 {
1137 	struct dcn20_hubp *hubp2 =
1138 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1139 
1140 	if (!hubp2)
1141 		return NULL;
1142 
1143 	if (hubp32_construct(hubp2, ctx, inst,
1144 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1145 		return &hubp2->base;
1146 
1147 	BREAK_TO_DEBUGGER();
1148 	kfree(hubp2);
1149 	return NULL;
1150 }
1151 
1152 static void dcn32_dpp_destroy(struct dpp **dpp)
1153 {
1154 	kfree(TO_DCN30_DPP(*dpp));
1155 	*dpp = NULL;
1156 }
1157 
1158 static struct dpp *dcn32_dpp_create(
1159 	struct dc_context *ctx,
1160 	uint32_t inst)
1161 {
1162 	struct dcn3_dpp *dpp3 =
1163 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
1164 
1165 	if (!dpp3)
1166 		return NULL;
1167 
1168 	if (dpp32_construct(dpp3, ctx, inst,
1169 			&dpp_regs[inst], &tf_shift, &tf_mask))
1170 		return &dpp3->base;
1171 
1172 	BREAK_TO_DEBUGGER();
1173 	kfree(dpp3);
1174 	return NULL;
1175 }
1176 
1177 static struct mpc *dcn32_mpc_create(
1178 		struct dc_context *ctx,
1179 		int num_mpcc,
1180 		int num_rmu)
1181 {
1182 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
1183 					  GFP_KERNEL);
1184 
1185 	if (!mpc30)
1186 		return NULL;
1187 
1188 	dcn32_mpc_construct(mpc30, ctx,
1189 			&mpc_regs,
1190 			&mpc_shift,
1191 			&mpc_mask,
1192 			num_mpcc,
1193 			num_rmu);
1194 
1195 	return &mpc30->base;
1196 }
1197 
1198 static struct output_pixel_processor *dcn32_opp_create(
1199 	struct dc_context *ctx, uint32_t inst)
1200 {
1201 	struct dcn20_opp *opp2 =
1202 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
1203 
1204 	if (!opp2) {
1205 		BREAK_TO_DEBUGGER();
1206 		return NULL;
1207 	}
1208 
1209 	dcn20_opp_construct(opp2, ctx, inst,
1210 			&opp_regs[inst], &opp_shift, &opp_mask);
1211 	return &opp2->base;
1212 }
1213 
1214 
1215 static struct timing_generator *dcn32_timing_generator_create(
1216 		struct dc_context *ctx,
1217 		uint32_t instance)
1218 {
1219 	struct optc *tgn10 =
1220 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1221 
1222 	if (!tgn10)
1223 		return NULL;
1224 
1225 	tgn10->base.inst = instance;
1226 	tgn10->base.ctx = ctx;
1227 
1228 	tgn10->tg_regs = &optc_regs[instance];
1229 	tgn10->tg_shift = &optc_shift;
1230 	tgn10->tg_mask = &optc_mask;
1231 
1232 	dcn32_timing_generator_init(tgn10);
1233 
1234 	return &tgn10->base;
1235 }
1236 
1237 static const struct encoder_feature_support link_enc_feature = {
1238 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1239 		.max_hdmi_pixel_clock = 600000,
1240 		.hdmi_ycbcr420_supported = true,
1241 		.dp_ycbcr420_supported = true,
1242 		.fec_supported = true,
1243 		.flags.bits.IS_HBR2_CAPABLE = true,
1244 		.flags.bits.IS_HBR3_CAPABLE = true,
1245 		.flags.bits.IS_TPS3_CAPABLE = true,
1246 		.flags.bits.IS_TPS4_CAPABLE = true
1247 };
1248 
1249 static struct link_encoder *dcn32_link_encoder_create(
1250 	const struct encoder_init_data *enc_init_data)
1251 {
1252 	struct dcn20_link_encoder *enc20 =
1253 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1254 
1255 	if (!enc20)
1256 		return NULL;
1257 
1258 	dcn32_link_encoder_construct(enc20,
1259 			enc_init_data,
1260 			&link_enc_feature,
1261 			&link_enc_regs[enc_init_data->transmitter],
1262 			&link_enc_aux_regs[enc_init_data->channel - 1],
1263 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1264 			&le_shift,
1265 			&le_mask);
1266 
1267 	return &enc20->enc10.base;
1268 }
1269 
1270 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1271 {
1272 	struct dcn31_panel_cntl *panel_cntl =
1273 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1274 
1275 	if (!panel_cntl)
1276 		return NULL;
1277 
1278 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1279 
1280 	return &panel_cntl->base;
1281 }
1282 
1283 static void read_dce_straps(
1284 	struct dc_context *ctx,
1285 	struct resource_straps *straps)
1286 {
1287 	generic_reg_get(ctx, regDC_PINSTRAPS + BASE(regDC_PINSTRAPS_BASE_IDX),
1288 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1289 
1290 }
1291 
1292 static struct audio *dcn32_create_audio(
1293 		struct dc_context *ctx, unsigned int inst)
1294 {
1295 	return dce_audio_create(ctx, inst,
1296 			&audio_regs[inst], &audio_shift, &audio_mask);
1297 }
1298 
1299 static struct vpg *dcn32_vpg_create(
1300 	struct dc_context *ctx,
1301 	uint32_t inst)
1302 {
1303 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1304 
1305 	if (!vpg3)
1306 		return NULL;
1307 
1308 	vpg3_construct(vpg3, ctx, inst,
1309 			&vpg_regs[inst],
1310 			&vpg_shift,
1311 			&vpg_mask);
1312 
1313 	return &vpg3->base;
1314 }
1315 
1316 static struct afmt *dcn32_afmt_create(
1317 	struct dc_context *ctx,
1318 	uint32_t inst)
1319 {
1320 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1321 
1322 	if (!afmt3)
1323 		return NULL;
1324 
1325 	afmt3_construct(afmt3, ctx, inst,
1326 			&afmt_regs[inst],
1327 			&afmt_shift,
1328 			&afmt_mask);
1329 
1330 	return &afmt3->base;
1331 }
1332 
1333 static struct apg *dcn31_apg_create(
1334 	struct dc_context *ctx,
1335 	uint32_t inst)
1336 {
1337 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1338 
1339 	if (!apg31)
1340 		return NULL;
1341 
1342 	apg31_construct(apg31, ctx, inst,
1343 			&apg_regs[inst],
1344 			&apg_shift,
1345 			&apg_mask);
1346 
1347 	return &apg31->base;
1348 }
1349 
1350 static struct stream_encoder *dcn32_stream_encoder_create(
1351 	enum engine_id eng_id,
1352 	struct dc_context *ctx)
1353 {
1354 	struct dcn10_stream_encoder *enc1;
1355 	struct vpg *vpg;
1356 	struct afmt *afmt;
1357 	int vpg_inst;
1358 	int afmt_inst;
1359 
1360 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1361 	if (eng_id <= ENGINE_ID_DIGF) {
1362 		vpg_inst = eng_id;
1363 		afmt_inst = eng_id;
1364 	} else
1365 		return NULL;
1366 
1367 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1368 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1369 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1370 
1371 	if (!enc1 || !vpg || !afmt) {
1372 		kfree(enc1);
1373 		kfree(vpg);
1374 		kfree(afmt);
1375 		return NULL;
1376 	}
1377 
1378 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1379 					eng_id, vpg, afmt,
1380 					&stream_enc_regs[eng_id],
1381 					&se_shift, &se_mask);
1382 
1383 	return &enc1->base;
1384 }
1385 
1386 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1387 	enum engine_id eng_id,
1388 	struct dc_context *ctx)
1389 {
1390 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1391 	struct vpg *vpg;
1392 	struct apg *apg;
1393 	uint32_t hpo_dp_inst;
1394 	uint32_t vpg_inst;
1395 	uint32_t apg_inst;
1396 
1397 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1398 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1399 
1400 	/* Mapping of VPG register blocks to HPO DP block instance:
1401 	 * VPG[6] -> HPO_DP[0]
1402 	 * VPG[7] -> HPO_DP[1]
1403 	 * VPG[8] -> HPO_DP[2]
1404 	 * VPG[9] -> HPO_DP[3]
1405 	 */
1406 	vpg_inst = hpo_dp_inst + 6;
1407 
1408 	/* Mapping of APG register blocks to HPO DP block instance:
1409 	 * APG[0] -> HPO_DP[0]
1410 	 * APG[1] -> HPO_DP[1]
1411 	 * APG[2] -> HPO_DP[2]
1412 	 * APG[3] -> HPO_DP[3]
1413 	 */
1414 	apg_inst = hpo_dp_inst;
1415 
1416 	/* allocate HPO stream encoder and create VPG sub-block */
1417 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1418 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1419 	apg = dcn31_apg_create(ctx, apg_inst);
1420 
1421 	if (!hpo_dp_enc31 || !vpg || !apg) {
1422 		kfree(hpo_dp_enc31);
1423 		kfree(vpg);
1424 		kfree(apg);
1425 		return NULL;
1426 	}
1427 
1428 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1429 					hpo_dp_inst, eng_id, vpg, apg,
1430 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1431 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1432 
1433 	return &hpo_dp_enc31->base;
1434 }
1435 
1436 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1437 	uint8_t inst,
1438 	struct dc_context *ctx)
1439 {
1440 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1441 
1442 	/* allocate HPO link encoder */
1443 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1444 
1445 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1446 					&hpo_dp_link_enc_regs[inst],
1447 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1448 
1449 	return &hpo_dp_enc31->base;
1450 }
1451 
1452 static struct dce_hwseq *dcn32_hwseq_create(
1453 	struct dc_context *ctx)
1454 {
1455 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1456 
1457 	if (hws) {
1458 		hws->ctx = ctx;
1459 		hws->regs = &hwseq_reg;
1460 		hws->shifts = &hwseq_shift;
1461 		hws->masks = &hwseq_mask;
1462 	}
1463 	return hws;
1464 }
1465 static const struct resource_create_funcs res_create_funcs = {
1466 	.read_dce_straps = read_dce_straps,
1467 	.create_audio = dcn32_create_audio,
1468 	.create_stream_encoder = dcn32_stream_encoder_create,
1469 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1470 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1471 	.create_hwseq = dcn32_hwseq_create,
1472 };
1473 
1474 static const struct resource_create_funcs res_create_maximus_funcs = {
1475 	.read_dce_straps = NULL,
1476 	.create_audio = NULL,
1477 	.create_stream_encoder = NULL,
1478 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1479 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1480 	.create_hwseq = dcn32_hwseq_create,
1481 };
1482 
1483 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1484 {
1485 	unsigned int i;
1486 
1487 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1488 		if (pool->base.stream_enc[i] != NULL) {
1489 			if (pool->base.stream_enc[i]->vpg != NULL) {
1490 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1491 				pool->base.stream_enc[i]->vpg = NULL;
1492 			}
1493 			if (pool->base.stream_enc[i]->afmt != NULL) {
1494 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1495 				pool->base.stream_enc[i]->afmt = NULL;
1496 			}
1497 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1498 			pool->base.stream_enc[i] = NULL;
1499 		}
1500 	}
1501 
1502 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1503 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1504 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1505 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1506 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1507 			}
1508 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1509 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1510 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1511 			}
1512 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1513 			pool->base.hpo_dp_stream_enc[i] = NULL;
1514 		}
1515 	}
1516 
1517 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1518 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1519 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1520 			pool->base.hpo_dp_link_enc[i] = NULL;
1521 		}
1522 	}
1523 
1524 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1525 		if (pool->base.dscs[i] != NULL)
1526 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1527 	}
1528 
1529 	if (pool->base.mpc != NULL) {
1530 		kfree(TO_DCN20_MPC(pool->base.mpc));
1531 		pool->base.mpc = NULL;
1532 	}
1533 	if (pool->base.hubbub != NULL) {
1534 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1535 		pool->base.hubbub = NULL;
1536 	}
1537 	for (i = 0; i < pool->base.pipe_count; i++) {
1538 		if (pool->base.dpps[i] != NULL)
1539 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1540 
1541 		if (pool->base.ipps[i] != NULL)
1542 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1543 
1544 		if (pool->base.hubps[i] != NULL) {
1545 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1546 			pool->base.hubps[i] = NULL;
1547 		}
1548 
1549 		if (pool->base.irqs != NULL) {
1550 			dal_irq_service_destroy(&pool->base.irqs);
1551 		}
1552 	}
1553 
1554 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1555 		if (pool->base.engines[i] != NULL)
1556 			dce110_engine_destroy(&pool->base.engines[i]);
1557 		if (pool->base.hw_i2cs[i] != NULL) {
1558 			kfree(pool->base.hw_i2cs[i]);
1559 			pool->base.hw_i2cs[i] = NULL;
1560 		}
1561 		if (pool->base.sw_i2cs[i] != NULL) {
1562 			kfree(pool->base.sw_i2cs[i]);
1563 			pool->base.sw_i2cs[i] = NULL;
1564 		}
1565 	}
1566 
1567 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1568 		if (pool->base.opps[i] != NULL)
1569 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1570 	}
1571 
1572 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1573 		if (pool->base.timing_generators[i] != NULL)	{
1574 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1575 			pool->base.timing_generators[i] = NULL;
1576 		}
1577 	}
1578 
1579 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1580 		if (pool->base.dwbc[i] != NULL) {
1581 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1582 			pool->base.dwbc[i] = NULL;
1583 		}
1584 		if (pool->base.mcif_wb[i] != NULL) {
1585 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1586 			pool->base.mcif_wb[i] = NULL;
1587 		}
1588 	}
1589 
1590 	for (i = 0; i < pool->base.audio_count; i++) {
1591 		if (pool->base.audios[i])
1592 			dce_aud_destroy(&pool->base.audios[i]);
1593 	}
1594 
1595 	for (i = 0; i < pool->base.clk_src_count; i++) {
1596 		if (pool->base.clock_sources[i] != NULL) {
1597 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1598 			pool->base.clock_sources[i] = NULL;
1599 		}
1600 	}
1601 
1602 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1603 		if (pool->base.mpc_lut[i] != NULL) {
1604 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1605 			pool->base.mpc_lut[i] = NULL;
1606 		}
1607 		if (pool->base.mpc_shaper[i] != NULL) {
1608 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1609 			pool->base.mpc_shaper[i] = NULL;
1610 		}
1611 	}
1612 
1613 	if (pool->base.dp_clock_source != NULL) {
1614 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1615 		pool->base.dp_clock_source = NULL;
1616 	}
1617 
1618 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1619 		if (pool->base.multiple_abms[i] != NULL)
1620 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1621 	}
1622 
1623 	if (pool->base.psr != NULL)
1624 		dmub_psr_destroy(&pool->base.psr);
1625 
1626 	if (pool->base.dccg != NULL)
1627 		dcn_dccg_destroy(&pool->base.dccg);
1628 
1629 	if (pool->base.oem_device != NULL)
1630 		dal_ddc_service_destroy(&pool->base.oem_device);
1631 }
1632 
1633 
1634 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1635 {
1636 	int i;
1637 	uint32_t dwb_count = pool->res_cap->num_dwb;
1638 
1639 	for (i = 0; i < dwb_count; i++) {
1640 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1641 						    GFP_KERNEL);
1642 
1643 		if (!dwbc30) {
1644 			dm_error("DC: failed to create dwbc30!\n");
1645 			return false;
1646 		}
1647 
1648 		dcn30_dwbc_construct(dwbc30, ctx,
1649 				&dwbc30_regs[i],
1650 				&dwbc30_shift,
1651 				&dwbc30_mask,
1652 				i);
1653 
1654 		pool->dwbc[i] = &dwbc30->base;
1655 	}
1656 	return true;
1657 }
1658 
1659 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1660 {
1661 	int i;
1662 	uint32_t dwb_count = pool->res_cap->num_dwb;
1663 
1664 	for (i = 0; i < dwb_count; i++) {
1665 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1666 						    GFP_KERNEL);
1667 
1668 		if (!mcif_wb30) {
1669 			dm_error("DC: failed to create mcif_wb30!\n");
1670 			return false;
1671 		}
1672 
1673 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1674 				&mcif_wb30_regs[i],
1675 				&mcif_wb30_shift,
1676 				&mcif_wb30_mask,
1677 				i);
1678 
1679 		pool->mcif_wb[i] = &mcif_wb30->base;
1680 	}
1681 	return true;
1682 }
1683 
1684 static struct display_stream_compressor *dcn32_dsc_create(
1685 	struct dc_context *ctx, uint32_t inst)
1686 {
1687 	struct dcn20_dsc *dsc =
1688 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1689 
1690 	if (!dsc) {
1691 		BREAK_TO_DEBUGGER();
1692 		return NULL;
1693 	}
1694 
1695 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1696 
1697 	dsc->max_image_width = 6016;
1698 
1699 	return &dsc->base;
1700 }
1701 
1702 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1703 {
1704 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1705 
1706 	dcn32_resource_destruct(dcn32_pool);
1707 	kfree(dcn32_pool);
1708 	*pool = NULL;
1709 }
1710 
1711 bool dcn32_acquire_post_bldn_3dlut(
1712 		struct resource_context *res_ctx,
1713 		const struct resource_pool *pool,
1714 		int mpcc_id,
1715 		struct dc_3dlut **lut,
1716 		struct dc_transfer_func **shaper)
1717 {
1718 	bool ret = false;
1719 	union dc_3dlut_state *state;
1720 
1721 	ASSERT(*lut == NULL && *shaper == NULL);
1722 	*lut = NULL;
1723 	*shaper = NULL;
1724 
1725 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1726 		*lut = pool->mpc_lut[mpcc_id];
1727 		*shaper = pool->mpc_shaper[mpcc_id];
1728 		state = &pool->mpc_lut[mpcc_id]->state;
1729 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1730 		ret = true;
1731 	}
1732 	return ret;
1733 }
1734 
1735 bool dcn32_release_post_bldn_3dlut(
1736 		struct resource_context *res_ctx,
1737 		const struct resource_pool *pool,
1738 		struct dc_3dlut **lut,
1739 		struct dc_transfer_func **shaper)
1740 {
1741 	int i;
1742 	bool ret = false;
1743 
1744 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1745 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1746 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1747 			pool->mpc_lut[i]->state.raw = 0;
1748 			*lut = NULL;
1749 			*shaper = NULL;
1750 			ret = true;
1751 			break;
1752 		}
1753 	}
1754 	return ret;
1755 }
1756 
1757 /**
1758  ********************************************************************************************
1759  * dcn32_get_num_free_pipes: Calculate number of free pipes
1760  *
1761  * This function assumes that a "used" pipe is a pipe that has
1762  * both a stream and a plane assigned to it.
1763  *
1764  * @param [in] dc: current dc state
1765  * @param [in] context: new dc state
1766  *
1767  * @return: Number of free pipes available in the context
1768  *
1769  ********************************************************************************************
1770  */
1771 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
1772 {
1773 	unsigned int i;
1774 	unsigned int free_pipes = 0;
1775 	unsigned int num_pipes = 0;
1776 
1777 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1778 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1779 
1780 		if (pipe->stream && !pipe->top_pipe) {
1781 			while (pipe) {
1782 				num_pipes++;
1783 				pipe = pipe->bottom_pipe;
1784 			}
1785 		}
1786 	}
1787 
1788 	free_pipes = dc->res_pool->pipe_count - num_pipes;
1789 	return free_pipes;
1790 }
1791 
1792 /**
1793  ********************************************************************************************
1794  * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP.
1795  *
1796  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
1797  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
1798  * we are forcing SubVP P-State switching on the current config.
1799  *
1800  * The number of pipes used for the chosen surface must be less than or equal to the
1801  * number of free pipes available.
1802  *
1803  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
1804  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
1805  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
1806  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
1807  *
1808  * @param [in] dc: current dc state
1809  * @param [in] context: new dc state
1810  * @param [out] index: dc pipe index for the pipe chosen to have phantom pipes assigned
1811  *
1812  * @return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
1813  *
1814  ********************************************************************************************
1815  */
1816 
1817 static bool dcn32_assign_subvp_pipe(struct dc *dc,
1818 		struct dc_state *context,
1819 		unsigned int *index)
1820 {
1821 	unsigned int i, pipe_idx;
1822 	unsigned int max_frame_time = 0;
1823 	bool valid_assignment_found = false;
1824 	unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
1825 	bool current_assignment_freesync = false;
1826 
1827 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1828 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1829 		unsigned int num_pipes = 0;
1830 
1831 		if (!pipe->stream)
1832 			continue;
1833 
1834 		if (pipe->plane_state && !pipe->top_pipe &&
1835 				pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1836 			while (pipe) {
1837 				num_pipes++;
1838 				pipe = pipe->bottom_pipe;
1839 			}
1840 
1841 			pipe = &context->res_ctx.pipe_ctx[i];
1842 			if (num_pipes <= free_pipes) {
1843 				struct dc_stream_state *stream = pipe->stream;
1844 				unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
1845 						(double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
1846 				if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) {
1847 					*index = i;
1848 					max_frame_time = frame_us;
1849 					valid_assignment_found = true;
1850 					current_assignment_freesync = false;
1851 				/* For the 2-Freesync display case, still choose the one with the
1852 			     * longest frame time
1853 			     */
1854 				} else if (stream->ignore_msa_timing_param && (!valid_assignment_found ||
1855 						(current_assignment_freesync && frame_us > max_frame_time))) {
1856 					*index = i;
1857 					valid_assignment_found = true;
1858 					current_assignment_freesync = true;
1859 				}
1860 			}
1861 		}
1862 		pipe_idx++;
1863 	}
1864 	return valid_assignment_found;
1865 }
1866 
1867 /**
1868  * ***************************************************************************************
1869  * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP.
1870  *
1871  * This function returns true if there are enough free pipes
1872  * to create the required phantom pipes for any given stream
1873  * (that does not already have phantom pipe assigned).
1874  *
1875  * e.g. For a 2 stream config where the first stream uses one
1876  * pipe and the second stream uses 2 pipes (i.e. pipe split),
1877  * this function will return true because there is 1 remaining
1878  * pipe which can be used as the phantom pipe for the non pipe
1879  * split pipe.
1880  *
1881  * @param [in] dc: current dc state
1882  * @param [in] context: new dc state
1883  *
1884  * @return: True if there are enough free pipes to assign phantom pipes to at least one
1885  *          stream that does not already have phantom pipes assigned. Otherwise false.
1886  *
1887  * ***************************************************************************************
1888  */
1889 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
1890 {
1891 	unsigned int i, split_cnt, free_pipes;
1892 	unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
1893 	bool subvp_possible = false;
1894 
1895 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1896 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1897 
1898 		// Find the minimum pipe split count for non SubVP pipes
1899 		if (pipe->stream && !pipe->top_pipe &&
1900 				pipe->stream->mall_stream_config.type == SUBVP_NONE) {
1901 			split_cnt = 0;
1902 			while (pipe) {
1903 				split_cnt++;
1904 				pipe = pipe->bottom_pipe;
1905 			}
1906 
1907 			if (split_cnt < min_pipe_split)
1908 				min_pipe_split = split_cnt;
1909 		}
1910 	}
1911 
1912 	free_pipes = dcn32_get_num_free_pipes(dc, context);
1913 
1914 	// SubVP only possible if at least one pipe is being used (i.e. free_pipes
1915 	// should not equal to the pipe_count)
1916 	if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
1917 		subvp_possible = true;
1918 
1919 	return subvp_possible;
1920 }
1921 
1922 static void dcn32_enable_phantom_plane(struct dc *dc,
1923 		struct dc_state *context,
1924 		struct dc_stream_state *phantom_stream,
1925 		unsigned int dc_pipe_idx)
1926 {
1927 	struct dc_plane_state *phantom_plane = NULL;
1928 	struct dc_plane_state *prev_phantom_plane = NULL;
1929 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1930 
1931 	while (curr_pipe) {
1932 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1933 			phantom_plane = prev_phantom_plane;
1934 		else
1935 			phantom_plane = dc_create_plane_state(dc);
1936 
1937 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1938 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1939 				sizeof(phantom_plane->scaling_quality));
1940 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1941 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1942 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1943 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1944 				sizeof(phantom_plane->plane_size));
1945 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1946 				sizeof(phantom_plane->tiling_info));
1947 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1948 		phantom_plane->format = curr_pipe->plane_state->format;
1949 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1950 		phantom_plane->visible = curr_pipe->plane_state->visible;
1951 
1952 		/* Shadow pipe has small viewport. */
1953 		phantom_plane->clip_rect.y = 0;
1954 		phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable;
1955 
1956 		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1957 
1958 		curr_pipe = curr_pipe->bottom_pipe;
1959 		prev_phantom_plane = phantom_plane;
1960 	}
1961 }
1962 
1963 /**
1964  * ***************************************************************************************
1965  * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream
1966  *
1967  * Set timing params of the phantom stream based on calculated output from DML.
1968  * This function first gets the DML pipe index using the DC pipe index, then
1969  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
1970  * lines required for SubVP MCLK switching and assigns to the phantom stream
1971  * accordingly.
1972  *
1973  * - The number of SubVP lines calculated in DML does not take into account
1974  * FW processing delays and required pstate allow width, so we must include
1975  * that separately.
1976  *
1977  * - Set phantom backporch = vstartup of main pipe
1978  *
1979  * @param [in] dc: current dc state
1980  * @param [in] context: new dc state
1981  * @param [in] ref_pipe: Main pipe for the phantom stream
1982  * @param [in] pipes: DML pipe params
1983  * @param [in] pipe_cnt: number of DML pipes
1984  * @param [in] dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
1985  *
1986  * @return: void
1987  *
1988  * ***************************************************************************************
1989  */
1990 static void dcn32_set_phantom_stream_timing(struct dc *dc,
1991 		struct dc_state *context,
1992 		struct pipe_ctx *ref_pipe,
1993 		struct dc_stream_state *phantom_stream,
1994 		display_e2e_pipe_params_st *pipes,
1995 		unsigned int pipe_cnt,
1996 		unsigned int dc_pipe_idx)
1997 {
1998 	unsigned int i, pipe_idx;
1999 	struct pipe_ctx *pipe;
2000 	uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
2001 	unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
2002 	unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2003 	unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
2004 
2005 	// Find DML pipe index (pipe_idx) using dc_pipe_idx
2006 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2007 		pipe = &context->res_ctx.pipe_ctx[i];
2008 
2009 		if (!pipe->stream)
2010 			continue;
2011 
2012 		if (i == dc_pipe_idx)
2013 			break;
2014 
2015 		pipe_idx++;
2016 	}
2017 
2018 	// Calculate lines required for pstate allow width and FW processing delays
2019 	pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
2020 			dc->caps.subvp_pstate_allow_width_us) / 1000000) *
2021 			(ref_pipe->stream->timing.pix_clk_100hz * 100) /
2022 			(double)ref_pipe->stream->timing.h_total;
2023 
2024 	// Update clks_cfg for calling into recalculate
2025 	pipes[0].clks_cfg.voltage = vlevel;
2026 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2027 	pipes[0].clks_cfg.socclk_mhz = socclk;
2028 
2029 	// DML calculation for MALL region doesn't take into account FW delay
2030 	// and required pstate allow width for multi-display cases
2031 	phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
2032 				pstate_width_fw_delay_lines;
2033 
2034 	// For backporch of phantom pipe, use vstartup of the main pipe
2035 	phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2036 
2037 	phantom_stream->dst.y = 0;
2038 	phantom_stream->dst.height = phantom_vactive;
2039 	phantom_stream->src.y = 0;
2040 	phantom_stream->src.height = phantom_vactive;
2041 
2042 	phantom_stream->timing.v_addressable = phantom_vactive;
2043 	phantom_stream->timing.v_front_porch = 1;
2044 	phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
2045 						phantom_stream->timing.v_front_porch +
2046 						phantom_stream->timing.v_sync_width +
2047 						phantom_bp;
2048 }
2049 
2050 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
2051 		struct dc_state *context,
2052 		display_e2e_pipe_params_st *pipes,
2053 		unsigned int pipe_cnt,
2054 		unsigned int dc_pipe_idx)
2055 {
2056 	struct dc_stream_state *phantom_stream = NULL;
2057 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
2058 
2059 	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
2060 	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
2061 	phantom_stream->dpms_off = true;
2062 	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
2063 	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
2064 	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
2065 	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
2066 
2067 	/* stream has limited viewport and small timing */
2068 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
2069 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
2070 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
2071 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
2072 
2073 	dc_add_stream_to_ctx(dc, context, phantom_stream);
2074 	return phantom_stream;
2075 }
2076 
2077 // return true if removed piped from ctx, false otherwise
2078 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context)
2079 {
2080 	int i;
2081 	bool removed_pipe = false;
2082 
2083 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2084 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2085 		// build scaling params for phantom pipes
2086 		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
2087 			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
2088 			dc_remove_stream_from_ctx(dc, context, pipe->stream);
2089 			removed_pipe = true;
2090 		}
2091 
2092 		// Clear all phantom stream info
2093 		if (pipe->stream) {
2094 			pipe->stream->mall_stream_config.type = SUBVP_NONE;
2095 			pipe->stream->mall_stream_config.paired_stream = NULL;
2096 		}
2097 	}
2098 	return removed_pipe;
2099 }
2100 
2101 /* TODO: Input to this function should indicate which pipe indexes (or streams)
2102  * require a phantom pipe / stream
2103  */
2104 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
2105 		display_e2e_pipe_params_st *pipes,
2106 		unsigned int pipe_cnt,
2107 		unsigned int index)
2108 {
2109 	struct dc_stream_state *phantom_stream = NULL;
2110 	unsigned int i;
2111 
2112 	// The index of the DC pipe passed into this function is guarenteed to
2113 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
2114 	// already have phantom pipe assigned, etc.) by previous checks.
2115 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
2116 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
2117 
2118 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2119 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2120 
2121 		// Build scaling params for phantom pipes which were newly added.
2122 		// We determine which phantom pipes were added by comparing with
2123 		// the phantom stream.
2124 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
2125 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
2126 			pipe->stream->use_dynamic_meta = false;
2127 			pipe->plane_state->flip_immediate = false;
2128 			if (!resource_build_scaling_params(pipe)) {
2129 				// Log / remove phantom pipes since failed to build scaling params
2130 			}
2131 		}
2132 	}
2133 }
2134 
2135 static bool dcn32_split_stream_for_mpc_or_odm(
2136 		const struct dc *dc,
2137 		struct resource_context *res_ctx,
2138 		struct pipe_ctx *pri_pipe,
2139 		struct pipe_ctx *sec_pipe,
2140 		bool odm)
2141 {
2142 	int pipe_idx = sec_pipe->pipe_idx;
2143 	const struct resource_pool *pool = dc->res_pool;
2144 
2145 	if (pri_pipe->plane_state) {
2146 		/* ODM + window MPO, where MPO window is on left half only */
2147 		if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
2148 				pri_pipe->stream->src.x + pri_pipe->stream->src.width/2)
2149 			return true;
2150 
2151 		/* ODM + window MPO, where MPO window is on right half only */
2152 		if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.width/2)
2153 			return true;
2154 	}
2155 
2156 	*sec_pipe = *pri_pipe;
2157 
2158 	sec_pipe->pipe_idx = pipe_idx;
2159 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
2160 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
2161 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
2162 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
2163 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
2164 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
2165 	sec_pipe->stream_res.dsc = NULL;
2166 	if (odm) {
2167 		if (pri_pipe->next_odm_pipe) {
2168 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
2169 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
2170 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
2171 		}
2172 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
2173 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
2174 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
2175 		}
2176 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
2177 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
2178 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
2179 		}
2180 		pri_pipe->next_odm_pipe = sec_pipe;
2181 		sec_pipe->prev_odm_pipe = pri_pipe;
2182 		ASSERT(sec_pipe->top_pipe == NULL);
2183 
2184 		if (!sec_pipe->top_pipe)
2185 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
2186 		else
2187 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
2188 		if (sec_pipe->stream->timing.flags.DSC == 1) {
2189 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
2190 			ASSERT(sec_pipe->stream_res.dsc);
2191 			if (sec_pipe->stream_res.dsc == NULL)
2192 				return false;
2193 		}
2194 	} else {
2195 		if (pri_pipe->bottom_pipe) {
2196 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
2197 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
2198 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
2199 		}
2200 		pri_pipe->bottom_pipe = sec_pipe;
2201 		sec_pipe->top_pipe = pri_pipe;
2202 
2203 		ASSERT(pri_pipe->plane_state);
2204 	}
2205 
2206 	return true;
2207 }
2208 
2209 static struct pipe_ctx *dcn32_find_split_pipe(
2210 		struct dc *dc,
2211 		struct dc_state *context,
2212 		int old_index)
2213 {
2214 	struct pipe_ctx *pipe = NULL;
2215 	int i;
2216 
2217 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
2218 		pipe = &context->res_ctx.pipe_ctx[old_index];
2219 		pipe->pipe_idx = old_index;
2220 	}
2221 
2222 	if (!pipe)
2223 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
2224 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
2225 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
2226 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
2227 					pipe = &context->res_ctx.pipe_ctx[i];
2228 					pipe->pipe_idx = i;
2229 					break;
2230 				}
2231 			}
2232 		}
2233 
2234 	/*
2235 	 * May need to fix pipes getting tossed from 1 opp to another on flip
2236 	 * Add for debugging transient underflow during topology updates:
2237 	 * ASSERT(pipe);
2238 	 */
2239 	if (!pipe)
2240 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
2241 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
2242 				pipe = &context->res_ctx.pipe_ctx[i];
2243 				pipe->pipe_idx = i;
2244 				break;
2245 			}
2246 		}
2247 
2248 	return pipe;
2249 }
2250 
2251 
2252 /**
2253  * ***************************************************************************************
2254  * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable
2255  *
2256  * High level algorithm:
2257  * 1. Find longest microschedule length (in us) between the two SubVP pipes
2258  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
2259  * pipes still allows for the maximum microschedule to fit in the active
2260  * region for both pipes.
2261  *
2262  * @param [in] dc: current dc state
2263  * @param [in] context: new dc state
2264  *
2265  * @return: bool - True if the SubVP + SubVP config is schedulable, false otherwise
2266  *
2267  * ***************************************************************************************
2268  */
2269 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
2270 {
2271 	struct pipe_ctx *subvp_pipes[2];
2272 	struct dc_stream_state *phantom = NULL;
2273 	uint32_t microschedule_lines = 0;
2274 	uint32_t index = 0;
2275 	uint32_t i;
2276 	uint32_t max_microschedule_us = 0;
2277 	int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
2278 
2279 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2280 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2281 		uint32_t time_us = 0;
2282 
2283 		/* Loop to calculate the maximum microschedule time between the two SubVP pipes,
2284 		 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
2285 		 */
2286 		if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
2287 				pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
2288 			phantom = pipe->stream->mall_stream_config.paired_stream;
2289 			microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
2290 					phantom->timing.v_addressable;
2291 
2292 			// Round up when calculating microschedule time (+ 1 at the end)
2293 			time_us = (microschedule_lines * phantom->timing.h_total) /
2294 					(double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
2295 						dc->caps.subvp_prefetch_end_to_mall_start_us +
2296 						dc->caps.subvp_fw_processing_delay_us + 1;
2297 			if (time_us > max_microschedule_us)
2298 				max_microschedule_us = time_us;
2299 
2300 			subvp_pipes[index] = pipe;
2301 			index++;
2302 
2303 			// Maximum 2 SubVP pipes
2304 			if (index == 2)
2305 				break;
2306 		}
2307 	}
2308 	vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
2309 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2310 	vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
2311 				(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2312 	vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
2313 			subvp_pipes[0]->stream->timing.h_total) /
2314 			(double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2315 	vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
2316 			subvp_pipes[1]->stream->timing.h_total) /
2317 			(double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
2318 
2319 	if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
2320 			(vactive2_us - vblank1_us) / 2 > max_microschedule_us)
2321 		return true;
2322 
2323 	return false;
2324 }
2325 
2326 /**
2327  * ***************************************************************************************
2328  * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable
2329  *
2330  * High level algorithm:
2331  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
2332  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
2333  * (the margin is equal to the MALL region + DRR margin (500us))
2334  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
2335  * then report the configuration as supported
2336  *
2337  * @param [in] dc: current dc state
2338  * @param [in] context: new dc state
2339  * @param [in] drr_pipe: DRR pipe_ctx for the SubVP + DRR config
2340  *
2341  * @return: bool - True if the SubVP + DRR config is schedulable, false otherwise
2342  *
2343  * ***************************************************************************************
2344  */
2345 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe)
2346 {
2347 	bool schedulable = false;
2348 	uint32_t i;
2349 	struct pipe_ctx *pipe = NULL;
2350 	struct dc_crtc_timing *main_timing = NULL;
2351 	struct dc_crtc_timing *phantom_timing = NULL;
2352 	struct dc_crtc_timing *drr_timing = NULL;
2353 	int16_t prefetch_us = 0;
2354 	int16_t mall_region_us = 0;
2355 	int16_t drr_frame_us = 0;	// nominal frame time
2356 	int16_t subvp_active_us = 0;
2357 	int16_t stretched_drr_us = 0;
2358 	int16_t drr_stretched_vblank_us = 0;
2359 	int16_t max_vblank_mallregion = 0;
2360 
2361 	// Find SubVP pipe
2362 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2363 		pipe = &context->res_ctx.pipe_ctx[i];
2364 
2365 		// We check for master pipe, but it shouldn't matter since we only need
2366 		// the pipe for timing info (stream should be same for any pipe splits)
2367 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
2368 			continue;
2369 
2370 		// Find the SubVP pipe
2371 		if (pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2372 			break;
2373 	}
2374 
2375 	main_timing = &pipe->stream->timing;
2376 	phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing;
2377 	drr_timing = &drr_pipe->stream->timing;
2378 	prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
2379 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
2380 			dc->caps.subvp_prefetch_end_to_mall_start_us;
2381 	subvp_active_us = main_timing->v_addressable * main_timing->h_total /
2382 			(double)(main_timing->pix_clk_100hz * 100) * 1000000;
2383 	drr_frame_us = drr_timing->v_total * drr_timing->h_total /
2384 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000;
2385 	// P-State allow width and FW delays already included phantom_timing->v_addressable
2386 	mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
2387 			(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
2388 	stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
2389 	drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
2390 			(double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
2391 	max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
2392 
2393 	/* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
2394 	 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
2395 	 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
2396 	 * and the max of (VBLANK blanking time, MALL region)).
2397 	 */
2398 	if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
2399 			subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
2400 		schedulable = true;
2401 
2402 	return schedulable;
2403 }
2404 
2405 /**
2406  * ***************************************************************************************
2407  * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable
2408  *
2409  * High level algorithm:
2410  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
2411  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
2412  * then report the configuration as supported
2413  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
2414  *
2415  * @param [in] dc: current dc state
2416  * @param [in] context: new dc state
2417  *
2418  * @return: bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
2419  *
2420  * ***************************************************************************************
2421  */
2422 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
2423 {
2424 	struct pipe_ctx *pipe = NULL;
2425 	struct pipe_ctx *subvp_pipe = NULL;
2426 	bool found = false;
2427 	bool schedulable = false;
2428 	uint32_t i = 0;
2429 	uint8_t vblank_index = 0;
2430 	uint16_t prefetch_us = 0;
2431 	uint16_t mall_region_us = 0;
2432 	uint16_t vblank_frame_us = 0;
2433 	uint16_t subvp_active_us = 0;
2434 	uint16_t vblank_blank_us = 0;
2435 	uint16_t max_vblank_mallregion = 0;
2436 	struct dc_crtc_timing *main_timing = NULL;
2437 	struct dc_crtc_timing *phantom_timing = NULL;
2438 	struct dc_crtc_timing *vblank_timing = NULL;
2439 
2440 	/* For SubVP + VBLANK/DRR cases, we assume there can only be
2441 	 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
2442 	 * is supported, it is either a single VBLANK case or two VBLANK
2443 	 * displays which are synchronized (in which case they have identical
2444 	 * timings).
2445 	 */
2446 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2447 		pipe = &context->res_ctx.pipe_ctx[i];
2448 
2449 		// We check for master pipe, but it shouldn't matter since we only need
2450 		// the pipe for timing info (stream should be same for any pipe splits)
2451 		if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe)
2452 			continue;
2453 
2454 		if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) {
2455 			// Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
2456 			vblank_index = i;
2457 			found = true;
2458 		}
2459 
2460 		if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2461 			subvp_pipe = pipe;
2462 	}
2463 	// Use ignore_msa_timing_param flag to identify as DRR
2464 	if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) {
2465 		// SUBVP + DRR case
2466 		schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]);
2467 	} else if (found) {
2468 		main_timing = &subvp_pipe->stream->timing;
2469 		phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing;
2470 		vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
2471 		// Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
2472 		// Also include the prefetch end to mallstart delay time
2473 		prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
2474 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
2475 				dc->caps.subvp_prefetch_end_to_mall_start_us;
2476 		// P-State allow width and FW delays already included phantom_timing->v_addressable
2477 		mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
2478 				(double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
2479 		vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
2480 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
2481 		vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
2482 				(double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
2483 		subvp_active_us = main_timing->v_addressable * main_timing->h_total /
2484 				(double)(main_timing->pix_clk_100hz * 100) * 1000000;
2485 		max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
2486 
2487 		// Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
2488 		// and the max of (VBLANK blanking time, MALL region)
2489 		// TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
2490 		if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
2491 			schedulable = true;
2492 	}
2493 	return schedulable;
2494 }
2495 
2496 /**
2497  * ********************************************************************************************
2498  * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle
2499  * static analysis based on the case.
2500  *
2501  * Three cases:
2502  * 1. SubVP + SubVP
2503  * 2. SubVP + VBLANK (DRR checked internally)
2504  * 3. SubVP + VACTIVE (currently unsupported)
2505  *
2506  * @param [in] dc: current dc state
2507  * @param [in] context: new dc state
2508  * @param [in] vlevel: Voltage level calculated by DML
2509  *
2510  * @return: bool - True if statically schedulable, false otherwise
2511  *
2512  * ********************************************************************************************
2513  */
2514 static bool subvp_validate_static_schedulability(struct dc *dc,
2515 				struct dc_state *context,
2516 				int vlevel)
2517 {
2518 	bool schedulable = true;	// true by default for single display case
2519 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2520 	uint32_t i, pipe_idx;
2521 	uint8_t subvp_count = 0;
2522 	uint8_t vactive_count = 0;
2523 
2524 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2525 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2526 
2527 		if (!pipe->stream)
2528 			continue;
2529 
2530 		if (pipe->plane_state && !pipe->top_pipe &&
2531 				pipe->stream->mall_stream_config.type == SUBVP_MAIN)
2532 			subvp_count++;
2533 
2534 		// Count how many planes are capable of VACTIVE switching (SubVP + VACTIVE unsupported)
2535 		if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0) {
2536 			vactive_count++;
2537 		}
2538 		pipe_idx++;
2539 	}
2540 
2541 	if (subvp_count == 2) {
2542 		// Static schedulability check for SubVP + SubVP case
2543 		schedulable = subvp_subvp_schedulable(dc, context);
2544 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) {
2545 		// Static schedulability check for SubVP + VBLANK case. Also handle the case where
2546 		// DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK)
2547 		if (vactive_count > 0)
2548 			schedulable = false;
2549 		else
2550 			schedulable = subvp_vblank_schedulable(dc, context);
2551 	} else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp) {
2552 		// SubVP + VACTIVE currently unsupported
2553 		schedulable = false;
2554 	}
2555 	return schedulable;
2556 }
2557 
2558 static void dcn32_full_validate_bw_helper(struct dc *dc,
2559 		struct dc_state *context,
2560 		display_e2e_pipe_params_st *pipes,
2561 		int *vlevel,
2562 		int *split,
2563 		bool *merge,
2564 		int *pipe_cnt)
2565 {
2566 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2567 	unsigned int dc_pipe_idx = 0;
2568 	bool found_supported_config = false;
2569 	struct pipe_ctx *pipe = NULL;
2570 	uint32_t non_subvp_pipes = 0;
2571 	bool drr_pipe_found = false;
2572 	uint32_t drr_pipe_index = 0;
2573 	uint32_t i = 0;
2574 
2575 	/*
2576 	 * DML favors voltage over p-state, but we're more interested in
2577 	 * supporting p-state over voltage. We can't support p-state in
2578 	 * prefetch mode > 0 so try capping the prefetch mode to start.
2579 	 */
2580 	context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2581 			dm_prefetch_support_uclk_fclk_and_stutter;
2582 	*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
2583 	/* This may adjust vlevel and maxMpcComb */
2584 	if (*vlevel < context->bw_ctx.dml.soc.num_states)
2585 		*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
2586 
2587 	/* Conditions for setting up phantom pipes for SubVP:
2588 	 * 1. Not force disable SubVP
2589 	 * 2. Full update (i.e. !fast_validate)
2590 	 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
2591 	 * 4. Display configuration passes validation
2592 	 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
2593 	 */
2594 	if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
2595 			(*vlevel == context->bw_ctx.dml.soc.num_states ||
2596 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
2597 			dc->debug.force_subvp_mclk_switch)) {
2598 
2599 		dcn32_merge_pipes_for_subvp(dc, context);
2600 
2601 		while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
2602 				dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
2603 
2604 			/* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
2605 			 * Adding phantom pipes won't change the validation result, so change the DML input param
2606 			 * for P-State support before adding phantom pipes and recalculating the DML result.
2607 			 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
2608 			 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
2609 			 * enough to support support MCLK switching.
2610 			 */
2611 			if (*vlevel == context->bw_ctx.dml.soc.num_states) {
2612 				context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2613 								dm_prefetch_support_stutter;
2614 				/* There are params (such as FabricClock) that need to be recalculated
2615 				 * after validation fails (otherwise it will be 0). Calculation for
2616 				 * phantom vactive requires call into DML, so we must ensure all the
2617 				 * vba params are valid otherwise we'll get incorrect phantom vactive.
2618 				 */
2619 				*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
2620 			}
2621 
2622 			dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
2623 
2624 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
2625 			*vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
2626 
2627 			if (*vlevel < context->bw_ctx.dml.soc.num_states &&
2628 					vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported
2629 					&& subvp_validate_static_schedulability(dc, context, *vlevel)) {
2630 				found_supported_config = true;
2631 			} else if (*vlevel < context->bw_ctx.dml.soc.num_states &&
2632 					vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
2633 				/* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles
2634 				 * the case for SubVP + DRR, where the DRR display does not support MCLK switch
2635 				 * at it's native refresh rate / timing.
2636 				 */
2637 				for (i = 0; i < dc->res_pool->pipe_count; i++) {
2638 					pipe = &context->res_ctx.pipe_ctx[i];
2639 					if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
2640 							pipe->stream->mall_stream_config.type == SUBVP_NONE) {
2641 						non_subvp_pipes++;
2642 						// Use ignore_msa_timing_param flag to identify as DRR
2643 						if (pipe->stream->ignore_msa_timing_param) {
2644 							drr_pipe_found = true;
2645 							drr_pipe_index = i;
2646 						}
2647 					}
2648 				}
2649 				// If there is only 1 remaining non SubVP pipe that is DRR, check static
2650 				// schedulability for SubVP + DRR.
2651 				if (non_subvp_pipes == 1 && drr_pipe_found) {
2652 					found_supported_config = subvp_drr_schedulable(dc,
2653 							context, &context->res_ctx.pipe_ctx[drr_pipe_index]);
2654 				}
2655 			}
2656 		}
2657 
2658 		// If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
2659 		// remove phantom pipes and repopulate dml pipes
2660 		if (!found_supported_config) {
2661 			dc->res_pool->funcs->remove_phantom_pipes(dc, context);
2662 			vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
2663 			*pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
2664 		} else {
2665 			// only call dcn20_validate_apply_pipe_split_flags if we found a supported config
2666 			memset(split, 0, MAX_PIPES * sizeof(int));
2667 			memset(merge, 0, MAX_PIPES * sizeof(bool));
2668 			*vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
2669 
2670 			// Note: We can't apply the phantom pipes to hardware at this time. We have to wait
2671 			// until driver has acquired the DMCUB lock to do it safely.
2672 		}
2673 	}
2674 }
2675 
2676 static bool dcn32_internal_validate_bw(
2677 		struct dc *dc,
2678 		struct dc_state *context,
2679 		display_e2e_pipe_params_st *pipes,
2680 		int *pipe_cnt_out,
2681 		int *vlevel_out,
2682 		bool fast_validate)
2683 {
2684 	bool out = false;
2685 	bool repopulate_pipes = false;
2686 	int split[MAX_PIPES] = { 0 };
2687 	bool merge[MAX_PIPES] = { false };
2688 	bool newly_split[MAX_PIPES] = { false };
2689 	int pipe_cnt, i, pipe_idx, vlevel;
2690 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
2691 
2692 	ASSERT(pipes);
2693 	if (!pipes)
2694 		return false;
2695 
2696 	// For each full update, remove all existing phantom pipes first
2697 	dc->res_pool->funcs->remove_phantom_pipes(dc, context);
2698 
2699 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
2700 
2701 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2702 
2703 	if (!pipe_cnt) {
2704 		out = true;
2705 		goto validate_out;
2706 	}
2707 
2708 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
2709 
2710 	if (!fast_validate) {
2711 		dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
2712 	}
2713 
2714 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
2715 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
2716 		/*
2717 		 * If mode is unsupported or there's still no p-state support then
2718 		 * fall back to favoring voltage.
2719 		 *
2720 		 * We don't actually support prefetch mode 2, so require that we
2721 		 * at least support prefetch mode 1.
2722 		 */
2723 		context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2724 				dm_prefetch_support_stutter;
2725 
2726 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2727 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
2728 			memset(split, 0, MAX_PIPES * sizeof(int));
2729 			memset(merge, 0, MAX_PIPES * sizeof(bool));
2730 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
2731 		}
2732 	}
2733 
2734 	dml_log_mode_support_params(&context->bw_ctx.dml);
2735 
2736 	if (vlevel == context->bw_ctx.dml.soc.num_states)
2737 		goto validate_fail;
2738 
2739 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2740 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2741 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2742 
2743 		if (!pipe->stream)
2744 			continue;
2745 
2746 		/* We only support full screen mpo with ODM */
2747 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2748 				&& pipe->plane_state && mpo_pipe
2749 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
2750 						&pipe->plane_res.scl_data.recout,
2751 						sizeof(struct rect)) != 0) {
2752 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2753 			goto validate_fail;
2754 		}
2755 		pipe_idx++;
2756 	}
2757 
2758 	/* merge pipes if necessary */
2759 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2760 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2761 
2762 		/*skip pipes that don't need merging*/
2763 		if (!merge[i])
2764 			continue;
2765 
2766 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
2767 		if (pipe->prev_odm_pipe) {
2768 			/*split off odm pipe*/
2769 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
2770 			if (pipe->next_odm_pipe)
2771 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
2772 
2773 			pipe->bottom_pipe = NULL;
2774 			pipe->next_odm_pipe = NULL;
2775 			pipe->plane_state = NULL;
2776 			pipe->stream = NULL;
2777 			pipe->top_pipe = NULL;
2778 			pipe->prev_odm_pipe = NULL;
2779 			if (pipe->stream_res.dsc)
2780 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2781 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2782 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2783 			repopulate_pipes = true;
2784 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2785 			struct pipe_ctx *top_pipe = pipe->top_pipe;
2786 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2787 
2788 			top_pipe->bottom_pipe = bottom_pipe;
2789 			if (bottom_pipe)
2790 				bottom_pipe->top_pipe = top_pipe;
2791 
2792 			pipe->top_pipe = NULL;
2793 			pipe->bottom_pipe = NULL;
2794 			pipe->plane_state = NULL;
2795 			pipe->stream = NULL;
2796 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2797 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2798 			repopulate_pipes = true;
2799 		} else
2800 			ASSERT(0); /* Should never try to merge master pipe */
2801 
2802 	}
2803 
2804 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2805 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2806 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2807 		struct pipe_ctx *hsplit_pipe = NULL;
2808 		bool odm;
2809 		int old_index = -1;
2810 
2811 		if (!pipe->stream || newly_split[i])
2812 			continue;
2813 
2814 		pipe_idx++;
2815 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2816 
2817 		if (!pipe->plane_state && !odm)
2818 			continue;
2819 
2820 		if (split[i]) {
2821 			if (odm) {
2822 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2823 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2824 				else if (old_pipe->next_odm_pipe)
2825 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2826 			} else {
2827 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2828 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2829 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2830 				else if (old_pipe->bottom_pipe &&
2831 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2832 					old_index = old_pipe->bottom_pipe->pipe_idx;
2833 			}
2834 			hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2835 			ASSERT(hsplit_pipe);
2836 			if (!hsplit_pipe)
2837 				goto validate_fail;
2838 
2839 			if (!dcn32_split_stream_for_mpc_or_odm(
2840 					dc, &context->res_ctx,
2841 					pipe, hsplit_pipe, odm))
2842 				goto validate_fail;
2843 
2844 			newly_split[hsplit_pipe->pipe_idx] = true;
2845 			repopulate_pipes = true;
2846 		}
2847 		if (split[i] == 4) {
2848 			struct pipe_ctx *pipe_4to1;
2849 
2850 			if (odm && old_pipe->next_odm_pipe)
2851 				old_index = old_pipe->next_odm_pipe->pipe_idx;
2852 			else if (!odm && old_pipe->bottom_pipe &&
2853 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2854 				old_index = old_pipe->bottom_pipe->pipe_idx;
2855 			else
2856 				old_index = -1;
2857 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2858 			ASSERT(pipe_4to1);
2859 			if (!pipe_4to1)
2860 				goto validate_fail;
2861 			if (!dcn32_split_stream_for_mpc_or_odm(
2862 					dc, &context->res_ctx,
2863 					pipe, pipe_4to1, odm))
2864 				goto validate_fail;
2865 			newly_split[pipe_4to1->pipe_idx] = true;
2866 
2867 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2868 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2869 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2870 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2871 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2872 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2873 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2874 			else
2875 				old_index = -1;
2876 			pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2877 			ASSERT(pipe_4to1);
2878 			if (!pipe_4to1)
2879 				goto validate_fail;
2880 			if (!dcn32_split_stream_for_mpc_or_odm(
2881 					dc, &context->res_ctx,
2882 					hsplit_pipe, pipe_4to1, odm))
2883 				goto validate_fail;
2884 			newly_split[pipe_4to1->pipe_idx] = true;
2885 		}
2886 		if (odm)
2887 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2888 	}
2889 
2890 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2891 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2892 
2893 		if (pipe->plane_state) {
2894 			if (!resource_build_scaling_params(pipe))
2895 				goto validate_fail;
2896 		}
2897 	}
2898 
2899 	/* Actual dsc count per stream dsc validation*/
2900 	if (!dcn20_validate_dsc(dc, context)) {
2901 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2902 		goto validate_fail;
2903 	}
2904 
2905 	if (repopulate_pipes)
2906 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2907 	*vlevel_out = vlevel;
2908 	*pipe_cnt_out = pipe_cnt;
2909 
2910 	out = true;
2911 	goto validate_out;
2912 
2913 validate_fail:
2914 	out = false;
2915 
2916 validate_out:
2917 	return out;
2918 }
2919 
2920 bool dcn32_validate_bandwidth(struct dc *dc,
2921 		struct dc_state *context,
2922 		bool fast_validate)
2923 {
2924 	bool out = false;
2925 
2926 	BW_VAL_TRACE_SETUP();
2927 
2928 	int vlevel = 0;
2929 	int pipe_cnt = 0;
2930 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2931 	DC_LOGGER_INIT(dc->ctx->logger);
2932 
2933 	BW_VAL_TRACE_COUNT();
2934 
2935     DC_FP_START();
2936 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2937     DC_FP_END();
2938 
2939 	if (pipe_cnt == 0)
2940 		goto validate_out;
2941 
2942 	if (!out)
2943 		goto validate_fail;
2944 
2945 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2946 
2947 	if (fast_validate) {
2948 		BW_VAL_TRACE_SKIP(fast);
2949 		goto validate_out;
2950 	}
2951 
2952 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2953 
2954 	BW_VAL_TRACE_END_WATERMARKS();
2955 
2956 	goto validate_out;
2957 
2958 validate_fail:
2959 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2960 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2961 
2962 	BW_VAL_TRACE_SKIP(fail);
2963 	out = false;
2964 
2965 validate_out:
2966 	kfree(pipes);
2967 
2968 	BW_VAL_TRACE_FINISH();
2969 
2970 	return out;
2971 }
2972 
2973 
2974 static bool is_dual_plane(enum surface_pixel_format format)
2975 {
2976 	return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA;
2977 }
2978 
2979 int dcn32_populate_dml_pipes_from_context(
2980 	struct dc *dc, struct dc_state *context,
2981 	display_e2e_pipe_params_st *pipes,
2982 	bool fast_validate)
2983 {
2984 	int i, pipe_cnt;
2985 	struct resource_context *res_ctx = &context->res_ctx;
2986 	struct pipe_ctx *pipe;
2987 
2988 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
2989 
2990 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
2991 		struct dc_crtc_timing *timing;
2992 
2993 		if (!res_ctx->pipe_ctx[i].stream)
2994 			continue;
2995 		pipe = &res_ctx->pipe_ctx[i];
2996 		timing = &pipe->stream->timing;
2997 
2998 		pipes[pipe_cnt].pipe.src.gpuvm = true;
2999 		pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3000 		pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3001 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
3002 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
3003 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
3004 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
3005 
3006 		switch (pipe->stream->mall_stream_config.type) {
3007 		case SUBVP_MAIN:
3008 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
3009 			break;
3010 		case SUBVP_PHANTOM:
3011 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
3012 			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
3013 			// Disallow unbounded req for SubVP according to DCHUB programming guide
3014 			pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
3015 			break;
3016 		case SUBVP_NONE:
3017 			pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
3018 			pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
3019 			break;
3020 		default:
3021 			break;
3022 		}
3023 
3024 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
3025 		if (pipes[pipe_cnt].dout.dsc_enable) {
3026 			switch (timing->display_color_depth) {
3027 			case COLOR_DEPTH_888:
3028 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
3029 				break;
3030 			case COLOR_DEPTH_101010:
3031 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
3032 				break;
3033 			case COLOR_DEPTH_121212:
3034 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
3035 				break;
3036 			default:
3037 				ASSERT(0);
3038 				break;
3039 			}
3040 		}
3041 
3042 		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
3043 		if (context->stream_count == 1) {
3044 			if (dc->debug.enable_single_display_2to1_odm_policy)
3045 				pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
3046 		}
3047 		pipe_cnt++;
3048 	}
3049 
3050 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
3051 	 * the DET available for each pipe). Use the DET override input to maintain our driver
3052 	 * policy.
3053 	 */
3054 	switch (pipe_cnt) {
3055 	case 1:
3056 		pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE;
3057 		if (pipe->plane_state && !dc->debug.disable_z9_mpc) {
3058 			if (!is_dual_plane(pipe->plane_state->format)) {
3059 				pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE;
3060 				pipes[0].pipe.src.unbounded_req_mode = true;
3061 				if (pipe->plane_state->src_rect.width >= 5120 &&
3062 					pipe->plane_state->src_rect.height >= 2880)
3063 					pipes[0].pipe.src.det_size_override = 320; // 5K or higher
3064 			}
3065 		}
3066 		break;
3067 	case 2:
3068 	case 3:
3069 	case 4:
3070 		// For 2 and 3 pipes, use (MAX_DET_SIZE / pipe_cnt), for 4 pipes use default size for each pipe
3071 		for (i = 0; i < pipe_cnt; i++) {
3072 			pipes[i].pipe.src.det_size_override = (pipe_cnt < 4) ? (DCN3_2_MAX_DET_SIZE / pipe_cnt) : DCN3_2_DEFAULT_DET_SIZE;
3073 		}
3074 		break;
3075 	}
3076 
3077 	dcn32_update_det_override_for_mpo(dc, context, pipes);
3078 
3079 	return pipe_cnt;
3080 }
3081 
3082 void dcn32_calculate_wm_and_dlg_fp(
3083 		struct dc *dc, struct dc_state *context,
3084 		display_e2e_pipe_params_st *pipes,
3085 		int pipe_cnt,
3086 		int vlevel)
3087 {
3088 	int i, pipe_idx, vlevel_temp = 0;
3089 	double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3090 	double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
3091 	unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
3092 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
3093 			dm_dram_clock_change_unsupported;
3094 
3095 	// Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK
3096 	if (!pstate_en && dcn32_subvp_in_use(dc, context)) {
3097 		context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
3098 		pstate_en = true;
3099 	}
3100 
3101 	/* Set B:
3102 	 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
3103 	 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
3104 	 * calculations to cover bootup clocks.
3105 	 * DCFCLK: soc.clock_limits[2] when available
3106 	 * UCLK: soc.clock_limits[2] when available
3107 	 */
3108 	if (dcn3_2_soc.num_states > 2) {
3109 		vlevel_temp = 2;
3110 		dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
3111 	} else
3112 		dcfclk = 615; //DCFCLK Vmin_lv
3113 
3114 	pipes[0].clks_cfg.voltage = vlevel_temp;
3115 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
3116 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
3117 
3118 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
3119 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
3120 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
3121 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
3122 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
3123 	}
3124 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3125 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3126 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3127 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3128 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3129 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3130 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3131 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3132 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3133 	context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3134 
3135 	/* Set D:
3136 	 * All clocks min.
3137 	 * DCFCLK: Min, as reported by PM FW when available
3138 	 * UCLK  : Min, as reported by PM FW when available
3139 	 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
3140 	 */
3141 
3142 	if (dcn3_2_soc.num_states > 2) {
3143 		vlevel_temp = 0;
3144 		dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
3145 	} else
3146 		dcfclk = 615; //DCFCLK Vmin_lv
3147 
3148 	pipes[0].clks_cfg.voltage = vlevel_temp;
3149 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
3150 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
3151 
3152 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
3153 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
3154 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
3155 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
3156 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
3157 	}
3158 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3159 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3160 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3161 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3162 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3163 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3164 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3165 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3166 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3167 	context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3168 
3169 	/* Set C, for Dummy P-State:
3170 	 * All clocks min.
3171 	 * DCFCLK: Min, as reported by PM FW, when available
3172 	 * UCLK  : Min,  as reported by PM FW, when available
3173 	 * pstate latency as per UCLK state dummy pstate latency
3174 	 */
3175 	// For Set A and Set C use values from validation
3176 	pipes[0].clks_cfg.voltage = vlevel;
3177 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
3178 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
3179 
3180 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
3181 		unsigned int min_dram_speed_mts_margin = 160;
3182 
3183 		if ((!pstate_en))
3184 			min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
3185 
3186 		/* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */
3187 		for (i = 3; i > 0; i--)
3188 			if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)
3189 				break;
3190 
3191 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
3192 		context->bw_ctx.dml.soc.dummy_pstate_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
3193 		context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
3194 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
3195 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
3196 	}
3197 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3198 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3199 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3200 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3201 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3202 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3203 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3204 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3205 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3206 	context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3207 
3208 	if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
3209 		/* The only difference between A and C is p-state latency, if p-state is not supported
3210 		 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
3211 		 * Set A p-state watermark set to 0 on DCN32, when p-state unsupported, for now keep as DCN32.
3212 		 */
3213 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
3214 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
3215 	} else {
3216 		/* Set A:
3217 		 * All clocks min.
3218 		 * DCFCLK: Min, as reported by PM FW, when available
3219 		 * UCLK: Min, as reported by PM FW, when available
3220 		 */
3221 		dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
3222 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3223 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3224 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3225 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3226 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3227 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3228 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3229 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3230 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3231 		context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
3232 	}
3233 
3234 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3235 		if (!context->res_ctx.pipe_ctx[i].stream)
3236 			continue;
3237 
3238 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
3239 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
3240 
3241 		if (dc->config.forced_clocks) {
3242 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
3243 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
3244 		}
3245 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
3246 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
3247 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
3248 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
3249 
3250 		pipe_idx++;
3251 	}
3252 
3253 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
3254 
3255 	dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
3256 
3257 	if (!pstate_en)
3258 		/* Restore full p-state latency */
3259 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
3260 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
3261 }
3262 
3263 static struct dc_cap_funcs cap_funcs = {
3264 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
3265 };
3266 
3267 
3268 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
3269 		unsigned int *optimal_dcfclk,
3270 		unsigned int *optimal_fclk)
3271 {
3272 	double bw_from_dram, bw_from_dram1, bw_from_dram2;
3273 
3274 	bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
3275 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
3276 	bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
3277 		dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
3278 
3279 	bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
3280 
3281 	if (optimal_fclk)
3282 		*optimal_fclk = bw_from_dram /
3283 		(dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
3284 
3285 	if (optimal_dcfclk)
3286 		*optimal_dcfclk =  bw_from_dram /
3287 		(dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
3288 }
3289 
3290 void dcn32_calculate_wm_and_dlg(
3291 		struct dc *dc, struct dc_state *context,
3292 		display_e2e_pipe_params_st *pipes,
3293 		int pipe_cnt,
3294 		int vlevel)
3295 {
3296     DC_FP_START();
3297     dcn32_calculate_wm_and_dlg_fp(
3298 		dc, context,
3299 		pipes,
3300 		pipe_cnt,
3301 		vlevel);
3302     DC_FP_END();
3303 }
3304 
3305 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
3306 {
3307 	int i;
3308 
3309 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3310 		if (!context->res_ctx.pipe_ctx[i].stream)
3311 			continue;
3312 		if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
3313 			return true;
3314 	}
3315 	return false;
3316 }
3317 
3318 void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes,
3319 		int pipe_cnt, int vlevel)
3320 {
3321 	int i, pipe_idx;
3322 	bool usr_retraining_support = false;
3323 
3324 	/* Writeback MCIF_WB arbitration parameters */
3325 	dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
3326 
3327 	context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
3328 	context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
3329 	context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
3330 	context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3331 	context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
3332 	context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
3333 	context->bw_ctx.bw.dcn.clk.p_state_change_support =
3334 			context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
3335 					!= dm_dram_clock_change_unsupported;
3336 	context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
3337 	/*
3338  *
3339 	 * TODO: needs FAMS
3340 	 * Pstate change might not be supported by hardware, but it might be
3341 	 * possible with firmware driven vertical blank stretching.
3342 	 */
3343 	// context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
3344 	context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
3345 	context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
3346 	context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
3347 	if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
3348 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
3349 	else
3350 		context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
3351 
3352 	usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
3353 	ASSERT(usr_retraining_support);
3354 
3355 	if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
3356 		context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
3357 
3358 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3359 		if (!context->res_ctx.pipe_ctx[i].stream)
3360 			continue;
3361 		pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
3362 				pipe_idx);
3363 		pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
3364 				pipe_idx);
3365 		pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
3366 				pipe_idx);
3367 		pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
3368 				pipe_idx);
3369 		if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) {
3370 			// Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
3371 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
3372 			context->res_ctx.pipe_ctx[i].unbounded_req = false;
3373 		} else {
3374 			context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
3375 							pipe_idx);
3376 			context->res_ctx.pipe_ctx[i].unbounded_req = pipes[pipe_idx].pipe.src.unbounded_req_mode;
3377 		}
3378 		if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
3379 			context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
3380 		context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
3381 		context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
3382 		pipe_idx++;
3383 	}
3384 	/*save a original dppclock copy*/
3385 	context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
3386 	context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
3387 	context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
3388 			* 1000;
3389 	context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
3390 			* 1000;
3391 
3392 	context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
3393 
3394 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3395 		if (context->res_ctx.pipe_ctx[i].stream)
3396 			context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
3397 	}
3398 
3399 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3400 
3401 		if (!context->res_ctx.pipe_ctx[i].stream)
3402 			continue;
3403 
3404 		context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
3405 				&context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
3406 				pipe_cnt, pipe_idx);
3407 
3408 		context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
3409 				&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
3410 
3411 		pipe_idx++;
3412 	}
3413 }
3414 
3415 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
3416 {
3417 	if (entry->dcfclk_mhz > 0) {
3418 		float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
3419 
3420 		entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
3421 		entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
3422 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
3423 	} else if (entry->fabricclk_mhz > 0) {
3424 		float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
3425 
3426 		entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
3427 		entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
3428 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
3429 	} else if (entry->dram_speed_mts > 0) {
3430 		float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
3431 				dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
3432 
3433 		entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
3434 		entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
3435 	}
3436 }
3437 
3438 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
3439 {
3440 	float memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_2_soc.num_chans *
3441 			dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
3442 
3443 	float fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
3444 
3445 	float sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
3446 
3447 	float limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
3448 
3449 	if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
3450 		limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
3451 
3452 	if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
3453 		limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
3454 
3455 	return limiting_bw_kbytes_sec;
3456 }
3457 
3458 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
3459 		struct _vcs_dpi_voltage_scaling_st *entry)
3460 {
3461 	int index = 0;
3462 	int i = 0;
3463 	float net_bw_of_new_state = 0;
3464 
3465 	if (*num_entries == 0) {
3466 		table[0] = *entry;
3467 		(*num_entries)++;
3468 	} else {
3469 		net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry);
3470 		while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) {
3471 			index++;
3472 			if (index >= *num_entries)
3473 				break;
3474 		}
3475 
3476 		for (i = *num_entries; i > index; i--) {
3477 			table[i] = table[i - 1];
3478 		}
3479 
3480 		table[index] = *entry;
3481 		(*num_entries)++;
3482 	}
3483 }
3484 
3485 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
3486 		unsigned int index)
3487 {
3488 	int i;
3489 
3490 	if (*num_entries == 0)
3491 		return;
3492 
3493 	for (i = index; i < *num_entries - 1; i++) {
3494 		table[i] = table[i + 1];
3495 	}
3496 	memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
3497 }
3498 
3499 static int build_synthetic_soc_states(struct clk_bw_params *bw_params,
3500 		struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
3501 {
3502 	int i, j;
3503 	struct _vcs_dpi_voltage_scaling_st entry = {0};
3504 
3505 	unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
3506 			max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
3507 
3508 	unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
3509 
3510 	static const unsigned int num_dcfclk_stas = 5;
3511 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3512 
3513 	unsigned int num_uclk_dpms = 0;
3514 	unsigned int num_fclk_dpms = 0;
3515 	unsigned int num_dcfclk_dpms = 0;
3516 
3517 	for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3518 		if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3519 			max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3520 		if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
3521 			max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
3522 		if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
3523 			max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
3524 		if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3525 			max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3526 		if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3527 			max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3528 		if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3529 			max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3530 		if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
3531 			max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3532 
3533 		if (bw_params->clk_table.entries[i].memclk_mhz > 0)
3534 			num_uclk_dpms++;
3535 		if (bw_params->clk_table.entries[i].fclk_mhz > 0)
3536 			num_fclk_dpms++;
3537 		if (bw_params->clk_table.entries[i].dcfclk_mhz > 0)
3538 			num_dcfclk_dpms++;
3539 	}
3540 
3541 	if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz)
3542 		return -1;
3543 
3544 	if (max_dppclk_mhz == 0)
3545 		max_dppclk_mhz = max_dispclk_mhz;
3546 
3547 	if (max_fclk_mhz == 0)
3548 		max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
3549 
3550 	if (max_phyclk_mhz == 0)
3551 		max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3552 
3553 	*num_entries = 0;
3554 	entry.dispclk_mhz = max_dispclk_mhz;
3555 	entry.dscclk_mhz = max_dispclk_mhz / 3;
3556 	entry.dppclk_mhz = max_dppclk_mhz;
3557 	entry.dtbclk_mhz = max_dtbclk_mhz;
3558 	entry.phyclk_mhz = max_phyclk_mhz;
3559 	entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3560 	entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3561 
3562 	// Insert all the DCFCLK STAs
3563 	for (i = 0; i < num_dcfclk_stas; i++) {
3564 		entry.dcfclk_mhz = dcfclk_sta_targets[i];
3565 		entry.fabricclk_mhz = 0;
3566 		entry.dram_speed_mts = 0;
3567 
3568 		get_optimal_ntuple(&entry);
3569 		insert_entry_into_table_sorted(table, num_entries, &entry);
3570 	}
3571 
3572 	// Insert the max DCFCLK
3573 	entry.dcfclk_mhz = max_dcfclk_mhz;
3574 	entry.fabricclk_mhz = 0;
3575 	entry.dram_speed_mts = 0;
3576 
3577 	get_optimal_ntuple(&entry);
3578 	insert_entry_into_table_sorted(table, num_entries, &entry);
3579 
3580 	// Insert the UCLK DPMS
3581 	for (i = 0; i < num_uclk_dpms; i++) {
3582 		entry.dcfclk_mhz = 0;
3583 		entry.fabricclk_mhz = 0;
3584 		entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
3585 
3586 		get_optimal_ntuple(&entry);
3587 		insert_entry_into_table_sorted(table, num_entries, &entry);
3588 	}
3589 
3590 	// If FCLK is coarse grained, insert individual DPMs.
3591 	if (num_fclk_dpms > 2) {
3592 		for (i = 0; i < num_fclk_dpms; i++) {
3593 			entry.dcfclk_mhz = 0;
3594 			entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
3595 			entry.dram_speed_mts = 0;
3596 
3597 			get_optimal_ntuple(&entry);
3598 			insert_entry_into_table_sorted(table, num_entries, &entry);
3599 		}
3600 	}
3601 	// If FCLK fine grained, only insert max
3602 	else {
3603 		entry.dcfclk_mhz = 0;
3604 		entry.fabricclk_mhz = max_fclk_mhz;
3605 		entry.dram_speed_mts = 0;
3606 
3607 		get_optimal_ntuple(&entry);
3608 		insert_entry_into_table_sorted(table, num_entries, &entry);
3609 	}
3610 
3611 	// At this point, the table contains all "points of interest" based on
3612 	// DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
3613 	// ratios (by derate, are exact).
3614 
3615 	// Remove states that require higher clocks than are supported
3616 	for (i = *num_entries - 1; i >= 0 ; i--) {
3617 		if (table[i].dcfclk_mhz > max_dcfclk_mhz ||
3618 				table[i].fabricclk_mhz > max_fclk_mhz ||
3619 				table[i].dram_speed_mts > max_uclk_mhz * 16)
3620 			remove_entry_from_table_at_index(table, num_entries, i);
3621 	}
3622 
3623 	// At this point, the table only contains supported points of interest
3624 	// it could be used as is, but some states may be redundant due to
3625 	// coarse grained nature of some clocks, so we want to round up to
3626 	// coarse grained DPMs and remove duplicates.
3627 
3628 	// Round up UCLKs
3629 	for (i = *num_entries - 1; i >= 0 ; i--) {
3630 		for (j = 0; j < num_uclk_dpms; j++) {
3631 			if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
3632 				table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
3633 				break;
3634 			}
3635 		}
3636 	}
3637 
3638 	// If FCLK is coarse grained, round up to next DPMs
3639 	if (num_fclk_dpms > 2) {
3640 		for (i = *num_entries - 1; i >= 0 ; i--) {
3641 			for (j = 0; j < num_fclk_dpms; j++) {
3642 				if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
3643 					table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
3644 					break;
3645 				}
3646 			}
3647 		}
3648 	}
3649 	// Otherwise, round up to minimum.
3650 	else {
3651 		for (i = *num_entries - 1; i >= 0 ; i--) {
3652 			if (table[i].fabricclk_mhz < min_fclk_mhz) {
3653 				table[i].fabricclk_mhz = min_fclk_mhz;
3654 				break;
3655 			}
3656 		}
3657 	}
3658 
3659 	// Round DCFCLKs up to minimum
3660 	for (i = *num_entries - 1; i >= 0 ; i--) {
3661 		if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
3662 			table[i].dcfclk_mhz = min_dcfclk_mhz;
3663 			break;
3664 		}
3665 	}
3666 
3667 	// Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
3668 	i = 0;
3669 	while (i < *num_entries - 1) {
3670 		if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
3671 				table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
3672 				table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
3673 			remove_entry_from_table_at_index(table, num_entries, i + 1);
3674 		else
3675 			i++;
3676 	}
3677 
3678 	// Fix up the state indicies
3679 	for (i = *num_entries - 1; i >= 0 ; i--) {
3680 		table[i].state = i;
3681 	}
3682 
3683 	return 0;
3684 }
3685 
3686 /* dcn32_update_bw_bounding_box
3687  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet
3688  * with actual values as per dGPU SKU:
3689  * -with passed few options from dc->config
3690  * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW)
3691  * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes
3692  * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU
3693  * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC)
3694  * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different
3695  *  clocks (which might differ for certain dGPU SKU of the same ASIC)
3696  */
3697 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
3698 {
3699 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
3700 
3701 		/* Overrides from dc->config options */
3702 		dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3703 
3704 		/* Override from passed dc->bb_overrides if available*/
3705 		if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3706 				&& dc->bb_overrides.sr_exit_time_ns) {
3707 			dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3708 		}
3709 
3710 		if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3711 				!= dc->bb_overrides.sr_enter_plus_exit_time_ns
3712 				&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3713 			dcn3_2_soc.sr_enter_plus_exit_time_us =
3714 				dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3715 		}
3716 
3717 		if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3718 			&& dc->bb_overrides.urgent_latency_ns) {
3719 			dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3720 		}
3721 
3722 		if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3723 				!= dc->bb_overrides.dram_clock_change_latency_ns
3724 				&& dc->bb_overrides.dram_clock_change_latency_ns) {
3725 			dcn3_2_soc.dram_clock_change_latency_us =
3726 				dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3727 		}
3728 
3729 		if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3730 				!= dc->bb_overrides.dummy_clock_change_latency_ns
3731 				&& dc->bb_overrides.dummy_clock_change_latency_ns) {
3732 			dcn3_2_soc.dummy_pstate_latency_us =
3733 				dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3734 		}
3735 
3736 		/* Override from VBIOS if VBIOS bb_info available */
3737 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3738 			struct bp_soc_bb_info bb_info = {0};
3739 
3740 			if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3741 				if (bb_info.dram_clock_change_latency_100ns > 0)
3742 					dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
3743 
3744 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3745 				dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
3746 
3747 			if (bb_info.dram_sr_exit_latency_100ns > 0)
3748 				dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
3749 			}
3750 		}
3751 
3752 		/* Override from VBIOS for num_chan */
3753 		if (dc->ctx->dc_bios->vram_info.num_chans)
3754 			dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3755 
3756 		if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3757 			dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3758 
3759 	}
3760 
3761 	/* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3762 	dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3763 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3764 
3765 	/* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3766 	if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) {
3767 		if (dc->debug.use_legacy_soc_bb_mechanism) {
3768 			unsigned int i = 0, j = 0, num_states = 0;
3769 
3770 			unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3771 			unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3772 			unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3773 			unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3774 			unsigned int min_dcfclk = UINT_MAX;
3775 			/* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3776 			 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3777 			unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3778 			unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3779 			unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3780 
3781 			for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3782 				if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3783 					max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3784 				if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3785 						bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3786 					min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3787 				if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3788 					max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3789 				if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3790 					max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3791 				if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3792 					max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3793 			}
3794 			if (min_dcfclk > dcfclk_sta_targets[0])
3795 				dcfclk_sta_targets[0] = min_dcfclk;
3796 			if (!max_dcfclk_mhz)
3797 				max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3798 			if (!max_dispclk_mhz)
3799 				max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3800 			if (!max_dppclk_mhz)
3801 				max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3802 			if (!max_phyclk_mhz)
3803 				max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3804 
3805 			if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3806 				// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3807 				dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3808 				num_dcfclk_sta_targets++;
3809 			} else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3810 				// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3811 				for (i = 0; i < num_dcfclk_sta_targets; i++) {
3812 					if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3813 						dcfclk_sta_targets[i] = max_dcfclk_mhz;
3814 						break;
3815 					}
3816 				}
3817 				// Update size of array since we "removed" duplicates
3818 				num_dcfclk_sta_targets = i + 1;
3819 			}
3820 
3821 			num_uclk_states = bw_params->clk_table.num_entries;
3822 
3823 			// Calculate optimal dcfclk for each uclk
3824 			for (i = 0; i < num_uclk_states; i++) {
3825 				dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3826 						&optimal_dcfclk_for_uclk[i], NULL);
3827 				if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3828 					optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3829 				}
3830 			}
3831 
3832 			// Calculate optimal uclk for each dcfclk sta target
3833 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
3834 				for (j = 0; j < num_uclk_states; j++) {
3835 					if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3836 						optimal_uclk_for_dcfclk_sta_targets[i] =
3837 								bw_params->clk_table.entries[j].memclk_mhz * 16;
3838 						break;
3839 					}
3840 				}
3841 			}
3842 
3843 			i = 0;
3844 			j = 0;
3845 			// create the final dcfclk and uclk table
3846 			while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3847 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3848 					dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3849 					dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3850 				} else {
3851 					if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3852 						dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3853 						dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3854 					} else {
3855 						j = num_uclk_states;
3856 					}
3857 				}
3858 			}
3859 
3860 			while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3861 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3862 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3863 			}
3864 
3865 			while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3866 					optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3867 				dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3868 				dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3869 			}
3870 
3871 			dcn3_2_soc.num_states = num_states;
3872 			for (i = 0; i < dcn3_2_soc.num_states; i++) {
3873 				dcn3_2_soc.clock_limits[i].state = i;
3874 				dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3875 				dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3876 
3877 				/* Fill all states with max values of all these clocks */
3878 				dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3879 				dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3880 				dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3881 				dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3882 
3883 				/* Populate from bw_params for DTBCLK, SOCCLK */
3884 				if (i > 0) {
3885 					if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3886 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3887 					} else {
3888 						dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3889 					}
3890 				} else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3891 					dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3892 				}
3893 
3894 				if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3895 					dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3896 				else
3897 					dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3898 
3899 				if (!dram_speed_mts[i] && i > 0)
3900 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3901 				else
3902 					dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3903 
3904 				/* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3905 				/* PHYCLK_D18, PHYCLK_D32 */
3906 				dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3907 				dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3908 			}
3909 		} else {
3910 			build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3911 		}
3912 
3913 		/* Re-init DML with updated bb */
3914 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3915 		if (dc->current_state)
3916 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3917 	}
3918 }
3919 
3920 static struct resource_funcs dcn32_res_pool_funcs = {
3921 	.destroy = dcn32_destroy_resource_pool,
3922 	.link_enc_create = dcn32_link_encoder_create,
3923 	.link_enc_create_minimal = NULL,
3924 	.panel_cntl_create = dcn32_panel_cntl_create,
3925 	.validate_bandwidth = dcn32_validate_bandwidth,
3926 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
3927 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
3928 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
3929 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
3930 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
3931 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
3932 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
3933 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
3934 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
3935 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
3936 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
3937 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
3938 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
3939 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
3940 	.add_phantom_pipes = dcn32_add_phantom_pipes,
3941 	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
3942 };
3943 
3944 
3945 static bool dcn32_resource_construct(
3946 	uint8_t num_virtual_links,
3947 	struct dc *dc,
3948 	struct dcn32_resource_pool *pool)
3949 {
3950 	int i, j;
3951 	struct dc_context *ctx = dc->ctx;
3952 	struct irq_service_init_data init_data;
3953 	struct ddc_service_init_data ddc_init_data = {0};
3954 	uint32_t pipe_fuses = 0;
3955 	uint32_t num_pipes  = 4;
3956 
3957     DC_FP_START();
3958 
3959 	ctx->dc_bios->regs = &bios_regs;
3960 
3961 	pool->base.res_cap = &res_cap_dcn32;
3962 	/* max number of pipes for ASIC before checking for pipe fuses */
3963 	num_pipes  = pool->base.res_cap->num_timing_generator;
3964 	pipe_fuses = REG_READ(CC_DC_PIPE_DIS);
3965 
3966 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
3967 		if (pipe_fuses & 1 << i)
3968 			num_pipes--;
3969 
3970 	if (pipe_fuses & 1)
3971 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
3972 
3973 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
3974 		ASSERT(0); //Entire DCN is harvested!
3975 
3976 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
3977 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
3978 	 */
3979 	dcn3_2_ip.max_num_dpp = num_pipes;
3980 	dcn3_2_ip.max_num_otg = num_pipes;
3981 
3982 	pool->base.funcs = &dcn32_res_pool_funcs;
3983 
3984 	/*************************************************
3985 	 *  Resource + asic cap harcoding                *
3986 	 *************************************************/
3987 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
3988 	pool->base.timing_generator_count = num_pipes;
3989 	pool->base.pipe_count = num_pipes;
3990 	pool->base.mpcc_count = num_pipes;
3991 	dc->caps.max_downscale_ratio = 600;
3992 	dc->caps.i2c_speed_in_khz = 100;
3993 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
3994 	dc->caps.max_cursor_size = 256;
3995 	dc->caps.min_horizontal_blanking_period = 80;
3996 	dc->caps.dmdata_alloc_size = 2048;
3997 	dc->caps.mall_size_per_mem_channel = 0;
3998 	dc->caps.mall_size_total = 0;
3999 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
4000 
4001 	dc->caps.cache_line_size = 64;
4002 	dc->caps.cache_num_ways = 16;
4003 	dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64
4004 	dc->caps.subvp_fw_processing_delay_us = 15;
4005 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
4006 	dc->caps.subvp_pstate_allow_width_us = 20;
4007 	dc->caps.subvp_vertical_int_margin_us = 30;
4008 
4009 	dc->caps.max_slave_planes = 2;
4010 	dc->caps.max_slave_yuv_planes = 2;
4011 	dc->caps.max_slave_rgb_planes = 2;
4012 	dc->caps.post_blend_color_processing = true;
4013 	dc->caps.force_dp_tps4_for_cp2520 = true;
4014 	dc->caps.dp_hpo = true;
4015 	dc->caps.dp_hdmi21_pcon_support = true;
4016 	dc->caps.edp_dsc_support = true;
4017 	dc->caps.extended_aux_timeout_support = true;
4018 	dc->caps.dmcub_support = true;
4019 
4020 	/* Color pipeline capabilities */
4021 	dc->caps.color.dpp.dcn_arch = 1;
4022 	dc->caps.color.dpp.input_lut_shared = 0;
4023 	dc->caps.color.dpp.icsc = 1;
4024 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
4025 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
4026 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
4027 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
4028 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
4029 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
4030 	dc->caps.color.dpp.post_csc = 1;
4031 	dc->caps.color.dpp.gamma_corr = 1;
4032 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
4033 
4034 	dc->caps.color.dpp.hw_3d_lut = 1;
4035 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
4036 	// no OGAM ROM on DCN2 and later ASICs
4037 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
4038 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
4039 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
4040 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
4041 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
4042 	dc->caps.color.dpp.ocsc = 0;
4043 
4044 	dc->caps.color.mpc.gamut_remap = 1;
4045 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
4046 	dc->caps.color.mpc.ogam_ram = 1;
4047 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
4048 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
4049 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
4050 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
4051 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
4052 	dc->caps.color.mpc.ocsc = 1;
4053 
4054 	/* Use pipe context based otg sync logic */
4055 	dc->config.use_pipe_ctx_sync_logic = true;
4056 
4057 	/* read VBIOS LTTPR caps */
4058 	{
4059 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
4060 			enum bp_result bp_query_result;
4061 			uint8_t is_vbios_lttpr_enable = 0;
4062 
4063 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
4064 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
4065 		}
4066 
4067 		/* interop bit is implicit */
4068 		{
4069 			dc->caps.vbios_lttpr_aware = true;
4070 		}
4071 	}
4072 
4073 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
4074 		dc->debug = debug_defaults_drv;
4075 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
4076 		dc->debug = debug_defaults_diags;
4077 	} else
4078 		dc->debug = debug_defaults_diags;
4079 	// Init the vm_helper
4080 	if (dc->vm_helper)
4081 		vm_helper_init(dc->vm_helper, 16);
4082 
4083 	/*************************************************
4084 	 *  Create resources                             *
4085 	 *************************************************/
4086 
4087 	/* Clock Sources for Pixel Clock*/
4088 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
4089 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4090 				CLOCK_SOURCE_COMBO_PHY_PLL0,
4091 				&clk_src_regs[0], false);
4092 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
4093 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4094 				CLOCK_SOURCE_COMBO_PHY_PLL1,
4095 				&clk_src_regs[1], false);
4096 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
4097 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4098 				CLOCK_SOURCE_COMBO_PHY_PLL2,
4099 				&clk_src_regs[2], false);
4100 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
4101 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4102 				CLOCK_SOURCE_COMBO_PHY_PLL3,
4103 				&clk_src_regs[3], false);
4104 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
4105 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4106 				CLOCK_SOURCE_COMBO_PHY_PLL4,
4107 				&clk_src_regs[4], false);
4108 
4109 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
4110 
4111 	/* todo: not reuse phy_pll registers */
4112 	pool->base.dp_clock_source =
4113 			dcn32_clock_source_create(ctx, ctx->dc_bios,
4114 				CLOCK_SOURCE_ID_DP_DTO,
4115 				&clk_src_regs[0], true);
4116 
4117 	for (i = 0; i < pool->base.clk_src_count; i++) {
4118 		if (pool->base.clock_sources[i] == NULL) {
4119 			dm_error("DC: failed to create clock sources!\n");
4120 			BREAK_TO_DEBUGGER();
4121 			goto create_fail;
4122 		}
4123 	}
4124 
4125 	/* DCCG */
4126 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
4127 	if (pool->base.dccg == NULL) {
4128 		dm_error("DC: failed to create dccg!\n");
4129 		BREAK_TO_DEBUGGER();
4130 		goto create_fail;
4131 	}
4132 
4133 	/* DML */
4134 	if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
4135 		dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
4136 
4137 	/* IRQ Service */
4138 	init_data.ctx = dc->ctx;
4139 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
4140 	if (!pool->base.irqs)
4141 		goto create_fail;
4142 
4143 	/* HUBBUB */
4144 	pool->base.hubbub = dcn32_hubbub_create(ctx);
4145 	if (pool->base.hubbub == NULL) {
4146 		BREAK_TO_DEBUGGER();
4147 		dm_error("DC: failed to create hubbub!\n");
4148 		goto create_fail;
4149 	}
4150 
4151 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
4152 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
4153 
4154 		/* if pipe is disabled, skip instance of HW pipe,
4155 		 * i.e, skip ASIC register instance
4156 		 */
4157 		if (pipe_fuses & 1 << i)
4158 			continue;
4159 
4160 		/* HUBPs */
4161 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
4162 		if (pool->base.hubps[j] == NULL) {
4163 			BREAK_TO_DEBUGGER();
4164 			dm_error(
4165 				"DC: failed to create hubps!\n");
4166 			goto create_fail;
4167 		}
4168 
4169 		/* DPPs */
4170 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
4171 		if (pool->base.dpps[j] == NULL) {
4172 			BREAK_TO_DEBUGGER();
4173 			dm_error(
4174 				"DC: failed to create dpps!\n");
4175 			goto create_fail;
4176 		}
4177 
4178 		/* OPPs */
4179 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
4180 		if (pool->base.opps[j] == NULL) {
4181 			BREAK_TO_DEBUGGER();
4182 			dm_error(
4183 				"DC: failed to create output pixel processor!\n");
4184 			goto create_fail;
4185 		}
4186 
4187 		/* TGs */
4188 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
4189 				ctx, i);
4190 		if (pool->base.timing_generators[j] == NULL) {
4191 			BREAK_TO_DEBUGGER();
4192 			dm_error("DC: failed to create tg!\n");
4193 			goto create_fail;
4194 		}
4195 
4196 		/* ABMs */
4197 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
4198 				&abm_regs[i],
4199 				&abm_shift,
4200 				&abm_mask);
4201 		if (pool->base.multiple_abms[j] == NULL) {
4202 			dm_error("DC: failed to create abm for pipe %d!\n", i);
4203 			BREAK_TO_DEBUGGER();
4204 			goto create_fail;
4205 		}
4206 
4207 		/* index for resource pool arrays for next valid pipe */
4208 		j++;
4209 	}
4210 
4211 	/* PSR */
4212 	pool->base.psr = dmub_psr_create(ctx);
4213 	if (pool->base.psr == NULL) {
4214 		dm_error("DC: failed to create psr obj!\n");
4215 		BREAK_TO_DEBUGGER();
4216 		goto create_fail;
4217 	}
4218 
4219 	/* MPCCs */
4220 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
4221 	if (pool->base.mpc == NULL) {
4222 		BREAK_TO_DEBUGGER();
4223 		dm_error("DC: failed to create mpc!\n");
4224 		goto create_fail;
4225 	}
4226 
4227 	/* DSCs */
4228 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
4229 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
4230 		if (pool->base.dscs[i] == NULL) {
4231 			BREAK_TO_DEBUGGER();
4232 			dm_error("DC: failed to create display stream compressor %d!\n", i);
4233 			goto create_fail;
4234 		}
4235 	}
4236 
4237 	/* DWB */
4238 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
4239 		BREAK_TO_DEBUGGER();
4240 		dm_error("DC: failed to create dwbc!\n");
4241 		goto create_fail;
4242 	}
4243 
4244 	/* MMHUBBUB */
4245 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
4246 		BREAK_TO_DEBUGGER();
4247 		dm_error("DC: failed to create mcif_wb!\n");
4248 		goto create_fail;
4249 	}
4250 
4251 	/* AUX and I2C */
4252 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
4253 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
4254 		if (pool->base.engines[i] == NULL) {
4255 			BREAK_TO_DEBUGGER();
4256 			dm_error(
4257 				"DC:failed to create aux engine!!\n");
4258 			goto create_fail;
4259 		}
4260 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
4261 		if (pool->base.hw_i2cs[i] == NULL) {
4262 			BREAK_TO_DEBUGGER();
4263 			dm_error(
4264 				"DC:failed to create hw i2c!!\n");
4265 			goto create_fail;
4266 		}
4267 		pool->base.sw_i2cs[i] = NULL;
4268 	}
4269 
4270 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
4271 	if (!resource_construct(num_virtual_links, dc, &pool->base,
4272 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
4273 			&res_create_funcs : &res_create_maximus_funcs)))
4274 			goto create_fail;
4275 
4276 	/* HW Sequencer init functions and Plane caps */
4277 	dcn32_hw_sequencer_init_functions(dc);
4278 
4279 	dc->caps.max_planes =  pool->base.pipe_count;
4280 
4281 	for (i = 0; i < dc->caps.max_planes; ++i)
4282 		dc->caps.planes[i] = plane_cap;
4283 
4284 	dc->cap_funcs = cap_funcs;
4285 
4286 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
4287 		ddc_init_data.ctx = dc->ctx;
4288 		ddc_init_data.link = NULL;
4289 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
4290 		ddc_init_data.id.enum_id = 0;
4291 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
4292 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
4293 	} else {
4294 		pool->base.oem_device = NULL;
4295 	}
4296 
4297     DC_FP_END();
4298 
4299 	return true;
4300 
4301 create_fail:
4302 
4303     DC_FP_END();
4304 
4305 	dcn32_resource_destruct(pool);
4306 
4307 	return false;
4308 }
4309 
4310 struct resource_pool *dcn32_create_resource_pool(
4311 		const struct dc_init_data *init_data,
4312 		struct dc *dc)
4313 {
4314 	struct dcn32_resource_pool *pool =
4315 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
4316 
4317 	if (!pool)
4318 		return NULL;
4319 
4320 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
4321 		return &pool->base;
4322 
4323 	BREAK_TO_DEBUGGER();
4324 	kfree(pool);
4325 	return NULL;
4326 }
4327