xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_resource.c (revision 25879d7b4986beba3f0d84762fe40d09fdc8b219)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn32_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn32_resource.h"
35 
36 #include "dcn20/dcn20_resource.h"
37 #include "dcn30/dcn30_resource.h"
38 
39 #include "dcn10/dcn10_ipp.h"
40 #include "dcn30/dcn30_hubbub.h"
41 #include "dcn31/dcn31_hubbub.h"
42 #include "dcn32/dcn32_hubbub.h"
43 #include "dcn32/dcn32_mpc.h"
44 #include "dcn32_hubp.h"
45 #include "irq/dcn32/irq_service_dcn32.h"
46 #include "dcn32/dcn32_dpp.h"
47 #include "dcn32/dcn32_optc.h"
48 #include "dcn20/dcn20_hwseq.h"
49 #include "dcn30/dcn30_hwseq.h"
50 #include "dce110/dce110_hw_sequencer.h"
51 #include "dcn30/dcn30_opp.h"
52 #include "dcn20/dcn20_dsc.h"
53 #include "dcn30/dcn30_vpg.h"
54 #include "dcn30/dcn30_afmt.h"
55 #include "dcn30/dcn30_dio_stream_encoder.h"
56 #include "dcn32/dcn32_dio_stream_encoder.h"
57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h"
58 #include "dcn31/dcn31_hpo_dp_link_encoder.h"
59 #include "dcn32/dcn32_hpo_dp_link_encoder.h"
60 #include "dcn31/dcn31_apg.h"
61 #include "dcn31/dcn31_dio_link_encoder.h"
62 #include "dcn32/dcn32_dio_link_encoder.h"
63 #include "dce/dce_clock_source.h"
64 #include "dce/dce_audio.h"
65 #include "dce/dce_hwseq.h"
66 #include "clk_mgr.h"
67 #include "virtual/virtual_stream_encoder.h"
68 #include "dml/display_mode_vba.h"
69 #include "dcn32/dcn32_dccg.h"
70 #include "dcn10/dcn10_resource.h"
71 #include "link.h"
72 #include "dcn31/dcn31_panel_cntl.h"
73 
74 #include "dcn30/dcn30_dwb.h"
75 #include "dcn32/dcn32_mmhubbub.h"
76 
77 #include "dcn/dcn_3_2_0_offset.h"
78 #include "dcn/dcn_3_2_0_sh_mask.h"
79 #include "nbio/nbio_4_3_0_offset.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "dml/dcn32/dcn32_fpu.h"
91 
92 #define DC_LOGGER_INIT(logger)
93 
94 enum dcn32_clk_src_array_id {
95 	DCN32_CLK_SRC_PLL0,
96 	DCN32_CLK_SRC_PLL1,
97 	DCN32_CLK_SRC_PLL2,
98 	DCN32_CLK_SRC_PLL3,
99 	DCN32_CLK_SRC_PLL4,
100 	DCN32_CLK_SRC_TOTAL
101 };
102 
103 /* begin *********************
104  * macros to expend register list macro defined in HW object header file
105  */
106 
107 /* DCN */
108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg]
109 
110 #define BASE(seg) BASE_INNER(seg)
111 
112 #define SR(reg_name)\
113 		REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +  \
114 					reg ## reg_name
115 #define SR_ARR(reg_name, id) \
116 	REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
117 
118 #define SR_ARR_INIT(reg_name, id, value) \
119 	REG_STRUCT[id].reg_name = value
120 
121 #define SRI(reg_name, block, id)\
122 	REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 		reg ## block ## id ## _ ## reg_name
124 
125 #define SRI_ARR(reg_name, block, id)\
126 	REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
127 		reg ## block ## id ## _ ## reg_name
128 
129 #define SR_ARR_I2C(reg_name, id) \
130 	REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name
131 
132 #define SRI_ARR_I2C(reg_name, block, id)\
133 	REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
134 		reg ## block ## id ## _ ## reg_name
135 
136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\
137 	REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
138 		reg ## block ## id ## _ ## reg_name
139 
140 #define SRI2(reg_name, block, id)\
141 	.reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
142 		reg ## reg_name
143 #define SRI2_ARR(reg_name, block, id)\
144 	REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) +	\
145 		reg ## reg_name
146 
147 #define SRIR(var_name, reg_name, block, id)\
148 	.var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
149 		reg ## block ## id ## _ ## reg_name
150 
151 #define SRII(reg_name, block, id)\
152 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
153 					reg ## block ## id ## _ ## reg_name
154 
155 #define SRII_ARR_2(reg_name, block, id, inst)\
156 	REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
157 		reg ## block ## id ## _ ## reg_name
158 
159 #define SRII_MPC_RMU(reg_name, block, id)\
160 	.RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
161 		reg ## block ## id ## _ ## reg_name
162 
163 #define SRII_DWB(reg_name, temp_name, block, id)\
164 	REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
165 		reg ## block ## id ## _ ## temp_name
166 
167 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
168 	.field_name = reg_name ## __ ## field_name ## post_fix
169 
170 #define DCCG_SRII(reg_name, block, id)\
171 	REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
172 		reg ## block ## id ## _ ## reg_name
173 
174 #define VUPDATE_SRII(reg_name, block, id)\
175 	REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
176 		reg ## reg_name ## _ ## block ## id
177 
178 /* NBIO */
179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg]
180 
181 #define NBIO_BASE(seg) \
182 	NBIO_BASE_INNER(seg)
183 
184 #define NBIO_SR(reg_name)\
185 	REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
186 			regBIF_BX0_ ## reg_name
187 #define NBIO_SR_ARR(reg_name, id)\
188 	REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \
189 		regBIF_BX0_ ## reg_name
190 
191 #undef CTX
192 #define CTX ctx
193 #define REG(reg_name) \
194 	(ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
195 
196 static struct bios_registers bios_regs;
197 
198 #define bios_regs_init() \
199 		( \
200 		NBIO_SR(BIOS_SCRATCH_3),\
201 		NBIO_SR(BIOS_SCRATCH_6)\
202 		)
203 
204 #define clk_src_regs_init(index, pllid)\
205 	CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid)
206 
207 static struct dce110_clk_src_regs clk_src_regs[5];
208 
209 static const struct dce110_clk_src_shift cs_shift = {
210 		CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
211 };
212 
213 static const struct dce110_clk_src_mask cs_mask = {
214 		CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
215 };
216 
217 #define abm_regs_init(id)\
218 		ABM_DCN32_REG_LIST_RI(id)
219 
220 static struct dce_abm_registers abm_regs[4];
221 
222 static const struct dce_abm_shift abm_shift = {
223 		ABM_MASK_SH_LIST_DCN32(__SHIFT)
224 };
225 
226 static const struct dce_abm_mask abm_mask = {
227 		ABM_MASK_SH_LIST_DCN32(_MASK)
228 };
229 
230 #define audio_regs_init(id)\
231 		AUD_COMMON_REG_LIST_RI(id)
232 
233 static struct dce_audio_registers audio_regs[5];
234 
235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
236 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
237 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
238 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
239 
240 static const struct dce_audio_shift audio_shift = {
241 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
242 };
243 
244 static const struct dce_audio_mask audio_mask = {
245 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
246 };
247 
248 #define vpg_regs_init(id)\
249 	VPG_DCN3_REG_LIST_RI(id)
250 
251 static struct dcn30_vpg_registers vpg_regs[10];
252 
253 static const struct dcn30_vpg_shift vpg_shift = {
254 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
255 };
256 
257 static const struct dcn30_vpg_mask vpg_mask = {
258 	DCN3_VPG_MASK_SH_LIST(_MASK)
259 };
260 
261 #define afmt_regs_init(id)\
262 	AFMT_DCN3_REG_LIST_RI(id)
263 
264 static struct dcn30_afmt_registers afmt_regs[6];
265 
266 static const struct dcn30_afmt_shift afmt_shift = {
267 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
268 };
269 
270 static const struct dcn30_afmt_mask afmt_mask = {
271 	DCN3_AFMT_MASK_SH_LIST(_MASK)
272 };
273 
274 #define apg_regs_init(id)\
275 	APG_DCN31_REG_LIST_RI(id)
276 
277 static struct dcn31_apg_registers apg_regs[4];
278 
279 static const struct dcn31_apg_shift apg_shift = {
280 	DCN31_APG_MASK_SH_LIST(__SHIFT)
281 };
282 
283 static const struct dcn31_apg_mask apg_mask = {
284 		DCN31_APG_MASK_SH_LIST(_MASK)
285 };
286 
287 #define stream_enc_regs_init(id)\
288 	SE_DCN32_REG_LIST_RI(id)
289 
290 static struct dcn10_stream_enc_registers stream_enc_regs[5];
291 
292 static const struct dcn10_stream_encoder_shift se_shift = {
293 		SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
294 };
295 
296 static const struct dcn10_stream_encoder_mask se_mask = {
297 		SE_COMMON_MASK_SH_LIST_DCN32(_MASK)
298 };
299 
300 
301 #define aux_regs_init(id)\
302 	DCN2_AUX_REG_LIST_RI(id)
303 
304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5];
305 
306 #define hpd_regs_init(id)\
307 	HPD_REG_LIST_RI(id)
308 
309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5];
310 
311 #define link_regs_init(id, phyid)\
312 	( \
313 	LE_DCN31_REG_LIST_RI(id), \
314 	UNIPHY_DCN2_REG_LIST_RI(id, phyid)\
315 	)
316 	/*DPCS_DCN31_REG_LIST(id),*/ \
317 
318 static struct dcn10_link_enc_registers link_enc_regs[5];
319 
320 static const struct dcn10_link_enc_shift le_shift = {
321 	LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \
322 	//DPCS_DCN31_MASK_SH_LIST(__SHIFT)
323 };
324 
325 static const struct dcn10_link_enc_mask le_mask = {
326 	LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \
327 	//DPCS_DCN31_MASK_SH_LIST(_MASK)
328 };
329 
330 #define hpo_dp_stream_encoder_reg_init(id)\
331 	DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id)
332 
333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4];
334 
335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = {
336 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT)
337 };
338 
339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = {
340 	DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK)
341 };
342 
343 
344 #define hpo_dp_link_encoder_reg_init(id)\
345 	DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id)
346 	/*DCN3_1_RDPCSTX_REG_LIST(0),*/
347 	/*DCN3_1_RDPCSTX_REG_LIST(1),*/
348 	/*DCN3_1_RDPCSTX_REG_LIST(2),*/
349 	/*DCN3_1_RDPCSTX_REG_LIST(3),*/
350 
351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2];
352 
353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = {
354 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT)
355 };
356 
357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = {
358 	DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK)
359 };
360 
361 #define dpp_regs_init(id)\
362 	DPP_REG_LIST_DCN30_COMMON_RI(id)
363 
364 static struct dcn3_dpp_registers dpp_regs[4];
365 
366 static const struct dcn3_dpp_shift tf_shift = {
367 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT)
368 };
369 
370 static const struct dcn3_dpp_mask tf_mask = {
371 		DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK)
372 };
373 
374 
375 #define opp_regs_init(id)\
376 	OPP_REG_LIST_DCN30_RI(id)
377 
378 static struct dcn20_opp_registers opp_regs[4];
379 
380 static const struct dcn20_opp_shift opp_shift = {
381 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
382 };
383 
384 static const struct dcn20_opp_mask opp_mask = {
385 	OPP_MASK_SH_LIST_DCN20(_MASK)
386 };
387 
388 #define aux_engine_regs_init(id)\
389 	( \
390 	AUX_COMMON_REG_LIST0_RI(id), \
391 	SR_ARR_INIT(AUXN_IMPCAL, id, 0), \
392 	SR_ARR_INIT(AUXP_IMPCAL, id, 0), \
393 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \
394 	SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\
395 	)
396 
397 static struct dce110_aux_registers aux_engine_regs[5];
398 
399 static const struct dce110_aux_registers_shift aux_shift = {
400 	DCN_AUX_MASK_SH_LIST(__SHIFT)
401 };
402 
403 static const struct dce110_aux_registers_mask aux_mask = {
404 	DCN_AUX_MASK_SH_LIST(_MASK)
405 };
406 
407 #define dwbc_regs_dcn3_init(id)\
408 	DWBC_COMMON_REG_LIST_DCN30_RI(id)
409 
410 static struct dcn30_dwbc_registers dwbc30_regs[1];
411 
412 static const struct dcn30_dwbc_shift dwbc30_shift = {
413 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
414 };
415 
416 static const struct dcn30_dwbc_mask dwbc30_mask = {
417 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
418 };
419 
420 #define mcif_wb_regs_dcn3_init(id)\
421 	MCIF_WB_COMMON_REG_LIST_DCN32_RI(id)
422 
423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1];
424 
425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
426 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
427 };
428 
429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
430 	MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK)
431 };
432 
433 #define dsc_regsDCN20_init(id)\
434 	DSC_REG_LIST_DCN20_RI(id)
435 
436 static struct dcn20_dsc_registers dsc_regs[4];
437 
438 static const struct dcn20_dsc_shift dsc_shift = {
439 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
440 };
441 
442 static const struct dcn20_dsc_mask dsc_mask = {
443 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
444 };
445 
446 static struct dcn30_mpc_registers mpc_regs;
447 
448 #define dcn_mpc_regs_init() \
449 	MPC_REG_LIST_DCN3_2_RI(0),\
450 	MPC_REG_LIST_DCN3_2_RI(1),\
451 	MPC_REG_LIST_DCN3_2_RI(2),\
452 	MPC_REG_LIST_DCN3_2_RI(3),\
453 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\
454 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\
455 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\
456 	MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\
457 	MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0)
458 
459 static const struct dcn30_mpc_shift mpc_shift = {
460 	MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT)
461 };
462 
463 static const struct dcn30_mpc_mask mpc_mask = {
464 	MPC_COMMON_MASK_SH_LIST_DCN32(_MASK)
465 };
466 
467 #define optc_regs_init(id)\
468 	OPTC_COMMON_REG_LIST_DCN3_2_RI(id)
469 
470 static struct dcn_optc_registers optc_regs[4];
471 
472 static const struct dcn_optc_shift optc_shift = {
473 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT)
474 };
475 
476 static const struct dcn_optc_mask optc_mask = {
477 	OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK)
478 };
479 
480 #define hubp_regs_init(id)\
481 	HUBP_REG_LIST_DCN32_RI(id)
482 
483 static struct dcn_hubp2_registers hubp_regs[4];
484 
485 
486 static const struct dcn_hubp2_shift hubp_shift = {
487 		HUBP_MASK_SH_LIST_DCN32(__SHIFT)
488 };
489 
490 static const struct dcn_hubp2_mask hubp_mask = {
491 		HUBP_MASK_SH_LIST_DCN32(_MASK)
492 };
493 
494 static struct dcn_hubbub_registers hubbub_reg;
495 #define hubbub_reg_init()\
496 		HUBBUB_REG_LIST_DCN32_RI(0)
497 
498 static const struct dcn_hubbub_shift hubbub_shift = {
499 		HUBBUB_MASK_SH_LIST_DCN32(__SHIFT)
500 };
501 
502 static const struct dcn_hubbub_mask hubbub_mask = {
503 		HUBBUB_MASK_SH_LIST_DCN32(_MASK)
504 };
505 
506 static struct dccg_registers dccg_regs;
507 
508 #define dccg_regs_init()\
509 	DCCG_REG_LIST_DCN32_RI()
510 
511 static const struct dccg_shift dccg_shift = {
512 		DCCG_MASK_SH_LIST_DCN32(__SHIFT)
513 };
514 
515 static const struct dccg_mask dccg_mask = {
516 		DCCG_MASK_SH_LIST_DCN32(_MASK)
517 };
518 
519 
520 #define SRII2(reg_name_pre, reg_name_post, id)\
521 	.reg_name_pre ## _ ##  reg_name_post[id] = BASE(reg ## reg_name_pre \
522 			## id ## _ ## reg_name_post ## _BASE_IDX) + \
523 			reg ## reg_name_pre ## id ## _ ## reg_name_post
524 
525 
526 #define HWSEQ_DCN32_REG_LIST()\
527 	SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \
528 	SR(DIO_MEM_PWR_CTRL), \
529 	SR(ODM_MEM_PWR_CTRL3), \
530 	SR(MMHUBBUB_MEM_PWR_CNTL), \
531 	SR(DCCG_GATE_DISABLE_CNTL), \
532 	SR(DCCG_GATE_DISABLE_CNTL2), \
533 	SR(DCFCLK_CNTL),\
534 	SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \
535 	SRII(PIXEL_RATE_CNTL, OTG, 0), \
536 	SRII(PIXEL_RATE_CNTL, OTG, 1),\
537 	SRII(PIXEL_RATE_CNTL, OTG, 2),\
538 	SRII(PIXEL_RATE_CNTL, OTG, 3),\
539 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\
540 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\
541 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\
542 	SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\
543 	SR(MICROSECOND_TIME_BASE_DIV), \
544 	SR(MILLISECOND_TIME_BASE_DIV), \
545 	SR(DISPCLK_FREQ_CHANGE_CNTL), \
546 	SR(RBBMIF_TIMEOUT_DIS), \
547 	SR(RBBMIF_TIMEOUT_DIS_2), \
548 	SR(DCHUBBUB_CRC_CTRL), \
549 	SR(DPP_TOP0_DPP_CRC_CTRL), \
550 	SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
551 	SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
552 	SR(MPC_CRC_CTRL), \
553 	SR(MPC_CRC_RESULT_GB), \
554 	SR(MPC_CRC_RESULT_C), \
555 	SR(MPC_CRC_RESULT_AR), \
556 	SR(DOMAIN0_PG_CONFIG), \
557 	SR(DOMAIN1_PG_CONFIG), \
558 	SR(DOMAIN2_PG_CONFIG), \
559 	SR(DOMAIN3_PG_CONFIG), \
560 	SR(DOMAIN16_PG_CONFIG), \
561 	SR(DOMAIN17_PG_CONFIG), \
562 	SR(DOMAIN18_PG_CONFIG), \
563 	SR(DOMAIN19_PG_CONFIG), \
564 	SR(DOMAIN0_PG_STATUS), \
565 	SR(DOMAIN1_PG_STATUS), \
566 	SR(DOMAIN2_PG_STATUS), \
567 	SR(DOMAIN3_PG_STATUS), \
568 	SR(DOMAIN16_PG_STATUS), \
569 	SR(DOMAIN17_PG_STATUS), \
570 	SR(DOMAIN18_PG_STATUS), \
571 	SR(DOMAIN19_PG_STATUS), \
572 	SR(D1VGA_CONTROL), \
573 	SR(D2VGA_CONTROL), \
574 	SR(D3VGA_CONTROL), \
575 	SR(D4VGA_CONTROL), \
576 	SR(D5VGA_CONTROL), \
577 	SR(D6VGA_CONTROL), \
578 	SR(DC_IP_REQUEST_CNTL), \
579 	SR(AZALIA_AUDIO_DTO), \
580 	SR(AZALIA_CONTROLLER_CLOCK_GATING)
581 
582 static struct dce_hwseq_registers hwseq_reg;
583 
584 #define hwseq_reg_init()\
585 	HWSEQ_DCN32_REG_LIST()
586 
587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\
588 	HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
589 	HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
590 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
591 	HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
592 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
593 	HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
594 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
595 	HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
596 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
597 	HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
598 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
599 	HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
600 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
601 	HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
602 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
603 	HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
604 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \
605 	HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \
606 	HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
607 	HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
608 	HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
609 	HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
610 	HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
611 	HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
612 	HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
613 	HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \
614 	HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
615 	HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \
616 	HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \
617 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \
618 	HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \
619 	HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh)
620 
621 static const struct dce_hwseq_shift hwseq_shift = {
622 		HWSEQ_DCN32_MASK_SH_LIST(__SHIFT)
623 };
624 
625 static const struct dce_hwseq_mask hwseq_mask = {
626 		HWSEQ_DCN32_MASK_SH_LIST(_MASK)
627 };
628 #define vmid_regs_init(id)\
629 		DCN20_VMID_REG_LIST_RI(id)
630 
631 static struct dcn_vmid_registers vmid_regs[16];
632 
633 static const struct dcn20_vmid_shift vmid_shifts = {
634 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
635 };
636 
637 static const struct dcn20_vmid_mask vmid_masks = {
638 		DCN20_VMID_MASK_SH_LIST(_MASK)
639 };
640 
641 static const struct resource_caps res_cap_dcn32 = {
642 	.num_timing_generator = 4,
643 	.num_opp = 4,
644 	.num_video_plane = 4,
645 	.num_audio = 5,
646 	.num_stream_encoder = 5,
647 	.num_hpo_dp_stream_encoder = 4,
648 	.num_hpo_dp_link_encoder = 2,
649 	.num_pll = 5,
650 	.num_dwb = 1,
651 	.num_ddc = 5,
652 	.num_vmid = 16,
653 	.num_mpc_3dlut = 4,
654 	.num_dsc = 4,
655 };
656 
657 static const struct dc_plane_cap plane_cap = {
658 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
659 	.per_pixel_alpha = true,
660 
661 	.pixel_format_support = {
662 			.argb8888 = true,
663 			.nv12 = true,
664 			.fp16 = true,
665 			.p010 = true,
666 			.ayuv = false,
667 	},
668 
669 	.max_upscale_factor = {
670 			.argb8888 = 16000,
671 			.nv12 = 16000,
672 			.fp16 = 16000
673 	},
674 
675 	// 6:1 downscaling ratio: 1000/6 = 166.666
676 	.max_downscale_factor = {
677 			.argb8888 = 167,
678 			.nv12 = 167,
679 			.fp16 = 167
680 	},
681 	64,
682 	64
683 };
684 
685 static const struct dc_debug_options debug_defaults_drv = {
686 	.disable_dmcu = true,
687 	.force_abm_enable = false,
688 	.timing_trace = false,
689 	.clock_trace = true,
690 	.disable_pplib_clock_request = false,
691 	.pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore
692 	.force_single_disp_pipe_split = false,
693 	.disable_dcc = DCC_ENABLE,
694 	.vsr_support = true,
695 	.performance_trace = false,
696 	.max_downscale_src_width = 7680,/*upto 8K*/
697 	.disable_pplib_wm_range = false,
698 	.scl_reset_length10 = true,
699 	.sanity_checks = false,
700 	.underflow_assert_delay_us = 0xFFFFFFFF,
701 	.dwb_fi_phase = -1, // -1 = disable,
702 	.dmub_command_table = true,
703 	.enable_mem_low_power = {
704 		.bits = {
705 			.vga = false,
706 			.i2c = false,
707 			.dmcu = false, // This is previously known to cause hang on S3 cycles if enabled
708 			.dscl = false,
709 			.cm = false,
710 			.mpc = false,
711 			.optc = true,
712 		}
713 	},
714 	.use_max_lb = true,
715 	.force_disable_subvp = false,
716 	.exit_idle_opt_for_cursor_updates = true,
717 	.enable_single_display_2to1_odm_policy = true,
718 
719 	/* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/
720 	.enable_double_buffered_dsc_pg_support = true,
721 	.enable_dp_dig_pixel_rate_div_policy = 1,
722 	.allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback"
723 	.alloc_extra_way_for_cursor = true,
724 	.min_prefetch_in_strobe_ns = 60000, // 60us
725 	.disable_unbounded_requesting = false,
726 	.override_dispclk_programming = true,
727 	.disable_fpo_optimizations = false,
728 	.fpo_vactive_margin_us = 2000, // 2000us
729 	.disable_fpo_vactive = false,
730 	.disable_boot_optimizations = false,
731 	.disable_subvp_high_refresh = true,
732 	.disable_dp_plus_plus_wa = true,
733 	.fpo_vactive_min_active_margin_us = 200,
734 	.fpo_vactive_max_blank_us = 1000,
735 };
736 
737 static const struct dc_debug_options debug_defaults_diags = {
738 	.disable_dmcu = true,
739 	.force_abm_enable = false,
740 	.timing_trace = true,
741 	.clock_trace = true,
742 	.disable_dpp_power_gate = true,
743 	.disable_hubp_power_gate = true,
744 	.disable_dsc_power_gate = true,
745 	.disable_clock_gate = true,
746 	.disable_pplib_clock_request = true,
747 	.disable_pplib_wm_range = true,
748 	.disable_stutter = false,
749 	.scl_reset_length10 = true,
750 	.dwb_fi_phase = -1, // -1 = disable
751 	.dmub_command_table = true,
752 	.enable_tri_buf = true,
753 	.use_max_lb = true,
754 	.force_disable_subvp = true
755 };
756 
757 static struct dce_aux *dcn32_aux_engine_create(
758 	struct dc_context *ctx,
759 	uint32_t inst)
760 {
761 	struct aux_engine_dce110 *aux_engine =
762 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
763 
764 	if (!aux_engine)
765 		return NULL;
766 
767 #undef REG_STRUCT
768 #define REG_STRUCT aux_engine_regs
769 	aux_engine_regs_init(0),
770 	aux_engine_regs_init(1),
771 	aux_engine_regs_init(2),
772 	aux_engine_regs_init(3),
773 	aux_engine_regs_init(4);
774 
775 	dce110_aux_engine_construct(aux_engine, ctx, inst,
776 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
777 				    &aux_engine_regs[inst],
778 					&aux_mask,
779 					&aux_shift,
780 					ctx->dc->caps.extended_aux_timeout_support);
781 
782 	return &aux_engine->base;
783 }
784 #define i2c_inst_regs_init(id)\
785 	I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id)
786 
787 static struct dce_i2c_registers i2c_hw_regs[5];
788 
789 static const struct dce_i2c_shift i2c_shifts = {
790 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
791 };
792 
793 static const struct dce_i2c_mask i2c_masks = {
794 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
795 };
796 
797 static struct dce_i2c_hw *dcn32_i2c_hw_create(
798 	struct dc_context *ctx,
799 	uint32_t inst)
800 {
801 	struct dce_i2c_hw *dce_i2c_hw =
802 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
803 
804 	if (!dce_i2c_hw)
805 		return NULL;
806 
807 #undef REG_STRUCT
808 #define REG_STRUCT i2c_hw_regs
809 	i2c_inst_regs_init(1),
810 	i2c_inst_regs_init(2),
811 	i2c_inst_regs_init(3),
812 	i2c_inst_regs_init(4),
813 	i2c_inst_regs_init(5);
814 
815 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
816 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
817 
818 	return dce_i2c_hw;
819 }
820 
821 static struct clock_source *dcn32_clock_source_create(
822 		struct dc_context *ctx,
823 		struct dc_bios *bios,
824 		enum clock_source_id id,
825 		const struct dce110_clk_src_regs *regs,
826 		bool dp_clk_src)
827 {
828 	struct dce110_clk_src *clk_src =
829 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
830 
831 	if (!clk_src)
832 		return NULL;
833 
834 	if (dcn31_clk_src_construct(clk_src, ctx, bios, id,
835 			regs, &cs_shift, &cs_mask)) {
836 		clk_src->base.dp_clk_src = dp_clk_src;
837 		return &clk_src->base;
838 	}
839 
840 	kfree(clk_src);
841 	BREAK_TO_DEBUGGER();
842 	return NULL;
843 }
844 
845 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx)
846 {
847 	int i;
848 
849 	struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub),
850 					  GFP_KERNEL);
851 
852 	if (!hubbub2)
853 		return NULL;
854 
855 #undef REG_STRUCT
856 #define REG_STRUCT hubbub_reg
857 	hubbub_reg_init();
858 
859 #undef REG_STRUCT
860 #define REG_STRUCT vmid_regs
861 	vmid_regs_init(0),
862 	vmid_regs_init(1),
863 	vmid_regs_init(2),
864 	vmid_regs_init(3),
865 	vmid_regs_init(4),
866 	vmid_regs_init(5),
867 	vmid_regs_init(6),
868 	vmid_regs_init(7),
869 	vmid_regs_init(8),
870 	vmid_regs_init(9),
871 	vmid_regs_init(10),
872 	vmid_regs_init(11),
873 	vmid_regs_init(12),
874 	vmid_regs_init(13),
875 	vmid_regs_init(14),
876 	vmid_regs_init(15);
877 
878 	hubbub32_construct(hubbub2, ctx,
879 			&hubbub_reg,
880 			&hubbub_shift,
881 			&hubbub_mask,
882 			ctx->dc->dml.ip.det_buffer_size_kbytes,
883 			ctx->dc->dml.ip.pixel_chunk_size_kbytes,
884 			ctx->dc->dml.ip.config_return_buffer_size_in_kbytes);
885 
886 
887 	for (i = 0; i < res_cap_dcn32.num_vmid; i++) {
888 		struct dcn20_vmid *vmid = &hubbub2->vmid[i];
889 
890 		vmid->ctx = ctx;
891 
892 		vmid->regs = &vmid_regs[i];
893 		vmid->shifts = &vmid_shifts;
894 		vmid->masks = &vmid_masks;
895 	}
896 
897 	return &hubbub2->base;
898 }
899 
900 static struct hubp *dcn32_hubp_create(
901 	struct dc_context *ctx,
902 	uint32_t inst)
903 {
904 	struct dcn20_hubp *hubp2 =
905 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
906 
907 	if (!hubp2)
908 		return NULL;
909 
910 #undef REG_STRUCT
911 #define REG_STRUCT hubp_regs
912 	hubp_regs_init(0),
913 	hubp_regs_init(1),
914 	hubp_regs_init(2),
915 	hubp_regs_init(3);
916 
917 	if (hubp32_construct(hubp2, ctx, inst,
918 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
919 		return &hubp2->base;
920 
921 	BREAK_TO_DEBUGGER();
922 	kfree(hubp2);
923 	return NULL;
924 }
925 
926 static void dcn32_dpp_destroy(struct dpp **dpp)
927 {
928 	kfree(TO_DCN30_DPP(*dpp));
929 	*dpp = NULL;
930 }
931 
932 static struct dpp *dcn32_dpp_create(
933 	struct dc_context *ctx,
934 	uint32_t inst)
935 {
936 	struct dcn3_dpp *dpp3 =
937 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
938 
939 	if (!dpp3)
940 		return NULL;
941 
942 #undef REG_STRUCT
943 #define REG_STRUCT dpp_regs
944 	dpp_regs_init(0),
945 	dpp_regs_init(1),
946 	dpp_regs_init(2),
947 	dpp_regs_init(3);
948 
949 	if (dpp32_construct(dpp3, ctx, inst,
950 			&dpp_regs[inst], &tf_shift, &tf_mask))
951 		return &dpp3->base;
952 
953 	BREAK_TO_DEBUGGER();
954 	kfree(dpp3);
955 	return NULL;
956 }
957 
958 static struct mpc *dcn32_mpc_create(
959 		struct dc_context *ctx,
960 		int num_mpcc,
961 		int num_rmu)
962 {
963 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
964 					  GFP_KERNEL);
965 
966 	if (!mpc30)
967 		return NULL;
968 
969 #undef REG_STRUCT
970 #define REG_STRUCT mpc_regs
971 	dcn_mpc_regs_init();
972 
973 	dcn32_mpc_construct(mpc30, ctx,
974 			&mpc_regs,
975 			&mpc_shift,
976 			&mpc_mask,
977 			num_mpcc,
978 			num_rmu);
979 
980 	return &mpc30->base;
981 }
982 
983 static struct output_pixel_processor *dcn32_opp_create(
984 	struct dc_context *ctx, uint32_t inst)
985 {
986 	struct dcn20_opp *opp2 =
987 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
988 
989 	if (!opp2) {
990 		BREAK_TO_DEBUGGER();
991 		return NULL;
992 	}
993 
994 #undef REG_STRUCT
995 #define REG_STRUCT opp_regs
996 	opp_regs_init(0),
997 	opp_regs_init(1),
998 	opp_regs_init(2),
999 	opp_regs_init(3);
1000 
1001 	dcn20_opp_construct(opp2, ctx, inst,
1002 			&opp_regs[inst], &opp_shift, &opp_mask);
1003 	return &opp2->base;
1004 }
1005 
1006 
1007 static struct timing_generator *dcn32_timing_generator_create(
1008 		struct dc_context *ctx,
1009 		uint32_t instance)
1010 {
1011 	struct optc *tgn10 =
1012 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1013 
1014 	if (!tgn10)
1015 		return NULL;
1016 
1017 #undef REG_STRUCT
1018 #define REG_STRUCT optc_regs
1019 	optc_regs_init(0),
1020 	optc_regs_init(1),
1021 	optc_regs_init(2),
1022 	optc_regs_init(3);
1023 
1024 	tgn10->base.inst = instance;
1025 	tgn10->base.ctx = ctx;
1026 
1027 	tgn10->tg_regs = &optc_regs[instance];
1028 	tgn10->tg_shift = &optc_shift;
1029 	tgn10->tg_mask = &optc_mask;
1030 
1031 	dcn32_timing_generator_init(tgn10);
1032 
1033 	return &tgn10->base;
1034 }
1035 
1036 static const struct encoder_feature_support link_enc_feature = {
1037 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1038 		.max_hdmi_pixel_clock = 600000,
1039 		.hdmi_ycbcr420_supported = true,
1040 		.dp_ycbcr420_supported = true,
1041 		.fec_supported = true,
1042 		.flags.bits.IS_HBR2_CAPABLE = true,
1043 		.flags.bits.IS_HBR3_CAPABLE = true,
1044 		.flags.bits.IS_TPS3_CAPABLE = true,
1045 		.flags.bits.IS_TPS4_CAPABLE = true
1046 };
1047 
1048 static struct link_encoder *dcn32_link_encoder_create(
1049 	struct dc_context *ctx,
1050 	const struct encoder_init_data *enc_init_data)
1051 {
1052 	struct dcn20_link_encoder *enc20 =
1053 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1054 
1055 	if (!enc20)
1056 		return NULL;
1057 
1058 #undef REG_STRUCT
1059 #define REG_STRUCT link_enc_aux_regs
1060 	aux_regs_init(0),
1061 	aux_regs_init(1),
1062 	aux_regs_init(2),
1063 	aux_regs_init(3),
1064 	aux_regs_init(4);
1065 
1066 #undef REG_STRUCT
1067 #define REG_STRUCT link_enc_hpd_regs
1068 	hpd_regs_init(0),
1069 	hpd_regs_init(1),
1070 	hpd_regs_init(2),
1071 	hpd_regs_init(3),
1072 	hpd_regs_init(4);
1073 
1074 #undef REG_STRUCT
1075 #define REG_STRUCT link_enc_regs
1076 	link_regs_init(0, A),
1077 	link_regs_init(1, B),
1078 	link_regs_init(2, C),
1079 	link_regs_init(3, D),
1080 	link_regs_init(4, E);
1081 
1082 	dcn32_link_encoder_construct(enc20,
1083 			enc_init_data,
1084 			&link_enc_feature,
1085 			&link_enc_regs[enc_init_data->transmitter],
1086 			&link_enc_aux_regs[enc_init_data->channel - 1],
1087 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1088 			&le_shift,
1089 			&le_mask);
1090 
1091 	return &enc20->enc10.base;
1092 }
1093 
1094 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1095 {
1096 	struct dcn31_panel_cntl *panel_cntl =
1097 		kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL);
1098 
1099 	if (!panel_cntl)
1100 		return NULL;
1101 
1102 	dcn31_panel_cntl_construct(panel_cntl, init_data);
1103 
1104 	return &panel_cntl->base;
1105 }
1106 
1107 static void read_dce_straps(
1108 	struct dc_context *ctx,
1109 	struct resource_straps *straps)
1110 {
1111 	generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS,
1112 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1113 
1114 }
1115 
1116 static struct audio *dcn32_create_audio(
1117 		struct dc_context *ctx, unsigned int inst)
1118 {
1119 
1120 #undef REG_STRUCT
1121 #define REG_STRUCT audio_regs
1122 	audio_regs_init(0),
1123 	audio_regs_init(1),
1124 	audio_regs_init(2),
1125 	audio_regs_init(3),
1126 	audio_regs_init(4);
1127 
1128 	return dce_audio_create(ctx, inst,
1129 			&audio_regs[inst], &audio_shift, &audio_mask);
1130 }
1131 
1132 static struct vpg *dcn32_vpg_create(
1133 	struct dc_context *ctx,
1134 	uint32_t inst)
1135 {
1136 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1137 
1138 	if (!vpg3)
1139 		return NULL;
1140 
1141 #undef REG_STRUCT
1142 #define REG_STRUCT vpg_regs
1143 	vpg_regs_init(0),
1144 	vpg_regs_init(1),
1145 	vpg_regs_init(2),
1146 	vpg_regs_init(3),
1147 	vpg_regs_init(4),
1148 	vpg_regs_init(5),
1149 	vpg_regs_init(6),
1150 	vpg_regs_init(7),
1151 	vpg_regs_init(8),
1152 	vpg_regs_init(9);
1153 
1154 	vpg3_construct(vpg3, ctx, inst,
1155 			&vpg_regs[inst],
1156 			&vpg_shift,
1157 			&vpg_mask);
1158 
1159 	return &vpg3->base;
1160 }
1161 
1162 static struct afmt *dcn32_afmt_create(
1163 	struct dc_context *ctx,
1164 	uint32_t inst)
1165 {
1166 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1167 
1168 	if (!afmt3)
1169 		return NULL;
1170 
1171 #undef REG_STRUCT
1172 #define REG_STRUCT afmt_regs
1173 	afmt_regs_init(0),
1174 	afmt_regs_init(1),
1175 	afmt_regs_init(2),
1176 	afmt_regs_init(3),
1177 	afmt_regs_init(4),
1178 	afmt_regs_init(5);
1179 
1180 	afmt3_construct(afmt3, ctx, inst,
1181 			&afmt_regs[inst],
1182 			&afmt_shift,
1183 			&afmt_mask);
1184 
1185 	return &afmt3->base;
1186 }
1187 
1188 static struct apg *dcn31_apg_create(
1189 	struct dc_context *ctx,
1190 	uint32_t inst)
1191 {
1192 	struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL);
1193 
1194 	if (!apg31)
1195 		return NULL;
1196 
1197 #undef REG_STRUCT
1198 #define REG_STRUCT apg_regs
1199 	apg_regs_init(0),
1200 	apg_regs_init(1),
1201 	apg_regs_init(2),
1202 	apg_regs_init(3);
1203 
1204 	apg31_construct(apg31, ctx, inst,
1205 			&apg_regs[inst],
1206 			&apg_shift,
1207 			&apg_mask);
1208 
1209 	return &apg31->base;
1210 }
1211 
1212 static struct stream_encoder *dcn32_stream_encoder_create(
1213 	enum engine_id eng_id,
1214 	struct dc_context *ctx)
1215 {
1216 	struct dcn10_stream_encoder *enc1;
1217 	struct vpg *vpg;
1218 	struct afmt *afmt;
1219 	int vpg_inst;
1220 	int afmt_inst;
1221 
1222 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1223 	if (eng_id <= ENGINE_ID_DIGF) {
1224 		vpg_inst = eng_id;
1225 		afmt_inst = eng_id;
1226 	} else
1227 		return NULL;
1228 
1229 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1230 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1231 	afmt = dcn32_afmt_create(ctx, afmt_inst);
1232 
1233 	if (!enc1 || !vpg || !afmt) {
1234 		kfree(enc1);
1235 		kfree(vpg);
1236 		kfree(afmt);
1237 		return NULL;
1238 	}
1239 
1240 #undef REG_STRUCT
1241 #define REG_STRUCT stream_enc_regs
1242 	stream_enc_regs_init(0),
1243 	stream_enc_regs_init(1),
1244 	stream_enc_regs_init(2),
1245 	stream_enc_regs_init(3),
1246 	stream_enc_regs_init(4);
1247 
1248 	dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1249 					eng_id, vpg, afmt,
1250 					&stream_enc_regs[eng_id],
1251 					&se_shift, &se_mask);
1252 
1253 	return &enc1->base;
1254 }
1255 
1256 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create(
1257 	enum engine_id eng_id,
1258 	struct dc_context *ctx)
1259 {
1260 	struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31;
1261 	struct vpg *vpg;
1262 	struct apg *apg;
1263 	uint32_t hpo_dp_inst;
1264 	uint32_t vpg_inst;
1265 	uint32_t apg_inst;
1266 
1267 	ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3));
1268 	hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0;
1269 
1270 	/* Mapping of VPG register blocks to HPO DP block instance:
1271 	 * VPG[6] -> HPO_DP[0]
1272 	 * VPG[7] -> HPO_DP[1]
1273 	 * VPG[8] -> HPO_DP[2]
1274 	 * VPG[9] -> HPO_DP[3]
1275 	 */
1276 	vpg_inst = hpo_dp_inst + 6;
1277 
1278 	/* Mapping of APG register blocks to HPO DP block instance:
1279 	 * APG[0] -> HPO_DP[0]
1280 	 * APG[1] -> HPO_DP[1]
1281 	 * APG[2] -> HPO_DP[2]
1282 	 * APG[3] -> HPO_DP[3]
1283 	 */
1284 	apg_inst = hpo_dp_inst;
1285 
1286 	/* allocate HPO stream encoder and create VPG sub-block */
1287 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL);
1288 	vpg = dcn32_vpg_create(ctx, vpg_inst);
1289 	apg = dcn31_apg_create(ctx, apg_inst);
1290 
1291 	if (!hpo_dp_enc31 || !vpg || !apg) {
1292 		kfree(hpo_dp_enc31);
1293 		kfree(vpg);
1294 		kfree(apg);
1295 		return NULL;
1296 	}
1297 
1298 #undef REG_STRUCT
1299 #define REG_STRUCT hpo_dp_stream_enc_regs
1300 	hpo_dp_stream_encoder_reg_init(0),
1301 	hpo_dp_stream_encoder_reg_init(1),
1302 	hpo_dp_stream_encoder_reg_init(2),
1303 	hpo_dp_stream_encoder_reg_init(3);
1304 
1305 	dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios,
1306 					hpo_dp_inst, eng_id, vpg, apg,
1307 					&hpo_dp_stream_enc_regs[hpo_dp_inst],
1308 					&hpo_dp_se_shift, &hpo_dp_se_mask);
1309 
1310 	return &hpo_dp_enc31->base;
1311 }
1312 
1313 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create(
1314 	uint8_t inst,
1315 	struct dc_context *ctx)
1316 {
1317 	struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31;
1318 
1319 	/* allocate HPO link encoder */
1320 	hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL);
1321 
1322 #undef REG_STRUCT
1323 #define REG_STRUCT hpo_dp_link_enc_regs
1324 	hpo_dp_link_encoder_reg_init(0),
1325 	hpo_dp_link_encoder_reg_init(1);
1326 
1327 	hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst,
1328 					&hpo_dp_link_enc_regs[inst],
1329 					&hpo_dp_le_shift, &hpo_dp_le_mask);
1330 
1331 	return &hpo_dp_enc31->base;
1332 }
1333 
1334 static struct dce_hwseq *dcn32_hwseq_create(
1335 	struct dc_context *ctx)
1336 {
1337 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1338 
1339 #undef REG_STRUCT
1340 #define REG_STRUCT hwseq_reg
1341 	hwseq_reg_init();
1342 
1343 	if (hws) {
1344 		hws->ctx = ctx;
1345 		hws->regs = &hwseq_reg;
1346 		hws->shifts = &hwseq_shift;
1347 		hws->masks = &hwseq_mask;
1348 	}
1349 	return hws;
1350 }
1351 static const struct resource_create_funcs res_create_funcs = {
1352 	.read_dce_straps = read_dce_straps,
1353 	.create_audio = dcn32_create_audio,
1354 	.create_stream_encoder = dcn32_stream_encoder_create,
1355 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1356 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1357 	.create_hwseq = dcn32_hwseq_create,
1358 };
1359 
1360 static const struct resource_create_funcs res_create_maximus_funcs = {
1361 	.read_dce_straps = NULL,
1362 	.create_audio = NULL,
1363 	.create_stream_encoder = NULL,
1364 	.create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create,
1365 	.create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create,
1366 	.create_hwseq = dcn32_hwseq_create,
1367 };
1368 
1369 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool)
1370 {
1371 	unsigned int i;
1372 
1373 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1374 		if (pool->base.stream_enc[i] != NULL) {
1375 			if (pool->base.stream_enc[i]->vpg != NULL) {
1376 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1377 				pool->base.stream_enc[i]->vpg = NULL;
1378 			}
1379 			if (pool->base.stream_enc[i]->afmt != NULL) {
1380 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1381 				pool->base.stream_enc[i]->afmt = NULL;
1382 			}
1383 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1384 			pool->base.stream_enc[i] = NULL;
1385 		}
1386 	}
1387 
1388 	for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) {
1389 		if (pool->base.hpo_dp_stream_enc[i] != NULL) {
1390 			if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) {
1391 				kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg));
1392 				pool->base.hpo_dp_stream_enc[i]->vpg = NULL;
1393 			}
1394 			if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) {
1395 				kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg));
1396 				pool->base.hpo_dp_stream_enc[i]->apg = NULL;
1397 			}
1398 			kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i]));
1399 			pool->base.hpo_dp_stream_enc[i] = NULL;
1400 		}
1401 	}
1402 
1403 	for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) {
1404 		if (pool->base.hpo_dp_link_enc[i] != NULL) {
1405 			kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i]));
1406 			pool->base.hpo_dp_link_enc[i] = NULL;
1407 		}
1408 	}
1409 
1410 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1411 		if (pool->base.dscs[i] != NULL)
1412 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1413 	}
1414 
1415 	if (pool->base.mpc != NULL) {
1416 		kfree(TO_DCN20_MPC(pool->base.mpc));
1417 		pool->base.mpc = NULL;
1418 	}
1419 	if (pool->base.hubbub != NULL) {
1420 		kfree(TO_DCN20_HUBBUB(pool->base.hubbub));
1421 		pool->base.hubbub = NULL;
1422 	}
1423 	for (i = 0; i < pool->base.pipe_count; i++) {
1424 		if (pool->base.dpps[i] != NULL)
1425 			dcn32_dpp_destroy(&pool->base.dpps[i]);
1426 
1427 		if (pool->base.ipps[i] != NULL)
1428 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1429 
1430 		if (pool->base.hubps[i] != NULL) {
1431 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1432 			pool->base.hubps[i] = NULL;
1433 		}
1434 
1435 		if (pool->base.irqs != NULL) {
1436 			dal_irq_service_destroy(&pool->base.irqs);
1437 		}
1438 	}
1439 
1440 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1441 		if (pool->base.engines[i] != NULL)
1442 			dce110_engine_destroy(&pool->base.engines[i]);
1443 		if (pool->base.hw_i2cs[i] != NULL) {
1444 			kfree(pool->base.hw_i2cs[i]);
1445 			pool->base.hw_i2cs[i] = NULL;
1446 		}
1447 		if (pool->base.sw_i2cs[i] != NULL) {
1448 			kfree(pool->base.sw_i2cs[i]);
1449 			pool->base.sw_i2cs[i] = NULL;
1450 		}
1451 	}
1452 
1453 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1454 		if (pool->base.opps[i] != NULL)
1455 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1456 	}
1457 
1458 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1459 		if (pool->base.timing_generators[i] != NULL)	{
1460 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1461 			pool->base.timing_generators[i] = NULL;
1462 		}
1463 	}
1464 
1465 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1466 		if (pool->base.dwbc[i] != NULL) {
1467 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1468 			pool->base.dwbc[i] = NULL;
1469 		}
1470 		if (pool->base.mcif_wb[i] != NULL) {
1471 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1472 			pool->base.mcif_wb[i] = NULL;
1473 		}
1474 	}
1475 
1476 	for (i = 0; i < pool->base.audio_count; i++) {
1477 		if (pool->base.audios[i])
1478 			dce_aud_destroy(&pool->base.audios[i]);
1479 	}
1480 
1481 	for (i = 0; i < pool->base.clk_src_count; i++) {
1482 		if (pool->base.clock_sources[i] != NULL) {
1483 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1484 			pool->base.clock_sources[i] = NULL;
1485 		}
1486 	}
1487 
1488 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1489 		if (pool->base.mpc_lut[i] != NULL) {
1490 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1491 			pool->base.mpc_lut[i] = NULL;
1492 		}
1493 		if (pool->base.mpc_shaper[i] != NULL) {
1494 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1495 			pool->base.mpc_shaper[i] = NULL;
1496 		}
1497 	}
1498 
1499 	if (pool->base.dp_clock_source != NULL) {
1500 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1501 		pool->base.dp_clock_source = NULL;
1502 	}
1503 
1504 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1505 		if (pool->base.multiple_abms[i] != NULL)
1506 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1507 	}
1508 
1509 	if (pool->base.psr != NULL)
1510 		dmub_psr_destroy(&pool->base.psr);
1511 
1512 	if (pool->base.dccg != NULL)
1513 		dcn_dccg_destroy(&pool->base.dccg);
1514 
1515 	if (pool->base.oem_device != NULL) {
1516 		struct dc *dc = pool->base.oem_device->ctx->dc;
1517 
1518 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1519 	}
1520 }
1521 
1522 
1523 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1524 {
1525 	int i;
1526 	uint32_t dwb_count = pool->res_cap->num_dwb;
1527 
1528 	for (i = 0; i < dwb_count; i++) {
1529 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1530 						    GFP_KERNEL);
1531 
1532 		if (!dwbc30) {
1533 			dm_error("DC: failed to create dwbc30!\n");
1534 			return false;
1535 		}
1536 
1537 #undef REG_STRUCT
1538 #define REG_STRUCT dwbc30_regs
1539 		dwbc_regs_dcn3_init(0);
1540 
1541 		dcn30_dwbc_construct(dwbc30, ctx,
1542 				&dwbc30_regs[i],
1543 				&dwbc30_shift,
1544 				&dwbc30_mask,
1545 				i);
1546 
1547 		pool->dwbc[i] = &dwbc30->base;
1548 	}
1549 	return true;
1550 }
1551 
1552 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1553 {
1554 	int i;
1555 	uint32_t dwb_count = pool->res_cap->num_dwb;
1556 
1557 	for (i = 0; i < dwb_count; i++) {
1558 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1559 						    GFP_KERNEL);
1560 
1561 		if (!mcif_wb30) {
1562 			dm_error("DC: failed to create mcif_wb30!\n");
1563 			return false;
1564 		}
1565 
1566 #undef REG_STRUCT
1567 #define REG_STRUCT mcif_wb30_regs
1568 		mcif_wb_regs_dcn3_init(0);
1569 
1570 		dcn32_mmhubbub_construct(mcif_wb30, ctx,
1571 				&mcif_wb30_regs[i],
1572 				&mcif_wb30_shift,
1573 				&mcif_wb30_mask,
1574 				i);
1575 
1576 		pool->mcif_wb[i] = &mcif_wb30->base;
1577 	}
1578 	return true;
1579 }
1580 
1581 static struct display_stream_compressor *dcn32_dsc_create(
1582 	struct dc_context *ctx, uint32_t inst)
1583 {
1584 	struct dcn20_dsc *dsc =
1585 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1586 
1587 	if (!dsc) {
1588 		BREAK_TO_DEBUGGER();
1589 		return NULL;
1590 	}
1591 
1592 #undef REG_STRUCT
1593 #define REG_STRUCT dsc_regs
1594 	dsc_regsDCN20_init(0),
1595 	dsc_regsDCN20_init(1),
1596 	dsc_regsDCN20_init(2),
1597 	dsc_regsDCN20_init(3);
1598 
1599 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1600 
1601 	dsc->max_image_width = 6016;
1602 
1603 	return &dsc->base;
1604 }
1605 
1606 static void dcn32_destroy_resource_pool(struct resource_pool **pool)
1607 {
1608 	struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool);
1609 
1610 	dcn32_resource_destruct(dcn32_pool);
1611 	kfree(dcn32_pool);
1612 	*pool = NULL;
1613 }
1614 
1615 bool dcn32_acquire_post_bldn_3dlut(
1616 		struct resource_context *res_ctx,
1617 		const struct resource_pool *pool,
1618 		int mpcc_id,
1619 		struct dc_3dlut **lut,
1620 		struct dc_transfer_func **shaper)
1621 {
1622 	bool ret = false;
1623 
1624 	ASSERT(*lut == NULL && *shaper == NULL);
1625 	*lut = NULL;
1626 	*shaper = NULL;
1627 
1628 	if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) {
1629 		*lut = pool->mpc_lut[mpcc_id];
1630 		*shaper = pool->mpc_shaper[mpcc_id];
1631 		res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true;
1632 		ret = true;
1633 	}
1634 	return ret;
1635 }
1636 
1637 bool dcn32_release_post_bldn_3dlut(
1638 		struct resource_context *res_ctx,
1639 		const struct resource_pool *pool,
1640 		struct dc_3dlut **lut,
1641 		struct dc_transfer_func **shaper)
1642 {
1643 	int i;
1644 	bool ret = false;
1645 
1646 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1647 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1648 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1649 			pool->mpc_lut[i]->state.raw = 0;
1650 			*lut = NULL;
1651 			*shaper = NULL;
1652 			ret = true;
1653 			break;
1654 		}
1655 	}
1656 	return ret;
1657 }
1658 
1659 static void dcn32_enable_phantom_plane(struct dc *dc,
1660 		struct dc_state *context,
1661 		struct dc_stream_state *phantom_stream,
1662 		unsigned int dc_pipe_idx)
1663 {
1664 	struct dc_plane_state *phantom_plane = NULL;
1665 	struct dc_plane_state *prev_phantom_plane = NULL;
1666 	struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1667 
1668 	while (curr_pipe) {
1669 		if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state)
1670 			phantom_plane = prev_phantom_plane;
1671 		else
1672 			phantom_plane = dc_create_plane_state(dc);
1673 
1674 		memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address));
1675 		memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality,
1676 				sizeof(phantom_plane->scaling_quality));
1677 		memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect));
1678 		memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect));
1679 		memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect));
1680 		memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size,
1681 				sizeof(phantom_plane->plane_size));
1682 		memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info,
1683 				sizeof(phantom_plane->tiling_info));
1684 		memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc));
1685 		phantom_plane->format = curr_pipe->plane_state->format;
1686 		phantom_plane->rotation = curr_pipe->plane_state->rotation;
1687 		phantom_plane->visible = curr_pipe->plane_state->visible;
1688 
1689 		/* Shadow pipe has small viewport. */
1690 		phantom_plane->clip_rect.y = 0;
1691 		phantom_plane->clip_rect.height = phantom_stream->src.height;
1692 
1693 		phantom_plane->is_phantom = true;
1694 
1695 		dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context);
1696 
1697 		curr_pipe = curr_pipe->bottom_pipe;
1698 		prev_phantom_plane = phantom_plane;
1699 	}
1700 }
1701 
1702 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc,
1703 		struct dc_state *context,
1704 		display_e2e_pipe_params_st *pipes,
1705 		unsigned int pipe_cnt,
1706 		unsigned int dc_pipe_idx)
1707 {
1708 	struct dc_stream_state *phantom_stream = NULL;
1709 	struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1710 
1711 	phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink);
1712 	phantom_stream->signal = SIGNAL_TYPE_VIRTUAL;
1713 	phantom_stream->dpms_off = true;
1714 	phantom_stream->mall_stream_config.type = SUBVP_PHANTOM;
1715 	phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream;
1716 	ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN;
1717 	ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream;
1718 
1719 	/* stream has limited viewport and small timing */
1720 	memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing));
1721 	memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src));
1722 	memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst));
1723 	DC_FP_START();
1724 	dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx);
1725 	DC_FP_END();
1726 
1727 	dc_add_stream_to_ctx(dc, context, phantom_stream);
1728 	return phantom_stream;
1729 }
1730 
1731 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context)
1732 {
1733 	int i;
1734 	struct dc_plane_state *phantom_plane = NULL;
1735 	struct dc_stream_state *phantom_stream = NULL;
1736 
1737 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1738 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1739 
1740 		if (!pipe->top_pipe && !pipe->prev_odm_pipe &&
1741 				pipe->plane_state && pipe->stream &&
1742 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1743 			phantom_plane = pipe->plane_state;
1744 			phantom_stream = pipe->stream;
1745 
1746 			dc_plane_state_retain(phantom_plane);
1747 			dc_stream_retain(phantom_stream);
1748 		}
1749 	}
1750 }
1751 
1752 // return true if removed piped from ctx, false otherwise
1753 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update)
1754 {
1755 	int i;
1756 	bool removed_pipe = false;
1757 	struct dc_plane_state *phantom_plane = NULL;
1758 	struct dc_stream_state *phantom_stream = NULL;
1759 
1760 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1761 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1762 		// build scaling params for phantom pipes
1763 		if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1764 			phantom_plane = pipe->plane_state;
1765 			phantom_stream = pipe->stream;
1766 
1767 			dc_rem_all_planes_for_stream(dc, pipe->stream, context);
1768 			dc_remove_stream_from_ctx(dc, context, pipe->stream);
1769 
1770 			/* Ref count is incremented on allocation and also when added to the context.
1771 			 * Therefore we must call release for the the phantom plane and stream once
1772 			 * they are removed from the ctx to finally decrement the refcount to 0 to free.
1773 			 */
1774 			dc_plane_state_release(phantom_plane);
1775 			dc_stream_release(phantom_stream);
1776 
1777 			removed_pipe = true;
1778 		}
1779 
1780 		/* For non-full updates, a shallow copy of the current state
1781 		 * is created. In this case we don't want to erase the current
1782 		 * state (there can be 2 HIRQL threads, one in flip, and one in
1783 		 * checkMPO) that can cause a race condition.
1784 		 *
1785 		 * This is just a workaround, needs a proper fix.
1786 		 */
1787 		if (!fast_update) {
1788 			// Clear all phantom stream info
1789 			if (pipe->stream) {
1790 				pipe->stream->mall_stream_config.type = SUBVP_NONE;
1791 				pipe->stream->mall_stream_config.paired_stream = NULL;
1792 			}
1793 
1794 			if (pipe->plane_state) {
1795 				pipe->plane_state->is_phantom = false;
1796 			}
1797 		}
1798 	}
1799 	return removed_pipe;
1800 }
1801 
1802 /* TODO: Input to this function should indicate which pipe indexes (or streams)
1803  * require a phantom pipe / stream
1804  */
1805 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context,
1806 		display_e2e_pipe_params_st *pipes,
1807 		unsigned int pipe_cnt,
1808 		unsigned int index)
1809 {
1810 	struct dc_stream_state *phantom_stream = NULL;
1811 	unsigned int i;
1812 
1813 	// The index of the DC pipe passed into this function is guarenteed to
1814 	// be a valid candidate for SubVP (i.e. has a plane, stream, doesn't
1815 	// already have phantom pipe assigned, etc.) by previous checks.
1816 	phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index);
1817 	dcn32_enable_phantom_plane(dc, context, phantom_stream, index);
1818 
1819 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1820 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1821 
1822 		// Build scaling params for phantom pipes which were newly added.
1823 		// We determine which phantom pipes were added by comparing with
1824 		// the phantom stream.
1825 		if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream &&
1826 				pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1827 			pipe->stream->use_dynamic_meta = false;
1828 			pipe->plane_state->flip_immediate = false;
1829 			if (!resource_build_scaling_params(pipe)) {
1830 				// Log / remove phantom pipes since failed to build scaling params
1831 			}
1832 		}
1833 	}
1834 }
1835 
1836 bool dcn32_validate_bandwidth(struct dc *dc,
1837 		struct dc_state *context,
1838 		bool fast_validate)
1839 {
1840 	bool out = false;
1841 
1842 	BW_VAL_TRACE_SETUP();
1843 
1844 	int vlevel = 0;
1845 	int pipe_cnt = 0;
1846 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
1847 	struct mall_temp_config mall_temp_config;
1848 
1849 	/* To handle Freesync properly, setting FreeSync DML parameters
1850 	 * to its default state for the first stage of validation
1851 	 */
1852 	context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
1853 	context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
1854 
1855 	DC_LOGGER_INIT(dc->ctx->logger);
1856 
1857 	/* For fast validation, there are situations where a shallow copy of
1858 	 * of the dc->current_state is created for the validation. In this case
1859 	 * we want to save and restore the mall config because we always
1860 	 * teardown subvp at the beginning of validation (and don't attempt
1861 	 * to add it back if it's fast validation). If we don't restore the
1862 	 * subvp config in cases of fast validation + shallow copy of the
1863 	 * dc->current_state, the dc->current_state will have a partially
1864 	 * removed subvp state when we did not intend to remove it.
1865 	 */
1866 	if (fast_validate) {
1867 		memset(&mall_temp_config, 0, sizeof(mall_temp_config));
1868 		dcn32_save_mall_state(dc, context, &mall_temp_config);
1869 	}
1870 
1871 	BW_VAL_TRACE_COUNT();
1872 
1873 	DC_FP_START();
1874 	out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
1875 	DC_FP_END();
1876 
1877 	if (fast_validate)
1878 		dcn32_restore_mall_state(dc, context, &mall_temp_config);
1879 
1880 	if (pipe_cnt == 0)
1881 		goto validate_out;
1882 
1883 	if (!out)
1884 		goto validate_fail;
1885 
1886 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
1887 
1888 	if (fast_validate) {
1889 		BW_VAL_TRACE_SKIP(fast);
1890 		goto validate_out;
1891 	}
1892 
1893 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
1894 
1895 	dcn32_override_min_req_memclk(dc, context);
1896 
1897 	BW_VAL_TRACE_END_WATERMARKS();
1898 
1899 	goto validate_out;
1900 
1901 validate_fail:
1902 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
1903 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
1904 
1905 	BW_VAL_TRACE_SKIP(fail);
1906 	out = false;
1907 
1908 validate_out:
1909 	kfree(pipes);
1910 
1911 	BW_VAL_TRACE_FINISH();
1912 
1913 	return out;
1914 }
1915 
1916 int dcn32_populate_dml_pipes_from_context(
1917 	struct dc *dc, struct dc_state *context,
1918 	display_e2e_pipe_params_st *pipes,
1919 	bool fast_validate)
1920 {
1921 	int i, pipe_cnt;
1922 	struct resource_context *res_ctx = &context->res_ctx;
1923 	struct pipe_ctx *pipe;
1924 	bool subvp_in_use = false;
1925 	struct dc_crtc_timing *timing;
1926 	bool vsr_odm_support = false;
1927 
1928 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1929 
1930 	/* Determine whether we will apply ODM 2to1 policy:
1931 	 * Applies to single display and where the number of planes is less than 3.
1932 	 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes.
1933 	 *
1934 	 * Apply pipe split policy first so we can predict the pipe split correctly
1935 	 * (dcn32_predict_pipe_split).
1936 	 */
1937 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1938 		if (!res_ctx->pipe_ctx[i].stream)
1939 			continue;
1940 		pipe = &res_ctx->pipe_ctx[i];
1941 		timing = &pipe->stream->timing;
1942 
1943 		pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal;
1944 		vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 &&
1945 				res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width);
1946 		if (context->stream_count == 1 &&
1947 				context->stream_status[0].plane_count == 1 &&
1948 				!dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) &&
1949 				is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) &&
1950 				pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ &&
1951 				dc->debug.enable_single_display_2to1_odm_policy &&
1952 				!vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr
1953 			pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1954 		}
1955 		pipe_cnt++;
1956 	}
1957 
1958 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1959 
1960 		if (!res_ctx->pipe_ctx[i].stream)
1961 			continue;
1962 		pipe = &res_ctx->pipe_ctx[i];
1963 		timing = &pipe->stream->timing;
1964 
1965 		pipes[pipe_cnt].pipe.src.gpuvm = true;
1966 		DC_FP_START();
1967 		dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt);
1968 		DC_FP_END();
1969 		pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch;
1970 		pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet
1971 		pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1972 		pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19;
1973 
1974 		/* Only populate DML input with subvp info for full updates.
1975 		 * This is just a workaround -- needs a proper fix.
1976 		 */
1977 		if (!fast_validate) {
1978 			switch (pipe->stream->mall_stream_config.type) {
1979 			case SUBVP_MAIN:
1980 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport;
1981 				subvp_in_use = true;
1982 				break;
1983 			case SUBVP_PHANTOM:
1984 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe;
1985 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1986 				// Disallow unbounded req for SubVP according to DCHUB programming guide
1987 				pipes[pipe_cnt].pipe.src.unbounded_req_mode = false;
1988 				break;
1989 			case SUBVP_NONE:
1990 				pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable;
1991 				pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable;
1992 				break;
1993 			default:
1994 				break;
1995 			}
1996 		}
1997 
1998 		pipes[pipe_cnt].dout.dsc_input_bpc = 0;
1999 		if (pipes[pipe_cnt].dout.dsc_enable) {
2000 			switch (timing->display_color_depth) {
2001 			case COLOR_DEPTH_888:
2002 				pipes[pipe_cnt].dout.dsc_input_bpc = 8;
2003 				break;
2004 			case COLOR_DEPTH_101010:
2005 				pipes[pipe_cnt].dout.dsc_input_bpc = 10;
2006 				break;
2007 			case COLOR_DEPTH_121212:
2008 				pipes[pipe_cnt].dout.dsc_input_bpc = 12;
2009 				break;
2010 			default:
2011 				ASSERT(0);
2012 				break;
2013 			}
2014 		}
2015 
2016 		DC_FP_START();
2017 		dcn32_predict_pipe_split(context, &pipes[pipe_cnt]);
2018 		DC_FP_END();
2019 
2020 		pipe_cnt++;
2021 	}
2022 
2023 	/* For DET allocation, we don't want to use DML policy (not optimal for utilizing all
2024 	 * the DET available for each pipe). Use the DET override input to maintain our driver
2025 	 * policy.
2026 	 */
2027 	dcn32_set_det_allocations(dc, context, pipes);
2028 
2029 	// In general cases we want to keep the dram clock change requirement
2030 	// (prefer configs that support MCLK switch). Only override to false
2031 	// for SubVP
2032 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use)
2033 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false;
2034 	else
2035 		context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true;
2036 
2037 	return pipe_cnt;
2038 }
2039 
2040 static struct dc_cap_funcs cap_funcs = {
2041 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
2042 };
2043 
2044 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context,
2045 				display_e2e_pipe_params_st *pipes,
2046 				int pipe_cnt,
2047 				int vlevel)
2048 {
2049     DC_FP_START();
2050     dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel);
2051     DC_FP_END();
2052 }
2053 
2054 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2055 {
2056 	DC_FP_START();
2057 	dcn32_update_bw_bounding_box_fpu(dc, bw_params);
2058 	DC_FP_END();
2059 }
2060 
2061 static struct resource_funcs dcn32_res_pool_funcs = {
2062 	.destroy = dcn32_destroy_resource_pool,
2063 	.link_enc_create = dcn32_link_encoder_create,
2064 	.link_enc_create_minimal = NULL,
2065 	.panel_cntl_create = dcn32_panel_cntl_create,
2066 	.validate_bandwidth = dcn32_validate_bandwidth,
2067 	.calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg,
2068 	.populate_dml_pipes = dcn32_populate_dml_pipes_from_context,
2069 	.acquire_idle_pipe_for_head_pipe_in_layer = dcn32_acquire_idle_pipe_for_head_pipe_in_layer,
2070 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2071 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2072 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2073 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2074 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2075 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2076 	.acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut,
2077 	.release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut,
2078 	.update_bw_bounding_box = dcn32_update_bw_bounding_box,
2079 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2080 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2081 	.add_phantom_pipes = dcn32_add_phantom_pipes,
2082 	.remove_phantom_pipes = dcn32_remove_phantom_pipes,
2083 	.retain_phantom_pipes = dcn32_retain_phantom_pipes,
2084 	.save_mall_state = dcn32_save_mall_state,
2085 	.restore_mall_state = dcn32_restore_mall_state,
2086 };
2087 
2088 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2089 {
2090 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2091 	/* DCN32 support max 4 pipes */
2092 	value = value & 0xf;
2093 	return value;
2094 }
2095 
2096 
2097 static bool dcn32_resource_construct(
2098 	uint8_t num_virtual_links,
2099 	struct dc *dc,
2100 	struct dcn32_resource_pool *pool)
2101 {
2102 	int i, j;
2103 	struct dc_context *ctx = dc->ctx;
2104 	struct irq_service_init_data init_data;
2105 	struct ddc_service_init_data ddc_init_data = {0};
2106 	uint32_t pipe_fuses = 0;
2107 	uint32_t num_pipes  = 4;
2108 
2109 #undef REG_STRUCT
2110 #define REG_STRUCT bios_regs
2111 	bios_regs_init();
2112 
2113 #undef REG_STRUCT
2114 #define REG_STRUCT clk_src_regs
2115 	clk_src_regs_init(0, A),
2116 	clk_src_regs_init(1, B),
2117 	clk_src_regs_init(2, C),
2118 	clk_src_regs_init(3, D),
2119 	clk_src_regs_init(4, E);
2120 
2121 #undef REG_STRUCT
2122 #define REG_STRUCT abm_regs
2123 	abm_regs_init(0),
2124 	abm_regs_init(1),
2125 	abm_regs_init(2),
2126 	abm_regs_init(3);
2127 
2128 #undef REG_STRUCT
2129 #define REG_STRUCT dccg_regs
2130 	dccg_regs_init();
2131 
2132 	DC_FP_START();
2133 
2134 	ctx->dc_bios->regs = &bios_regs;
2135 
2136 	pool->base.res_cap = &res_cap_dcn32;
2137 	/* max number of pipes for ASIC before checking for pipe fuses */
2138 	num_pipes  = pool->base.res_cap->num_timing_generator;
2139 	pipe_fuses = read_pipe_fuses(ctx);
2140 
2141 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++)
2142 		if (pipe_fuses & 1 << i)
2143 			num_pipes--;
2144 
2145 	if (pipe_fuses & 1)
2146 		ASSERT(0); //Unexpected - Pipe 0 should always be fully functional!
2147 
2148 	if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK)
2149 		ASSERT(0); //Entire DCN is harvested!
2150 
2151 	/* within dml lib, initial value is hard coded, if ASIC pipe is fused, the
2152 	 * value will be changed, update max_num_dpp and max_num_otg for dml.
2153 	 */
2154 	dcn3_2_ip.max_num_dpp = num_pipes;
2155 	dcn3_2_ip.max_num_otg = num_pipes;
2156 
2157 	pool->base.funcs = &dcn32_res_pool_funcs;
2158 
2159 	/*************************************************
2160 	 *  Resource + asic cap harcoding                *
2161 	 *************************************************/
2162 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2163 	pool->base.timing_generator_count = num_pipes;
2164 	pool->base.pipe_count = num_pipes;
2165 	pool->base.mpcc_count = num_pipes;
2166 	dc->caps.max_downscale_ratio = 600;
2167 	dc->caps.i2c_speed_in_khz = 100;
2168 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/
2169 	/* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/
2170 	dc->caps.max_cursor_size = 64;
2171 	dc->caps.min_horizontal_blanking_period = 80;
2172 	dc->caps.dmdata_alloc_size = 2048;
2173 	dc->caps.mall_size_per_mem_channel = 4;
2174 	dc->caps.mall_size_total = 0;
2175 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2176 
2177 	dc->caps.cache_line_size = 64;
2178 	dc->caps.cache_num_ways = 16;
2179 
2180 	/* Calculate the available MALL space */
2181 	dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall(
2182 		dc, dc->ctx->dc_bios->vram_info.num_chans) *
2183 		dc->caps.mall_size_per_mem_channel * 1024 * 1024;
2184 	dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes;
2185 
2186 	dc->caps.subvp_fw_processing_delay_us = 15;
2187 	dc->caps.subvp_drr_max_vblank_margin_us = 40;
2188 	dc->caps.subvp_prefetch_end_to_mall_start_us = 15;
2189 	dc->caps.subvp_swath_height_margin_lines = 16;
2190 	dc->caps.subvp_pstate_allow_width_us = 20;
2191 	dc->caps.subvp_vertical_int_margin_us = 30;
2192 	dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin
2193 
2194 	dc->caps.max_slave_planes = 2;
2195 	dc->caps.max_slave_yuv_planes = 2;
2196 	dc->caps.max_slave_rgb_planes = 2;
2197 	dc->caps.post_blend_color_processing = true;
2198 	dc->caps.force_dp_tps4_for_cp2520 = true;
2199 	if (dc->config.forceHBR2CP2520)
2200 		dc->caps.force_dp_tps4_for_cp2520 = false;
2201 	dc->caps.dp_hpo = true;
2202 	dc->caps.dp_hdmi21_pcon_support = true;
2203 	dc->caps.edp_dsc_support = true;
2204 	dc->caps.extended_aux_timeout_support = true;
2205 	dc->caps.dmcub_support = true;
2206 	dc->caps.seamless_odm = true;
2207 
2208 	/* Color pipeline capabilities */
2209 	dc->caps.color.dpp.dcn_arch = 1;
2210 	dc->caps.color.dpp.input_lut_shared = 0;
2211 	dc->caps.color.dpp.icsc = 1;
2212 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2213 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2214 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2215 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2216 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2217 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2218 	dc->caps.color.dpp.post_csc = 1;
2219 	dc->caps.color.dpp.gamma_corr = 1;
2220 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2221 
2222 	dc->caps.color.dpp.hw_3d_lut = 1;
2223 	dc->caps.color.dpp.ogam_ram = 0;  // no OGAM in DPP since DCN1
2224 	// no OGAM ROM on DCN2 and later ASICs
2225 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2226 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2227 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2228 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2229 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2230 	dc->caps.color.dpp.ocsc = 0;
2231 
2232 	dc->caps.color.mpc.gamut_remap = 1;
2233 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC
2234 	dc->caps.color.mpc.ogam_ram = 1;
2235 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2236 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2237 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2238 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2239 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2240 	dc->caps.color.mpc.ocsc = 1;
2241 
2242 	/* Use pipe context based otg sync logic */
2243 	dc->config.use_pipe_ctx_sync_logic = true;
2244 
2245 	/* read VBIOS LTTPR caps */
2246 	{
2247 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2248 			enum bp_result bp_query_result;
2249 			uint8_t is_vbios_lttpr_enable = 0;
2250 
2251 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2252 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2253 		}
2254 
2255 		/* interop bit is implicit */
2256 		{
2257 			dc->caps.vbios_lttpr_aware = true;
2258 		}
2259 	}
2260 
2261 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2262 		dc->debug = debug_defaults_drv;
2263 
2264 	// Init the vm_helper
2265 	if (dc->vm_helper)
2266 		vm_helper_init(dc->vm_helper, 16);
2267 
2268 	/*************************************************
2269 	 *  Create resources                             *
2270 	 *************************************************/
2271 
2272 	/* Clock Sources for Pixel Clock*/
2273 	pool->base.clock_sources[DCN32_CLK_SRC_PLL0] =
2274 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2275 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2276 				&clk_src_regs[0], false);
2277 	pool->base.clock_sources[DCN32_CLK_SRC_PLL1] =
2278 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2279 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2280 				&clk_src_regs[1], false);
2281 	pool->base.clock_sources[DCN32_CLK_SRC_PLL2] =
2282 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2283 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2284 				&clk_src_regs[2], false);
2285 	pool->base.clock_sources[DCN32_CLK_SRC_PLL3] =
2286 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2287 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2288 				&clk_src_regs[3], false);
2289 	pool->base.clock_sources[DCN32_CLK_SRC_PLL4] =
2290 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2291 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2292 				&clk_src_regs[4], false);
2293 
2294 	pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL;
2295 
2296 	/* todo: not reuse phy_pll registers */
2297 	pool->base.dp_clock_source =
2298 			dcn32_clock_source_create(ctx, ctx->dc_bios,
2299 				CLOCK_SOURCE_ID_DP_DTO,
2300 				&clk_src_regs[0], true);
2301 
2302 	for (i = 0; i < pool->base.clk_src_count; i++) {
2303 		if (pool->base.clock_sources[i] == NULL) {
2304 			dm_error("DC: failed to create clock sources!\n");
2305 			BREAK_TO_DEBUGGER();
2306 			goto create_fail;
2307 		}
2308 	}
2309 
2310 	/* DCCG */
2311 	pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2312 	if (pool->base.dccg == NULL) {
2313 		dm_error("DC: failed to create dccg!\n");
2314 		BREAK_TO_DEBUGGER();
2315 		goto create_fail;
2316 	}
2317 
2318 	/* DML */
2319 	dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
2320 
2321 	/* IRQ Service */
2322 	init_data.ctx = dc->ctx;
2323 	pool->base.irqs = dal_irq_service_dcn32_create(&init_data);
2324 	if (!pool->base.irqs)
2325 		goto create_fail;
2326 
2327 	/* HUBBUB */
2328 	pool->base.hubbub = dcn32_hubbub_create(ctx);
2329 	if (pool->base.hubbub == NULL) {
2330 		BREAK_TO_DEBUGGER();
2331 		dm_error("DC: failed to create hubbub!\n");
2332 		goto create_fail;
2333 	}
2334 
2335 	/* HUBPs, DPPs, OPPs, TGs, ABMs */
2336 	for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2337 
2338 		/* if pipe is disabled, skip instance of HW pipe,
2339 		 * i.e, skip ASIC register instance
2340 		 */
2341 		if (pipe_fuses & 1 << i)
2342 			continue;
2343 
2344 		/* HUBPs */
2345 		pool->base.hubps[j] = dcn32_hubp_create(ctx, i);
2346 		if (pool->base.hubps[j] == NULL) {
2347 			BREAK_TO_DEBUGGER();
2348 			dm_error(
2349 				"DC: failed to create hubps!\n");
2350 			goto create_fail;
2351 		}
2352 
2353 		/* DPPs */
2354 		pool->base.dpps[j] = dcn32_dpp_create(ctx, i);
2355 		if (pool->base.dpps[j] == NULL) {
2356 			BREAK_TO_DEBUGGER();
2357 			dm_error(
2358 				"DC: failed to create dpps!\n");
2359 			goto create_fail;
2360 		}
2361 
2362 		/* OPPs */
2363 		pool->base.opps[j] = dcn32_opp_create(ctx, i);
2364 		if (pool->base.opps[j] == NULL) {
2365 			BREAK_TO_DEBUGGER();
2366 			dm_error(
2367 				"DC: failed to create output pixel processor!\n");
2368 			goto create_fail;
2369 		}
2370 
2371 		/* TGs */
2372 		pool->base.timing_generators[j] = dcn32_timing_generator_create(
2373 				ctx, i);
2374 		if (pool->base.timing_generators[j] == NULL) {
2375 			BREAK_TO_DEBUGGER();
2376 			dm_error("DC: failed to create tg!\n");
2377 			goto create_fail;
2378 		}
2379 
2380 		/* ABMs */
2381 		pool->base.multiple_abms[j] = dmub_abm_create(ctx,
2382 				&abm_regs[i],
2383 				&abm_shift,
2384 				&abm_mask);
2385 		if (pool->base.multiple_abms[j] == NULL) {
2386 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2387 			BREAK_TO_DEBUGGER();
2388 			goto create_fail;
2389 		}
2390 
2391 		/* index for resource pool arrays for next valid pipe */
2392 		j++;
2393 	}
2394 
2395 	/* PSR */
2396 	pool->base.psr = dmub_psr_create(ctx);
2397 	if (pool->base.psr == NULL) {
2398 		dm_error("DC: failed to create psr obj!\n");
2399 		BREAK_TO_DEBUGGER();
2400 		goto create_fail;
2401 	}
2402 
2403 	/* MPCCs */
2404 	pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut);
2405 	if (pool->base.mpc == NULL) {
2406 		BREAK_TO_DEBUGGER();
2407 		dm_error("DC: failed to create mpc!\n");
2408 		goto create_fail;
2409 	}
2410 
2411 	/* DSCs */
2412 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2413 		pool->base.dscs[i] = dcn32_dsc_create(ctx, i);
2414 		if (pool->base.dscs[i] == NULL) {
2415 			BREAK_TO_DEBUGGER();
2416 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2417 			goto create_fail;
2418 		}
2419 	}
2420 
2421 	/* DWB */
2422 	if (!dcn32_dwbc_create(ctx, &pool->base)) {
2423 		BREAK_TO_DEBUGGER();
2424 		dm_error("DC: failed to create dwbc!\n");
2425 		goto create_fail;
2426 	}
2427 
2428 	/* MMHUBBUB */
2429 	if (!dcn32_mmhubbub_create(ctx, &pool->base)) {
2430 		BREAK_TO_DEBUGGER();
2431 		dm_error("DC: failed to create mcif_wb!\n");
2432 		goto create_fail;
2433 	}
2434 
2435 	/* AUX and I2C */
2436 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2437 		pool->base.engines[i] = dcn32_aux_engine_create(ctx, i);
2438 		if (pool->base.engines[i] == NULL) {
2439 			BREAK_TO_DEBUGGER();
2440 			dm_error(
2441 				"DC:failed to create aux engine!!\n");
2442 			goto create_fail;
2443 		}
2444 		pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i);
2445 		if (pool->base.hw_i2cs[i] == NULL) {
2446 			BREAK_TO_DEBUGGER();
2447 			dm_error(
2448 				"DC:failed to create hw i2c!!\n");
2449 			goto create_fail;
2450 		}
2451 		pool->base.sw_i2cs[i] = NULL;
2452 	}
2453 
2454 	/* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */
2455 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2456 			&res_create_funcs))
2457 		goto create_fail;
2458 
2459 	/* HW Sequencer init functions and Plane caps */
2460 	dcn32_hw_sequencer_init_functions(dc);
2461 
2462 	dc->caps.max_planes =  pool->base.pipe_count;
2463 
2464 	for (i = 0; i < dc->caps.max_planes; ++i)
2465 		dc->caps.planes[i] = plane_cap;
2466 
2467 	dc->cap_funcs = cap_funcs;
2468 
2469 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2470 		ddc_init_data.ctx = dc->ctx;
2471 		ddc_init_data.link = NULL;
2472 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2473 		ddc_init_data.id.enum_id = 0;
2474 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2475 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2476 	} else {
2477 		pool->base.oem_device = NULL;
2478 	}
2479 
2480 	if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0))
2481 		dc->config.sdpif_request_limit_words_per_umc = 16;
2482 
2483 	DC_FP_END();
2484 
2485 	return true;
2486 
2487 create_fail:
2488 
2489 	DC_FP_END();
2490 
2491 	dcn32_resource_destruct(pool);
2492 
2493 	return false;
2494 }
2495 
2496 struct resource_pool *dcn32_create_resource_pool(
2497 		const struct dc_init_data *init_data,
2498 		struct dc *dc)
2499 {
2500 	struct dcn32_resource_pool *pool =
2501 		kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL);
2502 
2503 	if (!pool)
2504 		return NULL;
2505 
2506 	if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool))
2507 		return &pool->base;
2508 
2509 	BREAK_TO_DEBUGGER();
2510 	kfree(pool);
2511 	return NULL;
2512 }
2513 
2514 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo(
2515 		struct resource_context *res_ctx,
2516 		const struct resource_pool *pool,
2517 		const struct pipe_ctx *primary_pipe)
2518 {
2519 	int i;
2520 	struct pipe_ctx *secondary_pipe = NULL;
2521 	struct pipe_ctx *next_odm_mpo_pipe = NULL;
2522 	int primary_index, preferred_pipe_idx;
2523 	struct pipe_ctx *old_primary_pipe = NULL;
2524 
2525 	/*
2526 	 * Modified from find_idle_secondary_pipe
2527 	 * With windowed MPO and ODM, we want to avoid the case where we want a
2528 	 *  free pipe for the left side but the free pipe is being used on the
2529 	 *  right side.
2530 	 * Add check on current_state if the primary_pipe is the left side,
2531 	 *  to check the right side ( primary_pipe->next_odm_pipe ) to see if
2532 	 *  it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe )
2533 	 * - If so, then don't use this pipe
2534 	 * EXCEPTION - 3 plane ( 2 MPO plane ) case
2535 	 * - in this case, the primary pipe has already gotten a free pipe for the
2536 	 *  MPO window in the left
2537 	 * - when it tries to get a free pipe for the MPO window on the right,
2538 	 *  it will see that it is already assigned to the right side
2539 	 *  ( primary_pipe->next_odm_pipe ).  But in this case, we want this
2540 	 *  free pipe, since it will be for the right side.  So add an
2541 	 *  additional condition, that skipping the free pipe on the right only
2542 	 *  applies if the primary pipe has no bottom pipe currently assigned
2543 	 */
2544 	if (primary_pipe) {
2545 		primary_index = primary_pipe->pipe_idx;
2546 		old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index];
2547 		if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe)
2548 			&& (!primary_pipe->bottom_pipe))
2549 			next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe;
2550 
2551 		preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
2552 		if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) &&
2553 			!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) {
2554 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
2555 			secondary_pipe->pipe_idx = preferred_pipe_idx;
2556 		}
2557 	}
2558 
2559 	/*
2560 	 * search backwards for the second pipe to keep pipe
2561 	 * assignment more consistent
2562 	 */
2563 	if (!secondary_pipe)
2564 		for (i = pool->pipe_count - 1; i >= 0; i--) {
2565 			if ((res_ctx->pipe_ctx[i].stream == NULL) &&
2566 				!(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) {
2567 				secondary_pipe = &res_ctx->pipe_ctx[i];
2568 				secondary_pipe->pipe_idx = i;
2569 				break;
2570 			}
2571 		}
2572 
2573 	return secondary_pipe;
2574 }
2575 
2576 struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer(
2577 		struct dc_state *state,
2578 		const struct resource_pool *pool,
2579 		struct dc_stream_state *stream,
2580 		struct pipe_ctx *head_pipe)
2581 {
2582 	struct resource_context *res_ctx = &state->res_ctx;
2583 	struct pipe_ctx *idle_pipe, *pipe;
2584 	struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx;
2585 	int head_index;
2586 
2587 	if (!head_pipe)
2588 		ASSERT(0);
2589 
2590 	/*
2591 	 * Modified from dcn20_acquire_idle_pipe_for_layer
2592 	 * Check if head_pipe in old_context already has bottom_pipe allocated.
2593 	 * - If so, check if that pipe is available in the current context.
2594 	 * --  If so, reuse pipe from old_context
2595 	 */
2596 	head_index = head_pipe->pipe_idx;
2597 	pipe = &old_ctx->pipe_ctx[head_index];
2598 	if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) {
2599 		idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx];
2600 		idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx;
2601 	} else {
2602 		idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe);
2603 		if (!idle_pipe)
2604 			return NULL;
2605 	}
2606 
2607 	idle_pipe->stream = head_pipe->stream;
2608 	idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
2609 	idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
2610 
2611 	idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
2612 	idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
2613 	idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
2614 	idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
2615 
2616 	return idle_pipe;
2617 }
2618 
2619 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans)
2620 {
2621 	/*
2622 	 * DCN32 and DCN321 SKUs may have different sizes for MALL
2623 	 *  but we may not be able to access all the MALL space.
2624 	 *  If the num_chans is power of 2, then we can access all
2625 	 *  of the available MALL space.  Otherwise, we can only
2626 	 *  access:
2627 	 *
2628 	 *  max_cab_size_in_bytes = total_cache_size_in_bytes *
2629 	 *    ((2^floor(log2(num_chans)))/num_chans)
2630 	 *
2631 	 * Calculating the MALL sizes for all available SKUs, we
2632 	 *  have come up with the follow simplified check.
2633 	 * - we have max_chans which provides the max MALL size.
2634 	 *  Each chans supports 4MB of MALL so:
2635 	 *
2636 	 *  total_cache_size_in_bytes = max_chans * 4 MB
2637 	 *
2638 	 * - we have avail_chans which shows the number of channels
2639 	 *  we can use if we can't access the entire MALL space.
2640 	 *  It is generally half of max_chans
2641 	 * - so we use the following checks:
2642 	 *
2643 	 *   if (num_chans == max_chans), return max_chans
2644 	 *   if (num_chans < max_chans), return avail_chans
2645 	 *
2646 	 * - exception is GC_11_0_0 where we can't access max_chans,
2647 	 *  so we define max_avail_chans as the maximum available
2648 	 *  MALL space
2649 	 *
2650 	 */
2651 	int gc_11_0_0_max_chans = 48;
2652 	int gc_11_0_0_max_avail_chans = 32;
2653 	int gc_11_0_0_avail_chans = 16;
2654 	int gc_11_0_3_max_chans = 16;
2655 	int gc_11_0_3_avail_chans = 8;
2656 	int gc_11_0_2_max_chans = 8;
2657 	int gc_11_0_2_avail_chans = 4;
2658 
2659 	if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) {
2660 		return (num_chans == gc_11_0_0_max_chans) ?
2661 			gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans;
2662 	} else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) {
2663 		return (num_chans == gc_11_0_2_max_chans) ?
2664 			gc_11_0_2_max_chans : gc_11_0_2_avail_chans;
2665 	} else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) {
2666 		return (num_chans == gc_11_0_3_max_chans) ?
2667 			gc_11_0_3_max_chans : gc_11_0_3_avail_chans;
2668 	}
2669 }
2670