1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn32_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn32_resource.h" 35 36 #include "dcn20/dcn20_resource.h" 37 #include "dcn30/dcn30_resource.h" 38 39 #include "dcn10/dcn10_ipp.h" 40 #include "dcn30/dcn30_hubbub.h" 41 #include "dcn31/dcn31_hubbub.h" 42 #include "dcn32/dcn32_hubbub.h" 43 #include "dcn32/dcn32_mpc.h" 44 #include "dcn32_hubp.h" 45 #include "irq/dcn32/irq_service_dcn32.h" 46 #include "dcn32/dcn32_dpp.h" 47 #include "dcn32/dcn32_optc.h" 48 #include "dcn20/dcn20_hwseq.h" 49 #include "dcn30/dcn30_hwseq.h" 50 #include "dce110/dce110_hw_sequencer.h" 51 #include "dcn30/dcn30_opp.h" 52 #include "dcn20/dcn20_dsc.h" 53 #include "dcn30/dcn30_vpg.h" 54 #include "dcn30/dcn30_afmt.h" 55 #include "dcn30/dcn30_dio_stream_encoder.h" 56 #include "dcn32/dcn32_dio_stream_encoder.h" 57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h" 58 #include "dcn31/dcn31_hpo_dp_link_encoder.h" 59 #include "dcn32/dcn32_hpo_dp_link_encoder.h" 60 #include "dcn31/dcn31_apg.h" 61 #include "dcn31/dcn31_dio_link_encoder.h" 62 #include "dcn32/dcn32_dio_link_encoder.h" 63 #include "dce/dce_clock_source.h" 64 #include "dce/dce_audio.h" 65 #include "dce/dce_hwseq.h" 66 #include "clk_mgr.h" 67 #include "virtual/virtual_stream_encoder.h" 68 #include "dml/display_mode_vba.h" 69 #include "dcn32/dcn32_dccg.h" 70 #include "dcn10/dcn10_resource.h" 71 #include "link.h" 72 #include "dcn31/dcn31_panel_cntl.h" 73 74 #include "dcn30/dcn30_dwb.h" 75 #include "dcn32/dcn32_mmhubbub.h" 76 77 #include "dcn/dcn_3_2_0_offset.h" 78 #include "dcn/dcn_3_2_0_sh_mask.h" 79 #include "nbio/nbio_4_3_0_offset.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/display_mode_vba_30.h" 88 #include "vm_helper.h" 89 #include "dcn20/dcn20_vmid.h" 90 #include "dml/dcn32/dcn32_fpu.h" 91 92 #define DC_LOGGER_INIT(logger) 93 94 enum dcn32_clk_src_array_id { 95 DCN32_CLK_SRC_PLL0, 96 DCN32_CLK_SRC_PLL1, 97 DCN32_CLK_SRC_PLL2, 98 DCN32_CLK_SRC_PLL3, 99 DCN32_CLK_SRC_PLL4, 100 DCN32_CLK_SRC_TOTAL 101 }; 102 103 /* begin ********************* 104 * macros to expend register list macro defined in HW object header file 105 */ 106 107 /* DCN */ 108 #define BASE_INNER(seg) ctx->dcn_reg_offsets[seg] 109 110 #define BASE(seg) BASE_INNER(seg) 111 112 #define SR(reg_name)\ 113 REG_STRUCT.reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 114 reg ## reg_name 115 #define SR_ARR(reg_name, id) \ 116 REG_STRUCT[id].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name 117 118 #define SR_ARR_INIT(reg_name, id, value) \ 119 REG_STRUCT[id].reg_name = value 120 121 #define SRI(reg_name, block, id)\ 122 REG_STRUCT.reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 123 reg ## block ## id ## _ ## reg_name 124 125 #define SRI_ARR(reg_name, block, id)\ 126 REG_STRUCT[id].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 127 reg ## block ## id ## _ ## reg_name 128 129 #define SR_ARR_I2C(reg_name, id) \ 130 REG_STRUCT[id-1].reg_name = BASE(reg##reg_name##_BASE_IDX) + reg##reg_name 131 132 #define SRI_ARR_I2C(reg_name, block, id)\ 133 REG_STRUCT[id-1].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 134 reg ## block ## id ## _ ## reg_name 135 136 #define SRI_ARR_ALPHABET(reg_name, block, index, id)\ 137 REG_STRUCT[index].reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 138 reg ## block ## id ## _ ## reg_name 139 140 #define SRI2(reg_name, block, id)\ 141 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 142 reg ## reg_name 143 #define SRI2_ARR(reg_name, block, id)\ 144 REG_STRUCT[id].reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 145 reg ## reg_name 146 147 #define SRIR(var_name, reg_name, block, id)\ 148 .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 149 reg ## block ## id ## _ ## reg_name 150 151 #define SRII(reg_name, block, id)\ 152 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 153 reg ## block ## id ## _ ## reg_name 154 155 #define SRII_ARR_2(reg_name, block, id, inst)\ 156 REG_STRUCT[inst].reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 157 reg ## block ## id ## _ ## reg_name 158 159 #define SRII_MPC_RMU(reg_name, block, id)\ 160 .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 161 reg ## block ## id ## _ ## reg_name 162 163 #define SRII_DWB(reg_name, temp_name, block, id)\ 164 REG_STRUCT.reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 165 reg ## block ## id ## _ ## temp_name 166 167 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 168 .field_name = reg_name ## __ ## field_name ## post_fix 169 170 #define DCCG_SRII(reg_name, block, id)\ 171 REG_STRUCT.block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 172 reg ## block ## id ## _ ## reg_name 173 174 #define VUPDATE_SRII(reg_name, block, id)\ 175 REG_STRUCT.reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 176 reg ## reg_name ## _ ## block ## id 177 178 /* NBIO */ 179 #define NBIO_BASE_INNER(seg) ctx->nbio_reg_offsets[seg] 180 181 #define NBIO_BASE(seg) \ 182 NBIO_BASE_INNER(seg) 183 184 #define NBIO_SR(reg_name)\ 185 REG_STRUCT.reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 186 regBIF_BX0_ ## reg_name 187 #define NBIO_SR_ARR(reg_name, id)\ 188 REG_STRUCT[id].reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 189 regBIF_BX0_ ## reg_name 190 191 #undef CTX 192 #define CTX ctx 193 #define REG(reg_name) \ 194 (ctx->dcn_reg_offsets[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) 195 196 static struct bios_registers bios_regs; 197 198 #define bios_regs_init() \ 199 ( \ 200 NBIO_SR(BIOS_SCRATCH_3),\ 201 NBIO_SR(BIOS_SCRATCH_6)\ 202 ) 203 204 #define clk_src_regs_init(index, pllid)\ 205 CS_COMMON_REG_LIST_DCN3_0_RI(index, pllid) 206 207 static struct dce110_clk_src_regs clk_src_regs[5]; 208 209 static const struct dce110_clk_src_shift cs_shift = { 210 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 211 }; 212 213 static const struct dce110_clk_src_mask cs_mask = { 214 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 215 }; 216 217 #define abm_regs_init(id)\ 218 ABM_DCN32_REG_LIST_RI(id) 219 220 static struct dce_abm_registers abm_regs[4]; 221 222 static const struct dce_abm_shift abm_shift = { 223 ABM_MASK_SH_LIST_DCN32(__SHIFT) 224 }; 225 226 static const struct dce_abm_mask abm_mask = { 227 ABM_MASK_SH_LIST_DCN32(_MASK) 228 }; 229 230 #define audio_regs_init(id)\ 231 AUD_COMMON_REG_LIST_RI(id) 232 233 static struct dce_audio_registers audio_regs[5]; 234 235 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 236 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 237 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 238 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 239 240 static const struct dce_audio_shift audio_shift = { 241 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 242 }; 243 244 static const struct dce_audio_mask audio_mask = { 245 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 246 }; 247 248 #define vpg_regs_init(id)\ 249 VPG_DCN3_REG_LIST_RI(id) 250 251 static struct dcn30_vpg_registers vpg_regs[10]; 252 253 static const struct dcn30_vpg_shift vpg_shift = { 254 DCN3_VPG_MASK_SH_LIST(__SHIFT) 255 }; 256 257 static const struct dcn30_vpg_mask vpg_mask = { 258 DCN3_VPG_MASK_SH_LIST(_MASK) 259 }; 260 261 #define afmt_regs_init(id)\ 262 AFMT_DCN3_REG_LIST_RI(id) 263 264 static struct dcn30_afmt_registers afmt_regs[6]; 265 266 static const struct dcn30_afmt_shift afmt_shift = { 267 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 268 }; 269 270 static const struct dcn30_afmt_mask afmt_mask = { 271 DCN3_AFMT_MASK_SH_LIST(_MASK) 272 }; 273 274 #define apg_regs_init(id)\ 275 APG_DCN31_REG_LIST_RI(id) 276 277 static struct dcn31_apg_registers apg_regs[4]; 278 279 static const struct dcn31_apg_shift apg_shift = { 280 DCN31_APG_MASK_SH_LIST(__SHIFT) 281 }; 282 283 static const struct dcn31_apg_mask apg_mask = { 284 DCN31_APG_MASK_SH_LIST(_MASK) 285 }; 286 287 #define stream_enc_regs_init(id)\ 288 SE_DCN32_REG_LIST_RI(id) 289 290 static struct dcn10_stream_enc_registers stream_enc_regs[5]; 291 292 static const struct dcn10_stream_encoder_shift se_shift = { 293 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 294 }; 295 296 static const struct dcn10_stream_encoder_mask se_mask = { 297 SE_COMMON_MASK_SH_LIST_DCN32(_MASK) 298 }; 299 300 301 #define aux_regs_init(id)\ 302 DCN2_AUX_REG_LIST_RI(id) 303 304 static struct dcn10_link_enc_aux_registers link_enc_aux_regs[5]; 305 306 #define hpd_regs_init(id)\ 307 HPD_REG_LIST_RI(id) 308 309 static struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[5]; 310 311 #define link_regs_init(id, phyid)\ 312 ( \ 313 LE_DCN31_REG_LIST_RI(id), \ 314 UNIPHY_DCN2_REG_LIST_RI(id, phyid)\ 315 ) 316 /*DPCS_DCN31_REG_LIST(id),*/ \ 317 318 static struct dcn10_link_enc_registers link_enc_regs[5]; 319 320 static const struct dcn10_link_enc_shift le_shift = { 321 LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ 322 //DPCS_DCN31_MASK_SH_LIST(__SHIFT) 323 }; 324 325 static const struct dcn10_link_enc_mask le_mask = { 326 LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ 327 //DPCS_DCN31_MASK_SH_LIST(_MASK) 328 }; 329 330 #define hpo_dp_stream_encoder_reg_init(id)\ 331 DCN3_1_HPO_DP_STREAM_ENC_REG_LIST_RI(id) 332 333 static struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[4]; 334 335 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { 336 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) 337 }; 338 339 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { 340 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) 341 }; 342 343 344 #define hpo_dp_link_encoder_reg_init(id)\ 345 DCN3_1_HPO_DP_LINK_ENC_REG_LIST_RI(id) 346 /*DCN3_1_RDPCSTX_REG_LIST(0),*/ 347 /*DCN3_1_RDPCSTX_REG_LIST(1),*/ 348 /*DCN3_1_RDPCSTX_REG_LIST(2),*/ 349 /*DCN3_1_RDPCSTX_REG_LIST(3),*/ 350 351 static struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[2]; 352 353 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { 354 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) 355 }; 356 357 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { 358 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) 359 }; 360 361 #define dpp_regs_init(id)\ 362 DPP_REG_LIST_DCN30_COMMON_RI(id) 363 364 static struct dcn3_dpp_registers dpp_regs[4]; 365 366 static const struct dcn3_dpp_shift tf_shift = { 367 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) 368 }; 369 370 static const struct dcn3_dpp_mask tf_mask = { 371 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) 372 }; 373 374 375 #define opp_regs_init(id)\ 376 OPP_REG_LIST_DCN30_RI(id) 377 378 static struct dcn20_opp_registers opp_regs[4]; 379 380 static const struct dcn20_opp_shift opp_shift = { 381 OPP_MASK_SH_LIST_DCN20(__SHIFT) 382 }; 383 384 static const struct dcn20_opp_mask opp_mask = { 385 OPP_MASK_SH_LIST_DCN20(_MASK) 386 }; 387 388 #define aux_engine_regs_init(id)\ 389 ( \ 390 AUX_COMMON_REG_LIST0_RI(id), \ 391 SR_ARR_INIT(AUXN_IMPCAL, id, 0), \ 392 SR_ARR_INIT(AUXP_IMPCAL, id, 0), \ 393 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK), \ 394 SR_ARR_INIT(AUX_RESET_MASK, id, DP_AUX0_AUX_CONTROL__AUX_RESET_MASK)\ 395 ) 396 397 static struct dce110_aux_registers aux_engine_regs[5]; 398 399 static const struct dce110_aux_registers_shift aux_shift = { 400 DCN_AUX_MASK_SH_LIST(__SHIFT) 401 }; 402 403 static const struct dce110_aux_registers_mask aux_mask = { 404 DCN_AUX_MASK_SH_LIST(_MASK) 405 }; 406 407 #define dwbc_regs_dcn3_init(id)\ 408 DWBC_COMMON_REG_LIST_DCN30_RI(id) 409 410 static struct dcn30_dwbc_registers dwbc30_regs[1]; 411 412 static const struct dcn30_dwbc_shift dwbc30_shift = { 413 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 414 }; 415 416 static const struct dcn30_dwbc_mask dwbc30_mask = { 417 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 418 }; 419 420 #define mcif_wb_regs_dcn3_init(id)\ 421 MCIF_WB_COMMON_REG_LIST_DCN32_RI(id) 422 423 static struct dcn30_mmhubbub_registers mcif_wb30_regs[1]; 424 425 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 426 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 427 }; 428 429 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 430 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) 431 }; 432 433 #define dsc_regsDCN20_init(id)\ 434 DSC_REG_LIST_DCN20_RI(id) 435 436 static struct dcn20_dsc_registers dsc_regs[4]; 437 438 static const struct dcn20_dsc_shift dsc_shift = { 439 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 440 }; 441 442 static const struct dcn20_dsc_mask dsc_mask = { 443 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 444 }; 445 446 static struct dcn30_mpc_registers mpc_regs; 447 448 #define dcn_mpc_regs_init() \ 449 MPC_REG_LIST_DCN3_2_RI(0),\ 450 MPC_REG_LIST_DCN3_2_RI(1),\ 451 MPC_REG_LIST_DCN3_2_RI(2),\ 452 MPC_REG_LIST_DCN3_2_RI(3),\ 453 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(0),\ 454 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(1),\ 455 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(2),\ 456 MPC_OUT_MUX_REG_LIST_DCN3_0_RI(3),\ 457 MPC_DWB_MUX_REG_LIST_DCN3_0_RI(0) 458 459 static const struct dcn30_mpc_shift mpc_shift = { 460 MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 461 }; 462 463 static const struct dcn30_mpc_mask mpc_mask = { 464 MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) 465 }; 466 467 #define optc_regs_init(id)\ 468 OPTC_COMMON_REG_LIST_DCN3_2_RI(id) 469 470 static struct dcn_optc_registers optc_regs[4]; 471 472 static const struct dcn_optc_shift optc_shift = { 473 OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 474 }; 475 476 static const struct dcn_optc_mask optc_mask = { 477 OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 478 }; 479 480 #define hubp_regs_init(id)\ 481 HUBP_REG_LIST_DCN32_RI(id) 482 483 static struct dcn_hubp2_registers hubp_regs[4]; 484 485 486 static const struct dcn_hubp2_shift hubp_shift = { 487 HUBP_MASK_SH_LIST_DCN32(__SHIFT) 488 }; 489 490 static const struct dcn_hubp2_mask hubp_mask = { 491 HUBP_MASK_SH_LIST_DCN32(_MASK) 492 }; 493 494 static struct dcn_hubbub_registers hubbub_reg; 495 #define hubbub_reg_init()\ 496 HUBBUB_REG_LIST_DCN32_RI(0) 497 498 static const struct dcn_hubbub_shift hubbub_shift = { 499 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) 500 }; 501 502 static const struct dcn_hubbub_mask hubbub_mask = { 503 HUBBUB_MASK_SH_LIST_DCN32(_MASK) 504 }; 505 506 static struct dccg_registers dccg_regs; 507 508 #define dccg_regs_init()\ 509 DCCG_REG_LIST_DCN32_RI() 510 511 static const struct dccg_shift dccg_shift = { 512 DCCG_MASK_SH_LIST_DCN32(__SHIFT) 513 }; 514 515 static const struct dccg_mask dccg_mask = { 516 DCCG_MASK_SH_LIST_DCN32(_MASK) 517 }; 518 519 520 #define SRII2(reg_name_pre, reg_name_post, id)\ 521 .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ 522 ## id ## _ ## reg_name_post ## _BASE_IDX) + \ 523 reg ## reg_name_pre ## id ## _ ## reg_name_post 524 525 526 #define HWSEQ_DCN32_REG_LIST()\ 527 SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ 528 SR(DIO_MEM_PWR_CTRL), \ 529 SR(ODM_MEM_PWR_CTRL3), \ 530 SR(MMHUBBUB_MEM_PWR_CNTL), \ 531 SR(DCCG_GATE_DISABLE_CNTL), \ 532 SR(DCCG_GATE_DISABLE_CNTL2), \ 533 SR(DCFCLK_CNTL),\ 534 SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ 535 SRII(PIXEL_RATE_CNTL, OTG, 0), \ 536 SRII(PIXEL_RATE_CNTL, OTG, 1),\ 537 SRII(PIXEL_RATE_CNTL, OTG, 2),\ 538 SRII(PIXEL_RATE_CNTL, OTG, 3),\ 539 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ 540 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ 541 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ 542 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ 543 SR(MICROSECOND_TIME_BASE_DIV), \ 544 SR(MILLISECOND_TIME_BASE_DIV), \ 545 SR(DISPCLK_FREQ_CHANGE_CNTL), \ 546 SR(RBBMIF_TIMEOUT_DIS), \ 547 SR(RBBMIF_TIMEOUT_DIS_2), \ 548 SR(DCHUBBUB_CRC_CTRL), \ 549 SR(DPP_TOP0_DPP_CRC_CTRL), \ 550 SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ 551 SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ 552 SR(MPC_CRC_CTRL), \ 553 SR(MPC_CRC_RESULT_GB), \ 554 SR(MPC_CRC_RESULT_C), \ 555 SR(MPC_CRC_RESULT_AR), \ 556 SR(DOMAIN0_PG_CONFIG), \ 557 SR(DOMAIN1_PG_CONFIG), \ 558 SR(DOMAIN2_PG_CONFIG), \ 559 SR(DOMAIN3_PG_CONFIG), \ 560 SR(DOMAIN16_PG_CONFIG), \ 561 SR(DOMAIN17_PG_CONFIG), \ 562 SR(DOMAIN18_PG_CONFIG), \ 563 SR(DOMAIN19_PG_CONFIG), \ 564 SR(DOMAIN0_PG_STATUS), \ 565 SR(DOMAIN1_PG_STATUS), \ 566 SR(DOMAIN2_PG_STATUS), \ 567 SR(DOMAIN3_PG_STATUS), \ 568 SR(DOMAIN16_PG_STATUS), \ 569 SR(DOMAIN17_PG_STATUS), \ 570 SR(DOMAIN18_PG_STATUS), \ 571 SR(DOMAIN19_PG_STATUS), \ 572 SR(D1VGA_CONTROL), \ 573 SR(D2VGA_CONTROL), \ 574 SR(D3VGA_CONTROL), \ 575 SR(D4VGA_CONTROL), \ 576 SR(D5VGA_CONTROL), \ 577 SR(D6VGA_CONTROL), \ 578 SR(DC_IP_REQUEST_CNTL), \ 579 SR(AZALIA_AUDIO_DTO), \ 580 SR(AZALIA_CONTROLLER_CLOCK_GATING) 581 582 static struct dce_hwseq_registers hwseq_reg; 583 584 #define hwseq_reg_init()\ 585 HWSEQ_DCN32_REG_LIST() 586 587 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ 588 HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ 589 HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ 590 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 591 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 592 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 593 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 594 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 595 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 596 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 597 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 598 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 599 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 600 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 601 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 602 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 603 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 604 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 605 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 606 HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 607 HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 608 HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 609 HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 610 HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 611 HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 612 HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 613 HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 614 HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ 615 HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ 616 HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ 617 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ 618 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ 619 HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) 620 621 static const struct dce_hwseq_shift hwseq_shift = { 622 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) 623 }; 624 625 static const struct dce_hwseq_mask hwseq_mask = { 626 HWSEQ_DCN32_MASK_SH_LIST(_MASK) 627 }; 628 #define vmid_regs_init(id)\ 629 DCN20_VMID_REG_LIST_RI(id) 630 631 static struct dcn_vmid_registers vmid_regs[16]; 632 633 static const struct dcn20_vmid_shift vmid_shifts = { 634 DCN20_VMID_MASK_SH_LIST(__SHIFT) 635 }; 636 637 static const struct dcn20_vmid_mask vmid_masks = { 638 DCN20_VMID_MASK_SH_LIST(_MASK) 639 }; 640 641 static const struct resource_caps res_cap_dcn32 = { 642 .num_timing_generator = 4, 643 .num_opp = 4, 644 .num_video_plane = 4, 645 .num_audio = 5, 646 .num_stream_encoder = 5, 647 .num_hpo_dp_stream_encoder = 4, 648 .num_hpo_dp_link_encoder = 2, 649 .num_pll = 5, 650 .num_dwb = 1, 651 .num_ddc = 5, 652 .num_vmid = 16, 653 .num_mpc_3dlut = 4, 654 .num_dsc = 4, 655 }; 656 657 static const struct dc_plane_cap plane_cap = { 658 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 659 .per_pixel_alpha = true, 660 661 .pixel_format_support = { 662 .argb8888 = true, 663 .nv12 = true, 664 .fp16 = true, 665 .p010 = true, 666 .ayuv = false, 667 }, 668 669 .max_upscale_factor = { 670 .argb8888 = 16000, 671 .nv12 = 16000, 672 .fp16 = 16000 673 }, 674 675 // 6:1 downscaling ratio: 1000/6 = 166.666 676 .max_downscale_factor = { 677 .argb8888 = 167, 678 .nv12 = 167, 679 .fp16 = 167 680 }, 681 64, 682 64 683 }; 684 685 static const struct dc_debug_options debug_defaults_drv = { 686 .disable_dmcu = true, 687 .force_abm_enable = false, 688 .timing_trace = false, 689 .clock_trace = true, 690 .disable_pplib_clock_request = false, 691 .pipe_split_policy = MPC_SPLIT_AVOID, // Due to CRB, no need to MPC split anymore 692 .force_single_disp_pipe_split = false, 693 .disable_dcc = DCC_ENABLE, 694 .vsr_support = true, 695 .performance_trace = false, 696 .max_downscale_src_width = 7680,/*upto 8K*/ 697 .disable_pplib_wm_range = false, 698 .scl_reset_length10 = true, 699 .sanity_checks = false, 700 .underflow_assert_delay_us = 0xFFFFFFFF, 701 .dwb_fi_phase = -1, // -1 = disable, 702 .dmub_command_table = true, 703 .enable_mem_low_power = { 704 .bits = { 705 .vga = false, 706 .i2c = false, 707 .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled 708 .dscl = false, 709 .cm = false, 710 .mpc = false, 711 .optc = true, 712 } 713 }, 714 .use_max_lb = true, 715 .force_disable_subvp = false, 716 .exit_idle_opt_for_cursor_updates = true, 717 .enable_single_display_2to1_odm_policy = true, 718 719 /* Must match enable_single_display_2to1_odm_policy to support dynamic ODM transitions*/ 720 .enable_double_buffered_dsc_pg_support = true, 721 .enable_dp_dig_pixel_rate_div_policy = 1, 722 .allow_sw_cursor_fallback = false, // Linux can't do SW cursor "fallback" 723 .alloc_extra_way_for_cursor = true, 724 .min_prefetch_in_strobe_ns = 60000, // 60us 725 .disable_unbounded_requesting = false, 726 .override_dispclk_programming = true, 727 .disable_fpo_optimizations = false, 728 .fpo_vactive_margin_us = 2000, // 2000us 729 .disable_fpo_vactive = false, 730 .disable_boot_optimizations = false, 731 .disable_subvp_high_refresh = true, 732 .disable_dp_plus_plus_wa = true, 733 .fpo_vactive_min_active_margin_us = 200, 734 .fpo_vactive_max_blank_us = 1000, 735 }; 736 737 static const struct dc_debug_options debug_defaults_diags = { 738 .disable_dmcu = true, 739 .force_abm_enable = false, 740 .timing_trace = true, 741 .clock_trace = true, 742 .disable_dpp_power_gate = true, 743 .disable_hubp_power_gate = true, 744 .disable_dsc_power_gate = true, 745 .disable_clock_gate = true, 746 .disable_pplib_clock_request = true, 747 .disable_pplib_wm_range = true, 748 .disable_stutter = false, 749 .scl_reset_length10 = true, 750 .dwb_fi_phase = -1, // -1 = disable 751 .dmub_command_table = true, 752 .enable_tri_buf = true, 753 .use_max_lb = true, 754 .force_disable_subvp = true 755 }; 756 757 static struct dce_aux *dcn32_aux_engine_create( 758 struct dc_context *ctx, 759 uint32_t inst) 760 { 761 struct aux_engine_dce110 *aux_engine = 762 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 763 764 if (!aux_engine) 765 return NULL; 766 767 #undef REG_STRUCT 768 #define REG_STRUCT aux_engine_regs 769 aux_engine_regs_init(0), 770 aux_engine_regs_init(1), 771 aux_engine_regs_init(2), 772 aux_engine_regs_init(3), 773 aux_engine_regs_init(4); 774 775 dce110_aux_engine_construct(aux_engine, ctx, inst, 776 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 777 &aux_engine_regs[inst], 778 &aux_mask, 779 &aux_shift, 780 ctx->dc->caps.extended_aux_timeout_support); 781 782 return &aux_engine->base; 783 } 784 #define i2c_inst_regs_init(id)\ 785 I2C_HW_ENGINE_COMMON_REG_LIST_DCN30_RI(id) 786 787 static struct dce_i2c_registers i2c_hw_regs[5]; 788 789 static const struct dce_i2c_shift i2c_shifts = { 790 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 791 }; 792 793 static const struct dce_i2c_mask i2c_masks = { 794 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 795 }; 796 797 static struct dce_i2c_hw *dcn32_i2c_hw_create( 798 struct dc_context *ctx, 799 uint32_t inst) 800 { 801 struct dce_i2c_hw *dce_i2c_hw = 802 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 803 804 if (!dce_i2c_hw) 805 return NULL; 806 807 #undef REG_STRUCT 808 #define REG_STRUCT i2c_hw_regs 809 i2c_inst_regs_init(1), 810 i2c_inst_regs_init(2), 811 i2c_inst_regs_init(3), 812 i2c_inst_regs_init(4), 813 i2c_inst_regs_init(5); 814 815 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 816 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 817 818 return dce_i2c_hw; 819 } 820 821 static struct clock_source *dcn32_clock_source_create( 822 struct dc_context *ctx, 823 struct dc_bios *bios, 824 enum clock_source_id id, 825 const struct dce110_clk_src_regs *regs, 826 bool dp_clk_src) 827 { 828 struct dce110_clk_src *clk_src = 829 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 830 831 if (!clk_src) 832 return NULL; 833 834 if (dcn31_clk_src_construct(clk_src, ctx, bios, id, 835 regs, &cs_shift, &cs_mask)) { 836 clk_src->base.dp_clk_src = dp_clk_src; 837 return &clk_src->base; 838 } 839 840 kfree(clk_src); 841 BREAK_TO_DEBUGGER(); 842 return NULL; 843 } 844 845 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) 846 { 847 int i; 848 849 struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), 850 GFP_KERNEL); 851 852 if (!hubbub2) 853 return NULL; 854 855 #undef REG_STRUCT 856 #define REG_STRUCT hubbub_reg 857 hubbub_reg_init(); 858 859 #undef REG_STRUCT 860 #define REG_STRUCT vmid_regs 861 vmid_regs_init(0), 862 vmid_regs_init(1), 863 vmid_regs_init(2), 864 vmid_regs_init(3), 865 vmid_regs_init(4), 866 vmid_regs_init(5), 867 vmid_regs_init(6), 868 vmid_regs_init(7), 869 vmid_regs_init(8), 870 vmid_regs_init(9), 871 vmid_regs_init(10), 872 vmid_regs_init(11), 873 vmid_regs_init(12), 874 vmid_regs_init(13), 875 vmid_regs_init(14), 876 vmid_regs_init(15); 877 878 hubbub32_construct(hubbub2, ctx, 879 &hubbub_reg, 880 &hubbub_shift, 881 &hubbub_mask, 882 ctx->dc->dml.ip.det_buffer_size_kbytes, 883 ctx->dc->dml.ip.pixel_chunk_size_kbytes, 884 ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); 885 886 887 for (i = 0; i < res_cap_dcn32.num_vmid; i++) { 888 struct dcn20_vmid *vmid = &hubbub2->vmid[i]; 889 890 vmid->ctx = ctx; 891 892 vmid->regs = &vmid_regs[i]; 893 vmid->shifts = &vmid_shifts; 894 vmid->masks = &vmid_masks; 895 } 896 897 return &hubbub2->base; 898 } 899 900 static struct hubp *dcn32_hubp_create( 901 struct dc_context *ctx, 902 uint32_t inst) 903 { 904 struct dcn20_hubp *hubp2 = 905 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 906 907 if (!hubp2) 908 return NULL; 909 910 #undef REG_STRUCT 911 #define REG_STRUCT hubp_regs 912 hubp_regs_init(0), 913 hubp_regs_init(1), 914 hubp_regs_init(2), 915 hubp_regs_init(3); 916 917 if (hubp32_construct(hubp2, ctx, inst, 918 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 919 return &hubp2->base; 920 921 BREAK_TO_DEBUGGER(); 922 kfree(hubp2); 923 return NULL; 924 } 925 926 static void dcn32_dpp_destroy(struct dpp **dpp) 927 { 928 kfree(TO_DCN30_DPP(*dpp)); 929 *dpp = NULL; 930 } 931 932 static struct dpp *dcn32_dpp_create( 933 struct dc_context *ctx, 934 uint32_t inst) 935 { 936 struct dcn3_dpp *dpp3 = 937 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 938 939 if (!dpp3) 940 return NULL; 941 942 #undef REG_STRUCT 943 #define REG_STRUCT dpp_regs 944 dpp_regs_init(0), 945 dpp_regs_init(1), 946 dpp_regs_init(2), 947 dpp_regs_init(3); 948 949 if (dpp32_construct(dpp3, ctx, inst, 950 &dpp_regs[inst], &tf_shift, &tf_mask)) 951 return &dpp3->base; 952 953 BREAK_TO_DEBUGGER(); 954 kfree(dpp3); 955 return NULL; 956 } 957 958 static struct mpc *dcn32_mpc_create( 959 struct dc_context *ctx, 960 int num_mpcc, 961 int num_rmu) 962 { 963 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 964 GFP_KERNEL); 965 966 if (!mpc30) 967 return NULL; 968 969 #undef REG_STRUCT 970 #define REG_STRUCT mpc_regs 971 dcn_mpc_regs_init(); 972 973 dcn32_mpc_construct(mpc30, ctx, 974 &mpc_regs, 975 &mpc_shift, 976 &mpc_mask, 977 num_mpcc, 978 num_rmu); 979 980 return &mpc30->base; 981 } 982 983 static struct output_pixel_processor *dcn32_opp_create( 984 struct dc_context *ctx, uint32_t inst) 985 { 986 struct dcn20_opp *opp2 = 987 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 988 989 if (!opp2) { 990 BREAK_TO_DEBUGGER(); 991 return NULL; 992 } 993 994 #undef REG_STRUCT 995 #define REG_STRUCT opp_regs 996 opp_regs_init(0), 997 opp_regs_init(1), 998 opp_regs_init(2), 999 opp_regs_init(3); 1000 1001 dcn20_opp_construct(opp2, ctx, inst, 1002 &opp_regs[inst], &opp_shift, &opp_mask); 1003 return &opp2->base; 1004 } 1005 1006 1007 static struct timing_generator *dcn32_timing_generator_create( 1008 struct dc_context *ctx, 1009 uint32_t instance) 1010 { 1011 struct optc *tgn10 = 1012 kzalloc(sizeof(struct optc), GFP_KERNEL); 1013 1014 if (!tgn10) 1015 return NULL; 1016 1017 #undef REG_STRUCT 1018 #define REG_STRUCT optc_regs 1019 optc_regs_init(0), 1020 optc_regs_init(1), 1021 optc_regs_init(2), 1022 optc_regs_init(3); 1023 1024 tgn10->base.inst = instance; 1025 tgn10->base.ctx = ctx; 1026 1027 tgn10->tg_regs = &optc_regs[instance]; 1028 tgn10->tg_shift = &optc_shift; 1029 tgn10->tg_mask = &optc_mask; 1030 1031 dcn32_timing_generator_init(tgn10); 1032 1033 return &tgn10->base; 1034 } 1035 1036 static const struct encoder_feature_support link_enc_feature = { 1037 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1038 .max_hdmi_pixel_clock = 600000, 1039 .hdmi_ycbcr420_supported = true, 1040 .dp_ycbcr420_supported = true, 1041 .fec_supported = true, 1042 .flags.bits.IS_HBR2_CAPABLE = true, 1043 .flags.bits.IS_HBR3_CAPABLE = true, 1044 .flags.bits.IS_TPS3_CAPABLE = true, 1045 .flags.bits.IS_TPS4_CAPABLE = true 1046 }; 1047 1048 static struct link_encoder *dcn32_link_encoder_create( 1049 struct dc_context *ctx, 1050 const struct encoder_init_data *enc_init_data) 1051 { 1052 struct dcn20_link_encoder *enc20 = 1053 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1054 1055 if (!enc20) 1056 return NULL; 1057 1058 #undef REG_STRUCT 1059 #define REG_STRUCT link_enc_aux_regs 1060 aux_regs_init(0), 1061 aux_regs_init(1), 1062 aux_regs_init(2), 1063 aux_regs_init(3), 1064 aux_regs_init(4); 1065 1066 #undef REG_STRUCT 1067 #define REG_STRUCT link_enc_hpd_regs 1068 hpd_regs_init(0), 1069 hpd_regs_init(1), 1070 hpd_regs_init(2), 1071 hpd_regs_init(3), 1072 hpd_regs_init(4); 1073 1074 #undef REG_STRUCT 1075 #define REG_STRUCT link_enc_regs 1076 link_regs_init(0, A), 1077 link_regs_init(1, B), 1078 link_regs_init(2, C), 1079 link_regs_init(3, D), 1080 link_regs_init(4, E); 1081 1082 dcn32_link_encoder_construct(enc20, 1083 enc_init_data, 1084 &link_enc_feature, 1085 &link_enc_regs[enc_init_data->transmitter], 1086 &link_enc_aux_regs[enc_init_data->channel - 1], 1087 &link_enc_hpd_regs[enc_init_data->hpd_source], 1088 &le_shift, 1089 &le_mask); 1090 1091 return &enc20->enc10.base; 1092 } 1093 1094 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1095 { 1096 struct dcn31_panel_cntl *panel_cntl = 1097 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); 1098 1099 if (!panel_cntl) 1100 return NULL; 1101 1102 dcn31_panel_cntl_construct(panel_cntl, init_data); 1103 1104 return &panel_cntl->base; 1105 } 1106 1107 static void read_dce_straps( 1108 struct dc_context *ctx, 1109 struct resource_straps *straps) 1110 { 1111 generic_reg_get(ctx, ctx->dcn_reg_offsets[regDC_PINSTRAPS_BASE_IDX] + regDC_PINSTRAPS, 1112 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1113 1114 } 1115 1116 static struct audio *dcn32_create_audio( 1117 struct dc_context *ctx, unsigned int inst) 1118 { 1119 1120 #undef REG_STRUCT 1121 #define REG_STRUCT audio_regs 1122 audio_regs_init(0), 1123 audio_regs_init(1), 1124 audio_regs_init(2), 1125 audio_regs_init(3), 1126 audio_regs_init(4); 1127 1128 return dce_audio_create(ctx, inst, 1129 &audio_regs[inst], &audio_shift, &audio_mask); 1130 } 1131 1132 static struct vpg *dcn32_vpg_create( 1133 struct dc_context *ctx, 1134 uint32_t inst) 1135 { 1136 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1137 1138 if (!vpg3) 1139 return NULL; 1140 1141 #undef REG_STRUCT 1142 #define REG_STRUCT vpg_regs 1143 vpg_regs_init(0), 1144 vpg_regs_init(1), 1145 vpg_regs_init(2), 1146 vpg_regs_init(3), 1147 vpg_regs_init(4), 1148 vpg_regs_init(5), 1149 vpg_regs_init(6), 1150 vpg_regs_init(7), 1151 vpg_regs_init(8), 1152 vpg_regs_init(9); 1153 1154 vpg3_construct(vpg3, ctx, inst, 1155 &vpg_regs[inst], 1156 &vpg_shift, 1157 &vpg_mask); 1158 1159 return &vpg3->base; 1160 } 1161 1162 static struct afmt *dcn32_afmt_create( 1163 struct dc_context *ctx, 1164 uint32_t inst) 1165 { 1166 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1167 1168 if (!afmt3) 1169 return NULL; 1170 1171 #undef REG_STRUCT 1172 #define REG_STRUCT afmt_regs 1173 afmt_regs_init(0), 1174 afmt_regs_init(1), 1175 afmt_regs_init(2), 1176 afmt_regs_init(3), 1177 afmt_regs_init(4), 1178 afmt_regs_init(5); 1179 1180 afmt3_construct(afmt3, ctx, inst, 1181 &afmt_regs[inst], 1182 &afmt_shift, 1183 &afmt_mask); 1184 1185 return &afmt3->base; 1186 } 1187 1188 static struct apg *dcn31_apg_create( 1189 struct dc_context *ctx, 1190 uint32_t inst) 1191 { 1192 struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); 1193 1194 if (!apg31) 1195 return NULL; 1196 1197 #undef REG_STRUCT 1198 #define REG_STRUCT apg_regs 1199 apg_regs_init(0), 1200 apg_regs_init(1), 1201 apg_regs_init(2), 1202 apg_regs_init(3); 1203 1204 apg31_construct(apg31, ctx, inst, 1205 &apg_regs[inst], 1206 &apg_shift, 1207 &apg_mask); 1208 1209 return &apg31->base; 1210 } 1211 1212 static struct stream_encoder *dcn32_stream_encoder_create( 1213 enum engine_id eng_id, 1214 struct dc_context *ctx) 1215 { 1216 struct dcn10_stream_encoder *enc1; 1217 struct vpg *vpg; 1218 struct afmt *afmt; 1219 int vpg_inst; 1220 int afmt_inst; 1221 1222 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1223 if (eng_id <= ENGINE_ID_DIGF) { 1224 vpg_inst = eng_id; 1225 afmt_inst = eng_id; 1226 } else 1227 return NULL; 1228 1229 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1230 vpg = dcn32_vpg_create(ctx, vpg_inst); 1231 afmt = dcn32_afmt_create(ctx, afmt_inst); 1232 1233 if (!enc1 || !vpg || !afmt) { 1234 kfree(enc1); 1235 kfree(vpg); 1236 kfree(afmt); 1237 return NULL; 1238 } 1239 1240 #undef REG_STRUCT 1241 #define REG_STRUCT stream_enc_regs 1242 stream_enc_regs_init(0), 1243 stream_enc_regs_init(1), 1244 stream_enc_regs_init(2), 1245 stream_enc_regs_init(3), 1246 stream_enc_regs_init(4); 1247 1248 dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1249 eng_id, vpg, afmt, 1250 &stream_enc_regs[eng_id], 1251 &se_shift, &se_mask); 1252 1253 return &enc1->base; 1254 } 1255 1256 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( 1257 enum engine_id eng_id, 1258 struct dc_context *ctx) 1259 { 1260 struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; 1261 struct vpg *vpg; 1262 struct apg *apg; 1263 uint32_t hpo_dp_inst; 1264 uint32_t vpg_inst; 1265 uint32_t apg_inst; 1266 1267 ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); 1268 hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; 1269 1270 /* Mapping of VPG register blocks to HPO DP block instance: 1271 * VPG[6] -> HPO_DP[0] 1272 * VPG[7] -> HPO_DP[1] 1273 * VPG[8] -> HPO_DP[2] 1274 * VPG[9] -> HPO_DP[3] 1275 */ 1276 vpg_inst = hpo_dp_inst + 6; 1277 1278 /* Mapping of APG register blocks to HPO DP block instance: 1279 * APG[0] -> HPO_DP[0] 1280 * APG[1] -> HPO_DP[1] 1281 * APG[2] -> HPO_DP[2] 1282 * APG[3] -> HPO_DP[3] 1283 */ 1284 apg_inst = hpo_dp_inst; 1285 1286 /* allocate HPO stream encoder and create VPG sub-block */ 1287 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); 1288 vpg = dcn32_vpg_create(ctx, vpg_inst); 1289 apg = dcn31_apg_create(ctx, apg_inst); 1290 1291 if (!hpo_dp_enc31 || !vpg || !apg) { 1292 kfree(hpo_dp_enc31); 1293 kfree(vpg); 1294 kfree(apg); 1295 return NULL; 1296 } 1297 1298 #undef REG_STRUCT 1299 #define REG_STRUCT hpo_dp_stream_enc_regs 1300 hpo_dp_stream_encoder_reg_init(0), 1301 hpo_dp_stream_encoder_reg_init(1), 1302 hpo_dp_stream_encoder_reg_init(2), 1303 hpo_dp_stream_encoder_reg_init(3); 1304 1305 dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, 1306 hpo_dp_inst, eng_id, vpg, apg, 1307 &hpo_dp_stream_enc_regs[hpo_dp_inst], 1308 &hpo_dp_se_shift, &hpo_dp_se_mask); 1309 1310 return &hpo_dp_enc31->base; 1311 } 1312 1313 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( 1314 uint8_t inst, 1315 struct dc_context *ctx) 1316 { 1317 struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; 1318 1319 /* allocate HPO link encoder */ 1320 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); 1321 1322 #undef REG_STRUCT 1323 #define REG_STRUCT hpo_dp_link_enc_regs 1324 hpo_dp_link_encoder_reg_init(0), 1325 hpo_dp_link_encoder_reg_init(1); 1326 1327 hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, 1328 &hpo_dp_link_enc_regs[inst], 1329 &hpo_dp_le_shift, &hpo_dp_le_mask); 1330 1331 return &hpo_dp_enc31->base; 1332 } 1333 1334 static struct dce_hwseq *dcn32_hwseq_create( 1335 struct dc_context *ctx) 1336 { 1337 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1338 1339 #undef REG_STRUCT 1340 #define REG_STRUCT hwseq_reg 1341 hwseq_reg_init(); 1342 1343 if (hws) { 1344 hws->ctx = ctx; 1345 hws->regs = &hwseq_reg; 1346 hws->shifts = &hwseq_shift; 1347 hws->masks = &hwseq_mask; 1348 } 1349 return hws; 1350 } 1351 static const struct resource_create_funcs res_create_funcs = { 1352 .read_dce_straps = read_dce_straps, 1353 .create_audio = dcn32_create_audio, 1354 .create_stream_encoder = dcn32_stream_encoder_create, 1355 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1356 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1357 .create_hwseq = dcn32_hwseq_create, 1358 }; 1359 1360 static const struct resource_create_funcs res_create_maximus_funcs = { 1361 .read_dce_straps = NULL, 1362 .create_audio = NULL, 1363 .create_stream_encoder = NULL, 1364 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1365 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1366 .create_hwseq = dcn32_hwseq_create, 1367 }; 1368 1369 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) 1370 { 1371 unsigned int i; 1372 1373 for (i = 0; i < pool->base.stream_enc_count; i++) { 1374 if (pool->base.stream_enc[i] != NULL) { 1375 if (pool->base.stream_enc[i]->vpg != NULL) { 1376 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1377 pool->base.stream_enc[i]->vpg = NULL; 1378 } 1379 if (pool->base.stream_enc[i]->afmt != NULL) { 1380 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1381 pool->base.stream_enc[i]->afmt = NULL; 1382 } 1383 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1384 pool->base.stream_enc[i] = NULL; 1385 } 1386 } 1387 1388 for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { 1389 if (pool->base.hpo_dp_stream_enc[i] != NULL) { 1390 if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { 1391 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); 1392 pool->base.hpo_dp_stream_enc[i]->vpg = NULL; 1393 } 1394 if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { 1395 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); 1396 pool->base.hpo_dp_stream_enc[i]->apg = NULL; 1397 } 1398 kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); 1399 pool->base.hpo_dp_stream_enc[i] = NULL; 1400 } 1401 } 1402 1403 for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { 1404 if (pool->base.hpo_dp_link_enc[i] != NULL) { 1405 kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); 1406 pool->base.hpo_dp_link_enc[i] = NULL; 1407 } 1408 } 1409 1410 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1411 if (pool->base.dscs[i] != NULL) 1412 dcn20_dsc_destroy(&pool->base.dscs[i]); 1413 } 1414 1415 if (pool->base.mpc != NULL) { 1416 kfree(TO_DCN20_MPC(pool->base.mpc)); 1417 pool->base.mpc = NULL; 1418 } 1419 if (pool->base.hubbub != NULL) { 1420 kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); 1421 pool->base.hubbub = NULL; 1422 } 1423 for (i = 0; i < pool->base.pipe_count; i++) { 1424 if (pool->base.dpps[i] != NULL) 1425 dcn32_dpp_destroy(&pool->base.dpps[i]); 1426 1427 if (pool->base.ipps[i] != NULL) 1428 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1429 1430 if (pool->base.hubps[i] != NULL) { 1431 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1432 pool->base.hubps[i] = NULL; 1433 } 1434 1435 if (pool->base.irqs != NULL) { 1436 dal_irq_service_destroy(&pool->base.irqs); 1437 } 1438 } 1439 1440 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1441 if (pool->base.engines[i] != NULL) 1442 dce110_engine_destroy(&pool->base.engines[i]); 1443 if (pool->base.hw_i2cs[i] != NULL) { 1444 kfree(pool->base.hw_i2cs[i]); 1445 pool->base.hw_i2cs[i] = NULL; 1446 } 1447 if (pool->base.sw_i2cs[i] != NULL) { 1448 kfree(pool->base.sw_i2cs[i]); 1449 pool->base.sw_i2cs[i] = NULL; 1450 } 1451 } 1452 1453 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1454 if (pool->base.opps[i] != NULL) 1455 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1456 } 1457 1458 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1459 if (pool->base.timing_generators[i] != NULL) { 1460 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1461 pool->base.timing_generators[i] = NULL; 1462 } 1463 } 1464 1465 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1466 if (pool->base.dwbc[i] != NULL) { 1467 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1468 pool->base.dwbc[i] = NULL; 1469 } 1470 if (pool->base.mcif_wb[i] != NULL) { 1471 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1472 pool->base.mcif_wb[i] = NULL; 1473 } 1474 } 1475 1476 for (i = 0; i < pool->base.audio_count; i++) { 1477 if (pool->base.audios[i]) 1478 dce_aud_destroy(&pool->base.audios[i]); 1479 } 1480 1481 for (i = 0; i < pool->base.clk_src_count; i++) { 1482 if (pool->base.clock_sources[i] != NULL) { 1483 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1484 pool->base.clock_sources[i] = NULL; 1485 } 1486 } 1487 1488 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1489 if (pool->base.mpc_lut[i] != NULL) { 1490 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1491 pool->base.mpc_lut[i] = NULL; 1492 } 1493 if (pool->base.mpc_shaper[i] != NULL) { 1494 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1495 pool->base.mpc_shaper[i] = NULL; 1496 } 1497 } 1498 1499 if (pool->base.dp_clock_source != NULL) { 1500 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1501 pool->base.dp_clock_source = NULL; 1502 } 1503 1504 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1505 if (pool->base.multiple_abms[i] != NULL) 1506 dce_abm_destroy(&pool->base.multiple_abms[i]); 1507 } 1508 1509 if (pool->base.psr != NULL) 1510 dmub_psr_destroy(&pool->base.psr); 1511 1512 if (pool->base.dccg != NULL) 1513 dcn_dccg_destroy(&pool->base.dccg); 1514 1515 if (pool->base.oem_device != NULL) { 1516 struct dc *dc = pool->base.oem_device->ctx->dc; 1517 1518 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1519 } 1520 } 1521 1522 1523 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1524 { 1525 int i; 1526 uint32_t dwb_count = pool->res_cap->num_dwb; 1527 1528 for (i = 0; i < dwb_count; i++) { 1529 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1530 GFP_KERNEL); 1531 1532 if (!dwbc30) { 1533 dm_error("DC: failed to create dwbc30!\n"); 1534 return false; 1535 } 1536 1537 #undef REG_STRUCT 1538 #define REG_STRUCT dwbc30_regs 1539 dwbc_regs_dcn3_init(0); 1540 1541 dcn30_dwbc_construct(dwbc30, ctx, 1542 &dwbc30_regs[i], 1543 &dwbc30_shift, 1544 &dwbc30_mask, 1545 i); 1546 1547 pool->dwbc[i] = &dwbc30->base; 1548 } 1549 return true; 1550 } 1551 1552 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1553 { 1554 int i; 1555 uint32_t dwb_count = pool->res_cap->num_dwb; 1556 1557 for (i = 0; i < dwb_count; i++) { 1558 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1559 GFP_KERNEL); 1560 1561 if (!mcif_wb30) { 1562 dm_error("DC: failed to create mcif_wb30!\n"); 1563 return false; 1564 } 1565 1566 #undef REG_STRUCT 1567 #define REG_STRUCT mcif_wb30_regs 1568 mcif_wb_regs_dcn3_init(0); 1569 1570 dcn32_mmhubbub_construct(mcif_wb30, ctx, 1571 &mcif_wb30_regs[i], 1572 &mcif_wb30_shift, 1573 &mcif_wb30_mask, 1574 i); 1575 1576 pool->mcif_wb[i] = &mcif_wb30->base; 1577 } 1578 return true; 1579 } 1580 1581 static struct display_stream_compressor *dcn32_dsc_create( 1582 struct dc_context *ctx, uint32_t inst) 1583 { 1584 struct dcn20_dsc *dsc = 1585 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1586 1587 if (!dsc) { 1588 BREAK_TO_DEBUGGER(); 1589 return NULL; 1590 } 1591 1592 #undef REG_STRUCT 1593 #define REG_STRUCT dsc_regs 1594 dsc_regsDCN20_init(0), 1595 dsc_regsDCN20_init(1), 1596 dsc_regsDCN20_init(2), 1597 dsc_regsDCN20_init(3); 1598 1599 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1600 1601 dsc->max_image_width = 6016; 1602 1603 return &dsc->base; 1604 } 1605 1606 static void dcn32_destroy_resource_pool(struct resource_pool **pool) 1607 { 1608 struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); 1609 1610 dcn32_resource_destruct(dcn32_pool); 1611 kfree(dcn32_pool); 1612 *pool = NULL; 1613 } 1614 1615 bool dcn32_acquire_post_bldn_3dlut( 1616 struct resource_context *res_ctx, 1617 const struct resource_pool *pool, 1618 int mpcc_id, 1619 struct dc_3dlut **lut, 1620 struct dc_transfer_func **shaper) 1621 { 1622 bool ret = false; 1623 1624 ASSERT(*lut == NULL && *shaper == NULL); 1625 *lut = NULL; 1626 *shaper = NULL; 1627 1628 if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { 1629 *lut = pool->mpc_lut[mpcc_id]; 1630 *shaper = pool->mpc_shaper[mpcc_id]; 1631 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; 1632 ret = true; 1633 } 1634 return ret; 1635 } 1636 1637 bool dcn32_release_post_bldn_3dlut( 1638 struct resource_context *res_ctx, 1639 const struct resource_pool *pool, 1640 struct dc_3dlut **lut, 1641 struct dc_transfer_func **shaper) 1642 { 1643 int i; 1644 bool ret = false; 1645 1646 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1647 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1648 res_ctx->is_mpc_3dlut_acquired[i] = false; 1649 pool->mpc_lut[i]->state.raw = 0; 1650 *lut = NULL; 1651 *shaper = NULL; 1652 ret = true; 1653 break; 1654 } 1655 } 1656 return ret; 1657 } 1658 1659 static void dcn32_enable_phantom_plane(struct dc *dc, 1660 struct dc_state *context, 1661 struct dc_stream_state *phantom_stream, 1662 unsigned int dc_pipe_idx) 1663 { 1664 struct dc_plane_state *phantom_plane = NULL; 1665 struct dc_plane_state *prev_phantom_plane = NULL; 1666 struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1667 1668 while (curr_pipe) { 1669 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) 1670 phantom_plane = prev_phantom_plane; 1671 else 1672 phantom_plane = dc_create_plane_state(dc); 1673 1674 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); 1675 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, 1676 sizeof(phantom_plane->scaling_quality)); 1677 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); 1678 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); 1679 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); 1680 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, 1681 sizeof(phantom_plane->plane_size)); 1682 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, 1683 sizeof(phantom_plane->tiling_info)); 1684 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); 1685 phantom_plane->format = curr_pipe->plane_state->format; 1686 phantom_plane->rotation = curr_pipe->plane_state->rotation; 1687 phantom_plane->visible = curr_pipe->plane_state->visible; 1688 1689 /* Shadow pipe has small viewport. */ 1690 phantom_plane->clip_rect.y = 0; 1691 phantom_plane->clip_rect.height = phantom_stream->src.height; 1692 1693 phantom_plane->is_phantom = true; 1694 1695 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context); 1696 1697 curr_pipe = curr_pipe->bottom_pipe; 1698 prev_phantom_plane = phantom_plane; 1699 } 1700 } 1701 1702 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, 1703 struct dc_state *context, 1704 display_e2e_pipe_params_st *pipes, 1705 unsigned int pipe_cnt, 1706 unsigned int dc_pipe_idx) 1707 { 1708 struct dc_stream_state *phantom_stream = NULL; 1709 struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1710 1711 phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink); 1712 phantom_stream->signal = SIGNAL_TYPE_VIRTUAL; 1713 phantom_stream->dpms_off = true; 1714 phantom_stream->mall_stream_config.type = SUBVP_PHANTOM; 1715 phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream; 1716 ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN; 1717 ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream; 1718 1719 /* stream has limited viewport and small timing */ 1720 memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); 1721 memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); 1722 memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); 1723 DC_FP_START(); 1724 dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); 1725 DC_FP_END(); 1726 1727 dc_add_stream_to_ctx(dc, context, phantom_stream); 1728 return phantom_stream; 1729 } 1730 1731 void dcn32_retain_phantom_pipes(struct dc *dc, struct dc_state *context) 1732 { 1733 int i; 1734 struct dc_plane_state *phantom_plane = NULL; 1735 struct dc_stream_state *phantom_stream = NULL; 1736 1737 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1738 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1739 1740 if (!pipe->top_pipe && !pipe->prev_odm_pipe && 1741 pipe->plane_state && pipe->stream && 1742 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1743 phantom_plane = pipe->plane_state; 1744 phantom_stream = pipe->stream; 1745 1746 dc_plane_state_retain(phantom_plane); 1747 dc_stream_retain(phantom_stream); 1748 } 1749 } 1750 } 1751 1752 // return true if removed piped from ctx, false otherwise 1753 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context, bool fast_update) 1754 { 1755 int i; 1756 bool removed_pipe = false; 1757 struct dc_plane_state *phantom_plane = NULL; 1758 struct dc_stream_state *phantom_stream = NULL; 1759 1760 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1761 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1762 // build scaling params for phantom pipes 1763 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1764 phantom_plane = pipe->plane_state; 1765 phantom_stream = pipe->stream; 1766 1767 dc_rem_all_planes_for_stream(dc, pipe->stream, context); 1768 dc_remove_stream_from_ctx(dc, context, pipe->stream); 1769 1770 /* Ref count is incremented on allocation and also when added to the context. 1771 * Therefore we must call release for the the phantom plane and stream once 1772 * they are removed from the ctx to finally decrement the refcount to 0 to free. 1773 */ 1774 dc_plane_state_release(phantom_plane); 1775 dc_stream_release(phantom_stream); 1776 1777 removed_pipe = true; 1778 } 1779 1780 /* For non-full updates, a shallow copy of the current state 1781 * is created. In this case we don't want to erase the current 1782 * state (there can be 2 HIRQL threads, one in flip, and one in 1783 * checkMPO) that can cause a race condition. 1784 * 1785 * This is just a workaround, needs a proper fix. 1786 */ 1787 if (!fast_update) { 1788 // Clear all phantom stream info 1789 if (pipe->stream) { 1790 pipe->stream->mall_stream_config.type = SUBVP_NONE; 1791 pipe->stream->mall_stream_config.paired_stream = NULL; 1792 } 1793 1794 if (pipe->plane_state) { 1795 pipe->plane_state->is_phantom = false; 1796 } 1797 } 1798 } 1799 return removed_pipe; 1800 } 1801 1802 /* TODO: Input to this function should indicate which pipe indexes (or streams) 1803 * require a phantom pipe / stream 1804 */ 1805 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, 1806 display_e2e_pipe_params_st *pipes, 1807 unsigned int pipe_cnt, 1808 unsigned int index) 1809 { 1810 struct dc_stream_state *phantom_stream = NULL; 1811 unsigned int i; 1812 1813 // The index of the DC pipe passed into this function is guarenteed to 1814 // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't 1815 // already have phantom pipe assigned, etc.) by previous checks. 1816 phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); 1817 dcn32_enable_phantom_plane(dc, context, phantom_stream, index); 1818 1819 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1820 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1821 1822 // Build scaling params for phantom pipes which were newly added. 1823 // We determine which phantom pipes were added by comparing with 1824 // the phantom stream. 1825 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && 1826 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 1827 pipe->stream->use_dynamic_meta = false; 1828 pipe->plane_state->flip_immediate = false; 1829 if (!resource_build_scaling_params(pipe)) { 1830 // Log / remove phantom pipes since failed to build scaling params 1831 } 1832 } 1833 } 1834 } 1835 1836 bool dcn32_validate_bandwidth(struct dc *dc, 1837 struct dc_state *context, 1838 bool fast_validate) 1839 { 1840 bool out = false; 1841 1842 BW_VAL_TRACE_SETUP(); 1843 1844 int vlevel = 0; 1845 int pipe_cnt = 0; 1846 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 1847 struct mall_temp_config mall_temp_config; 1848 1849 /* To handle Freesync properly, setting FreeSync DML parameters 1850 * to its default state for the first stage of validation 1851 */ 1852 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false; 1853 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; 1854 1855 DC_LOGGER_INIT(dc->ctx->logger); 1856 1857 /* For fast validation, there are situations where a shallow copy of 1858 * of the dc->current_state is created for the validation. In this case 1859 * we want to save and restore the mall config because we always 1860 * teardown subvp at the beginning of validation (and don't attempt 1861 * to add it back if it's fast validation). If we don't restore the 1862 * subvp config in cases of fast validation + shallow copy of the 1863 * dc->current_state, the dc->current_state will have a partially 1864 * removed subvp state when we did not intend to remove it. 1865 */ 1866 if (fast_validate) { 1867 memset(&mall_temp_config, 0, sizeof(mall_temp_config)); 1868 dcn32_save_mall_state(dc, context, &mall_temp_config); 1869 } 1870 1871 BW_VAL_TRACE_COUNT(); 1872 1873 DC_FP_START(); 1874 out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 1875 DC_FP_END(); 1876 1877 if (fast_validate) 1878 dcn32_restore_mall_state(dc, context, &mall_temp_config); 1879 1880 if (pipe_cnt == 0) 1881 goto validate_out; 1882 1883 if (!out) 1884 goto validate_fail; 1885 1886 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 1887 1888 if (fast_validate) { 1889 BW_VAL_TRACE_SKIP(fast); 1890 goto validate_out; 1891 } 1892 1893 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 1894 1895 dcn32_override_min_req_memclk(dc, context); 1896 1897 BW_VAL_TRACE_END_WATERMARKS(); 1898 1899 goto validate_out; 1900 1901 validate_fail: 1902 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 1903 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 1904 1905 BW_VAL_TRACE_SKIP(fail); 1906 out = false; 1907 1908 validate_out: 1909 kfree(pipes); 1910 1911 BW_VAL_TRACE_FINISH(); 1912 1913 return out; 1914 } 1915 1916 int dcn32_populate_dml_pipes_from_context( 1917 struct dc *dc, struct dc_state *context, 1918 display_e2e_pipe_params_st *pipes, 1919 bool fast_validate) 1920 { 1921 int i, pipe_cnt; 1922 struct resource_context *res_ctx = &context->res_ctx; 1923 struct pipe_ctx *pipe; 1924 bool subvp_in_use = false; 1925 struct dc_crtc_timing *timing; 1926 bool vsr_odm_support = false; 1927 1928 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1929 1930 /* Determine whether we will apply ODM 2to1 policy: 1931 * Applies to single display and where the number of planes is less than 3. 1932 * For 3 plane case ( 2 MPO planes ), we will not set the policy for the MPO pipes. 1933 * 1934 * Apply pipe split policy first so we can predict the pipe split correctly 1935 * (dcn32_predict_pipe_split). 1936 */ 1937 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1938 if (!res_ctx->pipe_ctx[i].stream) 1939 continue; 1940 pipe = &res_ctx->pipe_ctx[i]; 1941 timing = &pipe->stream->timing; 1942 1943 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; 1944 vsr_odm_support = (res_ctx->pipe_ctx[i].stream->src.width >= 5120 && 1945 res_ctx->pipe_ctx[i].stream->src.width > res_ctx->pipe_ctx[i].stream->dst.width); 1946 if (context->stream_count == 1 && 1947 context->stream_status[0].plane_count == 1 && 1948 !dc_is_hdmi_signal(res_ctx->pipe_ctx[i].stream->signal) && 1949 is_h_timing_divisible_by_2(res_ctx->pipe_ctx[i].stream) && 1950 pipe->stream->timing.pix_clk_100hz * 100 > DCN3_2_VMIN_DISPCLK_HZ && 1951 dc->debug.enable_single_display_2to1_odm_policy && 1952 !vsr_odm_support) { //excluding 2to1 ODM combine on >= 5k vsr 1953 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; 1954 } 1955 pipe_cnt++; 1956 } 1957 1958 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1959 1960 if (!res_ctx->pipe_ctx[i].stream) 1961 continue; 1962 pipe = &res_ctx->pipe_ctx[i]; 1963 timing = &pipe->stream->timing; 1964 1965 pipes[pipe_cnt].pipe.src.gpuvm = true; 1966 DC_FP_START(); 1967 dcn32_zero_pipe_dcc_fraction(pipes, pipe_cnt); 1968 DC_FP_END(); 1969 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; 1970 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet 1971 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 1972 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; 1973 1974 /* Only populate DML input with subvp info for full updates. 1975 * This is just a workaround -- needs a proper fix. 1976 */ 1977 if (!fast_validate) { 1978 switch (pipe->stream->mall_stream_config.type) { 1979 case SUBVP_MAIN: 1980 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; 1981 subvp_in_use = true; 1982 break; 1983 case SUBVP_PHANTOM: 1984 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; 1985 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 1986 // Disallow unbounded req for SubVP according to DCHUB programming guide 1987 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 1988 break; 1989 case SUBVP_NONE: 1990 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; 1991 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 1992 break; 1993 default: 1994 break; 1995 } 1996 } 1997 1998 pipes[pipe_cnt].dout.dsc_input_bpc = 0; 1999 if (pipes[pipe_cnt].dout.dsc_enable) { 2000 switch (timing->display_color_depth) { 2001 case COLOR_DEPTH_888: 2002 pipes[pipe_cnt].dout.dsc_input_bpc = 8; 2003 break; 2004 case COLOR_DEPTH_101010: 2005 pipes[pipe_cnt].dout.dsc_input_bpc = 10; 2006 break; 2007 case COLOR_DEPTH_121212: 2008 pipes[pipe_cnt].dout.dsc_input_bpc = 12; 2009 break; 2010 default: 2011 ASSERT(0); 2012 break; 2013 } 2014 } 2015 2016 DC_FP_START(); 2017 dcn32_predict_pipe_split(context, &pipes[pipe_cnt]); 2018 DC_FP_END(); 2019 2020 pipe_cnt++; 2021 } 2022 2023 /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all 2024 * the DET available for each pipe). Use the DET override input to maintain our driver 2025 * policy. 2026 */ 2027 dcn32_set_det_allocations(dc, context, pipes); 2028 2029 // In general cases we want to keep the dram clock change requirement 2030 // (prefer configs that support MCLK switch). Only override to false 2031 // for SubVP 2032 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || subvp_in_use) 2033 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = false; 2034 else 2035 context->bw_ctx.dml.soc.dram_clock_change_requirement_final = true; 2036 2037 return pipe_cnt; 2038 } 2039 2040 static struct dc_cap_funcs cap_funcs = { 2041 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 2042 }; 2043 2044 void dcn32_calculate_wm_and_dlg(struct dc *dc, struct dc_state *context, 2045 display_e2e_pipe_params_st *pipes, 2046 int pipe_cnt, 2047 int vlevel) 2048 { 2049 DC_FP_START(); 2050 dcn32_calculate_wm_and_dlg_fpu(dc, context, pipes, pipe_cnt, vlevel); 2051 DC_FP_END(); 2052 } 2053 2054 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2055 { 2056 DC_FP_START(); 2057 dcn32_update_bw_bounding_box_fpu(dc, bw_params); 2058 DC_FP_END(); 2059 } 2060 2061 static struct resource_funcs dcn32_res_pool_funcs = { 2062 .destroy = dcn32_destroy_resource_pool, 2063 .link_enc_create = dcn32_link_encoder_create, 2064 .link_enc_create_minimal = NULL, 2065 .panel_cntl_create = dcn32_panel_cntl_create, 2066 .validate_bandwidth = dcn32_validate_bandwidth, 2067 .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, 2068 .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, 2069 .acquire_idle_pipe_for_head_pipe_in_layer = dcn32_acquire_idle_pipe_for_head_pipe_in_layer, 2070 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2071 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2072 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2073 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2074 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2075 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2076 .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, 2077 .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, 2078 .update_bw_bounding_box = dcn32_update_bw_bounding_box, 2079 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2080 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2081 .add_phantom_pipes = dcn32_add_phantom_pipes, 2082 .remove_phantom_pipes = dcn32_remove_phantom_pipes, 2083 .retain_phantom_pipes = dcn32_retain_phantom_pipes, 2084 .save_mall_state = dcn32_save_mall_state, 2085 .restore_mall_state = dcn32_restore_mall_state, 2086 }; 2087 2088 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2089 { 2090 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2091 /* DCN32 support max 4 pipes */ 2092 value = value & 0xf; 2093 return value; 2094 } 2095 2096 2097 static bool dcn32_resource_construct( 2098 uint8_t num_virtual_links, 2099 struct dc *dc, 2100 struct dcn32_resource_pool *pool) 2101 { 2102 int i, j; 2103 struct dc_context *ctx = dc->ctx; 2104 struct irq_service_init_data init_data; 2105 struct ddc_service_init_data ddc_init_data = {0}; 2106 uint32_t pipe_fuses = 0; 2107 uint32_t num_pipes = 4; 2108 2109 #undef REG_STRUCT 2110 #define REG_STRUCT bios_regs 2111 bios_regs_init(); 2112 2113 #undef REG_STRUCT 2114 #define REG_STRUCT clk_src_regs 2115 clk_src_regs_init(0, A), 2116 clk_src_regs_init(1, B), 2117 clk_src_regs_init(2, C), 2118 clk_src_regs_init(3, D), 2119 clk_src_regs_init(4, E); 2120 2121 #undef REG_STRUCT 2122 #define REG_STRUCT abm_regs 2123 abm_regs_init(0), 2124 abm_regs_init(1), 2125 abm_regs_init(2), 2126 abm_regs_init(3); 2127 2128 #undef REG_STRUCT 2129 #define REG_STRUCT dccg_regs 2130 dccg_regs_init(); 2131 2132 DC_FP_START(); 2133 2134 ctx->dc_bios->regs = &bios_regs; 2135 2136 pool->base.res_cap = &res_cap_dcn32; 2137 /* max number of pipes for ASIC before checking for pipe fuses */ 2138 num_pipes = pool->base.res_cap->num_timing_generator; 2139 pipe_fuses = read_pipe_fuses(ctx); 2140 2141 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) 2142 if (pipe_fuses & 1 << i) 2143 num_pipes--; 2144 2145 if (pipe_fuses & 1) 2146 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! 2147 2148 if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) 2149 ASSERT(0); //Entire DCN is harvested! 2150 2151 /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the 2152 * value will be changed, update max_num_dpp and max_num_otg for dml. 2153 */ 2154 dcn3_2_ip.max_num_dpp = num_pipes; 2155 dcn3_2_ip.max_num_otg = num_pipes; 2156 2157 pool->base.funcs = &dcn32_res_pool_funcs; 2158 2159 /************************************************* 2160 * Resource + asic cap harcoding * 2161 *************************************************/ 2162 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2163 pool->base.timing_generator_count = num_pipes; 2164 pool->base.pipe_count = num_pipes; 2165 pool->base.mpcc_count = num_pipes; 2166 dc->caps.max_downscale_ratio = 600; 2167 dc->caps.i2c_speed_in_khz = 100; 2168 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ 2169 /* TODO: Bring max_cursor_size back to 256 after subvp cursor corruption is fixed*/ 2170 dc->caps.max_cursor_size = 64; 2171 dc->caps.min_horizontal_blanking_period = 80; 2172 dc->caps.dmdata_alloc_size = 2048; 2173 dc->caps.mall_size_per_mem_channel = 4; 2174 dc->caps.mall_size_total = 0; 2175 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2176 2177 dc->caps.cache_line_size = 64; 2178 dc->caps.cache_num_ways = 16; 2179 2180 /* Calculate the available MALL space */ 2181 dc->caps.max_cab_allocation_bytes = dcn32_calc_num_avail_chans_for_mall( 2182 dc, dc->ctx->dc_bios->vram_info.num_chans) * 2183 dc->caps.mall_size_per_mem_channel * 1024 * 1024; 2184 dc->caps.mall_size_total = dc->caps.max_cab_allocation_bytes; 2185 2186 dc->caps.subvp_fw_processing_delay_us = 15; 2187 dc->caps.subvp_drr_max_vblank_margin_us = 40; 2188 dc->caps.subvp_prefetch_end_to_mall_start_us = 15; 2189 dc->caps.subvp_swath_height_margin_lines = 16; 2190 dc->caps.subvp_pstate_allow_width_us = 20; 2191 dc->caps.subvp_vertical_int_margin_us = 30; 2192 dc->caps.subvp_drr_vblank_start_margin_us = 100; // 100us margin 2193 2194 dc->caps.max_slave_planes = 2; 2195 dc->caps.max_slave_yuv_planes = 2; 2196 dc->caps.max_slave_rgb_planes = 2; 2197 dc->caps.post_blend_color_processing = true; 2198 dc->caps.force_dp_tps4_for_cp2520 = true; 2199 if (dc->config.forceHBR2CP2520) 2200 dc->caps.force_dp_tps4_for_cp2520 = false; 2201 dc->caps.dp_hpo = true; 2202 dc->caps.dp_hdmi21_pcon_support = true; 2203 dc->caps.edp_dsc_support = true; 2204 dc->caps.extended_aux_timeout_support = true; 2205 dc->caps.dmcub_support = true; 2206 dc->caps.seamless_odm = true; 2207 2208 /* Color pipeline capabilities */ 2209 dc->caps.color.dpp.dcn_arch = 1; 2210 dc->caps.color.dpp.input_lut_shared = 0; 2211 dc->caps.color.dpp.icsc = 1; 2212 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2213 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2214 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2215 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2216 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2217 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2218 dc->caps.color.dpp.post_csc = 1; 2219 dc->caps.color.dpp.gamma_corr = 1; 2220 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2221 2222 dc->caps.color.dpp.hw_3d_lut = 1; 2223 dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1 2224 // no OGAM ROM on DCN2 and later ASICs 2225 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2226 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2227 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2228 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2229 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2230 dc->caps.color.dpp.ocsc = 0; 2231 2232 dc->caps.color.mpc.gamut_remap = 1; 2233 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC 2234 dc->caps.color.mpc.ogam_ram = 1; 2235 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2236 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2237 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2238 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2239 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2240 dc->caps.color.mpc.ocsc = 1; 2241 2242 /* Use pipe context based otg sync logic */ 2243 dc->config.use_pipe_ctx_sync_logic = true; 2244 2245 /* read VBIOS LTTPR caps */ 2246 { 2247 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2248 enum bp_result bp_query_result; 2249 uint8_t is_vbios_lttpr_enable = 0; 2250 2251 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2252 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2253 } 2254 2255 /* interop bit is implicit */ 2256 { 2257 dc->caps.vbios_lttpr_aware = true; 2258 } 2259 } 2260 2261 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2262 dc->debug = debug_defaults_drv; 2263 2264 // Init the vm_helper 2265 if (dc->vm_helper) 2266 vm_helper_init(dc->vm_helper, 16); 2267 2268 /************************************************* 2269 * Create resources * 2270 *************************************************/ 2271 2272 /* Clock Sources for Pixel Clock*/ 2273 pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = 2274 dcn32_clock_source_create(ctx, ctx->dc_bios, 2275 CLOCK_SOURCE_COMBO_PHY_PLL0, 2276 &clk_src_regs[0], false); 2277 pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = 2278 dcn32_clock_source_create(ctx, ctx->dc_bios, 2279 CLOCK_SOURCE_COMBO_PHY_PLL1, 2280 &clk_src_regs[1], false); 2281 pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = 2282 dcn32_clock_source_create(ctx, ctx->dc_bios, 2283 CLOCK_SOURCE_COMBO_PHY_PLL2, 2284 &clk_src_regs[2], false); 2285 pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = 2286 dcn32_clock_source_create(ctx, ctx->dc_bios, 2287 CLOCK_SOURCE_COMBO_PHY_PLL3, 2288 &clk_src_regs[3], false); 2289 pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = 2290 dcn32_clock_source_create(ctx, ctx->dc_bios, 2291 CLOCK_SOURCE_COMBO_PHY_PLL4, 2292 &clk_src_regs[4], false); 2293 2294 pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; 2295 2296 /* todo: not reuse phy_pll registers */ 2297 pool->base.dp_clock_source = 2298 dcn32_clock_source_create(ctx, ctx->dc_bios, 2299 CLOCK_SOURCE_ID_DP_DTO, 2300 &clk_src_regs[0], true); 2301 2302 for (i = 0; i < pool->base.clk_src_count; i++) { 2303 if (pool->base.clock_sources[i] == NULL) { 2304 dm_error("DC: failed to create clock sources!\n"); 2305 BREAK_TO_DEBUGGER(); 2306 goto create_fail; 2307 } 2308 } 2309 2310 /* DCCG */ 2311 pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2312 if (pool->base.dccg == NULL) { 2313 dm_error("DC: failed to create dccg!\n"); 2314 BREAK_TO_DEBUGGER(); 2315 goto create_fail; 2316 } 2317 2318 /* DML */ 2319 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 2320 2321 /* IRQ Service */ 2322 init_data.ctx = dc->ctx; 2323 pool->base.irqs = dal_irq_service_dcn32_create(&init_data); 2324 if (!pool->base.irqs) 2325 goto create_fail; 2326 2327 /* HUBBUB */ 2328 pool->base.hubbub = dcn32_hubbub_create(ctx); 2329 if (pool->base.hubbub == NULL) { 2330 BREAK_TO_DEBUGGER(); 2331 dm_error("DC: failed to create hubbub!\n"); 2332 goto create_fail; 2333 } 2334 2335 /* HUBPs, DPPs, OPPs, TGs, ABMs */ 2336 for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2337 2338 /* if pipe is disabled, skip instance of HW pipe, 2339 * i.e, skip ASIC register instance 2340 */ 2341 if (pipe_fuses & 1 << i) 2342 continue; 2343 2344 /* HUBPs */ 2345 pool->base.hubps[j] = dcn32_hubp_create(ctx, i); 2346 if (pool->base.hubps[j] == NULL) { 2347 BREAK_TO_DEBUGGER(); 2348 dm_error( 2349 "DC: failed to create hubps!\n"); 2350 goto create_fail; 2351 } 2352 2353 /* DPPs */ 2354 pool->base.dpps[j] = dcn32_dpp_create(ctx, i); 2355 if (pool->base.dpps[j] == NULL) { 2356 BREAK_TO_DEBUGGER(); 2357 dm_error( 2358 "DC: failed to create dpps!\n"); 2359 goto create_fail; 2360 } 2361 2362 /* OPPs */ 2363 pool->base.opps[j] = dcn32_opp_create(ctx, i); 2364 if (pool->base.opps[j] == NULL) { 2365 BREAK_TO_DEBUGGER(); 2366 dm_error( 2367 "DC: failed to create output pixel processor!\n"); 2368 goto create_fail; 2369 } 2370 2371 /* TGs */ 2372 pool->base.timing_generators[j] = dcn32_timing_generator_create( 2373 ctx, i); 2374 if (pool->base.timing_generators[j] == NULL) { 2375 BREAK_TO_DEBUGGER(); 2376 dm_error("DC: failed to create tg!\n"); 2377 goto create_fail; 2378 } 2379 2380 /* ABMs */ 2381 pool->base.multiple_abms[j] = dmub_abm_create(ctx, 2382 &abm_regs[i], 2383 &abm_shift, 2384 &abm_mask); 2385 if (pool->base.multiple_abms[j] == NULL) { 2386 dm_error("DC: failed to create abm for pipe %d!\n", i); 2387 BREAK_TO_DEBUGGER(); 2388 goto create_fail; 2389 } 2390 2391 /* index for resource pool arrays for next valid pipe */ 2392 j++; 2393 } 2394 2395 /* PSR */ 2396 pool->base.psr = dmub_psr_create(ctx); 2397 if (pool->base.psr == NULL) { 2398 dm_error("DC: failed to create psr obj!\n"); 2399 BREAK_TO_DEBUGGER(); 2400 goto create_fail; 2401 } 2402 2403 /* MPCCs */ 2404 pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); 2405 if (pool->base.mpc == NULL) { 2406 BREAK_TO_DEBUGGER(); 2407 dm_error("DC: failed to create mpc!\n"); 2408 goto create_fail; 2409 } 2410 2411 /* DSCs */ 2412 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2413 pool->base.dscs[i] = dcn32_dsc_create(ctx, i); 2414 if (pool->base.dscs[i] == NULL) { 2415 BREAK_TO_DEBUGGER(); 2416 dm_error("DC: failed to create display stream compressor %d!\n", i); 2417 goto create_fail; 2418 } 2419 } 2420 2421 /* DWB */ 2422 if (!dcn32_dwbc_create(ctx, &pool->base)) { 2423 BREAK_TO_DEBUGGER(); 2424 dm_error("DC: failed to create dwbc!\n"); 2425 goto create_fail; 2426 } 2427 2428 /* MMHUBBUB */ 2429 if (!dcn32_mmhubbub_create(ctx, &pool->base)) { 2430 BREAK_TO_DEBUGGER(); 2431 dm_error("DC: failed to create mcif_wb!\n"); 2432 goto create_fail; 2433 } 2434 2435 /* AUX and I2C */ 2436 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2437 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); 2438 if (pool->base.engines[i] == NULL) { 2439 BREAK_TO_DEBUGGER(); 2440 dm_error( 2441 "DC:failed to create aux engine!!\n"); 2442 goto create_fail; 2443 } 2444 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); 2445 if (pool->base.hw_i2cs[i] == NULL) { 2446 BREAK_TO_DEBUGGER(); 2447 dm_error( 2448 "DC:failed to create hw i2c!!\n"); 2449 goto create_fail; 2450 } 2451 pool->base.sw_i2cs[i] = NULL; 2452 } 2453 2454 /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ 2455 if (!resource_construct(num_virtual_links, dc, &pool->base, 2456 &res_create_funcs)) 2457 goto create_fail; 2458 2459 /* HW Sequencer init functions and Plane caps */ 2460 dcn32_hw_sequencer_init_functions(dc); 2461 2462 dc->caps.max_planes = pool->base.pipe_count; 2463 2464 for (i = 0; i < dc->caps.max_planes; ++i) 2465 dc->caps.planes[i] = plane_cap; 2466 2467 dc->cap_funcs = cap_funcs; 2468 2469 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2470 ddc_init_data.ctx = dc->ctx; 2471 ddc_init_data.link = NULL; 2472 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2473 ddc_init_data.id.enum_id = 0; 2474 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2475 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2476 } else { 2477 pool->base.oem_device = NULL; 2478 } 2479 2480 if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev) && (dc->config.sdpif_request_limit_words_per_umc == 0)) 2481 dc->config.sdpif_request_limit_words_per_umc = 16; 2482 2483 DC_FP_END(); 2484 2485 return true; 2486 2487 create_fail: 2488 2489 DC_FP_END(); 2490 2491 dcn32_resource_destruct(pool); 2492 2493 return false; 2494 } 2495 2496 struct resource_pool *dcn32_create_resource_pool( 2497 const struct dc_init_data *init_data, 2498 struct dc *dc) 2499 { 2500 struct dcn32_resource_pool *pool = 2501 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); 2502 2503 if (!pool) 2504 return NULL; 2505 2506 if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) 2507 return &pool->base; 2508 2509 BREAK_TO_DEBUGGER(); 2510 kfree(pool); 2511 return NULL; 2512 } 2513 2514 static struct pipe_ctx *find_idle_secondary_pipe_check_mpo( 2515 struct resource_context *res_ctx, 2516 const struct resource_pool *pool, 2517 const struct pipe_ctx *primary_pipe) 2518 { 2519 int i; 2520 struct pipe_ctx *secondary_pipe = NULL; 2521 struct pipe_ctx *next_odm_mpo_pipe = NULL; 2522 int primary_index, preferred_pipe_idx; 2523 struct pipe_ctx *old_primary_pipe = NULL; 2524 2525 /* 2526 * Modified from find_idle_secondary_pipe 2527 * With windowed MPO and ODM, we want to avoid the case where we want a 2528 * free pipe for the left side but the free pipe is being used on the 2529 * right side. 2530 * Add check on current_state if the primary_pipe is the left side, 2531 * to check the right side ( primary_pipe->next_odm_pipe ) to see if 2532 * it is using a pipe for MPO ( primary_pipe->next_odm_pipe->bottom_pipe ) 2533 * - If so, then don't use this pipe 2534 * EXCEPTION - 3 plane ( 2 MPO plane ) case 2535 * - in this case, the primary pipe has already gotten a free pipe for the 2536 * MPO window in the left 2537 * - when it tries to get a free pipe for the MPO window on the right, 2538 * it will see that it is already assigned to the right side 2539 * ( primary_pipe->next_odm_pipe ). But in this case, we want this 2540 * free pipe, since it will be for the right side. So add an 2541 * additional condition, that skipping the free pipe on the right only 2542 * applies if the primary pipe has no bottom pipe currently assigned 2543 */ 2544 if (primary_pipe) { 2545 primary_index = primary_pipe->pipe_idx; 2546 old_primary_pipe = &primary_pipe->stream->ctx->dc->current_state->res_ctx.pipe_ctx[primary_index]; 2547 if ((old_primary_pipe->next_odm_pipe) && (old_primary_pipe->next_odm_pipe->bottom_pipe) 2548 && (!primary_pipe->bottom_pipe)) 2549 next_odm_mpo_pipe = old_primary_pipe->next_odm_pipe->bottom_pipe; 2550 2551 preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx; 2552 if ((res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) && 2553 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == preferred_pipe_idx)) { 2554 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx]; 2555 secondary_pipe->pipe_idx = preferred_pipe_idx; 2556 } 2557 } 2558 2559 /* 2560 * search backwards for the second pipe to keep pipe 2561 * assignment more consistent 2562 */ 2563 if (!secondary_pipe) 2564 for (i = pool->pipe_count - 1; i >= 0; i--) { 2565 if ((res_ctx->pipe_ctx[i].stream == NULL) && 2566 !(next_odm_mpo_pipe && next_odm_mpo_pipe->pipe_idx == i)) { 2567 secondary_pipe = &res_ctx->pipe_ctx[i]; 2568 secondary_pipe->pipe_idx = i; 2569 break; 2570 } 2571 } 2572 2573 return secondary_pipe; 2574 } 2575 2576 struct pipe_ctx *dcn32_acquire_idle_pipe_for_head_pipe_in_layer( 2577 struct dc_state *state, 2578 const struct resource_pool *pool, 2579 struct dc_stream_state *stream, 2580 struct pipe_ctx *head_pipe) 2581 { 2582 struct resource_context *res_ctx = &state->res_ctx; 2583 struct pipe_ctx *idle_pipe, *pipe; 2584 struct resource_context *old_ctx = &stream->ctx->dc->current_state->res_ctx; 2585 int head_index; 2586 2587 if (!head_pipe) 2588 ASSERT(0); 2589 2590 /* 2591 * Modified from dcn20_acquire_idle_pipe_for_layer 2592 * Check if head_pipe in old_context already has bottom_pipe allocated. 2593 * - If so, check if that pipe is available in the current context. 2594 * -- If so, reuse pipe from old_context 2595 */ 2596 head_index = head_pipe->pipe_idx; 2597 pipe = &old_ctx->pipe_ctx[head_index]; 2598 if (pipe->bottom_pipe && res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx].stream == NULL) { 2599 idle_pipe = &res_ctx->pipe_ctx[pipe->bottom_pipe->pipe_idx]; 2600 idle_pipe->pipe_idx = pipe->bottom_pipe->pipe_idx; 2601 } else { 2602 idle_pipe = find_idle_secondary_pipe_check_mpo(res_ctx, pool, head_pipe); 2603 if (!idle_pipe) 2604 return NULL; 2605 } 2606 2607 idle_pipe->stream = head_pipe->stream; 2608 idle_pipe->stream_res.tg = head_pipe->stream_res.tg; 2609 idle_pipe->stream_res.opp = head_pipe->stream_res.opp; 2610 2611 idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx]; 2612 idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx]; 2613 idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx]; 2614 idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst; 2615 2616 return idle_pipe; 2617 } 2618 2619 unsigned int dcn32_calc_num_avail_chans_for_mall(struct dc *dc, int num_chans) 2620 { 2621 /* 2622 * DCN32 and DCN321 SKUs may have different sizes for MALL 2623 * but we may not be able to access all the MALL space. 2624 * If the num_chans is power of 2, then we can access all 2625 * of the available MALL space. Otherwise, we can only 2626 * access: 2627 * 2628 * max_cab_size_in_bytes = total_cache_size_in_bytes * 2629 * ((2^floor(log2(num_chans)))/num_chans) 2630 * 2631 * Calculating the MALL sizes for all available SKUs, we 2632 * have come up with the follow simplified check. 2633 * - we have max_chans which provides the max MALL size. 2634 * Each chans supports 4MB of MALL so: 2635 * 2636 * total_cache_size_in_bytes = max_chans * 4 MB 2637 * 2638 * - we have avail_chans which shows the number of channels 2639 * we can use if we can't access the entire MALL space. 2640 * It is generally half of max_chans 2641 * - so we use the following checks: 2642 * 2643 * if (num_chans == max_chans), return max_chans 2644 * if (num_chans < max_chans), return avail_chans 2645 * 2646 * - exception is GC_11_0_0 where we can't access max_chans, 2647 * so we define max_avail_chans as the maximum available 2648 * MALL space 2649 * 2650 */ 2651 int gc_11_0_0_max_chans = 48; 2652 int gc_11_0_0_max_avail_chans = 32; 2653 int gc_11_0_0_avail_chans = 16; 2654 int gc_11_0_3_max_chans = 16; 2655 int gc_11_0_3_avail_chans = 8; 2656 int gc_11_0_2_max_chans = 8; 2657 int gc_11_0_2_avail_chans = 4; 2658 2659 if (ASICREV_IS_GC_11_0_0(dc->ctx->asic_id.hw_internal_rev)) { 2660 return (num_chans == gc_11_0_0_max_chans) ? 2661 gc_11_0_0_max_avail_chans : gc_11_0_0_avail_chans; 2662 } else if (ASICREV_IS_GC_11_0_2(dc->ctx->asic_id.hw_internal_rev)) { 2663 return (num_chans == gc_11_0_2_max_chans) ? 2664 gc_11_0_2_max_chans : gc_11_0_2_avail_chans; 2665 } else { // if (ASICREV_IS_GC_11_0_3(dc->ctx->asic_id.hw_internal_rev)) { 2666 return (num_chans == gc_11_0_3_max_chans) ? 2667 gc_11_0_3_max_chans : gc_11_0_3_avail_chans; 2668 } 2669 } 2670