1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright 2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 * Authors: AMD 24 * 25 */ 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn32_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn32_resource.h" 35 36 #include "dcn20/dcn20_resource.h" 37 #include "dcn30/dcn30_resource.h" 38 39 #include "dcn10/dcn10_ipp.h" 40 #include "dcn30/dcn30_hubbub.h" 41 #include "dcn31/dcn31_hubbub.h" 42 #include "dcn32/dcn32_hubbub.h" 43 #include "dcn32/dcn32_mpc.h" 44 #include "dcn32_hubp.h" 45 #include "irq/dcn32/irq_service_dcn32.h" 46 #include "dcn32/dcn32_dpp.h" 47 #include "dcn32/dcn32_optc.h" 48 #include "dcn20/dcn20_hwseq.h" 49 #include "dcn30/dcn30_hwseq.h" 50 #include "dce110/dce110_hw_sequencer.h" 51 #include "dcn30/dcn30_opp.h" 52 #include "dcn20/dcn20_dsc.h" 53 #include "dcn30/dcn30_vpg.h" 54 #include "dcn30/dcn30_afmt.h" 55 #include "dcn30/dcn30_dio_stream_encoder.h" 56 #include "dcn32/dcn32_dio_stream_encoder.h" 57 #include "dcn31/dcn31_hpo_dp_stream_encoder.h" 58 #include "dcn31/dcn31_hpo_dp_link_encoder.h" 59 #include "dcn32/dcn32_hpo_dp_link_encoder.h" 60 #include "dc_link_dp.h" 61 #include "dcn31/dcn31_apg.h" 62 #include "dcn31/dcn31_dio_link_encoder.h" 63 #include "dcn32/dcn32_dio_link_encoder.h" 64 #include "dce/dce_clock_source.h" 65 #include "dce/dce_audio.h" 66 #include "dce/dce_hwseq.h" 67 #include "clk_mgr.h" 68 #include "virtual/virtual_stream_encoder.h" 69 #include "dml/display_mode_vba.h" 70 #include "dcn32/dcn32_dccg.h" 71 #include "dcn10/dcn10_resource.h" 72 #include "dc_link_ddc.h" 73 #include "dcn31/dcn31_panel_cntl.h" 74 75 #include "dcn30/dcn30_dwb.h" 76 #include "dcn32/dcn32_mmhubbub.h" 77 78 #include "dcn/dcn_3_2_0_offset.h" 79 #include "dcn/dcn_3_2_0_sh_mask.h" 80 #include "nbio/nbio_4_3_0_offset.h" 81 82 #include "reg_helper.h" 83 #include "dce/dmub_abm.h" 84 #include "dce/dmub_psr.h" 85 #include "dce/dce_aux.h" 86 #include "dce/dce_i2c.h" 87 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 92 #define DCN_BASE__INST0_SEG1 0x000000C0 93 #define DCN_BASE__INST0_SEG2 0x000034C0 94 #define DCN_BASE__INST0_SEG3 0x00009000 95 #define NBIO_BASE__INST0_SEG1 0x00000014 96 97 #define MAX_INSTANCE 6 98 #define MAX_SEGMENT 6 99 100 struct IP_BASE_INSTANCE { 101 unsigned int segment[MAX_SEGMENT]; 102 }; 103 104 struct IP_BASE { 105 struct IP_BASE_INSTANCE instance[MAX_INSTANCE]; 106 }; 107 108 static const struct IP_BASE DCN_BASE = { { { { 0x00000012, 0x000000C0, 0x000034C0, 0x00009000, 0x02403C00, 0 } }, 109 { { 0, 0, 0, 0, 0, 0 } }, 110 { { 0, 0, 0, 0, 0, 0 } }, 111 { { 0, 0, 0, 0, 0, 0 } }, 112 { { 0, 0, 0, 0, 0, 0 } }, 113 { { 0, 0, 0, 0, 0, 0 } } } }; 114 115 #define DC_LOGGER_INIT(logger) 116 117 #define DCN3_2_DEFAULT_DET_SIZE 256 118 #define DCN3_2_MAX_DET_SIZE 1152 119 #define DCN3_2_MIN_DET_SIZE 128 120 #define DCN3_2_MIN_COMPBUF_SIZE_KB 128 121 122 struct _vcs_dpi_ip_params_st dcn3_2_ip = { 123 .gpuvm_enable = 1, 124 .gpuvm_max_page_table_levels = 4, 125 .hostvm_enable = 0, 126 .rob_buffer_size_kbytes = 128, 127 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE, 128 .config_return_buffer_size_in_kbytes = 1280, 129 .compressed_buffer_segment_size_in_kbytes = 64, 130 .meta_fifo_size_in_kentries = 22, 131 .zero_size_buffer_entries = 512, 132 .compbuf_reserved_space_64b = 256, 133 .compbuf_reserved_space_zs = 64, 134 .dpp_output_buffer_pixels = 2560, 135 .opp_output_buffer_lines = 1, 136 .pixel_chunk_size_kbytes = 8, 137 .alpha_pixel_chunk_size_kbytes = 4, // not appearing in spreadsheet, match c code from hw team 138 .min_pixel_chunk_size_bytes = 1024, 139 .dcc_meta_buffer_size_bytes = 6272, 140 .meta_chunk_size_kbytes = 2, 141 .min_meta_chunk_size_bytes = 256, 142 .writeback_chunk_size_kbytes = 8, 143 .ptoi_supported = false, 144 .num_dsc = 4, 145 .maximum_dsc_bits_per_component = 12, 146 .maximum_pixels_per_line_per_dsc_unit = 6016, 147 .dsc422_native_support = true, 148 .is_line_buffer_bpp_fixed = true, 149 .line_buffer_fixed_bpp = 57, 150 .line_buffer_size_bits = 1171920, //DPP doc, DCN3_2_DisplayMode_73.xlsm still shows as 986880 bits with 48 bpp 151 .max_line_buffer_lines = 32, 152 .writeback_interface_buffer_size_kbytes = 90, 153 .max_num_dpp = 4, 154 .max_num_otg = 4, 155 .max_num_hdmi_frl_outputs = 1, 156 .max_num_wb = 1, 157 .max_dchub_pscl_bw_pix_per_clk = 4, 158 .max_pscl_lb_bw_pix_per_clk = 2, 159 .max_lb_vscl_bw_pix_per_clk = 4, 160 .max_vscl_hscl_bw_pix_per_clk = 4, 161 .max_hscl_ratio = 6, 162 .max_vscl_ratio = 6, 163 .max_hscl_taps = 8, 164 .max_vscl_taps = 8, 165 .dpte_buffer_size_in_pte_reqs_luma = 64, 166 .dpte_buffer_size_in_pte_reqs_chroma = 34, 167 .dispclk_ramp_margin_percent = 1, 168 .max_inter_dcn_tile_repeaters = 8, 169 .cursor_buffer_size = 16, 170 .cursor_chunk_size = 2, 171 .writeback_line_buffer_buffer_size = 0, 172 .writeback_min_hscl_ratio = 1, 173 .writeback_min_vscl_ratio = 1, 174 .writeback_max_hscl_ratio = 1, 175 .writeback_max_vscl_ratio = 1, 176 .writeback_max_hscl_taps = 1, 177 .writeback_max_vscl_taps = 1, 178 .dppclk_delay_subtotal = 47, 179 .dppclk_delay_scl = 50, 180 .dppclk_delay_scl_lb_only = 16, 181 .dppclk_delay_cnvc_formatter = 28, 182 .dppclk_delay_cnvc_cursor = 6, 183 .dispclk_delay_subtotal = 125, 184 .dynamic_metadata_vm_enabled = false, 185 .odm_combine_4to1_supported = false, 186 .dcc_supported = true, 187 .max_num_dp2p0_outputs = 2, 188 .max_num_dp2p0_streams = 4, 189 }; 190 191 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = { 192 .clock_limits = { 193 { 194 .state = 0, 195 .dcfclk_mhz = 1564.0, 196 .fabricclk_mhz = 400.0, 197 .dispclk_mhz = 2150.0, 198 .dppclk_mhz = 2150.0, 199 .phyclk_mhz = 810.0, 200 .phyclk_d18_mhz = 667.0, 201 .phyclk_d32_mhz = 625.0, 202 .socclk_mhz = 1200.0, 203 .dscclk_mhz = 716.667, 204 .dram_speed_mts = 1600.0, 205 .dtbclk_mhz = 1564.0, 206 }, 207 }, 208 .num_states = 1, 209 .sr_exit_time_us = 5.20, 210 .sr_enter_plus_exit_time_us = 9.60, 211 .sr_exit_z8_time_us = 285.0, 212 .sr_enter_plus_exit_z8_time_us = 320, 213 .writeback_latency_us = 12.0, 214 .round_trip_ping_latency_dcfclk_cycles = 263, 215 .urgent_latency_pixel_data_only_us = 4.0, 216 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 217 .urgent_latency_vm_data_only_us = 4.0, 218 .fclk_change_latency_us = 20, 219 .usr_retraining_latency_us = 2, 220 .smn_latency_us = 2, 221 .mall_allocated_for_dcn_mbytes = 64, 222 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 223 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 224 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 225 .pct_ideal_sdp_bw_after_urgent = 100.0, 226 .pct_ideal_fabric_bw_after_urgent = 67.0, 227 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0, 228 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented 229 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented 230 .pct_ideal_dram_bw_after_urgent_strobe = 67.0, 231 .max_avg_sdp_bw_use_normal_percent = 80.0, 232 .max_avg_fabric_bw_use_normal_percent = 60.0, 233 .max_avg_dram_bw_use_normal_strobe_percent = 50.0, 234 .max_avg_dram_bw_use_normal_percent = 15.0, 235 .num_chans = 8, 236 .dram_channel_width_bytes = 2, 237 .fabric_datapath_to_dcn_data_return_bytes = 64, 238 .return_bus_width_bytes = 64, 239 .downspread_percent = 0.38, 240 .dcn_downspread_percent = 0.5, 241 .dram_clock_change_latency_us = 400, 242 .dispclk_dppclk_vco_speed_mhz = 4300.0, 243 .do_urgent_latency_adjustment = true, 244 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 245 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, 246 }; 247 248 enum dcn32_clk_src_array_id { 249 DCN32_CLK_SRC_PLL0, 250 DCN32_CLK_SRC_PLL1, 251 DCN32_CLK_SRC_PLL2, 252 DCN32_CLK_SRC_PLL3, 253 DCN32_CLK_SRC_PLL4, 254 DCN32_CLK_SRC_TOTAL 255 }; 256 257 /* begin ********************* 258 * macros to expend register list macro defined in HW object header file 259 */ 260 261 /* DCN */ 262 /* TODO awful hack. fixup dcn20_dwb.h */ 263 #undef BASE_INNER 264 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 265 266 #define BASE(seg) BASE_INNER(seg) 267 268 #define SR(reg_name)\ 269 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 270 reg ## reg_name 271 272 #define SRI(reg_name, block, id)\ 273 .reg_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 274 reg ## block ## id ## _ ## reg_name 275 276 #define SRI2(reg_name, block, id)\ 277 .reg_name = BASE(reg ## reg_name ## _BASE_IDX) + \ 278 reg ## reg_name 279 280 #define SRIR(var_name, reg_name, block, id)\ 281 .var_name = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 282 reg ## block ## id ## _ ## reg_name 283 284 #define SRII(reg_name, block, id)\ 285 .reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 286 reg ## block ## id ## _ ## reg_name 287 288 #define SRII_MPC_RMU(reg_name, block, id)\ 289 .RMU##_##reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 290 reg ## block ## id ## _ ## reg_name 291 292 #define SRII_DWB(reg_name, temp_name, block, id)\ 293 .reg_name[id] = BASE(reg ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 294 reg ## block ## id ## _ ## temp_name 295 296 #define DCCG_SRII(reg_name, block, id)\ 297 .block ## _ ## reg_name[id] = BASE(reg ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 298 reg ## block ## id ## _ ## reg_name 299 300 #define VUPDATE_SRII(reg_name, block, id)\ 301 .reg_name[id] = BASE(reg ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 302 reg ## reg_name ## _ ## block ## id 303 304 /* NBIO */ 305 #define NBIO_BASE_INNER(seg) \ 306 NBIO_BASE__INST0_SEG ## seg 307 308 #define NBIO_BASE(seg) \ 309 NBIO_BASE_INNER(seg) 310 311 #define NBIO_SR(reg_name)\ 312 .reg_name = NBIO_BASE(regBIF_BX0_ ## reg_name ## _BASE_IDX) + \ 313 regBIF_BX0_ ## reg_name 314 315 #define CTX ctx 316 #define REG(reg_name) \ 317 (DCN_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name) 318 319 static const struct bios_registers bios_regs = { 320 NBIO_SR(BIOS_SCRATCH_3), 321 NBIO_SR(BIOS_SCRATCH_6) 322 }; 323 324 #define clk_src_regs(index, pllid)\ 325 [index] = {\ 326 CS_COMMON_REG_LIST_DCN3_0(index, pllid),\ 327 } 328 329 static const struct dce110_clk_src_regs clk_src_regs[] = { 330 clk_src_regs(0, A), 331 clk_src_regs(1, B), 332 clk_src_regs(2, C), 333 clk_src_regs(3, D), 334 clk_src_regs(4, E) 335 }; 336 337 static const struct dce110_clk_src_shift cs_shift = { 338 CS_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 339 }; 340 341 static const struct dce110_clk_src_mask cs_mask = { 342 CS_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 343 }; 344 345 #define abm_regs(id)\ 346 [id] = {\ 347 ABM_DCN32_REG_LIST(id)\ 348 } 349 350 static const struct dce_abm_registers abm_regs[] = { 351 abm_regs(0), 352 abm_regs(1), 353 abm_regs(2), 354 abm_regs(3), 355 }; 356 357 static const struct dce_abm_shift abm_shift = { 358 ABM_MASK_SH_LIST_DCN32(__SHIFT) 359 }; 360 361 static const struct dce_abm_mask abm_mask = { 362 ABM_MASK_SH_LIST_DCN32(_MASK) 363 }; 364 365 #define audio_regs(id)\ 366 [id] = {\ 367 AUD_COMMON_REG_LIST(id)\ 368 } 369 370 static const struct dce_audio_registers audio_regs[] = { 371 audio_regs(0), 372 audio_regs(1), 373 audio_regs(2), 374 audio_regs(3), 375 audio_regs(4) 376 }; 377 378 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 379 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 380 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 381 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 382 383 static const struct dce_audio_shift audio_shift = { 384 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 385 }; 386 387 static const struct dce_audio_mask audio_mask = { 388 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 389 }; 390 391 #define vpg_regs(id)\ 392 [id] = {\ 393 VPG_DCN3_REG_LIST(id)\ 394 } 395 396 static const struct dcn30_vpg_registers vpg_regs[] = { 397 vpg_regs(0), 398 vpg_regs(1), 399 vpg_regs(2), 400 vpg_regs(3), 401 vpg_regs(4), 402 vpg_regs(5), 403 vpg_regs(6), 404 vpg_regs(7), 405 vpg_regs(8), 406 vpg_regs(9), 407 }; 408 409 static const struct dcn30_vpg_shift vpg_shift = { 410 DCN3_VPG_MASK_SH_LIST(__SHIFT) 411 }; 412 413 static const struct dcn30_vpg_mask vpg_mask = { 414 DCN3_VPG_MASK_SH_LIST(_MASK) 415 }; 416 417 #define afmt_regs(id)\ 418 [id] = {\ 419 AFMT_DCN3_REG_LIST(id)\ 420 } 421 422 static const struct dcn30_afmt_registers afmt_regs[] = { 423 afmt_regs(0), 424 afmt_regs(1), 425 afmt_regs(2), 426 afmt_regs(3), 427 afmt_regs(4), 428 afmt_regs(5) 429 }; 430 431 static const struct dcn30_afmt_shift afmt_shift = { 432 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 433 }; 434 435 static const struct dcn30_afmt_mask afmt_mask = { 436 DCN3_AFMT_MASK_SH_LIST(_MASK) 437 }; 438 439 #define apg_regs(id)\ 440 [id] = {\ 441 APG_DCN31_REG_LIST(id)\ 442 } 443 444 static const struct dcn31_apg_registers apg_regs[] = { 445 apg_regs(0), 446 apg_regs(1), 447 apg_regs(2), 448 apg_regs(3) 449 }; 450 451 static const struct dcn31_apg_shift apg_shift = { 452 DCN31_APG_MASK_SH_LIST(__SHIFT) 453 }; 454 455 static const struct dcn31_apg_mask apg_mask = { 456 DCN31_APG_MASK_SH_LIST(_MASK) 457 }; 458 459 #define stream_enc_regs(id)\ 460 [id] = {\ 461 SE_DCN32_REG_LIST(id)\ 462 } 463 464 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 465 stream_enc_regs(0), 466 stream_enc_regs(1), 467 stream_enc_regs(2), 468 stream_enc_regs(3), 469 stream_enc_regs(4) 470 }; 471 472 static const struct dcn10_stream_encoder_shift se_shift = { 473 SE_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 474 }; 475 476 static const struct dcn10_stream_encoder_mask se_mask = { 477 SE_COMMON_MASK_SH_LIST_DCN32(_MASK) 478 }; 479 480 481 #define aux_regs(id)\ 482 [id] = {\ 483 DCN2_AUX_REG_LIST(id)\ 484 } 485 486 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 487 aux_regs(0), 488 aux_regs(1), 489 aux_regs(2), 490 aux_regs(3), 491 aux_regs(4) 492 }; 493 494 #define hpd_regs(id)\ 495 [id] = {\ 496 HPD_REG_LIST(id)\ 497 } 498 499 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 500 hpd_regs(0), 501 hpd_regs(1), 502 hpd_regs(2), 503 hpd_regs(3), 504 hpd_regs(4) 505 }; 506 507 #define link_regs(id, phyid)\ 508 [id] = {\ 509 LE_DCN31_REG_LIST(id), \ 510 UNIPHY_DCN2_REG_LIST(phyid), \ 511 /*DPCS_DCN31_REG_LIST(id),*/ \ 512 } 513 514 static const struct dcn10_link_enc_registers link_enc_regs[] = { 515 link_regs(0, A), 516 link_regs(1, B), 517 link_regs(2, C), 518 link_regs(3, D), 519 link_regs(4, E) 520 }; 521 522 static const struct dcn10_link_enc_shift le_shift = { 523 LINK_ENCODER_MASK_SH_LIST_DCN31(__SHIFT), \ 524 //DPCS_DCN31_MASK_SH_LIST(__SHIFT) 525 }; 526 527 static const struct dcn10_link_enc_mask le_mask = { 528 LINK_ENCODER_MASK_SH_LIST_DCN31(_MASK), \ 529 530 //DPCS_DCN31_MASK_SH_LIST(_MASK) 531 }; 532 533 #define hpo_dp_stream_encoder_reg_list(id)\ 534 [id] = {\ 535 DCN3_1_HPO_DP_STREAM_ENC_REG_LIST(id)\ 536 } 537 538 static const struct dcn31_hpo_dp_stream_encoder_registers hpo_dp_stream_enc_regs[] = { 539 hpo_dp_stream_encoder_reg_list(0), 540 hpo_dp_stream_encoder_reg_list(1), 541 hpo_dp_stream_encoder_reg_list(2), 542 hpo_dp_stream_encoder_reg_list(3), 543 }; 544 545 static const struct dcn31_hpo_dp_stream_encoder_shift hpo_dp_se_shift = { 546 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(__SHIFT) 547 }; 548 549 static const struct dcn31_hpo_dp_stream_encoder_mask hpo_dp_se_mask = { 550 DCN3_1_HPO_DP_STREAM_ENC_MASK_SH_LIST(_MASK) 551 }; 552 553 554 #define hpo_dp_link_encoder_reg_list(id)\ 555 [id] = {\ 556 DCN3_1_HPO_DP_LINK_ENC_REG_LIST(id),\ 557 /*DCN3_1_RDPCSTX_REG_LIST(0),*/\ 558 /*DCN3_1_RDPCSTX_REG_LIST(1),*/\ 559 /*DCN3_1_RDPCSTX_REG_LIST(2),*/\ 560 /*DCN3_1_RDPCSTX_REG_LIST(3),*/\ 561 /*DCN3_1_RDPCSTX_REG_LIST(4)*/\ 562 } 563 564 static const struct dcn31_hpo_dp_link_encoder_registers hpo_dp_link_enc_regs[] = { 565 hpo_dp_link_encoder_reg_list(0), 566 hpo_dp_link_encoder_reg_list(1), 567 }; 568 569 static const struct dcn31_hpo_dp_link_encoder_shift hpo_dp_le_shift = { 570 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(__SHIFT) 571 }; 572 573 static const struct dcn31_hpo_dp_link_encoder_mask hpo_dp_le_mask = { 574 DCN3_2_HPO_DP_LINK_ENC_MASK_SH_LIST(_MASK) 575 }; 576 577 #define dpp_regs(id)\ 578 [id] = {\ 579 DPP_REG_LIST_DCN30_COMMON(id),\ 580 } 581 582 static const struct dcn3_dpp_registers dpp_regs[] = { 583 dpp_regs(0), 584 dpp_regs(1), 585 dpp_regs(2), 586 dpp_regs(3) 587 }; 588 589 static const struct dcn3_dpp_shift tf_shift = { 590 DPP_REG_LIST_SH_MASK_DCN30_COMMON(__SHIFT) 591 }; 592 593 static const struct dcn3_dpp_mask tf_mask = { 594 DPP_REG_LIST_SH_MASK_DCN30_COMMON(_MASK) 595 }; 596 597 598 #define opp_regs(id)\ 599 [id] = {\ 600 OPP_REG_LIST_DCN30(id),\ 601 } 602 603 static const struct dcn20_opp_registers opp_regs[] = { 604 opp_regs(0), 605 opp_regs(1), 606 opp_regs(2), 607 opp_regs(3) 608 }; 609 610 static const struct dcn20_opp_shift opp_shift = { 611 OPP_MASK_SH_LIST_DCN20(__SHIFT) 612 }; 613 614 static const struct dcn20_opp_mask opp_mask = { 615 OPP_MASK_SH_LIST_DCN20(_MASK) 616 }; 617 618 #define aux_engine_regs(id)\ 619 [id] = {\ 620 AUX_COMMON_REG_LIST0(id), \ 621 .AUXN_IMPCAL = 0, \ 622 .AUXP_IMPCAL = 0, \ 623 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 624 } 625 626 static const struct dce110_aux_registers aux_engine_regs[] = { 627 aux_engine_regs(0), 628 aux_engine_regs(1), 629 aux_engine_regs(2), 630 aux_engine_regs(3), 631 aux_engine_regs(4) 632 }; 633 634 static const struct dce110_aux_registers_shift aux_shift = { 635 DCN_AUX_MASK_SH_LIST(__SHIFT) 636 }; 637 638 static const struct dce110_aux_registers_mask aux_mask = { 639 DCN_AUX_MASK_SH_LIST(_MASK) 640 }; 641 642 643 #define dwbc_regs_dcn3(id)\ 644 [id] = {\ 645 DWBC_COMMON_REG_LIST_DCN30(id),\ 646 } 647 648 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 649 dwbc_regs_dcn3(0), 650 }; 651 652 static const struct dcn30_dwbc_shift dwbc30_shift = { 653 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 654 }; 655 656 static const struct dcn30_dwbc_mask dwbc30_mask = { 657 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 658 }; 659 660 #define mcif_wb_regs_dcn3(id)\ 661 [id] = {\ 662 MCIF_WB_COMMON_REG_LIST_DCN32(id),\ 663 } 664 665 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 666 mcif_wb_regs_dcn3(0) 667 }; 668 669 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 670 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 671 }; 672 673 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 674 MCIF_WB_COMMON_MASK_SH_LIST_DCN32(_MASK) 675 }; 676 677 #define dsc_regsDCN20(id)\ 678 [id] = {\ 679 DSC_REG_LIST_DCN20(id)\ 680 } 681 682 static const struct dcn20_dsc_registers dsc_regs[] = { 683 dsc_regsDCN20(0), 684 dsc_regsDCN20(1), 685 dsc_regsDCN20(2), 686 dsc_regsDCN20(3) 687 }; 688 689 static const struct dcn20_dsc_shift dsc_shift = { 690 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 691 }; 692 693 static const struct dcn20_dsc_mask dsc_mask = { 694 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 695 }; 696 697 static const struct dcn30_mpc_registers mpc_regs = { 698 MPC_REG_LIST_DCN3_2(0), 699 MPC_REG_LIST_DCN3_2(1), 700 MPC_REG_LIST_DCN3_2(2), 701 MPC_REG_LIST_DCN3_2(3), 702 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 703 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 704 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 705 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 706 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 707 }; 708 709 static const struct dcn30_mpc_shift mpc_shift = { 710 MPC_COMMON_MASK_SH_LIST_DCN32(__SHIFT) 711 }; 712 713 static const struct dcn30_mpc_mask mpc_mask = { 714 MPC_COMMON_MASK_SH_LIST_DCN32(_MASK) 715 }; 716 717 #define optc_regs(id)\ 718 [id] = {OPTC_COMMON_REG_LIST_DCN3_2(id)} 719 720 //#ifdef DIAGS_BUILD 721 //static struct dcn_optc_registers optc_regs[] = { 722 //#else 723 static const struct dcn_optc_registers optc_regs[] = { 724 //#endif 725 optc_regs(0), 726 optc_regs(1), 727 optc_regs(2), 728 optc_regs(3) 729 }; 730 731 static const struct dcn_optc_shift optc_shift = { 732 OPTC_COMMON_MASK_SH_LIST_DCN3_2(__SHIFT) 733 }; 734 735 static const struct dcn_optc_mask optc_mask = { 736 OPTC_COMMON_MASK_SH_LIST_DCN3_2(_MASK) 737 }; 738 739 #define hubp_regs(id)\ 740 [id] = {\ 741 HUBP_REG_LIST_DCN32(id)\ 742 } 743 744 static const struct dcn_hubp2_registers hubp_regs[] = { 745 hubp_regs(0), 746 hubp_regs(1), 747 hubp_regs(2), 748 hubp_regs(3) 749 }; 750 751 752 static const struct dcn_hubp2_shift hubp_shift = { 753 HUBP_MASK_SH_LIST_DCN32(__SHIFT) 754 }; 755 756 static const struct dcn_hubp2_mask hubp_mask = { 757 HUBP_MASK_SH_LIST_DCN32(_MASK) 758 }; 759 static const struct dcn_hubbub_registers hubbub_reg = { 760 HUBBUB_REG_LIST_DCN32(0) 761 }; 762 763 static const struct dcn_hubbub_shift hubbub_shift = { 764 HUBBUB_MASK_SH_LIST_DCN32(__SHIFT) 765 }; 766 767 static const struct dcn_hubbub_mask hubbub_mask = { 768 HUBBUB_MASK_SH_LIST_DCN32(_MASK) 769 }; 770 771 static const struct dccg_registers dccg_regs = { 772 DCCG_REG_LIST_DCN32() 773 }; 774 775 static const struct dccg_shift dccg_shift = { 776 DCCG_MASK_SH_LIST_DCN32(__SHIFT) 777 }; 778 779 static const struct dccg_mask dccg_mask = { 780 DCCG_MASK_SH_LIST_DCN32(_MASK) 781 }; 782 783 784 #define SRII2(reg_name_pre, reg_name_post, id)\ 785 .reg_name_pre ## _ ## reg_name_post[id] = BASE(reg ## reg_name_pre \ 786 ## id ## _ ## reg_name_post ## _BASE_IDX) + \ 787 reg ## reg_name_pre ## id ## _ ## reg_name_post 788 789 790 #define HWSEQ_DCN32_REG_LIST()\ 791 SR(DCHUBBUB_GLOBAL_TIMER_CNTL), \ 792 SR(DIO_MEM_PWR_CTRL), \ 793 SR(ODM_MEM_PWR_CTRL3), \ 794 SR(MMHUBBUB_MEM_PWR_CNTL), \ 795 SR(DCCG_GATE_DISABLE_CNTL), \ 796 SR(DCCG_GATE_DISABLE_CNTL2), \ 797 SR(DCFCLK_CNTL),\ 798 SR(DC_MEM_GLOBAL_PWR_REQ_CNTL), \ 799 SRII(PIXEL_RATE_CNTL, OTG, 0), \ 800 SRII(PIXEL_RATE_CNTL, OTG, 1),\ 801 SRII(PIXEL_RATE_CNTL, OTG, 2),\ 802 SRII(PIXEL_RATE_CNTL, OTG, 3),\ 803 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 0),\ 804 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 1),\ 805 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 2),\ 806 SRII(PHYPLL_PIXEL_RATE_CNTL, OTG, 3),\ 807 SR(MICROSECOND_TIME_BASE_DIV), \ 808 SR(MILLISECOND_TIME_BASE_DIV), \ 809 SR(DISPCLK_FREQ_CHANGE_CNTL), \ 810 SR(RBBMIF_TIMEOUT_DIS), \ 811 SR(RBBMIF_TIMEOUT_DIS_2), \ 812 SR(DCHUBBUB_CRC_CTRL), \ 813 SR(DPP_TOP0_DPP_CRC_CTRL), \ 814 SR(DPP_TOP0_DPP_CRC_VAL_B_A), \ 815 SR(DPP_TOP0_DPP_CRC_VAL_R_G), \ 816 SR(MPC_CRC_CTRL), \ 817 SR(MPC_CRC_RESULT_GB), \ 818 SR(MPC_CRC_RESULT_C), \ 819 SR(MPC_CRC_RESULT_AR), \ 820 SR(DOMAIN0_PG_CONFIG), \ 821 SR(DOMAIN1_PG_CONFIG), \ 822 SR(DOMAIN2_PG_CONFIG), \ 823 SR(DOMAIN3_PG_CONFIG), \ 824 SR(DOMAIN16_PG_CONFIG), \ 825 SR(DOMAIN17_PG_CONFIG), \ 826 SR(DOMAIN18_PG_CONFIG), \ 827 SR(DOMAIN19_PG_CONFIG), \ 828 SR(DOMAIN0_PG_STATUS), \ 829 SR(DOMAIN1_PG_STATUS), \ 830 SR(DOMAIN2_PG_STATUS), \ 831 SR(DOMAIN3_PG_STATUS), \ 832 SR(DOMAIN16_PG_STATUS), \ 833 SR(DOMAIN17_PG_STATUS), \ 834 SR(DOMAIN18_PG_STATUS), \ 835 SR(DOMAIN19_PG_STATUS), \ 836 SR(D1VGA_CONTROL), \ 837 SR(D2VGA_CONTROL), \ 838 SR(D3VGA_CONTROL), \ 839 SR(D4VGA_CONTROL), \ 840 SR(D5VGA_CONTROL), \ 841 SR(D6VGA_CONTROL), \ 842 SR(DC_IP_REQUEST_CNTL), \ 843 SR(AZALIA_AUDIO_DTO), \ 844 SR(AZALIA_CONTROLLER_CLOCK_GATING) 845 846 static const struct dce_hwseq_registers hwseq_reg = { 847 HWSEQ_DCN32_REG_LIST() 848 }; 849 850 #define HWSEQ_DCN32_MASK_SH_LIST(mask_sh)\ 851 HWSEQ_DCN_MASK_SH_LIST(mask_sh), \ 852 HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \ 853 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 854 HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 855 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 856 HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 857 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 858 HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 859 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 860 HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 861 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 862 HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 863 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 864 HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 865 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 866 HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 867 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, mask_sh), \ 868 HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN_POWER_GATE, mask_sh), \ 869 HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 870 HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 871 HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 872 HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 873 HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 874 HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 875 HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 876 HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, mask_sh), \ 877 HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \ 878 HWS_SF(, AZALIA_AUDIO_DTO, AZALIA_AUDIO_DTO_MODULE, mask_sh), \ 879 HWS_SF(, HPO_TOP_CLOCK_CONTROL, HPO_HDMISTREAMCLK_G_GATE_DIS, mask_sh), \ 880 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_UNASSIGNED_PWR_MODE, mask_sh), \ 881 HWS_SF(, ODM_MEM_PWR_CTRL3, ODM_MEM_VBLANK_PWR_MODE, mask_sh), \ 882 HWS_SF(, MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, mask_sh) 883 884 static const struct dce_hwseq_shift hwseq_shift = { 885 HWSEQ_DCN32_MASK_SH_LIST(__SHIFT) 886 }; 887 888 static const struct dce_hwseq_mask hwseq_mask = { 889 HWSEQ_DCN32_MASK_SH_LIST(_MASK) 890 }; 891 #define vmid_regs(id)\ 892 [id] = {\ 893 DCN20_VMID_REG_LIST(id)\ 894 } 895 896 static const struct dcn_vmid_registers vmid_regs[] = { 897 vmid_regs(0), 898 vmid_regs(1), 899 vmid_regs(2), 900 vmid_regs(3), 901 vmid_regs(4), 902 vmid_regs(5), 903 vmid_regs(6), 904 vmid_regs(7), 905 vmid_regs(8), 906 vmid_regs(9), 907 vmid_regs(10), 908 vmid_regs(11), 909 vmid_regs(12), 910 vmid_regs(13), 911 vmid_regs(14), 912 vmid_regs(15) 913 }; 914 915 static const struct dcn20_vmid_shift vmid_shifts = { 916 DCN20_VMID_MASK_SH_LIST(__SHIFT) 917 }; 918 919 static const struct dcn20_vmid_mask vmid_masks = { 920 DCN20_VMID_MASK_SH_LIST(_MASK) 921 }; 922 923 static const struct resource_caps res_cap_dcn32 = { 924 .num_timing_generator = 4, 925 .num_opp = 4, 926 .num_video_plane = 4, 927 .num_audio = 5, 928 .num_stream_encoder = 5, 929 .num_hpo_dp_stream_encoder = 4, 930 .num_hpo_dp_link_encoder = 2, 931 .num_pll = 5, 932 .num_dwb = 1, 933 .num_ddc = 5, 934 .num_vmid = 16, 935 .num_mpc_3dlut = 4, 936 .num_dsc = 4, 937 }; 938 939 static const struct dc_plane_cap plane_cap = { 940 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 941 .blends_with_above = true, 942 .blends_with_below = true, 943 .per_pixel_alpha = true, 944 945 .pixel_format_support = { 946 .argb8888 = true, 947 .nv12 = true, 948 .fp16 = true, 949 .p010 = true, 950 .ayuv = false, 951 }, 952 953 .max_upscale_factor = { 954 .argb8888 = 16000, 955 .nv12 = 16000, 956 .fp16 = 16000 957 }, 958 959 // 6:1 downscaling ratio: 1000/6 = 166.666 960 .max_downscale_factor = { 961 .argb8888 = 167, 962 .nv12 = 167, 963 .fp16 = 167 964 }, 965 64, 966 64 967 }; 968 969 static const struct dc_debug_options debug_defaults_drv = { 970 .disable_dmcu = true, 971 .force_abm_enable = false, 972 .timing_trace = false, 973 .clock_trace = true, 974 .disable_pplib_clock_request = false, 975 .disable_idle_power_optimizations = true, 976 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 977 .force_single_disp_pipe_split = false, 978 .disable_dcc = DCC_ENABLE, 979 .vsr_support = true, 980 .performance_trace = false, 981 .max_downscale_src_width = 7680,/*upto 8K*/ 982 .disable_pplib_wm_range = false, 983 .scl_reset_length10 = true, 984 .sanity_checks = false, 985 .underflow_assert_delay_us = 0xFFFFFFFF, 986 .dwb_fi_phase = -1, // -1 = disable, 987 .dmub_command_table = true, 988 .enable_mem_low_power = { 989 .bits = { 990 .vga = false, 991 .i2c = false, 992 .dmcu = false, // This is previously known to cause hang on S3 cycles if enabled 993 .dscl = false, 994 .cm = false, 995 .mpc = false, 996 .optc = true, 997 } 998 }, 999 .use_max_lb = true, 1000 .force_disable_subvp = true 1001 }; 1002 1003 static const struct dc_debug_options debug_defaults_diags = { 1004 .disable_dmcu = true, 1005 .force_abm_enable = false, 1006 .timing_trace = true, 1007 .clock_trace = true, 1008 .disable_dpp_power_gate = true, 1009 .disable_hubp_power_gate = true, 1010 .disable_dsc_power_gate = true, 1011 .disable_clock_gate = true, 1012 .disable_pplib_clock_request = true, 1013 .disable_pplib_wm_range = true, 1014 .disable_stutter = false, 1015 .scl_reset_length10 = true, 1016 .dwb_fi_phase = -1, // -1 = disable 1017 .dmub_command_table = true, 1018 .enable_tri_buf = true, 1019 .use_max_lb = true, 1020 .force_disable_subvp = true 1021 }; 1022 1023 static struct dce_aux *dcn32_aux_engine_create( 1024 struct dc_context *ctx, 1025 uint32_t inst) 1026 { 1027 struct aux_engine_dce110 *aux_engine = 1028 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 1029 1030 if (!aux_engine) 1031 return NULL; 1032 1033 dce110_aux_engine_construct(aux_engine, ctx, inst, 1034 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 1035 &aux_engine_regs[inst], 1036 &aux_mask, 1037 &aux_shift, 1038 ctx->dc->caps.extended_aux_timeout_support); 1039 1040 return &aux_engine->base; 1041 } 1042 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 1043 1044 static const struct dce_i2c_registers i2c_hw_regs[] = { 1045 i2c_inst_regs(1), 1046 i2c_inst_regs(2), 1047 i2c_inst_regs(3), 1048 i2c_inst_regs(4), 1049 i2c_inst_regs(5), 1050 }; 1051 1052 static const struct dce_i2c_shift i2c_shifts = { 1053 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 1054 }; 1055 1056 static const struct dce_i2c_mask i2c_masks = { 1057 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 1058 }; 1059 1060 static struct dce_i2c_hw *dcn32_i2c_hw_create( 1061 struct dc_context *ctx, 1062 uint32_t inst) 1063 { 1064 struct dce_i2c_hw *dce_i2c_hw = 1065 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 1066 1067 if (!dce_i2c_hw) 1068 return NULL; 1069 1070 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 1071 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 1072 1073 return dce_i2c_hw; 1074 } 1075 1076 static struct clock_source *dcn32_clock_source_create( 1077 struct dc_context *ctx, 1078 struct dc_bios *bios, 1079 enum clock_source_id id, 1080 const struct dce110_clk_src_regs *regs, 1081 bool dp_clk_src) 1082 { 1083 struct dce110_clk_src *clk_src = 1084 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1085 1086 if (!clk_src) 1087 return NULL; 1088 1089 if (dcn31_clk_src_construct(clk_src, ctx, bios, id, 1090 regs, &cs_shift, &cs_mask)) { 1091 clk_src->base.dp_clk_src = dp_clk_src; 1092 return &clk_src->base; 1093 } 1094 1095 BREAK_TO_DEBUGGER(); 1096 return NULL; 1097 } 1098 1099 static struct hubbub *dcn32_hubbub_create(struct dc_context *ctx) 1100 { 1101 int i; 1102 1103 struct dcn20_hubbub *hubbub2 = kzalloc(sizeof(struct dcn20_hubbub), 1104 GFP_KERNEL); 1105 1106 if (!hubbub2) 1107 return NULL; 1108 1109 hubbub32_construct(hubbub2, ctx, 1110 &hubbub_reg, 1111 &hubbub_shift, 1112 &hubbub_mask, 1113 ctx->dc->dml.ip.det_buffer_size_kbytes, 1114 ctx->dc->dml.ip.pixel_chunk_size_kbytes, 1115 ctx->dc->dml.ip.config_return_buffer_size_in_kbytes); 1116 1117 1118 for (i = 0; i < res_cap_dcn32.num_vmid; i++) { 1119 struct dcn20_vmid *vmid = &hubbub2->vmid[i]; 1120 1121 vmid->ctx = ctx; 1122 1123 vmid->regs = &vmid_regs[i]; 1124 vmid->shifts = &vmid_shifts; 1125 vmid->masks = &vmid_masks; 1126 } 1127 1128 return &hubbub2->base; 1129 } 1130 1131 static struct hubp *dcn32_hubp_create( 1132 struct dc_context *ctx, 1133 uint32_t inst) 1134 { 1135 struct dcn20_hubp *hubp2 = 1136 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1137 1138 if (!hubp2) 1139 return NULL; 1140 1141 if (hubp32_construct(hubp2, ctx, inst, 1142 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1143 return &hubp2->base; 1144 1145 BREAK_TO_DEBUGGER(); 1146 kfree(hubp2); 1147 return NULL; 1148 } 1149 1150 static void dcn32_dpp_destroy(struct dpp **dpp) 1151 { 1152 kfree(TO_DCN30_DPP(*dpp)); 1153 *dpp = NULL; 1154 } 1155 1156 static struct dpp *dcn32_dpp_create( 1157 struct dc_context *ctx, 1158 uint32_t inst) 1159 { 1160 struct dcn3_dpp *dpp3 = 1161 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 1162 1163 if (!dpp3) 1164 return NULL; 1165 1166 if (dpp32_construct(dpp3, ctx, inst, 1167 &dpp_regs[inst], &tf_shift, &tf_mask)) 1168 return &dpp3->base; 1169 1170 BREAK_TO_DEBUGGER(); 1171 kfree(dpp3); 1172 return NULL; 1173 } 1174 1175 static struct mpc *dcn32_mpc_create( 1176 struct dc_context *ctx, 1177 int num_mpcc, 1178 int num_rmu) 1179 { 1180 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 1181 GFP_KERNEL); 1182 1183 if (!mpc30) 1184 return NULL; 1185 1186 dcn32_mpc_construct(mpc30, ctx, 1187 &mpc_regs, 1188 &mpc_shift, 1189 &mpc_mask, 1190 num_mpcc, 1191 num_rmu); 1192 1193 return &mpc30->base; 1194 } 1195 1196 static struct output_pixel_processor *dcn32_opp_create( 1197 struct dc_context *ctx, uint32_t inst) 1198 { 1199 struct dcn20_opp *opp2 = 1200 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 1201 1202 if (!opp2) { 1203 BREAK_TO_DEBUGGER(); 1204 return NULL; 1205 } 1206 1207 dcn20_opp_construct(opp2, ctx, inst, 1208 &opp_regs[inst], &opp_shift, &opp_mask); 1209 return &opp2->base; 1210 } 1211 1212 1213 static struct timing_generator *dcn32_timing_generator_create( 1214 struct dc_context *ctx, 1215 uint32_t instance) 1216 { 1217 struct optc *tgn10 = 1218 kzalloc(sizeof(struct optc), GFP_KERNEL); 1219 1220 if (!tgn10) 1221 return NULL; 1222 1223 tgn10->base.inst = instance; 1224 tgn10->base.ctx = ctx; 1225 1226 tgn10->tg_regs = &optc_regs[instance]; 1227 tgn10->tg_shift = &optc_shift; 1228 tgn10->tg_mask = &optc_mask; 1229 1230 dcn32_timing_generator_init(tgn10); 1231 1232 return &tgn10->base; 1233 } 1234 1235 static const struct encoder_feature_support link_enc_feature = { 1236 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1237 .max_hdmi_pixel_clock = 600000, 1238 .hdmi_ycbcr420_supported = true, 1239 .dp_ycbcr420_supported = true, 1240 .fec_supported = true, 1241 .flags.bits.IS_HBR2_CAPABLE = true, 1242 .flags.bits.IS_HBR3_CAPABLE = true, 1243 .flags.bits.IS_TPS3_CAPABLE = true, 1244 .flags.bits.IS_TPS4_CAPABLE = true 1245 }; 1246 1247 static struct link_encoder *dcn32_link_encoder_create( 1248 const struct encoder_init_data *enc_init_data) 1249 { 1250 struct dcn20_link_encoder *enc20 = 1251 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1252 1253 if (!enc20) 1254 return NULL; 1255 1256 dcn32_link_encoder_construct(enc20, 1257 enc_init_data, 1258 &link_enc_feature, 1259 &link_enc_regs[enc_init_data->transmitter], 1260 &link_enc_aux_regs[enc_init_data->channel - 1], 1261 &link_enc_hpd_regs[enc_init_data->hpd_source], 1262 &le_shift, 1263 &le_mask); 1264 1265 return &enc20->enc10.base; 1266 } 1267 1268 struct panel_cntl *dcn32_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1269 { 1270 struct dcn31_panel_cntl *panel_cntl = 1271 kzalloc(sizeof(struct dcn31_panel_cntl), GFP_KERNEL); 1272 1273 if (!panel_cntl) 1274 return NULL; 1275 1276 dcn31_panel_cntl_construct(panel_cntl, init_data); 1277 1278 return &panel_cntl->base; 1279 } 1280 1281 static void read_dce_straps( 1282 struct dc_context *ctx, 1283 struct resource_straps *straps) 1284 { 1285 generic_reg_get(ctx, regDC_PINSTRAPS + BASE(regDC_PINSTRAPS_BASE_IDX), 1286 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1287 1288 } 1289 1290 static struct audio *dcn32_create_audio( 1291 struct dc_context *ctx, unsigned int inst) 1292 { 1293 return dce_audio_create(ctx, inst, 1294 &audio_regs[inst], &audio_shift, &audio_mask); 1295 } 1296 1297 static struct vpg *dcn32_vpg_create( 1298 struct dc_context *ctx, 1299 uint32_t inst) 1300 { 1301 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1302 1303 if (!vpg3) 1304 return NULL; 1305 1306 vpg3_construct(vpg3, ctx, inst, 1307 &vpg_regs[inst], 1308 &vpg_shift, 1309 &vpg_mask); 1310 1311 return &vpg3->base; 1312 } 1313 1314 static struct afmt *dcn32_afmt_create( 1315 struct dc_context *ctx, 1316 uint32_t inst) 1317 { 1318 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1319 1320 if (!afmt3) 1321 return NULL; 1322 1323 afmt3_construct(afmt3, ctx, inst, 1324 &afmt_regs[inst], 1325 &afmt_shift, 1326 &afmt_mask); 1327 1328 return &afmt3->base; 1329 } 1330 1331 static struct apg *dcn31_apg_create( 1332 struct dc_context *ctx, 1333 uint32_t inst) 1334 { 1335 struct dcn31_apg *apg31 = kzalloc(sizeof(struct dcn31_apg), GFP_KERNEL); 1336 1337 if (!apg31) 1338 return NULL; 1339 1340 apg31_construct(apg31, ctx, inst, 1341 &apg_regs[inst], 1342 &apg_shift, 1343 &apg_mask); 1344 1345 return &apg31->base; 1346 } 1347 1348 static struct stream_encoder *dcn32_stream_encoder_create( 1349 enum engine_id eng_id, 1350 struct dc_context *ctx) 1351 { 1352 struct dcn10_stream_encoder *enc1; 1353 struct vpg *vpg; 1354 struct afmt *afmt; 1355 int vpg_inst; 1356 int afmt_inst; 1357 1358 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1359 if (eng_id <= ENGINE_ID_DIGF) { 1360 vpg_inst = eng_id; 1361 afmt_inst = eng_id; 1362 } else 1363 return NULL; 1364 1365 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1366 vpg = dcn32_vpg_create(ctx, vpg_inst); 1367 afmt = dcn32_afmt_create(ctx, afmt_inst); 1368 1369 if (!enc1 || !vpg || !afmt) { 1370 kfree(enc1); 1371 kfree(vpg); 1372 kfree(afmt); 1373 return NULL; 1374 } 1375 1376 dcn32_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1377 eng_id, vpg, afmt, 1378 &stream_enc_regs[eng_id], 1379 &se_shift, &se_mask); 1380 1381 return &enc1->base; 1382 } 1383 1384 static struct hpo_dp_stream_encoder *dcn32_hpo_dp_stream_encoder_create( 1385 enum engine_id eng_id, 1386 struct dc_context *ctx) 1387 { 1388 struct dcn31_hpo_dp_stream_encoder *hpo_dp_enc31; 1389 struct vpg *vpg; 1390 struct apg *apg; 1391 uint32_t hpo_dp_inst; 1392 uint32_t vpg_inst; 1393 uint32_t apg_inst; 1394 1395 ASSERT((eng_id >= ENGINE_ID_HPO_DP_0) && (eng_id <= ENGINE_ID_HPO_DP_3)); 1396 hpo_dp_inst = eng_id - ENGINE_ID_HPO_DP_0; 1397 1398 /* Mapping of VPG register blocks to HPO DP block instance: 1399 * VPG[6] -> HPO_DP[0] 1400 * VPG[7] -> HPO_DP[1] 1401 * VPG[8] -> HPO_DP[2] 1402 * VPG[9] -> HPO_DP[3] 1403 */ 1404 vpg_inst = hpo_dp_inst + 6; 1405 1406 /* Mapping of APG register blocks to HPO DP block instance: 1407 * APG[0] -> HPO_DP[0] 1408 * APG[1] -> HPO_DP[1] 1409 * APG[2] -> HPO_DP[2] 1410 * APG[3] -> HPO_DP[3] 1411 */ 1412 apg_inst = hpo_dp_inst; 1413 1414 /* allocate HPO stream encoder and create VPG sub-block */ 1415 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_stream_encoder), GFP_KERNEL); 1416 vpg = dcn32_vpg_create(ctx, vpg_inst); 1417 apg = dcn31_apg_create(ctx, apg_inst); 1418 1419 if (!hpo_dp_enc31 || !vpg || !apg) { 1420 kfree(hpo_dp_enc31); 1421 kfree(vpg); 1422 kfree(apg); 1423 return NULL; 1424 } 1425 1426 dcn31_hpo_dp_stream_encoder_construct(hpo_dp_enc31, ctx, ctx->dc_bios, 1427 hpo_dp_inst, eng_id, vpg, apg, 1428 &hpo_dp_stream_enc_regs[hpo_dp_inst], 1429 &hpo_dp_se_shift, &hpo_dp_se_mask); 1430 1431 return &hpo_dp_enc31->base; 1432 } 1433 1434 static struct hpo_dp_link_encoder *dcn32_hpo_dp_link_encoder_create( 1435 uint8_t inst, 1436 struct dc_context *ctx) 1437 { 1438 struct dcn31_hpo_dp_link_encoder *hpo_dp_enc31; 1439 1440 /* allocate HPO link encoder */ 1441 hpo_dp_enc31 = kzalloc(sizeof(struct dcn31_hpo_dp_link_encoder), GFP_KERNEL); 1442 1443 hpo_dp_link_encoder32_construct(hpo_dp_enc31, ctx, inst, 1444 &hpo_dp_link_enc_regs[inst], 1445 &hpo_dp_le_shift, &hpo_dp_le_mask); 1446 1447 return &hpo_dp_enc31->base; 1448 } 1449 1450 static struct dce_hwseq *dcn32_hwseq_create( 1451 struct dc_context *ctx) 1452 { 1453 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1454 1455 if (hws) { 1456 hws->ctx = ctx; 1457 hws->regs = &hwseq_reg; 1458 hws->shifts = &hwseq_shift; 1459 hws->masks = &hwseq_mask; 1460 } 1461 return hws; 1462 } 1463 static const struct resource_create_funcs res_create_funcs = { 1464 .read_dce_straps = read_dce_straps, 1465 .create_audio = dcn32_create_audio, 1466 .create_stream_encoder = dcn32_stream_encoder_create, 1467 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1468 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1469 .create_hwseq = dcn32_hwseq_create, 1470 }; 1471 1472 static const struct resource_create_funcs res_create_maximus_funcs = { 1473 .read_dce_straps = NULL, 1474 .create_audio = NULL, 1475 .create_stream_encoder = NULL, 1476 .create_hpo_dp_stream_encoder = dcn32_hpo_dp_stream_encoder_create, 1477 .create_hpo_dp_link_encoder = dcn32_hpo_dp_link_encoder_create, 1478 .create_hwseq = dcn32_hwseq_create, 1479 }; 1480 1481 static void dcn32_resource_destruct(struct dcn32_resource_pool *pool) 1482 { 1483 unsigned int i; 1484 1485 for (i = 0; i < pool->base.stream_enc_count; i++) { 1486 if (pool->base.stream_enc[i] != NULL) { 1487 if (pool->base.stream_enc[i]->vpg != NULL) { 1488 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1489 pool->base.stream_enc[i]->vpg = NULL; 1490 } 1491 if (pool->base.stream_enc[i]->afmt != NULL) { 1492 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1493 pool->base.stream_enc[i]->afmt = NULL; 1494 } 1495 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1496 pool->base.stream_enc[i] = NULL; 1497 } 1498 } 1499 1500 for (i = 0; i < pool->base.hpo_dp_stream_enc_count; i++) { 1501 if (pool->base.hpo_dp_stream_enc[i] != NULL) { 1502 if (pool->base.hpo_dp_stream_enc[i]->vpg != NULL) { 1503 kfree(DCN30_VPG_FROM_VPG(pool->base.hpo_dp_stream_enc[i]->vpg)); 1504 pool->base.hpo_dp_stream_enc[i]->vpg = NULL; 1505 } 1506 if (pool->base.hpo_dp_stream_enc[i]->apg != NULL) { 1507 kfree(DCN31_APG_FROM_APG(pool->base.hpo_dp_stream_enc[i]->apg)); 1508 pool->base.hpo_dp_stream_enc[i]->apg = NULL; 1509 } 1510 kfree(DCN3_1_HPO_DP_STREAM_ENC_FROM_HPO_STREAM_ENC(pool->base.hpo_dp_stream_enc[i])); 1511 pool->base.hpo_dp_stream_enc[i] = NULL; 1512 } 1513 } 1514 1515 for (i = 0; i < pool->base.hpo_dp_link_enc_count; i++) { 1516 if (pool->base.hpo_dp_link_enc[i] != NULL) { 1517 kfree(DCN3_1_HPO_DP_LINK_ENC_FROM_HPO_LINK_ENC(pool->base.hpo_dp_link_enc[i])); 1518 pool->base.hpo_dp_link_enc[i] = NULL; 1519 } 1520 } 1521 1522 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1523 if (pool->base.dscs[i] != NULL) 1524 dcn20_dsc_destroy(&pool->base.dscs[i]); 1525 } 1526 1527 if (pool->base.mpc != NULL) { 1528 kfree(TO_DCN20_MPC(pool->base.mpc)); 1529 pool->base.mpc = NULL; 1530 } 1531 if (pool->base.hubbub != NULL) { 1532 kfree(TO_DCN20_HUBBUB(pool->base.hubbub)); 1533 pool->base.hubbub = NULL; 1534 } 1535 for (i = 0; i < pool->base.pipe_count; i++) { 1536 if (pool->base.dpps[i] != NULL) 1537 dcn32_dpp_destroy(&pool->base.dpps[i]); 1538 1539 if (pool->base.ipps[i] != NULL) 1540 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1541 1542 if (pool->base.hubps[i] != NULL) { 1543 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1544 pool->base.hubps[i] = NULL; 1545 } 1546 1547 if (pool->base.irqs != NULL) { 1548 dal_irq_service_destroy(&pool->base.irqs); 1549 } 1550 } 1551 1552 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1553 if (pool->base.engines[i] != NULL) 1554 dce110_engine_destroy(&pool->base.engines[i]); 1555 if (pool->base.hw_i2cs[i] != NULL) { 1556 kfree(pool->base.hw_i2cs[i]); 1557 pool->base.hw_i2cs[i] = NULL; 1558 } 1559 if (pool->base.sw_i2cs[i] != NULL) { 1560 kfree(pool->base.sw_i2cs[i]); 1561 pool->base.sw_i2cs[i] = NULL; 1562 } 1563 } 1564 1565 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1566 if (pool->base.opps[i] != NULL) 1567 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1568 } 1569 1570 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1571 if (pool->base.timing_generators[i] != NULL) { 1572 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1573 pool->base.timing_generators[i] = NULL; 1574 } 1575 } 1576 1577 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1578 if (pool->base.dwbc[i] != NULL) { 1579 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1580 pool->base.dwbc[i] = NULL; 1581 } 1582 if (pool->base.mcif_wb[i] != NULL) { 1583 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1584 pool->base.mcif_wb[i] = NULL; 1585 } 1586 } 1587 1588 for (i = 0; i < pool->base.audio_count; i++) { 1589 if (pool->base.audios[i]) 1590 dce_aud_destroy(&pool->base.audios[i]); 1591 } 1592 1593 for (i = 0; i < pool->base.clk_src_count; i++) { 1594 if (pool->base.clock_sources[i] != NULL) { 1595 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1596 pool->base.clock_sources[i] = NULL; 1597 } 1598 } 1599 1600 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1601 if (pool->base.mpc_lut[i] != NULL) { 1602 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1603 pool->base.mpc_lut[i] = NULL; 1604 } 1605 if (pool->base.mpc_shaper[i] != NULL) { 1606 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1607 pool->base.mpc_shaper[i] = NULL; 1608 } 1609 } 1610 1611 if (pool->base.dp_clock_source != NULL) { 1612 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1613 pool->base.dp_clock_source = NULL; 1614 } 1615 1616 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1617 if (pool->base.multiple_abms[i] != NULL) 1618 dce_abm_destroy(&pool->base.multiple_abms[i]); 1619 } 1620 1621 if (pool->base.psr != NULL) 1622 dmub_psr_destroy(&pool->base.psr); 1623 1624 if (pool->base.dccg != NULL) 1625 dcn_dccg_destroy(&pool->base.dccg); 1626 1627 if (pool->base.oem_device != NULL) 1628 dal_ddc_service_destroy(&pool->base.oem_device); 1629 } 1630 1631 1632 static bool dcn32_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1633 { 1634 int i; 1635 uint32_t dwb_count = pool->res_cap->num_dwb; 1636 1637 for (i = 0; i < dwb_count; i++) { 1638 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1639 GFP_KERNEL); 1640 1641 if (!dwbc30) { 1642 dm_error("DC: failed to create dwbc30!\n"); 1643 return false; 1644 } 1645 1646 dcn30_dwbc_construct(dwbc30, ctx, 1647 &dwbc30_regs[i], 1648 &dwbc30_shift, 1649 &dwbc30_mask, 1650 i); 1651 1652 pool->dwbc[i] = &dwbc30->base; 1653 } 1654 return true; 1655 } 1656 1657 static bool dcn32_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1658 { 1659 int i; 1660 uint32_t dwb_count = pool->res_cap->num_dwb; 1661 1662 for (i = 0; i < dwb_count; i++) { 1663 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1664 GFP_KERNEL); 1665 1666 if (!mcif_wb30) { 1667 dm_error("DC: failed to create mcif_wb30!\n"); 1668 return false; 1669 } 1670 1671 dcn32_mmhubbub_construct(mcif_wb30, ctx, 1672 &mcif_wb30_regs[i], 1673 &mcif_wb30_shift, 1674 &mcif_wb30_mask, 1675 i); 1676 1677 pool->mcif_wb[i] = &mcif_wb30->base; 1678 } 1679 return true; 1680 } 1681 1682 static struct display_stream_compressor *dcn32_dsc_create( 1683 struct dc_context *ctx, uint32_t inst) 1684 { 1685 struct dcn20_dsc *dsc = 1686 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1687 1688 if (!dsc) { 1689 BREAK_TO_DEBUGGER(); 1690 return NULL; 1691 } 1692 1693 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1694 1695 dsc->max_image_width = 6016; 1696 1697 return &dsc->base; 1698 } 1699 1700 static void dcn32_destroy_resource_pool(struct resource_pool **pool) 1701 { 1702 struct dcn32_resource_pool *dcn32_pool = TO_DCN32_RES_POOL(*pool); 1703 1704 dcn32_resource_destruct(dcn32_pool); 1705 kfree(dcn32_pool); 1706 *pool = NULL; 1707 } 1708 1709 bool dcn32_acquire_post_bldn_3dlut( 1710 struct resource_context *res_ctx, 1711 const struct resource_pool *pool, 1712 int mpcc_id, 1713 struct dc_3dlut **lut, 1714 struct dc_transfer_func **shaper) 1715 { 1716 bool ret = false; 1717 union dc_3dlut_state *state; 1718 1719 ASSERT(*lut == NULL && *shaper == NULL); 1720 *lut = NULL; 1721 *shaper = NULL; 1722 1723 if (!res_ctx->is_mpc_3dlut_acquired[mpcc_id]) { 1724 *lut = pool->mpc_lut[mpcc_id]; 1725 *shaper = pool->mpc_shaper[mpcc_id]; 1726 state = &pool->mpc_lut[mpcc_id]->state; 1727 res_ctx->is_mpc_3dlut_acquired[mpcc_id] = true; 1728 ret = true; 1729 } 1730 return ret; 1731 } 1732 1733 bool dcn32_release_post_bldn_3dlut( 1734 struct resource_context *res_ctx, 1735 const struct resource_pool *pool, 1736 struct dc_3dlut **lut, 1737 struct dc_transfer_func **shaper) 1738 { 1739 int i; 1740 bool ret = false; 1741 1742 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1743 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1744 res_ctx->is_mpc_3dlut_acquired[i] = false; 1745 pool->mpc_lut[i]->state.raw = 0; 1746 *lut = NULL; 1747 *shaper = NULL; 1748 ret = true; 1749 break; 1750 } 1751 } 1752 return ret; 1753 } 1754 1755 /** 1756 ******************************************************************************************** 1757 * dcn32_get_num_free_pipes: Calculate number of free pipes 1758 * 1759 * This function assumes that a "used" pipe is a pipe that has 1760 * both a stream and a plane assigned to it. 1761 * 1762 * @param [in] dc: current dc state 1763 * @param [in] context: new dc state 1764 * 1765 * @return: Number of free pipes available in the context 1766 * 1767 ******************************************************************************************** 1768 */ 1769 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context) 1770 { 1771 unsigned int i; 1772 unsigned int free_pipes = 0; 1773 unsigned int num_pipes = 0; 1774 1775 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1776 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1777 1778 if (pipe->stream && !pipe->top_pipe) { 1779 while (pipe) { 1780 num_pipes++; 1781 pipe = pipe->bottom_pipe; 1782 } 1783 } 1784 } 1785 1786 free_pipes = dc->res_pool->pipe_count - num_pipes; 1787 return free_pipes; 1788 } 1789 1790 /** 1791 ******************************************************************************************** 1792 * dcn32_assign_subvp_pipe: Function to decide which pipe will use Sub-VP. 1793 * 1794 * We enter this function if we are Sub-VP capable (i.e. enough pipes available) 1795 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if 1796 * we are forcing SubVP P-State switching on the current config. 1797 * 1798 * The number of pipes used for the chosen surface must be less than or equal to the 1799 * number of free pipes available. 1800 * 1801 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK). 1802 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own 1803 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't 1804 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]). 1805 * 1806 * @param [in] dc: current dc state 1807 * @param [in] context: new dc state 1808 * @param [out] index: dc pipe index for the pipe chosen to have phantom pipes assigned 1809 * 1810 * @return: True if a valid pipe assignment was found for Sub-VP. Otherwise false. 1811 * 1812 ******************************************************************************************** 1813 */ 1814 1815 static bool dcn32_assign_subvp_pipe(struct dc *dc, 1816 struct dc_state *context, 1817 unsigned int *index) 1818 { 1819 unsigned int i, pipe_idx; 1820 unsigned int max_frame_time = 0; 1821 bool valid_assignment_found = false; 1822 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context); 1823 bool current_assignment_freesync = false; 1824 1825 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1826 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1827 unsigned int num_pipes = 0; 1828 1829 if (!pipe->stream) 1830 continue; 1831 1832 if (pipe->plane_state && !pipe->top_pipe && 1833 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 1834 while (pipe) { 1835 num_pipes++; 1836 pipe = pipe->bottom_pipe; 1837 } 1838 1839 pipe = &context->res_ctx.pipe_ctx[i]; 1840 if (num_pipes <= free_pipes) { 1841 struct dc_stream_state *stream = pipe->stream; 1842 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total / 1843 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000; 1844 if (frame_us > max_frame_time && !stream->ignore_msa_timing_param) { 1845 *index = i; 1846 max_frame_time = frame_us; 1847 valid_assignment_found = true; 1848 current_assignment_freesync = false; 1849 /* For the 2-Freesync display case, still choose the one with the 1850 * longest frame time 1851 */ 1852 } else if (stream->ignore_msa_timing_param && (!valid_assignment_found || 1853 (current_assignment_freesync && frame_us > max_frame_time))) { 1854 *index = i; 1855 valid_assignment_found = true; 1856 current_assignment_freesync = true; 1857 } 1858 } 1859 } 1860 pipe_idx++; 1861 } 1862 return valid_assignment_found; 1863 } 1864 1865 /** 1866 * *************************************************************************************** 1867 * dcn32_enough_pipes_for_subvp: Function to check if there are "enough" pipes for SubVP. 1868 * 1869 * This function returns true if there are enough free pipes 1870 * to create the required phantom pipes for any given stream 1871 * (that does not already have phantom pipe assigned). 1872 * 1873 * e.g. For a 2 stream config where the first stream uses one 1874 * pipe and the second stream uses 2 pipes (i.e. pipe split), 1875 * this function will return true because there is 1 remaining 1876 * pipe which can be used as the phantom pipe for the non pipe 1877 * split pipe. 1878 * 1879 * @param [in] dc: current dc state 1880 * @param [in] context: new dc state 1881 * 1882 * @return: True if there are enough free pipes to assign phantom pipes to at least one 1883 * stream that does not already have phantom pipes assigned. Otherwise false. 1884 * 1885 * *************************************************************************************** 1886 */ 1887 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context) 1888 { 1889 unsigned int i, split_cnt, free_pipes; 1890 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1 1891 bool subvp_possible = false; 1892 1893 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1894 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1895 1896 // Find the minimum pipe split count for non SubVP pipes 1897 if (pipe->stream && !pipe->top_pipe && 1898 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 1899 split_cnt = 0; 1900 while (pipe) { 1901 split_cnt++; 1902 pipe = pipe->bottom_pipe; 1903 } 1904 1905 if (split_cnt < min_pipe_split) 1906 min_pipe_split = split_cnt; 1907 } 1908 } 1909 1910 free_pipes = dcn32_get_num_free_pipes(dc, context); 1911 1912 // SubVP only possible if at least one pipe is being used (i.e. free_pipes 1913 // should not equal to the pipe_count) 1914 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count) 1915 subvp_possible = true; 1916 1917 return subvp_possible; 1918 } 1919 1920 static void dcn32_enable_phantom_plane(struct dc *dc, 1921 struct dc_state *context, 1922 struct dc_stream_state *phantom_stream, 1923 unsigned int dc_pipe_idx) 1924 { 1925 struct dc_plane_state *phantom_plane = NULL; 1926 struct dc_plane_state *prev_phantom_plane = NULL; 1927 struct pipe_ctx *curr_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 1928 1929 while (curr_pipe) { 1930 if (curr_pipe->top_pipe && curr_pipe->top_pipe->plane_state == curr_pipe->plane_state) 1931 phantom_plane = prev_phantom_plane; 1932 else 1933 phantom_plane = dc_create_plane_state(dc); 1934 1935 memcpy(&phantom_plane->address, &curr_pipe->plane_state->address, sizeof(phantom_plane->address)); 1936 memcpy(&phantom_plane->scaling_quality, &curr_pipe->plane_state->scaling_quality, 1937 sizeof(phantom_plane->scaling_quality)); 1938 memcpy(&phantom_plane->src_rect, &curr_pipe->plane_state->src_rect, sizeof(phantom_plane->src_rect)); 1939 memcpy(&phantom_plane->dst_rect, &curr_pipe->plane_state->dst_rect, sizeof(phantom_plane->dst_rect)); 1940 memcpy(&phantom_plane->clip_rect, &curr_pipe->plane_state->clip_rect, sizeof(phantom_plane->clip_rect)); 1941 memcpy(&phantom_plane->plane_size, &curr_pipe->plane_state->plane_size, 1942 sizeof(phantom_plane->plane_size)); 1943 memcpy(&phantom_plane->tiling_info, &curr_pipe->plane_state->tiling_info, 1944 sizeof(phantom_plane->tiling_info)); 1945 memcpy(&phantom_plane->dcc, &curr_pipe->plane_state->dcc, sizeof(phantom_plane->dcc)); 1946 phantom_plane->format = curr_pipe->plane_state->format; 1947 phantom_plane->rotation = curr_pipe->plane_state->rotation; 1948 phantom_plane->visible = curr_pipe->plane_state->visible; 1949 1950 /* Shadow pipe has small viewport. */ 1951 phantom_plane->clip_rect.y = 0; 1952 phantom_plane->clip_rect.height = phantom_stream->timing.v_addressable; 1953 1954 dc_add_plane_to_context(dc, phantom_stream, phantom_plane, context); 1955 1956 curr_pipe = curr_pipe->bottom_pipe; 1957 prev_phantom_plane = phantom_plane; 1958 } 1959 } 1960 1961 /** 1962 * *************************************************************************************** 1963 * dcn32_set_phantom_stream_timing: Set timing params for the phantom stream 1964 * 1965 * Set timing params of the phantom stream based on calculated output from DML. 1966 * This function first gets the DML pipe index using the DC pipe index, then 1967 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of 1968 * lines required for SubVP MCLK switching and assigns to the phantom stream 1969 * accordingly. 1970 * 1971 * - The number of SubVP lines calculated in DML does not take into account 1972 * FW processing delays and required pstate allow width, so we must include 1973 * that separately. 1974 * 1975 * - Set phantom backporch = vstartup of main pipe 1976 * 1977 * @param [in] dc: current dc state 1978 * @param [in] context: new dc state 1979 * @param [in] ref_pipe: Main pipe for the phantom stream 1980 * @param [in] pipes: DML pipe params 1981 * @param [in] pipe_cnt: number of DML pipes 1982 * @param [in] dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe) 1983 * 1984 * @return: void 1985 * 1986 * *************************************************************************************** 1987 */ 1988 static void dcn32_set_phantom_stream_timing(struct dc *dc, 1989 struct dc_state *context, 1990 struct pipe_ctx *ref_pipe, 1991 struct dc_stream_state *phantom_stream, 1992 display_e2e_pipe_params_st *pipes, 1993 unsigned int pipe_cnt, 1994 unsigned int dc_pipe_idx) 1995 { 1996 unsigned int i, pipe_idx; 1997 struct pipe_ctx *pipe; 1998 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines; 1999 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel; 2000 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2001 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel]; 2002 2003 // Find DML pipe index (pipe_idx) using dc_pipe_idx 2004 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2005 pipe = &context->res_ctx.pipe_ctx[i]; 2006 2007 if (!pipe->stream) 2008 continue; 2009 2010 if (i == dc_pipe_idx) 2011 break; 2012 2013 pipe_idx++; 2014 } 2015 2016 // Calculate lines required for pstate allow width and FW processing delays 2017 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us + 2018 dc->caps.subvp_pstate_allow_width_us) / 1000000) * 2019 (ref_pipe->stream->timing.pix_clk_100hz * 100) / 2020 (double)ref_pipe->stream->timing.h_total; 2021 2022 // Update clks_cfg for calling into recalculate 2023 pipes[0].clks_cfg.voltage = vlevel; 2024 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2025 pipes[0].clks_cfg.socclk_mhz = socclk; 2026 2027 // DML calculation for MALL region doesn't take into account FW delay 2028 // and required pstate allow width for multi-display cases 2029 phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) + 2030 pstate_width_fw_delay_lines; 2031 2032 // For backporch of phantom pipe, use vstartup of the main pipe 2033 phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2034 2035 phantom_stream->dst.y = 0; 2036 phantom_stream->dst.height = phantom_vactive; 2037 phantom_stream->src.y = 0; 2038 phantom_stream->src.height = phantom_vactive; 2039 2040 phantom_stream->timing.v_addressable = phantom_vactive; 2041 phantom_stream->timing.v_front_porch = 1; 2042 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable + 2043 phantom_stream->timing.v_front_porch + 2044 phantom_stream->timing.v_sync_width + 2045 phantom_bp; 2046 } 2047 2048 static struct dc_stream_state *dcn32_enable_phantom_stream(struct dc *dc, 2049 struct dc_state *context, 2050 display_e2e_pipe_params_st *pipes, 2051 unsigned int pipe_cnt, 2052 unsigned int dc_pipe_idx) 2053 { 2054 struct dc_stream_state *phantom_stream = NULL; 2055 struct pipe_ctx *ref_pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx]; 2056 2057 phantom_stream = dc_create_stream_for_sink(ref_pipe->stream->sink); 2058 phantom_stream->signal = SIGNAL_TYPE_VIRTUAL; 2059 phantom_stream->dpms_off = true; 2060 phantom_stream->mall_stream_config.type = SUBVP_PHANTOM; 2061 phantom_stream->mall_stream_config.paired_stream = ref_pipe->stream; 2062 ref_pipe->stream->mall_stream_config.type = SUBVP_MAIN; 2063 ref_pipe->stream->mall_stream_config.paired_stream = phantom_stream; 2064 2065 /* stream has limited viewport and small timing */ 2066 memcpy(&phantom_stream->timing, &ref_pipe->stream->timing, sizeof(phantom_stream->timing)); 2067 memcpy(&phantom_stream->src, &ref_pipe->stream->src, sizeof(phantom_stream->src)); 2068 memcpy(&phantom_stream->dst, &ref_pipe->stream->dst, sizeof(phantom_stream->dst)); 2069 dcn32_set_phantom_stream_timing(dc, context, ref_pipe, phantom_stream, pipes, pipe_cnt, dc_pipe_idx); 2070 2071 dc_add_stream_to_ctx(dc, context, phantom_stream); 2072 return phantom_stream; 2073 } 2074 2075 // return true if removed piped from ctx, false otherwise 2076 bool dcn32_remove_phantom_pipes(struct dc *dc, struct dc_state *context) 2077 { 2078 int i; 2079 bool removed_pipe = false; 2080 2081 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2082 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2083 // build scaling params for phantom pipes 2084 if (pipe->plane_state && pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 2085 dc_rem_all_planes_for_stream(dc, pipe->stream, context); 2086 dc_remove_stream_from_ctx(dc, context, pipe->stream); 2087 removed_pipe = true; 2088 } 2089 2090 // Clear all phantom stream info 2091 if (pipe->stream) { 2092 pipe->stream->mall_stream_config.type = SUBVP_NONE; 2093 pipe->stream->mall_stream_config.paired_stream = NULL; 2094 } 2095 } 2096 return removed_pipe; 2097 } 2098 2099 /* TODO: Input to this function should indicate which pipe indexes (or streams) 2100 * require a phantom pipe / stream 2101 */ 2102 void dcn32_add_phantom_pipes(struct dc *dc, struct dc_state *context, 2103 display_e2e_pipe_params_st *pipes, 2104 unsigned int pipe_cnt, 2105 unsigned int index) 2106 { 2107 struct dc_stream_state *phantom_stream = NULL; 2108 unsigned int i; 2109 2110 // The index of the DC pipe passed into this function is guarenteed to 2111 // be a valid candidate for SubVP (i.e. has a plane, stream, doesn't 2112 // already have phantom pipe assigned, etc.) by previous checks. 2113 phantom_stream = dcn32_enable_phantom_stream(dc, context, pipes, pipe_cnt, index); 2114 dcn32_enable_phantom_plane(dc, context, phantom_stream, index); 2115 2116 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2117 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2118 2119 // Build scaling params for phantom pipes which were newly added. 2120 // We determine which phantom pipes were added by comparing with 2121 // the phantom stream. 2122 if (pipe->plane_state && pipe->stream && pipe->stream == phantom_stream && 2123 pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) { 2124 pipe->stream->use_dynamic_meta = false; 2125 pipe->plane_state->flip_immediate = false; 2126 if (!resource_build_scaling_params(pipe)) { 2127 // Log / remove phantom pipes since failed to build scaling params 2128 } 2129 } 2130 } 2131 } 2132 2133 static bool dcn32_split_stream_for_mpc_or_odm( 2134 const struct dc *dc, 2135 struct resource_context *res_ctx, 2136 struct pipe_ctx *pri_pipe, 2137 struct pipe_ctx *sec_pipe, 2138 bool odm) 2139 { 2140 int pipe_idx = sec_pipe->pipe_idx; 2141 const struct resource_pool *pool = dc->res_pool; 2142 2143 if (pri_pipe->plane_state) { 2144 /* ODM + window MPO, where MPO window is on left half only */ 2145 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <= 2146 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) 2147 return true; 2148 2149 /* ODM + window MPO, where MPO window is on right half only */ 2150 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.width/2) 2151 return true; 2152 } 2153 2154 *sec_pipe = *pri_pipe; 2155 2156 sec_pipe->pipe_idx = pipe_idx; 2157 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 2158 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 2159 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 2160 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 2161 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 2162 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 2163 sec_pipe->stream_res.dsc = NULL; 2164 if (odm) { 2165 if (pri_pipe->next_odm_pipe) { 2166 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 2167 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 2168 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 2169 } 2170 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 2171 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 2172 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 2173 } 2174 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 2175 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 2176 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 2177 } 2178 pri_pipe->next_odm_pipe = sec_pipe; 2179 sec_pipe->prev_odm_pipe = pri_pipe; 2180 ASSERT(sec_pipe->top_pipe == NULL); 2181 2182 if (!sec_pipe->top_pipe) 2183 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 2184 else 2185 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 2186 if (sec_pipe->stream->timing.flags.DSC == 1) { 2187 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 2188 ASSERT(sec_pipe->stream_res.dsc); 2189 if (sec_pipe->stream_res.dsc == NULL) 2190 return false; 2191 } 2192 } else { 2193 if (pri_pipe->bottom_pipe) { 2194 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 2195 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 2196 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 2197 } 2198 pri_pipe->bottom_pipe = sec_pipe; 2199 sec_pipe->top_pipe = pri_pipe; 2200 2201 ASSERT(pri_pipe->plane_state); 2202 } 2203 2204 return true; 2205 } 2206 2207 static struct pipe_ctx *dcn32_find_split_pipe( 2208 struct dc *dc, 2209 struct dc_state *context, 2210 int old_index) 2211 { 2212 struct pipe_ctx *pipe = NULL; 2213 int i; 2214 2215 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 2216 pipe = &context->res_ctx.pipe_ctx[old_index]; 2217 pipe->pipe_idx = old_index; 2218 } 2219 2220 if (!pipe) 2221 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 2222 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 2223 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 2224 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 2225 pipe = &context->res_ctx.pipe_ctx[i]; 2226 pipe->pipe_idx = i; 2227 break; 2228 } 2229 } 2230 } 2231 2232 /* 2233 * May need to fix pipes getting tossed from 1 opp to another on flip 2234 * Add for debugging transient underflow during topology updates: 2235 * ASSERT(pipe); 2236 */ 2237 if (!pipe) 2238 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 2239 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 2240 pipe = &context->res_ctx.pipe_ctx[i]; 2241 pipe->pipe_idx = i; 2242 break; 2243 } 2244 } 2245 2246 return pipe; 2247 } 2248 2249 2250 /** 2251 * *************************************************************************************** 2252 * subvp_subvp_schedulable: Determine if SubVP + SubVP config is schedulable 2253 * 2254 * High level algorithm: 2255 * 1. Find longest microschedule length (in us) between the two SubVP pipes 2256 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both 2257 * pipes still allows for the maximum microschedule to fit in the active 2258 * region for both pipes. 2259 * 2260 * @param [in] dc: current dc state 2261 * @param [in] context: new dc state 2262 * 2263 * @return: bool - True if the SubVP + SubVP config is schedulable, false otherwise 2264 * 2265 * *************************************************************************************** 2266 */ 2267 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context) 2268 { 2269 struct pipe_ctx *subvp_pipes[2]; 2270 struct dc_stream_state *phantom = NULL; 2271 uint32_t microschedule_lines = 0; 2272 uint32_t index = 0; 2273 uint32_t i; 2274 uint32_t max_microschedule_us = 0; 2275 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us; 2276 2277 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2278 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2279 uint32_t time_us = 0; 2280 2281 /* Loop to calculate the maximum microschedule time between the two SubVP pipes, 2282 * and also to store the two main SubVP pipe pointers in subvp_pipes[2]. 2283 */ 2284 if (pipe->stream && pipe->plane_state && !pipe->top_pipe && 2285 pipe->stream->mall_stream_config.type == SUBVP_MAIN) { 2286 phantom = pipe->stream->mall_stream_config.paired_stream; 2287 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) + 2288 phantom->timing.v_addressable; 2289 2290 // Round up when calculating microschedule time (+ 1 at the end) 2291 time_us = (microschedule_lines * phantom->timing.h_total) / 2292 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 + 2293 dc->caps.subvp_prefetch_end_to_mall_start_us + 2294 dc->caps.subvp_fw_processing_delay_us + 1; 2295 if (time_us > max_microschedule_us) 2296 max_microschedule_us = time_us; 2297 2298 subvp_pipes[index] = pipe; 2299 index++; 2300 2301 // Maximum 2 SubVP pipes 2302 if (index == 2) 2303 break; 2304 } 2305 } 2306 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) / 2307 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2308 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) / 2309 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2310 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) * 2311 subvp_pipes[0]->stream->timing.h_total) / 2312 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2313 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) * 2314 subvp_pipes[1]->stream->timing.h_total) / 2315 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000; 2316 2317 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us && 2318 (vactive2_us - vblank1_us) / 2 > max_microschedule_us) 2319 return true; 2320 2321 return false; 2322 } 2323 2324 /** 2325 * *************************************************************************************** 2326 * subvp_drr_schedulable: Determine if SubVP + DRR config is schedulable 2327 * 2328 * High level algorithm: 2329 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe 2330 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching 2331 * (the margin is equal to the MALL region + DRR margin (500us)) 2332 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame)) 2333 * then report the configuration as supported 2334 * 2335 * @param [in] dc: current dc state 2336 * @param [in] context: new dc state 2337 * @param [in] drr_pipe: DRR pipe_ctx for the SubVP + DRR config 2338 * 2339 * @return: bool - True if the SubVP + DRR config is schedulable, false otherwise 2340 * 2341 * *************************************************************************************** 2342 */ 2343 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context, struct pipe_ctx *drr_pipe) 2344 { 2345 bool schedulable = false; 2346 uint32_t i; 2347 struct pipe_ctx *pipe = NULL; 2348 struct dc_crtc_timing *main_timing = NULL; 2349 struct dc_crtc_timing *phantom_timing = NULL; 2350 struct dc_crtc_timing *drr_timing = NULL; 2351 int16_t prefetch_us = 0; 2352 int16_t mall_region_us = 0; 2353 int16_t drr_frame_us = 0; // nominal frame time 2354 int16_t subvp_active_us = 0; 2355 int16_t stretched_drr_us = 0; 2356 int16_t drr_stretched_vblank_us = 0; 2357 int16_t max_vblank_mallregion = 0; 2358 2359 // Find SubVP pipe 2360 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2361 pipe = &context->res_ctx.pipe_ctx[i]; 2362 2363 // We check for master pipe, but it shouldn't matter since we only need 2364 // the pipe for timing info (stream should be same for any pipe splits) 2365 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) 2366 continue; 2367 2368 // Find the SubVP pipe 2369 if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2370 break; 2371 } 2372 2373 main_timing = &pipe->stream->timing; 2374 phantom_timing = &pipe->stream->mall_stream_config.paired_stream->timing; 2375 drr_timing = &drr_pipe->stream->timing; 2376 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 2377 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 2378 dc->caps.subvp_prefetch_end_to_mall_start_us; 2379 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 2380 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 2381 drr_frame_us = drr_timing->v_total * drr_timing->h_total / 2382 (double)(drr_timing->pix_clk_100hz * 100) * 1000000; 2383 // P-State allow width and FW delays already included phantom_timing->v_addressable 2384 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 2385 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 2386 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US; 2387 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total / 2388 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us); 2389 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us; 2390 2391 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the 2392 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis 2393 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 2394 * and the max of (VBLANK blanking time, MALL region)). 2395 */ 2396 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 && 2397 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0) 2398 schedulable = true; 2399 2400 return schedulable; 2401 } 2402 2403 /** 2404 * *************************************************************************************** 2405 * subvp_vblank_schedulable: Determine if SubVP + VBLANK config is schedulable 2406 * 2407 * High level algorithm: 2408 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe 2409 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time)) 2410 * then report the configuration as supported 2411 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path 2412 * 2413 * @param [in] dc: current dc state 2414 * @param [in] context: new dc state 2415 * 2416 * @return: bool - True if the SubVP + VBLANK/DRR config is schedulable, false otherwise 2417 * 2418 * *************************************************************************************** 2419 */ 2420 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context) 2421 { 2422 struct pipe_ctx *pipe = NULL; 2423 struct pipe_ctx *subvp_pipe = NULL; 2424 bool found = false; 2425 bool schedulable = false; 2426 uint32_t i = 0; 2427 uint8_t vblank_index = 0; 2428 uint16_t prefetch_us = 0; 2429 uint16_t mall_region_us = 0; 2430 uint16_t vblank_frame_us = 0; 2431 uint16_t subvp_active_us = 0; 2432 uint16_t vblank_blank_us = 0; 2433 uint16_t max_vblank_mallregion = 0; 2434 struct dc_crtc_timing *main_timing = NULL; 2435 struct dc_crtc_timing *phantom_timing = NULL; 2436 struct dc_crtc_timing *vblank_timing = NULL; 2437 2438 /* For SubVP + VBLANK/DRR cases, we assume there can only be 2439 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK 2440 * is supported, it is either a single VBLANK case or two VBLANK 2441 * displays which are synchronized (in which case they have identical 2442 * timings). 2443 */ 2444 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2445 pipe = &context->res_ctx.pipe_ctx[i]; 2446 2447 // We check for master pipe, but it shouldn't matter since we only need 2448 // the pipe for timing info (stream should be same for any pipe splits) 2449 if (!pipe->stream || !pipe->plane_state || pipe->top_pipe || pipe->prev_odm_pipe) 2450 continue; 2451 2452 if (!found && pipe->stream->mall_stream_config.type == SUBVP_NONE) { 2453 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe). 2454 vblank_index = i; 2455 found = true; 2456 } 2457 2458 if (!subvp_pipe && pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2459 subvp_pipe = pipe; 2460 } 2461 // Use ignore_msa_timing_param flag to identify as DRR 2462 if (found && context->res_ctx.pipe_ctx[vblank_index].stream->ignore_msa_timing_param) { 2463 // SUBVP + DRR case 2464 schedulable = subvp_drr_schedulable(dc, context, &context->res_ctx.pipe_ctx[vblank_index]); 2465 } else if (found) { 2466 main_timing = &subvp_pipe->stream->timing; 2467 phantom_timing = &subvp_pipe->stream->mall_stream_config.paired_stream->timing; 2468 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing; 2469 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe 2470 // Also include the prefetch end to mallstart delay time 2471 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total / 2472 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 + 2473 dc->caps.subvp_prefetch_end_to_mall_start_us; 2474 // P-State allow width and FW delays already included phantom_timing->v_addressable 2475 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total / 2476 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000; 2477 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total / 2478 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 2479 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total / 2480 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000; 2481 subvp_active_us = main_timing->v_addressable * main_timing->h_total / 2482 (double)(main_timing->pix_clk_100hz * 100) * 1000000; 2483 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us; 2484 2485 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time, 2486 // and the max of (VBLANK blanking time, MALL region) 2487 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0) 2488 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0) 2489 schedulable = true; 2490 } 2491 return schedulable; 2492 } 2493 2494 /** 2495 * ******************************************************************************************** 2496 * subvp_validate_static_schedulability: Check which SubVP case is calculated and handle 2497 * static analysis based on the case. 2498 * 2499 * Three cases: 2500 * 1. SubVP + SubVP 2501 * 2. SubVP + VBLANK (DRR checked internally) 2502 * 3. SubVP + VACTIVE (currently unsupported) 2503 * 2504 * @param [in] dc: current dc state 2505 * @param [in] context: new dc state 2506 * @param [in] vlevel: Voltage level calculated by DML 2507 * 2508 * @return: bool - True if statically schedulable, false otherwise 2509 * 2510 * ******************************************************************************************** 2511 */ 2512 static bool subvp_validate_static_schedulability(struct dc *dc, 2513 struct dc_state *context, 2514 int vlevel) 2515 { 2516 bool schedulable = true; // true by default for single display case 2517 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2518 uint32_t i, pipe_idx; 2519 uint8_t subvp_count = 0; 2520 uint8_t vactive_count = 0; 2521 2522 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2523 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2524 2525 if (!pipe->stream) 2526 continue; 2527 2528 if (pipe->plane_state && !pipe->top_pipe && 2529 pipe->stream->mall_stream_config.type == SUBVP_MAIN) 2530 subvp_count++; 2531 2532 // Count how many planes are capable of VACTIVE switching (SubVP + VACTIVE unsupported) 2533 if (vba->ActiveDRAMClockChangeLatencyMargin[vba->pipe_plane[pipe_idx]] > 0) { 2534 vactive_count++; 2535 } 2536 pipe_idx++; 2537 } 2538 2539 if (subvp_count == 2) { 2540 // Static schedulability check for SubVP + SubVP case 2541 schedulable = subvp_subvp_schedulable(dc, context); 2542 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vblank_w_mall_sub_vp) { 2543 // Static schedulability check for SubVP + VBLANK case. Also handle the case where 2544 // DML outputs SubVP + VBLANK + VACTIVE (DML will report as SubVP + VBLANK) 2545 if (vactive_count > 0) 2546 schedulable = false; 2547 else 2548 schedulable = subvp_vblank_schedulable(dc, context); 2549 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp) { 2550 // SubVP + VACTIVE currently unsupported 2551 schedulable = false; 2552 } 2553 return schedulable; 2554 } 2555 2556 static void dcn32_full_validate_bw_helper(struct dc *dc, 2557 struct dc_state *context, 2558 display_e2e_pipe_params_st *pipes, 2559 int *vlevel, 2560 int *split, 2561 bool *merge, 2562 int *pipe_cnt) 2563 { 2564 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2565 unsigned int dc_pipe_idx = 0; 2566 bool found_supported_config = false; 2567 struct pipe_ctx *pipe = NULL; 2568 uint32_t non_subvp_pipes = 0; 2569 bool drr_pipe_found = false; 2570 uint32_t drr_pipe_index = 0; 2571 uint32_t i = 0; 2572 2573 /* 2574 * DML favors voltage over p-state, but we're more interested in 2575 * supporting p-state over voltage. We can't support p-state in 2576 * prefetch mode > 0 so try capping the prefetch mode to start. 2577 */ 2578 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2579 dm_prefetch_support_uclk_fclk_and_stutter; 2580 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 2581 /* This may adjust vlevel and maxMpcComb */ 2582 if (*vlevel < context->bw_ctx.dml.soc.num_states) 2583 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 2584 2585 /* Conditions for setting up phantom pipes for SubVP: 2586 * 1. Not force disable SubVP 2587 * 2. Full update (i.e. !fast_validate) 2588 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?) 2589 * 4. Display configuration passes validation 2590 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch) 2591 */ 2592 if (!dc->debug.force_disable_subvp && dcn32_all_pipes_have_stream_and_plane(dc, context) && 2593 (*vlevel == context->bw_ctx.dml.soc.num_states || 2594 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported || 2595 dc->debug.force_subvp_mclk_switch)) { 2596 2597 dcn32_merge_pipes_for_subvp(dc, context); 2598 2599 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) && 2600 dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) { 2601 2602 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config. 2603 * Adding phantom pipes won't change the validation result, so change the DML input param 2604 * for P-State support before adding phantom pipes and recalculating the DML result. 2605 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode 2606 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched 2607 * enough to support support MCLK switching. 2608 */ 2609 if (*vlevel == context->bw_ctx.dml.soc.num_states) { 2610 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2611 dm_prefetch_support_stutter; 2612 /* There are params (such as FabricClock) that need to be recalculated 2613 * after validation fails (otherwise it will be 0). Calculation for 2614 * phantom vactive requires call into DML, so we must ensure all the 2615 * vba params are valid otherwise we'll get incorrect phantom vactive. 2616 */ 2617 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 2618 } 2619 2620 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx); 2621 2622 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 2623 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt); 2624 2625 if (*vlevel < context->bw_ctx.dml.soc.num_states && 2626 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported 2627 && subvp_validate_static_schedulability(dc, context, *vlevel)) { 2628 found_supported_config = true; 2629 } else if (*vlevel < context->bw_ctx.dml.soc.num_states && 2630 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 2631 /* Case where 1 SubVP is added, and DML reports MCLK unsupported. This handles 2632 * the case for SubVP + DRR, where the DRR display does not support MCLK switch 2633 * at it's native refresh rate / timing. 2634 */ 2635 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2636 pipe = &context->res_ctx.pipe_ctx[i]; 2637 if (pipe->stream && pipe->plane_state && !pipe->top_pipe && 2638 pipe->stream->mall_stream_config.type == SUBVP_NONE) { 2639 non_subvp_pipes++; 2640 // Use ignore_msa_timing_param flag to identify as DRR 2641 if (pipe->stream->ignore_msa_timing_param) { 2642 drr_pipe_found = true; 2643 drr_pipe_index = i; 2644 } 2645 } 2646 } 2647 // If there is only 1 remaining non SubVP pipe that is DRR, check static 2648 // schedulability for SubVP + DRR. 2649 if (non_subvp_pipes == 1 && drr_pipe_found) { 2650 found_supported_config = subvp_drr_schedulable(dc, 2651 context, &context->res_ctx.pipe_ctx[drr_pipe_index]); 2652 } 2653 } 2654 } 2655 2656 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching) 2657 // remove phantom pipes and repopulate dml pipes 2658 if (!found_supported_config) { 2659 dc->res_pool->funcs->remove_phantom_pipes(dc, context); 2660 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported; 2661 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false); 2662 } else { 2663 // only call dcn20_validate_apply_pipe_split_flags if we found a supported config 2664 memset(split, 0, MAX_PIPES * sizeof(int)); 2665 memset(merge, 0, MAX_PIPES * sizeof(bool)); 2666 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge); 2667 2668 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait 2669 // until driver has acquired the DMCUB lock to do it safely. 2670 } 2671 } 2672 } 2673 2674 static bool dcn32_internal_validate_bw( 2675 struct dc *dc, 2676 struct dc_state *context, 2677 display_e2e_pipe_params_st *pipes, 2678 int *pipe_cnt_out, 2679 int *vlevel_out, 2680 bool fast_validate) 2681 { 2682 bool out = false; 2683 bool repopulate_pipes = false; 2684 int split[MAX_PIPES] = { 0 }; 2685 bool merge[MAX_PIPES] = { false }; 2686 bool newly_split[MAX_PIPES] = { false }; 2687 int pipe_cnt, i, pipe_idx, vlevel; 2688 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 2689 2690 ASSERT(pipes); 2691 if (!pipes) 2692 return false; 2693 2694 // For each full update, remove all existing phantom pipes first 2695 dc->res_pool->funcs->remove_phantom_pipes(dc, context); 2696 2697 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 2698 2699 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2700 2701 if (!pipe_cnt) { 2702 out = true; 2703 goto validate_out; 2704 } 2705 2706 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 2707 2708 if (!fast_validate) { 2709 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt); 2710 } 2711 2712 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 2713 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 2714 /* 2715 * If mode is unsupported or there's still no p-state support then 2716 * fall back to favoring voltage. 2717 * 2718 * We don't actually support prefetch mode 2, so require that we 2719 * at least support prefetch mode 1. 2720 */ 2721 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = 2722 dm_prefetch_support_stutter; 2723 2724 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 2725 if (vlevel < context->bw_ctx.dml.soc.num_states) { 2726 memset(split, 0, MAX_PIPES * sizeof(int)); 2727 memset(merge, 0, MAX_PIPES * sizeof(bool)); 2728 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 2729 } 2730 } 2731 2732 dml_log_mode_support_params(&context->bw_ctx.dml); 2733 2734 if (vlevel == context->bw_ctx.dml.soc.num_states) 2735 goto validate_fail; 2736 2737 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2738 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2739 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 2740 2741 if (!pipe->stream) 2742 continue; 2743 2744 /* We only support full screen mpo with ODM */ 2745 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 2746 && pipe->plane_state && mpo_pipe 2747 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 2748 &pipe->plane_res.scl_data.recout, 2749 sizeof(struct rect)) != 0) { 2750 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 2751 goto validate_fail; 2752 } 2753 pipe_idx++; 2754 } 2755 2756 /* merge pipes if necessary */ 2757 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2758 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2759 2760 /*skip pipes that don't need merging*/ 2761 if (!merge[i]) 2762 continue; 2763 2764 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 2765 if (pipe->prev_odm_pipe) { 2766 /*split off odm pipe*/ 2767 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 2768 if (pipe->next_odm_pipe) 2769 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 2770 2771 pipe->bottom_pipe = NULL; 2772 pipe->next_odm_pipe = NULL; 2773 pipe->plane_state = NULL; 2774 pipe->stream = NULL; 2775 pipe->top_pipe = NULL; 2776 pipe->prev_odm_pipe = NULL; 2777 if (pipe->stream_res.dsc) 2778 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 2779 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2780 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2781 repopulate_pipes = true; 2782 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 2783 struct pipe_ctx *top_pipe = pipe->top_pipe; 2784 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 2785 2786 top_pipe->bottom_pipe = bottom_pipe; 2787 if (bottom_pipe) 2788 bottom_pipe->top_pipe = top_pipe; 2789 2790 pipe->top_pipe = NULL; 2791 pipe->bottom_pipe = NULL; 2792 pipe->plane_state = NULL; 2793 pipe->stream = NULL; 2794 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 2795 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 2796 repopulate_pipes = true; 2797 } else 2798 ASSERT(0); /* Should never try to merge master pipe */ 2799 2800 } 2801 2802 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 2803 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2804 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 2805 struct pipe_ctx *hsplit_pipe = NULL; 2806 bool odm; 2807 int old_index = -1; 2808 2809 if (!pipe->stream || newly_split[i]) 2810 continue; 2811 2812 pipe_idx++; 2813 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2814 2815 if (!pipe->plane_state && !odm) 2816 continue; 2817 2818 if (split[i]) { 2819 if (odm) { 2820 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2821 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2822 else if (old_pipe->next_odm_pipe) 2823 old_index = old_pipe->next_odm_pipe->pipe_idx; 2824 } else { 2825 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2826 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2827 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2828 else if (old_pipe->bottom_pipe && 2829 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2830 old_index = old_pipe->bottom_pipe->pipe_idx; 2831 } 2832 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index); 2833 ASSERT(hsplit_pipe); 2834 if (!hsplit_pipe) 2835 goto validate_fail; 2836 2837 if (!dcn32_split_stream_for_mpc_or_odm( 2838 dc, &context->res_ctx, 2839 pipe, hsplit_pipe, odm)) 2840 goto validate_fail; 2841 2842 newly_split[hsplit_pipe->pipe_idx] = true; 2843 repopulate_pipes = true; 2844 } 2845 if (split[i] == 4) { 2846 struct pipe_ctx *pipe_4to1; 2847 2848 if (odm && old_pipe->next_odm_pipe) 2849 old_index = old_pipe->next_odm_pipe->pipe_idx; 2850 else if (!odm && old_pipe->bottom_pipe && 2851 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2852 old_index = old_pipe->bottom_pipe->pipe_idx; 2853 else 2854 old_index = -1; 2855 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2856 ASSERT(pipe_4to1); 2857 if (!pipe_4to1) 2858 goto validate_fail; 2859 if (!dcn32_split_stream_for_mpc_or_odm( 2860 dc, &context->res_ctx, 2861 pipe, pipe_4to1, odm)) 2862 goto validate_fail; 2863 newly_split[pipe_4to1->pipe_idx] = true; 2864 2865 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2866 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2867 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2868 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2869 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2870 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2871 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2872 else 2873 old_index = -1; 2874 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index); 2875 ASSERT(pipe_4to1); 2876 if (!pipe_4to1) 2877 goto validate_fail; 2878 if (!dcn32_split_stream_for_mpc_or_odm( 2879 dc, &context->res_ctx, 2880 hsplit_pipe, pipe_4to1, odm)) 2881 goto validate_fail; 2882 newly_split[pipe_4to1->pipe_idx] = true; 2883 } 2884 if (odm) 2885 dcn20_build_mapped_resource(dc, context, pipe->stream); 2886 } 2887 2888 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2889 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2890 2891 if (pipe->plane_state) { 2892 if (!resource_build_scaling_params(pipe)) 2893 goto validate_fail; 2894 } 2895 } 2896 2897 /* Actual dsc count per stream dsc validation*/ 2898 if (!dcn20_validate_dsc(dc, context)) { 2899 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2900 goto validate_fail; 2901 } 2902 2903 if (repopulate_pipes) 2904 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2905 *vlevel_out = vlevel; 2906 *pipe_cnt_out = pipe_cnt; 2907 2908 out = true; 2909 goto validate_out; 2910 2911 validate_fail: 2912 out = false; 2913 2914 validate_out: 2915 return out; 2916 } 2917 2918 bool dcn32_validate_bandwidth(struct dc *dc, 2919 struct dc_state *context, 2920 bool fast_validate) 2921 { 2922 bool out = false; 2923 2924 BW_VAL_TRACE_SETUP(); 2925 2926 int vlevel = 0; 2927 int pipe_cnt = 0; 2928 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2929 DC_LOGGER_INIT(dc->ctx->logger); 2930 2931 BW_VAL_TRACE_COUNT(); 2932 2933 DC_FP_START(); 2934 out = dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2935 DC_FP_END(); 2936 2937 if (pipe_cnt == 0) 2938 goto validate_out; 2939 2940 if (!out) 2941 goto validate_fail; 2942 2943 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2944 2945 if (fast_validate) { 2946 BW_VAL_TRACE_SKIP(fast); 2947 goto validate_out; 2948 } 2949 2950 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2951 2952 BW_VAL_TRACE_END_WATERMARKS(); 2953 2954 goto validate_out; 2955 2956 validate_fail: 2957 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2958 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2959 2960 BW_VAL_TRACE_SKIP(fail); 2961 out = false; 2962 2963 validate_out: 2964 kfree(pipes); 2965 2966 BW_VAL_TRACE_FINISH(); 2967 2968 return out; 2969 } 2970 2971 2972 static bool is_dual_plane(enum surface_pixel_format format) 2973 { 2974 return format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN || format == SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA; 2975 } 2976 2977 int dcn32_populate_dml_pipes_from_context( 2978 struct dc *dc, struct dc_state *context, 2979 display_e2e_pipe_params_st *pipes, 2980 bool fast_validate) 2981 { 2982 int i, pipe_cnt; 2983 struct resource_context *res_ctx = &context->res_ctx; 2984 struct pipe_ctx *pipe; 2985 2986 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 2987 2988 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 2989 struct dc_crtc_timing *timing; 2990 2991 if (!res_ctx->pipe_ctx[i].stream) 2992 continue; 2993 pipe = &res_ctx->pipe_ctx[i]; 2994 timing = &pipe->stream->timing; 2995 2996 pipes[pipe_cnt].pipe.src.gpuvm = true; 2997 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0; 2998 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0; 2999 pipes[pipe_cnt].pipe.dest.vfront_porch = timing->v_front_porch; 3000 pipes[pipe_cnt].pipe.src.gpuvm_min_page_size_kbytes = 256; // according to spreadsheet 3001 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 3002 pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_19; 3003 3004 switch (pipe->stream->mall_stream_config.type) { 3005 case SUBVP_MAIN: 3006 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_sub_viewport; 3007 break; 3008 case SUBVP_PHANTOM: 3009 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_phantom_pipe; 3010 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 3011 // Disallow unbounded req for SubVP according to DCHUB programming guide 3012 pipes[pipe_cnt].pipe.src.unbounded_req_mode = false; 3013 break; 3014 case SUBVP_NONE: 3015 pipes[pipe_cnt].pipe.src.use_mall_for_pstate_change = dm_use_mall_pstate_change_disable; 3016 pipes[pipe_cnt].pipe.src.use_mall_for_static_screen = dm_use_mall_static_screen_disable; 3017 break; 3018 default: 3019 break; 3020 } 3021 3022 pipes[pipe_cnt].dout.dsc_input_bpc = 0; 3023 if (pipes[pipe_cnt].dout.dsc_enable) { 3024 switch (timing->display_color_depth) { 3025 case COLOR_DEPTH_888: 3026 pipes[pipe_cnt].dout.dsc_input_bpc = 8; 3027 break; 3028 case COLOR_DEPTH_101010: 3029 pipes[pipe_cnt].dout.dsc_input_bpc = 10; 3030 break; 3031 case COLOR_DEPTH_121212: 3032 pipes[pipe_cnt].dout.dsc_input_bpc = 12; 3033 break; 3034 default: 3035 ASSERT(0); 3036 break; 3037 } 3038 } 3039 3040 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_dal; 3041 if (context->stream_count == 1) { 3042 if (dc->debug.enable_single_display_2to1_odm_policy) 3043 pipes[pipe_cnt].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1; 3044 } 3045 pipe_cnt++; 3046 } 3047 3048 /* For DET allocation, we don't want to use DML policy (not optimal for utilizing all 3049 * the DET available for each pipe). Use the DET override input to maintain our driver 3050 * policy. 3051 */ 3052 switch (pipe_cnt) { 3053 case 1: 3054 pipes[0].pipe.src.det_size_override = DCN3_2_MAX_DET_SIZE; 3055 if (pipe->plane_state && !dc->debug.disable_z9_mpc) { 3056 if (!is_dual_plane(pipe->plane_state->format)) { 3057 pipes[0].pipe.src.det_size_override = DCN3_2_DEFAULT_DET_SIZE; 3058 pipes[0].pipe.src.unbounded_req_mode = true; 3059 if (pipe->plane_state->src_rect.width >= 5120 && 3060 pipe->plane_state->src_rect.height >= 2880) 3061 pipes[0].pipe.src.det_size_override = 320; // 5K or higher 3062 } 3063 } 3064 break; 3065 case 2: 3066 case 3: 3067 case 4: 3068 // For 2 and 3 pipes, use (MAX_DET_SIZE / pipe_cnt), for 4 pipes use default size for each pipe 3069 for (i = 0; i < pipe_cnt; i++) { 3070 pipes[i].pipe.src.det_size_override = (pipe_cnt < 4) ? (DCN3_2_MAX_DET_SIZE / pipe_cnt) : DCN3_2_DEFAULT_DET_SIZE; 3071 } 3072 break; 3073 } 3074 3075 dcn32_update_det_override_for_mpo(dc, context, pipes); 3076 3077 return pipe_cnt; 3078 } 3079 3080 void dcn32_calculate_wm_and_dlg_fp( 3081 struct dc *dc, struct dc_state *context, 3082 display_e2e_pipe_params_st *pipes, 3083 int pipe_cnt, 3084 int vlevel) 3085 { 3086 int i, pipe_idx, vlevel_temp = 0; 3087 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3088 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 3089 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 3090 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 3091 dm_dram_clock_change_unsupported; 3092 3093 // Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK 3094 if (!pstate_en && dcn32_subvp_in_use(dc, context)) { 3095 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp; 3096 pstate_en = true; 3097 } 3098 3099 /* Set B: 3100 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present, 3101 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark 3102 * calculations to cover bootup clocks. 3103 * DCFCLK: soc.clock_limits[2] when available 3104 * UCLK: soc.clock_limits[2] when available 3105 */ 3106 if (dcn3_2_soc.num_states > 2) { 3107 vlevel_temp = 2; 3108 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz; 3109 } else 3110 dcfclk = 615; //DCFCLK Vmin_lv 3111 3112 pipes[0].clks_cfg.voltage = vlevel_temp; 3113 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 3114 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 3115 3116 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 3117 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 3118 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us; 3119 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 3120 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 3121 } 3122 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3123 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3124 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3125 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3126 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3127 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3128 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3129 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3130 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3131 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3132 3133 /* Set D: 3134 * All clocks min. 3135 * DCFCLK: Min, as reported by PM FW when available 3136 * UCLK : Min, as reported by PM FW when available 3137 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr) 3138 */ 3139 3140 if (dcn3_2_soc.num_states > 2) { 3141 vlevel_temp = 0; 3142 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz; 3143 } else 3144 dcfclk = 615; //DCFCLK Vmin_lv 3145 3146 pipes[0].clks_cfg.voltage = vlevel_temp; 3147 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 3148 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz; 3149 3150 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 3151 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 3152 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us; 3153 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 3154 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 3155 } 3156 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3157 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3158 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3159 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3160 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3161 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3162 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3163 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3164 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3165 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3166 3167 /* Set C, for Dummy P-State: 3168 * All clocks min. 3169 * DCFCLK: Min, as reported by PM FW, when available 3170 * UCLK : Min, as reported by PM FW, when available 3171 * pstate latency as per UCLK state dummy pstate latency 3172 */ 3173 // For Set A and Set C use values from validation 3174 pipes[0].clks_cfg.voltage = vlevel; 3175 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation; 3176 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 3177 3178 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 3179 unsigned int min_dram_speed_mts_margin = 160; 3180 3181 if ((!pstate_en)) 3182 min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; 3183 3184 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */ 3185 for (i = 3; i > 0; i--) 3186 if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) 3187 break; 3188 3189 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 3190 context->bw_ctx.dml.soc.dummy_pstate_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 3191 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us; 3192 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 3193 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 3194 } 3195 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3196 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3197 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3198 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3199 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3200 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3201 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3202 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3203 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3204 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3205 3206 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) { 3207 /* The only difference between A and C is p-state latency, if p-state is not supported 3208 * with full p-state latency we want to calculate DLG based on dummy p-state latency, 3209 * Set A p-state watermark set to 0 on DCN32, when p-state unsupported, for now keep as DCN32. 3210 */ 3211 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 3212 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 3213 } else { 3214 /* Set A: 3215 * All clocks min. 3216 * DCFCLK: Min, as reported by PM FW, when available 3217 * UCLK: Min, as reported by PM FW, when available 3218 */ 3219 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 3220 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3221 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3222 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3223 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3224 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3225 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3226 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3227 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3228 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3229 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 3230 } 3231 3232 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3233 if (!context->res_ctx.pipe_ctx[i].stream) 3234 continue; 3235 3236 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 3237 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 3238 3239 if (dc->config.forced_clocks) { 3240 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 3241 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 3242 } 3243 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 3244 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 3245 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 3246 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 3247 3248 pipe_idx++; 3249 } 3250 3251 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 3252 3253 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 3254 3255 if (!pstate_en) 3256 /* Restore full p-state latency */ 3257 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 3258 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 3259 } 3260 3261 static struct dc_cap_funcs cap_funcs = { 3262 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 3263 }; 3264 3265 3266 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 3267 unsigned int *optimal_dcfclk, 3268 unsigned int *optimal_fclk) 3269 { 3270 double bw_from_dram, bw_from_dram1, bw_from_dram2; 3271 3272 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans * 3273 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100); 3274 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans * 3275 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100); 3276 3277 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 3278 3279 if (optimal_fclk) 3280 *optimal_fclk = bw_from_dram / 3281 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 3282 3283 if (optimal_dcfclk) 3284 *optimal_dcfclk = bw_from_dram / 3285 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100)); 3286 } 3287 3288 void dcn32_calculate_wm_and_dlg( 3289 struct dc *dc, struct dc_state *context, 3290 display_e2e_pipe_params_st *pipes, 3291 int pipe_cnt, 3292 int vlevel) 3293 { 3294 DC_FP_START(); 3295 dcn32_calculate_wm_and_dlg_fp( 3296 dc, context, 3297 pipes, 3298 pipe_cnt, 3299 vlevel); 3300 DC_FP_END(); 3301 } 3302 3303 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context) 3304 { 3305 int i; 3306 3307 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3308 if (!context->res_ctx.pipe_ctx[i].stream) 3309 continue; 3310 if (is_dp_128b_132b_signal(&context->res_ctx.pipe_ctx[i])) 3311 return true; 3312 } 3313 return false; 3314 } 3315 3316 void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context, display_e2e_pipe_params_st *pipes, 3317 int pipe_cnt, int vlevel) 3318 { 3319 int i, pipe_idx; 3320 bool usr_retraining_support = false; 3321 3322 /* Writeback MCIF_WB arbitration parameters */ 3323 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt); 3324 3325 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000; 3326 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000; 3327 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000; 3328 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16; 3329 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000; 3330 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000; 3331 context->bw_ctx.bw.dcn.clk.p_state_change_support = 3332 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] 3333 != dm_dram_clock_change_unsupported; 3334 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context); 3335 /* 3336 * 3337 * TODO: needs FAMS 3338 * Pstate change might not be supported by hardware, but it might be 3339 * possible with firmware driven vertical blank stretching. 3340 */ 3341 // context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching; 3342 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0; 3343 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context); 3344 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000; 3345 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported) 3346 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false; 3347 else 3348 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true; 3349 3350 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 3351 ASSERT(usr_retraining_support); 3352 3353 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz) 3354 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz; 3355 3356 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3357 if (!context->res_ctx.pipe_ctx[i].stream) 3358 continue; 3359 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, 3360 pipe_idx); 3361 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 3362 pipe_idx); 3363 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, 3364 pipe_idx); 3365 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, 3366 pipe_idx); 3367 if (context->res_ctx.pipe_ctx[i].stream->mall_stream_config.type == SUBVP_PHANTOM) { 3368 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests 3369 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0; 3370 context->res_ctx.pipe_ctx[i].unbounded_req = false; 3371 } else { 3372 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt, 3373 pipe_idx); 3374 context->res_ctx.pipe_ctx[i].unbounded_req = pipes[pipe_idx].pipe.src.unbounded_req_mode; 3375 } 3376 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 3377 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 3378 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000; 3379 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest; 3380 pipe_idx++; 3381 } 3382 /*save a original dppclock copy*/ 3383 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz; 3384 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz; 3385 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz 3386 * 1000; 3387 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz 3388 * 1000; 3389 3390 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes; 3391 3392 for (i = 0; i < dc->res_pool->pipe_count; i++) { 3393 if (context->res_ctx.pipe_ctx[i].stream) 3394 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb; 3395 } 3396 3397 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 3398 3399 if (!context->res_ctx.pipe_ctx[i].stream) 3400 continue; 3401 3402 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml, 3403 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes, 3404 pipe_cnt, pipe_idx); 3405 3406 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs, 3407 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 3408 3409 pipe_idx++; 3410 } 3411 } 3412 3413 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry) 3414 { 3415 if (entry->dcfclk_mhz > 0) { 3416 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 3417 3418 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 3419 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans * 3420 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 3421 } else if (entry->fabricclk_mhz > 0) { 3422 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 3423 3424 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 3425 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans * 3426 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100)); 3427 } else if (entry->dram_speed_mts > 0) { 3428 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans * 3429 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 3430 3431 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100)); 3432 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100)); 3433 } 3434 } 3435 3436 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry) 3437 { 3438 float memory_bw_kbytes_sec = entry->dram_speed_mts * dcn3_2_soc.num_chans * 3439 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100); 3440 3441 float fabric_bw_kbytes_sec = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100); 3442 3443 float sdp_bw_kbytes_sec = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100); 3444 3445 float limiting_bw_kbytes_sec = memory_bw_kbytes_sec; 3446 3447 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec) 3448 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec; 3449 3450 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec) 3451 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec; 3452 3453 return limiting_bw_kbytes_sec; 3454 } 3455 3456 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, 3457 struct _vcs_dpi_voltage_scaling_st *entry) 3458 { 3459 int index = 0; 3460 int i = 0; 3461 float net_bw_of_new_state = 0; 3462 3463 if (*num_entries == 0) { 3464 table[0] = *entry; 3465 (*num_entries)++; 3466 } else { 3467 net_bw_of_new_state = calculate_net_bw_in_kbytes_sec(entry); 3468 while (net_bw_of_new_state > calculate_net_bw_in_kbytes_sec(&table[index])) { 3469 index++; 3470 if (index >= *num_entries) 3471 break; 3472 } 3473 3474 for (i = *num_entries; i > index; i--) { 3475 table[i] = table[i - 1]; 3476 } 3477 3478 table[index] = *entry; 3479 (*num_entries)++; 3480 } 3481 } 3482 3483 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries, 3484 unsigned int index) 3485 { 3486 int i; 3487 3488 if (*num_entries == 0) 3489 return; 3490 3491 for (i = index; i < *num_entries - 1; i++) { 3492 table[i] = table[i + 1]; 3493 } 3494 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st)); 3495 } 3496 3497 static int build_synthetic_soc_states(struct clk_bw_params *bw_params, 3498 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries) 3499 { 3500 int i, j; 3501 struct _vcs_dpi_voltage_scaling_st entry = {0}; 3502 3503 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, 3504 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0; 3505 3506 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299; 3507 3508 static const unsigned int num_dcfclk_stas = 5; 3509 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 3510 3511 unsigned int num_uclk_dpms = 0; 3512 unsigned int num_fclk_dpms = 0; 3513 unsigned int num_dcfclk_dpms = 0; 3514 3515 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 3516 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 3517 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 3518 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz) 3519 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 3520 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz) 3521 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz; 3522 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 3523 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 3524 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 3525 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 3526 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 3527 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 3528 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz) 3529 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3530 3531 if (bw_params->clk_table.entries[i].memclk_mhz > 0) 3532 num_uclk_dpms++; 3533 if (bw_params->clk_table.entries[i].fclk_mhz > 0) 3534 num_fclk_dpms++; 3535 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) 3536 num_dcfclk_dpms++; 3537 } 3538 3539 if (!max_dcfclk_mhz || !max_dispclk_mhz || !max_dtbclk_mhz) 3540 return -1; 3541 3542 if (max_dppclk_mhz == 0) 3543 max_dppclk_mhz = max_dispclk_mhz; 3544 3545 if (max_fclk_mhz == 0) 3546 max_fclk_mhz = max_dcfclk_mhz * dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / dcn3_2_soc.pct_ideal_fabric_bw_after_urgent; 3547 3548 if (max_phyclk_mhz == 0) 3549 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 3550 3551 *num_entries = 0; 3552 entry.dispclk_mhz = max_dispclk_mhz; 3553 entry.dscclk_mhz = max_dispclk_mhz / 3; 3554 entry.dppclk_mhz = max_dppclk_mhz; 3555 entry.dtbclk_mhz = max_dtbclk_mhz; 3556 entry.phyclk_mhz = max_phyclk_mhz; 3557 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 3558 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 3559 3560 // Insert all the DCFCLK STAs 3561 for (i = 0; i < num_dcfclk_stas; i++) { 3562 entry.dcfclk_mhz = dcfclk_sta_targets[i]; 3563 entry.fabricclk_mhz = 0; 3564 entry.dram_speed_mts = 0; 3565 3566 get_optimal_ntuple(&entry); 3567 insert_entry_into_table_sorted(table, num_entries, &entry); 3568 } 3569 3570 // Insert the max DCFCLK 3571 entry.dcfclk_mhz = max_dcfclk_mhz; 3572 entry.fabricclk_mhz = 0; 3573 entry.dram_speed_mts = 0; 3574 3575 get_optimal_ntuple(&entry); 3576 insert_entry_into_table_sorted(table, num_entries, &entry); 3577 3578 // Insert the UCLK DPMS 3579 for (i = 0; i < num_uclk_dpms; i++) { 3580 entry.dcfclk_mhz = 0; 3581 entry.fabricclk_mhz = 0; 3582 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16; 3583 3584 get_optimal_ntuple(&entry); 3585 insert_entry_into_table_sorted(table, num_entries, &entry); 3586 } 3587 3588 // If FCLK is coarse grained, insert individual DPMs. 3589 if (num_fclk_dpms > 2) { 3590 for (i = 0; i < num_fclk_dpms; i++) { 3591 entry.dcfclk_mhz = 0; 3592 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz; 3593 entry.dram_speed_mts = 0; 3594 3595 get_optimal_ntuple(&entry); 3596 insert_entry_into_table_sorted(table, num_entries, &entry); 3597 } 3598 } 3599 // If FCLK fine grained, only insert max 3600 else { 3601 entry.dcfclk_mhz = 0; 3602 entry.fabricclk_mhz = max_fclk_mhz; 3603 entry.dram_speed_mts = 0; 3604 3605 get_optimal_ntuple(&entry); 3606 insert_entry_into_table_sorted(table, num_entries, &entry); 3607 } 3608 3609 // At this point, the table contains all "points of interest" based on 3610 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock 3611 // ratios (by derate, are exact). 3612 3613 // Remove states that require higher clocks than are supported 3614 for (i = *num_entries - 1; i >= 0 ; i--) { 3615 if (table[i].dcfclk_mhz > max_dcfclk_mhz || 3616 table[i].fabricclk_mhz > max_fclk_mhz || 3617 table[i].dram_speed_mts > max_uclk_mhz * 16) 3618 remove_entry_from_table_at_index(table, num_entries, i); 3619 } 3620 3621 // At this point, the table only contains supported points of interest 3622 // it could be used as is, but some states may be redundant due to 3623 // coarse grained nature of some clocks, so we want to round up to 3624 // coarse grained DPMs and remove duplicates. 3625 3626 // Round up UCLKs 3627 for (i = *num_entries - 1; i >= 0 ; i--) { 3628 for (j = 0; j < num_uclk_dpms; j++) { 3629 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) { 3630 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16; 3631 break; 3632 } 3633 } 3634 } 3635 3636 // If FCLK is coarse grained, round up to next DPMs 3637 if (num_fclk_dpms > 2) { 3638 for (i = *num_entries - 1; i >= 0 ; i--) { 3639 for (j = 0; j < num_fclk_dpms; j++) { 3640 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) { 3641 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz; 3642 break; 3643 } 3644 } 3645 } 3646 } 3647 // Otherwise, round up to minimum. 3648 else { 3649 for (i = *num_entries - 1; i >= 0 ; i--) { 3650 if (table[i].fabricclk_mhz < min_fclk_mhz) { 3651 table[i].fabricclk_mhz = min_fclk_mhz; 3652 break; 3653 } 3654 } 3655 } 3656 3657 // Round DCFCLKs up to minimum 3658 for (i = *num_entries - 1; i >= 0 ; i--) { 3659 if (table[i].dcfclk_mhz < min_dcfclk_mhz) { 3660 table[i].dcfclk_mhz = min_dcfclk_mhz; 3661 break; 3662 } 3663 } 3664 3665 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted. 3666 i = 0; 3667 while (i < *num_entries - 1) { 3668 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz && 3669 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz && 3670 table[i].dram_speed_mts == table[i + 1].dram_speed_mts) 3671 remove_entry_from_table_at_index(table, num_entries, i + 1); 3672 else 3673 i++; 3674 } 3675 3676 // Fix up the state indicies 3677 for (i = *num_entries - 1; i >= 0 ; i--) { 3678 table[i].state = i; 3679 } 3680 3681 return 0; 3682 } 3683 3684 /* dcn32_update_bw_bounding_box 3685 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from spreadsheet 3686 * with actual values as per dGPU SKU: 3687 * -with passed few options from dc->config 3688 * -with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might need to get it from PM FW) 3689 * -with passed latency values (passed in ns units) in dc-> bb override for debugging purposes 3690 * -with passed latencies from VBIOS (in 100_ns units) if available for certain dGPU SKU 3691 * -with number of DRAM channels from VBIOS (which differ for certain dGPU SKU of the same ASIC) 3692 * -clocks levels with passed clk_table entries from Clk Mgr as reported by PM FW for different 3693 * clocks (which might differ for certain dGPU SKU of the same ASIC) 3694 */ 3695 static void dcn32_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 3696 { 3697 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { 3698 3699 /* Overrides from dc->config options */ 3700 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 3701 3702 /* Override from passed dc->bb_overrides if available*/ 3703 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns 3704 && dc->bb_overrides.sr_exit_time_ns) { 3705 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0; 3706 } 3707 3708 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000) 3709 != dc->bb_overrides.sr_enter_plus_exit_time_ns 3710 && dc->bb_overrides.sr_enter_plus_exit_time_ns) { 3711 dcn3_2_soc.sr_enter_plus_exit_time_us = 3712 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0; 3713 } 3714 3715 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns 3716 && dc->bb_overrides.urgent_latency_ns) { 3717 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0; 3718 } 3719 3720 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000) 3721 != dc->bb_overrides.dram_clock_change_latency_ns 3722 && dc->bb_overrides.dram_clock_change_latency_ns) { 3723 dcn3_2_soc.dram_clock_change_latency_us = 3724 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0; 3725 } 3726 3727 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000) 3728 != dc->bb_overrides.dummy_clock_change_latency_ns 3729 && dc->bb_overrides.dummy_clock_change_latency_ns) { 3730 dcn3_2_soc.dummy_pstate_latency_us = 3731 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0; 3732 } 3733 3734 /* Override from VBIOS if VBIOS bb_info available */ 3735 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 3736 struct bp_soc_bb_info bb_info = {0}; 3737 3738 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 3739 if (bb_info.dram_clock_change_latency_100ns > 0) 3740 dcn3_2_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; 3741 3742 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 3743 dcn3_2_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; 3744 3745 if (bb_info.dram_sr_exit_latency_100ns > 0) 3746 dcn3_2_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; 3747 } 3748 } 3749 3750 /* Override from VBIOS for num_chan */ 3751 if (dc->ctx->dc_bios->vram_info.num_chans) 3752 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 3753 3754 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 3755 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 3756 3757 } 3758 3759 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */ 3760 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3761 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 3762 3763 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */ 3764 if ((!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) && (bw_params->clk_table.entries[0].memclk_mhz)) { 3765 if (dc->debug.use_legacy_soc_bb_mechanism) { 3766 unsigned int i = 0, j = 0, num_states = 0; 3767 3768 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 3769 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 3770 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 3771 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 3772 unsigned int min_dcfclk = UINT_MAX; 3773 /* Set 199 as first value in STA target array to have a minimum DCFCLK value. 3774 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */ 3775 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564}; 3776 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0; 3777 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; 3778 3779 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 3780 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 3781 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 3782 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 && 3783 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk) 3784 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz; 3785 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 3786 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 3787 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 3788 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 3789 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 3790 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 3791 } 3792 if (min_dcfclk > dcfclk_sta_targets[0]) 3793 dcfclk_sta_targets[0] = min_dcfclk; 3794 if (!max_dcfclk_mhz) 3795 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz; 3796 if (!max_dispclk_mhz) 3797 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz; 3798 if (!max_dppclk_mhz) 3799 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz; 3800 if (!max_phyclk_mhz) 3801 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz; 3802 3803 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3804 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 3805 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; 3806 num_dcfclk_sta_targets++; 3807 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 3808 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 3809 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3810 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { 3811 dcfclk_sta_targets[i] = max_dcfclk_mhz; 3812 break; 3813 } 3814 } 3815 // Update size of array since we "removed" duplicates 3816 num_dcfclk_sta_targets = i + 1; 3817 } 3818 3819 num_uclk_states = bw_params->clk_table.num_entries; 3820 3821 // Calculate optimal dcfclk for each uclk 3822 for (i = 0; i < num_uclk_states; i++) { 3823 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 3824 &optimal_dcfclk_for_uclk[i], NULL); 3825 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 3826 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 3827 } 3828 } 3829 3830 // Calculate optimal uclk for each dcfclk sta target 3831 for (i = 0; i < num_dcfclk_sta_targets; i++) { 3832 for (j = 0; j < num_uclk_states; j++) { 3833 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 3834 optimal_uclk_for_dcfclk_sta_targets[i] = 3835 bw_params->clk_table.entries[j].memclk_mhz * 16; 3836 break; 3837 } 3838 } 3839 } 3840 3841 i = 0; 3842 j = 0; 3843 // create the final dcfclk and uclk table 3844 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 3845 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 3846 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3847 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3848 } else { 3849 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3850 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3851 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3852 } else { 3853 j = num_uclk_states; 3854 } 3855 } 3856 } 3857 3858 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 3859 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 3860 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 3861 } 3862 3863 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 3864 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 3865 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 3866 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 3867 } 3868 3869 dcn3_2_soc.num_states = num_states; 3870 for (i = 0; i < dcn3_2_soc.num_states; i++) { 3871 dcn3_2_soc.clock_limits[i].state = i; 3872 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 3873 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 3874 3875 /* Fill all states with max values of all these clocks */ 3876 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; 3877 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; 3878 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; 3879 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3; 3880 3881 /* Populate from bw_params for DTBCLK, SOCCLK */ 3882 if (i > 0) { 3883 if (!bw_params->clk_table.entries[i].dtbclk_mhz) { 3884 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz; 3885 } else { 3886 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3887 } 3888 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) { 3889 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz; 3890 } 3891 3892 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0) 3893 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz; 3894 else 3895 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz; 3896 3897 if (!dram_speed_mts[i] && i > 0) 3898 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts; 3899 else 3900 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 3901 3902 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */ 3903 /* PHYCLK_D18, PHYCLK_D32 */ 3904 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz; 3905 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz; 3906 } 3907 } else { 3908 build_synthetic_soc_states(bw_params, dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states); 3909 } 3910 3911 /* Re-init DML with updated bb */ 3912 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3913 if (dc->current_state) 3914 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 3915 } 3916 } 3917 3918 static struct resource_funcs dcn32_res_pool_funcs = { 3919 .destroy = dcn32_destroy_resource_pool, 3920 .link_enc_create = dcn32_link_encoder_create, 3921 .link_enc_create_minimal = NULL, 3922 .panel_cntl_create = dcn32_panel_cntl_create, 3923 .validate_bandwidth = dcn32_validate_bandwidth, 3924 .calculate_wm_and_dlg = dcn32_calculate_wm_and_dlg, 3925 .populate_dml_pipes = dcn32_populate_dml_pipes_from_context, 3926 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 3927 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 3928 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 3929 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 3930 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 3931 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 3932 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 3933 .acquire_post_bldn_3dlut = dcn32_acquire_post_bldn_3dlut, 3934 .release_post_bldn_3dlut = dcn32_release_post_bldn_3dlut, 3935 .update_bw_bounding_box = dcn32_update_bw_bounding_box, 3936 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 3937 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 3938 .add_phantom_pipes = dcn32_add_phantom_pipes, 3939 .remove_phantom_pipes = dcn32_remove_phantom_pipes, 3940 }; 3941 3942 3943 static bool dcn32_resource_construct( 3944 uint8_t num_virtual_links, 3945 struct dc *dc, 3946 struct dcn32_resource_pool *pool) 3947 { 3948 int i, j; 3949 struct dc_context *ctx = dc->ctx; 3950 struct irq_service_init_data init_data; 3951 struct ddc_service_init_data ddc_init_data = {0}; 3952 uint32_t pipe_fuses = 0; 3953 uint32_t num_pipes = 4; 3954 3955 DC_FP_START(); 3956 3957 ctx->dc_bios->regs = &bios_regs; 3958 3959 pool->base.res_cap = &res_cap_dcn32; 3960 /* max number of pipes for ASIC before checking for pipe fuses */ 3961 num_pipes = pool->base.res_cap->num_timing_generator; 3962 pipe_fuses = REG_READ(CC_DC_PIPE_DIS); 3963 3964 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) 3965 if (pipe_fuses & 1 << i) 3966 num_pipes--; 3967 3968 if (pipe_fuses & 1) 3969 ASSERT(0); //Unexpected - Pipe 0 should always be fully functional! 3970 3971 if (pipe_fuses & CC_DC_PIPE_DIS__DC_FULL_DIS_MASK) 3972 ASSERT(0); //Entire DCN is harvested! 3973 3974 /* within dml lib, initial value is hard coded, if ASIC pipe is fused, the 3975 * value will be changed, update max_num_dpp and max_num_otg for dml. 3976 */ 3977 dcn3_2_ip.max_num_dpp = num_pipes; 3978 dcn3_2_ip.max_num_otg = num_pipes; 3979 3980 pool->base.funcs = &dcn32_res_pool_funcs; 3981 3982 /************************************************* 3983 * Resource + asic cap harcoding * 3984 *************************************************/ 3985 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 3986 pool->base.timing_generator_count = num_pipes; 3987 pool->base.pipe_count = num_pipes; 3988 pool->base.mpcc_count = num_pipes; 3989 dc->caps.max_downscale_ratio = 600; 3990 dc->caps.i2c_speed_in_khz = 100; 3991 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a applied by default*/ 3992 dc->caps.max_cursor_size = 256; 3993 dc->caps.min_horizontal_blanking_period = 80; 3994 dc->caps.dmdata_alloc_size = 2048; 3995 dc->caps.mall_size_per_mem_channel = 0; 3996 dc->caps.mall_size_total = 0; 3997 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 3998 3999 dc->caps.cache_line_size = 64; 4000 dc->caps.cache_num_ways = 16; 4001 dc->caps.max_cab_allocation_bytes = 67108864; // 64MB = 1024 * 1024 * 64 4002 dc->caps.subvp_fw_processing_delay_us = 15; 4003 dc->caps.subvp_prefetch_end_to_mall_start_us = 15; 4004 dc->caps.subvp_pstate_allow_width_us = 20; 4005 dc->caps.subvp_vertical_int_margin_us = 30; 4006 4007 dc->caps.max_slave_planes = 2; 4008 dc->caps.max_slave_yuv_planes = 2; 4009 dc->caps.max_slave_rgb_planes = 2; 4010 dc->caps.post_blend_color_processing = true; 4011 dc->caps.force_dp_tps4_for_cp2520 = true; 4012 dc->caps.dp_hpo = true; 4013 dc->caps.edp_dsc_support = true; 4014 dc->caps.extended_aux_timeout_support = true; 4015 dc->caps.dmcub_support = true; 4016 4017 /* Color pipeline capabilities */ 4018 dc->caps.color.dpp.dcn_arch = 1; 4019 dc->caps.color.dpp.input_lut_shared = 0; 4020 dc->caps.color.dpp.icsc = 1; 4021 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 4022 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 4023 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 4024 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 4025 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 4026 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 4027 dc->caps.color.dpp.post_csc = 1; 4028 dc->caps.color.dpp.gamma_corr = 1; 4029 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 4030 4031 dc->caps.color.dpp.hw_3d_lut = 1; 4032 dc->caps.color.dpp.ogam_ram = 0; // no OGAM in DPP since DCN1 4033 // no OGAM ROM on DCN2 and later ASICs 4034 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 4035 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 4036 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 4037 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 4038 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 4039 dc->caps.color.dpp.ocsc = 0; 4040 4041 dc->caps.color.mpc.gamut_remap = 1; 4042 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //4, configurable to be before or after BLND in MPCC 4043 dc->caps.color.mpc.ogam_ram = 1; 4044 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 4045 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 4046 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 4047 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 4048 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 4049 dc->caps.color.mpc.ocsc = 1; 4050 4051 /* Use pipe context based otg sync logic */ 4052 dc->config.use_pipe_ctx_sync_logic = true; 4053 4054 /* read VBIOS LTTPR caps */ 4055 { 4056 if (ctx->dc_bios->funcs->get_lttpr_caps) { 4057 enum bp_result bp_query_result; 4058 uint8_t is_vbios_lttpr_enable = 0; 4059 4060 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 4061 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 4062 } 4063 4064 /* interop bit is implicit */ 4065 { 4066 dc->caps.vbios_lttpr_aware = true; 4067 } 4068 } 4069 4070 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 4071 dc->debug = debug_defaults_drv; 4072 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 4073 dc->debug = debug_defaults_diags; 4074 } else 4075 dc->debug = debug_defaults_diags; 4076 // Init the vm_helper 4077 if (dc->vm_helper) 4078 vm_helper_init(dc->vm_helper, 16); 4079 4080 /************************************************* 4081 * Create resources * 4082 *************************************************/ 4083 4084 /* Clock Sources for Pixel Clock*/ 4085 pool->base.clock_sources[DCN32_CLK_SRC_PLL0] = 4086 dcn32_clock_source_create(ctx, ctx->dc_bios, 4087 CLOCK_SOURCE_COMBO_PHY_PLL0, 4088 &clk_src_regs[0], false); 4089 pool->base.clock_sources[DCN32_CLK_SRC_PLL1] = 4090 dcn32_clock_source_create(ctx, ctx->dc_bios, 4091 CLOCK_SOURCE_COMBO_PHY_PLL1, 4092 &clk_src_regs[1], false); 4093 pool->base.clock_sources[DCN32_CLK_SRC_PLL2] = 4094 dcn32_clock_source_create(ctx, ctx->dc_bios, 4095 CLOCK_SOURCE_COMBO_PHY_PLL2, 4096 &clk_src_regs[2], false); 4097 pool->base.clock_sources[DCN32_CLK_SRC_PLL3] = 4098 dcn32_clock_source_create(ctx, ctx->dc_bios, 4099 CLOCK_SOURCE_COMBO_PHY_PLL3, 4100 &clk_src_regs[3], false); 4101 pool->base.clock_sources[DCN32_CLK_SRC_PLL4] = 4102 dcn32_clock_source_create(ctx, ctx->dc_bios, 4103 CLOCK_SOURCE_COMBO_PHY_PLL4, 4104 &clk_src_regs[4], false); 4105 4106 pool->base.clk_src_count = DCN32_CLK_SRC_TOTAL; 4107 4108 /* todo: not reuse phy_pll registers */ 4109 pool->base.dp_clock_source = 4110 dcn32_clock_source_create(ctx, ctx->dc_bios, 4111 CLOCK_SOURCE_ID_DP_DTO, 4112 &clk_src_regs[0], true); 4113 4114 for (i = 0; i < pool->base.clk_src_count; i++) { 4115 if (pool->base.clock_sources[i] == NULL) { 4116 dm_error("DC: failed to create clock sources!\n"); 4117 BREAK_TO_DEBUGGER(); 4118 goto create_fail; 4119 } 4120 } 4121 4122 /* DCCG */ 4123 pool->base.dccg = dccg32_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 4124 if (pool->base.dccg == NULL) { 4125 dm_error("DC: failed to create dccg!\n"); 4126 BREAK_TO_DEBUGGER(); 4127 goto create_fail; 4128 } 4129 4130 /* DML */ 4131 if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) 4132 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32); 4133 4134 /* IRQ Service */ 4135 init_data.ctx = dc->ctx; 4136 pool->base.irqs = dal_irq_service_dcn32_create(&init_data); 4137 if (!pool->base.irqs) 4138 goto create_fail; 4139 4140 /* HUBBUB */ 4141 pool->base.hubbub = dcn32_hubbub_create(ctx); 4142 if (pool->base.hubbub == NULL) { 4143 BREAK_TO_DEBUGGER(); 4144 dm_error("DC: failed to create hubbub!\n"); 4145 goto create_fail; 4146 } 4147 4148 /* HUBPs, DPPs, OPPs, TGs, ABMs */ 4149 for (i = 0, j = 0; i < pool->base.res_cap->num_timing_generator; i++) { 4150 4151 /* if pipe is disabled, skip instance of HW pipe, 4152 * i.e, skip ASIC register instance 4153 */ 4154 if (pipe_fuses & 1 << i) 4155 continue; 4156 4157 /* HUBPs */ 4158 pool->base.hubps[j] = dcn32_hubp_create(ctx, i); 4159 if (pool->base.hubps[j] == NULL) { 4160 BREAK_TO_DEBUGGER(); 4161 dm_error( 4162 "DC: failed to create hubps!\n"); 4163 goto create_fail; 4164 } 4165 4166 /* DPPs */ 4167 pool->base.dpps[j] = dcn32_dpp_create(ctx, i); 4168 if (pool->base.dpps[j] == NULL) { 4169 BREAK_TO_DEBUGGER(); 4170 dm_error( 4171 "DC: failed to create dpps!\n"); 4172 goto create_fail; 4173 } 4174 4175 /* OPPs */ 4176 pool->base.opps[j] = dcn32_opp_create(ctx, i); 4177 if (pool->base.opps[j] == NULL) { 4178 BREAK_TO_DEBUGGER(); 4179 dm_error( 4180 "DC: failed to create output pixel processor!\n"); 4181 goto create_fail; 4182 } 4183 4184 /* TGs */ 4185 pool->base.timing_generators[j] = dcn32_timing_generator_create( 4186 ctx, i); 4187 if (pool->base.timing_generators[j] == NULL) { 4188 BREAK_TO_DEBUGGER(); 4189 dm_error("DC: failed to create tg!\n"); 4190 goto create_fail; 4191 } 4192 4193 /* ABMs */ 4194 pool->base.multiple_abms[j] = dmub_abm_create(ctx, 4195 &abm_regs[i], 4196 &abm_shift, 4197 &abm_mask); 4198 if (pool->base.multiple_abms[j] == NULL) { 4199 dm_error("DC: failed to create abm for pipe %d!\n", i); 4200 BREAK_TO_DEBUGGER(); 4201 goto create_fail; 4202 } 4203 4204 /* index for resource pool arrays for next valid pipe */ 4205 j++; 4206 } 4207 4208 /* PSR */ 4209 pool->base.psr = dmub_psr_create(ctx); 4210 if (pool->base.psr == NULL) { 4211 dm_error("DC: failed to create psr obj!\n"); 4212 BREAK_TO_DEBUGGER(); 4213 goto create_fail; 4214 } 4215 4216 /* MPCCs */ 4217 pool->base.mpc = dcn32_mpc_create(ctx, pool->base.res_cap->num_timing_generator, pool->base.res_cap->num_mpc_3dlut); 4218 if (pool->base.mpc == NULL) { 4219 BREAK_TO_DEBUGGER(); 4220 dm_error("DC: failed to create mpc!\n"); 4221 goto create_fail; 4222 } 4223 4224 /* DSCs */ 4225 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 4226 pool->base.dscs[i] = dcn32_dsc_create(ctx, i); 4227 if (pool->base.dscs[i] == NULL) { 4228 BREAK_TO_DEBUGGER(); 4229 dm_error("DC: failed to create display stream compressor %d!\n", i); 4230 goto create_fail; 4231 } 4232 } 4233 4234 /* DWB */ 4235 if (!dcn32_dwbc_create(ctx, &pool->base)) { 4236 BREAK_TO_DEBUGGER(); 4237 dm_error("DC: failed to create dwbc!\n"); 4238 goto create_fail; 4239 } 4240 4241 /* MMHUBBUB */ 4242 if (!dcn32_mmhubbub_create(ctx, &pool->base)) { 4243 BREAK_TO_DEBUGGER(); 4244 dm_error("DC: failed to create mcif_wb!\n"); 4245 goto create_fail; 4246 } 4247 4248 /* AUX and I2C */ 4249 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 4250 pool->base.engines[i] = dcn32_aux_engine_create(ctx, i); 4251 if (pool->base.engines[i] == NULL) { 4252 BREAK_TO_DEBUGGER(); 4253 dm_error( 4254 "DC:failed to create aux engine!!\n"); 4255 goto create_fail; 4256 } 4257 pool->base.hw_i2cs[i] = dcn32_i2c_hw_create(ctx, i); 4258 if (pool->base.hw_i2cs[i] == NULL) { 4259 BREAK_TO_DEBUGGER(); 4260 dm_error( 4261 "DC:failed to create hw i2c!!\n"); 4262 goto create_fail; 4263 } 4264 pool->base.sw_i2cs[i] = NULL; 4265 } 4266 4267 /* Audio, HWSeq, Stream Encoders including HPO and virtual, MPC 3D LUTs */ 4268 if (!resource_construct(num_virtual_links, dc, &pool->base, 4269 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 4270 &res_create_funcs : &res_create_maximus_funcs))) 4271 goto create_fail; 4272 4273 /* HW Sequencer init functions and Plane caps */ 4274 dcn32_hw_sequencer_init_functions(dc); 4275 4276 dc->caps.max_planes = pool->base.pipe_count; 4277 4278 for (i = 0; i < dc->caps.max_planes; ++i) 4279 dc->caps.planes[i] = plane_cap; 4280 4281 dc->cap_funcs = cap_funcs; 4282 4283 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 4284 ddc_init_data.ctx = dc->ctx; 4285 ddc_init_data.link = NULL; 4286 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 4287 ddc_init_data.id.enum_id = 0; 4288 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 4289 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 4290 } else { 4291 pool->base.oem_device = NULL; 4292 } 4293 4294 DC_FP_END(); 4295 4296 return true; 4297 4298 create_fail: 4299 4300 DC_FP_END(); 4301 4302 dcn32_resource_destruct(pool); 4303 4304 return false; 4305 } 4306 4307 struct resource_pool *dcn32_create_resource_pool( 4308 const struct dc_init_data *init_data, 4309 struct dc *dc) 4310 { 4311 struct dcn32_resource_pool *pool = 4312 kzalloc(sizeof(struct dcn32_resource_pool), GFP_KERNEL); 4313 4314 if (!pool) 4315 return NULL; 4316 4317 if (dcn32_resource_construct(init_data->num_virtual_links, dc, pool)) 4318 return &pool->base; 4319 4320 BREAK_TO_DEBUGGER(); 4321 kfree(pool); 4322 return NULL; 4323 } 4324