1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dm_helpers.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "dccg.h"
32 #include "dce/dce_hwseq.h"
33 #include "dcn30/dcn30_cm_common.h"
34 #include "reg_helper.h"
35 #include "abm.h"
36 #include "hubp.h"
37 #include "dchubbub.h"
38 #include "timing_generator.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "mpc.h"
42 #include "mcif_wb.h"
43 #include "dc_dmub_srv.h"
44 #include "link_hwss.h"
45 #include "dpcd_defs.h"
46 #include "dcn32_hwseq.h"
47 #include "clk_mgr.h"
48 #include "dsc.h"
49 #include "dcn20/dcn20_optc.h"
50 #include "dmub_subvp_state.h"
51 #include "dce/dmub_hw_lock_mgr.h"
52 #include "dc_link_dp.h"
53 #include "dmub/inc/dmub_subvp_state.h"
54 
55 #define DC_LOGGER_INIT(logger)
56 
57 #define CTX \
58 	hws->ctx
59 #define REG(reg)\
60 	hws->regs->reg
61 #define DC_LOGGER \
62 		dc->ctx->logger
63 
64 
65 #undef FN
66 #define FN(reg_name, field_name) \
67 	hws->shifts->field_name, hws->masks->field_name
68 
69 void dcn32_dsc_pg_control(
70 		struct dce_hwseq *hws,
71 		unsigned int dsc_inst,
72 		bool power_on)
73 {
74 	uint32_t power_gate = power_on ? 0 : 1;
75 	uint32_t pwr_status = power_on ? 0 : 2;
76 	uint32_t org_ip_request_cntl = 0;
77 
78 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
79 		return;
80 
81 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
82 	if (org_ip_request_cntl == 0)
83 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
84 
85 	switch (dsc_inst) {
86 	case 0: /* DSC0 */
87 		REG_UPDATE(DOMAIN16_PG_CONFIG,
88 				DOMAIN_POWER_GATE, power_gate);
89 
90 		REG_WAIT(DOMAIN16_PG_STATUS,
91 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
92 				1, 1000);
93 		break;
94 	case 1: /* DSC1 */
95 		REG_UPDATE(DOMAIN17_PG_CONFIG,
96 				DOMAIN_POWER_GATE, power_gate);
97 
98 		REG_WAIT(DOMAIN17_PG_STATUS,
99 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
100 				1, 1000);
101 		break;
102 	case 2: /* DSC2 */
103 		REG_UPDATE(DOMAIN18_PG_CONFIG,
104 				DOMAIN_POWER_GATE, power_gate);
105 
106 		REG_WAIT(DOMAIN18_PG_STATUS,
107 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
108 				1, 1000);
109 		break;
110 	case 3: /* DSC3 */
111 		REG_UPDATE(DOMAIN19_PG_CONFIG,
112 				DOMAIN_POWER_GATE, power_gate);
113 
114 		REG_WAIT(DOMAIN19_PG_STATUS,
115 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
116 				1, 1000);
117 		break;
118 	default:
119 		BREAK_TO_DEBUGGER();
120 		break;
121 	}
122 
123 	if (org_ip_request_cntl == 0)
124 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
125 }
126 
127 
128 void dcn32_enable_power_gating_plane(
129 	struct dce_hwseq *hws,
130 	bool enable)
131 {
132 	bool force_on = true; /* disable power gating */
133 
134 	if (enable)
135 		force_on = false;
136 
137 	/* DCHUBP0/1/2/3 */
138 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
139 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
140 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
141 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
142 
143 	/* DCS0/1/2/3 */
144 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
145 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
146 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
147 	REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
148 }
149 
150 void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
151 {
152 	uint32_t power_gate = power_on ? 0 : 1;
153 	uint32_t pwr_status = power_on ? 0 : 2;
154 
155 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
156 		return;
157 
158 	if (REG(DOMAIN0_PG_CONFIG) == 0)
159 		return;
160 
161 	switch (hubp_inst) {
162 	case 0:
163 		REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
164 		REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
165 		break;
166 	case 1:
167 		REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
168 		REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
169 		break;
170 	case 2:
171 		REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
172 		REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
173 		break;
174 	case 3:
175 		REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
176 		REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
177 		break;
178 	default:
179 		BREAK_TO_DEBUGGER();
180 		break;
181 	}
182 }
183 
184 static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
185 {
186 	int i;
187 
188     /* First, check no-memory-request case */
189 	for (i = 0; i < dc->current_state->stream_count; i++) {
190 		if (dc->current_state->stream_status[i].plane_count)
191 			/* Fail eligibility on a visible stream */
192 			break;
193 	}
194 
195 	if (i == dc->current_state->stream_count)
196 		return true;
197 
198 	return false;
199 }
200 
201 /* This function takes in the start address and surface size to be cached in CAB
202  * and calculates the total number of cache lines required to store the surface.
203  * The number of cache lines used for each surface is calculated independently of
204  * one another. For example, if there is a primary surface(1), meta surface(2), and
205  * cursor(3), this function should be called 3 times to calculate the number of cache
206  * lines used for each of those surfaces.
207  */
208 static uint32_t dcn32_cache_lines_for_surface(struct dc *dc, uint32_t surface_size, uint64_t start_address)
209 {
210 	uint32_t lines_used = 1;
211 	uint32_t num_cached_bytes = 0;
212 	uint32_t remaining_size = 0;
213 	uint32_t cache_line_size = dc->caps.cache_line_size;
214 	uint32_t remainder = 0;
215 
216 	/* 1. Calculate surface size minus the number of bytes stored
217 	 * in the first cache line (all bytes in first cache line might
218 	 * not be fully used).
219 	 */
220 	div_u64_rem(start_address, cache_line_size, &remainder);
221 	num_cached_bytes = cache_line_size - remainder;
222 	remaining_size = surface_size - num_cached_bytes;
223 
224 	/* 2. Calculate number of cache lines that will be fully used with
225 	 * the remaining number of bytes to be stored.
226 	 */
227 	lines_used += (remaining_size / cache_line_size);
228 
229 	/* 3. Check if we need an extra line due to the remaining size not being
230 	 * a multiple of CACHE_LINE_SIZE.
231 	 */
232 	if (remaining_size % cache_line_size > 0)
233 		lines_used++;
234 
235 	return lines_used;
236 }
237 
238 /* This function loops through every surface that needs to be cached in CAB for SS,
239  * and calculates the total number of ways required to store all surfaces (primary,
240  * meta, cursor).
241  */
242 static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
243 {
244 	uint8_t i, j;
245 	struct dc_stream_state *stream = NULL;
246 	struct dc_plane_state *plane = NULL;
247 	uint32_t surface_size = 0;
248 	uint32_t cursor_size = 0;
249 	uint32_t cache_lines_used = 0;
250 	uint32_t total_lines = 0;
251 	uint32_t lines_per_way = 0;
252 	uint32_t num_ways = 0;
253 
254 	for (i = 0; i < ctx->stream_count; i++) {
255 		stream = ctx->streams[i];
256 
257 		// Don't include PSR surface in the total surface size for CAB allocation
258 		if (stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
259 			continue;
260 
261 		if (ctx->stream_status[i].plane_count == 0)
262 			continue;
263 
264 		// For each stream, loop through each plane to calculate the number of cache
265 		// lines required to store the surface in CAB
266 		for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
267 			plane = ctx->stream_status[i].plane_states[j];
268 
269 			// Calculate total surface size
270 			surface_size = plane->plane_size.surface_pitch *
271 					plane->plane_size.surface_size.height *
272 					(plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4);
273 
274 			// Convert surface size + starting address to number of cache lines required
275 			// (alignment accounted for)
276 			cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
277 					plane->address.grph.addr.quad_part);
278 
279 			if (plane->address.grph.meta_addr.quad_part) {
280 				// Meta surface
281 				cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
282 						plane->address.grph.meta_addr.quad_part);
283 			}
284 		}
285 
286 		// Include cursor size for CAB allocation
287 		if (stream->cursor_position.enable && plane->address.grph.cursor_cache_addr.quad_part) {
288 			cursor_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size;
289 			switch (stream->cursor_attributes.color_format) {
290 			case CURSOR_MODE_MONO:
291 				cursor_size /= 2;
292 				break;
293 			case CURSOR_MODE_COLOR_1BIT_AND:
294 			case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
295 			case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
296 				cursor_size *= 4;
297 				break;
298 
299 			case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
300 			case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
301 				cursor_size *= 8;
302 				break;
303 			}
304 			cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
305 					plane->address.grph.cursor_cache_addr.quad_part);
306 		}
307 	}
308 
309 	// Convert number of cache lines required to number of ways
310 	total_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
311 	lines_per_way = total_lines / dc->caps.cache_num_ways;
312 	num_ways = cache_lines_used / lines_per_way;
313 
314 	if (cache_lines_used % lines_per_way > 0)
315 		num_ways++;
316 
317 	return num_ways;
318 }
319 
320 bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
321 {
322 	union dmub_rb_cmd cmd;
323 	uint8_t ways;
324 
325 	if (!dc->ctx->dmub_srv)
326 		return false;
327 
328 	if (enable) {
329 		if (dc->current_state) {
330 
331 			/* 1. Check no memory request case for CAB.
332 			 * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
333 			 */
334 			if (dcn32_check_no_memory_request_for_cab(dc)) {
335 				/* Enable no-memory-requests case */
336 				memset(&cmd, 0, sizeof(cmd));
337 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
338 				cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
339 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
340 
341 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
342 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
343 
344 				return true;
345 			}
346 
347 			/* 2. Check if all surfaces can fit in CAB.
348 			 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
349 			 * and configure HUBP's to fetch from MALL
350 			 */
351 			ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
352 			if (ways <= dc->caps.cache_num_ways) {
353 				memset(&cmd, 0, sizeof(cmd));
354 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
355 				cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
356 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
357 				cmd.cab.cab_alloc_ways = ways;
358 
359 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
360 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
361 
362 				return true;
363 			}
364 
365 		}
366 		return false;
367 	}
368 
369 	/* Disable CAB */
370 	memset(&cmd, 0, sizeof(cmd));
371 	cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
372 	cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
373 	cmd.cab.header.payload_bytes =
374 			sizeof(cmd.cab) - sizeof(cmd.cab.header);
375 
376 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
377 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
378 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
379 
380 	return true;
381 }
382 
383 /* Send DMCUB message with SubVP pipe info
384  * - For each pipe in context, populate payload with required SubVP information
385  *   if the pipe is using SubVP for MCLK switch
386  * - This function must be called while the DMUB HW lock is acquired by driver
387  */
388 void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
389 {
390 /*
391 	int i;
392 	bool enable_subvp = false;
393 
394 	if (!dc->ctx || !dc->ctx->dmub_srv)
395 		return;
396 
397 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
398 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
399 
400 		if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
401 				pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
402 			// There is at least 1 SubVP pipe, so enable SubVP
403 			enable_subvp = true;
404 			break;
405 		}
406 	}
407 	dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
408 */
409 }
410 
411 /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
412  * 1. Any full update for any SubVP main pipe
413  * 2. Any immediate flip for any SubVP pipe
414  * 3. Any flip for DRR pipe
415  * 4. If SubVP was previously in use (i.e. in old context)
416  */
417 void dcn32_subvp_pipe_control_lock(struct dc *dc,
418 		struct dc_state *context,
419 		bool lock,
420 		bool should_lock_all_pipes,
421 		struct pipe_ctx *top_pipe_to_program,
422 		bool subvp_prev_use)
423 {
424 	unsigned int i = 0;
425 	bool subvp_immediate_flip = false;
426 	bool subvp_in_use = false;
427 	bool drr_pipe = false;
428 	struct pipe_ctx *pipe;
429 
430 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
431 		pipe = &context->res_ctx.pipe_ctx[i];
432 
433 		if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
434 			subvp_in_use = true;
435 			break;
436 		}
437 	}
438 
439 	if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
440 		if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
441 				top_pipe_to_program->plane_state->flip_immediate)
442 			subvp_immediate_flip = true;
443 		else if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_NONE &&
444 				top_pipe_to_program->stream->ignore_msa_timing_param)
445 			drr_pipe = true;
446 	}
447 
448 	if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip || drr_pipe)) || (!subvp_in_use && subvp_prev_use)) {
449 		union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
450 
451 		if (!lock) {
452 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
453 				pipe = &context->res_ctx.pipe_ctx[i];
454 				if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
455 						should_lock_all_pipes)
456 					pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
457 			}
458 		}
459 
460 		hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
461 		hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
462 		hw_lock_cmd.bits.lock = lock;
463 		hw_lock_cmd.bits.should_release = !lock;
464 		dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
465 	}
466 }
467 
468 
469 static bool dcn32_set_mpc_shaper_3dlut(
470 	struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
471 {
472 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
473 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
474 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
475 	bool result = false;
476 
477 	const struct pwl_params *shaper_lut = NULL;
478 	//get the shaper lut params
479 	if (stream->func_shaper) {
480 		if (stream->func_shaper->type == TF_TYPE_HWPWL)
481 			shaper_lut = &stream->func_shaper->pwl;
482 		else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
483 			cm_helper_translate_curve_to_hw_format(
484 					stream->func_shaper,
485 					&dpp_base->shaper_params, true);
486 			shaper_lut = &dpp_base->shaper_params;
487 		}
488 	}
489 
490 	if (stream->lut3d_func &&
491 		stream->lut3d_func->state.bits.initialized == 1) {
492 
493 		result = mpc->funcs->program_3dlut(mpc,
494 								&stream->lut3d_func->lut_3d,
495 								mpcc_id);
496 
497 		result = mpc->funcs->program_shaper(mpc,
498 								shaper_lut,
499 								mpcc_id);
500 	}
501 
502 	return result;
503 }
504 
505 bool dcn32_set_mcm_luts(
506 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
507 {
508 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
509 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
510 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
511 	bool result = true;
512 	struct pwl_params *lut_params = NULL;
513 
514 	// 1D LUT
515 	if (plane_state->blend_tf) {
516 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
517 			lut_params = &plane_state->blend_tf->pwl;
518 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
519 			cm_helper_translate_curve_to_hw_format(
520 					plane_state->blend_tf,
521 					&dpp_base->regamma_params, false);
522 			lut_params = &dpp_base->regamma_params;
523 		}
524 	}
525 	result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
526 
527 	// Shaper
528 	if (plane_state->in_shaper_func) {
529 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
530 			lut_params = &plane_state->in_shaper_func->pwl;
531 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
532 			// TODO: dpp_base replace
533 			ASSERT(false);
534 			cm_helper_translate_curve_to_hw_format(
535 					plane_state->in_shaper_func,
536 					&dpp_base->shaper_params, true);
537 			lut_params = &dpp_base->shaper_params;
538 		}
539 	}
540 
541 	result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
542 
543 	// 3D
544 	if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
545 		result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
546 	else
547 		result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
548 
549 	return result;
550 }
551 
552 bool dcn32_set_input_transfer_func(struct dc *dc,
553 				struct pipe_ctx *pipe_ctx,
554 				const struct dc_plane_state *plane_state)
555 {
556 	struct dce_hwseq *hws = dc->hwseq;
557 	struct mpc *mpc = dc->res_pool->mpc;
558 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
559 
560 	enum dc_transfer_func_predefined tf;
561 	bool result = true;
562 	struct pwl_params *params = NULL;
563 
564 	if (mpc == NULL || plane_state == NULL)
565 		return false;
566 
567 	tf = TRANSFER_FUNCTION_UNITY;
568 
569 	if (plane_state->in_transfer_func &&
570 		plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
571 		tf = plane_state->in_transfer_func->tf;
572 
573 	dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
574 
575 	if (plane_state->in_transfer_func) {
576 		if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
577 			params = &plane_state->in_transfer_func->pwl;
578 		else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
579 			cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
580 					&dpp_base->degamma_params, false))
581 			params = &dpp_base->degamma_params;
582 	}
583 
584 	result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
585 
586 	if (result &&
587 			pipe_ctx->stream_res.opp &&
588 			pipe_ctx->stream_res.opp->ctx &&
589 			hws->funcs.set_mcm_luts)
590 		result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
591 
592 	return result;
593 }
594 
595 bool dcn32_set_output_transfer_func(struct dc *dc,
596 				struct pipe_ctx *pipe_ctx,
597 				const struct dc_stream_state *stream)
598 {
599 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
600 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
601 	struct pwl_params *params = NULL;
602 	bool ret = false;
603 
604 	/* program OGAM or 3DLUT only for the top pipe*/
605 	if (pipe_ctx->top_pipe == NULL) {
606 		/*program shaper and 3dlut in MPC*/
607 		ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
608 		if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
609 			if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
610 				params = &stream->out_transfer_func->pwl;
611 			else if (pipe_ctx->stream->out_transfer_func->type ==
612 					TF_TYPE_DISTRIBUTED_POINTS &&
613 					cm3_helper_translate_curve_to_hw_format(
614 					stream->out_transfer_func,
615 					&mpc->blender_params, false))
616 				params = &mpc->blender_params;
617 		 /* there are no ROM LUTs in OUTGAM */
618 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
619 			BREAK_TO_DEBUGGER();
620 		}
621 	}
622 
623 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
624 	return ret;
625 }
626 
627 /* Program P-State force value according to if pipe is using SubVP or not:
628  * 1. Reset P-State force on all pipes first
629  * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
630  */
631 void dcn32_subvp_update_force_pstate(struct dc *dc, struct dc_state *context)
632 {
633 	int i;
634 	int num_subvp = 0;
635 	/* Unforce p-state for each pipe
636 	 */
637 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
638 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
639 		struct hubp *hubp = pipe->plane_res.hubp;
640 
641 		if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
642 			hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
643 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
644 			num_subvp++;
645 	}
646 
647 	if (num_subvp == 0)
648 		return;
649 
650 	/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
651 	 */
652 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
653 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
654 
655 		// For SubVP + DRR, also force disallow on the DRR pipe
656 		// (We will force allow in the DMUB sequence -- some DRR timings by default won't allow P-State so we have
657 		// to force once the vblank is stretched).
658 		if (pipe->stream && pipe->plane_state && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
659 				(pipe->stream->mall_stream_config.type == SUBVP_NONE && pipe->stream->ignore_msa_timing_param))) {
660 			struct hubp *hubp = pipe->plane_res.hubp;
661 
662 			if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
663 				hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
664 		}
665 	}
666 }
667 
668 /* Update MALL_SEL register based on if pipe / plane
669  * is a phantom pipe, main pipe, and if using MALL
670  * for SS.
671  */
672 void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
673 {
674 	int i;
675 	unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
676 
677 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
678 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
679 		struct hubp *hubp = pipe->plane_res.hubp;
680 
681 		if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
682 			if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
683 					hubp->funcs->hubp_update_mall_sel(hubp, 1);
684 			} else {
685 				hubp->funcs->hubp_update_mall_sel(hubp,
686 					num_ways <= dc->caps.cache_num_ways &&
687 					pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED ? 2 : 0);
688 			}
689 		}
690 	}
691 }
692 
693 /* Program the sub-viewport pipe configuration after the main / phantom pipes
694  * have been programmed in hardware.
695  * 1. Update force P-State for all the main pipes (disallow P-state)
696  * 2. Update MALL_SEL register
697  * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
698  */
699 void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
700 {
701 	int i;
702 	struct dce_hwseq *hws = dc->hwseq;
703 
704 	// Don't force p-state disallow -- can't block dummy p-state
705 
706 	// Update MALL_SEL register for each pipe
707 	if (hws && hws->funcs.update_mall_sel)
708 		hws->funcs.update_mall_sel(dc, context);
709 
710 	// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
711 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
712 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
713 		struct hubp *hubp = pipe->plane_res.hubp;
714 
715 		if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
716 			/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
717 			 *      - need to investigate single pipe MPO + SubVP case to
718 			 *        see if CURSOR_REQ_MODE will be back to 1 for SubVP
719 			 *        when it should be 0 for MPO
720 			 */
721 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
722 				hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
723 			}
724 		}
725 	}
726 }
727 
728 void dcn32_init_hw(struct dc *dc)
729 {
730 	struct abm **abms = dc->res_pool->multiple_abms;
731 	struct dce_hwseq *hws = dc->hwseq;
732 	struct dc_bios *dcb = dc->ctx->dc_bios;
733 	struct resource_pool *res_pool = dc->res_pool;
734 	int i;
735 	int edp_num;
736 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
737 
738 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
739 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
740 
741 	// Initialize the dccg
742 	if (res_pool->dccg->funcs->dccg_init)
743 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
744 
745 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
746 		hws->funcs.bios_golden_init(dc);
747 		hws->funcs.disable_vga(dc->hwseq);
748 	}
749 
750 	// Set default OPTC memory power states
751 	if (dc->debug.enable_mem_low_power.bits.optc) {
752 		// Shutdown when unassigned and light sleep in VBLANK
753 		REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
754 	}
755 
756 	if (dc->debug.enable_mem_low_power.bits.vga) {
757 		// Power down VGA memory
758 		REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
759 	}
760 
761 	if (dc->ctx->dc_bios->fw_info_valid) {
762 		res_pool->ref_clocks.xtalin_clock_inKhz =
763 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
764 
765 		if (res_pool->dccg && res_pool->hubbub) {
766 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
767 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
768 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
769 
770 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
771 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
772 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
773 		} else {
774 			// Not all ASICs have DCCG sw component
775 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
776 					res_pool->ref_clocks.xtalin_clock_inKhz;
777 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
778 					res_pool->ref_clocks.xtalin_clock_inKhz;
779 		}
780 	} else
781 		ASSERT_CRITICAL(false);
782 
783 	for (i = 0; i < dc->link_count; i++) {
784 		/* Power up AND update implementation according to the
785 		 * required signal (which may be different from the
786 		 * default signal on connector).
787 		 */
788 		struct dc_link *link = dc->links[i];
789 
790 		link->link_enc->funcs->hw_init(link->link_enc);
791 
792 		/* Check for enabled DIG to identify enabled display */
793 		if (link->link_enc->funcs->is_dig_enabled &&
794 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
795 			link->link_status.link_active = true;
796 			if (link->link_enc->funcs->fec_is_active &&
797 					link->link_enc->funcs->fec_is_active(link->link_enc))
798 				link->fec_state = dc_link_fec_enabled;
799 		}
800 	}
801 
802 	/* Power gate DSCs */
803 	for (i = 0; i < res_pool->res_cap->num_dsc; i++)
804 		if (hws->funcs.dsc_pg_control != NULL)
805 			hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
806 
807 	/* we want to turn off all dp displays before doing detection */
808 	dc_link_blank_all_dp_displays(dc);
809 
810 	/* If taking control over from VBIOS, we may want to optimize our first
811 	 * mode set, so we need to skip powering down pipes until we know which
812 	 * pipes we want to use.
813 	 * Otherwise, if taking control is not possible, we need to power
814 	 * everything down.
815 	 */
816 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
817 		hws->funcs.init_pipes(dc, dc->current_state);
818 		if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
819 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
820 					!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
821 	}
822 
823 	/* In headless boot cases, DIG may be turned
824 	 * on which causes HW/SW discrepancies.
825 	 * To avoid this, power down hardware on boot
826 	 * if DIG is turned on and seamless boot not enabled
827 	 */
828 	if (!dc->config.seamless_boot_edp_requested) {
829 		struct dc_link *edp_links[MAX_NUM_EDP];
830 		struct dc_link *edp_link;
831 
832 		get_edp_links(dc, edp_links, &edp_num);
833 		if (edp_num) {
834 			for (i = 0; i < edp_num; i++) {
835 				edp_link = edp_links[i];
836 				if (edp_link->link_enc->funcs->is_dig_enabled &&
837 						edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
838 						dc->hwss.edp_backlight_control &&
839 						dc->hwss.power_down &&
840 						dc->hwss.edp_power_control) {
841 					dc->hwss.edp_backlight_control(edp_link, false);
842 					dc->hwss.power_down(dc);
843 					dc->hwss.edp_power_control(edp_link, false);
844 				}
845 			}
846 		} else {
847 			for (i = 0; i < dc->link_count; i++) {
848 				struct dc_link *link = dc->links[i];
849 
850 				if (link->link_enc->funcs->is_dig_enabled &&
851 						link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
852 						dc->hwss.power_down) {
853 					dc->hwss.power_down(dc);
854 					break;
855 				}
856 
857 			}
858 		}
859 	}
860 
861 	for (i = 0; i < res_pool->audio_count; i++) {
862 		struct audio *audio = res_pool->audios[i];
863 
864 		audio->funcs->hw_init(audio);
865 	}
866 
867 	for (i = 0; i < dc->link_count; i++) {
868 		struct dc_link *link = dc->links[i];
869 
870 		if (link->panel_cntl)
871 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
872 	}
873 
874 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
875 		if (abms[i] != NULL && abms[i]->funcs != NULL)
876 			abms[i]->funcs->abm_init(abms[i], backlight);
877 	}
878 
879 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
880 	REG_WRITE(DIO_MEM_PWR_CTRL, 0);
881 
882 	if (!dc->debug.disable_clock_gate) {
883 		/* enable all DCN clock gating */
884 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
885 
886 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
887 
888 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
889 	}
890 	if (hws->funcs.enable_power_gating_plane)
891 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
892 
893 	if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
894 		dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
895 
896 	if (dc->clk_mgr->funcs->notify_wm_ranges)
897 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
898 
899 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
900 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
901 
902 	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
903 		dc->res_pool->hubbub->funcs->force_pstate_change_control(
904 				dc->res_pool->hubbub, false, false);
905 
906 	if (dc->res_pool->hubbub->funcs->init_crb)
907 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
908 
909 	// Get DMCUB capabilities
910     if (dc->ctx->dmub_srv) {
911 	dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
912 	dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
913     }
914 }
915 
916 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
917 		int opp_cnt)
918 {
919 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
920 	int flow_ctrl_cnt;
921 
922 	if (opp_cnt >= 2)
923 		hblank_halved = true;
924 
925 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
926 			stream->timing.h_border_left -
927 			stream->timing.h_border_right;
928 
929 	if (hblank_halved)
930 		flow_ctrl_cnt /= 2;
931 
932 	/* ODM combine 4:1 case */
933 	if (opp_cnt == 4)
934 		flow_ctrl_cnt /= 2;
935 
936 	return flow_ctrl_cnt;
937 }
938 
939 static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
940 {
941 	struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
942 	struct dc_stream_state *stream = pipe_ctx->stream;
943 	struct pipe_ctx *odm_pipe;
944 	int opp_cnt = 1;
945 
946 	ASSERT(dsc);
947 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
948 		opp_cnt++;
949 
950 	if (enable) {
951 		struct dsc_config dsc_cfg;
952 		struct dsc_optc_config dsc_optc_cfg;
953 		enum optc_dsc_mode optc_dsc_mode;
954 
955 		/* Enable DSC hw block */
956 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
957 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
958 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
959 		dsc_cfg.color_depth = stream->timing.display_color_depth;
960 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
961 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
962 		ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
963 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
964 
965 		dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
966 		dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
967 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
968 			struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
969 
970 			ASSERT(odm_dsc);
971 			odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
972 			odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
973 		}
974 		dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
975 		dsc_cfg.pic_width *= opp_cnt;
976 
977 		optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
978 
979 		/* Enable DSC in OPTC */
980 		DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
981 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
982 							optc_dsc_mode,
983 							dsc_optc_cfg.bytes_per_pixel,
984 							dsc_optc_cfg.slice_width);
985 	} else {
986 		/* disable DSC in OPTC */
987 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(
988 				pipe_ctx->stream_res.tg,
989 				OPTC_DSC_DISABLED, 0, 0);
990 
991 		/* disable DSC block */
992 		dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
993 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
994 			ASSERT(odm_pipe->stream_res.dsc);
995 			odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
996 		}
997 	}
998 }
999 
1000 /*
1001 * Given any pipe_ctx, return the total ODM combine factor, and optionally return
1002 * the OPPids which are used
1003 * */
1004 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
1005 {
1006 	unsigned int opp_count = 1;
1007 	struct pipe_ctx *odm_pipe;
1008 
1009 	/* First get to the top pipe */
1010 	for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
1011 		;
1012 
1013 	/* First pipe is always used */
1014 	if (opp_instances)
1015 		opp_instances[0] = odm_pipe->stream_res.opp->inst;
1016 
1017 	/* Find and count odm pipes, if any */
1018 	for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1019 		if (opp_instances)
1020 			opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
1021 		opp_count++;
1022 	}
1023 
1024 	return opp_count;
1025 }
1026 
1027 void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1028 {
1029 	struct pipe_ctx *odm_pipe;
1030 	int opp_cnt = 0;
1031 	int opp_inst[MAX_PIPES] = {0};
1032 	bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
1033 	struct mpc_dwb_flow_control flow_control;
1034 	struct mpc *mpc = dc->res_pool->mpc;
1035 	int i;
1036 
1037 	opp_cnt = get_odm_config(pipe_ctx, opp_inst);
1038 
1039 	if (opp_cnt > 1)
1040 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1041 				pipe_ctx->stream_res.tg,
1042 				opp_inst, opp_cnt,
1043 				&pipe_ctx->stream->timing);
1044 	else
1045 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1046 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1047 
1048 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
1049 	flow_control.flow_ctrl_mode = 0;
1050 	flow_control.flow_ctrl_cnt0 = 0x80;
1051 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
1052 	if (mpc->funcs->set_out_rate_control) {
1053 		for (i = 0; i < opp_cnt; ++i) {
1054 			mpc->funcs->set_out_rate_control(
1055 					mpc, opp_inst[i],
1056 					true,
1057 					rate_control_2x_pclk,
1058 					&flow_control);
1059 		}
1060 	}
1061 
1062 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1063 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
1064 				odm_pipe->stream_res.opp,
1065 				true);
1066 	}
1067 
1068 	// Don't program pixel clock after link is already enabled
1069 /*	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1070 			pipe_ctx->clock_source,
1071 			&pipe_ctx->stream_res.pix_clk_params,
1072 			&pipe_ctx->pll_settings)) {
1073 		BREAK_TO_DEBUGGER();
1074 	}*/
1075 
1076 	if (pipe_ctx->stream_res.dsc)
1077 		update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
1078 }
1079 
1080 unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
1081 {
1082 	struct dc_stream_state *stream = pipe_ctx->stream;
1083 	unsigned int odm_combine_factor = 0;
1084 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1085 	bool two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
1086 
1087 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1088 
1089 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1090 		*k2_div = PIXEL_RATE_DIV_BY_1;
1091 	} else if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) || dc_is_dvi_signal(pipe_ctx->stream->signal)) {
1092 		*k1_div = PIXEL_RATE_DIV_BY_1;
1093 		if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1094 			*k2_div = PIXEL_RATE_DIV_BY_2;
1095 		else
1096 			*k2_div = PIXEL_RATE_DIV_BY_4;
1097 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1098 		if (two_pix_per_container) {
1099 			*k1_div = PIXEL_RATE_DIV_BY_1;
1100 			*k2_div = PIXEL_RATE_DIV_BY_2;
1101 		} else {
1102 			*k1_div = PIXEL_RATE_DIV_BY_1;
1103 			*k2_div = PIXEL_RATE_DIV_BY_4;
1104 			if ((odm_combine_factor == 2) || dc->debug.enable_dp_dig_pixel_rate_div_policy)
1105 				*k2_div = PIXEL_RATE_DIV_BY_2;
1106 		}
1107 	}
1108 
1109 	if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
1110 		ASSERT(false);
1111 
1112 	return odm_combine_factor;
1113 }
1114 
1115 void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
1116 {
1117 	uint32_t pix_per_cycle = 1;
1118 	uint32_t odm_combine_factor = 1;
1119 
1120 	if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
1121 		return;
1122 
1123 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1124 	if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
1125 		|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1126 		pix_per_cycle = 2;
1127 
1128 	if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
1129 		pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
1130 				pix_per_cycle);
1131 }
1132 
1133 void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
1134 		struct dc_link_settings *link_settings)
1135 {
1136 	struct encoder_unblank_param params = {0};
1137 	struct dc_stream_state *stream = pipe_ctx->stream;
1138 	struct dc_link *link = stream->link;
1139 	struct dce_hwseq *hws = link->dc->hwseq;
1140 	struct pipe_ctx *odm_pipe;
1141 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1142 	uint32_t pix_per_cycle = 1;
1143 
1144 	params.opp_cnt = 1;
1145 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1146 		params.opp_cnt++;
1147 
1148 	/* only 3 items below are used by unblank */
1149 	params.timing = pipe_ctx->stream->timing;
1150 
1151 	params.link_settings.link_rate = link_settings->link_rate;
1152 
1153 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1154 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1155 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
1156 				pipe_ctx->stream_res.hpo_dp_stream_enc,
1157 				pipe_ctx->stream_res.tg->inst);
1158 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1159 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
1160 			|| dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1161 			params.timing.pix_clk_100hz /= 2;
1162 			pix_per_cycle = 2;
1163 		}
1164 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
1165 				pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
1166 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1167 	}
1168 
1169 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
1170 		hws->funcs.edp_backlight_control(link, true);
1171 }
1172 
1173 bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
1174 {
1175 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1176 
1177 	if (dc_is_dp_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx) &&
1178 		dc->debug.enable_dp_dig_pixel_rate_div_policy)
1179 		return true;
1180 	return false;
1181 }
1182