xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn32/dcn32_hwseq.c (revision 2dfb62d6ce80b3536d1a915177ae82496bd7ac4a)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dm_helpers.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "dccg.h"
32 #include "dce/dce_hwseq.h"
33 #include "dcn30/dcn30_cm_common.h"
34 #include "reg_helper.h"
35 #include "abm.h"
36 #include "hubp.h"
37 #include "dchubbub.h"
38 #include "timing_generator.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "mpc.h"
42 #include "mcif_wb.h"
43 #include "dc_dmub_srv.h"
44 #include "link_hwss.h"
45 #include "dpcd_defs.h"
46 #include "dcn32_hwseq.h"
47 #include "clk_mgr.h"
48 #include "dsc.h"
49 #include "dcn20/dcn20_optc.h"
50 #include "dmub_subvp_state.h"
51 #include "dce/dmub_hw_lock_mgr.h"
52 #include "dc_link_dp.h"
53 #include "dmub/inc/dmub_subvp_state.h"
54 
55 #define DC_LOGGER_INIT(logger)
56 
57 #define CTX \
58 	hws->ctx
59 #define REG(reg)\
60 	hws->regs->reg
61 #define DC_LOGGER \
62 		dc->ctx->logger
63 
64 
65 #undef FN
66 #define FN(reg_name, field_name) \
67 	hws->shifts->field_name, hws->masks->field_name
68 
69 void dcn32_dsc_pg_control(
70 		struct dce_hwseq *hws,
71 		unsigned int dsc_inst,
72 		bool power_on)
73 {
74 	uint32_t power_gate = power_on ? 0 : 1;
75 	uint32_t pwr_status = power_on ? 0 : 2;
76 	uint32_t org_ip_request_cntl = 0;
77 
78 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
79 		return;
80 
81 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
82 	if (org_ip_request_cntl == 0)
83 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
84 
85 	switch (dsc_inst) {
86 	case 0: /* DSC0 */
87 		REG_UPDATE(DOMAIN16_PG_CONFIG,
88 				DOMAIN_POWER_GATE, power_gate);
89 
90 		REG_WAIT(DOMAIN16_PG_STATUS,
91 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
92 				1, 1000);
93 		break;
94 	case 1: /* DSC1 */
95 		REG_UPDATE(DOMAIN17_PG_CONFIG,
96 				DOMAIN_POWER_GATE, power_gate);
97 
98 		REG_WAIT(DOMAIN17_PG_STATUS,
99 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
100 				1, 1000);
101 		break;
102 	case 2: /* DSC2 */
103 		REG_UPDATE(DOMAIN18_PG_CONFIG,
104 				DOMAIN_POWER_GATE, power_gate);
105 
106 		REG_WAIT(DOMAIN18_PG_STATUS,
107 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
108 				1, 1000);
109 		break;
110 	case 3: /* DSC3 */
111 		REG_UPDATE(DOMAIN19_PG_CONFIG,
112 				DOMAIN_POWER_GATE, power_gate);
113 
114 		REG_WAIT(DOMAIN19_PG_STATUS,
115 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
116 				1, 1000);
117 		break;
118 	default:
119 		BREAK_TO_DEBUGGER();
120 		break;
121 	}
122 
123 	if (org_ip_request_cntl == 0)
124 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
125 }
126 
127 
128 void dcn32_enable_power_gating_plane(
129 	struct dce_hwseq *hws,
130 	bool enable)
131 {
132 	bool force_on = true; /* disable power gating */
133 
134 	if (enable)
135 		force_on = false;
136 
137 	/* DCHUBP0/1/2/3 */
138 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
139 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
140 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
141 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
142 
143 	/* DCS0/1/2/3 */
144 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
145 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
146 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
147 	REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
148 }
149 
150 void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
151 {
152 	uint32_t power_gate = power_on ? 0 : 1;
153 	uint32_t pwr_status = power_on ? 0 : 2;
154 
155 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
156 		return;
157 
158 	if (REG(DOMAIN0_PG_CONFIG) == 0)
159 		return;
160 
161 	switch (hubp_inst) {
162 	case 0:
163 		REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
164 		REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
165 		break;
166 	case 1:
167 		REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
168 		REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
169 		break;
170 	case 2:
171 		REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
172 		REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
173 		break;
174 	case 3:
175 		REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
176 		REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
177 		break;
178 	default:
179 		BREAK_TO_DEBUGGER();
180 		break;
181 	}
182 }
183 
184 static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
185 {
186 	int i;
187 
188     /* First, check no-memory-request case */
189 	for (i = 0; i < dc->current_state->stream_count; i++) {
190 		if (dc->current_state->stream_status[i].plane_count)
191 			/* Fail eligibility on a visible stream */
192 			break;
193 	}
194 
195 	if (i == dc->current_state->stream_count)
196 		return true;
197 
198 	return false;
199 }
200 
201 /* This function takes in the start address and surface size to be cached in CAB
202  * and calculates the total number of cache lines required to store the surface.
203  * The number of cache lines used for each surface is calculated independently of
204  * one another. For example, if there is a primary surface(1), meta surface(2), and
205  * cursor(3), this function should be called 3 times to calculate the number of cache
206  * lines used for each of those surfaces.
207  */
208 static uint32_t dcn32_cache_lines_for_surface(struct dc *dc, uint32_t surface_size, uint64_t start_address)
209 {
210 	uint32_t lines_used = 1;
211 	uint32_t num_cached_bytes = 0;
212 	uint32_t remaining_size = 0;
213 	uint32_t cache_line_size = dc->caps.cache_line_size;
214 	uint32_t remainder = 0;
215 
216 	/* 1. Calculate surface size minus the number of bytes stored
217 	 * in the first cache line (all bytes in first cache line might
218 	 * not be fully used).
219 	 */
220 	div_u64_rem(start_address, cache_line_size, &remainder);
221 	num_cached_bytes = cache_line_size - remainder;
222 	remaining_size = surface_size - num_cached_bytes;
223 
224 	/* 2. Calculate number of cache lines that will be fully used with
225 	 * the remaining number of bytes to be stored.
226 	 */
227 	lines_used += (remaining_size / cache_line_size);
228 
229 	/* 3. Check if we need an extra line due to the remaining size not being
230 	 * a multiple of CACHE_LINE_SIZE.
231 	 */
232 	if (remaining_size % cache_line_size > 0)
233 		lines_used++;
234 
235 	return lines_used;
236 }
237 
238 /* This function loops through every surface that needs to be cached in CAB for SS,
239  * and calculates the total number of ways required to store all surfaces (primary,
240  * meta, cursor).
241  */
242 static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
243 {
244 	uint8_t i, j;
245 	struct dc_stream_state *stream = NULL;
246 	struct dc_plane_state *plane = NULL;
247 	uint32_t surface_size = 0;
248 	uint32_t cursor_size = 0;
249 	uint32_t cache_lines_used = 0;
250 	uint32_t total_lines = 0;
251 	uint32_t lines_per_way = 0;
252 	uint32_t num_ways = 0;
253 
254 	for (i = 0; i < ctx->stream_count; i++) {
255 		stream = ctx->streams[i];
256 
257 		// Don't include PSR surface in the total surface size for CAB allocation
258 		if (stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
259 			continue;
260 
261 		if (ctx->stream_status[i].plane_count == 0)
262 			continue;
263 
264 		// For each stream, loop through each plane to calculate the number of cache
265 		// lines required to store the surface in CAB
266 		for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
267 			plane = ctx->stream_status[i].plane_states[j];
268 
269 			// Calculate total surface size
270 			surface_size = plane->plane_size.surface_pitch *
271 					plane->plane_size.surface_size.height *
272 					(plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4);
273 
274 			// Convert surface size + starting address to number of cache lines required
275 			// (alignment accounted for)
276 			cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
277 					plane->address.grph.addr.quad_part);
278 
279 			if (plane->address.grph.meta_addr.quad_part) {
280 				// Meta surface
281 				cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
282 						plane->address.grph.meta_addr.quad_part);
283 			}
284 		}
285 
286 		// Include cursor size for CAB allocation
287 		if (stream->cursor_position.enable && plane->address.grph.cursor_cache_addr.quad_part) {
288 			cursor_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size;
289 			switch (stream->cursor_attributes.color_format) {
290 			case CURSOR_MODE_MONO:
291 				cursor_size /= 2;
292 				break;
293 			case CURSOR_MODE_COLOR_1BIT_AND:
294 			case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
295 			case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
296 				cursor_size *= 4;
297 				break;
298 
299 			case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
300 			case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
301 				cursor_size *= 8;
302 				break;
303 			}
304 			cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
305 					plane->address.grph.cursor_cache_addr.quad_part);
306 		}
307 	}
308 
309 	// Convert number of cache lines required to number of ways
310 	total_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
311 	lines_per_way = total_lines / dc->caps.cache_num_ways;
312 	num_ways = cache_lines_used / lines_per_way;
313 
314 	if (cache_lines_used % lines_per_way > 0)
315 		num_ways++;
316 
317 	return num_ways;
318 }
319 
320 bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
321 {
322 	union dmub_rb_cmd cmd;
323 	uint8_t ways;
324 
325 	if (!dc->ctx->dmub_srv)
326 		return false;
327 
328 	if (enable) {
329 		if (dc->current_state) {
330 
331 			/* 1. Check no memory request case for CAB.
332 			 * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
333 			 */
334 			if (dcn32_check_no_memory_request_for_cab(dc)) {
335 				/* Enable no-memory-requests case */
336 				memset(&cmd, 0, sizeof(cmd));
337 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
338 				cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
339 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
340 
341 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
342 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
343 
344 				return true;
345 			}
346 
347 			/* 2. Check if all surfaces can fit in CAB.
348 			 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
349 			 * and configure HUBP's to fetch from MALL
350 			 */
351 			ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
352 			if (ways <= dc->caps.cache_num_ways) {
353 				memset(&cmd, 0, sizeof(cmd));
354 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
355 				cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
356 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
357 				cmd.cab.cab_alloc_ways = ways;
358 
359 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
360 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
361 
362 				return true;
363 			}
364 
365 		}
366 		return false;
367 	}
368 
369 	/* Disable CAB */
370 	memset(&cmd, 0, sizeof(cmd));
371 	cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
372 	cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
373 	cmd.cab.header.payload_bytes =
374 			sizeof(cmd.cab) - sizeof(cmd.cab.header);
375 
376 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
377 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
378 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
379 
380 	return true;
381 }
382 
383 /* Send DMCUB message with SubVP pipe info
384  * - For each pipe in context, populate payload with required SubVP information
385  *   if the pipe is using SubVP for MCLK switch
386  * - This function must be called while the DMUB HW lock is acquired by driver
387  */
388 void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
389 {
390 /*
391 	int i;
392 	bool enable_subvp = false;
393 
394 	if (!dc->ctx || !dc->ctx->dmub_srv)
395 		return;
396 
397 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
398 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
399 
400 		if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
401 				pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
402 			// There is at least 1 SubVP pipe, so enable SubVP
403 			enable_subvp = true;
404 			break;
405 		}
406 	}
407 	dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
408 */
409 }
410 
411 /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
412  * 1. Any full update for any SubVP main pipe
413  * 2. Any immediate flip for any SubVP pipe
414  * 3. Any flip for DRR pipe
415  * 4. If SubVP was previously in use (i.e. in old context)
416  */
417 void dcn32_subvp_pipe_control_lock(struct dc *dc,
418 		struct dc_state *context,
419 		bool lock,
420 		bool should_lock_all_pipes,
421 		struct pipe_ctx *top_pipe_to_program,
422 		bool subvp_prev_use)
423 {
424 	unsigned int i = 0;
425 	bool subvp_immediate_flip = false;
426 	bool subvp_in_use = false;
427 	struct pipe_ctx *pipe;
428 
429 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
430 		pipe = &context->res_ctx.pipe_ctx[i];
431 
432 		if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
433 			subvp_in_use = true;
434 			break;
435 		}
436 	}
437 
438 	if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
439 		if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
440 				top_pipe_to_program->plane_state->flip_immediate)
441 			subvp_immediate_flip = true;
442 	}
443 
444 	// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
445 	if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
446 		union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
447 
448 		if (!lock) {
449 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
450 				pipe = &context->res_ctx.pipe_ctx[i];
451 				if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
452 						should_lock_all_pipes)
453 					pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
454 			}
455 		}
456 
457 		hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
458 		hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
459 		hw_lock_cmd.bits.lock = lock;
460 		hw_lock_cmd.bits.should_release = !lock;
461 		dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
462 	}
463 }
464 
465 
466 static bool dcn32_set_mpc_shaper_3dlut(
467 	struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
468 {
469 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
470 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
471 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
472 	bool result = false;
473 
474 	const struct pwl_params *shaper_lut = NULL;
475 	//get the shaper lut params
476 	if (stream->func_shaper) {
477 		if (stream->func_shaper->type == TF_TYPE_HWPWL)
478 			shaper_lut = &stream->func_shaper->pwl;
479 		else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
480 			cm_helper_translate_curve_to_hw_format(
481 					stream->func_shaper,
482 					&dpp_base->shaper_params, true);
483 			shaper_lut = &dpp_base->shaper_params;
484 		}
485 	}
486 
487 	if (stream->lut3d_func &&
488 		stream->lut3d_func->state.bits.initialized == 1) {
489 
490 		result = mpc->funcs->program_3dlut(mpc,
491 								&stream->lut3d_func->lut_3d,
492 								mpcc_id);
493 
494 		result = mpc->funcs->program_shaper(mpc,
495 								shaper_lut,
496 								mpcc_id);
497 	}
498 
499 	return result;
500 }
501 
502 bool dcn32_set_mcm_luts(
503 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
504 {
505 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
506 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
507 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
508 	bool result = true;
509 	struct pwl_params *lut_params = NULL;
510 
511 	// 1D LUT
512 	if (plane_state->blend_tf) {
513 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
514 			lut_params = &plane_state->blend_tf->pwl;
515 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
516 			cm_helper_translate_curve_to_hw_format(
517 					plane_state->blend_tf,
518 					&dpp_base->regamma_params, false);
519 			lut_params = &dpp_base->regamma_params;
520 		}
521 	}
522 	result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
523 
524 	// Shaper
525 	if (plane_state->in_shaper_func) {
526 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
527 			lut_params = &plane_state->in_shaper_func->pwl;
528 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
529 			// TODO: dpp_base replace
530 			ASSERT(false);
531 			cm_helper_translate_curve_to_hw_format(
532 					plane_state->in_shaper_func,
533 					&dpp_base->shaper_params, true);
534 			lut_params = &dpp_base->shaper_params;
535 		}
536 	}
537 
538 	result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
539 
540 	// 3D
541 	if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
542 		result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
543 	else
544 		result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
545 
546 	return result;
547 }
548 
549 bool dcn32_set_input_transfer_func(struct dc *dc,
550 				struct pipe_ctx *pipe_ctx,
551 				const struct dc_plane_state *plane_state)
552 {
553 	struct dce_hwseq *hws = dc->hwseq;
554 	struct mpc *mpc = dc->res_pool->mpc;
555 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
556 
557 	enum dc_transfer_func_predefined tf;
558 	bool result = true;
559 	struct pwl_params *params = NULL;
560 
561 	if (mpc == NULL || plane_state == NULL)
562 		return false;
563 
564 	tf = TRANSFER_FUNCTION_UNITY;
565 
566 	if (plane_state->in_transfer_func &&
567 		plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
568 		tf = plane_state->in_transfer_func->tf;
569 
570 	dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
571 
572 	if (plane_state->in_transfer_func) {
573 		if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
574 			params = &plane_state->in_transfer_func->pwl;
575 		else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
576 			cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
577 					&dpp_base->degamma_params, false))
578 			params = &dpp_base->degamma_params;
579 	}
580 
581 	result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
582 
583 	if (result &&
584 			pipe_ctx->stream_res.opp &&
585 			pipe_ctx->stream_res.opp->ctx &&
586 			hws->funcs.set_mcm_luts)
587 		result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
588 
589 	return result;
590 }
591 
592 bool dcn32_set_output_transfer_func(struct dc *dc,
593 				struct pipe_ctx *pipe_ctx,
594 				const struct dc_stream_state *stream)
595 {
596 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
597 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
598 	struct pwl_params *params = NULL;
599 	bool ret = false;
600 
601 	/* program OGAM or 3DLUT only for the top pipe*/
602 	if (pipe_ctx->top_pipe == NULL) {
603 		/*program shaper and 3dlut in MPC*/
604 		ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
605 		if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
606 			if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
607 				params = &stream->out_transfer_func->pwl;
608 			else if (pipe_ctx->stream->out_transfer_func->type ==
609 					TF_TYPE_DISTRIBUTED_POINTS &&
610 					cm3_helper_translate_curve_to_hw_format(
611 					stream->out_transfer_func,
612 					&mpc->blender_params, false))
613 				params = &mpc->blender_params;
614 		 /* there are no ROM LUTs in OUTGAM */
615 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
616 			BREAK_TO_DEBUGGER();
617 		}
618 	}
619 
620 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
621 	return ret;
622 }
623 
624 /* Program P-State force value according to if pipe is using SubVP or not:
625  * 1. Reset P-State force on all pipes first
626  * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
627  */
628 void dcn32_subvp_update_force_pstate(struct dc *dc, struct dc_state *context)
629 {
630 	int i;
631 	int num_subvp = 0;
632 	/* Unforce p-state for each pipe
633 	 */
634 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
635 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
636 		struct hubp *hubp = pipe->plane_res.hubp;
637 
638 		if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
639 			hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
640 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
641 			num_subvp++;
642 	}
643 
644 	if (num_subvp == 0)
645 		return;
646 
647 	/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
648 	 */
649 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
650 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
651 
652 		// For SubVP + DRR, also force disallow on the DRR pipe
653 		// (We will force allow in the DMUB sequence -- some DRR timings by default won't allow P-State so we have
654 		// to force once the vblank is stretched).
655 		if (pipe->stream && pipe->plane_state && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
656 				(pipe->stream->mall_stream_config.type == SUBVP_NONE && pipe->stream->ignore_msa_timing_param))) {
657 			struct hubp *hubp = pipe->plane_res.hubp;
658 
659 			if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
660 				hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
661 		}
662 	}
663 }
664 
665 /* Update MALL_SEL register based on if pipe / plane
666  * is a phantom pipe, main pipe, and if using MALL
667  * for SS.
668  */
669 void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
670 {
671 	int i;
672 	unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
673 	bool cache_cursor = false;
674 
675 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
676 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
677 		struct hubp *hubp = pipe->plane_res.hubp;
678 
679 		if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
680 			if (hubp->curs_attr.width * hubp->curs_attr.height * 4 > 16384)
681 				cache_cursor = true;
682 
683 			if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
684 					hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
685 			} else {
686 				hubp->funcs->hubp_update_mall_sel(hubp,
687 					num_ways <= dc->caps.cache_num_ways &&
688 					pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED ? 2 : 0,
689 							cache_cursor);
690 			}
691 		}
692 	}
693 }
694 
695 /* Program the sub-viewport pipe configuration after the main / phantom pipes
696  * have been programmed in hardware.
697  * 1. Update force P-State for all the main pipes (disallow P-state)
698  * 2. Update MALL_SEL register
699  * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
700  */
701 void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
702 {
703 	int i;
704 	struct dce_hwseq *hws = dc->hwseq;
705 
706 	// Don't force p-state disallow -- can't block dummy p-state
707 
708 	// Update MALL_SEL register for each pipe
709 	if (hws && hws->funcs.update_mall_sel)
710 		hws->funcs.update_mall_sel(dc, context);
711 
712 	// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
713 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
714 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
715 		struct hubp *hubp = pipe->plane_res.hubp;
716 
717 		if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
718 			/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
719 			 *      - need to investigate single pipe MPO + SubVP case to
720 			 *        see if CURSOR_REQ_MODE will be back to 1 for SubVP
721 			 *        when it should be 0 for MPO
722 			 */
723 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
724 				hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
725 			}
726 		}
727 	}
728 }
729 
730 void dcn32_init_hw(struct dc *dc)
731 {
732 	struct abm **abms = dc->res_pool->multiple_abms;
733 	struct dce_hwseq *hws = dc->hwseq;
734 	struct dc_bios *dcb = dc->ctx->dc_bios;
735 	struct resource_pool *res_pool = dc->res_pool;
736 	int i;
737 	int edp_num;
738 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
739 
740 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
741 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
742 
743 	// Initialize the dccg
744 	if (res_pool->dccg->funcs->dccg_init)
745 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
746 
747 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
748 		hws->funcs.bios_golden_init(dc);
749 		hws->funcs.disable_vga(dc->hwseq);
750 	}
751 
752 	// Set default OPTC memory power states
753 	if (dc->debug.enable_mem_low_power.bits.optc) {
754 		// Shutdown when unassigned and light sleep in VBLANK
755 		REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
756 	}
757 
758 	if (dc->debug.enable_mem_low_power.bits.vga) {
759 		// Power down VGA memory
760 		REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
761 	}
762 
763 	if (dc->ctx->dc_bios->fw_info_valid) {
764 		res_pool->ref_clocks.xtalin_clock_inKhz =
765 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
766 
767 		if (res_pool->dccg && res_pool->hubbub) {
768 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
769 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
770 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
771 
772 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
773 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
774 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
775 		} else {
776 			// Not all ASICs have DCCG sw component
777 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
778 					res_pool->ref_clocks.xtalin_clock_inKhz;
779 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
780 					res_pool->ref_clocks.xtalin_clock_inKhz;
781 		}
782 	} else
783 		ASSERT_CRITICAL(false);
784 
785 	for (i = 0; i < dc->link_count; i++) {
786 		/* Power up AND update implementation according to the
787 		 * required signal (which may be different from the
788 		 * default signal on connector).
789 		 */
790 		struct dc_link *link = dc->links[i];
791 
792 		link->link_enc->funcs->hw_init(link->link_enc);
793 
794 		/* Check for enabled DIG to identify enabled display */
795 		if (link->link_enc->funcs->is_dig_enabled &&
796 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
797 			link->link_status.link_active = true;
798 			if (link->link_enc->funcs->fec_is_active &&
799 					link->link_enc->funcs->fec_is_active(link->link_enc))
800 				link->fec_state = dc_link_fec_enabled;
801 		}
802 	}
803 
804 	/* Power gate DSCs */
805 	for (i = 0; i < res_pool->res_cap->num_dsc; i++)
806 		if (hws->funcs.dsc_pg_control != NULL)
807 			hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
808 
809 	/* we want to turn off all dp displays before doing detection */
810 	dc_link_blank_all_dp_displays(dc);
811 
812 	/* If taking control over from VBIOS, we may want to optimize our first
813 	 * mode set, so we need to skip powering down pipes until we know which
814 	 * pipes we want to use.
815 	 * Otherwise, if taking control is not possible, we need to power
816 	 * everything down.
817 	 */
818 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
819 		hws->funcs.init_pipes(dc, dc->current_state);
820 		if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
821 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
822 					!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
823 	}
824 
825 	/* In headless boot cases, DIG may be turned
826 	 * on which causes HW/SW discrepancies.
827 	 * To avoid this, power down hardware on boot
828 	 * if DIG is turned on and seamless boot not enabled
829 	 */
830 	if (!dc->config.seamless_boot_edp_requested) {
831 		struct dc_link *edp_links[MAX_NUM_EDP];
832 		struct dc_link *edp_link;
833 
834 		get_edp_links(dc, edp_links, &edp_num);
835 		if (edp_num) {
836 			for (i = 0; i < edp_num; i++) {
837 				edp_link = edp_links[i];
838 				if (edp_link->link_enc->funcs->is_dig_enabled &&
839 						edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
840 						dc->hwss.edp_backlight_control &&
841 						dc->hwss.power_down &&
842 						dc->hwss.edp_power_control) {
843 					dc->hwss.edp_backlight_control(edp_link, false);
844 					dc->hwss.power_down(dc);
845 					dc->hwss.edp_power_control(edp_link, false);
846 				}
847 			}
848 		} else {
849 			for (i = 0; i < dc->link_count; i++) {
850 				struct dc_link *link = dc->links[i];
851 
852 				if (link->link_enc->funcs->is_dig_enabled &&
853 						link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
854 						dc->hwss.power_down) {
855 					dc->hwss.power_down(dc);
856 					break;
857 				}
858 
859 			}
860 		}
861 	}
862 
863 	for (i = 0; i < res_pool->audio_count; i++) {
864 		struct audio *audio = res_pool->audios[i];
865 
866 		audio->funcs->hw_init(audio);
867 	}
868 
869 	for (i = 0; i < dc->link_count; i++) {
870 		struct dc_link *link = dc->links[i];
871 
872 		if (link->panel_cntl)
873 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
874 	}
875 
876 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
877 		if (abms[i] != NULL && abms[i]->funcs != NULL)
878 			abms[i]->funcs->abm_init(abms[i], backlight);
879 	}
880 
881 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
882 	REG_WRITE(DIO_MEM_PWR_CTRL, 0);
883 
884 	if (!dc->debug.disable_clock_gate) {
885 		/* enable all DCN clock gating */
886 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
887 
888 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
889 
890 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
891 	}
892 	if (hws->funcs.enable_power_gating_plane)
893 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
894 
895 	if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
896 		dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
897 
898 	if (dc->clk_mgr->funcs->notify_wm_ranges)
899 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
900 
901 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
902 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
903 
904 	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
905 		dc->res_pool->hubbub->funcs->force_pstate_change_control(
906 				dc->res_pool->hubbub, false, false);
907 
908 	if (dc->res_pool->hubbub->funcs->init_crb)
909 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
910 
911 	// Get DMCUB capabilities
912 	if (dc->ctx->dmub_srv) {
913 		dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
914 		dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
915 	}
916 }
917 
918 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
919 		int opp_cnt)
920 {
921 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
922 	int flow_ctrl_cnt;
923 
924 	if (opp_cnt >= 2)
925 		hblank_halved = true;
926 
927 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
928 			stream->timing.h_border_left -
929 			stream->timing.h_border_right;
930 
931 	if (hblank_halved)
932 		flow_ctrl_cnt /= 2;
933 
934 	/* ODM combine 4:1 case */
935 	if (opp_cnt == 4)
936 		flow_ctrl_cnt /= 2;
937 
938 	return flow_ctrl_cnt;
939 }
940 
941 static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
942 {
943 	struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
944 	struct dc_stream_state *stream = pipe_ctx->stream;
945 	struct pipe_ctx *odm_pipe;
946 	int opp_cnt = 1;
947 
948 	ASSERT(dsc);
949 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
950 		opp_cnt++;
951 
952 	if (enable) {
953 		struct dsc_config dsc_cfg;
954 		struct dsc_optc_config dsc_optc_cfg;
955 		enum optc_dsc_mode optc_dsc_mode;
956 
957 		/* Enable DSC hw block */
958 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
959 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
960 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
961 		dsc_cfg.color_depth = stream->timing.display_color_depth;
962 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
963 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
964 		ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
965 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
966 
967 		dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
968 		dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
969 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
970 			struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
971 
972 			ASSERT(odm_dsc);
973 			odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
974 			odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
975 		}
976 		dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
977 		dsc_cfg.pic_width *= opp_cnt;
978 
979 		optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
980 
981 		/* Enable DSC in OPTC */
982 		DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
983 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
984 							optc_dsc_mode,
985 							dsc_optc_cfg.bytes_per_pixel,
986 							dsc_optc_cfg.slice_width);
987 	} else {
988 		/* disable DSC in OPTC */
989 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(
990 				pipe_ctx->stream_res.tg,
991 				OPTC_DSC_DISABLED, 0, 0);
992 
993 		/* disable DSC block */
994 		dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
995 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
996 			ASSERT(odm_pipe->stream_res.dsc);
997 			odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
998 		}
999 	}
1000 }
1001 
1002 /*
1003 * Given any pipe_ctx, return the total ODM combine factor, and optionally return
1004 * the OPPids which are used
1005 * */
1006 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
1007 {
1008 	unsigned int opp_count = 1;
1009 	struct pipe_ctx *odm_pipe;
1010 
1011 	/* First get to the top pipe */
1012 	for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
1013 		;
1014 
1015 	/* First pipe is always used */
1016 	if (opp_instances)
1017 		opp_instances[0] = odm_pipe->stream_res.opp->inst;
1018 
1019 	/* Find and count odm pipes, if any */
1020 	for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1021 		if (opp_instances)
1022 			opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
1023 		opp_count++;
1024 	}
1025 
1026 	return opp_count;
1027 }
1028 
1029 void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1030 {
1031 	struct pipe_ctx *odm_pipe;
1032 	int opp_cnt = 0;
1033 	int opp_inst[MAX_PIPES] = {0};
1034 	bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
1035 	struct mpc_dwb_flow_control flow_control;
1036 	struct mpc *mpc = dc->res_pool->mpc;
1037 	int i;
1038 
1039 	opp_cnt = get_odm_config(pipe_ctx, opp_inst);
1040 
1041 	if (opp_cnt > 1)
1042 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1043 				pipe_ctx->stream_res.tg,
1044 				opp_inst, opp_cnt,
1045 				&pipe_ctx->stream->timing);
1046 	else
1047 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1048 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1049 
1050 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
1051 	flow_control.flow_ctrl_mode = 0;
1052 	flow_control.flow_ctrl_cnt0 = 0x80;
1053 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
1054 	if (mpc->funcs->set_out_rate_control) {
1055 		for (i = 0; i < opp_cnt; ++i) {
1056 			mpc->funcs->set_out_rate_control(
1057 					mpc, opp_inst[i],
1058 					true,
1059 					rate_control_2x_pclk,
1060 					&flow_control);
1061 		}
1062 	}
1063 
1064 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1065 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
1066 				odm_pipe->stream_res.opp,
1067 				true);
1068 	}
1069 
1070 	// Don't program pixel clock after link is already enabled
1071 /*	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1072 			pipe_ctx->clock_source,
1073 			&pipe_ctx->stream_res.pix_clk_params,
1074 			&pipe_ctx->pll_settings)) {
1075 		BREAK_TO_DEBUGGER();
1076 	}*/
1077 
1078 	if (pipe_ctx->stream_res.dsc)
1079 		update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
1080 }
1081 
1082 unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
1083 {
1084 	struct dc_stream_state *stream = pipe_ctx->stream;
1085 	unsigned int odm_combine_factor = 0;
1086 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1087 	bool two_pix_per_container = false;
1088 
1089 	// For phantom pipes, use the same programming as the main pipes
1090 	if (pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1091 		stream = pipe_ctx->stream->mall_stream_config.paired_stream;
1092 	}
1093 	two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
1094 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1095 
1096 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1097 		*k2_div = PIXEL_RATE_DIV_BY_1;
1098 	} else if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) || dc_is_dvi_signal(pipe_ctx->stream->signal)) {
1099 		*k1_div = PIXEL_RATE_DIV_BY_1;
1100 		if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1101 			*k2_div = PIXEL_RATE_DIV_BY_2;
1102 		else
1103 			*k2_div = PIXEL_RATE_DIV_BY_4;
1104 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1105 		if (two_pix_per_container) {
1106 			*k1_div = PIXEL_RATE_DIV_BY_1;
1107 			*k2_div = PIXEL_RATE_DIV_BY_2;
1108 		} else {
1109 			*k1_div = PIXEL_RATE_DIV_BY_1;
1110 			*k2_div = PIXEL_RATE_DIV_BY_4;
1111 			if ((odm_combine_factor == 2) || dc->debug.enable_dp_dig_pixel_rate_div_policy)
1112 				*k2_div = PIXEL_RATE_DIV_BY_2;
1113 		}
1114 	}
1115 
1116 	if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
1117 		ASSERT(false);
1118 
1119 	return odm_combine_factor;
1120 }
1121 
1122 void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
1123 {
1124 	uint32_t pix_per_cycle = 1;
1125 	uint32_t odm_combine_factor = 1;
1126 
1127 	if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
1128 		return;
1129 
1130 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1131 	if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
1132 		|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1133 		pix_per_cycle = 2;
1134 
1135 	if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
1136 		pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
1137 				pix_per_cycle);
1138 }
1139 
1140 void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
1141 		struct dc_link_settings *link_settings)
1142 {
1143 	struct encoder_unblank_param params = {0};
1144 	struct dc_stream_state *stream = pipe_ctx->stream;
1145 	struct dc_link *link = stream->link;
1146 	struct dce_hwseq *hws = link->dc->hwseq;
1147 	struct pipe_ctx *odm_pipe;
1148 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1149 	uint32_t pix_per_cycle = 1;
1150 
1151 	params.opp_cnt = 1;
1152 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1153 		params.opp_cnt++;
1154 
1155 	/* only 3 items below are used by unblank */
1156 	params.timing = pipe_ctx->stream->timing;
1157 
1158 	params.link_settings.link_rate = link_settings->link_rate;
1159 
1160 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1161 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1162 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
1163 				pipe_ctx->stream_res.hpo_dp_stream_enc,
1164 				pipe_ctx->stream_res.tg->inst);
1165 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1166 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
1167 			|| dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1168 			params.timing.pix_clk_100hz /= 2;
1169 			pix_per_cycle = 2;
1170 		}
1171 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
1172 				pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
1173 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1174 	}
1175 
1176 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
1177 		hws->funcs.edp_backlight_control(link, true);
1178 }
1179 
1180 bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
1181 {
1182 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1183 
1184 	if (dc_is_dp_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx) &&
1185 		dc->debug.enable_dp_dig_pixel_rate_div_policy)
1186 		return true;
1187 	return false;
1188 }
1189