1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dm_helpers.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "dccg.h"
32 #include "dce/dce_hwseq.h"
33 #include "dcn30/dcn30_cm_common.h"
34 #include "reg_helper.h"
35 #include "abm.h"
36 #include "hubp.h"
37 #include "dchubbub.h"
38 #include "timing_generator.h"
39 #include "opp.h"
40 #include "ipp.h"
41 #include "mpc.h"
42 #include "mcif_wb.h"
43 #include "dc_dmub_srv.h"
44 #include "link_hwss.h"
45 #include "dpcd_defs.h"
46 #include "dcn32_hwseq.h"
47 #include "clk_mgr.h"
48 #include "dsc.h"
49 #include "dcn20/dcn20_optc.h"
50 #include "dmub_subvp_state.h"
51 #include "dce/dmub_hw_lock_mgr.h"
52 #include "dc_link_dp.h"
53 #include "dmub/inc/dmub_subvp_state.h"
54 
55 #define DC_LOGGER_INIT(logger)
56 
57 #define CTX \
58 	hws->ctx
59 #define REG(reg)\
60 	hws->regs->reg
61 #define DC_LOGGER \
62 		dc->ctx->logger
63 
64 
65 #undef FN
66 #define FN(reg_name, field_name) \
67 	hws->shifts->field_name, hws->masks->field_name
68 
69 void dcn32_dsc_pg_control(
70 		struct dce_hwseq *hws,
71 		unsigned int dsc_inst,
72 		bool power_on)
73 {
74 	uint32_t power_gate = power_on ? 0 : 1;
75 	uint32_t pwr_status = power_on ? 0 : 2;
76 	uint32_t org_ip_request_cntl = 0;
77 
78 	if (hws->ctx->dc->debug.disable_dsc_power_gate)
79 		return;
80 
81 	REG_GET(DC_IP_REQUEST_CNTL, IP_REQUEST_EN, &org_ip_request_cntl);
82 	if (org_ip_request_cntl == 0)
83 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 1);
84 
85 	switch (dsc_inst) {
86 	case 0: /* DSC0 */
87 		REG_UPDATE(DOMAIN16_PG_CONFIG,
88 				DOMAIN_POWER_GATE, power_gate);
89 
90 		REG_WAIT(DOMAIN16_PG_STATUS,
91 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
92 				1, 1000);
93 		break;
94 	case 1: /* DSC1 */
95 		REG_UPDATE(DOMAIN17_PG_CONFIG,
96 				DOMAIN_POWER_GATE, power_gate);
97 
98 		REG_WAIT(DOMAIN17_PG_STATUS,
99 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
100 				1, 1000);
101 		break;
102 	case 2: /* DSC2 */
103 		REG_UPDATE(DOMAIN18_PG_CONFIG,
104 				DOMAIN_POWER_GATE, power_gate);
105 
106 		REG_WAIT(DOMAIN18_PG_STATUS,
107 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
108 				1, 1000);
109 		break;
110 	case 3: /* DSC3 */
111 		REG_UPDATE(DOMAIN19_PG_CONFIG,
112 				DOMAIN_POWER_GATE, power_gate);
113 
114 		REG_WAIT(DOMAIN19_PG_STATUS,
115 				DOMAIN_PGFSM_PWR_STATUS, pwr_status,
116 				1, 1000);
117 		break;
118 	default:
119 		BREAK_TO_DEBUGGER();
120 		break;
121 	}
122 
123 	if (org_ip_request_cntl == 0)
124 		REG_SET(DC_IP_REQUEST_CNTL, 0, IP_REQUEST_EN, 0);
125 }
126 
127 
128 void dcn32_enable_power_gating_plane(
129 	struct dce_hwseq *hws,
130 	bool enable)
131 {
132 	bool force_on = true; /* disable power gating */
133 
134 	if (enable)
135 		force_on = false;
136 
137 	/* DCHUBP0/1/2/3 */
138 	REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
139 	REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
140 	REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
141 	REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
142 
143 	/* DCS0/1/2/3 */
144 	REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
145 	REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
146 	REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
147 	REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN_POWER_FORCEON, force_on);
148 }
149 
150 void dcn32_hubp_pg_control(struct dce_hwseq *hws, unsigned int hubp_inst, bool power_on)
151 {
152 	uint32_t power_gate = power_on ? 0 : 1;
153 	uint32_t pwr_status = power_on ? 0 : 2;
154 
155 	if (hws->ctx->dc->debug.disable_hubp_power_gate)
156 		return;
157 
158 	if (REG(DOMAIN0_PG_CONFIG) == 0)
159 		return;
160 
161 	switch (hubp_inst) {
162 	case 0:
163 		REG_SET(DOMAIN0_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
164 		REG_WAIT(DOMAIN0_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
165 		break;
166 	case 1:
167 		REG_SET(DOMAIN1_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
168 		REG_WAIT(DOMAIN1_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
169 		break;
170 	case 2:
171 		REG_SET(DOMAIN2_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
172 		REG_WAIT(DOMAIN2_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
173 		break;
174 	case 3:
175 		REG_SET(DOMAIN3_PG_CONFIG, 0, DOMAIN_POWER_GATE, power_gate);
176 		REG_WAIT(DOMAIN3_PG_STATUS, DOMAIN_PGFSM_PWR_STATUS, pwr_status, 1, 1000);
177 		break;
178 	default:
179 		BREAK_TO_DEBUGGER();
180 		break;
181 	}
182 }
183 
184 static bool dcn32_check_no_memory_request_for_cab(struct dc *dc)
185 {
186 	int i;
187 
188     /* First, check no-memory-request case */
189 	for (i = 0; i < dc->current_state->stream_count; i++) {
190 		if (dc->current_state->stream_status[i].plane_count)
191 			/* Fail eligibility on a visible stream */
192 			break;
193 	}
194 
195 	if (i == dc->current_state->stream_count)
196 		return true;
197 
198 	return false;
199 }
200 
201 /* This function takes in the start address and surface size to be cached in CAB
202  * and calculates the total number of cache lines required to store the surface.
203  * The number of cache lines used for each surface is calculated independently of
204  * one another. For example, if there is a primary surface(1), meta surface(2), and
205  * cursor(3), this function should be called 3 times to calculate the number of cache
206  * lines used for each of those surfaces.
207  */
208 static uint32_t dcn32_cache_lines_for_surface(struct dc *dc, uint32_t surface_size, uint64_t start_address)
209 {
210 	uint32_t lines_used = 1;
211 	uint32_t num_cached_bytes = 0;
212 	uint32_t remaining_size = 0;
213 	uint32_t cache_line_size = dc->caps.cache_line_size;
214 	uint32_t remainder = 0;
215 
216 	/* 1. Calculate surface size minus the number of bytes stored
217 	 * in the first cache line (all bytes in first cache line might
218 	 * not be fully used).
219 	 */
220 	div_u64_rem(start_address, cache_line_size, &remainder);
221 	num_cached_bytes = cache_line_size - remainder;
222 	remaining_size = surface_size - num_cached_bytes;
223 
224 	/* 2. Calculate number of cache lines that will be fully used with
225 	 * the remaining number of bytes to be stored.
226 	 */
227 	lines_used += (remaining_size / cache_line_size);
228 
229 	/* 3. Check if we need an extra line due to the remaining size not being
230 	 * a multiple of CACHE_LINE_SIZE.
231 	 */
232 	if (remaining_size % cache_line_size > 0)
233 		lines_used++;
234 
235 	return lines_used;
236 }
237 
238 /* This function loops through every surface that needs to be cached in CAB for SS,
239  * and calculates the total number of ways required to store all surfaces (primary,
240  * meta, cursor).
241  */
242 static uint32_t dcn32_calculate_cab_allocation(struct dc *dc, struct dc_state *ctx)
243 {
244 	uint8_t i, j;
245 	struct dc_stream_state *stream = NULL;
246 	struct dc_plane_state *plane = NULL;
247 	uint32_t surface_size = 0;
248 	uint32_t cursor_size = 0;
249 	uint32_t cache_lines_used = 0;
250 	uint32_t total_lines = 0;
251 	uint32_t lines_per_way = 0;
252 	uint32_t num_ways = 0;
253 	uint32_t prev_addr_low = 0;
254 
255 	for (i = 0; i < ctx->stream_count; i++) {
256 		stream = ctx->streams[i];
257 
258 		// Don't include PSR surface in the total surface size for CAB allocation
259 		if (stream->link->psr_settings.psr_version != DC_PSR_VERSION_UNSUPPORTED)
260 			continue;
261 
262 		if (ctx->stream_status[i].plane_count == 0)
263 			continue;
264 
265 		// For each stream, loop through each plane to calculate the number of cache
266 		// lines required to store the surface in CAB
267 		for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
268 			plane = ctx->stream_status[i].plane_states[j];
269 
270 			// Calculate total surface size
271 			if (prev_addr_low != plane->address.grph.addr.u.low_part) {
272 				/* if plane address are different from prev FB, then userspace allocated separate FBs*/
273 				surface_size += plane->plane_size.surface_pitch *
274 					plane->plane_size.surface_size.height *
275 					(plane->format >= SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 ? 8 : 4);
276 
277 				prev_addr_low = plane->address.grph.addr.u.low_part;
278 			} else {
279 				/* We have the same fb for all the planes.
280 				 * Xorg always creates one giant fb that holds all surfaces,
281 				 * so allocating it once is sufficient.
282 				 * */
283 				continue;
284 			}
285 			// Convert surface size + starting address to number of cache lines required
286 			// (alignment accounted for)
287 			cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
288 					plane->address.grph.addr.quad_part);
289 
290 			if (plane->address.grph.meta_addr.quad_part) {
291 				// Meta surface
292 				cache_lines_used += dcn32_cache_lines_for_surface(dc, surface_size,
293 						plane->address.grph.meta_addr.quad_part);
294 			}
295 		}
296 
297 		// Include cursor size for CAB allocation
298 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
299 			struct pipe_ctx *pipe = &ctx->res_ctx.pipe_ctx[j];
300 			struct hubp *hubp = pipe->plane_res.hubp;
301 
302 			if (pipe->stream && pipe->plane_state && hubp)
303 				/* Find the cursor plane and use the exact size instead of
304 				 * using the max for calculation
305 				 */
306 				if (hubp->curs_attr.width > 0) {
307 					cursor_size = hubp->curs_attr.width * hubp->curs_attr.height;
308 					break;
309 				}
310 		}
311 
312 		switch (stream->cursor_attributes.color_format) {
313 		case CURSOR_MODE_MONO:
314 			cursor_size /= 2;
315 			break;
316 		case CURSOR_MODE_COLOR_1BIT_AND:
317 		case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
318 		case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
319 			cursor_size *= 4;
320 			break;
321 
322 		case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
323 		case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
324 			cursor_size *= 8;
325 			break;
326 		}
327 
328 		if (stream->cursor_position.enable && plane->address.grph.cursor_cache_addr.quad_part) {
329 			cache_lines_used += dcn32_cache_lines_for_surface(dc, cursor_size,
330 					plane->address.grph.cursor_cache_addr.quad_part);
331 		}
332 	}
333 
334 	// Convert number of cache lines required to number of ways
335 	total_lines = dc->caps.max_cab_allocation_bytes / dc->caps.cache_line_size;
336 	lines_per_way = total_lines / dc->caps.cache_num_ways;
337 	num_ways = cache_lines_used / lines_per_way;
338 
339 	if (cache_lines_used % lines_per_way > 0)
340 		num_ways++;
341 
342 	for (i = 0; i < ctx->stream_count; i++) {
343 		stream = ctx->streams[i];
344 		for (j = 0; j < ctx->stream_status[i].plane_count; j++) {
345 			plane = ctx->stream_status[i].plane_states[j];
346 
347 			if (stream->cursor_position.enable && plane &&
348 				!plane->address.grph.cursor_cache_addr.quad_part &&
349 				cursor_size > 16384) {
350 				/* Cursor caching is not supported since it won't be on the same line.
351 				 * So we need an extra line to accommodate it. With large cursors and a single 4k monitor
352 				 * this case triggers corruption. If we're at the edge, then dont trigger display refresh
353 				 * from MALL. We only need to cache cursor if its greater that 64x64 at 4 bpp.
354 				 */
355 				num_ways++;
356 				/* We only expect one cursor plane */
357 				break;
358 			}
359 		}
360 	}
361 
362 	return num_ways;
363 }
364 
365 bool dcn32_apply_idle_power_optimizations(struct dc *dc, bool enable)
366 {
367 	union dmub_rb_cmd cmd;
368 	uint8_t ways, i;
369 	int j;
370 	bool stereo_in_use = false;
371 	struct dc_plane_state *plane = NULL;
372 
373 	if (!dc->ctx->dmub_srv)
374 		return false;
375 
376 	if (enable) {
377 		if (dc->current_state) {
378 
379 			/* 1. Check no memory request case for CAB.
380 			 * If no memory request case, send CAB_ACTION NO_DF_REQ DMUB message
381 			 */
382 			if (dcn32_check_no_memory_request_for_cab(dc)) {
383 				/* Enable no-memory-requests case */
384 				memset(&cmd, 0, sizeof(cmd));
385 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
386 				cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_DCN_REQ;
387 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
388 
389 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
390 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
391 
392 				return true;
393 			}
394 
395 			/* 2. Check if all surfaces can fit in CAB.
396 			 * If surfaces can fit into CAB, send CAB_ACTION_ALLOW DMUB message
397 			 * and configure HUBP's to fetch from MALL
398 			 */
399 			ways = dcn32_calculate_cab_allocation(dc, dc->current_state);
400 
401 			/* MALL not supported with Stereo3D. If any plane is using stereo,
402 			 * don't try to enter MALL.
403 			 */
404 			for (i = 0; i < dc->current_state->stream_count; i++) {
405 				for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
406 					plane = dc->current_state->stream_status[i].plane_states[j];
407 
408 					if (plane->address.type == PLN_ADDR_TYPE_GRPH_STEREO) {
409 						stereo_in_use = true;
410 						break;
411 					}
412 				}
413 				if (stereo_in_use)
414 					break;
415 			}
416 			if (ways <= dc->caps.cache_num_ways && !stereo_in_use) {
417 				memset(&cmd, 0, sizeof(cmd));
418 				cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
419 				cmd.cab.header.sub_type = DMUB_CMD__CAB_DCN_SS_FIT_IN_CAB;
420 				cmd.cab.header.payload_bytes = sizeof(cmd.cab) - sizeof(cmd.cab.header);
421 				cmd.cab.cab_alloc_ways = ways;
422 
423 				dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
424 				dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
425 
426 				return true;
427 			}
428 
429 		}
430 		return false;
431 	}
432 
433 	/* Disable CAB */
434 	memset(&cmd, 0, sizeof(cmd));
435 	cmd.cab.header.type = DMUB_CMD__CAB_FOR_SS;
436 	cmd.cab.header.sub_type = DMUB_CMD__CAB_NO_IDLE_OPTIMIZATION;
437 	cmd.cab.header.payload_bytes =
438 			sizeof(cmd.cab) - sizeof(cmd.cab.header);
439 
440 	dc_dmub_srv_cmd_queue(dc->ctx->dmub_srv, &cmd);
441 	dc_dmub_srv_cmd_execute(dc->ctx->dmub_srv);
442 	dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
443 
444 	return true;
445 }
446 
447 /* Send DMCUB message with SubVP pipe info
448  * - For each pipe in context, populate payload with required SubVP information
449  *   if the pipe is using SubVP for MCLK switch
450  * - This function must be called while the DMUB HW lock is acquired by driver
451  */
452 void dcn32_commit_subvp_config(struct dc *dc, struct dc_state *context)
453 {
454 /*
455 	int i;
456 	bool enable_subvp = false;
457 
458 	if (!dc->ctx || !dc->ctx->dmub_srv)
459 		return;
460 
461 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
462 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
463 
464 		if (pipe_ctx->stream && pipe_ctx->stream->mall_stream_config.paired_stream &&
465 				pipe_ctx->stream->mall_stream_config.type == SUBVP_MAIN) {
466 			// There is at least 1 SubVP pipe, so enable SubVP
467 			enable_subvp = true;
468 			break;
469 		}
470 	}
471 	dc_dmub_setup_subvp_dmub_command(dc, context, enable_subvp);
472 */
473 }
474 
475 /* Sub-Viewport DMUB lock needs to be acquired by driver whenever SubVP is active and:
476  * 1. Any full update for any SubVP main pipe
477  * 2. Any immediate flip for any SubVP pipe
478  * 3. Any flip for DRR pipe
479  * 4. If SubVP was previously in use (i.e. in old context)
480  */
481 void dcn32_subvp_pipe_control_lock(struct dc *dc,
482 		struct dc_state *context,
483 		bool lock,
484 		bool should_lock_all_pipes,
485 		struct pipe_ctx *top_pipe_to_program,
486 		bool subvp_prev_use)
487 {
488 	unsigned int i = 0;
489 	bool subvp_immediate_flip = false;
490 	bool subvp_in_use = false;
491 	struct pipe_ctx *pipe;
492 
493 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
494 		pipe = &context->res_ctx.pipe_ctx[i];
495 
496 		if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
497 			subvp_in_use = true;
498 			break;
499 		}
500 	}
501 
502 	if (top_pipe_to_program && top_pipe_to_program->stream && top_pipe_to_program->plane_state) {
503 		if (top_pipe_to_program->stream->mall_stream_config.type == SUBVP_MAIN &&
504 				top_pipe_to_program->plane_state->flip_immediate)
505 			subvp_immediate_flip = true;
506 	}
507 
508 	// Don't need to lock for DRR VSYNC flips -- FW will wait for DRR pending update cleared.
509 	if ((subvp_in_use && (should_lock_all_pipes || subvp_immediate_flip)) || (!subvp_in_use && subvp_prev_use)) {
510 		union dmub_inbox0_cmd_lock_hw hw_lock_cmd = { 0 };
511 
512 		if (!lock) {
513 			for (i = 0; i < dc->res_pool->pipe_count; i++) {
514 				pipe = &context->res_ctx.pipe_ctx[i];
515 				if (pipe->stream && pipe->plane_state && pipe->stream->mall_stream_config.type == SUBVP_MAIN &&
516 						should_lock_all_pipes)
517 					pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
518 			}
519 		}
520 
521 		hw_lock_cmd.bits.command_code = DMUB_INBOX0_CMD__HW_LOCK;
522 		hw_lock_cmd.bits.hw_lock_client = HW_LOCK_CLIENT_DRIVER;
523 		hw_lock_cmd.bits.lock = lock;
524 		hw_lock_cmd.bits.should_release = !lock;
525 		dmub_hw_lock_mgr_inbox0_cmd(dc->ctx->dmub_srv, hw_lock_cmd);
526 	}
527 }
528 
529 
530 static bool dcn32_set_mpc_shaper_3dlut(
531 	struct pipe_ctx *pipe_ctx, const struct dc_stream_state *stream)
532 {
533 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
534 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
535 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
536 	bool result = false;
537 
538 	const struct pwl_params *shaper_lut = NULL;
539 	//get the shaper lut params
540 	if (stream->func_shaper) {
541 		if (stream->func_shaper->type == TF_TYPE_HWPWL)
542 			shaper_lut = &stream->func_shaper->pwl;
543 		else if (stream->func_shaper->type == TF_TYPE_DISTRIBUTED_POINTS) {
544 			cm_helper_translate_curve_to_hw_format(
545 					stream->func_shaper,
546 					&dpp_base->shaper_params, true);
547 			shaper_lut = &dpp_base->shaper_params;
548 		}
549 	}
550 
551 	if (stream->lut3d_func &&
552 		stream->lut3d_func->state.bits.initialized == 1) {
553 
554 		result = mpc->funcs->program_3dlut(mpc,
555 								&stream->lut3d_func->lut_3d,
556 								mpcc_id);
557 
558 		result = mpc->funcs->program_shaper(mpc,
559 								shaper_lut,
560 								mpcc_id);
561 	}
562 
563 	return result;
564 }
565 
566 bool dcn32_set_mcm_luts(
567 	struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
568 {
569 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
570 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
571 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
572 	bool result = true;
573 	struct pwl_params *lut_params = NULL;
574 
575 	// 1D LUT
576 	if (plane_state->blend_tf) {
577 		if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
578 			lut_params = &plane_state->blend_tf->pwl;
579 		else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
580 			cm_helper_translate_curve_to_hw_format(
581 					plane_state->blend_tf,
582 					&dpp_base->regamma_params, false);
583 			lut_params = &dpp_base->regamma_params;
584 		}
585 	}
586 	result = mpc->funcs->program_1dlut(mpc, lut_params, mpcc_id);
587 
588 	// Shaper
589 	if (plane_state->in_shaper_func) {
590 		if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
591 			lut_params = &plane_state->in_shaper_func->pwl;
592 		else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
593 			// TODO: dpp_base replace
594 			ASSERT(false);
595 			cm_helper_translate_curve_to_hw_format(
596 					plane_state->in_shaper_func,
597 					&dpp_base->shaper_params, true);
598 			lut_params = &dpp_base->shaper_params;
599 		}
600 	}
601 
602 	result = mpc->funcs->program_shaper(mpc, lut_params, mpcc_id);
603 
604 	// 3D
605 	if (plane_state->lut3d_func && plane_state->lut3d_func->state.bits.initialized == 1)
606 		result = mpc->funcs->program_3dlut(mpc, &plane_state->lut3d_func->lut_3d, mpcc_id);
607 	else
608 		result = mpc->funcs->program_3dlut(mpc, NULL, mpcc_id);
609 
610 	return result;
611 }
612 
613 bool dcn32_set_input_transfer_func(struct dc *dc,
614 				struct pipe_ctx *pipe_ctx,
615 				const struct dc_plane_state *plane_state)
616 {
617 	struct dce_hwseq *hws = dc->hwseq;
618 	struct mpc *mpc = dc->res_pool->mpc;
619 	struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
620 
621 	enum dc_transfer_func_predefined tf;
622 	bool result = true;
623 	struct pwl_params *params = NULL;
624 
625 	if (mpc == NULL || plane_state == NULL)
626 		return false;
627 
628 	tf = TRANSFER_FUNCTION_UNITY;
629 
630 	if (plane_state->in_transfer_func &&
631 		plane_state->in_transfer_func->type == TF_TYPE_PREDEFINED)
632 		tf = plane_state->in_transfer_func->tf;
633 
634 	dpp_base->funcs->dpp_set_pre_degam(dpp_base, tf);
635 
636 	if (plane_state->in_transfer_func) {
637 		if (plane_state->in_transfer_func->type == TF_TYPE_HWPWL)
638 			params = &plane_state->in_transfer_func->pwl;
639 		else if (plane_state->in_transfer_func->type == TF_TYPE_DISTRIBUTED_POINTS &&
640 			cm3_helper_translate_curve_to_hw_format(plane_state->in_transfer_func,
641 					&dpp_base->degamma_params, false))
642 			params = &dpp_base->degamma_params;
643 	}
644 
645 	result = dpp_base->funcs->dpp_program_gamcor_lut(dpp_base, params);
646 
647 	if (result &&
648 			pipe_ctx->stream_res.opp &&
649 			pipe_ctx->stream_res.opp->ctx &&
650 			hws->funcs.set_mcm_luts)
651 		result = hws->funcs.set_mcm_luts(pipe_ctx, plane_state);
652 
653 	return result;
654 }
655 
656 bool dcn32_set_output_transfer_func(struct dc *dc,
657 				struct pipe_ctx *pipe_ctx,
658 				const struct dc_stream_state *stream)
659 {
660 	int mpcc_id = pipe_ctx->plane_res.hubp->inst;
661 	struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
662 	struct pwl_params *params = NULL;
663 	bool ret = false;
664 
665 	/* program OGAM or 3DLUT only for the top pipe*/
666 	if (pipe_ctx->top_pipe == NULL) {
667 		/*program shaper and 3dlut in MPC*/
668 		ret = dcn32_set_mpc_shaper_3dlut(pipe_ctx, stream);
669 		if (ret == false && mpc->funcs->set_output_gamma && stream->out_transfer_func) {
670 			if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
671 				params = &stream->out_transfer_func->pwl;
672 			else if (pipe_ctx->stream->out_transfer_func->type ==
673 					TF_TYPE_DISTRIBUTED_POINTS &&
674 					cm3_helper_translate_curve_to_hw_format(
675 					stream->out_transfer_func,
676 					&mpc->blender_params, false))
677 				params = &mpc->blender_params;
678 		 /* there are no ROM LUTs in OUTGAM */
679 		if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
680 			BREAK_TO_DEBUGGER();
681 		}
682 	}
683 
684 	mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
685 	return ret;
686 }
687 
688 /* Program P-State force value according to if pipe is using SubVP or not:
689  * 1. Reset P-State force on all pipes first
690  * 2. For each main pipe, force P-State disallow (P-State allow moderated by DMUB)
691  */
692 void dcn32_subvp_update_force_pstate(struct dc *dc, struct dc_state *context)
693 {
694 	int i;
695 	int num_subvp = 0;
696 	/* Unforce p-state for each pipe
697 	 */
698 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
699 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
700 		struct hubp *hubp = pipe->plane_res.hubp;
701 
702 		if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
703 			hubp->funcs->hubp_update_force_pstate_disallow(hubp, false);
704 		if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_MAIN)
705 			num_subvp++;
706 	}
707 
708 	if (num_subvp == 0)
709 		return;
710 
711 	/* Loop through each pipe -- for each subvp main pipe force p-state allow equal to false.
712 	 */
713 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
714 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
715 
716 		// For SubVP + DRR, also force disallow on the DRR pipe
717 		// (We will force allow in the DMUB sequence -- some DRR timings by default won't allow P-State so we have
718 		// to force once the vblank is stretched).
719 		if (pipe->stream && pipe->plane_state && (pipe->stream->mall_stream_config.type == SUBVP_MAIN ||
720 				(pipe->stream->mall_stream_config.type == SUBVP_NONE && pipe->stream->ignore_msa_timing_param))) {
721 			struct hubp *hubp = pipe->plane_res.hubp;
722 
723 			if (hubp && hubp->funcs->hubp_update_force_pstate_disallow)
724 				hubp->funcs->hubp_update_force_pstate_disallow(hubp, true);
725 		}
726 	}
727 }
728 
729 /* Update MALL_SEL register based on if pipe / plane
730  * is a phantom pipe, main pipe, and if using MALL
731  * for SS.
732  */
733 void dcn32_update_mall_sel(struct dc *dc, struct dc_state *context)
734 {
735 	int i;
736 	unsigned int num_ways = dcn32_calculate_cab_allocation(dc, context);
737 	bool cache_cursor = false;
738 
739 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
740 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
741 		struct hubp *hubp = pipe->plane_res.hubp;
742 
743 		if (pipe->stream && pipe->plane_state && hubp && hubp->funcs->hubp_update_mall_sel) {
744 			//Round cursor width up to next multiple of 64
745 			int cursor_width = ((hubp->curs_attr.width + 63) / 64) * 64;
746 			int cursor_height = hubp->curs_attr.height;
747 			int cursor_size = cursor_width * cursor_height;
748 
749 			switch (hubp->curs_attr.color_format) {
750 			case CURSOR_MODE_MONO:
751 				cursor_size /= 2;
752 				break;
753 			case CURSOR_MODE_COLOR_1BIT_AND:
754 			case CURSOR_MODE_COLOR_PRE_MULTIPLIED_ALPHA:
755 			case CURSOR_MODE_COLOR_UN_PRE_MULTIPLIED_ALPHA:
756 				cursor_size *= 4;
757 				break;
758 
759 			case CURSOR_MODE_COLOR_64BIT_FP_PRE_MULTIPLIED:
760 			case CURSOR_MODE_COLOR_64BIT_FP_UN_PRE_MULTIPLIED:
761 			default:
762 				cursor_size *= 8;
763 				break;
764 			}
765 
766 			if (cursor_size > 16384)
767 				cache_cursor = true;
768 
769 			if (pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
770 					hubp->funcs->hubp_update_mall_sel(hubp, 1, false);
771 			} else {
772 				// MALL not supported with Stereo3D
773 				hubp->funcs->hubp_update_mall_sel(hubp,
774 					num_ways <= dc->caps.cache_num_ways &&
775 					pipe->stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED &&
776 					pipe->plane_state->address.type !=  PLN_ADDR_TYPE_GRPH_STEREO ? 2 : 0,
777 							cache_cursor);
778 			}
779 		}
780 	}
781 }
782 
783 /* Program the sub-viewport pipe configuration after the main / phantom pipes
784  * have been programmed in hardware.
785  * 1. Update force P-State for all the main pipes (disallow P-state)
786  * 2. Update MALL_SEL register
787  * 3. Program FORCE_ONE_ROW_FOR_FRAME for main subvp pipes
788  */
789 void dcn32_program_mall_pipe_config(struct dc *dc, struct dc_state *context)
790 {
791 	int i;
792 	struct dce_hwseq *hws = dc->hwseq;
793 
794 	// Don't force p-state disallow -- can't block dummy p-state
795 
796 	// Update MALL_SEL register for each pipe
797 	if (hws && hws->funcs.update_mall_sel)
798 		hws->funcs.update_mall_sel(dc, context);
799 
800 	// Program FORCE_ONE_ROW_FOR_FRAME and CURSOR_REQ_MODE for main subvp pipes
801 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
802 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
803 		struct hubp *hubp = pipe->plane_res.hubp;
804 
805 		if (pipe->stream && hubp && hubp->funcs->hubp_prepare_subvp_buffering) {
806 			/* TODO - remove setting CURSOR_REQ_MODE to 0 for legacy cases
807 			 *      - need to investigate single pipe MPO + SubVP case to
808 			 *        see if CURSOR_REQ_MODE will be back to 1 for SubVP
809 			 *        when it should be 0 for MPO
810 			 */
811 			if (pipe->stream->mall_stream_config.type == SUBVP_MAIN) {
812 				hubp->funcs->hubp_prepare_subvp_buffering(hubp, true);
813 			}
814 		}
815 	}
816 }
817 
818 void dcn32_init_hw(struct dc *dc)
819 {
820 	struct abm **abms = dc->res_pool->multiple_abms;
821 	struct dce_hwseq *hws = dc->hwseq;
822 	struct dc_bios *dcb = dc->ctx->dc_bios;
823 	struct resource_pool *res_pool = dc->res_pool;
824 	int i;
825 	int edp_num;
826 	uint32_t backlight = MAX_BACKLIGHT_LEVEL;
827 
828 	if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
829 		dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
830 
831 	// Initialize the dccg
832 	if (res_pool->dccg->funcs->dccg_init)
833 		res_pool->dccg->funcs->dccg_init(res_pool->dccg);
834 
835 	if (!dcb->funcs->is_accelerated_mode(dcb)) {
836 		hws->funcs.bios_golden_init(dc);
837 		hws->funcs.disable_vga(dc->hwseq);
838 	}
839 
840 	// Set default OPTC memory power states
841 	if (dc->debug.enable_mem_low_power.bits.optc) {
842 		// Shutdown when unassigned and light sleep in VBLANK
843 		REG_SET_2(ODM_MEM_PWR_CTRL3, 0, ODM_MEM_UNASSIGNED_PWR_MODE, 3, ODM_MEM_VBLANK_PWR_MODE, 1);
844 	}
845 
846 	if (dc->debug.enable_mem_low_power.bits.vga) {
847 		// Power down VGA memory
848 		REG_UPDATE(MMHUBBUB_MEM_PWR_CNTL, VGA_MEM_PWR_FORCE, 1);
849 	}
850 
851 	if (dc->ctx->dc_bios->fw_info_valid) {
852 		res_pool->ref_clocks.xtalin_clock_inKhz =
853 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
854 
855 		if (res_pool->dccg && res_pool->hubbub) {
856 			(res_pool->dccg->funcs->get_dccg_ref_freq)(res_pool->dccg,
857 					dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency,
858 					&res_pool->ref_clocks.dccg_ref_clock_inKhz);
859 
860 			(res_pool->hubbub->funcs->get_dchub_ref_freq)(res_pool->hubbub,
861 					res_pool->ref_clocks.dccg_ref_clock_inKhz,
862 					&res_pool->ref_clocks.dchub_ref_clock_inKhz);
863 		} else {
864 			// Not all ASICs have DCCG sw component
865 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
866 					res_pool->ref_clocks.xtalin_clock_inKhz;
867 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
868 					res_pool->ref_clocks.xtalin_clock_inKhz;
869 		}
870 	} else
871 		ASSERT_CRITICAL(false);
872 
873 	for (i = 0; i < dc->link_count; i++) {
874 		/* Power up AND update implementation according to the
875 		 * required signal (which may be different from the
876 		 * default signal on connector).
877 		 */
878 		struct dc_link *link = dc->links[i];
879 
880 		link->link_enc->funcs->hw_init(link->link_enc);
881 
882 		/* Check for enabled DIG to identify enabled display */
883 		if (link->link_enc->funcs->is_dig_enabled &&
884 			link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
885 			link->link_status.link_active = true;
886 			if (link->link_enc->funcs->fec_is_active &&
887 					link->link_enc->funcs->fec_is_active(link->link_enc))
888 				link->fec_state = dc_link_fec_enabled;
889 		}
890 	}
891 
892 	/* Power gate DSCs */
893 	for (i = 0; i < res_pool->res_cap->num_dsc; i++)
894 		if (hws->funcs.dsc_pg_control != NULL)
895 			hws->funcs.dsc_pg_control(hws, res_pool->dscs[i]->inst, false);
896 
897 	/* we want to turn off all dp displays before doing detection */
898 	dc_link_blank_all_dp_displays(dc);
899 
900 	/* If taking control over from VBIOS, we may want to optimize our first
901 	 * mode set, so we need to skip powering down pipes until we know which
902 	 * pipes we want to use.
903 	 * Otherwise, if taking control is not possible, we need to power
904 	 * everything down.
905 	 */
906 	if (dcb->funcs->is_accelerated_mode(dcb) || !dc->config.seamless_boot_edp_requested) {
907 		hws->funcs.init_pipes(dc, dc->current_state);
908 		if (dc->res_pool->hubbub->funcs->allow_self_refresh_control)
909 			dc->res_pool->hubbub->funcs->allow_self_refresh_control(dc->res_pool->hubbub,
910 					!dc->res_pool->hubbub->ctx->dc->debug.disable_stutter);
911 	}
912 
913 	/* In headless boot cases, DIG may be turned
914 	 * on which causes HW/SW discrepancies.
915 	 * To avoid this, power down hardware on boot
916 	 * if DIG is turned on and seamless boot not enabled
917 	 */
918 	if (!dc->config.seamless_boot_edp_requested) {
919 		struct dc_link *edp_links[MAX_NUM_EDP];
920 		struct dc_link *edp_link;
921 
922 		get_edp_links(dc, edp_links, &edp_num);
923 		if (edp_num) {
924 			for (i = 0; i < edp_num; i++) {
925 				edp_link = edp_links[i];
926 				if (edp_link->link_enc->funcs->is_dig_enabled &&
927 						edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc) &&
928 						dc->hwss.edp_backlight_control &&
929 						dc->hwss.power_down &&
930 						dc->hwss.edp_power_control) {
931 					dc->hwss.edp_backlight_control(edp_link, false);
932 					dc->hwss.power_down(dc);
933 					dc->hwss.edp_power_control(edp_link, false);
934 				}
935 			}
936 		} else {
937 			for (i = 0; i < dc->link_count; i++) {
938 				struct dc_link *link = dc->links[i];
939 
940 				if (link->link_enc->funcs->is_dig_enabled &&
941 						link->link_enc->funcs->is_dig_enabled(link->link_enc) &&
942 						dc->hwss.power_down) {
943 					dc->hwss.power_down(dc);
944 					break;
945 				}
946 
947 			}
948 		}
949 	}
950 
951 	for (i = 0; i < res_pool->audio_count; i++) {
952 		struct audio *audio = res_pool->audios[i];
953 
954 		audio->funcs->hw_init(audio);
955 	}
956 
957 	for (i = 0; i < dc->link_count; i++) {
958 		struct dc_link *link = dc->links[i];
959 
960 		if (link->panel_cntl)
961 			backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
962 	}
963 
964 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
965 		if (abms[i] != NULL && abms[i]->funcs != NULL)
966 			abms[i]->funcs->abm_init(abms[i], backlight);
967 	}
968 
969 	/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
970 	REG_WRITE(DIO_MEM_PWR_CTRL, 0);
971 
972 	if (!dc->debug.disable_clock_gate) {
973 		/* enable all DCN clock gating */
974 		REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
975 
976 		REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
977 
978 		REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
979 	}
980 	if (hws->funcs.enable_power_gating_plane)
981 		hws->funcs.enable_power_gating_plane(dc->hwseq, true);
982 
983 	if (!dcb->funcs->is_accelerated_mode(dcb) && dc->res_pool->hubbub->funcs->init_watermarks)
984 		dc->res_pool->hubbub->funcs->init_watermarks(dc->res_pool->hubbub);
985 
986 	if (dc->clk_mgr->funcs->notify_wm_ranges)
987 		dc->clk_mgr->funcs->notify_wm_ranges(dc->clk_mgr);
988 
989 	if (dc->clk_mgr->funcs->set_hard_max_memclk)
990 		dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
991 
992 	if (dc->res_pool->hubbub->funcs->force_pstate_change_control)
993 		dc->res_pool->hubbub->funcs->force_pstate_change_control(
994 				dc->res_pool->hubbub, false, false);
995 
996 	if (dc->res_pool->hubbub->funcs->init_crb)
997 		dc->res_pool->hubbub->funcs->init_crb(dc->res_pool->hubbub);
998 
999 	// Get DMCUB capabilities
1000 	if (dc->ctx->dmub_srv) {
1001 		dc_dmub_srv_query_caps_cmd(dc->ctx->dmub_srv->dmub);
1002 		dc->caps.dmub_caps.psr = dc->ctx->dmub_srv->dmub->feature_caps.psr;
1003 	}
1004 }
1005 
1006 static int calc_mpc_flow_ctrl_cnt(const struct dc_stream_state *stream,
1007 		int opp_cnt)
1008 {
1009 	bool hblank_halved = optc2_is_two_pixels_per_containter(&stream->timing);
1010 	int flow_ctrl_cnt;
1011 
1012 	if (opp_cnt >= 2)
1013 		hblank_halved = true;
1014 
1015 	flow_ctrl_cnt = stream->timing.h_total - stream->timing.h_addressable -
1016 			stream->timing.h_border_left -
1017 			stream->timing.h_border_right;
1018 
1019 	if (hblank_halved)
1020 		flow_ctrl_cnt /= 2;
1021 
1022 	/* ODM combine 4:1 case */
1023 	if (opp_cnt == 4)
1024 		flow_ctrl_cnt /= 2;
1025 
1026 	return flow_ctrl_cnt;
1027 }
1028 
1029 static void update_dsc_on_stream(struct pipe_ctx *pipe_ctx, bool enable)
1030 {
1031 	struct display_stream_compressor *dsc = pipe_ctx->stream_res.dsc;
1032 	struct dc_stream_state *stream = pipe_ctx->stream;
1033 	struct pipe_ctx *odm_pipe;
1034 	int opp_cnt = 1;
1035 
1036 	ASSERT(dsc);
1037 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1038 		opp_cnt++;
1039 
1040 	if (enable) {
1041 		struct dsc_config dsc_cfg;
1042 		struct dsc_optc_config dsc_optc_cfg;
1043 		enum optc_dsc_mode optc_dsc_mode;
1044 
1045 		/* Enable DSC hw block */
1046 		dsc_cfg.pic_width = (stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right) / opp_cnt;
1047 		dsc_cfg.pic_height = stream->timing.v_addressable + stream->timing.v_border_top + stream->timing.v_border_bottom;
1048 		dsc_cfg.pixel_encoding = stream->timing.pixel_encoding;
1049 		dsc_cfg.color_depth = stream->timing.display_color_depth;
1050 		dsc_cfg.is_odm = pipe_ctx->next_odm_pipe ? true : false;
1051 		dsc_cfg.dc_dsc_cfg = stream->timing.dsc_cfg;
1052 		ASSERT(dsc_cfg.dc_dsc_cfg.num_slices_h % opp_cnt == 0);
1053 		dsc_cfg.dc_dsc_cfg.num_slices_h /= opp_cnt;
1054 
1055 		dsc->funcs->dsc_set_config(dsc, &dsc_cfg, &dsc_optc_cfg);
1056 		dsc->funcs->dsc_enable(dsc, pipe_ctx->stream_res.opp->inst);
1057 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1058 			struct display_stream_compressor *odm_dsc = odm_pipe->stream_res.dsc;
1059 
1060 			ASSERT(odm_dsc);
1061 			odm_dsc->funcs->dsc_set_config(odm_dsc, &dsc_cfg, &dsc_optc_cfg);
1062 			odm_dsc->funcs->dsc_enable(odm_dsc, odm_pipe->stream_res.opp->inst);
1063 		}
1064 		dsc_cfg.dc_dsc_cfg.num_slices_h *= opp_cnt;
1065 		dsc_cfg.pic_width *= opp_cnt;
1066 
1067 		optc_dsc_mode = dsc_optc_cfg.is_pixel_format_444 ? OPTC_DSC_ENABLED_444 : OPTC_DSC_ENABLED_NATIVE_SUBSAMPLED;
1068 
1069 		/* Enable DSC in OPTC */
1070 		DC_LOG_DSC("Setting optc DSC config for tg instance %d:", pipe_ctx->stream_res.tg->inst);
1071 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(pipe_ctx->stream_res.tg,
1072 							optc_dsc_mode,
1073 							dsc_optc_cfg.bytes_per_pixel,
1074 							dsc_optc_cfg.slice_width);
1075 	} else {
1076 		/* disable DSC in OPTC */
1077 		pipe_ctx->stream_res.tg->funcs->set_dsc_config(
1078 				pipe_ctx->stream_res.tg,
1079 				OPTC_DSC_DISABLED, 0, 0);
1080 
1081 		/* disable DSC block */
1082 		dsc->funcs->dsc_disable(pipe_ctx->stream_res.dsc);
1083 		for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1084 			ASSERT(odm_pipe->stream_res.dsc);
1085 			odm_pipe->stream_res.dsc->funcs->dsc_disable(odm_pipe->stream_res.dsc);
1086 		}
1087 	}
1088 }
1089 
1090 /*
1091 * Given any pipe_ctx, return the total ODM combine factor, and optionally return
1092 * the OPPids which are used
1093 * */
1094 static unsigned int get_odm_config(struct pipe_ctx *pipe_ctx, unsigned int *opp_instances)
1095 {
1096 	unsigned int opp_count = 1;
1097 	struct pipe_ctx *odm_pipe;
1098 
1099 	/* First get to the top pipe */
1100 	for (odm_pipe = pipe_ctx; odm_pipe->prev_odm_pipe; odm_pipe = odm_pipe->prev_odm_pipe)
1101 		;
1102 
1103 	/* First pipe is always used */
1104 	if (opp_instances)
1105 		opp_instances[0] = odm_pipe->stream_res.opp->inst;
1106 
1107 	/* Find and count odm pipes, if any */
1108 	for (odm_pipe = odm_pipe->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1109 		if (opp_instances)
1110 			opp_instances[opp_count] = odm_pipe->stream_res.opp->inst;
1111 		opp_count++;
1112 	}
1113 
1114 	return opp_count;
1115 }
1116 
1117 void dcn32_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1118 {
1119 	struct pipe_ctx *odm_pipe;
1120 	int opp_cnt = 0;
1121 	int opp_inst[MAX_PIPES] = {0};
1122 	bool rate_control_2x_pclk = (pipe_ctx->stream->timing.flags.INTERLACE || optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing));
1123 	struct mpc_dwb_flow_control flow_control;
1124 	struct mpc *mpc = dc->res_pool->mpc;
1125 	int i;
1126 
1127 	opp_cnt = get_odm_config(pipe_ctx, opp_inst);
1128 
1129 	if (opp_cnt > 1)
1130 		pipe_ctx->stream_res.tg->funcs->set_odm_combine(
1131 				pipe_ctx->stream_res.tg,
1132 				opp_inst, opp_cnt,
1133 				&pipe_ctx->stream->timing);
1134 	else
1135 		pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
1136 				pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
1137 
1138 	rate_control_2x_pclk = rate_control_2x_pclk || opp_cnt > 1;
1139 	flow_control.flow_ctrl_mode = 0;
1140 	flow_control.flow_ctrl_cnt0 = 0x80;
1141 	flow_control.flow_ctrl_cnt1 = calc_mpc_flow_ctrl_cnt(pipe_ctx->stream, opp_cnt);
1142 	if (mpc->funcs->set_out_rate_control) {
1143 		for (i = 0; i < opp_cnt; ++i) {
1144 			mpc->funcs->set_out_rate_control(
1145 					mpc, opp_inst[i],
1146 					true,
1147 					rate_control_2x_pclk,
1148 					&flow_control);
1149 		}
1150 	}
1151 
1152 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe) {
1153 		odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
1154 				odm_pipe->stream_res.opp,
1155 				true);
1156 	}
1157 
1158 	// Don't program pixel clock after link is already enabled
1159 /*	if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1160 			pipe_ctx->clock_source,
1161 			&pipe_ctx->stream_res.pix_clk_params,
1162 			&pipe_ctx->pll_settings)) {
1163 		BREAK_TO_DEBUGGER();
1164 	}*/
1165 
1166 	if (pipe_ctx->stream_res.dsc)
1167 		update_dsc_on_stream(pipe_ctx, pipe_ctx->stream->timing.flags.DSC);
1168 }
1169 
1170 unsigned int dcn32_calculate_dccg_k1_k2_values(struct pipe_ctx *pipe_ctx, unsigned int *k1_div, unsigned int *k2_div)
1171 {
1172 	struct dc_stream_state *stream = pipe_ctx->stream;
1173 	unsigned int odm_combine_factor = 0;
1174 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1175 	bool two_pix_per_container = false;
1176 
1177 	// For phantom pipes, use the same programming as the main pipes
1178 	if (pipe_ctx->stream->mall_stream_config.type == SUBVP_PHANTOM) {
1179 		stream = pipe_ctx->stream->mall_stream_config.paired_stream;
1180 	}
1181 	two_pix_per_container = optc2_is_two_pixels_per_containter(&stream->timing);
1182 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1183 
1184 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1185 		*k2_div = PIXEL_RATE_DIV_BY_1;
1186 	} else if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) || dc_is_dvi_signal(pipe_ctx->stream->signal)) {
1187 		*k1_div = PIXEL_RATE_DIV_BY_1;
1188 		if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1189 			*k2_div = PIXEL_RATE_DIV_BY_2;
1190 		else
1191 			*k2_div = PIXEL_RATE_DIV_BY_4;
1192 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1193 		if (two_pix_per_container) {
1194 			*k1_div = PIXEL_RATE_DIV_BY_1;
1195 			*k2_div = PIXEL_RATE_DIV_BY_2;
1196 		} else {
1197 			*k1_div = PIXEL_RATE_DIV_BY_1;
1198 			*k2_div = PIXEL_RATE_DIV_BY_4;
1199 			if ((odm_combine_factor == 2) || dc->debug.enable_dp_dig_pixel_rate_div_policy)
1200 				*k2_div = PIXEL_RATE_DIV_BY_2;
1201 		}
1202 	}
1203 
1204 	if ((*k1_div == PIXEL_RATE_DIV_NA) && (*k2_div == PIXEL_RATE_DIV_NA))
1205 		ASSERT(false);
1206 
1207 	return odm_combine_factor;
1208 }
1209 
1210 void dcn32_set_pixels_per_cycle(struct pipe_ctx *pipe_ctx)
1211 {
1212 	uint32_t pix_per_cycle = 1;
1213 	uint32_t odm_combine_factor = 1;
1214 
1215 	if (!pipe_ctx || !pipe_ctx->stream || !pipe_ctx->stream_res.stream_enc)
1216 		return;
1217 
1218 	odm_combine_factor = get_odm_config(pipe_ctx, NULL);
1219 	if (optc2_is_two_pixels_per_containter(&pipe_ctx->stream->timing) || odm_combine_factor > 1
1220 		|| dcn32_is_dp_dig_pixel_rate_div_policy(pipe_ctx))
1221 		pix_per_cycle = 2;
1222 
1223 	if (pipe_ctx->stream_res.stream_enc->funcs->set_input_mode)
1224 		pipe_ctx->stream_res.stream_enc->funcs->set_input_mode(pipe_ctx->stream_res.stream_enc,
1225 				pix_per_cycle);
1226 }
1227 
1228 void dcn32_unblank_stream(struct pipe_ctx *pipe_ctx,
1229 		struct dc_link_settings *link_settings)
1230 {
1231 	struct encoder_unblank_param params = {0};
1232 	struct dc_stream_state *stream = pipe_ctx->stream;
1233 	struct dc_link *link = stream->link;
1234 	struct dce_hwseq *hws = link->dc->hwseq;
1235 	struct pipe_ctx *odm_pipe;
1236 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1237 	uint32_t pix_per_cycle = 1;
1238 
1239 	params.opp_cnt = 1;
1240 	for (odm_pipe = pipe_ctx->next_odm_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
1241 		params.opp_cnt++;
1242 
1243 	/* only 3 items below are used by unblank */
1244 	params.timing = pipe_ctx->stream->timing;
1245 
1246 	params.link_settings.link_rate = link_settings->link_rate;
1247 
1248 	if (is_dp_128b_132b_signal(pipe_ctx)) {
1249 		/* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1250 		pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_unblank(
1251 				pipe_ctx->stream_res.hpo_dp_stream_enc,
1252 				pipe_ctx->stream_res.tg->inst);
1253 	} else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1254 		if (optc2_is_two_pixels_per_containter(&stream->timing) || params.opp_cnt > 1
1255 			|| dc->debug.enable_dp_dig_pixel_rate_div_policy) {
1256 			params.timing.pix_clk_100hz /= 2;
1257 			pix_per_cycle = 2;
1258 		}
1259 		pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
1260 				pipe_ctx->stream_res.stream_enc, pix_per_cycle > 1);
1261 		pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, &params);
1262 	}
1263 
1264 	if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP)
1265 		hws->funcs.edp_backlight_control(link, true);
1266 }
1267 
1268 bool dcn32_is_dp_dig_pixel_rate_div_policy(struct pipe_ctx *pipe_ctx)
1269 {
1270 	struct dc *dc = pipe_ctx->stream->ctx->dc;
1271 
1272 	if (dc_is_dp_signal(pipe_ctx->stream->signal) && !is_dp_128b_132b_signal(pipe_ctx) &&
1273 		dc->debug.enable_dp_dig_pixel_rate_div_policy)
1274 		return true;
1275 	return false;
1276 }
1277