1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "dc_link_ddc.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dpcs/dpcs_3_0_0_offset.h" 76 #include "dpcs/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/dcn30_fpu.h" 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 #include "amdgpu_socbb.h" 92 #include "dc_dmub_srv.h" 93 94 #define DC_LOGGER_INIT(logger) 95 96 enum dcn30_clk_src_array_id { 97 DCN30_CLK_SRC_PLL0, 98 DCN30_CLK_SRC_PLL1, 99 DCN30_CLK_SRC_PLL2, 100 DCN30_CLK_SRC_PLL3, 101 DCN30_CLK_SRC_PLL4, 102 DCN30_CLK_SRC_PLL5, 103 DCN30_CLK_SRC_TOTAL 104 }; 105 106 /* begin ********************* 107 * macros to expend register list macro defined in HW object header file 108 */ 109 110 /* DCN */ 111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 112 113 #define BASE(seg) BASE_INNER(seg) 114 115 #define SR(reg_name)\ 116 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 117 mm ## reg_name 118 119 #define SRI(reg_name, block, id)\ 120 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 121 mm ## block ## id ## _ ## reg_name 122 123 #define SRI2(reg_name, block, id)\ 124 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 125 mm ## reg_name 126 127 #define SRIR(var_name, reg_name, block, id)\ 128 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 129 mm ## block ## id ## _ ## reg_name 130 131 #define SRII(reg_name, block, id)\ 132 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 133 mm ## block ## id ## _ ## reg_name 134 135 #define SRII_MPC_RMU(reg_name, block, id)\ 136 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRII_DWB(reg_name, temp_name, block, id)\ 140 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 141 mm ## block ## id ## _ ## temp_name 142 143 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 144 .field_name = reg_name ## __ ## field_name ## post_fix 145 146 #define DCCG_SRII(reg_name, block, id)\ 147 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 148 mm ## block ## id ## _ ## reg_name 149 150 #define VUPDATE_SRII(reg_name, block, id)\ 151 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 152 mm ## reg_name ## _ ## block ## id 153 154 /* NBIO */ 155 #define NBIO_BASE_INNER(seg) \ 156 NBIO_BASE__INST0_SEG ## seg 157 158 #define NBIO_BASE(seg) \ 159 NBIO_BASE_INNER(seg) 160 161 #define NBIO_SR(reg_name)\ 162 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 163 mm ## reg_name 164 165 /* MMHUB */ 166 #define MMHUB_BASE_INNER(seg) \ 167 MMHUB_BASE__INST0_SEG ## seg 168 169 #define MMHUB_BASE(seg) \ 170 MMHUB_BASE_INNER(seg) 171 172 #define MMHUB_SR(reg_name)\ 173 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 174 mmMM ## reg_name 175 176 /* CLOCK */ 177 #define CLK_BASE_INNER(seg) \ 178 CLK_BASE__INST0_SEG ## seg 179 180 #define CLK_BASE(seg) \ 181 CLK_BASE_INNER(seg) 182 183 #define CLK_SRI(reg_name, block, inst)\ 184 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 185 mm ## block ## _ ## inst ## _ ## reg_name 186 187 188 static const struct bios_registers bios_regs = { 189 NBIO_SR(BIOS_SCRATCH_3), 190 NBIO_SR(BIOS_SCRATCH_6) 191 }; 192 193 #define clk_src_regs(index, pllid)\ 194 [index] = {\ 195 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 196 } 197 198 static const struct dce110_clk_src_regs clk_src_regs[] = { 199 clk_src_regs(0, A), 200 clk_src_regs(1, B), 201 clk_src_regs(2, C), 202 clk_src_regs(3, D), 203 clk_src_regs(4, E), 204 clk_src_regs(5, F) 205 }; 206 207 static const struct dce110_clk_src_shift cs_shift = { 208 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 209 }; 210 211 static const struct dce110_clk_src_mask cs_mask = { 212 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 213 }; 214 215 #define abm_regs(id)\ 216 [id] = {\ 217 ABM_DCN30_REG_LIST(id)\ 218 } 219 220 static const struct dce_abm_registers abm_regs[] = { 221 abm_regs(0), 222 abm_regs(1), 223 abm_regs(2), 224 abm_regs(3), 225 abm_regs(4), 226 abm_regs(5), 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN30(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN30(_MASK) 235 }; 236 237 238 239 #define audio_regs(id)\ 240 [id] = {\ 241 AUD_COMMON_REG_LIST(id)\ 242 } 243 244 static const struct dce_audio_registers audio_regs[] = { 245 audio_regs(0), 246 audio_regs(1), 247 audio_regs(2), 248 audio_regs(3), 249 audio_regs(4), 250 audio_regs(5), 251 audio_regs(6) 252 }; 253 254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 256 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 257 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 258 259 static const struct dce_audio_shift audio_shift = { 260 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 261 }; 262 263 static const struct dce_audio_mask audio_mask = { 264 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 265 }; 266 267 #define vpg_regs(id)\ 268 [id] = {\ 269 VPG_DCN3_REG_LIST(id)\ 270 } 271 272 static const struct dcn30_vpg_registers vpg_regs[] = { 273 vpg_regs(0), 274 vpg_regs(1), 275 vpg_regs(2), 276 vpg_regs(3), 277 vpg_regs(4), 278 vpg_regs(5), 279 vpg_regs(6), 280 }; 281 282 static const struct dcn30_vpg_shift vpg_shift = { 283 DCN3_VPG_MASK_SH_LIST(__SHIFT) 284 }; 285 286 static const struct dcn30_vpg_mask vpg_mask = { 287 DCN3_VPG_MASK_SH_LIST(_MASK) 288 }; 289 290 #define afmt_regs(id)\ 291 [id] = {\ 292 AFMT_DCN3_REG_LIST(id)\ 293 } 294 295 static const struct dcn30_afmt_registers afmt_regs[] = { 296 afmt_regs(0), 297 afmt_regs(1), 298 afmt_regs(2), 299 afmt_regs(3), 300 afmt_regs(4), 301 afmt_regs(5), 302 afmt_regs(6), 303 }; 304 305 static const struct dcn30_afmt_shift afmt_shift = { 306 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 307 }; 308 309 static const struct dcn30_afmt_mask afmt_mask = { 310 DCN3_AFMT_MASK_SH_LIST(_MASK) 311 }; 312 313 #define stream_enc_regs(id)\ 314 [id] = {\ 315 SE_DCN3_REG_LIST(id)\ 316 } 317 318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 319 stream_enc_regs(0), 320 stream_enc_regs(1), 321 stream_enc_regs(2), 322 stream_enc_regs(3), 323 stream_enc_regs(4), 324 stream_enc_regs(5) 325 }; 326 327 static const struct dcn10_stream_encoder_shift se_shift = { 328 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 329 }; 330 331 static const struct dcn10_stream_encoder_mask se_mask = { 332 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 333 }; 334 335 336 #define aux_regs(id)\ 337 [id] = {\ 338 DCN2_AUX_REG_LIST(id)\ 339 } 340 341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 342 aux_regs(0), 343 aux_regs(1), 344 aux_regs(2), 345 aux_regs(3), 346 aux_regs(4), 347 aux_regs(5) 348 }; 349 350 #define hpd_regs(id)\ 351 [id] = {\ 352 HPD_REG_LIST(id)\ 353 } 354 355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 356 hpd_regs(0), 357 hpd_regs(1), 358 hpd_regs(2), 359 hpd_regs(3), 360 hpd_regs(4), 361 hpd_regs(5) 362 }; 363 364 #define link_regs(id, phyid)\ 365 [id] = {\ 366 LE_DCN3_REG_LIST(id), \ 367 UNIPHY_DCN2_REG_LIST(phyid), \ 368 DPCS_DCN2_REG_LIST(id), \ 369 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 370 } 371 372 static const struct dce110_aux_registers_shift aux_shift = { 373 DCN_AUX_MASK_SH_LIST(__SHIFT) 374 }; 375 376 static const struct dce110_aux_registers_mask aux_mask = { 377 DCN_AUX_MASK_SH_LIST(_MASK) 378 }; 379 380 static const struct dcn10_link_enc_registers link_enc_regs[] = { 381 link_regs(0, A), 382 link_regs(1, B), 383 link_regs(2, C), 384 link_regs(3, D), 385 link_regs(4, E), 386 link_regs(5, F) 387 }; 388 389 static const struct dcn10_link_enc_shift le_shift = { 390 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 391 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 392 }; 393 394 static const struct dcn10_link_enc_mask le_mask = { 395 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 396 DPCS_DCN2_MASK_SH_LIST(_MASK) 397 }; 398 399 400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 401 { DCN_PANEL_CNTL_REG_LIST() } 402 }; 403 404 static const struct dce_panel_cntl_shift panel_cntl_shift = { 405 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 406 }; 407 408 static const struct dce_panel_cntl_mask panel_cntl_mask = { 409 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 410 }; 411 412 #define dpp_regs(id)\ 413 [id] = {\ 414 DPP_REG_LIST_DCN30(id),\ 415 } 416 417 static const struct dcn3_dpp_registers dpp_regs[] = { 418 dpp_regs(0), 419 dpp_regs(1), 420 dpp_regs(2), 421 dpp_regs(3), 422 dpp_regs(4), 423 dpp_regs(5), 424 }; 425 426 static const struct dcn3_dpp_shift tf_shift = { 427 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 428 }; 429 430 static const struct dcn3_dpp_mask tf_mask = { 431 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 432 }; 433 434 #define opp_regs(id)\ 435 [id] = {\ 436 OPP_REG_LIST_DCN30(id),\ 437 } 438 439 static const struct dcn20_opp_registers opp_regs[] = { 440 opp_regs(0), 441 opp_regs(1), 442 opp_regs(2), 443 opp_regs(3), 444 opp_regs(4), 445 opp_regs(5) 446 }; 447 448 static const struct dcn20_opp_shift opp_shift = { 449 OPP_MASK_SH_LIST_DCN20(__SHIFT) 450 }; 451 452 static const struct dcn20_opp_mask opp_mask = { 453 OPP_MASK_SH_LIST_DCN20(_MASK) 454 }; 455 456 #define aux_engine_regs(id)\ 457 [id] = {\ 458 AUX_COMMON_REG_LIST0(id), \ 459 .AUXN_IMPCAL = 0, \ 460 .AUXP_IMPCAL = 0, \ 461 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 462 } 463 464 static const struct dce110_aux_registers aux_engine_regs[] = { 465 aux_engine_regs(0), 466 aux_engine_regs(1), 467 aux_engine_regs(2), 468 aux_engine_regs(3), 469 aux_engine_regs(4), 470 aux_engine_regs(5) 471 }; 472 473 #define dwbc_regs_dcn3(id)\ 474 [id] = {\ 475 DWBC_COMMON_REG_LIST_DCN30(id),\ 476 } 477 478 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 479 dwbc_regs_dcn3(0), 480 }; 481 482 static const struct dcn30_dwbc_shift dwbc30_shift = { 483 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 484 }; 485 486 static const struct dcn30_dwbc_mask dwbc30_mask = { 487 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 488 }; 489 490 #define mcif_wb_regs_dcn3(id)\ 491 [id] = {\ 492 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 493 } 494 495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 496 mcif_wb_regs_dcn3(0) 497 }; 498 499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 500 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 501 }; 502 503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 504 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 505 }; 506 507 #define dsc_regsDCN20(id)\ 508 [id] = {\ 509 DSC_REG_LIST_DCN20(id)\ 510 } 511 512 static const struct dcn20_dsc_registers dsc_regs[] = { 513 dsc_regsDCN20(0), 514 dsc_regsDCN20(1), 515 dsc_regsDCN20(2), 516 dsc_regsDCN20(3), 517 dsc_regsDCN20(4), 518 dsc_regsDCN20(5) 519 }; 520 521 static const struct dcn20_dsc_shift dsc_shift = { 522 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 523 }; 524 525 static const struct dcn20_dsc_mask dsc_mask = { 526 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 527 }; 528 529 static const struct dcn30_mpc_registers mpc_regs = { 530 MPC_REG_LIST_DCN3_0(0), 531 MPC_REG_LIST_DCN3_0(1), 532 MPC_REG_LIST_DCN3_0(2), 533 MPC_REG_LIST_DCN3_0(3), 534 MPC_REG_LIST_DCN3_0(4), 535 MPC_REG_LIST_DCN3_0(5), 536 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 537 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 538 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 539 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 540 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 541 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 542 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 543 MPC_RMU_REG_LIST_DCN3AG(0), 544 MPC_RMU_REG_LIST_DCN3AG(1), 545 MPC_RMU_REG_LIST_DCN3AG(2), 546 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 547 }; 548 549 static const struct dcn30_mpc_shift mpc_shift = { 550 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 551 }; 552 553 static const struct dcn30_mpc_mask mpc_mask = { 554 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 555 }; 556 557 #define optc_regs(id)\ 558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 559 560 561 static const struct dcn_optc_registers optc_regs[] = { 562 optc_regs(0), 563 optc_regs(1), 564 optc_regs(2), 565 optc_regs(3), 566 optc_regs(4), 567 optc_regs(5) 568 }; 569 570 static const struct dcn_optc_shift optc_shift = { 571 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 572 }; 573 574 static const struct dcn_optc_mask optc_mask = { 575 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 576 }; 577 578 #define hubp_regs(id)\ 579 [id] = {\ 580 HUBP_REG_LIST_DCN30(id)\ 581 } 582 583 static const struct dcn_hubp2_registers hubp_regs[] = { 584 hubp_regs(0), 585 hubp_regs(1), 586 hubp_regs(2), 587 hubp_regs(3), 588 hubp_regs(4), 589 hubp_regs(5) 590 }; 591 592 static const struct dcn_hubp2_shift hubp_shift = { 593 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 594 }; 595 596 static const struct dcn_hubp2_mask hubp_mask = { 597 HUBP_MASK_SH_LIST_DCN30(_MASK) 598 }; 599 600 static const struct dcn_hubbub_registers hubbub_reg = { 601 HUBBUB_REG_LIST_DCN30(0) 602 }; 603 604 static const struct dcn_hubbub_shift hubbub_shift = { 605 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 606 }; 607 608 static const struct dcn_hubbub_mask hubbub_mask = { 609 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 610 }; 611 612 static const struct dccg_registers dccg_regs = { 613 DCCG_REG_LIST_DCN30() 614 }; 615 616 static const struct dccg_shift dccg_shift = { 617 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 618 }; 619 620 static const struct dccg_mask dccg_mask = { 621 DCCG_MASK_SH_LIST_DCN3(_MASK) 622 }; 623 624 static const struct dce_hwseq_registers hwseq_reg = { 625 HWSEQ_DCN30_REG_LIST() 626 }; 627 628 static const struct dce_hwseq_shift hwseq_shift = { 629 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 630 }; 631 632 static const struct dce_hwseq_mask hwseq_mask = { 633 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 634 }; 635 #define vmid_regs(id)\ 636 [id] = {\ 637 DCN20_VMID_REG_LIST(id)\ 638 } 639 640 static const struct dcn_vmid_registers vmid_regs[] = { 641 vmid_regs(0), 642 vmid_regs(1), 643 vmid_regs(2), 644 vmid_regs(3), 645 vmid_regs(4), 646 vmid_regs(5), 647 vmid_regs(6), 648 vmid_regs(7), 649 vmid_regs(8), 650 vmid_regs(9), 651 vmid_regs(10), 652 vmid_regs(11), 653 vmid_regs(12), 654 vmid_regs(13), 655 vmid_regs(14), 656 vmid_regs(15) 657 }; 658 659 static const struct dcn20_vmid_shift vmid_shifts = { 660 DCN20_VMID_MASK_SH_LIST(__SHIFT) 661 }; 662 663 static const struct dcn20_vmid_mask vmid_masks = { 664 DCN20_VMID_MASK_SH_LIST(_MASK) 665 }; 666 667 static const struct resource_caps res_cap_dcn3 = { 668 .num_timing_generator = 6, 669 .num_opp = 6, 670 .num_video_plane = 6, 671 .num_audio = 6, 672 .num_stream_encoder = 6, 673 .num_pll = 6, 674 .num_dwb = 1, 675 .num_ddc = 6, 676 .num_vmid = 16, 677 .num_mpc_3dlut = 3, 678 .num_dsc = 6, 679 }; 680 681 static const struct dc_plane_cap plane_cap = { 682 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 683 .blends_with_above = true, 684 .blends_with_below = true, 685 .per_pixel_alpha = true, 686 687 .pixel_format_support = { 688 .argb8888 = true, 689 .nv12 = true, 690 .fp16 = true, 691 .p010 = true, 692 .ayuv = false, 693 }, 694 695 .max_upscale_factor = { 696 .argb8888 = 16000, 697 .nv12 = 16000, 698 .fp16 = 16000 699 }, 700 701 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 702 .max_downscale_factor = { 703 .argb8888 = 167, 704 .nv12 = 167, 705 .fp16 = 167 706 } 707 }; 708 709 static const struct dc_debug_options debug_defaults_drv = { 710 .disable_dmcu = true, //No DMCU on DCN30 711 .force_abm_enable = false, 712 .timing_trace = false, 713 .clock_trace = true, 714 .disable_pplib_clock_request = true, 715 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 716 .force_single_disp_pipe_split = false, 717 .disable_dcc = DCC_ENABLE, 718 .vsr_support = true, 719 .performance_trace = false, 720 .max_downscale_src_width = 7680,/*upto 8K*/ 721 .disable_pplib_wm_range = false, 722 .scl_reset_length10 = true, 723 .sanity_checks = false, 724 .underflow_assert_delay_us = 0xFFFFFFFF, 725 .dwb_fi_phase = -1, // -1 = disable, 726 .dmub_command_table = true, 727 .use_max_lb = true, 728 .exit_idle_opt_for_cursor_updates = true 729 }; 730 731 static const struct dc_debug_options debug_defaults_diags = { 732 .disable_dmcu = true, //No dmcu on DCN30 733 .force_abm_enable = false, 734 .timing_trace = true, 735 .clock_trace = true, 736 .disable_dpp_power_gate = true, 737 .disable_hubp_power_gate = true, 738 .disable_clock_gate = true, 739 .disable_pplib_clock_request = true, 740 .disable_pplib_wm_range = true, 741 .disable_stutter = false, 742 .scl_reset_length10 = true, 743 .dwb_fi_phase = -1, // -1 = disable 744 .dmub_command_table = true, 745 .enable_tri_buf = true, 746 .use_max_lb = true 747 }; 748 749 static const struct dc_panel_config panel_config_defaults = { 750 .psr = { 751 .disable_psr = false, 752 .disallow_psrsu = false, 753 }, 754 }; 755 756 static void dcn30_dpp_destroy(struct dpp **dpp) 757 { 758 kfree(TO_DCN20_DPP(*dpp)); 759 *dpp = NULL; 760 } 761 762 static struct dpp *dcn30_dpp_create( 763 struct dc_context *ctx, 764 uint32_t inst) 765 { 766 struct dcn3_dpp *dpp = 767 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 768 769 if (!dpp) 770 return NULL; 771 772 if (dpp3_construct(dpp, ctx, inst, 773 &dpp_regs[inst], &tf_shift, &tf_mask)) 774 return &dpp->base; 775 776 BREAK_TO_DEBUGGER(); 777 kfree(dpp); 778 return NULL; 779 } 780 781 static struct output_pixel_processor *dcn30_opp_create( 782 struct dc_context *ctx, uint32_t inst) 783 { 784 struct dcn20_opp *opp = 785 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 786 787 if (!opp) { 788 BREAK_TO_DEBUGGER(); 789 return NULL; 790 } 791 792 dcn20_opp_construct(opp, ctx, inst, 793 &opp_regs[inst], &opp_shift, &opp_mask); 794 return &opp->base; 795 } 796 797 static struct dce_aux *dcn30_aux_engine_create( 798 struct dc_context *ctx, 799 uint32_t inst) 800 { 801 struct aux_engine_dce110 *aux_engine = 802 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 803 804 if (!aux_engine) 805 return NULL; 806 807 dce110_aux_engine_construct(aux_engine, ctx, inst, 808 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 809 &aux_engine_regs[inst], 810 &aux_mask, 811 &aux_shift, 812 ctx->dc->caps.extended_aux_timeout_support); 813 814 return &aux_engine->base; 815 } 816 817 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 818 819 static const struct dce_i2c_registers i2c_hw_regs[] = { 820 i2c_inst_regs(1), 821 i2c_inst_regs(2), 822 i2c_inst_regs(3), 823 i2c_inst_regs(4), 824 i2c_inst_regs(5), 825 i2c_inst_regs(6), 826 }; 827 828 static const struct dce_i2c_shift i2c_shifts = { 829 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 830 }; 831 832 static const struct dce_i2c_mask i2c_masks = { 833 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 834 }; 835 836 static struct dce_i2c_hw *dcn30_i2c_hw_create( 837 struct dc_context *ctx, 838 uint32_t inst) 839 { 840 struct dce_i2c_hw *dce_i2c_hw = 841 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 842 843 if (!dce_i2c_hw) 844 return NULL; 845 846 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 847 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 848 849 return dce_i2c_hw; 850 } 851 852 static struct mpc *dcn30_mpc_create( 853 struct dc_context *ctx, 854 int num_mpcc, 855 int num_rmu) 856 { 857 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 858 GFP_KERNEL); 859 860 if (!mpc30) 861 return NULL; 862 863 dcn30_mpc_construct(mpc30, ctx, 864 &mpc_regs, 865 &mpc_shift, 866 &mpc_mask, 867 num_mpcc, 868 num_rmu); 869 870 return &mpc30->base; 871 } 872 873 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 874 { 875 int i; 876 877 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 878 GFP_KERNEL); 879 880 if (!hubbub3) 881 return NULL; 882 883 hubbub3_construct(hubbub3, ctx, 884 &hubbub_reg, 885 &hubbub_shift, 886 &hubbub_mask); 887 888 889 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 890 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 891 892 vmid->ctx = ctx; 893 894 vmid->regs = &vmid_regs[i]; 895 vmid->shifts = &vmid_shifts; 896 vmid->masks = &vmid_masks; 897 } 898 899 return &hubbub3->base; 900 } 901 902 static struct timing_generator *dcn30_timing_generator_create( 903 struct dc_context *ctx, 904 uint32_t instance) 905 { 906 struct optc *tgn10 = 907 kzalloc(sizeof(struct optc), GFP_KERNEL); 908 909 if (!tgn10) 910 return NULL; 911 912 tgn10->base.inst = instance; 913 tgn10->base.ctx = ctx; 914 915 tgn10->tg_regs = &optc_regs[instance]; 916 tgn10->tg_shift = &optc_shift; 917 tgn10->tg_mask = &optc_mask; 918 919 dcn30_timing_generator_init(tgn10); 920 921 return &tgn10->base; 922 } 923 924 static const struct encoder_feature_support link_enc_feature = { 925 .max_hdmi_deep_color = COLOR_DEPTH_121212, 926 .max_hdmi_pixel_clock = 600000, 927 .hdmi_ycbcr420_supported = true, 928 .dp_ycbcr420_supported = true, 929 .fec_supported = true, 930 .flags.bits.IS_HBR2_CAPABLE = true, 931 .flags.bits.IS_HBR3_CAPABLE = true, 932 .flags.bits.IS_TPS3_CAPABLE = true, 933 .flags.bits.IS_TPS4_CAPABLE = true 934 }; 935 936 static struct link_encoder *dcn30_link_encoder_create( 937 struct dc_context *ctx, 938 const struct encoder_init_data *enc_init_data) 939 { 940 struct dcn20_link_encoder *enc20 = 941 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 942 943 if (!enc20) 944 return NULL; 945 946 dcn30_link_encoder_construct(enc20, 947 enc_init_data, 948 &link_enc_feature, 949 &link_enc_regs[enc_init_data->transmitter], 950 &link_enc_aux_regs[enc_init_data->channel - 1], 951 &link_enc_hpd_regs[enc_init_data->hpd_source], 952 &le_shift, 953 &le_mask); 954 955 return &enc20->enc10.base; 956 } 957 958 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 959 { 960 struct dce_panel_cntl *panel_cntl = 961 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 962 963 if (!panel_cntl) 964 return NULL; 965 966 dce_panel_cntl_construct(panel_cntl, 967 init_data, 968 &panel_cntl_regs[init_data->inst], 969 &panel_cntl_shift, 970 &panel_cntl_mask); 971 972 return &panel_cntl->base; 973 } 974 975 static void read_dce_straps( 976 struct dc_context *ctx, 977 struct resource_straps *straps) 978 { 979 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 980 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 981 982 } 983 984 static struct audio *dcn30_create_audio( 985 struct dc_context *ctx, unsigned int inst) 986 { 987 return dce_audio_create(ctx, inst, 988 &audio_regs[inst], &audio_shift, &audio_mask); 989 } 990 991 static struct vpg *dcn30_vpg_create( 992 struct dc_context *ctx, 993 uint32_t inst) 994 { 995 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 996 997 if (!vpg3) 998 return NULL; 999 1000 vpg3_construct(vpg3, ctx, inst, 1001 &vpg_regs[inst], 1002 &vpg_shift, 1003 &vpg_mask); 1004 1005 return &vpg3->base; 1006 } 1007 1008 static struct afmt *dcn30_afmt_create( 1009 struct dc_context *ctx, 1010 uint32_t inst) 1011 { 1012 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1013 1014 if (!afmt3) 1015 return NULL; 1016 1017 afmt3_construct(afmt3, ctx, inst, 1018 &afmt_regs[inst], 1019 &afmt_shift, 1020 &afmt_mask); 1021 1022 return &afmt3->base; 1023 } 1024 1025 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, 1026 struct dc_context *ctx) 1027 { 1028 struct dcn10_stream_encoder *enc1; 1029 struct vpg *vpg; 1030 struct afmt *afmt; 1031 int vpg_inst; 1032 int afmt_inst; 1033 1034 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1035 if (eng_id <= ENGINE_ID_DIGF) { 1036 vpg_inst = eng_id; 1037 afmt_inst = eng_id; 1038 } else 1039 return NULL; 1040 1041 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1042 vpg = dcn30_vpg_create(ctx, vpg_inst); 1043 afmt = dcn30_afmt_create(ctx, afmt_inst); 1044 1045 if (!enc1 || !vpg || !afmt) { 1046 kfree(enc1); 1047 kfree(vpg); 1048 kfree(afmt); 1049 return NULL; 1050 } 1051 1052 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1053 eng_id, vpg, afmt, 1054 &stream_enc_regs[eng_id], 1055 &se_shift, &se_mask); 1056 1057 return &enc1->base; 1058 } 1059 1060 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) 1061 { 1062 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1063 1064 if (hws) { 1065 hws->ctx = ctx; 1066 hws->regs = &hwseq_reg; 1067 hws->shifts = &hwseq_shift; 1068 hws->masks = &hwseq_mask; 1069 } 1070 return hws; 1071 } 1072 static const struct resource_create_funcs res_create_funcs = { 1073 .read_dce_straps = read_dce_straps, 1074 .create_audio = dcn30_create_audio, 1075 .create_stream_encoder = dcn30_stream_encoder_create, 1076 .create_hwseq = dcn30_hwseq_create, 1077 }; 1078 1079 static const struct resource_create_funcs res_create_maximus_funcs = { 1080 .read_dce_straps = NULL, 1081 .create_audio = NULL, 1082 .create_stream_encoder = NULL, 1083 .create_hwseq = dcn30_hwseq_create, 1084 }; 1085 1086 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1087 { 1088 unsigned int i; 1089 1090 for (i = 0; i < pool->base.stream_enc_count; i++) { 1091 if (pool->base.stream_enc[i] != NULL) { 1092 if (pool->base.stream_enc[i]->vpg != NULL) { 1093 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1094 pool->base.stream_enc[i]->vpg = NULL; 1095 } 1096 if (pool->base.stream_enc[i]->afmt != NULL) { 1097 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1098 pool->base.stream_enc[i]->afmt = NULL; 1099 } 1100 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1101 pool->base.stream_enc[i] = NULL; 1102 } 1103 } 1104 1105 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1106 if (pool->base.dscs[i] != NULL) 1107 dcn20_dsc_destroy(&pool->base.dscs[i]); 1108 } 1109 1110 if (pool->base.mpc != NULL) { 1111 kfree(TO_DCN20_MPC(pool->base.mpc)); 1112 pool->base.mpc = NULL; 1113 } 1114 if (pool->base.hubbub != NULL) { 1115 kfree(pool->base.hubbub); 1116 pool->base.hubbub = NULL; 1117 } 1118 for (i = 0; i < pool->base.pipe_count; i++) { 1119 if (pool->base.dpps[i] != NULL) 1120 dcn30_dpp_destroy(&pool->base.dpps[i]); 1121 1122 if (pool->base.ipps[i] != NULL) 1123 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1124 1125 if (pool->base.hubps[i] != NULL) { 1126 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1127 pool->base.hubps[i] = NULL; 1128 } 1129 1130 if (pool->base.irqs != NULL) { 1131 dal_irq_service_destroy(&pool->base.irqs); 1132 } 1133 } 1134 1135 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1136 if (pool->base.engines[i] != NULL) 1137 dce110_engine_destroy(&pool->base.engines[i]); 1138 if (pool->base.hw_i2cs[i] != NULL) { 1139 kfree(pool->base.hw_i2cs[i]); 1140 pool->base.hw_i2cs[i] = NULL; 1141 } 1142 if (pool->base.sw_i2cs[i] != NULL) { 1143 kfree(pool->base.sw_i2cs[i]); 1144 pool->base.sw_i2cs[i] = NULL; 1145 } 1146 } 1147 1148 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1149 if (pool->base.opps[i] != NULL) 1150 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1151 } 1152 1153 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1154 if (pool->base.timing_generators[i] != NULL) { 1155 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1156 pool->base.timing_generators[i] = NULL; 1157 } 1158 } 1159 1160 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1161 if (pool->base.dwbc[i] != NULL) { 1162 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1163 pool->base.dwbc[i] = NULL; 1164 } 1165 if (pool->base.mcif_wb[i] != NULL) { 1166 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1167 pool->base.mcif_wb[i] = NULL; 1168 } 1169 } 1170 1171 for (i = 0; i < pool->base.audio_count; i++) { 1172 if (pool->base.audios[i]) 1173 dce_aud_destroy(&pool->base.audios[i]); 1174 } 1175 1176 for (i = 0; i < pool->base.clk_src_count; i++) { 1177 if (pool->base.clock_sources[i] != NULL) { 1178 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1179 pool->base.clock_sources[i] = NULL; 1180 } 1181 } 1182 1183 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1184 if (pool->base.mpc_lut[i] != NULL) { 1185 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1186 pool->base.mpc_lut[i] = NULL; 1187 } 1188 if (pool->base.mpc_shaper[i] != NULL) { 1189 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1190 pool->base.mpc_shaper[i] = NULL; 1191 } 1192 } 1193 1194 if (pool->base.dp_clock_source != NULL) { 1195 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1196 pool->base.dp_clock_source = NULL; 1197 } 1198 1199 for (i = 0; i < pool->base.pipe_count; i++) { 1200 if (pool->base.multiple_abms[i] != NULL) 1201 dce_abm_destroy(&pool->base.multiple_abms[i]); 1202 } 1203 1204 if (pool->base.psr != NULL) 1205 dmub_psr_destroy(&pool->base.psr); 1206 1207 if (pool->base.dccg != NULL) 1208 dcn_dccg_destroy(&pool->base.dccg); 1209 1210 if (pool->base.oem_device != NULL) 1211 dal_ddc_service_destroy(&pool->base.oem_device); 1212 } 1213 1214 static struct hubp *dcn30_hubp_create( 1215 struct dc_context *ctx, 1216 uint32_t inst) 1217 { 1218 struct dcn20_hubp *hubp2 = 1219 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1220 1221 if (!hubp2) 1222 return NULL; 1223 1224 if (hubp3_construct(hubp2, ctx, inst, 1225 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1226 return &hubp2->base; 1227 1228 BREAK_TO_DEBUGGER(); 1229 kfree(hubp2); 1230 return NULL; 1231 } 1232 1233 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1234 { 1235 int i; 1236 uint32_t pipe_count = pool->res_cap->num_dwb; 1237 1238 for (i = 0; i < pipe_count; i++) { 1239 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1240 GFP_KERNEL); 1241 1242 if (!dwbc30) { 1243 dm_error("DC: failed to create dwbc30!\n"); 1244 return false; 1245 } 1246 1247 dcn30_dwbc_construct(dwbc30, ctx, 1248 &dwbc30_regs[i], 1249 &dwbc30_shift, 1250 &dwbc30_mask, 1251 i); 1252 1253 pool->dwbc[i] = &dwbc30->base; 1254 } 1255 return true; 1256 } 1257 1258 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1259 { 1260 int i; 1261 uint32_t pipe_count = pool->res_cap->num_dwb; 1262 1263 for (i = 0; i < pipe_count; i++) { 1264 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1265 GFP_KERNEL); 1266 1267 if (!mcif_wb30) { 1268 dm_error("DC: failed to create mcif_wb30!\n"); 1269 return false; 1270 } 1271 1272 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1273 &mcif_wb30_regs[i], 1274 &mcif_wb30_shift, 1275 &mcif_wb30_mask, 1276 i); 1277 1278 pool->mcif_wb[i] = &mcif_wb30->base; 1279 } 1280 return true; 1281 } 1282 1283 static struct display_stream_compressor *dcn30_dsc_create( 1284 struct dc_context *ctx, uint32_t inst) 1285 { 1286 struct dcn20_dsc *dsc = 1287 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1288 1289 if (!dsc) { 1290 BREAK_TO_DEBUGGER(); 1291 return NULL; 1292 } 1293 1294 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1295 return &dsc->base; 1296 } 1297 1298 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1299 { 1300 1301 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1302 } 1303 1304 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1305 { 1306 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1307 1308 dcn30_resource_destruct(dcn30_pool); 1309 kfree(dcn30_pool); 1310 *pool = NULL; 1311 } 1312 1313 static struct clock_source *dcn30_clock_source_create( 1314 struct dc_context *ctx, 1315 struct dc_bios *bios, 1316 enum clock_source_id id, 1317 const struct dce110_clk_src_regs *regs, 1318 bool dp_clk_src) 1319 { 1320 struct dce110_clk_src *clk_src = 1321 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1322 1323 if (!clk_src) 1324 return NULL; 1325 1326 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1327 regs, &cs_shift, &cs_mask)) { 1328 clk_src->base.dp_clk_src = dp_clk_src; 1329 return &clk_src->base; 1330 } 1331 1332 kfree(clk_src); 1333 BREAK_TO_DEBUGGER(); 1334 return NULL; 1335 } 1336 1337 int dcn30_populate_dml_pipes_from_context( 1338 struct dc *dc, struct dc_state *context, 1339 display_e2e_pipe_params_st *pipes, 1340 bool fast_validate) 1341 { 1342 int i, pipe_cnt; 1343 struct resource_context *res_ctx = &context->res_ctx; 1344 1345 DC_FP_START(); 1346 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1347 DC_FP_END(); 1348 1349 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1350 if (!res_ctx->pipe_ctx[i].stream) 1351 continue; 1352 1353 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1354 dm_lb_16; 1355 } 1356 1357 return pipe_cnt; 1358 } 1359 1360 void dcn30_populate_dml_writeback_from_context( 1361 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1362 { 1363 DC_FP_START(); 1364 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); 1365 DC_FP_END(); 1366 } 1367 1368 unsigned int dcn30_calc_max_scaled_time( 1369 unsigned int time_per_pixel, 1370 enum mmhubbub_wbif_mode mode, 1371 unsigned int urgent_watermark) 1372 { 1373 unsigned int time_per_byte = 0; 1374 unsigned int total_free_entry = 0xb40; 1375 unsigned int buf_lh_capability; 1376 unsigned int max_scaled_time; 1377 1378 if (mode == PACKED_444) /* packed mode 32 bpp */ 1379 time_per_byte = time_per_pixel/4; 1380 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1381 time_per_byte = time_per_pixel/8; 1382 1383 if (time_per_byte == 0) 1384 time_per_byte = 1; 1385 1386 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1387 max_scaled_time = buf_lh_capability - urgent_watermark; 1388 return max_scaled_time; 1389 } 1390 1391 void dcn30_set_mcif_arb_params( 1392 struct dc *dc, 1393 struct dc_state *context, 1394 display_e2e_pipe_params_st *pipes, 1395 int pipe_cnt) 1396 { 1397 enum mmhubbub_wbif_mode wbif_mode; 1398 struct display_mode_lib *dml = &context->bw_ctx.dml; 1399 struct mcif_arb_params *wb_arb_params; 1400 int i, j, dwb_pipe; 1401 1402 /* Writeback MCIF_WB arbitration parameters */ 1403 dwb_pipe = 0; 1404 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1405 1406 if (!context->res_ctx.pipe_ctx[i].stream) 1407 continue; 1408 1409 for (j = 0; j < MAX_DWB_PIPES; j++) { 1410 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1411 1412 if (writeback_info->wb_enabled == false) 1413 continue; 1414 1415 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1416 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1417 1418 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1419 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1420 wbif_mode = PACKED_444_FP16; 1421 else 1422 wbif_mode = PACKED_444; 1423 1424 DC_FP_START(); 1425 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); 1426 DC_FP_END(); 1427 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1428 wb_arb_params->slice_lines = 32; 1429 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1430 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1431 wbif_mode, 1432 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1433 1434 dwb_pipe++; 1435 1436 if (dwb_pipe >= MAX_DWB_PIPES) 1437 return; 1438 } 1439 if (dwb_pipe >= MAX_DWB_PIPES) 1440 return; 1441 } 1442 1443 } 1444 1445 static struct dc_cap_funcs cap_funcs = { 1446 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1447 }; 1448 1449 bool dcn30_acquire_post_bldn_3dlut( 1450 struct resource_context *res_ctx, 1451 const struct resource_pool *pool, 1452 int mpcc_id, 1453 struct dc_3dlut **lut, 1454 struct dc_transfer_func **shaper) 1455 { 1456 int i; 1457 bool ret = false; 1458 union dc_3dlut_state *state; 1459 1460 ASSERT(*lut == NULL && *shaper == NULL); 1461 *lut = NULL; 1462 *shaper = NULL; 1463 1464 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1465 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1466 *lut = pool->mpc_lut[i]; 1467 *shaper = pool->mpc_shaper[i]; 1468 state = &pool->mpc_lut[i]->state; 1469 res_ctx->is_mpc_3dlut_acquired[i] = true; 1470 state->bits.rmu_idx_valid = 1; 1471 state->bits.rmu_mux_num = i; 1472 if (state->bits.rmu_mux_num == 0) 1473 state->bits.mpc_rmu0_mux = mpcc_id; 1474 else if (state->bits.rmu_mux_num == 1) 1475 state->bits.mpc_rmu1_mux = mpcc_id; 1476 else if (state->bits.rmu_mux_num == 2) 1477 state->bits.mpc_rmu2_mux = mpcc_id; 1478 ret = true; 1479 break; 1480 } 1481 } 1482 return ret; 1483 } 1484 1485 bool dcn30_release_post_bldn_3dlut( 1486 struct resource_context *res_ctx, 1487 const struct resource_pool *pool, 1488 struct dc_3dlut **lut, 1489 struct dc_transfer_func **shaper) 1490 { 1491 int i; 1492 bool ret = false; 1493 1494 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1495 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1496 res_ctx->is_mpc_3dlut_acquired[i] = false; 1497 pool->mpc_lut[i]->state.raw = 0; 1498 *lut = NULL; 1499 *shaper = NULL; 1500 ret = true; 1501 break; 1502 } 1503 } 1504 return ret; 1505 } 1506 1507 static bool is_soc_bounding_box_valid(struct dc *dc) 1508 { 1509 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1510 1511 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1512 return true; 1513 1514 return false; 1515 } 1516 1517 static bool init_soc_bounding_box(struct dc *dc, 1518 struct dcn30_resource_pool *pool) 1519 { 1520 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1521 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1522 1523 DC_LOGGER_INIT(dc->ctx->logger); 1524 1525 if (!is_soc_bounding_box_valid(dc)) { 1526 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1527 return false; 1528 } 1529 1530 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1531 loaded_ip->max_num_dpp = pool->base.pipe_count; 1532 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1533 dcn20_patch_bounding_box(dc, loaded_bb); 1534 DC_FP_START(); 1535 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); 1536 DC_FP_END(); 1537 1538 return true; 1539 } 1540 1541 static bool dcn30_split_stream_for_mpc_or_odm( 1542 const struct dc *dc, 1543 struct resource_context *res_ctx, 1544 struct pipe_ctx *pri_pipe, 1545 struct pipe_ctx *sec_pipe, 1546 bool odm) 1547 { 1548 int pipe_idx = sec_pipe->pipe_idx; 1549 const struct resource_pool *pool = dc->res_pool; 1550 1551 *sec_pipe = *pri_pipe; 1552 1553 sec_pipe->pipe_idx = pipe_idx; 1554 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1555 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1556 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1557 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1558 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1559 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1560 sec_pipe->stream_res.dsc = NULL; 1561 if (odm) { 1562 if (pri_pipe->next_odm_pipe) { 1563 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1564 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1565 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1566 } 1567 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1568 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1569 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1570 } 1571 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1572 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1573 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1574 } 1575 pri_pipe->next_odm_pipe = sec_pipe; 1576 sec_pipe->prev_odm_pipe = pri_pipe; 1577 1578 if (!sec_pipe->top_pipe) 1579 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1580 else 1581 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1582 if (sec_pipe->stream->timing.flags.DSC == 1) { 1583 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1584 ASSERT(sec_pipe->stream_res.dsc); 1585 if (sec_pipe->stream_res.dsc == NULL) 1586 return false; 1587 } 1588 } else { 1589 if (pri_pipe->bottom_pipe) { 1590 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1591 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1592 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1593 } 1594 pri_pipe->bottom_pipe = sec_pipe; 1595 sec_pipe->top_pipe = pri_pipe; 1596 1597 ASSERT(pri_pipe->plane_state); 1598 } 1599 1600 return true; 1601 } 1602 1603 static struct pipe_ctx *dcn30_find_split_pipe( 1604 struct dc *dc, 1605 struct dc_state *context, 1606 int old_index) 1607 { 1608 struct pipe_ctx *pipe = NULL; 1609 int i; 1610 1611 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1612 pipe = &context->res_ctx.pipe_ctx[old_index]; 1613 pipe->pipe_idx = old_index; 1614 } 1615 1616 if (!pipe) 1617 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1618 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1619 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1620 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1621 pipe = &context->res_ctx.pipe_ctx[i]; 1622 pipe->pipe_idx = i; 1623 break; 1624 } 1625 } 1626 } 1627 1628 /* 1629 * May need to fix pipes getting tossed from 1 opp to another on flip 1630 * Add for debugging transient underflow during topology updates: 1631 * ASSERT(pipe); 1632 */ 1633 if (!pipe) 1634 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1635 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1636 pipe = &context->res_ctx.pipe_ctx[i]; 1637 pipe->pipe_idx = i; 1638 break; 1639 } 1640 } 1641 1642 return pipe; 1643 } 1644 1645 noinline bool dcn30_internal_validate_bw( 1646 struct dc *dc, 1647 struct dc_state *context, 1648 display_e2e_pipe_params_st *pipes, 1649 int *pipe_cnt_out, 1650 int *vlevel_out, 1651 bool fast_validate) 1652 { 1653 bool out = false; 1654 bool repopulate_pipes = false; 1655 int split[MAX_PIPES] = { 0 }; 1656 bool merge[MAX_PIPES] = { false }; 1657 bool newly_split[MAX_PIPES] = { false }; 1658 int pipe_cnt, i, pipe_idx, vlevel; 1659 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1660 1661 ASSERT(pipes); 1662 if (!pipes) 1663 return false; 1664 1665 context->bw_ctx.dml.vba.maxMpcComb = 0; 1666 context->bw_ctx.dml.vba.VoltageLevel = 0; 1667 context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive; 1668 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1669 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1670 1671 if (!pipe_cnt) { 1672 out = true; 1673 goto validate_out; 1674 } 1675 1676 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1677 1678 if (!fast_validate) { 1679 /* 1680 * DML favors voltage over p-state, but we're more interested in 1681 * supporting p-state over voltage. We can't support p-state in 1682 * prefetch mode > 0 so try capping the prefetch mode to start. 1683 */ 1684 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1685 dm_allow_self_refresh_and_mclk_switch; 1686 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1687 /* This may adjust vlevel and maxMpcComb */ 1688 if (vlevel < context->bw_ctx.dml.soc.num_states) 1689 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1690 } 1691 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1692 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 1693 /* 1694 * If mode is unsupported or there's still no p-state support then 1695 * fall back to favoring voltage. 1696 * 1697 * We don't actually support prefetch mode 2, so require that we 1698 * at least support prefetch mode 1. 1699 */ 1700 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1701 dm_allow_self_refresh; 1702 1703 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1704 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1705 memset(split, 0, sizeof(split)); 1706 memset(merge, 0, sizeof(merge)); 1707 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1708 } 1709 } 1710 1711 dml_log_mode_support_params(&context->bw_ctx.dml); 1712 1713 if (vlevel == context->bw_ctx.dml.soc.num_states) 1714 goto validate_fail; 1715 1716 if (!dc->config.enable_windowed_mpo_odm) { 1717 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1718 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1719 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1720 1721 if (!pipe->stream) 1722 continue; 1723 1724 /* We only support full screen mpo with ODM */ 1725 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1726 && pipe->plane_state && mpo_pipe 1727 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1728 &pipe->plane_res.scl_data.recout, 1729 sizeof(struct rect)) != 0) { 1730 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1731 goto validate_fail; 1732 } 1733 pipe_idx++; 1734 } 1735 } 1736 1737 /* merge pipes if necessary */ 1738 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1739 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1740 1741 /*skip pipes that don't need merging*/ 1742 if (!merge[i]) 1743 continue; 1744 1745 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1746 if (pipe->prev_odm_pipe) { 1747 /*split off odm pipe*/ 1748 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1749 if (pipe->next_odm_pipe) 1750 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1751 1752 pipe->bottom_pipe = NULL; 1753 pipe->next_odm_pipe = NULL; 1754 pipe->plane_state = NULL; 1755 pipe->stream = NULL; 1756 pipe->top_pipe = NULL; 1757 pipe->prev_odm_pipe = NULL; 1758 if (pipe->stream_res.dsc) 1759 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1760 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1761 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1762 repopulate_pipes = true; 1763 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1764 struct pipe_ctx *top_pipe = pipe->top_pipe; 1765 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1766 1767 top_pipe->bottom_pipe = bottom_pipe; 1768 if (bottom_pipe) 1769 bottom_pipe->top_pipe = top_pipe; 1770 1771 pipe->top_pipe = NULL; 1772 pipe->bottom_pipe = NULL; 1773 pipe->plane_state = NULL; 1774 pipe->stream = NULL; 1775 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1776 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1777 repopulate_pipes = true; 1778 } else 1779 ASSERT(0); /* Should never try to merge master pipe */ 1780 1781 } 1782 1783 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1784 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1785 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1786 struct pipe_ctx *hsplit_pipe = NULL; 1787 bool odm; 1788 int old_index = -1; 1789 1790 if (!pipe->stream || newly_split[i]) 1791 continue; 1792 1793 pipe_idx++; 1794 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 1795 1796 if (!pipe->plane_state && !odm) 1797 continue; 1798 1799 if (split[i]) { 1800 if (odm) { 1801 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 1802 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1803 else if (old_pipe->next_odm_pipe) 1804 old_index = old_pipe->next_odm_pipe->pipe_idx; 1805 } else { 1806 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1807 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1808 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1809 else if (old_pipe->bottom_pipe && 1810 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1811 old_index = old_pipe->bottom_pipe->pipe_idx; 1812 } 1813 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 1814 ASSERT(hsplit_pipe); 1815 if (!hsplit_pipe) 1816 goto validate_fail; 1817 1818 if (!dcn30_split_stream_for_mpc_or_odm( 1819 dc, &context->res_ctx, 1820 pipe, hsplit_pipe, odm)) 1821 goto validate_fail; 1822 1823 newly_split[hsplit_pipe->pipe_idx] = true; 1824 repopulate_pipes = true; 1825 } 1826 if (split[i] == 4) { 1827 struct pipe_ctx *pipe_4to1; 1828 1829 if (odm && old_pipe->next_odm_pipe) 1830 old_index = old_pipe->next_odm_pipe->pipe_idx; 1831 else if (!odm && old_pipe->bottom_pipe && 1832 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1833 old_index = old_pipe->bottom_pipe->pipe_idx; 1834 else 1835 old_index = -1; 1836 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1837 ASSERT(pipe_4to1); 1838 if (!pipe_4to1) 1839 goto validate_fail; 1840 if (!dcn30_split_stream_for_mpc_or_odm( 1841 dc, &context->res_ctx, 1842 pipe, pipe_4to1, odm)) 1843 goto validate_fail; 1844 newly_split[pipe_4to1->pipe_idx] = true; 1845 1846 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 1847 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 1848 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1849 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1850 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 1851 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1852 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1853 else 1854 old_index = -1; 1855 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1856 ASSERT(pipe_4to1); 1857 if (!pipe_4to1) 1858 goto validate_fail; 1859 if (!dcn30_split_stream_for_mpc_or_odm( 1860 dc, &context->res_ctx, 1861 hsplit_pipe, pipe_4to1, odm)) 1862 goto validate_fail; 1863 newly_split[pipe_4to1->pipe_idx] = true; 1864 } 1865 if (odm) 1866 dcn20_build_mapped_resource(dc, context, pipe->stream); 1867 } 1868 1869 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1870 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1871 1872 if (pipe->plane_state) { 1873 if (!resource_build_scaling_params(pipe)) 1874 goto validate_fail; 1875 } 1876 } 1877 1878 /* Actual dsc count per stream dsc validation*/ 1879 if (!dcn20_validate_dsc(dc, context)) { 1880 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 1881 goto validate_fail; 1882 } 1883 1884 if (repopulate_pipes) 1885 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1886 context->bw_ctx.dml.vba.VoltageLevel = vlevel; 1887 *vlevel_out = vlevel; 1888 *pipe_cnt_out = pipe_cnt; 1889 1890 out = true; 1891 goto validate_out; 1892 1893 validate_fail: 1894 out = false; 1895 1896 validate_out: 1897 return out; 1898 } 1899 1900 static int get_refresh_rate(struct dc_state *context) 1901 { 1902 int refresh_rate = 0; 1903 int h_v_total = 0; 1904 struct dc_crtc_timing *timing = NULL; 1905 1906 if (context == NULL || context->streams[0] == NULL) 1907 return 0; 1908 1909 /* check if refresh rate at least 120hz */ 1910 timing = &context->streams[0]->timing; 1911 if (timing == NULL) 1912 return 0; 1913 1914 h_v_total = timing->h_total * timing->v_total; 1915 if (h_v_total == 0) 1916 return 0; 1917 1918 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; 1919 return refresh_rate; 1920 } 1921 1922 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds 1923 /* 1924 * Scaling factor for v_blank stretch calculations considering timing in 1925 * micro-seconds and pixel clock in 100hz. 1926 * Note: the parenthesis are necessary to ensure the correct order of 1927 * operation where V_SCALE is used. 1928 */ 1929 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) 1930 1931 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) 1932 { 1933 struct dc_crtc_timing *timing = NULL; 1934 uint32_t sec_per_100_lines; 1935 uint32_t max_v_blank; 1936 uint32_t curr_v_blank; 1937 uint32_t v_stretch_max; 1938 uint32_t stretched_frame_pix_cnt; 1939 uint32_t scaled_stretched_frame_pix_cnt; 1940 uint32_t scaled_refresh_rate; 1941 1942 if (context == NULL || context->streams[0] == NULL) 1943 return 0; 1944 1945 /* check if refresh rate at least 120hz */ 1946 timing = &context->streams[0]->timing; 1947 if (timing == NULL) 1948 return 0; 1949 1950 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; 1951 max_v_blank = sec_per_100_lines / V_SCALE + 1; 1952 curr_v_blank = timing->v_total - timing->v_addressable; 1953 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); 1954 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; 1955 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; 1956 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; 1957 1958 return scaled_refresh_rate; 1959 } 1960 1961 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) 1962 { 1963 int refresh_rate_max_stretch_100hz; 1964 int min_refresh_100hz; 1965 1966 if (context == NULL || context->streams[0] == NULL) 1967 return false; 1968 1969 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); 1970 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; 1971 1972 if (refresh_rate_max_stretch_100hz < min_refresh_100hz) 1973 return false; 1974 1975 return true; 1976 } 1977 1978 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 1979 { 1980 int refresh_rate = 0; 1981 const int minimum_refreshrate_supported = 120; 1982 1983 if (context == NULL || context->streams[0] == NULL) 1984 return false; 1985 1986 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) 1987 return false; 1988 1989 if (dc->debug.disable_fams) 1990 return false; 1991 1992 if (!dc->caps.dmub_caps.mclk_sw) 1993 return false; 1994 1995 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) 1996 return false; 1997 1998 /* more then 1 monitor connected */ 1999 if (context->stream_count != 1) 2000 return false; 2001 2002 refresh_rate = get_refresh_rate(context); 2003 if (refresh_rate < minimum_refreshrate_supported) 2004 return false; 2005 2006 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) 2007 return false; 2008 2009 // check if freesync enabled 2010 if (!context->streams[0]->allow_freesync) 2011 return false; 2012 2013 if (context->streams[0]->vrr_active_variable) 2014 return false; 2015 2016 return true; 2017 } 2018 2019 /* 2020 * set up FPO watermarks, pstate, dram latency 2021 */ 2022 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 2023 { 2024 ASSERT(dc != NULL && context != NULL); 2025 if (dc == NULL || context == NULL) 2026 return; 2027 2028 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ 2029 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; 2030 } 2031 2032 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2033 { 2034 DC_FP_START(); 2035 dcn30_fpu_update_soc_for_wm_a(dc, context); 2036 DC_FP_END(); 2037 } 2038 2039 void dcn30_calculate_wm_and_dlg( 2040 struct dc *dc, struct dc_state *context, 2041 display_e2e_pipe_params_st *pipes, 2042 int pipe_cnt, 2043 int vlevel) 2044 { 2045 DC_FP_START(); 2046 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2047 DC_FP_END(); 2048 } 2049 2050 bool dcn30_validate_bandwidth(struct dc *dc, 2051 struct dc_state *context, 2052 bool fast_validate) 2053 { 2054 bool out = false; 2055 2056 BW_VAL_TRACE_SETUP(); 2057 2058 int vlevel = 0; 2059 int pipe_cnt = 0; 2060 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2061 DC_LOGGER_INIT(dc->ctx->logger); 2062 2063 BW_VAL_TRACE_COUNT(); 2064 2065 DC_FP_START(); 2066 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2067 DC_FP_END(); 2068 2069 if (pipe_cnt == 0) 2070 goto validate_out; 2071 2072 if (!out) 2073 goto validate_fail; 2074 2075 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2076 2077 if (fast_validate) { 2078 BW_VAL_TRACE_SKIP(fast); 2079 goto validate_out; 2080 } 2081 2082 DC_FP_START(); 2083 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2084 DC_FP_END(); 2085 2086 BW_VAL_TRACE_END_WATERMARKS(); 2087 2088 goto validate_out; 2089 2090 validate_fail: 2091 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2092 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2093 2094 BW_VAL_TRACE_SKIP(fail); 2095 out = false; 2096 2097 validate_out: 2098 kfree(pipes); 2099 2100 BW_VAL_TRACE_FINISH(); 2101 2102 return out; 2103 } 2104 2105 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2106 { 2107 unsigned int i, j; 2108 unsigned int num_states = 0; 2109 2110 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2111 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2112 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2113 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2114 2115 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2116 unsigned int num_dcfclk_sta_targets = 4; 2117 unsigned int num_uclk_states; 2118 2119 struct dc_bounding_box_max_clk dcn30_bb_max_clk; 2120 2121 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); 2122 2123 if (dc->ctx->dc_bios->vram_info.num_chans) 2124 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2125 2126 DC_FP_START(); 2127 dcn30_fpu_update_dram_channel_width_bytes(dc); 2128 DC_FP_END(); 2129 2130 if (bw_params->clk_table.entries[0].memclk_mhz) { 2131 2132 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2133 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) 2134 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2135 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) 2136 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2137 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) 2138 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2139 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) 2140 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2141 } 2142 2143 DC_FP_START(); 2144 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); 2145 DC_FP_END(); 2146 2147 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2148 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2149 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; 2150 num_dcfclk_sta_targets++; 2151 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2152 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2153 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2154 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { 2155 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; 2156 break; 2157 } 2158 } 2159 // Update size of array since we "removed" duplicates 2160 num_dcfclk_sta_targets = i + 1; 2161 } 2162 2163 num_uclk_states = bw_params->clk_table.num_entries; 2164 2165 // Calculate optimal dcfclk for each uclk 2166 for (i = 0; i < num_uclk_states; i++) { 2167 DC_FP_START(); 2168 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2169 &optimal_dcfclk_for_uclk[i], NULL); 2170 DC_FP_END(); 2171 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2172 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2173 } 2174 } 2175 2176 // Calculate optimal uclk for each dcfclk sta target 2177 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2178 for (j = 0; j < num_uclk_states; j++) { 2179 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2180 optimal_uclk_for_dcfclk_sta_targets[i] = 2181 bw_params->clk_table.entries[j].memclk_mhz * 16; 2182 break; 2183 } 2184 } 2185 } 2186 2187 i = 0; 2188 j = 0; 2189 // create the final dcfclk and uclk table 2190 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2191 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2192 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2193 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2194 } else { 2195 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2196 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2197 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2198 } else { 2199 j = num_uclk_states; 2200 } 2201 } 2202 } 2203 2204 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2205 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2206 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2207 } 2208 2209 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2210 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2211 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2212 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2213 } 2214 2215 dcn3_0_soc.num_states = num_states; 2216 DC_FP_START(); 2217 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); 2218 DC_FP_END(); 2219 } 2220 } 2221 2222 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config) 2223 { 2224 *panel_config = panel_config_defaults; 2225 } 2226 2227 static const struct resource_funcs dcn30_res_pool_funcs = { 2228 .destroy = dcn30_destroy_resource_pool, 2229 .link_enc_create = dcn30_link_encoder_create, 2230 .panel_cntl_create = dcn30_panel_cntl_create, 2231 .validate_bandwidth = dcn30_validate_bandwidth, 2232 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2233 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2234 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2235 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2236 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2237 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2238 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2239 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2240 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2241 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2242 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2243 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2244 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2245 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2246 .get_panel_config_defaults = dcn30_get_panel_config_defaults, 2247 }; 2248 2249 #define CTX ctx 2250 2251 #define REG(reg_name) \ 2252 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2253 2254 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2255 { 2256 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2257 /* Support for max 6 pipes */ 2258 value = value & 0x3f; 2259 return value; 2260 } 2261 2262 static bool dcn30_resource_construct( 2263 uint8_t num_virtual_links, 2264 struct dc *dc, 2265 struct dcn30_resource_pool *pool) 2266 { 2267 int i; 2268 struct dc_context *ctx = dc->ctx; 2269 struct irq_service_init_data init_data; 2270 struct ddc_service_init_data ddc_init_data = {0}; 2271 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2272 uint32_t num_pipes = 0; 2273 2274 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2275 BREAK_TO_DEBUGGER(); 2276 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2277 /* fault to single pipe */ 2278 pipe_fuses = 0x3e; 2279 } 2280 2281 DC_FP_START(); 2282 2283 ctx->dc_bios->regs = &bios_regs; 2284 2285 pool->base.res_cap = &res_cap_dcn3; 2286 2287 pool->base.funcs = &dcn30_res_pool_funcs; 2288 2289 /************************************************* 2290 * Resource + asic cap harcoding * 2291 *************************************************/ 2292 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2293 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2294 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2295 dc->caps.max_downscale_ratio = 600; 2296 dc->caps.i2c_speed_in_khz = 100; 2297 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2298 dc->caps.max_cursor_size = 256; 2299 dc->caps.min_horizontal_blanking_period = 80; 2300 dc->caps.dmdata_alloc_size = 2048; 2301 dc->caps.mall_size_per_mem_channel = 8; 2302 /* total size = mall per channel * num channels * 1024 * 1024 */ 2303 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2304 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2305 2306 dc->caps.max_slave_planes = 2; 2307 dc->caps.max_slave_yuv_planes = 2; 2308 dc->caps.max_slave_rgb_planes = 2; 2309 dc->caps.post_blend_color_processing = true; 2310 dc->caps.force_dp_tps4_for_cp2520 = true; 2311 dc->caps.extended_aux_timeout_support = true; 2312 dc->caps.dmcub_support = true; 2313 2314 /* Color pipeline capabilities */ 2315 dc->caps.color.dpp.dcn_arch = 1; 2316 dc->caps.color.dpp.input_lut_shared = 0; 2317 dc->caps.color.dpp.icsc = 1; 2318 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2319 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2320 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2321 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2322 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2323 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2324 dc->caps.color.dpp.post_csc = 1; 2325 dc->caps.color.dpp.gamma_corr = 1; 2326 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2327 2328 dc->caps.color.dpp.hw_3d_lut = 1; 2329 dc->caps.color.dpp.ogam_ram = 1; 2330 // no OGAM ROM on DCN3 2331 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2332 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2333 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2334 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2335 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2336 dc->caps.color.dpp.ocsc = 0; 2337 2338 dc->caps.color.mpc.gamut_remap = 1; 2339 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2340 dc->caps.color.mpc.ogam_ram = 1; 2341 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2342 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2343 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2344 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2345 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2346 dc->caps.color.mpc.ocsc = 1; 2347 2348 dc->caps.dp_hdmi21_pcon_support = true; 2349 2350 /* read VBIOS LTTPR caps */ 2351 { 2352 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2353 enum bp_result bp_query_result; 2354 uint8_t is_vbios_lttpr_enable = 0; 2355 2356 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2357 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2358 } 2359 2360 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2361 enum bp_result bp_query_result; 2362 uint8_t is_vbios_interop_enabled = 0; 2363 2364 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2365 &is_vbios_interop_enabled); 2366 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2367 } 2368 } 2369 2370 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2371 dc->debug = debug_defaults_drv; 2372 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2373 dc->debug = debug_defaults_diags; 2374 } else 2375 dc->debug = debug_defaults_diags; 2376 // Init the vm_helper 2377 if (dc->vm_helper) 2378 vm_helper_init(dc->vm_helper, 16); 2379 2380 /************************************************* 2381 * Create resources * 2382 *************************************************/ 2383 2384 /* Clock Sources for Pixel Clock*/ 2385 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2386 dcn30_clock_source_create(ctx, ctx->dc_bios, 2387 CLOCK_SOURCE_COMBO_PHY_PLL0, 2388 &clk_src_regs[0], false); 2389 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2390 dcn30_clock_source_create(ctx, ctx->dc_bios, 2391 CLOCK_SOURCE_COMBO_PHY_PLL1, 2392 &clk_src_regs[1], false); 2393 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2394 dcn30_clock_source_create(ctx, ctx->dc_bios, 2395 CLOCK_SOURCE_COMBO_PHY_PLL2, 2396 &clk_src_regs[2], false); 2397 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2398 dcn30_clock_source_create(ctx, ctx->dc_bios, 2399 CLOCK_SOURCE_COMBO_PHY_PLL3, 2400 &clk_src_regs[3], false); 2401 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2402 dcn30_clock_source_create(ctx, ctx->dc_bios, 2403 CLOCK_SOURCE_COMBO_PHY_PLL4, 2404 &clk_src_regs[4], false); 2405 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2406 dcn30_clock_source_create(ctx, ctx->dc_bios, 2407 CLOCK_SOURCE_COMBO_PHY_PLL5, 2408 &clk_src_regs[5], false); 2409 2410 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2411 2412 /* todo: not reuse phy_pll registers */ 2413 pool->base.dp_clock_source = 2414 dcn30_clock_source_create(ctx, ctx->dc_bios, 2415 CLOCK_SOURCE_ID_DP_DTO, 2416 &clk_src_regs[0], true); 2417 2418 for (i = 0; i < pool->base.clk_src_count; i++) { 2419 if (pool->base.clock_sources[i] == NULL) { 2420 dm_error("DC: failed to create clock sources!\n"); 2421 BREAK_TO_DEBUGGER(); 2422 goto create_fail; 2423 } 2424 } 2425 2426 /* DCCG */ 2427 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2428 if (pool->base.dccg == NULL) { 2429 dm_error("DC: failed to create dccg!\n"); 2430 BREAK_TO_DEBUGGER(); 2431 goto create_fail; 2432 } 2433 2434 /* PP Lib and SMU interfaces */ 2435 init_soc_bounding_box(dc, pool); 2436 2437 num_pipes = dcn3_0_ip.max_num_dpp; 2438 2439 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2440 if (pipe_fuses & 1 << i) 2441 num_pipes--; 2442 2443 dcn3_0_ip.max_num_dpp = num_pipes; 2444 dcn3_0_ip.max_num_otg = num_pipes; 2445 2446 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2447 2448 /* IRQ */ 2449 init_data.ctx = dc->ctx; 2450 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2451 if (!pool->base.irqs) 2452 goto create_fail; 2453 2454 /* HUBBUB */ 2455 pool->base.hubbub = dcn30_hubbub_create(ctx); 2456 if (pool->base.hubbub == NULL) { 2457 BREAK_TO_DEBUGGER(); 2458 dm_error("DC: failed to create hubbub!\n"); 2459 goto create_fail; 2460 } 2461 2462 /* HUBPs, DPPs, OPPs and TGs */ 2463 for (i = 0; i < pool->base.pipe_count; i++) { 2464 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2465 if (pool->base.hubps[i] == NULL) { 2466 BREAK_TO_DEBUGGER(); 2467 dm_error( 2468 "DC: failed to create hubps!\n"); 2469 goto create_fail; 2470 } 2471 2472 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2473 if (pool->base.dpps[i] == NULL) { 2474 BREAK_TO_DEBUGGER(); 2475 dm_error( 2476 "DC: failed to create dpps!\n"); 2477 goto create_fail; 2478 } 2479 } 2480 2481 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2482 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2483 if (pool->base.opps[i] == NULL) { 2484 BREAK_TO_DEBUGGER(); 2485 dm_error( 2486 "DC: failed to create output pixel processor!\n"); 2487 goto create_fail; 2488 } 2489 } 2490 2491 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2492 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2493 ctx, i); 2494 if (pool->base.timing_generators[i] == NULL) { 2495 BREAK_TO_DEBUGGER(); 2496 dm_error("DC: failed to create tg!\n"); 2497 goto create_fail; 2498 } 2499 } 2500 pool->base.timing_generator_count = i; 2501 /* PSR */ 2502 pool->base.psr = dmub_psr_create(ctx); 2503 2504 if (pool->base.psr == NULL) { 2505 dm_error("DC: failed to create PSR obj!\n"); 2506 BREAK_TO_DEBUGGER(); 2507 goto create_fail; 2508 } 2509 2510 /* ABM */ 2511 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2512 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2513 &abm_regs[i], 2514 &abm_shift, 2515 &abm_mask); 2516 if (pool->base.multiple_abms[i] == NULL) { 2517 dm_error("DC: failed to create abm for pipe %d!\n", i); 2518 BREAK_TO_DEBUGGER(); 2519 goto create_fail; 2520 } 2521 } 2522 /* MPC and DSC */ 2523 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2524 if (pool->base.mpc == NULL) { 2525 BREAK_TO_DEBUGGER(); 2526 dm_error("DC: failed to create mpc!\n"); 2527 goto create_fail; 2528 } 2529 2530 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2531 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2532 if (pool->base.dscs[i] == NULL) { 2533 BREAK_TO_DEBUGGER(); 2534 dm_error("DC: failed to create display stream compressor %d!\n", i); 2535 goto create_fail; 2536 } 2537 } 2538 2539 /* DWB and MMHUBBUB */ 2540 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2541 BREAK_TO_DEBUGGER(); 2542 dm_error("DC: failed to create dwbc!\n"); 2543 goto create_fail; 2544 } 2545 2546 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2547 BREAK_TO_DEBUGGER(); 2548 dm_error("DC: failed to create mcif_wb!\n"); 2549 goto create_fail; 2550 } 2551 2552 /* AUX and I2C */ 2553 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2554 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2555 if (pool->base.engines[i] == NULL) { 2556 BREAK_TO_DEBUGGER(); 2557 dm_error( 2558 "DC:failed to create aux engine!!\n"); 2559 goto create_fail; 2560 } 2561 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2562 if (pool->base.hw_i2cs[i] == NULL) { 2563 BREAK_TO_DEBUGGER(); 2564 dm_error( 2565 "DC:failed to create hw i2c!!\n"); 2566 goto create_fail; 2567 } 2568 pool->base.sw_i2cs[i] = NULL; 2569 } 2570 2571 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2572 if (!resource_construct(num_virtual_links, dc, &pool->base, 2573 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2574 &res_create_funcs : &res_create_maximus_funcs))) 2575 goto create_fail; 2576 2577 /* HW Sequencer and Plane caps */ 2578 dcn30_hw_sequencer_construct(dc); 2579 2580 dc->caps.max_planes = pool->base.pipe_count; 2581 2582 for (i = 0; i < dc->caps.max_planes; ++i) 2583 dc->caps.planes[i] = plane_cap; 2584 2585 dc->cap_funcs = cap_funcs; 2586 2587 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2588 ddc_init_data.ctx = dc->ctx; 2589 ddc_init_data.link = NULL; 2590 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2591 ddc_init_data.id.enum_id = 0; 2592 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2593 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2594 } else { 2595 pool->base.oem_device = NULL; 2596 } 2597 2598 DC_FP_END(); 2599 2600 return true; 2601 2602 create_fail: 2603 2604 DC_FP_END(); 2605 dcn30_resource_destruct(pool); 2606 2607 return false; 2608 } 2609 2610 struct resource_pool *dcn30_create_resource_pool( 2611 const struct dc_init_data *init_data, 2612 struct dc *dc) 2613 { 2614 struct dcn30_resource_pool *pool = 2615 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2616 2617 if (!pool) 2618 return NULL; 2619 2620 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2621 return &pool->base; 2622 2623 BREAK_TO_DEBUGGER(); 2624 kfree(pool); 2625 return NULL; 2626 } 2627