xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn30/dcn30_resource.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "dc_link_ddc.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dcn/dpcs_3_0_0_offset.h"
76 #include "dcn/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/display_mode_vba_30.h"
88 #include "vm_helper.h"
89 #include "dcn20/dcn20_vmid.h"
90 #include "amdgpu_socbb.h"
91 
92 #define DC_LOGGER_INIT(logger)
93 
94 struct _vcs_dpi_ip_params_st dcn3_0_ip = {
95 	.use_min_dcfclk = 1,
96 	.clamp_min_dcfclk = 0,
97 	.odm_capable = 1,
98 	.gpuvm_enable = 0,
99 	.hostvm_enable = 0,
100 	.gpuvm_max_page_table_levels = 4,
101 	.hostvm_max_page_table_levels = 4,
102 	.hostvm_cached_page_table_levels = 0,
103 	.pte_group_size_bytes = 2048,
104 	.num_dsc = 6,
105 	.rob_buffer_size_kbytes = 184,
106 	.det_buffer_size_kbytes = 184,
107 	.dpte_buffer_size_in_pte_reqs_luma = 84,
108 	.pde_proc_buffer_size_64k_reqs = 48,
109 	.dpp_output_buffer_pixels = 2560,
110 	.opp_output_buffer_lines = 1,
111 	.pixel_chunk_size_kbytes = 8,
112 	.pte_enable = 1,
113 	.max_page_table_levels = 2,
114 	.pte_chunk_size_kbytes = 2,  // ?
115 	.meta_chunk_size_kbytes = 2,
116 	.writeback_chunk_size_kbytes = 8,
117 	.line_buffer_size_bits = 789504,
118 	.is_line_buffer_bpp_fixed = 0,  // ?
119 	.line_buffer_fixed_bpp = 0,     // ?
120 	.dcc_supported = true,
121 	.writeback_interface_buffer_size_kbytes = 90,
122 	.writeback_line_buffer_buffer_size = 0,
123 	.max_line_buffer_lines = 12,
124 	.writeback_luma_buffer_size_kbytes = 12,  // writeback_line_buffer_buffer_size = 656640
125 	.writeback_chroma_buffer_size_kbytes = 8,
126 	.writeback_chroma_line_buffer_width_pixels = 4,
127 	.writeback_max_hscl_ratio = 1,
128 	.writeback_max_vscl_ratio = 1,
129 	.writeback_min_hscl_ratio = 1,
130 	.writeback_min_vscl_ratio = 1,
131 	.writeback_max_hscl_taps = 1,
132 	.writeback_max_vscl_taps = 1,
133 	.writeback_line_buffer_luma_buffer_size = 0,
134 	.writeback_line_buffer_chroma_buffer_size = 14643,
135 	.cursor_buffer_size = 8,
136 	.cursor_chunk_size = 2,
137 	.max_num_otg = 6,
138 	.max_num_dpp = 6,
139 	.max_num_wb = 1,
140 	.max_dchub_pscl_bw_pix_per_clk = 4,
141 	.max_pscl_lb_bw_pix_per_clk = 2,
142 	.max_lb_vscl_bw_pix_per_clk = 4,
143 	.max_vscl_hscl_bw_pix_per_clk = 4,
144 	.max_hscl_ratio = 6,
145 	.max_vscl_ratio = 6,
146 	.hscl_mults = 4,
147 	.vscl_mults = 4,
148 	.max_hscl_taps = 8,
149 	.max_vscl_taps = 8,
150 	.dispclk_ramp_margin_percent = 1,
151 	.underscan_factor = 1.11,
152 	.min_vblank_lines = 32,
153 	.dppclk_delay_subtotal = 46,
154 	.dynamic_metadata_vm_enabled = true,
155 	.dppclk_delay_scl_lb_only = 16,
156 	.dppclk_delay_scl = 50,
157 	.dppclk_delay_cnvc_formatter = 27,
158 	.dppclk_delay_cnvc_cursor = 6,
159 	.dispclk_delay_subtotal = 119,
160 	.dcfclk_cstate_latency = 5.2, // SRExitTime
161 	.max_inter_dcn_tile_repeaters = 8,
162 	.odm_combine_4to1_supported = true,
163 
164 	.xfc_supported = false,
165 	.xfc_fill_bw_overhead_percent = 10.0,
166 	.xfc_fill_constant_bytes = 0,
167 	.gfx7_compat_tiling_supported = 0,
168 	.number_of_cursors = 1,
169 };
170 
171 struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = {
172 	.clock_limits = {
173 			{
174 				.state = 0,
175 				.dispclk_mhz = 562.0,
176 				.dppclk_mhz = 300.0,
177 				.phyclk_mhz = 300.0,
178 				.phyclk_d18_mhz = 667.0,
179 				.dscclk_mhz = 405.6,
180 			},
181 		},
182 	.min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */
183 	.num_states = 1,
184 	.sr_exit_time_us = 12,
185 	.sr_enter_plus_exit_time_us = 20,
186 	.urgent_latency_us = 4.0,
187 	.urgent_latency_pixel_data_only_us = 4.0,
188 	.urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
189 	.urgent_latency_vm_data_only_us = 4.0,
190 	.urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
191 	.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
192 	.urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
193 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0,
194 	.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0,
195 	.pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0,
196 	.max_avg_sdp_bw_use_normal_percent = 60.0,
197 	.max_avg_dram_bw_use_normal_percent = 40.0,
198 	.writeback_latency_us = 12.0,
199 	.max_request_size_bytes = 256,
200 	.fabric_datapath_to_dcn_data_return_bytes = 64,
201 	.dcn_downspread_percent = 0.5,
202 	.downspread_percent = 0.38,
203 	.dram_page_open_time_ns = 50.0,
204 	.dram_rw_turnaround_time_ns = 17.5,
205 	.dram_return_buffer_per_channel_bytes = 8192,
206 	.round_trip_ping_latency_dcfclk_cycles = 191,
207 	.urgent_out_of_order_return_per_channel_bytes = 4096,
208 	.channel_interleave_bytes = 256,
209 	.num_banks = 8,
210 	.gpuvm_min_page_size_bytes = 4096,
211 	.hostvm_min_page_size_bytes = 4096,
212 	.dram_clock_change_latency_us = 404,
213 	.dummy_pstate_latency_us = 5,
214 	.writeback_dram_clock_change_latency_us = 23.0,
215 	.return_bus_width_bytes = 64,
216 	.dispclk_dppclk_vco_speed_mhz = 3650,
217 	.xfc_bus_transport_time_us = 20,      // ?
218 	.xfc_xbuf_latency_tolerance_us = 4,  // ?
219 	.use_urgent_burst_bw = 1,            // ?
220 	.do_urgent_latency_adjustment = true,
221 	.urgent_latency_adjustment_fabric_clock_component_us = 1.0,
222 	.urgent_latency_adjustment_fabric_clock_reference_mhz = 1000,
223 };
224 
225 enum dcn30_clk_src_array_id {
226 	DCN30_CLK_SRC_PLL0,
227 	DCN30_CLK_SRC_PLL1,
228 	DCN30_CLK_SRC_PLL2,
229 	DCN30_CLK_SRC_PLL3,
230 	DCN30_CLK_SRC_PLL4,
231 	DCN30_CLK_SRC_PLL5,
232 	DCN30_CLK_SRC_TOTAL
233 };
234 
235 /* begin *********************
236  * macros to expend register list macro defined in HW object header file
237  */
238 
239 /* DCN */
240 /* TODO awful hack. fixup dcn20_dwb.h */
241 #undef BASE_INNER
242 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
243 
244 #define BASE(seg) BASE_INNER(seg)
245 
246 #define SR(reg_name)\
247 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
248 					mm ## reg_name
249 
250 #define SRI(reg_name, block, id)\
251 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
252 					mm ## block ## id ## _ ## reg_name
253 
254 #define SRI2(reg_name, block, id)\
255 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
256 					mm ## reg_name
257 
258 #define SRIR(var_name, reg_name, block, id)\
259 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
260 					mm ## block ## id ## _ ## reg_name
261 
262 #define SRII(reg_name, block, id)\
263 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
264 					mm ## block ## id ## _ ## reg_name
265 
266 #define SRII_MPC_RMU(reg_name, block, id)\
267 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
268 					mm ## block ## id ## _ ## reg_name
269 
270 #define SRII_DWB(reg_name, temp_name, block, id)\
271 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
272 					mm ## block ## id ## _ ## temp_name
273 
274 #define DCCG_SRII(reg_name, block, id)\
275 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
276 					mm ## block ## id ## _ ## reg_name
277 
278 #define VUPDATE_SRII(reg_name, block, id)\
279 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
280 					mm ## reg_name ## _ ## block ## id
281 
282 /* NBIO */
283 #define NBIO_BASE_INNER(seg) \
284 	NBIO_BASE__INST0_SEG ## seg
285 
286 #define NBIO_BASE(seg) \
287 	NBIO_BASE_INNER(seg)
288 
289 #define NBIO_SR(reg_name)\
290 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
291 					mm ## reg_name
292 
293 /* MMHUB */
294 #define MMHUB_BASE_INNER(seg) \
295 	MMHUB_BASE__INST0_SEG ## seg
296 
297 #define MMHUB_BASE(seg) \
298 	MMHUB_BASE_INNER(seg)
299 
300 #define MMHUB_SR(reg_name)\
301 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
302 					mmMM ## reg_name
303 
304 /* CLOCK */
305 #define CLK_BASE_INNER(seg) \
306 	CLK_BASE__INST0_SEG ## seg
307 
308 #define CLK_BASE(seg) \
309 	CLK_BASE_INNER(seg)
310 
311 #define CLK_SRI(reg_name, block, inst)\
312 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
313 					mm ## block ## _ ## inst ## _ ## reg_name
314 
315 
316 static const struct bios_registers bios_regs = {
317 		NBIO_SR(BIOS_SCRATCH_3),
318 		NBIO_SR(BIOS_SCRATCH_6)
319 };
320 
321 #define clk_src_regs(index, pllid)\
322 [index] = {\
323 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
324 }
325 
326 static const struct dce110_clk_src_regs clk_src_regs[] = {
327 	clk_src_regs(0, A),
328 	clk_src_regs(1, B),
329 	clk_src_regs(2, C),
330 	clk_src_regs(3, D),
331 	clk_src_regs(4, E),
332 	clk_src_regs(5, F)
333 };
334 
335 static const struct dce110_clk_src_shift cs_shift = {
336 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
337 };
338 
339 static const struct dce110_clk_src_mask cs_mask = {
340 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
341 };
342 
343 #define abm_regs(id)\
344 [id] = {\
345 		ABM_DCN30_REG_LIST(id)\
346 }
347 
348 static const struct dce_abm_registers abm_regs[] = {
349 		abm_regs(0),
350 		abm_regs(1),
351 		abm_regs(2),
352 		abm_regs(3),
353 		abm_regs(4),
354 		abm_regs(5),
355 };
356 
357 static const struct dce_abm_shift abm_shift = {
358 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
359 };
360 
361 static const struct dce_abm_mask abm_mask = {
362 		ABM_MASK_SH_LIST_DCN30(_MASK)
363 };
364 
365 
366 
367 #define audio_regs(id)\
368 [id] = {\
369 		AUD_COMMON_REG_LIST(id)\
370 }
371 
372 static const struct dce_audio_registers audio_regs[] = {
373 	audio_regs(0),
374 	audio_regs(1),
375 	audio_regs(2),
376 	audio_regs(3),
377 	audio_regs(4),
378 	audio_regs(5),
379 	audio_regs(6)
380 };
381 
382 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
383 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
384 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
385 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
386 
387 static const struct dce_audio_shift audio_shift = {
388 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
389 };
390 
391 static const struct dce_audio_mask audio_mask = {
392 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
393 };
394 
395 #define vpg_regs(id)\
396 [id] = {\
397 	VPG_DCN3_REG_LIST(id)\
398 }
399 
400 static const struct dcn30_vpg_registers vpg_regs[] = {
401 	vpg_regs(0),
402 	vpg_regs(1),
403 	vpg_regs(2),
404 	vpg_regs(3),
405 	vpg_regs(4),
406 	vpg_regs(5),
407 	vpg_regs(6),
408 };
409 
410 static const struct dcn30_vpg_shift vpg_shift = {
411 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
412 };
413 
414 static const struct dcn30_vpg_mask vpg_mask = {
415 	DCN3_VPG_MASK_SH_LIST(_MASK)
416 };
417 
418 #define afmt_regs(id)\
419 [id] = {\
420 	AFMT_DCN3_REG_LIST(id)\
421 }
422 
423 static const struct dcn30_afmt_registers afmt_regs[] = {
424 	afmt_regs(0),
425 	afmt_regs(1),
426 	afmt_regs(2),
427 	afmt_regs(3),
428 	afmt_regs(4),
429 	afmt_regs(5),
430 	afmt_regs(6),
431 };
432 
433 static const struct dcn30_afmt_shift afmt_shift = {
434 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
435 };
436 
437 static const struct dcn30_afmt_mask afmt_mask = {
438 	DCN3_AFMT_MASK_SH_LIST(_MASK)
439 };
440 
441 #define stream_enc_regs(id)\
442 [id] = {\
443 	SE_DCN3_REG_LIST(id)\
444 }
445 
446 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
447 	stream_enc_regs(0),
448 	stream_enc_regs(1),
449 	stream_enc_regs(2),
450 	stream_enc_regs(3),
451 	stream_enc_regs(4),
452 	stream_enc_regs(5)
453 };
454 
455 static const struct dcn10_stream_encoder_shift se_shift = {
456 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
457 };
458 
459 static const struct dcn10_stream_encoder_mask se_mask = {
460 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
461 };
462 
463 
464 #define aux_regs(id)\
465 [id] = {\
466 	DCN2_AUX_REG_LIST(id)\
467 }
468 
469 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
470 		aux_regs(0),
471 		aux_regs(1),
472 		aux_regs(2),
473 		aux_regs(3),
474 		aux_regs(4),
475 		aux_regs(5)
476 };
477 
478 #define hpd_regs(id)\
479 [id] = {\
480 	HPD_REG_LIST(id)\
481 }
482 
483 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
484 		hpd_regs(0),
485 		hpd_regs(1),
486 		hpd_regs(2),
487 		hpd_regs(3),
488 		hpd_regs(4),
489 		hpd_regs(5)
490 };
491 
492 #define link_regs(id, phyid)\
493 [id] = {\
494 	LE_DCN3_REG_LIST(id), \
495 	UNIPHY_DCN2_REG_LIST(phyid), \
496 	DPCS_DCN2_REG_LIST(id), \
497 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
498 }
499 
500 static const struct dce110_aux_registers_shift aux_shift = {
501 	DCN_AUX_MASK_SH_LIST(__SHIFT)
502 };
503 
504 static const struct dce110_aux_registers_mask aux_mask = {
505 	DCN_AUX_MASK_SH_LIST(_MASK)
506 };
507 
508 static const struct dcn10_link_enc_registers link_enc_regs[] = {
509 	link_regs(0, A),
510 	link_regs(1, B),
511 	link_regs(2, C),
512 	link_regs(3, D),
513 	link_regs(4, E),
514 	link_regs(5, F)
515 };
516 
517 static const struct dcn10_link_enc_shift le_shift = {
518 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
519 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
520 };
521 
522 static const struct dcn10_link_enc_mask le_mask = {
523 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
524 	DPCS_DCN2_MASK_SH_LIST(_MASK)
525 };
526 
527 
528 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
529 	{ DCN_PANEL_CNTL_REG_LIST() }
530 };
531 
532 static const struct dce_panel_cntl_shift panel_cntl_shift = {
533 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
534 };
535 
536 static const struct dce_panel_cntl_mask panel_cntl_mask = {
537 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
538 };
539 
540 #define dpp_regs(id)\
541 [id] = {\
542 	DPP_REG_LIST_DCN30(id),\
543 }
544 
545 static const struct dcn3_dpp_registers dpp_regs[] = {
546 	dpp_regs(0),
547 	dpp_regs(1),
548 	dpp_regs(2),
549 	dpp_regs(3),
550 	dpp_regs(4),
551 	dpp_regs(5),
552 };
553 
554 static const struct dcn3_dpp_shift tf_shift = {
555 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
556 };
557 
558 static const struct dcn3_dpp_mask tf_mask = {
559 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
560 };
561 
562 #define opp_regs(id)\
563 [id] = {\
564 	OPP_REG_LIST_DCN30(id),\
565 }
566 
567 static const struct dcn20_opp_registers opp_regs[] = {
568 	opp_regs(0),
569 	opp_regs(1),
570 	opp_regs(2),
571 	opp_regs(3),
572 	opp_regs(4),
573 	opp_regs(5)
574 };
575 
576 static const struct dcn20_opp_shift opp_shift = {
577 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
578 };
579 
580 static const struct dcn20_opp_mask opp_mask = {
581 	OPP_MASK_SH_LIST_DCN20(_MASK)
582 };
583 
584 #define aux_engine_regs(id)\
585 [id] = {\
586 	AUX_COMMON_REG_LIST0(id), \
587 	.AUXN_IMPCAL = 0, \
588 	.AUXP_IMPCAL = 0, \
589 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
590 }
591 
592 static const struct dce110_aux_registers aux_engine_regs[] = {
593 		aux_engine_regs(0),
594 		aux_engine_regs(1),
595 		aux_engine_regs(2),
596 		aux_engine_regs(3),
597 		aux_engine_regs(4),
598 		aux_engine_regs(5)
599 };
600 
601 #define dwbc_regs_dcn3(id)\
602 [id] = {\
603 	DWBC_COMMON_REG_LIST_DCN30(id),\
604 }
605 
606 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
607 	dwbc_regs_dcn3(0),
608 };
609 
610 static const struct dcn30_dwbc_shift dwbc30_shift = {
611 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
612 };
613 
614 static const struct dcn30_dwbc_mask dwbc30_mask = {
615 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
616 };
617 
618 #define mcif_wb_regs_dcn3(id)\
619 [id] = {\
620 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
621 }
622 
623 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
624 	mcif_wb_regs_dcn3(0)
625 };
626 
627 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
628 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
629 };
630 
631 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
632 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
633 };
634 
635 #define dsc_regsDCN20(id)\
636 [id] = {\
637 	DSC_REG_LIST_DCN20(id)\
638 }
639 
640 static const struct dcn20_dsc_registers dsc_regs[] = {
641 	dsc_regsDCN20(0),
642 	dsc_regsDCN20(1),
643 	dsc_regsDCN20(2),
644 	dsc_regsDCN20(3),
645 	dsc_regsDCN20(4),
646 	dsc_regsDCN20(5)
647 };
648 
649 static const struct dcn20_dsc_shift dsc_shift = {
650 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
651 };
652 
653 static const struct dcn20_dsc_mask dsc_mask = {
654 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
655 };
656 
657 static const struct dcn30_mpc_registers mpc_regs = {
658 		MPC_REG_LIST_DCN3_0(0),
659 		MPC_REG_LIST_DCN3_0(1),
660 		MPC_REG_LIST_DCN3_0(2),
661 		MPC_REG_LIST_DCN3_0(3),
662 		MPC_REG_LIST_DCN3_0(4),
663 		MPC_REG_LIST_DCN3_0(5),
664 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
665 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
666 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
667 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
668 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
669 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
670 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
671 		MPC_RMU_REG_LIST_DCN3AG(0),
672 		MPC_RMU_REG_LIST_DCN3AG(1),
673 		MPC_RMU_REG_LIST_DCN3AG(2),
674 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
675 };
676 
677 static const struct dcn30_mpc_shift mpc_shift = {
678 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
679 };
680 
681 static const struct dcn30_mpc_mask mpc_mask = {
682 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
683 };
684 
685 #define optc_regs(id)\
686 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
687 
688 
689 static const struct dcn_optc_registers optc_regs[] = {
690 	optc_regs(0),
691 	optc_regs(1),
692 	optc_regs(2),
693 	optc_regs(3),
694 	optc_regs(4),
695 	optc_regs(5)
696 };
697 
698 static const struct dcn_optc_shift optc_shift = {
699 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
700 };
701 
702 static const struct dcn_optc_mask optc_mask = {
703 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
704 };
705 
706 #define hubp_regs(id)\
707 [id] = {\
708 	HUBP_REG_LIST_DCN30(id)\
709 }
710 
711 static const struct dcn_hubp2_registers hubp_regs[] = {
712 		hubp_regs(0),
713 		hubp_regs(1),
714 		hubp_regs(2),
715 		hubp_regs(3),
716 		hubp_regs(4),
717 		hubp_regs(5)
718 };
719 
720 static const struct dcn_hubp2_shift hubp_shift = {
721 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
722 };
723 
724 static const struct dcn_hubp2_mask hubp_mask = {
725 		HUBP_MASK_SH_LIST_DCN30(_MASK)
726 };
727 
728 static const struct dcn_hubbub_registers hubbub_reg = {
729 		HUBBUB_REG_LIST_DCN30(0)
730 };
731 
732 static const struct dcn_hubbub_shift hubbub_shift = {
733 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
734 };
735 
736 static const struct dcn_hubbub_mask hubbub_mask = {
737 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
738 };
739 
740 static const struct dccg_registers dccg_regs = {
741 		DCCG_REG_LIST_DCN30()
742 };
743 
744 static const struct dccg_shift dccg_shift = {
745 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
746 };
747 
748 static const struct dccg_mask dccg_mask = {
749 		DCCG_MASK_SH_LIST_DCN3(_MASK)
750 };
751 
752 static const struct dce_hwseq_registers hwseq_reg = {
753 		HWSEQ_DCN30_REG_LIST()
754 };
755 
756 static const struct dce_hwseq_shift hwseq_shift = {
757 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
758 };
759 
760 static const struct dce_hwseq_mask hwseq_mask = {
761 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
762 };
763 #define vmid_regs(id)\
764 [id] = {\
765 		DCN20_VMID_REG_LIST(id)\
766 }
767 
768 static const struct dcn_vmid_registers vmid_regs[] = {
769 	vmid_regs(0),
770 	vmid_regs(1),
771 	vmid_regs(2),
772 	vmid_regs(3),
773 	vmid_regs(4),
774 	vmid_regs(5),
775 	vmid_regs(6),
776 	vmid_regs(7),
777 	vmid_regs(8),
778 	vmid_regs(9),
779 	vmid_regs(10),
780 	vmid_regs(11),
781 	vmid_regs(12),
782 	vmid_regs(13),
783 	vmid_regs(14),
784 	vmid_regs(15)
785 };
786 
787 static const struct dcn20_vmid_shift vmid_shifts = {
788 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
789 };
790 
791 static const struct dcn20_vmid_mask vmid_masks = {
792 		DCN20_VMID_MASK_SH_LIST(_MASK)
793 };
794 
795 static const struct resource_caps res_cap_dcn3 = {
796 	.num_timing_generator = 6,
797 	.num_opp = 6,
798 	.num_video_plane = 6,
799 	.num_audio = 6,
800 	.num_stream_encoder = 6,
801 	.num_pll = 6,
802 	.num_dwb = 1,
803 	.num_ddc = 6,
804 	.num_vmid = 16,
805 	.num_mpc_3dlut = 3,
806 	.num_dsc = 6,
807 };
808 
809 static const struct dc_plane_cap plane_cap = {
810 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
811 	.blends_with_above = true,
812 	.blends_with_below = true,
813 	.per_pixel_alpha = true,
814 
815 	.pixel_format_support = {
816 			.argb8888 = true,
817 			.nv12 = true,
818 			.fp16 = true,
819 			.p010 = false,
820 			.ayuv = false,
821 	},
822 
823 	.max_upscale_factor = {
824 			.argb8888 = 16000,
825 			.nv12 = 16000,
826 			.fp16 = 16000
827 	},
828 
829 	.max_downscale_factor = {
830 			.argb8888 = 600,
831 			.nv12 = 600,
832 			.fp16 = 600
833 	}
834 };
835 
836 static const struct dc_debug_options debug_defaults_drv = {
837 	.disable_dmcu = true, //No DMCU on DCN30
838 	.force_abm_enable = false,
839 	.timing_trace = false,
840 	.clock_trace = true,
841 	.disable_pplib_clock_request = true,
842 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
843 	.force_single_disp_pipe_split = false,
844 	.disable_dcc = DCC_ENABLE,
845 	.vsr_support = true,
846 	.performance_trace = false,
847 	.max_downscale_src_width = 7680,/*upto 8K*/
848 	.disable_pplib_wm_range = false,
849 	.scl_reset_length10 = true,
850 	.sanity_checks = false,
851 	.underflow_assert_delay_us = 0xFFFFFFFF,
852 	.dwb_fi_phase = -1, // -1 = disable,
853 	.dmub_command_table = true,
854 	.disable_psr = false,
855 };
856 
857 static const struct dc_debug_options debug_defaults_diags = {
858 	.disable_dmcu = true, //No dmcu on DCN30
859 	.force_abm_enable = false,
860 	.timing_trace = true,
861 	.clock_trace = true,
862 	.disable_dpp_power_gate = true,
863 	.disable_hubp_power_gate = true,
864 	.disable_clock_gate = true,
865 	.disable_pplib_clock_request = true,
866 	.disable_pplib_wm_range = true,
867 	.disable_stutter = false,
868 	.scl_reset_length10 = true,
869 	.dwb_fi_phase = -1, // -1 = disable
870 	.dmub_command_table = true,
871 	.disable_psr = true,
872 	.enable_tri_buf = true,
873 };
874 
875 void dcn30_dpp_destroy(struct dpp **dpp)
876 {
877 	kfree(TO_DCN20_DPP(*dpp));
878 	*dpp = NULL;
879 }
880 
881 static struct dpp *dcn30_dpp_create(
882 	struct dc_context *ctx,
883 	uint32_t inst)
884 {
885 	struct dcn3_dpp *dpp =
886 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
887 
888 	if (!dpp)
889 		return NULL;
890 
891 	if (dpp3_construct(dpp, ctx, inst,
892 			&dpp_regs[inst], &tf_shift, &tf_mask))
893 		return &dpp->base;
894 
895 	BREAK_TO_DEBUGGER();
896 	kfree(dpp);
897 	return NULL;
898 }
899 
900 static struct output_pixel_processor *dcn30_opp_create(
901 	struct dc_context *ctx, uint32_t inst)
902 {
903 	struct dcn20_opp *opp =
904 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
905 
906 	if (!opp) {
907 		BREAK_TO_DEBUGGER();
908 		return NULL;
909 	}
910 
911 	dcn20_opp_construct(opp, ctx, inst,
912 			&opp_regs[inst], &opp_shift, &opp_mask);
913 	return &opp->base;
914 }
915 
916 static struct dce_aux *dcn30_aux_engine_create(
917 	struct dc_context *ctx,
918 	uint32_t inst)
919 {
920 	struct aux_engine_dce110 *aux_engine =
921 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
922 
923 	if (!aux_engine)
924 		return NULL;
925 
926 	dce110_aux_engine_construct(aux_engine, ctx, inst,
927 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
928 				    &aux_engine_regs[inst],
929 					&aux_mask,
930 					&aux_shift,
931 					ctx->dc->caps.extended_aux_timeout_support);
932 
933 	return &aux_engine->base;
934 }
935 
936 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
937 
938 static const struct dce_i2c_registers i2c_hw_regs[] = {
939 		i2c_inst_regs(1),
940 		i2c_inst_regs(2),
941 		i2c_inst_regs(3),
942 		i2c_inst_regs(4),
943 		i2c_inst_regs(5),
944 		i2c_inst_regs(6),
945 };
946 
947 static const struct dce_i2c_shift i2c_shifts = {
948 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
949 };
950 
951 static const struct dce_i2c_mask i2c_masks = {
952 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
953 };
954 
955 static struct dce_i2c_hw *dcn30_i2c_hw_create(
956 	struct dc_context *ctx,
957 	uint32_t inst)
958 {
959 	struct dce_i2c_hw *dce_i2c_hw =
960 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
961 
962 	if (!dce_i2c_hw)
963 		return NULL;
964 
965 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
966 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
967 
968 	return dce_i2c_hw;
969 }
970 
971 static struct mpc *dcn30_mpc_create(
972 		struct dc_context *ctx,
973 		int num_mpcc,
974 		int num_rmu)
975 {
976 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
977 					  GFP_KERNEL);
978 
979 	if (!mpc30)
980 		return NULL;
981 
982 	dcn30_mpc_construct(mpc30, ctx,
983 			&mpc_regs,
984 			&mpc_shift,
985 			&mpc_mask,
986 			num_mpcc,
987 			num_rmu);
988 
989 	return &mpc30->base;
990 }
991 
992 struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
993 {
994 	int i;
995 
996 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
997 					  GFP_KERNEL);
998 
999 	if (!hubbub3)
1000 		return NULL;
1001 
1002 	hubbub3_construct(hubbub3, ctx,
1003 			&hubbub_reg,
1004 			&hubbub_shift,
1005 			&hubbub_mask);
1006 
1007 
1008 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
1009 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
1010 
1011 		vmid->ctx = ctx;
1012 
1013 		vmid->regs = &vmid_regs[i];
1014 		vmid->shifts = &vmid_shifts;
1015 		vmid->masks = &vmid_masks;
1016 	}
1017 
1018 	return &hubbub3->base;
1019 }
1020 
1021 static struct timing_generator *dcn30_timing_generator_create(
1022 		struct dc_context *ctx,
1023 		uint32_t instance)
1024 {
1025 	struct optc *tgn10 =
1026 		kzalloc(sizeof(struct optc), GFP_KERNEL);
1027 
1028 	if (!tgn10)
1029 		return NULL;
1030 
1031 	tgn10->base.inst = instance;
1032 	tgn10->base.ctx = ctx;
1033 
1034 	tgn10->tg_regs = &optc_regs[instance];
1035 	tgn10->tg_shift = &optc_shift;
1036 	tgn10->tg_mask = &optc_mask;
1037 
1038 	dcn30_timing_generator_init(tgn10);
1039 
1040 	return &tgn10->base;
1041 }
1042 
1043 static const struct encoder_feature_support link_enc_feature = {
1044 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
1045 		.max_hdmi_pixel_clock = 600000,
1046 		.hdmi_ycbcr420_supported = true,
1047 		.dp_ycbcr420_supported = true,
1048 		.fec_supported = true,
1049 		.flags.bits.IS_HBR2_CAPABLE = true,
1050 		.flags.bits.IS_HBR3_CAPABLE = true,
1051 		.flags.bits.IS_TPS3_CAPABLE = true,
1052 		.flags.bits.IS_TPS4_CAPABLE = true
1053 };
1054 
1055 static struct link_encoder *dcn30_link_encoder_create(
1056 	const struct encoder_init_data *enc_init_data)
1057 {
1058 	struct dcn20_link_encoder *enc20 =
1059 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
1060 
1061 	if (!enc20)
1062 		return NULL;
1063 
1064 	dcn30_link_encoder_construct(enc20,
1065 			enc_init_data,
1066 			&link_enc_feature,
1067 			&link_enc_regs[enc_init_data->transmitter],
1068 			&link_enc_aux_regs[enc_init_data->channel - 1],
1069 			&link_enc_hpd_regs[enc_init_data->hpd_source],
1070 			&le_shift,
1071 			&le_mask);
1072 
1073 	return &enc20->enc10.base;
1074 }
1075 
1076 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
1077 {
1078 	struct dce_panel_cntl *panel_cntl =
1079 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
1080 
1081 	if (!panel_cntl)
1082 		return NULL;
1083 
1084 	dce_panel_cntl_construct(panel_cntl,
1085 			init_data,
1086 			&panel_cntl_regs[init_data->inst],
1087 			&panel_cntl_shift,
1088 			&panel_cntl_mask);
1089 
1090 	return &panel_cntl->base;
1091 }
1092 
1093 static void read_dce_straps(
1094 	struct dc_context *ctx,
1095 	struct resource_straps *straps)
1096 {
1097 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
1098 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
1099 
1100 }
1101 
1102 static struct audio *dcn30_create_audio(
1103 		struct dc_context *ctx, unsigned int inst)
1104 {
1105 	return dce_audio_create(ctx, inst,
1106 			&audio_regs[inst], &audio_shift, &audio_mask);
1107 }
1108 
1109 static struct vpg *dcn30_vpg_create(
1110 	struct dc_context *ctx,
1111 	uint32_t inst)
1112 {
1113 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
1114 
1115 	if (!vpg3)
1116 		return NULL;
1117 
1118 	vpg3_construct(vpg3, ctx, inst,
1119 			&vpg_regs[inst],
1120 			&vpg_shift,
1121 			&vpg_mask);
1122 
1123 	return &vpg3->base;
1124 }
1125 
1126 static struct afmt *dcn30_afmt_create(
1127 	struct dc_context *ctx,
1128 	uint32_t inst)
1129 {
1130 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1131 
1132 	if (!afmt3)
1133 		return NULL;
1134 
1135 	afmt3_construct(afmt3, ctx, inst,
1136 			&afmt_regs[inst],
1137 			&afmt_shift,
1138 			&afmt_mask);
1139 
1140 	return &afmt3->base;
1141 }
1142 
1143 struct stream_encoder *dcn30_stream_encoder_create(
1144 	enum engine_id eng_id,
1145 	struct dc_context *ctx)
1146 {
1147 	struct dcn10_stream_encoder *enc1;
1148 	struct vpg *vpg;
1149 	struct afmt *afmt;
1150 	int vpg_inst;
1151 	int afmt_inst;
1152 
1153 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1154 	if (eng_id <= ENGINE_ID_DIGF) {
1155 		vpg_inst = eng_id;
1156 		afmt_inst = eng_id;
1157 	} else
1158 		return NULL;
1159 
1160 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1161 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1162 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1163 
1164 	if (!enc1 || !vpg || !afmt)
1165 		return NULL;
1166 
1167 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1168 					eng_id, vpg, afmt,
1169 					&stream_enc_regs[eng_id],
1170 					&se_shift, &se_mask);
1171 
1172 	return &enc1->base;
1173 }
1174 
1175 struct dce_hwseq *dcn30_hwseq_create(
1176 	struct dc_context *ctx)
1177 {
1178 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1179 
1180 	if (hws) {
1181 		hws->ctx = ctx;
1182 		hws->regs = &hwseq_reg;
1183 		hws->shifts = &hwseq_shift;
1184 		hws->masks = &hwseq_mask;
1185 	}
1186 	return hws;
1187 }
1188 static const struct resource_create_funcs res_create_funcs = {
1189 	.read_dce_straps = read_dce_straps,
1190 	.create_audio = dcn30_create_audio,
1191 	.create_stream_encoder = dcn30_stream_encoder_create,
1192 	.create_hwseq = dcn30_hwseq_create,
1193 };
1194 
1195 static const struct resource_create_funcs res_create_maximus_funcs = {
1196 	.read_dce_straps = NULL,
1197 	.create_audio = NULL,
1198 	.create_stream_encoder = NULL,
1199 	.create_hwseq = dcn30_hwseq_create,
1200 };
1201 
1202 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1203 {
1204 	unsigned int i;
1205 
1206 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1207 		if (pool->base.stream_enc[i] != NULL) {
1208 			if (pool->base.stream_enc[i]->vpg != NULL) {
1209 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1210 				pool->base.stream_enc[i]->vpg = NULL;
1211 			}
1212 			if (pool->base.stream_enc[i]->afmt != NULL) {
1213 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1214 				pool->base.stream_enc[i]->afmt = NULL;
1215 			}
1216 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1217 			pool->base.stream_enc[i] = NULL;
1218 		}
1219 	}
1220 
1221 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1222 		if (pool->base.dscs[i] != NULL)
1223 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1224 	}
1225 
1226 	if (pool->base.mpc != NULL) {
1227 		kfree(TO_DCN20_MPC(pool->base.mpc));
1228 		pool->base.mpc = NULL;
1229 	}
1230 	if (pool->base.hubbub != NULL) {
1231 		kfree(pool->base.hubbub);
1232 		pool->base.hubbub = NULL;
1233 	}
1234 	for (i = 0; i < pool->base.pipe_count; i++) {
1235 		if (pool->base.dpps[i] != NULL)
1236 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1237 
1238 		if (pool->base.ipps[i] != NULL)
1239 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1240 
1241 		if (pool->base.hubps[i] != NULL) {
1242 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1243 			pool->base.hubps[i] = NULL;
1244 		}
1245 
1246 		if (pool->base.irqs != NULL) {
1247 			dal_irq_service_destroy(&pool->base.irqs);
1248 		}
1249 	}
1250 
1251 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1252 		if (pool->base.engines[i] != NULL)
1253 			dce110_engine_destroy(&pool->base.engines[i]);
1254 		if (pool->base.hw_i2cs[i] != NULL) {
1255 			kfree(pool->base.hw_i2cs[i]);
1256 			pool->base.hw_i2cs[i] = NULL;
1257 		}
1258 		if (pool->base.sw_i2cs[i] != NULL) {
1259 			kfree(pool->base.sw_i2cs[i]);
1260 			pool->base.sw_i2cs[i] = NULL;
1261 		}
1262 	}
1263 
1264 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1265 		if (pool->base.opps[i] != NULL)
1266 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1267 	}
1268 
1269 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1270 		if (pool->base.timing_generators[i] != NULL)	{
1271 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1272 			pool->base.timing_generators[i] = NULL;
1273 		}
1274 	}
1275 
1276 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1277 		if (pool->base.dwbc[i] != NULL) {
1278 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1279 			pool->base.dwbc[i] = NULL;
1280 		}
1281 		if (pool->base.mcif_wb[i] != NULL) {
1282 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1283 			pool->base.mcif_wb[i] = NULL;
1284 		}
1285 	}
1286 
1287 	for (i = 0; i < pool->base.audio_count; i++) {
1288 		if (pool->base.audios[i])
1289 			dce_aud_destroy(&pool->base.audios[i]);
1290 	}
1291 
1292 	for (i = 0; i < pool->base.clk_src_count; i++) {
1293 		if (pool->base.clock_sources[i] != NULL) {
1294 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1295 			pool->base.clock_sources[i] = NULL;
1296 		}
1297 	}
1298 
1299 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1300 		if (pool->base.mpc_lut[i] != NULL) {
1301 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1302 			pool->base.mpc_lut[i] = NULL;
1303 		}
1304 		if (pool->base.mpc_shaper[i] != NULL) {
1305 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1306 			pool->base.mpc_shaper[i] = NULL;
1307 		}
1308 	}
1309 
1310 	if (pool->base.dp_clock_source != NULL) {
1311 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1312 		pool->base.dp_clock_source = NULL;
1313 	}
1314 
1315 	for (i = 0; i < pool->base.pipe_count; i++) {
1316 		if (pool->base.multiple_abms[i] != NULL)
1317 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1318 	}
1319 
1320 	if (pool->base.psr != NULL)
1321 		dmub_psr_destroy(&pool->base.psr);
1322 
1323 	if (pool->base.dccg != NULL)
1324 		dcn_dccg_destroy(&pool->base.dccg);
1325 
1326 	if (pool->base.oem_device != NULL)
1327 		dal_ddc_service_destroy(&pool->base.oem_device);
1328 }
1329 
1330 static struct hubp *dcn30_hubp_create(
1331 	struct dc_context *ctx,
1332 	uint32_t inst)
1333 {
1334 	struct dcn20_hubp *hubp2 =
1335 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1336 
1337 	if (!hubp2)
1338 		return NULL;
1339 
1340 	if (hubp3_construct(hubp2, ctx, inst,
1341 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1342 		return &hubp2->base;
1343 
1344 	BREAK_TO_DEBUGGER();
1345 	kfree(hubp2);
1346 	return NULL;
1347 }
1348 
1349 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1350 {
1351 	int i;
1352 	uint32_t pipe_count = pool->res_cap->num_dwb;
1353 
1354 	for (i = 0; i < pipe_count; i++) {
1355 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1356 						    GFP_KERNEL);
1357 
1358 		if (!dwbc30) {
1359 			dm_error("DC: failed to create dwbc30!\n");
1360 			return false;
1361 		}
1362 
1363 		dcn30_dwbc_construct(dwbc30, ctx,
1364 				&dwbc30_regs[i],
1365 				&dwbc30_shift,
1366 				&dwbc30_mask,
1367 				i);
1368 
1369 		pool->dwbc[i] = &dwbc30->base;
1370 	}
1371 	return true;
1372 }
1373 
1374 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1375 {
1376 	int i;
1377 	uint32_t pipe_count = pool->res_cap->num_dwb;
1378 
1379 	for (i = 0; i < pipe_count; i++) {
1380 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1381 						    GFP_KERNEL);
1382 
1383 		if (!mcif_wb30) {
1384 			dm_error("DC: failed to create mcif_wb30!\n");
1385 			return false;
1386 		}
1387 
1388 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1389 				&mcif_wb30_regs[i],
1390 				&mcif_wb30_shift,
1391 				&mcif_wb30_mask,
1392 				i);
1393 
1394 		pool->mcif_wb[i] = &mcif_wb30->base;
1395 	}
1396 	return true;
1397 }
1398 
1399 static struct display_stream_compressor *dcn30_dsc_create(
1400 	struct dc_context *ctx, uint32_t inst)
1401 {
1402 	struct dcn20_dsc *dsc =
1403 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1404 
1405 	if (!dsc) {
1406 		BREAK_TO_DEBUGGER();
1407 		return NULL;
1408 	}
1409 
1410 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1411 	return &dsc->base;
1412 }
1413 
1414 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1415 {
1416 
1417 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1418 }
1419 
1420 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1421 {
1422 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1423 
1424 	dcn30_resource_destruct(dcn30_pool);
1425 	kfree(dcn30_pool);
1426 	*pool = NULL;
1427 }
1428 
1429 static struct clock_source *dcn30_clock_source_create(
1430 		struct dc_context *ctx,
1431 		struct dc_bios *bios,
1432 		enum clock_source_id id,
1433 		const struct dce110_clk_src_regs *regs,
1434 		bool dp_clk_src)
1435 {
1436 	struct dce110_clk_src *clk_src =
1437 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1438 
1439 	if (!clk_src)
1440 		return NULL;
1441 
1442 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1443 			regs, &cs_shift, &cs_mask)) {
1444 		clk_src->base.dp_clk_src = dp_clk_src;
1445 		return &clk_src->base;
1446 	}
1447 
1448 	BREAK_TO_DEBUGGER();
1449 	return NULL;
1450 }
1451 
1452 int dcn30_populate_dml_pipes_from_context(
1453 	struct dc *dc, struct dc_state *context,
1454 	display_e2e_pipe_params_st *pipes,
1455 	bool fast_validate)
1456 {
1457 	int i, pipe_cnt;
1458 	struct resource_context *res_ctx = &context->res_ctx;
1459 
1460 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1461 
1462 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1463 		if (!res_ctx->pipe_ctx[i].stream)
1464 			continue;
1465 
1466 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1467 			dm_lb_16;
1468 	}
1469 
1470 	return pipe_cnt;
1471 }
1472 
1473 void dcn30_populate_dml_writeback_from_context(
1474 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1475 {
1476 	int pipe_cnt, i, j;
1477 	double max_calc_writeback_dispclk;
1478 	double writeback_dispclk;
1479 	struct writeback_st dout_wb;
1480 
1481 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1482 		struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream;
1483 
1484 		if (!stream)
1485 			continue;
1486 		max_calc_writeback_dispclk = 0;
1487 
1488 		/* Set writeback information */
1489 		pipes[pipe_cnt].dout.wb_enable = 0;
1490 		pipes[pipe_cnt].dout.num_active_wb = 0;
1491 		for (j = 0; j < stream->num_wb_info; j++) {
1492 			struct dc_writeback_info *wb_info = &stream->writeback_info[j];
1493 
1494 			if (wb_info->wb_enabled && wb_info->writeback_source_plane &&
1495 					(wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) {
1496 				pipes[pipe_cnt].dout.wb_enable = 1;
1497 				pipes[pipe_cnt].dout.num_active_wb++;
1498 				dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ?
1499 					wb_info->dwb_params.cnv_params.crop_height :
1500 					wb_info->dwb_params.cnv_params.src_height;
1501 				dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ?
1502 					wb_info->dwb_params.cnv_params.crop_width :
1503 					wb_info->dwb_params.cnv_params.src_width;
1504 				dout_wb.wb_dst_width = wb_info->dwb_params.dest_width;
1505 				dout_wb.wb_dst_height = wb_info->dwb_params.dest_height;
1506 
1507 				/* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */
1508 				if (dc->dml.ip.writeback_max_hscl_taps > 1) {
1509 					dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps;
1510 					dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps;
1511 				} else {
1512 					dout_wb.wb_htaps_luma = 1;
1513 					dout_wb.wb_vtaps_luma = 1;
1514 				}
1515 				dout_wb.wb_htaps_chroma = 0;
1516 				dout_wb.wb_vtaps_chroma = 0;
1517 				dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ?
1518 					(double)wb_info->dwb_params.cnv_params.crop_width /
1519 						(double)wb_info->dwb_params.dest_width :
1520 					(double)wb_info->dwb_params.cnv_params.src_width /
1521 						(double)wb_info->dwb_params.dest_width;
1522 				dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ?
1523 					(double)wb_info->dwb_params.cnv_params.crop_height /
1524 						(double)wb_info->dwb_params.dest_height :
1525 					(double)wb_info->dwb_params.cnv_params.src_height /
1526 						(double)wb_info->dwb_params.dest_height;
1527 				if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1528 					wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1529 					dout_wb.wb_pixel_format = dm_444_64;
1530 				else
1531 					dout_wb.wb_pixel_format = dm_444_32;
1532 
1533 				/* Workaround for cases where multiple writebacks are connected to same plane
1534 				 * In which case, need to compute worst case and set the associated writeback parameters
1535 				 * This workaround is necessary due to DML computation assuming only 1 set of writeback
1536 				 * parameters per pipe
1537 				 */
1538 				writeback_dispclk = dml30_CalculateWriteBackDISPCLK(
1539 						dout_wb.wb_pixel_format,
1540 						pipes[pipe_cnt].pipe.dest.pixel_rate_mhz,
1541 						dout_wb.wb_hratio,
1542 						dout_wb.wb_vratio,
1543 						dout_wb.wb_htaps_luma,
1544 						dout_wb.wb_vtaps_luma,
1545 						dout_wb.wb_src_width,
1546 						dout_wb.wb_dst_width,
1547 						pipes[pipe_cnt].pipe.dest.htotal,
1548 						dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size);
1549 
1550 				if (writeback_dispclk > max_calc_writeback_dispclk) {
1551 					max_calc_writeback_dispclk = writeback_dispclk;
1552 					pipes[pipe_cnt].dout.wb = dout_wb;
1553 				}
1554 			}
1555 		}
1556 
1557 		pipe_cnt++;
1558 	}
1559 
1560 }
1561 
1562 unsigned int dcn30_calc_max_scaled_time(
1563 		unsigned int time_per_pixel,
1564 		enum mmhubbub_wbif_mode mode,
1565 		unsigned int urgent_watermark)
1566 {
1567 	unsigned int time_per_byte = 0;
1568 	unsigned int total_free_entry = 0xb40;
1569 	unsigned int buf_lh_capability;
1570 	unsigned int max_scaled_time;
1571 
1572 	if (mode == PACKED_444) /* packed mode 32 bpp */
1573 		time_per_byte = time_per_pixel/4;
1574 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1575 		time_per_byte = time_per_pixel/8;
1576 
1577 	if (time_per_byte == 0)
1578 		time_per_byte = 1;
1579 
1580 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1581 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1582 	return max_scaled_time;
1583 }
1584 
1585 void dcn30_set_mcif_arb_params(
1586 		struct dc *dc,
1587 		struct dc_state *context,
1588 		display_e2e_pipe_params_st *pipes,
1589 		int pipe_cnt)
1590 {
1591 	enum mmhubbub_wbif_mode wbif_mode;
1592 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1593 	struct mcif_arb_params *wb_arb_params;
1594 	int i, j, k, dwb_pipe;
1595 
1596 	/* Writeback MCIF_WB arbitration parameters */
1597 	dwb_pipe = 0;
1598 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1599 
1600 		if (!context->res_ctx.pipe_ctx[i].stream)
1601 			continue;
1602 
1603 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1604 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1605 
1606 			if (writeback_info->wb_enabled == false)
1607 				continue;
1608 
1609 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1610 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1611 
1612 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1613 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1614 				wbif_mode = PACKED_444_FP16;
1615 			else
1616 				wbif_mode = PACKED_444;
1617 
1618 			for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) {
1619 				wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000;
1620 				wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000;
1621 			}
1622 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1623 			wb_arb_params->slice_lines = 32;
1624 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1625 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1626 					wbif_mode,
1627 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1628 			wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */
1629 
1630 			dwb_pipe++;
1631 
1632 			if (dwb_pipe >= MAX_DWB_PIPES)
1633 				return;
1634 		}
1635 		if (dwb_pipe >= MAX_DWB_PIPES)
1636 			return;
1637 	}
1638 
1639 }
1640 
1641 static struct dc_cap_funcs cap_funcs = {
1642 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1643 };
1644 
1645 bool dcn30_acquire_post_bldn_3dlut(
1646 		struct resource_context *res_ctx,
1647 		const struct resource_pool *pool,
1648 		int mpcc_id,
1649 		struct dc_3dlut **lut,
1650 		struct dc_transfer_func **shaper)
1651 {
1652 	int i;
1653 	bool ret = false;
1654 	union dc_3dlut_state *state;
1655 
1656 	ASSERT(*lut == NULL && *shaper == NULL);
1657 	*lut = NULL;
1658 	*shaper = NULL;
1659 
1660 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1661 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1662 			*lut = pool->mpc_lut[i];
1663 			*shaper = pool->mpc_shaper[i];
1664 			state = &pool->mpc_lut[i]->state;
1665 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1666 			state->bits.rmu_idx_valid = 1;
1667 			state->bits.rmu_mux_num = i;
1668 			if (state->bits.rmu_mux_num == 0)
1669 				state->bits.mpc_rmu0_mux = mpcc_id;
1670 			else if (state->bits.rmu_mux_num == 1)
1671 				state->bits.mpc_rmu1_mux = mpcc_id;
1672 			else if (state->bits.rmu_mux_num == 2)
1673 				state->bits.mpc_rmu2_mux = mpcc_id;
1674 			ret = true;
1675 			break;
1676 			}
1677 		}
1678 	return ret;
1679 }
1680 
1681 bool dcn30_release_post_bldn_3dlut(
1682 		struct resource_context *res_ctx,
1683 		const struct resource_pool *pool,
1684 		struct dc_3dlut **lut,
1685 		struct dc_transfer_func **shaper)
1686 {
1687 	int i;
1688 	bool ret = false;
1689 
1690 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1691 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1692 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1693 			pool->mpc_lut[i]->state.raw = 0;
1694 			*lut = NULL;
1695 			*shaper = NULL;
1696 			ret = true;
1697 			break;
1698 		}
1699 	}
1700 	return ret;
1701 }
1702 
1703 #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16)))
1704 #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x))
1705 
1706 static bool is_soc_bounding_box_valid(struct dc *dc)
1707 {
1708 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1709 
1710 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1711 		return true;
1712 
1713 	return false;
1714 }
1715 
1716 static bool init_soc_bounding_box(struct dc *dc,
1717 				  struct dcn30_resource_pool *pool)
1718 {
1719 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1720 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1721 
1722 	DC_LOGGER_INIT(dc->ctx->logger);
1723 
1724 	if (!is_soc_bounding_box_valid(dc)) {
1725 		DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__);
1726 		return false;
1727 	}
1728 
1729 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1730 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1731 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1732 	dcn20_patch_bounding_box(dc, loaded_bb);
1733 
1734 	if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
1735 		struct bp_soc_bb_info bb_info = {0};
1736 
1737 		if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
1738 			if (bb_info.dram_clock_change_latency_100ns > 0)
1739 				dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10;
1740 
1741 			if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
1742 				dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10;
1743 
1744 			if (bb_info.dram_sr_exit_latency_100ns > 0)
1745 				dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10;
1746 		}
1747 	}
1748 
1749 	return true;
1750 }
1751 
1752 static bool dcn30_split_stream_for_mpc_or_odm(
1753 		const struct dc *dc,
1754 		struct resource_context *res_ctx,
1755 		struct pipe_ctx *pri_pipe,
1756 		struct pipe_ctx *sec_pipe,
1757 		bool odm)
1758 {
1759 	int pipe_idx = sec_pipe->pipe_idx;
1760 	const struct resource_pool *pool = dc->res_pool;
1761 
1762 	*sec_pipe = *pri_pipe;
1763 
1764 	sec_pipe->pipe_idx = pipe_idx;
1765 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1766 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1767 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1768 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1769 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1770 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1771 	sec_pipe->stream_res.dsc = NULL;
1772 	if (odm) {
1773 		if (pri_pipe->next_odm_pipe) {
1774 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1775 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1776 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1777 		}
1778 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1779 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1780 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1781 		}
1782 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1783 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1784 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1785 		}
1786 		pri_pipe->next_odm_pipe = sec_pipe;
1787 		sec_pipe->prev_odm_pipe = pri_pipe;
1788 		ASSERT(sec_pipe->top_pipe == NULL);
1789 
1790 		if (!sec_pipe->top_pipe)
1791 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1792 		else
1793 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1794 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1795 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1796 			ASSERT(sec_pipe->stream_res.dsc);
1797 			if (sec_pipe->stream_res.dsc == NULL)
1798 				return false;
1799 		}
1800 	} else {
1801 		if (pri_pipe->bottom_pipe) {
1802 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1803 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1804 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1805 		}
1806 		pri_pipe->bottom_pipe = sec_pipe;
1807 		sec_pipe->top_pipe = pri_pipe;
1808 
1809 		ASSERT(pri_pipe->plane_state);
1810 	}
1811 
1812 	return true;
1813 }
1814 
1815 static struct pipe_ctx *dcn30_find_split_pipe(
1816 		struct dc *dc,
1817 		struct dc_state *context,
1818 		int old_index)
1819 {
1820 	struct pipe_ctx *pipe = NULL;
1821 	int i;
1822 
1823 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1824 		pipe = &context->res_ctx.pipe_ctx[old_index];
1825 		pipe->pipe_idx = old_index;
1826 	}
1827 
1828 	if (!pipe)
1829 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1830 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1831 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1832 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1833 					pipe = &context->res_ctx.pipe_ctx[i];
1834 					pipe->pipe_idx = i;
1835 					break;
1836 				}
1837 			}
1838 		}
1839 
1840 	/*
1841 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1842 	 * Add for debugging transient underflow during topology updates:
1843 	 * ASSERT(pipe);
1844 	 */
1845 	if (!pipe)
1846 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1847 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1848 				pipe = &context->res_ctx.pipe_ctx[i];
1849 				pipe->pipe_idx = i;
1850 				break;
1851 			}
1852 		}
1853 
1854 	return pipe;
1855 }
1856 
1857 static noinline bool dcn30_internal_validate_bw(
1858 		struct dc *dc,
1859 		struct dc_state *context,
1860 		display_e2e_pipe_params_st *pipes,
1861 		int *pipe_cnt_out,
1862 		int *vlevel_out,
1863 		bool fast_validate)
1864 {
1865 	bool out = false;
1866 	bool repopulate_pipes = false;
1867 	int split[MAX_PIPES] = { 0 };
1868 	bool merge[MAX_PIPES] = { false };
1869 	bool newly_split[MAX_PIPES] = { false };
1870 	int pipe_cnt, i, pipe_idx, vlevel;
1871 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1872 
1873 	ASSERT(pipes);
1874 	if (!pipes)
1875 		return false;
1876 
1877 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1878 
1879 	DC_FP_START();
1880 	if (!pipe_cnt) {
1881 		out = true;
1882 		goto validate_out;
1883 	}
1884 
1885 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1886 
1887 	if (!fast_validate) {
1888 		/*
1889 		 * DML favors voltage over p-state, but we're more interested in
1890 		 * supporting p-state over voltage. We can't support p-state in
1891 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1892 		 */
1893 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1894 			dm_allow_self_refresh_and_mclk_switch;
1895 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1896 		/* This may adjust vlevel and maxMpcComb */
1897 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1898 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1899 	}
1900 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1901 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1902 		/*
1903 		 * If mode is unsupported or there's still no p-state support then
1904 		 * fall back to favoring voltage.
1905 		 *
1906 		 * We don't actually support prefetch mode 2, so require that we
1907 		 * at least support prefetch mode 1.
1908 		 */
1909 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1910 			dm_allow_self_refresh;
1911 
1912 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1913 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1914 			memset(split, 0, sizeof(split));
1915 			memset(merge, 0, sizeof(merge));
1916 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1917 		}
1918 	}
1919 
1920 	dml_log_mode_support_params(&context->bw_ctx.dml);
1921 
1922 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1923 		goto validate_fail;
1924 
1925 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1926 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1927 		struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1928 
1929 		if (!pipe->stream)
1930 			continue;
1931 
1932 		/* We only support full screen mpo with ODM */
1933 		if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1934 				&& pipe->plane_state && mpo_pipe
1935 				&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1936 						&pipe->plane_res.scl_data.recout,
1937 						sizeof(struct rect)) != 0) {
1938 			ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1939 			goto validate_fail;
1940 		}
1941 		pipe_idx++;
1942 	}
1943 
1944 	/* merge pipes if necessary */
1945 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1946 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1947 
1948 		/*skip pipes that don't need merging*/
1949 		if (!merge[i])
1950 			continue;
1951 
1952 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1953 		if (pipe->prev_odm_pipe) {
1954 			/*split off odm pipe*/
1955 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1956 			if (pipe->next_odm_pipe)
1957 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1958 
1959 			pipe->bottom_pipe = NULL;
1960 			pipe->next_odm_pipe = NULL;
1961 			pipe->plane_state = NULL;
1962 			pipe->stream = NULL;
1963 			pipe->top_pipe = NULL;
1964 			pipe->prev_odm_pipe = NULL;
1965 			if (pipe->stream_res.dsc)
1966 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1967 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1968 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1969 			repopulate_pipes = true;
1970 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1971 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1972 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1973 
1974 			top_pipe->bottom_pipe = bottom_pipe;
1975 			if (bottom_pipe)
1976 				bottom_pipe->top_pipe = top_pipe;
1977 
1978 			pipe->top_pipe = NULL;
1979 			pipe->bottom_pipe = NULL;
1980 			pipe->plane_state = NULL;
1981 			pipe->stream = NULL;
1982 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1983 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1984 			repopulate_pipes = true;
1985 		} else
1986 			ASSERT(0); /* Should never try to merge master pipe */
1987 
1988 	}
1989 
1990 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1991 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1992 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1993 		struct pipe_ctx *hsplit_pipe = NULL;
1994 		bool odm;
1995 		int old_index = -1;
1996 
1997 		if (!pipe->stream || newly_split[i])
1998 			continue;
1999 
2000 		pipe_idx++;
2001 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2002 
2003 		if (!pipe->plane_state && !odm)
2004 			continue;
2005 
2006 		if (split[i]) {
2007 			if (odm) {
2008 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2009 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2010 				else if (old_pipe->next_odm_pipe)
2011 					old_index = old_pipe->next_odm_pipe->pipe_idx;
2012 			} else {
2013 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2014 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2015 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2016 				else if (old_pipe->bottom_pipe &&
2017 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2018 					old_index = old_pipe->bottom_pipe->pipe_idx;
2019 			}
2020 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
2021 			ASSERT(hsplit_pipe);
2022 			if (!hsplit_pipe)
2023 				goto validate_fail;
2024 
2025 			if (!dcn30_split_stream_for_mpc_or_odm(
2026 					dc, &context->res_ctx,
2027 					pipe, hsplit_pipe, odm))
2028 				goto validate_fail;
2029 
2030 			newly_split[hsplit_pipe->pipe_idx] = true;
2031 			repopulate_pipes = true;
2032 		}
2033 		if (split[i] == 4) {
2034 			struct pipe_ctx *pipe_4to1;
2035 
2036 			if (odm && old_pipe->next_odm_pipe)
2037 				old_index = old_pipe->next_odm_pipe->pipe_idx;
2038 			else if (!odm && old_pipe->bottom_pipe &&
2039 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2040 				old_index = old_pipe->bottom_pipe->pipe_idx;
2041 			else
2042 				old_index = -1;
2043 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2044 			ASSERT(pipe_4to1);
2045 			if (!pipe_4to1)
2046 				goto validate_fail;
2047 			if (!dcn30_split_stream_for_mpc_or_odm(
2048 					dc, &context->res_ctx,
2049 					pipe, pipe_4to1, odm))
2050 				goto validate_fail;
2051 			newly_split[pipe_4to1->pipe_idx] = true;
2052 
2053 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2054 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2055 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2056 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2057 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2058 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2059 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2060 			else
2061 				old_index = -1;
2062 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
2063 			ASSERT(pipe_4to1);
2064 			if (!pipe_4to1)
2065 				goto validate_fail;
2066 			if (!dcn30_split_stream_for_mpc_or_odm(
2067 					dc, &context->res_ctx,
2068 					hsplit_pipe, pipe_4to1, odm))
2069 				goto validate_fail;
2070 			newly_split[pipe_4to1->pipe_idx] = true;
2071 		}
2072 		if (odm)
2073 			dcn20_build_mapped_resource(dc, context, pipe->stream);
2074 	}
2075 
2076 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
2077 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2078 
2079 		if (pipe->plane_state) {
2080 			if (!resource_build_scaling_params(pipe))
2081 				goto validate_fail;
2082 		}
2083 	}
2084 
2085 	/* Actual dsc count per stream dsc validation*/
2086 	if (!dcn20_validate_dsc(dc, context)) {
2087 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2088 		goto validate_fail;
2089 	}
2090 
2091 	if (repopulate_pipes)
2092 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2093 	*vlevel_out = vlevel;
2094 	*pipe_cnt_out = pipe_cnt;
2095 
2096 	out = true;
2097 	goto validate_out;
2098 
2099 validate_fail:
2100 	out = false;
2101 
2102 validate_out:
2103 	DC_FP_END();
2104 	return out;
2105 }
2106 
2107 /*
2108  * This must be noinline to ensure anything that deals with FP registers
2109  * is contained within this call; previously our compiling with hard-float
2110  * would result in fp instructions being emitted outside of the boundaries
2111  * of the DC_FP_START/END macros, which makes sense as the compiler has no
2112  * idea about what is wrapped and what is not
2113  *
2114  * This is largely just a workaround to avoid breakage introduced with 5.6,
2115  * ideally all fp-using code should be moved into its own file, only that
2116  * should be compiled with hard-float, and all code exported from there
2117  * should be strictly wrapped with DC_FP_START/END
2118  */
2119 static noinline void dcn30_calculate_wm_and_dlg_fp(
2120 		struct dc *dc, struct dc_state *context,
2121 		display_e2e_pipe_params_st *pipes,
2122 		int pipe_cnt,
2123 		int vlevel)
2124 {
2125 	int i, pipe_idx;
2126 	double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2127 	bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2128 			dm_dram_clock_change_unsupported;
2129 
2130 	if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk)
2131 		dcfclk = context->bw_ctx.dml.soc.min_dcfclk;
2132 
2133 	pipes[0].clks_cfg.voltage = vlevel;
2134 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2135 	pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2136 
2137 	/* Set B:
2138 	 * DCFCLK: 1GHz or min required above 1GHz
2139 	 * FCLK/UCLK: Max
2140 	 */
2141 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2142 		if (vlevel == 0) {
2143 			pipes[0].clks_cfg.voltage = 1;
2144 			pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz;
2145 		}
2146 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2147 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2148 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2149 	}
2150 	context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2151 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2152 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2153 	context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2154 	context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2155 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2156 	context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2157 	context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2158 
2159 	pipes[0].clks_cfg.voltage = vlevel;
2160 	pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2161 
2162 	/* Set D:
2163 	 * DCFCLK: Min Required
2164 	 * FCLK(proportional to UCLK): 1GHz or Max
2165 	 * MALL stutter, sr_enter_exit = 4, sr_exit = 2us
2166 	 */
2167 	/*
2168 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2169 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2170 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2171 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2172 	}
2173 	context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2174 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2175 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2176 	context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2177 	context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2178 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2179 	context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2180 	context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2181 	*/
2182 
2183 	/* Set C:
2184 	 * DCFCLK: Min Required
2185 	 * FCLK(proportional to UCLK): 1GHz or Max
2186 	 * pstate latency overridden to 5us
2187 	 */
2188 	if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2189 		unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2190 		unsigned int min_dram_speed_mts_margin = 160;
2191 
2192 		if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported)
2193 			min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16;
2194 
2195 		/* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */
2196 		for (i = 3; i > 0; i--)
2197 			if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts)
2198 				break;
2199 
2200 		context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us;
2201 		context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2202 		context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2203 	}
2204 	context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2205 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2206 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2207 	context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2208 	context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2209 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2210 	context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2211 	context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2212 
2213 	if (!pstate_en) {
2214 		/* The only difference between A and C is p-state latency, if p-state is not supported we want to
2215 		 * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark
2216 		 */
2217 		context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2218 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2219 	} else {
2220 		/* Set A:
2221 		 * DCFCLK: Min Required
2222 		 * FCLK(proportional to UCLK): 1GHz or Max
2223 		 *
2224 		 * Set A calculated last so that following calculations are based on Set A
2225 		 */
2226 		if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) {
2227 			context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2228 			context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2229 			context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2230 		}
2231 		context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2232 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2233 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2234 		context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2235 		context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2236 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2237 		context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2238 		context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2239 	}
2240 
2241 	context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2242 
2243 	/* Make set D = set A until set D is enabled */
2244 	context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2245 
2246 	for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2247 		if (!context->res_ctx.pipe_ctx[i].stream)
2248 			continue;
2249 
2250 		pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2251 		pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2252 
2253 		if (dc->config.forced_clocks) {
2254 			pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2255 			pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2256 		}
2257 		if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2258 			pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2259 		if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2260 			pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2261 
2262 		pipe_idx++;
2263 	}
2264 
2265 	dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2266 
2267 	if (!pstate_en)
2268 		/* Restore full p-state latency */
2269 		context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2270 				dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2271 }
2272 
2273 void dcn30_calculate_wm_and_dlg(
2274 		struct dc *dc, struct dc_state *context,
2275 		display_e2e_pipe_params_st *pipes,
2276 		int pipe_cnt,
2277 		int vlevel)
2278 {
2279 	DC_FP_START();
2280 	dcn30_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel);
2281 	DC_FP_END();
2282 }
2283 
2284 bool dcn30_validate_bandwidth(struct dc *dc,
2285 		struct dc_state *context,
2286 		bool fast_validate)
2287 {
2288 	bool out = false;
2289 
2290 	BW_VAL_TRACE_SETUP();
2291 
2292 	int vlevel = 0;
2293 	int pipe_cnt = 0;
2294 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2295 	DC_LOGGER_INIT(dc->ctx->logger);
2296 
2297 	BW_VAL_TRACE_COUNT();
2298 
2299 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2300 
2301 	if (pipe_cnt == 0)
2302 		goto validate_out;
2303 
2304 	if (!out)
2305 		goto validate_fail;
2306 
2307 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2308 
2309 	if (fast_validate) {
2310 		BW_VAL_TRACE_SKIP(fast);
2311 		goto validate_out;
2312 	}
2313 
2314 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2315 
2316 	BW_VAL_TRACE_END_WATERMARKS();
2317 
2318 	goto validate_out;
2319 
2320 validate_fail:
2321 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2322 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2323 
2324 	BW_VAL_TRACE_SKIP(fail);
2325 	out = false;
2326 
2327 validate_out:
2328 	kfree(pipes);
2329 
2330 	BW_VAL_TRACE_FINISH();
2331 
2332 	return out;
2333 }
2334 
2335 /*
2336  * This must be noinline to ensure anything that deals with FP registers
2337  * is contained within this call; previously our compiling with hard-float
2338  * would result in fp instructions being emitted outside of the boundaries
2339  * of the DC_FP_START/END macros, which makes sense as the compiler has no
2340  * idea about what is wrapped and what is not
2341  *
2342  * This is largely just a workaround to avoid breakage introduced with 5.6,
2343  * ideally all fp-using code should be moved into its own file, only that
2344  * should be compiled with hard-float, and all code exported from there
2345  * should be strictly wrapped with DC_FP_START/END
2346  */
2347 static noinline void dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2348 		unsigned int *optimal_dcfclk,
2349 		unsigned int *optimal_fclk)
2350 {
2351        double bw_from_dram, bw_from_dram1, bw_from_dram2;
2352 
2353        bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans *
2354 		dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100);
2355        bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans *
2356 		dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100);
2357 
2358        bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2359 
2360        if (optimal_fclk)
2361                *optimal_fclk = bw_from_dram /
2362                (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2363 
2364        if (optimal_dcfclk)
2365                *optimal_dcfclk =  bw_from_dram /
2366                (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100));
2367 }
2368 
2369 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2370 {
2371 	unsigned int i, j;
2372 	unsigned int num_states = 0;
2373 
2374 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2375 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2376 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2377 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2378 
2379 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2380 	unsigned int num_dcfclk_sta_targets = 4;
2381 	unsigned int num_uclk_states;
2382 
2383 	if (dc->ctx->dc_bios->vram_info.num_chans)
2384 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2385 
2386 	if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
2387 		dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
2388 
2389 	dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2390 	dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
2391 
2392 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2393 
2394 		if (bw_params->clk_table.entries[1].dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2395 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2396 			dcfclk_sta_targets[num_dcfclk_sta_targets] = bw_params->clk_table.entries[1].dcfclk_mhz;
2397 			num_dcfclk_sta_targets++;
2398 		} else if (bw_params->clk_table.entries[1].dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2399 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2400 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2401 				if (dcfclk_sta_targets[i] > bw_params->clk_table.entries[1].dcfclk_mhz) {
2402 					dcfclk_sta_targets[i] = bw_params->clk_table.entries[1].dcfclk_mhz;
2403 					break;
2404 				}
2405 			}
2406 			// Update size of array since we "removed" duplicates
2407 			num_dcfclk_sta_targets = i + 1;
2408 		}
2409 
2410 		num_uclk_states = bw_params->clk_table.num_entries;
2411 
2412 		// Calculate optimal dcfclk for each uclk
2413 		for (i = 0; i < num_uclk_states; i++) {
2414 			DC_FP_START();
2415 			dcn30_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2416 					&optimal_dcfclk_for_uclk[i], NULL);
2417 			DC_FP_END();
2418 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2419 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2420 			}
2421 		}
2422 
2423 		// Calculate optimal uclk for each dcfclk sta target
2424 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2425 			for (j = 0; j < num_uclk_states; j++) {
2426 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2427 					optimal_uclk_for_dcfclk_sta_targets[i] =
2428 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2429 					break;
2430 				}
2431 			}
2432 		}
2433 
2434 		i = 0;
2435 		j = 0;
2436 		// create the final dcfclk and uclk table
2437 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2438 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2439 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2440 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2441 			} else {
2442 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
2443 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2444 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2445 				} else {
2446 					j = num_uclk_states;
2447 				}
2448 			}
2449 		}
2450 
2451 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2452 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2453 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2454 		}
2455 
2456 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2457 				optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) {
2458 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2459 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2460 		}
2461 
2462 		for (i = 0; i < dcn3_0_soc.num_states; i++) {
2463 			dcn3_0_soc.clock_limits[i].state = i;
2464 			dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
2465 			dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
2466 			dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
2467 
2468 			/* Fill all states with max values of all other clocks */
2469 			dcn3_0_soc.clock_limits[i].dispclk_mhz = bw_params->clk_table.entries[1].dispclk_mhz;
2470 			dcn3_0_soc.clock_limits[i].dppclk_mhz  = bw_params->clk_table.entries[1].dppclk_mhz;
2471 			dcn3_0_soc.clock_limits[i].phyclk_mhz  = bw_params->clk_table.entries[1].phyclk_mhz;
2472 			dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz;
2473 			/* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */
2474 			/* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */
2475 			dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz;
2476 			dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz;
2477 			dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz;
2478 		}
2479 		/* re-init DML with updated bb */
2480 		dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2481 		if (dc->current_state)
2482 			dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2483 	}
2484 
2485 	/* re-init DML with updated bb */
2486 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2487 	if (dc->current_state)
2488 		dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2489 }
2490 
2491 static const struct resource_funcs dcn30_res_pool_funcs = {
2492 	.destroy = dcn30_destroy_resource_pool,
2493 	.link_enc_create = dcn30_link_encoder_create,
2494 	.panel_cntl_create = dcn30_panel_cntl_create,
2495 	.validate_bandwidth = dcn30_validate_bandwidth,
2496 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2497 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2498 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2499 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2500 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2501 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2502 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2503 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2504 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2505 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2506 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2507 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2508 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2509 };
2510 
2511 #define CTX ctx
2512 
2513 #define REG(reg_name) \
2514 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2515 
2516 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2517 {
2518 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2519 	/* Support for max 6 pipes */
2520 	value = value & 0x3f;
2521 	return value;
2522 }
2523 
2524 static bool dcn30_resource_construct(
2525 	uint8_t num_virtual_links,
2526 	struct dc *dc,
2527 	struct dcn30_resource_pool *pool)
2528 {
2529 	int i;
2530 	struct dc_context *ctx = dc->ctx;
2531 	struct irq_service_init_data init_data;
2532 	struct ddc_service_init_data ddc_init_data;
2533 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2534 	uint32_t num_pipes = 0;
2535 
2536 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2537 		BREAK_TO_DEBUGGER();
2538 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2539 		/* fault to single pipe */
2540 		pipe_fuses = 0x3e;
2541 	}
2542 
2543 	DC_FP_START();
2544 
2545 	ctx->dc_bios->regs = &bios_regs;
2546 
2547 	pool->base.res_cap = &res_cap_dcn3;
2548 
2549 	pool->base.funcs = &dcn30_res_pool_funcs;
2550 
2551 	/*************************************************
2552 	 *  Resource + asic cap harcoding                *
2553 	 *************************************************/
2554 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2555 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2556 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2557 	dc->caps.max_downscale_ratio = 600;
2558 	dc->caps.i2c_speed_in_khz = 100;
2559 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2560 	dc->caps.max_cursor_size = 256;
2561 	dc->caps.min_horizontal_blanking_period = 80;
2562 	dc->caps.dmdata_alloc_size = 2048;
2563 	dc->caps.mall_size_per_mem_channel = 8;
2564 	/* total size = mall per channel * num channels * 1024 * 1024 */
2565 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2566 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2567 
2568 	dc->caps.max_slave_planes = 1;
2569 	dc->caps.post_blend_color_processing = true;
2570 	dc->caps.force_dp_tps4_for_cp2520 = true;
2571 	dc->caps.extended_aux_timeout_support = true;
2572 	dc->caps.dmcub_support = true;
2573 
2574 	/* Color pipeline capabilities */
2575 	dc->caps.color.dpp.dcn_arch = 1;
2576 	dc->caps.color.dpp.input_lut_shared = 0;
2577 	dc->caps.color.dpp.icsc = 1;
2578 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2579 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2580 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2581 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2582 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2583 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2584 	dc->caps.color.dpp.post_csc = 1;
2585 	dc->caps.color.dpp.gamma_corr = 1;
2586 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2587 
2588 	dc->caps.color.dpp.hw_3d_lut = 1;
2589 	dc->caps.color.dpp.ogam_ram = 1;
2590 	// no OGAM ROM on DCN3
2591 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2592 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2593 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2594 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2595 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2596 	dc->caps.color.dpp.ocsc = 0;
2597 
2598 	dc->caps.color.mpc.gamut_remap = 1;
2599 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2600 	dc->caps.color.mpc.ogam_ram = 1;
2601 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2602 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2603 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2604 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2605 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2606 	dc->caps.color.mpc.ocsc = 1;
2607 
2608 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2609 		dc->debug = debug_defaults_drv;
2610 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2611 		dc->debug = debug_defaults_diags;
2612 	} else
2613 		dc->debug = debug_defaults_diags;
2614 	// Init the vm_helper
2615 	if (dc->vm_helper)
2616 		vm_helper_init(dc->vm_helper, 16);
2617 
2618 	/*************************************************
2619 	 *  Create resources                             *
2620 	 *************************************************/
2621 
2622 	/* Clock Sources for Pixel Clock*/
2623 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2624 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2625 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2626 				&clk_src_regs[0], false);
2627 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2628 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2629 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2630 				&clk_src_regs[1], false);
2631 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2632 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2633 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2634 				&clk_src_regs[2], false);
2635 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2636 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2637 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2638 				&clk_src_regs[3], false);
2639 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2640 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2641 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2642 				&clk_src_regs[4], false);
2643 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2644 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2645 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2646 				&clk_src_regs[5], false);
2647 
2648 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2649 
2650 	/* todo: not reuse phy_pll registers */
2651 	pool->base.dp_clock_source =
2652 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2653 				CLOCK_SOURCE_ID_DP_DTO,
2654 				&clk_src_regs[0], true);
2655 
2656 	for (i = 0; i < pool->base.clk_src_count; i++) {
2657 		if (pool->base.clock_sources[i] == NULL) {
2658 			dm_error("DC: failed to create clock sources!\n");
2659 			BREAK_TO_DEBUGGER();
2660 			goto create_fail;
2661 		}
2662 	}
2663 
2664 	/* DCCG */
2665 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2666 	if (pool->base.dccg == NULL) {
2667 		dm_error("DC: failed to create dccg!\n");
2668 		BREAK_TO_DEBUGGER();
2669 		goto create_fail;
2670 	}
2671 
2672 	/* PP Lib and SMU interfaces */
2673 	init_soc_bounding_box(dc, pool);
2674 
2675 	num_pipes = dcn3_0_ip.max_num_dpp;
2676 
2677 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2678 		if (pipe_fuses & 1 << i)
2679 			num_pipes--;
2680 
2681 	dcn3_0_ip.max_num_dpp = num_pipes;
2682 	dcn3_0_ip.max_num_otg = num_pipes;
2683 
2684 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2685 
2686 	/* IRQ */
2687 	init_data.ctx = dc->ctx;
2688 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2689 	if (!pool->base.irqs)
2690 		goto create_fail;
2691 
2692 	/* HUBBUB */
2693 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2694 	if (pool->base.hubbub == NULL) {
2695 		BREAK_TO_DEBUGGER();
2696 		dm_error("DC: failed to create hubbub!\n");
2697 		goto create_fail;
2698 	}
2699 
2700 	/* HUBPs, DPPs, OPPs and TGs */
2701 	for (i = 0; i < pool->base.pipe_count; i++) {
2702 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2703 		if (pool->base.hubps[i] == NULL) {
2704 			BREAK_TO_DEBUGGER();
2705 			dm_error(
2706 				"DC: failed to create hubps!\n");
2707 			goto create_fail;
2708 		}
2709 
2710 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2711 		if (pool->base.dpps[i] == NULL) {
2712 			BREAK_TO_DEBUGGER();
2713 			dm_error(
2714 				"DC: failed to create dpps!\n");
2715 			goto create_fail;
2716 		}
2717 	}
2718 
2719 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2720 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2721 		if (pool->base.opps[i] == NULL) {
2722 			BREAK_TO_DEBUGGER();
2723 			dm_error(
2724 				"DC: failed to create output pixel processor!\n");
2725 			goto create_fail;
2726 		}
2727 	}
2728 
2729 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2730 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2731 				ctx, i);
2732 		if (pool->base.timing_generators[i] == NULL) {
2733 			BREAK_TO_DEBUGGER();
2734 			dm_error("DC: failed to create tg!\n");
2735 			goto create_fail;
2736 		}
2737 	}
2738 	pool->base.timing_generator_count = i;
2739 	/* PSR */
2740 	pool->base.psr = dmub_psr_create(ctx);
2741 
2742 	if (pool->base.psr == NULL) {
2743 		dm_error("DC: failed to create PSR obj!\n");
2744 		BREAK_TO_DEBUGGER();
2745 		goto create_fail;
2746 	}
2747 
2748 	/* ABM */
2749 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2750 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2751 				&abm_regs[i],
2752 				&abm_shift,
2753 				&abm_mask);
2754 		if (pool->base.multiple_abms[i] == NULL) {
2755 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2756 			BREAK_TO_DEBUGGER();
2757 			goto create_fail;
2758 		}
2759 	}
2760 	/* MPC and DSC */
2761 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2762 	if (pool->base.mpc == NULL) {
2763 		BREAK_TO_DEBUGGER();
2764 		dm_error("DC: failed to create mpc!\n");
2765 		goto create_fail;
2766 	}
2767 
2768 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2769 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2770 		if (pool->base.dscs[i] == NULL) {
2771 			BREAK_TO_DEBUGGER();
2772 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2773 			goto create_fail;
2774 		}
2775 	}
2776 
2777 	/* DWB and MMHUBBUB */
2778 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2779 		BREAK_TO_DEBUGGER();
2780 		dm_error("DC: failed to create dwbc!\n");
2781 		goto create_fail;
2782 	}
2783 
2784 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2785 		BREAK_TO_DEBUGGER();
2786 		dm_error("DC: failed to create mcif_wb!\n");
2787 		goto create_fail;
2788 	}
2789 
2790 	/* AUX and I2C */
2791 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2792 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2793 		if (pool->base.engines[i] == NULL) {
2794 			BREAK_TO_DEBUGGER();
2795 			dm_error(
2796 				"DC:failed to create aux engine!!\n");
2797 			goto create_fail;
2798 		}
2799 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2800 		if (pool->base.hw_i2cs[i] == NULL) {
2801 			BREAK_TO_DEBUGGER();
2802 			dm_error(
2803 				"DC:failed to create hw i2c!!\n");
2804 			goto create_fail;
2805 		}
2806 		pool->base.sw_i2cs[i] = NULL;
2807 	}
2808 
2809 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2810 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2811 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2812 			&res_create_funcs : &res_create_maximus_funcs)))
2813 		goto create_fail;
2814 
2815 	/* HW Sequencer and Plane caps */
2816 	dcn30_hw_sequencer_construct(dc);
2817 
2818 	dc->caps.max_planes =  pool->base.pipe_count;
2819 
2820 	for (i = 0; i < dc->caps.max_planes; ++i)
2821 		dc->caps.planes[i] = plane_cap;
2822 
2823 	dc->cap_funcs = cap_funcs;
2824 
2825 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2826 		ddc_init_data.ctx = dc->ctx;
2827 		ddc_init_data.link = NULL;
2828 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2829 		ddc_init_data.id.enum_id = 0;
2830 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2831 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2832 	} else {
2833 		pool->base.oem_device = NULL;
2834 	}
2835 
2836 	DC_FP_END();
2837 
2838 	return true;
2839 
2840 create_fail:
2841 
2842 	DC_FP_END();
2843 	dcn30_resource_destruct(pool);
2844 
2845 	return false;
2846 }
2847 
2848 struct resource_pool *dcn30_create_resource_pool(
2849 		const struct dc_init_data *init_data,
2850 		struct dc *dc)
2851 {
2852 	struct dcn30_resource_pool *pool =
2853 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2854 
2855 	if (!pool)
2856 		return NULL;
2857 
2858 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2859 		return &pool->base;
2860 
2861 	BREAK_TO_DEBUGGER();
2862 	kfree(pool);
2863 	return NULL;
2864 }
2865