xref: /openbmc/linux/drivers/gpu/drm/amd/display/dc/dcn30/dcn30_resource.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "link.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dpcs/dpcs_3_0_0_offset.h"
76 #include "dpcs/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/dcn30_fpu.h"
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "amdgpu_socbb.h"
92 #include "dc_dmub_srv.h"
93 
94 #define DC_LOGGER_INIT(logger)
95 
96 enum dcn30_clk_src_array_id {
97 	DCN30_CLK_SRC_PLL0,
98 	DCN30_CLK_SRC_PLL1,
99 	DCN30_CLK_SRC_PLL2,
100 	DCN30_CLK_SRC_PLL3,
101 	DCN30_CLK_SRC_PLL4,
102 	DCN30_CLK_SRC_PLL5,
103 	DCN30_CLK_SRC_TOTAL
104 };
105 
106 /* begin *********************
107  * macros to expend register list macro defined in HW object header file
108  */
109 
110 /* DCN */
111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
112 
113 #define BASE(seg) BASE_INNER(seg)
114 
115 #define SR(reg_name)\
116 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
117 					mm ## reg_name
118 
119 #define SRI(reg_name, block, id)\
120 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
121 					mm ## block ## id ## _ ## reg_name
122 
123 #define SRI2(reg_name, block, id)\
124 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
125 					mm ## reg_name
126 
127 #define SRIR(var_name, reg_name, block, id)\
128 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
129 					mm ## block ## id ## _ ## reg_name
130 
131 #define SRII(reg_name, block, id)\
132 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
133 					mm ## block ## id ## _ ## reg_name
134 
135 #define SRII_MPC_RMU(reg_name, block, id)\
136 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 					mm ## block ## id ## _ ## reg_name
138 
139 #define SRII_DWB(reg_name, temp_name, block, id)\
140 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
141 					mm ## block ## id ## _ ## temp_name
142 
143 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
144 	.field_name = reg_name ## __ ## field_name ## post_fix
145 
146 #define DCCG_SRII(reg_name, block, id)\
147 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
148 					mm ## block ## id ## _ ## reg_name
149 
150 #define VUPDATE_SRII(reg_name, block, id)\
151 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
152 					mm ## reg_name ## _ ## block ## id
153 
154 /* NBIO */
155 #define NBIO_BASE_INNER(seg) \
156 	NBIO_BASE__INST0_SEG ## seg
157 
158 #define NBIO_BASE(seg) \
159 	NBIO_BASE_INNER(seg)
160 
161 #define NBIO_SR(reg_name)\
162 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
163 					mm ## reg_name
164 
165 /* MMHUB */
166 #define MMHUB_BASE_INNER(seg) \
167 	MMHUB_BASE__INST0_SEG ## seg
168 
169 #define MMHUB_BASE(seg) \
170 	MMHUB_BASE_INNER(seg)
171 
172 #define MMHUB_SR(reg_name)\
173 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
174 					mmMM ## reg_name
175 
176 /* CLOCK */
177 #define CLK_BASE_INNER(seg) \
178 	CLK_BASE__INST0_SEG ## seg
179 
180 #define CLK_BASE(seg) \
181 	CLK_BASE_INNER(seg)
182 
183 #define CLK_SRI(reg_name, block, inst)\
184 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
185 					mm ## block ## _ ## inst ## _ ## reg_name
186 
187 
188 static const struct bios_registers bios_regs = {
189 		NBIO_SR(BIOS_SCRATCH_3),
190 		NBIO_SR(BIOS_SCRATCH_6)
191 };
192 
193 #define clk_src_regs(index, pllid)\
194 [index] = {\
195 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
196 }
197 
198 static const struct dce110_clk_src_regs clk_src_regs[] = {
199 	clk_src_regs(0, A),
200 	clk_src_regs(1, B),
201 	clk_src_regs(2, C),
202 	clk_src_regs(3, D),
203 	clk_src_regs(4, E),
204 	clk_src_regs(5, F)
205 };
206 
207 static const struct dce110_clk_src_shift cs_shift = {
208 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
209 };
210 
211 static const struct dce110_clk_src_mask cs_mask = {
212 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
213 };
214 
215 #define abm_regs(id)\
216 [id] = {\
217 		ABM_DCN30_REG_LIST(id)\
218 }
219 
220 static const struct dce_abm_registers abm_regs[] = {
221 		abm_regs(0),
222 		abm_regs(1),
223 		abm_regs(2),
224 		abm_regs(3),
225 		abm_regs(4),
226 		abm_regs(5),
227 };
228 
229 static const struct dce_abm_shift abm_shift = {
230 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
231 };
232 
233 static const struct dce_abm_mask abm_mask = {
234 		ABM_MASK_SH_LIST_DCN30(_MASK)
235 };
236 
237 
238 
239 #define audio_regs(id)\
240 [id] = {\
241 		AUD_COMMON_REG_LIST(id)\
242 }
243 
244 static const struct dce_audio_registers audio_regs[] = {
245 	audio_regs(0),
246 	audio_regs(1),
247 	audio_regs(2),
248 	audio_regs(3),
249 	audio_regs(4),
250 	audio_regs(5),
251 	audio_regs(6)
252 };
253 
254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
255 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
256 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
257 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
258 
259 static const struct dce_audio_shift audio_shift = {
260 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
261 };
262 
263 static const struct dce_audio_mask audio_mask = {
264 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
265 };
266 
267 #define vpg_regs(id)\
268 [id] = {\
269 	VPG_DCN3_REG_LIST(id)\
270 }
271 
272 static const struct dcn30_vpg_registers vpg_regs[] = {
273 	vpg_regs(0),
274 	vpg_regs(1),
275 	vpg_regs(2),
276 	vpg_regs(3),
277 	vpg_regs(4),
278 	vpg_regs(5),
279 	vpg_regs(6),
280 };
281 
282 static const struct dcn30_vpg_shift vpg_shift = {
283 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
284 };
285 
286 static const struct dcn30_vpg_mask vpg_mask = {
287 	DCN3_VPG_MASK_SH_LIST(_MASK)
288 };
289 
290 #define afmt_regs(id)\
291 [id] = {\
292 	AFMT_DCN3_REG_LIST(id)\
293 }
294 
295 static const struct dcn30_afmt_registers afmt_regs[] = {
296 	afmt_regs(0),
297 	afmt_regs(1),
298 	afmt_regs(2),
299 	afmt_regs(3),
300 	afmt_regs(4),
301 	afmt_regs(5),
302 	afmt_regs(6),
303 };
304 
305 static const struct dcn30_afmt_shift afmt_shift = {
306 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
307 };
308 
309 static const struct dcn30_afmt_mask afmt_mask = {
310 	DCN3_AFMT_MASK_SH_LIST(_MASK)
311 };
312 
313 #define stream_enc_regs(id)\
314 [id] = {\
315 	SE_DCN3_REG_LIST(id)\
316 }
317 
318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
319 	stream_enc_regs(0),
320 	stream_enc_regs(1),
321 	stream_enc_regs(2),
322 	stream_enc_regs(3),
323 	stream_enc_regs(4),
324 	stream_enc_regs(5)
325 };
326 
327 static const struct dcn10_stream_encoder_shift se_shift = {
328 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
329 };
330 
331 static const struct dcn10_stream_encoder_mask se_mask = {
332 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
333 };
334 
335 
336 #define aux_regs(id)\
337 [id] = {\
338 	DCN2_AUX_REG_LIST(id)\
339 }
340 
341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
342 		aux_regs(0),
343 		aux_regs(1),
344 		aux_regs(2),
345 		aux_regs(3),
346 		aux_regs(4),
347 		aux_regs(5)
348 };
349 
350 #define hpd_regs(id)\
351 [id] = {\
352 	HPD_REG_LIST(id)\
353 }
354 
355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
356 		hpd_regs(0),
357 		hpd_regs(1),
358 		hpd_regs(2),
359 		hpd_regs(3),
360 		hpd_regs(4),
361 		hpd_regs(5)
362 };
363 
364 #define link_regs(id, phyid)\
365 [id] = {\
366 	LE_DCN3_REG_LIST(id), \
367 	UNIPHY_DCN2_REG_LIST(phyid), \
368 	DPCS_DCN2_REG_LIST(id), \
369 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
370 }
371 
372 static const struct dce110_aux_registers_shift aux_shift = {
373 	DCN_AUX_MASK_SH_LIST(__SHIFT)
374 };
375 
376 static const struct dce110_aux_registers_mask aux_mask = {
377 	DCN_AUX_MASK_SH_LIST(_MASK)
378 };
379 
380 static const struct dcn10_link_enc_registers link_enc_regs[] = {
381 	link_regs(0, A),
382 	link_regs(1, B),
383 	link_regs(2, C),
384 	link_regs(3, D),
385 	link_regs(4, E),
386 	link_regs(5, F)
387 };
388 
389 static const struct dcn10_link_enc_shift le_shift = {
390 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
391 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
392 };
393 
394 static const struct dcn10_link_enc_mask le_mask = {
395 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
396 	DPCS_DCN2_MASK_SH_LIST(_MASK)
397 };
398 
399 
400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
401 	{ DCN_PANEL_CNTL_REG_LIST() }
402 };
403 
404 static const struct dce_panel_cntl_shift panel_cntl_shift = {
405 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
406 };
407 
408 static const struct dce_panel_cntl_mask panel_cntl_mask = {
409 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
410 };
411 
412 #define dpp_regs(id)\
413 [id] = {\
414 	DPP_REG_LIST_DCN30(id),\
415 }
416 
417 static const struct dcn3_dpp_registers dpp_regs[] = {
418 	dpp_regs(0),
419 	dpp_regs(1),
420 	dpp_regs(2),
421 	dpp_regs(3),
422 	dpp_regs(4),
423 	dpp_regs(5),
424 };
425 
426 static const struct dcn3_dpp_shift tf_shift = {
427 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
428 };
429 
430 static const struct dcn3_dpp_mask tf_mask = {
431 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
432 };
433 
434 #define opp_regs(id)\
435 [id] = {\
436 	OPP_REG_LIST_DCN30(id),\
437 }
438 
439 static const struct dcn20_opp_registers opp_regs[] = {
440 	opp_regs(0),
441 	opp_regs(1),
442 	opp_regs(2),
443 	opp_regs(3),
444 	opp_regs(4),
445 	opp_regs(5)
446 };
447 
448 static const struct dcn20_opp_shift opp_shift = {
449 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
450 };
451 
452 static const struct dcn20_opp_mask opp_mask = {
453 	OPP_MASK_SH_LIST_DCN20(_MASK)
454 };
455 
456 #define aux_engine_regs(id)\
457 [id] = {\
458 	AUX_COMMON_REG_LIST0(id), \
459 	.AUXN_IMPCAL = 0, \
460 	.AUXP_IMPCAL = 0, \
461 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
462 }
463 
464 static const struct dce110_aux_registers aux_engine_regs[] = {
465 		aux_engine_regs(0),
466 		aux_engine_regs(1),
467 		aux_engine_regs(2),
468 		aux_engine_regs(3),
469 		aux_engine_regs(4),
470 		aux_engine_regs(5)
471 };
472 
473 #define dwbc_regs_dcn3(id)\
474 [id] = {\
475 	DWBC_COMMON_REG_LIST_DCN30(id),\
476 }
477 
478 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
479 	dwbc_regs_dcn3(0),
480 };
481 
482 static const struct dcn30_dwbc_shift dwbc30_shift = {
483 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
484 };
485 
486 static const struct dcn30_dwbc_mask dwbc30_mask = {
487 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
488 };
489 
490 #define mcif_wb_regs_dcn3(id)\
491 [id] = {\
492 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
493 }
494 
495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
496 	mcif_wb_regs_dcn3(0)
497 };
498 
499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
500 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
501 };
502 
503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
504 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
505 };
506 
507 #define dsc_regsDCN20(id)\
508 [id] = {\
509 	DSC_REG_LIST_DCN20(id)\
510 }
511 
512 static const struct dcn20_dsc_registers dsc_regs[] = {
513 	dsc_regsDCN20(0),
514 	dsc_regsDCN20(1),
515 	dsc_regsDCN20(2),
516 	dsc_regsDCN20(3),
517 	dsc_regsDCN20(4),
518 	dsc_regsDCN20(5)
519 };
520 
521 static const struct dcn20_dsc_shift dsc_shift = {
522 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
523 };
524 
525 static const struct dcn20_dsc_mask dsc_mask = {
526 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
527 };
528 
529 static const struct dcn30_mpc_registers mpc_regs = {
530 		MPC_REG_LIST_DCN3_0(0),
531 		MPC_REG_LIST_DCN3_0(1),
532 		MPC_REG_LIST_DCN3_0(2),
533 		MPC_REG_LIST_DCN3_0(3),
534 		MPC_REG_LIST_DCN3_0(4),
535 		MPC_REG_LIST_DCN3_0(5),
536 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
537 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
538 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
539 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
540 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
541 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
542 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
543 		MPC_RMU_REG_LIST_DCN3AG(0),
544 		MPC_RMU_REG_LIST_DCN3AG(1),
545 		MPC_RMU_REG_LIST_DCN3AG(2),
546 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
547 };
548 
549 static const struct dcn30_mpc_shift mpc_shift = {
550 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
551 };
552 
553 static const struct dcn30_mpc_mask mpc_mask = {
554 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
555 };
556 
557 #define optc_regs(id)\
558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
559 
560 
561 static const struct dcn_optc_registers optc_regs[] = {
562 	optc_regs(0),
563 	optc_regs(1),
564 	optc_regs(2),
565 	optc_regs(3),
566 	optc_regs(4),
567 	optc_regs(5)
568 };
569 
570 static const struct dcn_optc_shift optc_shift = {
571 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
572 };
573 
574 static const struct dcn_optc_mask optc_mask = {
575 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
576 };
577 
578 #define hubp_regs(id)\
579 [id] = {\
580 	HUBP_REG_LIST_DCN30(id)\
581 }
582 
583 static const struct dcn_hubp2_registers hubp_regs[] = {
584 		hubp_regs(0),
585 		hubp_regs(1),
586 		hubp_regs(2),
587 		hubp_regs(3),
588 		hubp_regs(4),
589 		hubp_regs(5)
590 };
591 
592 static const struct dcn_hubp2_shift hubp_shift = {
593 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
594 };
595 
596 static const struct dcn_hubp2_mask hubp_mask = {
597 		HUBP_MASK_SH_LIST_DCN30(_MASK)
598 };
599 
600 static const struct dcn_hubbub_registers hubbub_reg = {
601 		HUBBUB_REG_LIST_DCN30(0)
602 };
603 
604 static const struct dcn_hubbub_shift hubbub_shift = {
605 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
606 };
607 
608 static const struct dcn_hubbub_mask hubbub_mask = {
609 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
610 };
611 
612 static const struct dccg_registers dccg_regs = {
613 		DCCG_REG_LIST_DCN30()
614 };
615 
616 static const struct dccg_shift dccg_shift = {
617 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
618 };
619 
620 static const struct dccg_mask dccg_mask = {
621 		DCCG_MASK_SH_LIST_DCN3(_MASK)
622 };
623 
624 static const struct dce_hwseq_registers hwseq_reg = {
625 		HWSEQ_DCN30_REG_LIST()
626 };
627 
628 static const struct dce_hwseq_shift hwseq_shift = {
629 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
630 };
631 
632 static const struct dce_hwseq_mask hwseq_mask = {
633 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
634 };
635 #define vmid_regs(id)\
636 [id] = {\
637 		DCN20_VMID_REG_LIST(id)\
638 }
639 
640 static const struct dcn_vmid_registers vmid_regs[] = {
641 	vmid_regs(0),
642 	vmid_regs(1),
643 	vmid_regs(2),
644 	vmid_regs(3),
645 	vmid_regs(4),
646 	vmid_regs(5),
647 	vmid_regs(6),
648 	vmid_regs(7),
649 	vmid_regs(8),
650 	vmid_regs(9),
651 	vmid_regs(10),
652 	vmid_regs(11),
653 	vmid_regs(12),
654 	vmid_regs(13),
655 	vmid_regs(14),
656 	vmid_regs(15)
657 };
658 
659 static const struct dcn20_vmid_shift vmid_shifts = {
660 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
661 };
662 
663 static const struct dcn20_vmid_mask vmid_masks = {
664 		DCN20_VMID_MASK_SH_LIST(_MASK)
665 };
666 
667 static const struct resource_caps res_cap_dcn3 = {
668 	.num_timing_generator = 6,
669 	.num_opp = 6,
670 	.num_video_plane = 6,
671 	.num_audio = 6,
672 	.num_stream_encoder = 6,
673 	.num_pll = 6,
674 	.num_dwb = 1,
675 	.num_ddc = 6,
676 	.num_vmid = 16,
677 	.num_mpc_3dlut = 3,
678 	.num_dsc = 6,
679 };
680 
681 static const struct dc_plane_cap plane_cap = {
682 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
683 	.blends_with_above = true,
684 	.blends_with_below = true,
685 	.per_pixel_alpha = true,
686 
687 	.pixel_format_support = {
688 			.argb8888 = true,
689 			.nv12 = true,
690 			.fp16 = true,
691 			.p010 = true,
692 			.ayuv = false,
693 	},
694 
695 	.max_upscale_factor = {
696 			.argb8888 = 16000,
697 			.nv12 = 16000,
698 			.fp16 = 16000
699 	},
700 
701 	/* 6:1 downscaling ratio: 1000/6 = 166.666 */
702 	.max_downscale_factor = {
703 			.argb8888 = 167,
704 			.nv12 = 167,
705 			.fp16 = 167
706 	}
707 };
708 
709 static const struct dc_debug_options debug_defaults_drv = {
710 	.disable_dmcu = true, //No DMCU on DCN30
711 	.force_abm_enable = false,
712 	.timing_trace = false,
713 	.clock_trace = true,
714 	.disable_pplib_clock_request = true,
715 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
716 	.force_single_disp_pipe_split = false,
717 	.disable_dcc = DCC_ENABLE,
718 	.vsr_support = true,
719 	.performance_trace = false,
720 	.max_downscale_src_width = 7680,/*upto 8K*/
721 	.disable_pplib_wm_range = false,
722 	.scl_reset_length10 = true,
723 	.sanity_checks = false,
724 	.underflow_assert_delay_us = 0xFFFFFFFF,
725 	.dwb_fi_phase = -1, // -1 = disable,
726 	.dmub_command_table = true,
727 	.use_max_lb = true,
728 	.exit_idle_opt_for_cursor_updates = true
729 };
730 
731 static const struct dc_debug_options debug_defaults_diags = {
732 	.disable_dmcu = true, //No dmcu on DCN30
733 	.force_abm_enable = false,
734 	.timing_trace = true,
735 	.clock_trace = true,
736 	.disable_dpp_power_gate = true,
737 	.disable_hubp_power_gate = true,
738 	.disable_clock_gate = true,
739 	.disable_pplib_clock_request = true,
740 	.disable_pplib_wm_range = true,
741 	.disable_stutter = false,
742 	.scl_reset_length10 = true,
743 	.dwb_fi_phase = -1, // -1 = disable
744 	.dmub_command_table = true,
745 	.enable_tri_buf = true,
746 	.use_max_lb = true
747 };
748 
749 static const struct dc_panel_config panel_config_defaults = {
750 	.psr = {
751 		.disable_psr = false,
752 		.disallow_psrsu = false,
753 	},
754 };
755 
756 static void dcn30_dpp_destroy(struct dpp **dpp)
757 {
758 	kfree(TO_DCN20_DPP(*dpp));
759 	*dpp = NULL;
760 }
761 
762 static struct dpp *dcn30_dpp_create(
763 	struct dc_context *ctx,
764 	uint32_t inst)
765 {
766 	struct dcn3_dpp *dpp =
767 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
768 
769 	if (!dpp)
770 		return NULL;
771 
772 	if (dpp3_construct(dpp, ctx, inst,
773 			&dpp_regs[inst], &tf_shift, &tf_mask))
774 		return &dpp->base;
775 
776 	BREAK_TO_DEBUGGER();
777 	kfree(dpp);
778 	return NULL;
779 }
780 
781 static struct output_pixel_processor *dcn30_opp_create(
782 	struct dc_context *ctx, uint32_t inst)
783 {
784 	struct dcn20_opp *opp =
785 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
786 
787 	if (!opp) {
788 		BREAK_TO_DEBUGGER();
789 		return NULL;
790 	}
791 
792 	dcn20_opp_construct(opp, ctx, inst,
793 			&opp_regs[inst], &opp_shift, &opp_mask);
794 	return &opp->base;
795 }
796 
797 static struct dce_aux *dcn30_aux_engine_create(
798 	struct dc_context *ctx,
799 	uint32_t inst)
800 {
801 	struct aux_engine_dce110 *aux_engine =
802 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
803 
804 	if (!aux_engine)
805 		return NULL;
806 
807 	dce110_aux_engine_construct(aux_engine, ctx, inst,
808 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
809 				    &aux_engine_regs[inst],
810 					&aux_mask,
811 					&aux_shift,
812 					ctx->dc->caps.extended_aux_timeout_support);
813 
814 	return &aux_engine->base;
815 }
816 
817 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
818 
819 static const struct dce_i2c_registers i2c_hw_regs[] = {
820 		i2c_inst_regs(1),
821 		i2c_inst_regs(2),
822 		i2c_inst_regs(3),
823 		i2c_inst_regs(4),
824 		i2c_inst_regs(5),
825 		i2c_inst_regs(6),
826 };
827 
828 static const struct dce_i2c_shift i2c_shifts = {
829 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
830 };
831 
832 static const struct dce_i2c_mask i2c_masks = {
833 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
834 };
835 
836 static struct dce_i2c_hw *dcn30_i2c_hw_create(
837 	struct dc_context *ctx,
838 	uint32_t inst)
839 {
840 	struct dce_i2c_hw *dce_i2c_hw =
841 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
842 
843 	if (!dce_i2c_hw)
844 		return NULL;
845 
846 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
847 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
848 
849 	return dce_i2c_hw;
850 }
851 
852 static struct mpc *dcn30_mpc_create(
853 		struct dc_context *ctx,
854 		int num_mpcc,
855 		int num_rmu)
856 {
857 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
858 					  GFP_KERNEL);
859 
860 	if (!mpc30)
861 		return NULL;
862 
863 	dcn30_mpc_construct(mpc30, ctx,
864 			&mpc_regs,
865 			&mpc_shift,
866 			&mpc_mask,
867 			num_mpcc,
868 			num_rmu);
869 
870 	return &mpc30->base;
871 }
872 
873 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
874 {
875 	int i;
876 
877 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
878 					  GFP_KERNEL);
879 
880 	if (!hubbub3)
881 		return NULL;
882 
883 	hubbub3_construct(hubbub3, ctx,
884 			&hubbub_reg,
885 			&hubbub_shift,
886 			&hubbub_mask);
887 
888 
889 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
890 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
891 
892 		vmid->ctx = ctx;
893 
894 		vmid->regs = &vmid_regs[i];
895 		vmid->shifts = &vmid_shifts;
896 		vmid->masks = &vmid_masks;
897 	}
898 
899 	return &hubbub3->base;
900 }
901 
902 static struct timing_generator *dcn30_timing_generator_create(
903 		struct dc_context *ctx,
904 		uint32_t instance)
905 {
906 	struct optc *tgn10 =
907 		kzalloc(sizeof(struct optc), GFP_KERNEL);
908 
909 	if (!tgn10)
910 		return NULL;
911 
912 	tgn10->base.inst = instance;
913 	tgn10->base.ctx = ctx;
914 
915 	tgn10->tg_regs = &optc_regs[instance];
916 	tgn10->tg_shift = &optc_shift;
917 	tgn10->tg_mask = &optc_mask;
918 
919 	dcn30_timing_generator_init(tgn10);
920 
921 	return &tgn10->base;
922 }
923 
924 static const struct encoder_feature_support link_enc_feature = {
925 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
926 		.max_hdmi_pixel_clock = 600000,
927 		.hdmi_ycbcr420_supported = true,
928 		.dp_ycbcr420_supported = true,
929 		.fec_supported = true,
930 		.flags.bits.IS_HBR2_CAPABLE = true,
931 		.flags.bits.IS_HBR3_CAPABLE = true,
932 		.flags.bits.IS_TPS3_CAPABLE = true,
933 		.flags.bits.IS_TPS4_CAPABLE = true
934 };
935 
936 static struct link_encoder *dcn30_link_encoder_create(
937 	struct dc_context *ctx,
938 	const struct encoder_init_data *enc_init_data)
939 {
940 	struct dcn20_link_encoder *enc20 =
941 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
942 
943 	if (!enc20)
944 		return NULL;
945 
946 	dcn30_link_encoder_construct(enc20,
947 			enc_init_data,
948 			&link_enc_feature,
949 			&link_enc_regs[enc_init_data->transmitter],
950 			&link_enc_aux_regs[enc_init_data->channel - 1],
951 			&link_enc_hpd_regs[enc_init_data->hpd_source],
952 			&le_shift,
953 			&le_mask);
954 
955 	return &enc20->enc10.base;
956 }
957 
958 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
959 {
960 	struct dce_panel_cntl *panel_cntl =
961 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
962 
963 	if (!panel_cntl)
964 		return NULL;
965 
966 	dce_panel_cntl_construct(panel_cntl,
967 			init_data,
968 			&panel_cntl_regs[init_data->inst],
969 			&panel_cntl_shift,
970 			&panel_cntl_mask);
971 
972 	return &panel_cntl->base;
973 }
974 
975 static void read_dce_straps(
976 	struct dc_context *ctx,
977 	struct resource_straps *straps)
978 {
979 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
980 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
981 
982 }
983 
984 static struct audio *dcn30_create_audio(
985 		struct dc_context *ctx, unsigned int inst)
986 {
987 	return dce_audio_create(ctx, inst,
988 			&audio_regs[inst], &audio_shift, &audio_mask);
989 }
990 
991 static struct vpg *dcn30_vpg_create(
992 	struct dc_context *ctx,
993 	uint32_t inst)
994 {
995 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
996 
997 	if (!vpg3)
998 		return NULL;
999 
1000 	vpg3_construct(vpg3, ctx, inst,
1001 			&vpg_regs[inst],
1002 			&vpg_shift,
1003 			&vpg_mask);
1004 
1005 	return &vpg3->base;
1006 }
1007 
1008 static struct afmt *dcn30_afmt_create(
1009 	struct dc_context *ctx,
1010 	uint32_t inst)
1011 {
1012 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1013 
1014 	if (!afmt3)
1015 		return NULL;
1016 
1017 	afmt3_construct(afmt3, ctx, inst,
1018 			&afmt_regs[inst],
1019 			&afmt_shift,
1020 			&afmt_mask);
1021 
1022 	return &afmt3->base;
1023 }
1024 
1025 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id,
1026 							  struct dc_context *ctx)
1027 {
1028 	struct dcn10_stream_encoder *enc1;
1029 	struct vpg *vpg;
1030 	struct afmt *afmt;
1031 	int vpg_inst;
1032 	int afmt_inst;
1033 
1034 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1035 	if (eng_id <= ENGINE_ID_DIGF) {
1036 		vpg_inst = eng_id;
1037 		afmt_inst = eng_id;
1038 	} else
1039 		return NULL;
1040 
1041 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1042 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1043 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1044 
1045 	if (!enc1 || !vpg || !afmt) {
1046 		kfree(enc1);
1047 		kfree(vpg);
1048 		kfree(afmt);
1049 		return NULL;
1050 	}
1051 
1052 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1053 					eng_id, vpg, afmt,
1054 					&stream_enc_regs[eng_id],
1055 					&se_shift, &se_mask);
1056 
1057 	return &enc1->base;
1058 }
1059 
1060 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx)
1061 {
1062 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1063 
1064 	if (hws) {
1065 		hws->ctx = ctx;
1066 		hws->regs = &hwseq_reg;
1067 		hws->shifts = &hwseq_shift;
1068 		hws->masks = &hwseq_mask;
1069 	}
1070 	return hws;
1071 }
1072 static const struct resource_create_funcs res_create_funcs = {
1073 	.read_dce_straps = read_dce_straps,
1074 	.create_audio = dcn30_create_audio,
1075 	.create_stream_encoder = dcn30_stream_encoder_create,
1076 	.create_hwseq = dcn30_hwseq_create,
1077 };
1078 
1079 static const struct resource_create_funcs res_create_maximus_funcs = {
1080 	.read_dce_straps = NULL,
1081 	.create_audio = NULL,
1082 	.create_stream_encoder = NULL,
1083 	.create_hwseq = dcn30_hwseq_create,
1084 };
1085 
1086 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1087 {
1088 	unsigned int i;
1089 
1090 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1091 		if (pool->base.stream_enc[i] != NULL) {
1092 			if (pool->base.stream_enc[i]->vpg != NULL) {
1093 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1094 				pool->base.stream_enc[i]->vpg = NULL;
1095 			}
1096 			if (pool->base.stream_enc[i]->afmt != NULL) {
1097 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1098 				pool->base.stream_enc[i]->afmt = NULL;
1099 			}
1100 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1101 			pool->base.stream_enc[i] = NULL;
1102 		}
1103 	}
1104 
1105 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1106 		if (pool->base.dscs[i] != NULL)
1107 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1108 	}
1109 
1110 	if (pool->base.mpc != NULL) {
1111 		kfree(TO_DCN20_MPC(pool->base.mpc));
1112 		pool->base.mpc = NULL;
1113 	}
1114 	if (pool->base.hubbub != NULL) {
1115 		kfree(pool->base.hubbub);
1116 		pool->base.hubbub = NULL;
1117 	}
1118 	for (i = 0; i < pool->base.pipe_count; i++) {
1119 		if (pool->base.dpps[i] != NULL)
1120 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1121 
1122 		if (pool->base.ipps[i] != NULL)
1123 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1124 
1125 		if (pool->base.hubps[i] != NULL) {
1126 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1127 			pool->base.hubps[i] = NULL;
1128 		}
1129 
1130 		if (pool->base.irqs != NULL) {
1131 			dal_irq_service_destroy(&pool->base.irqs);
1132 		}
1133 	}
1134 
1135 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1136 		if (pool->base.engines[i] != NULL)
1137 			dce110_engine_destroy(&pool->base.engines[i]);
1138 		if (pool->base.hw_i2cs[i] != NULL) {
1139 			kfree(pool->base.hw_i2cs[i]);
1140 			pool->base.hw_i2cs[i] = NULL;
1141 		}
1142 		if (pool->base.sw_i2cs[i] != NULL) {
1143 			kfree(pool->base.sw_i2cs[i]);
1144 			pool->base.sw_i2cs[i] = NULL;
1145 		}
1146 	}
1147 
1148 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1149 		if (pool->base.opps[i] != NULL)
1150 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1151 	}
1152 
1153 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1154 		if (pool->base.timing_generators[i] != NULL)	{
1155 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1156 			pool->base.timing_generators[i] = NULL;
1157 		}
1158 	}
1159 
1160 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1161 		if (pool->base.dwbc[i] != NULL) {
1162 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1163 			pool->base.dwbc[i] = NULL;
1164 		}
1165 		if (pool->base.mcif_wb[i] != NULL) {
1166 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1167 			pool->base.mcif_wb[i] = NULL;
1168 		}
1169 	}
1170 
1171 	for (i = 0; i < pool->base.audio_count; i++) {
1172 		if (pool->base.audios[i])
1173 			dce_aud_destroy(&pool->base.audios[i]);
1174 	}
1175 
1176 	for (i = 0; i < pool->base.clk_src_count; i++) {
1177 		if (pool->base.clock_sources[i] != NULL) {
1178 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1179 			pool->base.clock_sources[i] = NULL;
1180 		}
1181 	}
1182 
1183 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1184 		if (pool->base.mpc_lut[i] != NULL) {
1185 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1186 			pool->base.mpc_lut[i] = NULL;
1187 		}
1188 		if (pool->base.mpc_shaper[i] != NULL) {
1189 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1190 			pool->base.mpc_shaper[i] = NULL;
1191 		}
1192 	}
1193 
1194 	if (pool->base.dp_clock_source != NULL) {
1195 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1196 		pool->base.dp_clock_source = NULL;
1197 	}
1198 
1199 	for (i = 0; i < pool->base.pipe_count; i++) {
1200 		if (pool->base.multiple_abms[i] != NULL)
1201 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1202 	}
1203 
1204 	if (pool->base.psr != NULL)
1205 		dmub_psr_destroy(&pool->base.psr);
1206 
1207 	if (pool->base.dccg != NULL)
1208 		dcn_dccg_destroy(&pool->base.dccg);
1209 
1210 	if (pool->base.oem_device != NULL)
1211 		link_destroy_ddc_service(&pool->base.oem_device);
1212 }
1213 
1214 static struct hubp *dcn30_hubp_create(
1215 	struct dc_context *ctx,
1216 	uint32_t inst)
1217 {
1218 	struct dcn20_hubp *hubp2 =
1219 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1220 
1221 	if (!hubp2)
1222 		return NULL;
1223 
1224 	if (hubp3_construct(hubp2, ctx, inst,
1225 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1226 		return &hubp2->base;
1227 
1228 	BREAK_TO_DEBUGGER();
1229 	kfree(hubp2);
1230 	return NULL;
1231 }
1232 
1233 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1234 {
1235 	int i;
1236 	uint32_t pipe_count = pool->res_cap->num_dwb;
1237 
1238 	for (i = 0; i < pipe_count; i++) {
1239 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1240 						    GFP_KERNEL);
1241 
1242 		if (!dwbc30) {
1243 			dm_error("DC: failed to create dwbc30!\n");
1244 			return false;
1245 		}
1246 
1247 		dcn30_dwbc_construct(dwbc30, ctx,
1248 				&dwbc30_regs[i],
1249 				&dwbc30_shift,
1250 				&dwbc30_mask,
1251 				i);
1252 
1253 		pool->dwbc[i] = &dwbc30->base;
1254 	}
1255 	return true;
1256 }
1257 
1258 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1259 {
1260 	int i;
1261 	uint32_t pipe_count = pool->res_cap->num_dwb;
1262 
1263 	for (i = 0; i < pipe_count; i++) {
1264 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1265 						    GFP_KERNEL);
1266 
1267 		if (!mcif_wb30) {
1268 			dm_error("DC: failed to create mcif_wb30!\n");
1269 			return false;
1270 		}
1271 
1272 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1273 				&mcif_wb30_regs[i],
1274 				&mcif_wb30_shift,
1275 				&mcif_wb30_mask,
1276 				i);
1277 
1278 		pool->mcif_wb[i] = &mcif_wb30->base;
1279 	}
1280 	return true;
1281 }
1282 
1283 static struct display_stream_compressor *dcn30_dsc_create(
1284 	struct dc_context *ctx, uint32_t inst)
1285 {
1286 	struct dcn20_dsc *dsc =
1287 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1288 
1289 	if (!dsc) {
1290 		BREAK_TO_DEBUGGER();
1291 		return NULL;
1292 	}
1293 
1294 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1295 	return &dsc->base;
1296 }
1297 
1298 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1299 {
1300 
1301 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1302 }
1303 
1304 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1305 {
1306 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1307 
1308 	dcn30_resource_destruct(dcn30_pool);
1309 	kfree(dcn30_pool);
1310 	*pool = NULL;
1311 }
1312 
1313 static struct clock_source *dcn30_clock_source_create(
1314 		struct dc_context *ctx,
1315 		struct dc_bios *bios,
1316 		enum clock_source_id id,
1317 		const struct dce110_clk_src_regs *regs,
1318 		bool dp_clk_src)
1319 {
1320 	struct dce110_clk_src *clk_src =
1321 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1322 
1323 	if (!clk_src)
1324 		return NULL;
1325 
1326 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1327 			regs, &cs_shift, &cs_mask)) {
1328 		clk_src->base.dp_clk_src = dp_clk_src;
1329 		return &clk_src->base;
1330 	}
1331 
1332 	kfree(clk_src);
1333 	BREAK_TO_DEBUGGER();
1334 	return NULL;
1335 }
1336 
1337 int dcn30_populate_dml_pipes_from_context(
1338 	struct dc *dc, struct dc_state *context,
1339 	display_e2e_pipe_params_st *pipes,
1340 	bool fast_validate)
1341 {
1342 	int i, pipe_cnt;
1343 	struct resource_context *res_ctx = &context->res_ctx;
1344 
1345 	DC_FP_START();
1346 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1347 	DC_FP_END();
1348 
1349 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1350 		if (!res_ctx->pipe_ctx[i].stream)
1351 			continue;
1352 
1353 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1354 			dm_lb_16;
1355 	}
1356 
1357 	return pipe_cnt;
1358 }
1359 
1360 void dcn30_populate_dml_writeback_from_context(
1361 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1362 {
1363 	DC_FP_START();
1364 	dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes);
1365 	DC_FP_END();
1366 }
1367 
1368 unsigned int dcn30_calc_max_scaled_time(
1369 		unsigned int time_per_pixel,
1370 		enum mmhubbub_wbif_mode mode,
1371 		unsigned int urgent_watermark)
1372 {
1373 	unsigned int time_per_byte = 0;
1374 	unsigned int total_free_entry = 0xb40;
1375 	unsigned int buf_lh_capability;
1376 	unsigned int max_scaled_time;
1377 
1378 	if (mode == PACKED_444) /* packed mode 32 bpp */
1379 		time_per_byte = time_per_pixel/4;
1380 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1381 		time_per_byte = time_per_pixel/8;
1382 
1383 	if (time_per_byte == 0)
1384 		time_per_byte = 1;
1385 
1386 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1387 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1388 	return max_scaled_time;
1389 }
1390 
1391 void dcn30_set_mcif_arb_params(
1392 		struct dc *dc,
1393 		struct dc_state *context,
1394 		display_e2e_pipe_params_st *pipes,
1395 		int pipe_cnt)
1396 {
1397 	enum mmhubbub_wbif_mode wbif_mode;
1398 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1399 	struct mcif_arb_params *wb_arb_params;
1400 	int i, j, dwb_pipe;
1401 
1402 	/* Writeback MCIF_WB arbitration parameters */
1403 	dwb_pipe = 0;
1404 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1405 
1406 		if (!context->res_ctx.pipe_ctx[i].stream)
1407 			continue;
1408 
1409 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1410 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1411 
1412 			if (writeback_info->wb_enabled == false)
1413 				continue;
1414 
1415 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1416 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1417 
1418 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1419 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1420 				wbif_mode = PACKED_444_FP16;
1421 			else
1422 				wbif_mode = PACKED_444;
1423 
1424 			DC_FP_START();
1425 			dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j);
1426 			DC_FP_END();
1427 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1428 			wb_arb_params->slice_lines = 32;
1429 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1430 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1431 					wbif_mode,
1432 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1433 
1434 			dwb_pipe++;
1435 
1436 			if (dwb_pipe >= MAX_DWB_PIPES)
1437 				return;
1438 		}
1439 		if (dwb_pipe >= MAX_DWB_PIPES)
1440 			return;
1441 	}
1442 
1443 }
1444 
1445 static struct dc_cap_funcs cap_funcs = {
1446 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1447 };
1448 
1449 bool dcn30_acquire_post_bldn_3dlut(
1450 		struct resource_context *res_ctx,
1451 		const struct resource_pool *pool,
1452 		int mpcc_id,
1453 		struct dc_3dlut **lut,
1454 		struct dc_transfer_func **shaper)
1455 {
1456 	int i;
1457 	bool ret = false;
1458 	union dc_3dlut_state *state;
1459 
1460 	ASSERT(*lut == NULL && *shaper == NULL);
1461 	*lut = NULL;
1462 	*shaper = NULL;
1463 
1464 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1465 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1466 			*lut = pool->mpc_lut[i];
1467 			*shaper = pool->mpc_shaper[i];
1468 			state = &pool->mpc_lut[i]->state;
1469 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1470 			state->bits.rmu_idx_valid = 1;
1471 			state->bits.rmu_mux_num = i;
1472 			if (state->bits.rmu_mux_num == 0)
1473 				state->bits.mpc_rmu0_mux = mpcc_id;
1474 			else if (state->bits.rmu_mux_num == 1)
1475 				state->bits.mpc_rmu1_mux = mpcc_id;
1476 			else if (state->bits.rmu_mux_num == 2)
1477 				state->bits.mpc_rmu2_mux = mpcc_id;
1478 			ret = true;
1479 			break;
1480 		}
1481 	}
1482 	return ret;
1483 }
1484 
1485 bool dcn30_release_post_bldn_3dlut(
1486 		struct resource_context *res_ctx,
1487 		const struct resource_pool *pool,
1488 		struct dc_3dlut **lut,
1489 		struct dc_transfer_func **shaper)
1490 {
1491 	int i;
1492 	bool ret = false;
1493 
1494 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1495 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1496 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1497 			pool->mpc_lut[i]->state.raw = 0;
1498 			*lut = NULL;
1499 			*shaper = NULL;
1500 			ret = true;
1501 			break;
1502 		}
1503 	}
1504 	return ret;
1505 }
1506 
1507 static bool is_soc_bounding_box_valid(struct dc *dc)
1508 {
1509 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1510 
1511 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1512 		return true;
1513 
1514 	return false;
1515 }
1516 
1517 static bool init_soc_bounding_box(struct dc *dc,
1518 				  struct dcn30_resource_pool *pool)
1519 {
1520 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1521 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1522 
1523 	DC_LOGGER_INIT(dc->ctx->logger);
1524 
1525 	if (!is_soc_bounding_box_valid(dc)) {
1526 		DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1527 		return false;
1528 	}
1529 
1530 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1531 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1532 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1533 	dcn20_patch_bounding_box(dc, loaded_bb);
1534 	DC_FP_START();
1535 	patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc);
1536 	DC_FP_END();
1537 
1538 	return true;
1539 }
1540 
1541 static bool dcn30_split_stream_for_mpc_or_odm(
1542 		const struct dc *dc,
1543 		struct resource_context *res_ctx,
1544 		struct pipe_ctx *pri_pipe,
1545 		struct pipe_ctx *sec_pipe,
1546 		bool odm)
1547 {
1548 	int pipe_idx = sec_pipe->pipe_idx;
1549 	const struct resource_pool *pool = dc->res_pool;
1550 
1551 	*sec_pipe = *pri_pipe;
1552 
1553 	sec_pipe->pipe_idx = pipe_idx;
1554 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1555 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1556 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1557 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1558 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1559 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1560 	sec_pipe->stream_res.dsc = NULL;
1561 	if (odm) {
1562 		if (pri_pipe->next_odm_pipe) {
1563 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1564 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1565 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1566 		}
1567 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1568 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1569 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1570 		}
1571 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1572 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1573 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1574 		}
1575 		pri_pipe->next_odm_pipe = sec_pipe;
1576 		sec_pipe->prev_odm_pipe = pri_pipe;
1577 
1578 		if (!sec_pipe->top_pipe)
1579 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1580 		else
1581 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1582 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1583 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1584 			ASSERT(sec_pipe->stream_res.dsc);
1585 			if (sec_pipe->stream_res.dsc == NULL)
1586 				return false;
1587 		}
1588 	} else {
1589 		if (pri_pipe->bottom_pipe) {
1590 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1591 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1592 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1593 		}
1594 		pri_pipe->bottom_pipe = sec_pipe;
1595 		sec_pipe->top_pipe = pri_pipe;
1596 
1597 		ASSERT(pri_pipe->plane_state);
1598 	}
1599 
1600 	return true;
1601 }
1602 
1603 static struct pipe_ctx *dcn30_find_split_pipe(
1604 		struct dc *dc,
1605 		struct dc_state *context,
1606 		int old_index)
1607 {
1608 	struct pipe_ctx *pipe = NULL;
1609 	int i;
1610 
1611 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1612 		pipe = &context->res_ctx.pipe_ctx[old_index];
1613 		pipe->pipe_idx = old_index;
1614 	}
1615 
1616 	if (!pipe)
1617 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1618 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1619 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1620 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1621 					pipe = &context->res_ctx.pipe_ctx[i];
1622 					pipe->pipe_idx = i;
1623 					break;
1624 				}
1625 			}
1626 		}
1627 
1628 	/*
1629 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1630 	 * Add for debugging transient underflow during topology updates:
1631 	 * ASSERT(pipe);
1632 	 */
1633 	if (!pipe)
1634 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1635 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1636 				pipe = &context->res_ctx.pipe_ctx[i];
1637 				pipe->pipe_idx = i;
1638 				break;
1639 			}
1640 		}
1641 
1642 	return pipe;
1643 }
1644 
1645 noinline bool dcn30_internal_validate_bw(
1646 		struct dc *dc,
1647 		struct dc_state *context,
1648 		display_e2e_pipe_params_st *pipes,
1649 		int *pipe_cnt_out,
1650 		int *vlevel_out,
1651 		bool fast_validate,
1652 		bool allow_self_refresh_only)
1653 {
1654 	bool out = false;
1655 	bool repopulate_pipes = false;
1656 	int split[MAX_PIPES] = { 0 };
1657 	bool merge[MAX_PIPES] = { false };
1658 	bool newly_split[MAX_PIPES] = { false };
1659 	int pipe_cnt, i, pipe_idx, vlevel;
1660 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1661 
1662 	ASSERT(pipes);
1663 	if (!pipes)
1664 		return false;
1665 
1666 	context->bw_ctx.dml.vba.maxMpcComb = 0;
1667 	context->bw_ctx.dml.vba.VoltageLevel = 0;
1668 	context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive;
1669 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1670 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1671 
1672 	if (!pipe_cnt) {
1673 		out = true;
1674 		goto validate_out;
1675 	}
1676 
1677 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1678 
1679 	if (!fast_validate || !allow_self_refresh_only) {
1680 		/*
1681 		 * DML favors voltage over p-state, but we're more interested in
1682 		 * supporting p-state over voltage. We can't support p-state in
1683 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1684 		 */
1685 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1686 			dm_allow_self_refresh_and_mclk_switch;
1687 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1688 		/* This may adjust vlevel and maxMpcComb */
1689 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1690 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1691 	}
1692 	if (allow_self_refresh_only &&
1693 	    (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1694 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) {
1695 		/*
1696 		 * If mode is unsupported or there's still no p-state support
1697 		 * then fall back to favoring voltage.
1698 		 *
1699 		 * We don't actually support prefetch mode 2, so require that we
1700 		 * at least support prefetch mode 1.
1701 		 */
1702 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1703 			dm_allow_self_refresh;
1704 
1705 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1706 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1707 			memset(split, 0, sizeof(split));
1708 			memset(merge, 0, sizeof(merge));
1709 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1710 		}
1711 	}
1712 
1713 	dml_log_mode_support_params(&context->bw_ctx.dml);
1714 
1715 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1716 		goto validate_fail;
1717 
1718 	if (!dc->config.enable_windowed_mpo_odm) {
1719 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1720 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1721 			struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1722 
1723 			if (!pipe->stream)
1724 				continue;
1725 
1726 			/* We only support full screen mpo with ODM */
1727 			if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1728 					&& pipe->plane_state && mpo_pipe
1729 					&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1730 							&pipe->plane_res.scl_data.recout,
1731 							sizeof(struct rect)) != 0) {
1732 				ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1733 				goto validate_fail;
1734 			}
1735 			pipe_idx++;
1736 		}
1737 	}
1738 
1739 	/* merge pipes if necessary */
1740 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1741 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1742 
1743 		/*skip pipes that don't need merging*/
1744 		if (!merge[i])
1745 			continue;
1746 
1747 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1748 		if (pipe->prev_odm_pipe) {
1749 			/*split off odm pipe*/
1750 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1751 			if (pipe->next_odm_pipe)
1752 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1753 
1754 			pipe->bottom_pipe = NULL;
1755 			pipe->next_odm_pipe = NULL;
1756 			pipe->plane_state = NULL;
1757 			pipe->stream = NULL;
1758 			pipe->top_pipe = NULL;
1759 			pipe->prev_odm_pipe = NULL;
1760 			if (pipe->stream_res.dsc)
1761 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1762 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1763 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1764 			repopulate_pipes = true;
1765 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1766 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1767 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1768 
1769 			top_pipe->bottom_pipe = bottom_pipe;
1770 			if (bottom_pipe)
1771 				bottom_pipe->top_pipe = top_pipe;
1772 
1773 			pipe->top_pipe = NULL;
1774 			pipe->bottom_pipe = NULL;
1775 			pipe->plane_state = NULL;
1776 			pipe->stream = NULL;
1777 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1778 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1779 			repopulate_pipes = true;
1780 		} else
1781 			ASSERT(0); /* Should never try to merge master pipe */
1782 
1783 	}
1784 
1785 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1786 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1787 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1788 		struct pipe_ctx *hsplit_pipe = NULL;
1789 		bool odm;
1790 		int old_index = -1;
1791 
1792 		if (!pipe->stream || newly_split[i])
1793 			continue;
1794 
1795 		pipe_idx++;
1796 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1797 
1798 		if (!pipe->plane_state && !odm)
1799 			continue;
1800 
1801 		if (split[i]) {
1802 			if (odm) {
1803 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1804 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1805 				else if (old_pipe->next_odm_pipe)
1806 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1807 			} else {
1808 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1809 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1810 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1811 				else if (old_pipe->bottom_pipe &&
1812 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1813 					old_index = old_pipe->bottom_pipe->pipe_idx;
1814 			}
1815 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
1816 			ASSERT(hsplit_pipe);
1817 			if (!hsplit_pipe)
1818 				goto validate_fail;
1819 
1820 			if (!dcn30_split_stream_for_mpc_or_odm(
1821 					dc, &context->res_ctx,
1822 					pipe, hsplit_pipe, odm))
1823 				goto validate_fail;
1824 
1825 			newly_split[hsplit_pipe->pipe_idx] = true;
1826 			repopulate_pipes = true;
1827 		}
1828 		if (split[i] == 4) {
1829 			struct pipe_ctx *pipe_4to1;
1830 
1831 			if (odm && old_pipe->next_odm_pipe)
1832 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1833 			else if (!odm && old_pipe->bottom_pipe &&
1834 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1835 				old_index = old_pipe->bottom_pipe->pipe_idx;
1836 			else
1837 				old_index = -1;
1838 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1839 			ASSERT(pipe_4to1);
1840 			if (!pipe_4to1)
1841 				goto validate_fail;
1842 			if (!dcn30_split_stream_for_mpc_or_odm(
1843 					dc, &context->res_ctx,
1844 					pipe, pipe_4to1, odm))
1845 				goto validate_fail;
1846 			newly_split[pipe_4to1->pipe_idx] = true;
1847 
1848 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1849 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1850 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1851 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1852 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1853 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1854 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1855 			else
1856 				old_index = -1;
1857 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1858 			ASSERT(pipe_4to1);
1859 			if (!pipe_4to1)
1860 				goto validate_fail;
1861 			if (!dcn30_split_stream_for_mpc_or_odm(
1862 					dc, &context->res_ctx,
1863 					hsplit_pipe, pipe_4to1, odm))
1864 				goto validate_fail;
1865 			newly_split[pipe_4to1->pipe_idx] = true;
1866 		}
1867 		if (odm)
1868 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1869 	}
1870 
1871 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1872 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1873 
1874 		if (pipe->plane_state) {
1875 			if (!resource_build_scaling_params(pipe))
1876 				goto validate_fail;
1877 		}
1878 	}
1879 
1880 	/* Actual dsc count per stream dsc validation*/
1881 	if (!dcn20_validate_dsc(dc, context)) {
1882 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1883 		goto validate_fail;
1884 	}
1885 
1886 	if (repopulate_pipes)
1887 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1888 	context->bw_ctx.dml.vba.VoltageLevel = vlevel;
1889 	*vlevel_out = vlevel;
1890 	*pipe_cnt_out = pipe_cnt;
1891 
1892 	out = true;
1893 	goto validate_out;
1894 
1895 validate_fail:
1896 	out = false;
1897 
1898 validate_out:
1899 	return out;
1900 }
1901 
1902 static int get_refresh_rate(struct dc_state *context)
1903 {
1904 	int refresh_rate = 0;
1905 	int h_v_total = 0;
1906 	struct dc_crtc_timing *timing = NULL;
1907 
1908 	if (context == NULL || context->streams[0] == NULL)
1909 		return 0;
1910 
1911 	/* check if refresh rate at least 120hz */
1912 	timing = &context->streams[0]->timing;
1913 	if (timing == NULL)
1914 		return 0;
1915 
1916 	h_v_total = timing->h_total * timing->v_total;
1917 	if (h_v_total == 0)
1918 		return 0;
1919 
1920 	refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
1921 	return refresh_rate;
1922 }
1923 
1924 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds
1925 /*
1926  * Scaling factor for v_blank stretch calculations considering timing in
1927  * micro-seconds and pixel clock in 100hz.
1928  * Note: the parenthesis are necessary to ensure the correct order of
1929  * operation where V_SCALE is used.
1930  */
1931 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
1932 
1933 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context)
1934 {
1935 	struct dc_crtc_timing *timing = NULL;
1936 	uint32_t sec_per_100_lines;
1937 	uint32_t max_v_blank;
1938 	uint32_t curr_v_blank;
1939 	uint32_t v_stretch_max;
1940 	uint32_t stretched_frame_pix_cnt;
1941 	uint32_t scaled_stretched_frame_pix_cnt;
1942 	uint32_t scaled_refresh_rate;
1943 
1944 	if (context == NULL || context->streams[0] == NULL)
1945 		return 0;
1946 
1947 	/* check if refresh rate at least 120hz */
1948 	timing = &context->streams[0]->timing;
1949 	if (timing == NULL)
1950 		return 0;
1951 
1952 	sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
1953 	max_v_blank = sec_per_100_lines / V_SCALE + 1;
1954 	curr_v_blank = timing->v_total - timing->v_addressable;
1955 	v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
1956 	stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
1957 	scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
1958 	scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
1959 
1960 	return scaled_refresh_rate;
1961 }
1962 
1963 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context)
1964 {
1965 	int refresh_rate_max_stretch_100hz;
1966 	int min_refresh_100hz;
1967 
1968 	if (context == NULL || context->streams[0] == NULL)
1969 		return false;
1970 
1971 	refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context);
1972 	min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000;
1973 
1974 	if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
1975 		return false;
1976 
1977 	return true;
1978 }
1979 
1980 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
1981 {
1982 	int refresh_rate = 0;
1983 	const int minimum_refreshrate_supported = 120;
1984 
1985 	if (context == NULL || context->streams[0] == NULL)
1986 		return false;
1987 
1988 	if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams)
1989 		return false;
1990 
1991 	if (dc->debug.disable_fams)
1992 		return false;
1993 
1994 	if (!dc->caps.dmub_caps.mclk_sw)
1995 		return false;
1996 
1997 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
1998 		return false;
1999 
2000 	/* more then 1 monitor connected */
2001 	if (context->stream_count != 1)
2002 		return false;
2003 
2004 	refresh_rate = get_refresh_rate(context);
2005 	if (refresh_rate < minimum_refreshrate_supported)
2006 		return false;
2007 
2008 	if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context))
2009 		return false;
2010 
2011 	// check if freesync enabled
2012 	if (!context->streams[0]->allow_freesync)
2013 		return false;
2014 
2015 	if (context->streams[0]->vrr_active_variable)
2016 		return false;
2017 
2018 	return true;
2019 }
2020 
2021 /*
2022  * set up FPO watermarks, pstate, dram latency
2023  */
2024 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
2025 {
2026 	ASSERT(dc != NULL && context != NULL);
2027 	if (dc == NULL || context == NULL)
2028 		return;
2029 
2030 	/* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */
2031 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2032 }
2033 
2034 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2035 {
2036 	DC_FP_START();
2037 	dcn30_fpu_update_soc_for_wm_a(dc, context);
2038 	DC_FP_END();
2039 }
2040 
2041 void dcn30_calculate_wm_and_dlg(
2042 		struct dc *dc, struct dc_state *context,
2043 		display_e2e_pipe_params_st *pipes,
2044 		int pipe_cnt,
2045 		int vlevel)
2046 {
2047 	DC_FP_START();
2048 	dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2049 	DC_FP_END();
2050 }
2051 
2052 bool dcn30_validate_bandwidth(struct dc *dc,
2053 		struct dc_state *context,
2054 		bool fast_validate)
2055 {
2056 	bool out = false;
2057 
2058 	BW_VAL_TRACE_SETUP();
2059 
2060 	int vlevel = 0;
2061 	int pipe_cnt = 0;
2062 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2063 	DC_LOGGER_INIT(dc->ctx->logger);
2064 
2065 	BW_VAL_TRACE_COUNT();
2066 
2067 	DC_FP_START();
2068 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true);
2069 	DC_FP_END();
2070 
2071 	if (pipe_cnt == 0)
2072 		goto validate_out;
2073 
2074 	if (!out)
2075 		goto validate_fail;
2076 
2077 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2078 
2079 	if (fast_validate) {
2080 		BW_VAL_TRACE_SKIP(fast);
2081 		goto validate_out;
2082 	}
2083 
2084 	DC_FP_START();
2085 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2086 	DC_FP_END();
2087 
2088 	BW_VAL_TRACE_END_WATERMARKS();
2089 
2090 	goto validate_out;
2091 
2092 validate_fail:
2093 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2094 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2095 
2096 	BW_VAL_TRACE_SKIP(fail);
2097 	out = false;
2098 
2099 validate_out:
2100 	kfree(pipes);
2101 
2102 	BW_VAL_TRACE_FINISH();
2103 
2104 	return out;
2105 }
2106 
2107 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2108 {
2109 	unsigned int i, j;
2110 	unsigned int num_states = 0;
2111 
2112 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2113 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2114 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2115 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2116 
2117 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2118 	unsigned int num_dcfclk_sta_targets = 4;
2119 	unsigned int num_uclk_states;
2120 
2121 	struct dc_bounding_box_max_clk dcn30_bb_max_clk;
2122 
2123 	memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk));
2124 
2125 	if (dc->ctx->dc_bios->vram_info.num_chans)
2126 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2127 
2128 	DC_FP_START();
2129 	dcn30_fpu_update_dram_channel_width_bytes(dc);
2130 	DC_FP_END();
2131 
2132 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2133 
2134 		for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2135 			if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz)
2136 				dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2137 			if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz)
2138 				dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2139 			if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz)
2140 				dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2141 			if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz)
2142 				dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2143 		}
2144 
2145 		DC_FP_START();
2146 		dcn30_fpu_update_max_clk(&dcn30_bb_max_clk);
2147 		DC_FP_END();
2148 
2149 		if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2150 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2151 			dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz;
2152 			num_dcfclk_sta_targets++;
2153 		} else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2154 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2155 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2156 				if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) {
2157 					dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz;
2158 					break;
2159 				}
2160 			}
2161 			// Update size of array since we "removed" duplicates
2162 			num_dcfclk_sta_targets = i + 1;
2163 		}
2164 
2165 		num_uclk_states = bw_params->clk_table.num_entries;
2166 
2167 		// Calculate optimal dcfclk for each uclk
2168 		for (i = 0; i < num_uclk_states; i++) {
2169 			DC_FP_START();
2170 			dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2171 					&optimal_dcfclk_for_uclk[i], NULL);
2172 			DC_FP_END();
2173 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2174 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2175 			}
2176 		}
2177 
2178 		// Calculate optimal uclk for each dcfclk sta target
2179 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2180 			for (j = 0; j < num_uclk_states; j++) {
2181 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2182 					optimal_uclk_for_dcfclk_sta_targets[i] =
2183 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2184 					break;
2185 				}
2186 			}
2187 		}
2188 
2189 		i = 0;
2190 		j = 0;
2191 		// create the final dcfclk and uclk table
2192 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2193 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2194 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2195 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2196 			} else {
2197 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2198 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2199 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2200 				} else {
2201 					j = num_uclk_states;
2202 				}
2203 			}
2204 		}
2205 
2206 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2207 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2208 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2209 		}
2210 
2211 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2212 				optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2213 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2214 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2215 		}
2216 
2217 		dcn3_0_soc.num_states = num_states;
2218 		DC_FP_START();
2219 		dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts);
2220 		DC_FP_END();
2221 	}
2222 }
2223 
2224 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config)
2225 {
2226 	*panel_config = panel_config_defaults;
2227 }
2228 
2229 static const struct resource_funcs dcn30_res_pool_funcs = {
2230 	.destroy = dcn30_destroy_resource_pool,
2231 	.link_enc_create = dcn30_link_encoder_create,
2232 	.panel_cntl_create = dcn30_panel_cntl_create,
2233 	.validate_bandwidth = dcn30_validate_bandwidth,
2234 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2235 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2236 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2237 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2238 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2239 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2240 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2241 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2242 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2243 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2244 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2245 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2246 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2247 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2248 	.get_panel_config_defaults = dcn30_get_panel_config_defaults,
2249 };
2250 
2251 #define CTX ctx
2252 
2253 #define REG(reg_name) \
2254 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2255 
2256 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2257 {
2258 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2259 	/* Support for max 6 pipes */
2260 	value = value & 0x3f;
2261 	return value;
2262 }
2263 
2264 static bool dcn30_resource_construct(
2265 	uint8_t num_virtual_links,
2266 	struct dc *dc,
2267 	struct dcn30_resource_pool *pool)
2268 {
2269 	int i;
2270 	struct dc_context *ctx = dc->ctx;
2271 	struct irq_service_init_data init_data;
2272 	struct ddc_service_init_data ddc_init_data = {0};
2273 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2274 	uint32_t num_pipes = 0;
2275 
2276 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2277 		BREAK_TO_DEBUGGER();
2278 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2279 		/* fault to single pipe */
2280 		pipe_fuses = 0x3e;
2281 	}
2282 
2283 	DC_FP_START();
2284 
2285 	ctx->dc_bios->regs = &bios_regs;
2286 
2287 	pool->base.res_cap = &res_cap_dcn3;
2288 
2289 	pool->base.funcs = &dcn30_res_pool_funcs;
2290 
2291 	/*************************************************
2292 	 *  Resource + asic cap harcoding                *
2293 	 *************************************************/
2294 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2295 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2296 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2297 	dc->caps.max_downscale_ratio = 600;
2298 	dc->caps.i2c_speed_in_khz = 100;
2299 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2300 	dc->caps.max_cursor_size = 256;
2301 	dc->caps.min_horizontal_blanking_period = 80;
2302 	dc->caps.dmdata_alloc_size = 2048;
2303 	dc->caps.mall_size_per_mem_channel = 8;
2304 	/* total size = mall per channel * num channels * 1024 * 1024 */
2305 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2306 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2307 
2308 	dc->caps.max_slave_planes = 2;
2309 	dc->caps.max_slave_yuv_planes = 2;
2310 	dc->caps.max_slave_rgb_planes = 2;
2311 	dc->caps.post_blend_color_processing = true;
2312 	dc->caps.force_dp_tps4_for_cp2520 = true;
2313 	dc->caps.extended_aux_timeout_support = true;
2314 	dc->caps.dmcub_support = true;
2315 
2316 	/* Color pipeline capabilities */
2317 	dc->caps.color.dpp.dcn_arch = 1;
2318 	dc->caps.color.dpp.input_lut_shared = 0;
2319 	dc->caps.color.dpp.icsc = 1;
2320 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2321 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2322 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2323 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2324 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2325 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2326 	dc->caps.color.dpp.post_csc = 1;
2327 	dc->caps.color.dpp.gamma_corr = 1;
2328 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2329 
2330 	dc->caps.color.dpp.hw_3d_lut = 1;
2331 	dc->caps.color.dpp.ogam_ram = 1;
2332 	// no OGAM ROM on DCN3
2333 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2334 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2335 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2336 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2337 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2338 	dc->caps.color.dpp.ocsc = 0;
2339 
2340 	dc->caps.color.mpc.gamut_remap = 1;
2341 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2342 	dc->caps.color.mpc.ogam_ram = 1;
2343 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2344 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2345 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2346 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2347 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2348 	dc->caps.color.mpc.ocsc = 1;
2349 
2350 	dc->caps.dp_hdmi21_pcon_support = true;
2351 
2352 	/* read VBIOS LTTPR caps */
2353 	{
2354 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2355 			enum bp_result bp_query_result;
2356 			uint8_t is_vbios_lttpr_enable = 0;
2357 
2358 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2359 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2360 		}
2361 
2362 		if (ctx->dc_bios->funcs->get_lttpr_interop) {
2363 			enum bp_result bp_query_result;
2364 			uint8_t is_vbios_interop_enabled = 0;
2365 
2366 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2367 					&is_vbios_interop_enabled);
2368 			dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2369 		}
2370 	}
2371 
2372 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2373 		dc->debug = debug_defaults_drv;
2374 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2375 		dc->debug = debug_defaults_diags;
2376 	} else
2377 		dc->debug = debug_defaults_diags;
2378 	// Init the vm_helper
2379 	if (dc->vm_helper)
2380 		vm_helper_init(dc->vm_helper, 16);
2381 
2382 	/*************************************************
2383 	 *  Create resources                             *
2384 	 *************************************************/
2385 
2386 	/* Clock Sources for Pixel Clock*/
2387 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2388 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2389 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2390 				&clk_src_regs[0], false);
2391 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2392 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2393 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2394 				&clk_src_regs[1], false);
2395 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2396 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2397 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2398 				&clk_src_regs[2], false);
2399 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2400 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2401 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2402 				&clk_src_regs[3], false);
2403 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2404 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2405 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2406 				&clk_src_regs[4], false);
2407 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2408 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2409 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2410 				&clk_src_regs[5], false);
2411 
2412 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2413 
2414 	/* todo: not reuse phy_pll registers */
2415 	pool->base.dp_clock_source =
2416 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2417 				CLOCK_SOURCE_ID_DP_DTO,
2418 				&clk_src_regs[0], true);
2419 
2420 	for (i = 0; i < pool->base.clk_src_count; i++) {
2421 		if (pool->base.clock_sources[i] == NULL) {
2422 			dm_error("DC: failed to create clock sources!\n");
2423 			BREAK_TO_DEBUGGER();
2424 			goto create_fail;
2425 		}
2426 	}
2427 
2428 	/* DCCG */
2429 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2430 	if (pool->base.dccg == NULL) {
2431 		dm_error("DC: failed to create dccg!\n");
2432 		BREAK_TO_DEBUGGER();
2433 		goto create_fail;
2434 	}
2435 
2436 	/* PP Lib and SMU interfaces */
2437 	init_soc_bounding_box(dc, pool);
2438 
2439 	num_pipes = dcn3_0_ip.max_num_dpp;
2440 
2441 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2442 		if (pipe_fuses & 1 << i)
2443 			num_pipes--;
2444 
2445 	dcn3_0_ip.max_num_dpp = num_pipes;
2446 	dcn3_0_ip.max_num_otg = num_pipes;
2447 
2448 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2449 
2450 	/* IRQ */
2451 	init_data.ctx = dc->ctx;
2452 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2453 	if (!pool->base.irqs)
2454 		goto create_fail;
2455 
2456 	/* HUBBUB */
2457 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2458 	if (pool->base.hubbub == NULL) {
2459 		BREAK_TO_DEBUGGER();
2460 		dm_error("DC: failed to create hubbub!\n");
2461 		goto create_fail;
2462 	}
2463 
2464 	/* HUBPs, DPPs, OPPs and TGs */
2465 	for (i = 0; i < pool->base.pipe_count; i++) {
2466 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2467 		if (pool->base.hubps[i] == NULL) {
2468 			BREAK_TO_DEBUGGER();
2469 			dm_error(
2470 				"DC: failed to create hubps!\n");
2471 			goto create_fail;
2472 		}
2473 
2474 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2475 		if (pool->base.dpps[i] == NULL) {
2476 			BREAK_TO_DEBUGGER();
2477 			dm_error(
2478 				"DC: failed to create dpps!\n");
2479 			goto create_fail;
2480 		}
2481 	}
2482 
2483 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2484 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2485 		if (pool->base.opps[i] == NULL) {
2486 			BREAK_TO_DEBUGGER();
2487 			dm_error(
2488 				"DC: failed to create output pixel processor!\n");
2489 			goto create_fail;
2490 		}
2491 	}
2492 
2493 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2494 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2495 				ctx, i);
2496 		if (pool->base.timing_generators[i] == NULL) {
2497 			BREAK_TO_DEBUGGER();
2498 			dm_error("DC: failed to create tg!\n");
2499 			goto create_fail;
2500 		}
2501 	}
2502 	pool->base.timing_generator_count = i;
2503 	/* PSR */
2504 	pool->base.psr = dmub_psr_create(ctx);
2505 
2506 	if (pool->base.psr == NULL) {
2507 		dm_error("DC: failed to create PSR obj!\n");
2508 		BREAK_TO_DEBUGGER();
2509 		goto create_fail;
2510 	}
2511 
2512 	/* ABM */
2513 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2514 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2515 				&abm_regs[i],
2516 				&abm_shift,
2517 				&abm_mask);
2518 		if (pool->base.multiple_abms[i] == NULL) {
2519 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2520 			BREAK_TO_DEBUGGER();
2521 			goto create_fail;
2522 		}
2523 	}
2524 	/* MPC and DSC */
2525 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2526 	if (pool->base.mpc == NULL) {
2527 		BREAK_TO_DEBUGGER();
2528 		dm_error("DC: failed to create mpc!\n");
2529 		goto create_fail;
2530 	}
2531 
2532 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2533 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2534 		if (pool->base.dscs[i] == NULL) {
2535 			BREAK_TO_DEBUGGER();
2536 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2537 			goto create_fail;
2538 		}
2539 	}
2540 
2541 	/* DWB and MMHUBBUB */
2542 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2543 		BREAK_TO_DEBUGGER();
2544 		dm_error("DC: failed to create dwbc!\n");
2545 		goto create_fail;
2546 	}
2547 
2548 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2549 		BREAK_TO_DEBUGGER();
2550 		dm_error("DC: failed to create mcif_wb!\n");
2551 		goto create_fail;
2552 	}
2553 
2554 	/* AUX and I2C */
2555 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2556 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2557 		if (pool->base.engines[i] == NULL) {
2558 			BREAK_TO_DEBUGGER();
2559 			dm_error(
2560 				"DC:failed to create aux engine!!\n");
2561 			goto create_fail;
2562 		}
2563 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2564 		if (pool->base.hw_i2cs[i] == NULL) {
2565 			BREAK_TO_DEBUGGER();
2566 			dm_error(
2567 				"DC:failed to create hw i2c!!\n");
2568 			goto create_fail;
2569 		}
2570 		pool->base.sw_i2cs[i] = NULL;
2571 	}
2572 
2573 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2574 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2575 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2576 			&res_create_funcs : &res_create_maximus_funcs)))
2577 		goto create_fail;
2578 
2579 	/* HW Sequencer and Plane caps */
2580 	dcn30_hw_sequencer_construct(dc);
2581 
2582 	dc->caps.max_planes =  pool->base.pipe_count;
2583 
2584 	for (i = 0; i < dc->caps.max_planes; ++i)
2585 		dc->caps.planes[i] = plane_cap;
2586 
2587 	dc->cap_funcs = cap_funcs;
2588 
2589 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2590 		ddc_init_data.ctx = dc->ctx;
2591 		ddc_init_data.link = NULL;
2592 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2593 		ddc_init_data.id.enum_id = 0;
2594 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2595 		pool->base.oem_device = link_create_ddc_service(&ddc_init_data);
2596 	} else {
2597 		pool->base.oem_device = NULL;
2598 	}
2599 
2600 	DC_FP_END();
2601 
2602 	return true;
2603 
2604 create_fail:
2605 
2606 	DC_FP_END();
2607 	dcn30_resource_destruct(pool);
2608 
2609 	return false;
2610 }
2611 
2612 struct resource_pool *dcn30_create_resource_pool(
2613 		const struct dc_init_data *init_data,
2614 		struct dc *dc)
2615 {
2616 	struct dcn30_resource_pool *pool =
2617 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2618 
2619 	if (!pool)
2620 		return NULL;
2621 
2622 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2623 		return &pool->base;
2624 
2625 	BREAK_TO_DEBUGGER();
2626 	kfree(pool);
2627 	return NULL;
2628 }
2629