1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "link.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dpcs/dpcs_3_0_0_offset.h" 76 #include "dpcs/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/dcn30_fpu.h" 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 #include "amdgpu_socbb.h" 92 #include "dc_dmub_srv.h" 93 94 #define DC_LOGGER_INIT(logger) 95 96 enum dcn30_clk_src_array_id { 97 DCN30_CLK_SRC_PLL0, 98 DCN30_CLK_SRC_PLL1, 99 DCN30_CLK_SRC_PLL2, 100 DCN30_CLK_SRC_PLL3, 101 DCN30_CLK_SRC_PLL4, 102 DCN30_CLK_SRC_PLL5, 103 DCN30_CLK_SRC_TOTAL 104 }; 105 106 /* begin ********************* 107 * macros to expend register list macro defined in HW object header file 108 */ 109 110 /* DCN */ 111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 112 113 #define BASE(seg) BASE_INNER(seg) 114 115 #define SR(reg_name)\ 116 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 117 mm ## reg_name 118 119 #define SRI(reg_name, block, id)\ 120 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 121 mm ## block ## id ## _ ## reg_name 122 123 #define SRI2(reg_name, block, id)\ 124 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 125 mm ## reg_name 126 127 #define SRIR(var_name, reg_name, block, id)\ 128 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 129 mm ## block ## id ## _ ## reg_name 130 131 #define SRII(reg_name, block, id)\ 132 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 133 mm ## block ## id ## _ ## reg_name 134 135 #define SRII_MPC_RMU(reg_name, block, id)\ 136 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRII_DWB(reg_name, temp_name, block, id)\ 140 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 141 mm ## block ## id ## _ ## temp_name 142 143 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 144 .field_name = reg_name ## __ ## field_name ## post_fix 145 146 #define DCCG_SRII(reg_name, block, id)\ 147 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 148 mm ## block ## id ## _ ## reg_name 149 150 #define VUPDATE_SRII(reg_name, block, id)\ 151 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 152 mm ## reg_name ## _ ## block ## id 153 154 /* NBIO */ 155 #define NBIO_BASE_INNER(seg) \ 156 NBIO_BASE__INST0_SEG ## seg 157 158 #define NBIO_BASE(seg) \ 159 NBIO_BASE_INNER(seg) 160 161 #define NBIO_SR(reg_name)\ 162 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 163 mm ## reg_name 164 165 /* MMHUB */ 166 #define MMHUB_BASE_INNER(seg) \ 167 MMHUB_BASE__INST0_SEG ## seg 168 169 #define MMHUB_BASE(seg) \ 170 MMHUB_BASE_INNER(seg) 171 172 #define MMHUB_SR(reg_name)\ 173 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 174 mmMM ## reg_name 175 176 /* CLOCK */ 177 #define CLK_BASE_INNER(seg) \ 178 CLK_BASE__INST0_SEG ## seg 179 180 #define CLK_BASE(seg) \ 181 CLK_BASE_INNER(seg) 182 183 #define CLK_SRI(reg_name, block, inst)\ 184 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 185 mm ## block ## _ ## inst ## _ ## reg_name 186 187 188 static const struct bios_registers bios_regs = { 189 NBIO_SR(BIOS_SCRATCH_3), 190 NBIO_SR(BIOS_SCRATCH_6) 191 }; 192 193 #define clk_src_regs(index, pllid)\ 194 [index] = {\ 195 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 196 } 197 198 static const struct dce110_clk_src_regs clk_src_regs[] = { 199 clk_src_regs(0, A), 200 clk_src_regs(1, B), 201 clk_src_regs(2, C), 202 clk_src_regs(3, D), 203 clk_src_regs(4, E), 204 clk_src_regs(5, F) 205 }; 206 207 static const struct dce110_clk_src_shift cs_shift = { 208 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 209 }; 210 211 static const struct dce110_clk_src_mask cs_mask = { 212 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 213 }; 214 215 #define abm_regs(id)\ 216 [id] = {\ 217 ABM_DCN30_REG_LIST(id)\ 218 } 219 220 static const struct dce_abm_registers abm_regs[] = { 221 abm_regs(0), 222 abm_regs(1), 223 abm_regs(2), 224 abm_regs(3), 225 abm_regs(4), 226 abm_regs(5), 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN30(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN30(_MASK) 235 }; 236 237 238 239 #define audio_regs(id)\ 240 [id] = {\ 241 AUD_COMMON_REG_LIST(id)\ 242 } 243 244 static const struct dce_audio_registers audio_regs[] = { 245 audio_regs(0), 246 audio_regs(1), 247 audio_regs(2), 248 audio_regs(3), 249 audio_regs(4), 250 audio_regs(5), 251 audio_regs(6) 252 }; 253 254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 256 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 257 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 258 259 static const struct dce_audio_shift audio_shift = { 260 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 261 }; 262 263 static const struct dce_audio_mask audio_mask = { 264 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 265 }; 266 267 #define vpg_regs(id)\ 268 [id] = {\ 269 VPG_DCN3_REG_LIST(id)\ 270 } 271 272 static const struct dcn30_vpg_registers vpg_regs[] = { 273 vpg_regs(0), 274 vpg_regs(1), 275 vpg_regs(2), 276 vpg_regs(3), 277 vpg_regs(4), 278 vpg_regs(5), 279 vpg_regs(6), 280 }; 281 282 static const struct dcn30_vpg_shift vpg_shift = { 283 DCN3_VPG_MASK_SH_LIST(__SHIFT) 284 }; 285 286 static const struct dcn30_vpg_mask vpg_mask = { 287 DCN3_VPG_MASK_SH_LIST(_MASK) 288 }; 289 290 #define afmt_regs(id)\ 291 [id] = {\ 292 AFMT_DCN3_REG_LIST(id)\ 293 } 294 295 static const struct dcn30_afmt_registers afmt_regs[] = { 296 afmt_regs(0), 297 afmt_regs(1), 298 afmt_regs(2), 299 afmt_regs(3), 300 afmt_regs(4), 301 afmt_regs(5), 302 afmt_regs(6), 303 }; 304 305 static const struct dcn30_afmt_shift afmt_shift = { 306 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 307 }; 308 309 static const struct dcn30_afmt_mask afmt_mask = { 310 DCN3_AFMT_MASK_SH_LIST(_MASK) 311 }; 312 313 #define stream_enc_regs(id)\ 314 [id] = {\ 315 SE_DCN3_REG_LIST(id)\ 316 } 317 318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 319 stream_enc_regs(0), 320 stream_enc_regs(1), 321 stream_enc_regs(2), 322 stream_enc_regs(3), 323 stream_enc_regs(4), 324 stream_enc_regs(5) 325 }; 326 327 static const struct dcn10_stream_encoder_shift se_shift = { 328 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 329 }; 330 331 static const struct dcn10_stream_encoder_mask se_mask = { 332 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 333 }; 334 335 336 #define aux_regs(id)\ 337 [id] = {\ 338 DCN2_AUX_REG_LIST(id)\ 339 } 340 341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 342 aux_regs(0), 343 aux_regs(1), 344 aux_regs(2), 345 aux_regs(3), 346 aux_regs(4), 347 aux_regs(5) 348 }; 349 350 #define hpd_regs(id)\ 351 [id] = {\ 352 HPD_REG_LIST(id)\ 353 } 354 355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 356 hpd_regs(0), 357 hpd_regs(1), 358 hpd_regs(2), 359 hpd_regs(3), 360 hpd_regs(4), 361 hpd_regs(5) 362 }; 363 364 #define link_regs(id, phyid)\ 365 [id] = {\ 366 LE_DCN3_REG_LIST(id), \ 367 UNIPHY_DCN2_REG_LIST(phyid), \ 368 DPCS_DCN2_REG_LIST(id), \ 369 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 370 } 371 372 static const struct dce110_aux_registers_shift aux_shift = { 373 DCN_AUX_MASK_SH_LIST(__SHIFT) 374 }; 375 376 static const struct dce110_aux_registers_mask aux_mask = { 377 DCN_AUX_MASK_SH_LIST(_MASK) 378 }; 379 380 static const struct dcn10_link_enc_registers link_enc_regs[] = { 381 link_regs(0, A), 382 link_regs(1, B), 383 link_regs(2, C), 384 link_regs(3, D), 385 link_regs(4, E), 386 link_regs(5, F) 387 }; 388 389 static const struct dcn10_link_enc_shift le_shift = { 390 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 391 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 392 }; 393 394 static const struct dcn10_link_enc_mask le_mask = { 395 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 396 DPCS_DCN2_MASK_SH_LIST(_MASK) 397 }; 398 399 400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 401 { DCN_PANEL_CNTL_REG_LIST() } 402 }; 403 404 static const struct dce_panel_cntl_shift panel_cntl_shift = { 405 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 406 }; 407 408 static const struct dce_panel_cntl_mask panel_cntl_mask = { 409 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 410 }; 411 412 #define dpp_regs(id)\ 413 [id] = {\ 414 DPP_REG_LIST_DCN30(id),\ 415 } 416 417 static const struct dcn3_dpp_registers dpp_regs[] = { 418 dpp_regs(0), 419 dpp_regs(1), 420 dpp_regs(2), 421 dpp_regs(3), 422 dpp_regs(4), 423 dpp_regs(5), 424 }; 425 426 static const struct dcn3_dpp_shift tf_shift = { 427 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 428 }; 429 430 static const struct dcn3_dpp_mask tf_mask = { 431 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 432 }; 433 434 #define opp_regs(id)\ 435 [id] = {\ 436 OPP_REG_LIST_DCN30(id),\ 437 } 438 439 static const struct dcn20_opp_registers opp_regs[] = { 440 opp_regs(0), 441 opp_regs(1), 442 opp_regs(2), 443 opp_regs(3), 444 opp_regs(4), 445 opp_regs(5) 446 }; 447 448 static const struct dcn20_opp_shift opp_shift = { 449 OPP_MASK_SH_LIST_DCN20(__SHIFT) 450 }; 451 452 static const struct dcn20_opp_mask opp_mask = { 453 OPP_MASK_SH_LIST_DCN20(_MASK) 454 }; 455 456 #define aux_engine_regs(id)\ 457 [id] = {\ 458 AUX_COMMON_REG_LIST0(id), \ 459 .AUXN_IMPCAL = 0, \ 460 .AUXP_IMPCAL = 0, \ 461 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 462 } 463 464 static const struct dce110_aux_registers aux_engine_regs[] = { 465 aux_engine_regs(0), 466 aux_engine_regs(1), 467 aux_engine_regs(2), 468 aux_engine_regs(3), 469 aux_engine_regs(4), 470 aux_engine_regs(5) 471 }; 472 473 #define dwbc_regs_dcn3(id)\ 474 [id] = {\ 475 DWBC_COMMON_REG_LIST_DCN30(id),\ 476 } 477 478 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 479 dwbc_regs_dcn3(0), 480 }; 481 482 static const struct dcn30_dwbc_shift dwbc30_shift = { 483 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 484 }; 485 486 static const struct dcn30_dwbc_mask dwbc30_mask = { 487 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 488 }; 489 490 #define mcif_wb_regs_dcn3(id)\ 491 [id] = {\ 492 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 493 } 494 495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 496 mcif_wb_regs_dcn3(0) 497 }; 498 499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 500 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 501 }; 502 503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 504 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 505 }; 506 507 #define dsc_regsDCN20(id)\ 508 [id] = {\ 509 DSC_REG_LIST_DCN20(id)\ 510 } 511 512 static const struct dcn20_dsc_registers dsc_regs[] = { 513 dsc_regsDCN20(0), 514 dsc_regsDCN20(1), 515 dsc_regsDCN20(2), 516 dsc_regsDCN20(3), 517 dsc_regsDCN20(4), 518 dsc_regsDCN20(5) 519 }; 520 521 static const struct dcn20_dsc_shift dsc_shift = { 522 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 523 }; 524 525 static const struct dcn20_dsc_mask dsc_mask = { 526 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 527 }; 528 529 static const struct dcn30_mpc_registers mpc_regs = { 530 MPC_REG_LIST_DCN3_0(0), 531 MPC_REG_LIST_DCN3_0(1), 532 MPC_REG_LIST_DCN3_0(2), 533 MPC_REG_LIST_DCN3_0(3), 534 MPC_REG_LIST_DCN3_0(4), 535 MPC_REG_LIST_DCN3_0(5), 536 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 537 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 538 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 539 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 540 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 541 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 542 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 543 MPC_RMU_REG_LIST_DCN3AG(0), 544 MPC_RMU_REG_LIST_DCN3AG(1), 545 MPC_RMU_REG_LIST_DCN3AG(2), 546 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 547 }; 548 549 static const struct dcn30_mpc_shift mpc_shift = { 550 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 551 }; 552 553 static const struct dcn30_mpc_mask mpc_mask = { 554 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 555 }; 556 557 #define optc_regs(id)\ 558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 559 560 561 static const struct dcn_optc_registers optc_regs[] = { 562 optc_regs(0), 563 optc_regs(1), 564 optc_regs(2), 565 optc_regs(3), 566 optc_regs(4), 567 optc_regs(5) 568 }; 569 570 static const struct dcn_optc_shift optc_shift = { 571 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 572 }; 573 574 static const struct dcn_optc_mask optc_mask = { 575 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 576 }; 577 578 #define hubp_regs(id)\ 579 [id] = {\ 580 HUBP_REG_LIST_DCN30(id)\ 581 } 582 583 static const struct dcn_hubp2_registers hubp_regs[] = { 584 hubp_regs(0), 585 hubp_regs(1), 586 hubp_regs(2), 587 hubp_regs(3), 588 hubp_regs(4), 589 hubp_regs(5) 590 }; 591 592 static const struct dcn_hubp2_shift hubp_shift = { 593 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 594 }; 595 596 static const struct dcn_hubp2_mask hubp_mask = { 597 HUBP_MASK_SH_LIST_DCN30(_MASK) 598 }; 599 600 static const struct dcn_hubbub_registers hubbub_reg = { 601 HUBBUB_REG_LIST_DCN30(0) 602 }; 603 604 static const struct dcn_hubbub_shift hubbub_shift = { 605 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 606 }; 607 608 static const struct dcn_hubbub_mask hubbub_mask = { 609 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 610 }; 611 612 static const struct dccg_registers dccg_regs = { 613 DCCG_REG_LIST_DCN30() 614 }; 615 616 static const struct dccg_shift dccg_shift = { 617 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 618 }; 619 620 static const struct dccg_mask dccg_mask = { 621 DCCG_MASK_SH_LIST_DCN3(_MASK) 622 }; 623 624 static const struct dce_hwseq_registers hwseq_reg = { 625 HWSEQ_DCN30_REG_LIST() 626 }; 627 628 static const struct dce_hwseq_shift hwseq_shift = { 629 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 630 }; 631 632 static const struct dce_hwseq_mask hwseq_mask = { 633 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 634 }; 635 #define vmid_regs(id)\ 636 [id] = {\ 637 DCN20_VMID_REG_LIST(id)\ 638 } 639 640 static const struct dcn_vmid_registers vmid_regs[] = { 641 vmid_regs(0), 642 vmid_regs(1), 643 vmid_regs(2), 644 vmid_regs(3), 645 vmid_regs(4), 646 vmid_regs(5), 647 vmid_regs(6), 648 vmid_regs(7), 649 vmid_regs(8), 650 vmid_regs(9), 651 vmid_regs(10), 652 vmid_regs(11), 653 vmid_regs(12), 654 vmid_regs(13), 655 vmid_regs(14), 656 vmid_regs(15) 657 }; 658 659 static const struct dcn20_vmid_shift vmid_shifts = { 660 DCN20_VMID_MASK_SH_LIST(__SHIFT) 661 }; 662 663 static const struct dcn20_vmid_mask vmid_masks = { 664 DCN20_VMID_MASK_SH_LIST(_MASK) 665 }; 666 667 static const struct resource_caps res_cap_dcn3 = { 668 .num_timing_generator = 6, 669 .num_opp = 6, 670 .num_video_plane = 6, 671 .num_audio = 6, 672 .num_stream_encoder = 6, 673 .num_pll = 6, 674 .num_dwb = 1, 675 .num_ddc = 6, 676 .num_vmid = 16, 677 .num_mpc_3dlut = 3, 678 .num_dsc = 6, 679 }; 680 681 static const struct dc_plane_cap plane_cap = { 682 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 683 .per_pixel_alpha = true, 684 685 .pixel_format_support = { 686 .argb8888 = true, 687 .nv12 = true, 688 .fp16 = true, 689 .p010 = true, 690 .ayuv = false, 691 }, 692 693 .max_upscale_factor = { 694 .argb8888 = 16000, 695 .nv12 = 16000, 696 .fp16 = 16000 697 }, 698 699 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 700 .max_downscale_factor = { 701 .argb8888 = 167, 702 .nv12 = 167, 703 .fp16 = 167 704 } 705 }; 706 707 static const struct dc_debug_options debug_defaults_drv = { 708 .disable_dmcu = true, //No DMCU on DCN30 709 .force_abm_enable = false, 710 .timing_trace = false, 711 .clock_trace = true, 712 .disable_pplib_clock_request = true, 713 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 714 .force_single_disp_pipe_split = false, 715 .disable_dcc = DCC_ENABLE, 716 .vsr_support = true, 717 .performance_trace = false, 718 .max_downscale_src_width = 7680,/*upto 8K*/ 719 .disable_pplib_wm_range = false, 720 .scl_reset_length10 = true, 721 .sanity_checks = false, 722 .underflow_assert_delay_us = 0xFFFFFFFF, 723 .dwb_fi_phase = -1, // -1 = disable, 724 .dmub_command_table = true, 725 .use_max_lb = true, 726 .exit_idle_opt_for_cursor_updates = true 727 }; 728 729 static const struct dc_debug_options debug_defaults_diags = { 730 .disable_dmcu = true, //No dmcu on DCN30 731 .force_abm_enable = false, 732 .timing_trace = true, 733 .clock_trace = true, 734 .disable_dpp_power_gate = true, 735 .disable_hubp_power_gate = true, 736 .disable_clock_gate = true, 737 .disable_pplib_clock_request = true, 738 .disable_pplib_wm_range = true, 739 .disable_stutter = false, 740 .scl_reset_length10 = true, 741 .dwb_fi_phase = -1, // -1 = disable 742 .dmub_command_table = true, 743 .enable_tri_buf = true, 744 .use_max_lb = true 745 }; 746 747 static const struct dc_panel_config panel_config_defaults = { 748 .psr = { 749 .disable_psr = false, 750 .disallow_psrsu = false, 751 }, 752 }; 753 754 static void dcn30_dpp_destroy(struct dpp **dpp) 755 { 756 kfree(TO_DCN20_DPP(*dpp)); 757 *dpp = NULL; 758 } 759 760 static struct dpp *dcn30_dpp_create( 761 struct dc_context *ctx, 762 uint32_t inst) 763 { 764 struct dcn3_dpp *dpp = 765 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 766 767 if (!dpp) 768 return NULL; 769 770 if (dpp3_construct(dpp, ctx, inst, 771 &dpp_regs[inst], &tf_shift, &tf_mask)) 772 return &dpp->base; 773 774 BREAK_TO_DEBUGGER(); 775 kfree(dpp); 776 return NULL; 777 } 778 779 static struct output_pixel_processor *dcn30_opp_create( 780 struct dc_context *ctx, uint32_t inst) 781 { 782 struct dcn20_opp *opp = 783 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 784 785 if (!opp) { 786 BREAK_TO_DEBUGGER(); 787 return NULL; 788 } 789 790 dcn20_opp_construct(opp, ctx, inst, 791 &opp_regs[inst], &opp_shift, &opp_mask); 792 return &opp->base; 793 } 794 795 static struct dce_aux *dcn30_aux_engine_create( 796 struct dc_context *ctx, 797 uint32_t inst) 798 { 799 struct aux_engine_dce110 *aux_engine = 800 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 801 802 if (!aux_engine) 803 return NULL; 804 805 dce110_aux_engine_construct(aux_engine, ctx, inst, 806 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 807 &aux_engine_regs[inst], 808 &aux_mask, 809 &aux_shift, 810 ctx->dc->caps.extended_aux_timeout_support); 811 812 return &aux_engine->base; 813 } 814 815 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 816 817 static const struct dce_i2c_registers i2c_hw_regs[] = { 818 i2c_inst_regs(1), 819 i2c_inst_regs(2), 820 i2c_inst_regs(3), 821 i2c_inst_regs(4), 822 i2c_inst_regs(5), 823 i2c_inst_regs(6), 824 }; 825 826 static const struct dce_i2c_shift i2c_shifts = { 827 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 828 }; 829 830 static const struct dce_i2c_mask i2c_masks = { 831 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 832 }; 833 834 static struct dce_i2c_hw *dcn30_i2c_hw_create( 835 struct dc_context *ctx, 836 uint32_t inst) 837 { 838 struct dce_i2c_hw *dce_i2c_hw = 839 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 840 841 if (!dce_i2c_hw) 842 return NULL; 843 844 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 845 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 846 847 return dce_i2c_hw; 848 } 849 850 static struct mpc *dcn30_mpc_create( 851 struct dc_context *ctx, 852 int num_mpcc, 853 int num_rmu) 854 { 855 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 856 GFP_KERNEL); 857 858 if (!mpc30) 859 return NULL; 860 861 dcn30_mpc_construct(mpc30, ctx, 862 &mpc_regs, 863 &mpc_shift, 864 &mpc_mask, 865 num_mpcc, 866 num_rmu); 867 868 return &mpc30->base; 869 } 870 871 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 872 { 873 int i; 874 875 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 876 GFP_KERNEL); 877 878 if (!hubbub3) 879 return NULL; 880 881 hubbub3_construct(hubbub3, ctx, 882 &hubbub_reg, 883 &hubbub_shift, 884 &hubbub_mask); 885 886 887 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 888 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 889 890 vmid->ctx = ctx; 891 892 vmid->regs = &vmid_regs[i]; 893 vmid->shifts = &vmid_shifts; 894 vmid->masks = &vmid_masks; 895 } 896 897 return &hubbub3->base; 898 } 899 900 static struct timing_generator *dcn30_timing_generator_create( 901 struct dc_context *ctx, 902 uint32_t instance) 903 { 904 struct optc *tgn10 = 905 kzalloc(sizeof(struct optc), GFP_KERNEL); 906 907 if (!tgn10) 908 return NULL; 909 910 tgn10->base.inst = instance; 911 tgn10->base.ctx = ctx; 912 913 tgn10->tg_regs = &optc_regs[instance]; 914 tgn10->tg_shift = &optc_shift; 915 tgn10->tg_mask = &optc_mask; 916 917 dcn30_timing_generator_init(tgn10); 918 919 return &tgn10->base; 920 } 921 922 static const struct encoder_feature_support link_enc_feature = { 923 .max_hdmi_deep_color = COLOR_DEPTH_121212, 924 .max_hdmi_pixel_clock = 600000, 925 .hdmi_ycbcr420_supported = true, 926 .dp_ycbcr420_supported = true, 927 .fec_supported = true, 928 .flags.bits.IS_HBR2_CAPABLE = true, 929 .flags.bits.IS_HBR3_CAPABLE = true, 930 .flags.bits.IS_TPS3_CAPABLE = true, 931 .flags.bits.IS_TPS4_CAPABLE = true 932 }; 933 934 static struct link_encoder *dcn30_link_encoder_create( 935 struct dc_context *ctx, 936 const struct encoder_init_data *enc_init_data) 937 { 938 struct dcn20_link_encoder *enc20 = 939 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 940 941 if (!enc20) 942 return NULL; 943 944 dcn30_link_encoder_construct(enc20, 945 enc_init_data, 946 &link_enc_feature, 947 &link_enc_regs[enc_init_data->transmitter], 948 &link_enc_aux_regs[enc_init_data->channel - 1], 949 &link_enc_hpd_regs[enc_init_data->hpd_source], 950 &le_shift, 951 &le_mask); 952 953 return &enc20->enc10.base; 954 } 955 956 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 957 { 958 struct dce_panel_cntl *panel_cntl = 959 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 960 961 if (!panel_cntl) 962 return NULL; 963 964 dce_panel_cntl_construct(panel_cntl, 965 init_data, 966 &panel_cntl_regs[init_data->inst], 967 &panel_cntl_shift, 968 &panel_cntl_mask); 969 970 return &panel_cntl->base; 971 } 972 973 static void read_dce_straps( 974 struct dc_context *ctx, 975 struct resource_straps *straps) 976 { 977 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 978 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 979 980 } 981 982 static struct audio *dcn30_create_audio( 983 struct dc_context *ctx, unsigned int inst) 984 { 985 return dce_audio_create(ctx, inst, 986 &audio_regs[inst], &audio_shift, &audio_mask); 987 } 988 989 static struct vpg *dcn30_vpg_create( 990 struct dc_context *ctx, 991 uint32_t inst) 992 { 993 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 994 995 if (!vpg3) 996 return NULL; 997 998 vpg3_construct(vpg3, ctx, inst, 999 &vpg_regs[inst], 1000 &vpg_shift, 1001 &vpg_mask); 1002 1003 return &vpg3->base; 1004 } 1005 1006 static struct afmt *dcn30_afmt_create( 1007 struct dc_context *ctx, 1008 uint32_t inst) 1009 { 1010 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1011 1012 if (!afmt3) 1013 return NULL; 1014 1015 afmt3_construct(afmt3, ctx, inst, 1016 &afmt_regs[inst], 1017 &afmt_shift, 1018 &afmt_mask); 1019 1020 return &afmt3->base; 1021 } 1022 1023 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, 1024 struct dc_context *ctx) 1025 { 1026 struct dcn10_stream_encoder *enc1; 1027 struct vpg *vpg; 1028 struct afmt *afmt; 1029 int vpg_inst; 1030 int afmt_inst; 1031 1032 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1033 if (eng_id <= ENGINE_ID_DIGF) { 1034 vpg_inst = eng_id; 1035 afmt_inst = eng_id; 1036 } else 1037 return NULL; 1038 1039 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1040 vpg = dcn30_vpg_create(ctx, vpg_inst); 1041 afmt = dcn30_afmt_create(ctx, afmt_inst); 1042 1043 if (!enc1 || !vpg || !afmt) { 1044 kfree(enc1); 1045 kfree(vpg); 1046 kfree(afmt); 1047 return NULL; 1048 } 1049 1050 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1051 eng_id, vpg, afmt, 1052 &stream_enc_regs[eng_id], 1053 &se_shift, &se_mask); 1054 1055 return &enc1->base; 1056 } 1057 1058 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) 1059 { 1060 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1061 1062 if (hws) { 1063 hws->ctx = ctx; 1064 hws->regs = &hwseq_reg; 1065 hws->shifts = &hwseq_shift; 1066 hws->masks = &hwseq_mask; 1067 } 1068 return hws; 1069 } 1070 static const struct resource_create_funcs res_create_funcs = { 1071 .read_dce_straps = read_dce_straps, 1072 .create_audio = dcn30_create_audio, 1073 .create_stream_encoder = dcn30_stream_encoder_create, 1074 .create_hwseq = dcn30_hwseq_create, 1075 }; 1076 1077 static const struct resource_create_funcs res_create_maximus_funcs = { 1078 .read_dce_straps = NULL, 1079 .create_audio = NULL, 1080 .create_stream_encoder = NULL, 1081 .create_hwseq = dcn30_hwseq_create, 1082 }; 1083 1084 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1085 { 1086 unsigned int i; 1087 1088 for (i = 0; i < pool->base.stream_enc_count; i++) { 1089 if (pool->base.stream_enc[i] != NULL) { 1090 if (pool->base.stream_enc[i]->vpg != NULL) { 1091 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1092 pool->base.stream_enc[i]->vpg = NULL; 1093 } 1094 if (pool->base.stream_enc[i]->afmt != NULL) { 1095 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1096 pool->base.stream_enc[i]->afmt = NULL; 1097 } 1098 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1099 pool->base.stream_enc[i] = NULL; 1100 } 1101 } 1102 1103 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1104 if (pool->base.dscs[i] != NULL) 1105 dcn20_dsc_destroy(&pool->base.dscs[i]); 1106 } 1107 1108 if (pool->base.mpc != NULL) { 1109 kfree(TO_DCN20_MPC(pool->base.mpc)); 1110 pool->base.mpc = NULL; 1111 } 1112 if (pool->base.hubbub != NULL) { 1113 kfree(pool->base.hubbub); 1114 pool->base.hubbub = NULL; 1115 } 1116 for (i = 0; i < pool->base.pipe_count; i++) { 1117 if (pool->base.dpps[i] != NULL) 1118 dcn30_dpp_destroy(&pool->base.dpps[i]); 1119 1120 if (pool->base.ipps[i] != NULL) 1121 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1122 1123 if (pool->base.hubps[i] != NULL) { 1124 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1125 pool->base.hubps[i] = NULL; 1126 } 1127 1128 if (pool->base.irqs != NULL) { 1129 dal_irq_service_destroy(&pool->base.irqs); 1130 } 1131 } 1132 1133 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1134 if (pool->base.engines[i] != NULL) 1135 dce110_engine_destroy(&pool->base.engines[i]); 1136 if (pool->base.hw_i2cs[i] != NULL) { 1137 kfree(pool->base.hw_i2cs[i]); 1138 pool->base.hw_i2cs[i] = NULL; 1139 } 1140 if (pool->base.sw_i2cs[i] != NULL) { 1141 kfree(pool->base.sw_i2cs[i]); 1142 pool->base.sw_i2cs[i] = NULL; 1143 } 1144 } 1145 1146 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1147 if (pool->base.opps[i] != NULL) 1148 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1149 } 1150 1151 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1152 if (pool->base.timing_generators[i] != NULL) { 1153 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1154 pool->base.timing_generators[i] = NULL; 1155 } 1156 } 1157 1158 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1159 if (pool->base.dwbc[i] != NULL) { 1160 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1161 pool->base.dwbc[i] = NULL; 1162 } 1163 if (pool->base.mcif_wb[i] != NULL) { 1164 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1165 pool->base.mcif_wb[i] = NULL; 1166 } 1167 } 1168 1169 for (i = 0; i < pool->base.audio_count; i++) { 1170 if (pool->base.audios[i]) 1171 dce_aud_destroy(&pool->base.audios[i]); 1172 } 1173 1174 for (i = 0; i < pool->base.clk_src_count; i++) { 1175 if (pool->base.clock_sources[i] != NULL) { 1176 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1177 pool->base.clock_sources[i] = NULL; 1178 } 1179 } 1180 1181 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1182 if (pool->base.mpc_lut[i] != NULL) { 1183 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1184 pool->base.mpc_lut[i] = NULL; 1185 } 1186 if (pool->base.mpc_shaper[i] != NULL) { 1187 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1188 pool->base.mpc_shaper[i] = NULL; 1189 } 1190 } 1191 1192 if (pool->base.dp_clock_source != NULL) { 1193 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1194 pool->base.dp_clock_source = NULL; 1195 } 1196 1197 for (i = 0; i < pool->base.pipe_count; i++) { 1198 if (pool->base.multiple_abms[i] != NULL) 1199 dce_abm_destroy(&pool->base.multiple_abms[i]); 1200 } 1201 1202 if (pool->base.psr != NULL) 1203 dmub_psr_destroy(&pool->base.psr); 1204 1205 if (pool->base.dccg != NULL) 1206 dcn_dccg_destroy(&pool->base.dccg); 1207 1208 if (pool->base.oem_device != NULL) { 1209 struct dc *dc = pool->base.oem_device->ctx->dc; 1210 1211 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1212 } 1213 } 1214 1215 static struct hubp *dcn30_hubp_create( 1216 struct dc_context *ctx, 1217 uint32_t inst) 1218 { 1219 struct dcn20_hubp *hubp2 = 1220 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1221 1222 if (!hubp2) 1223 return NULL; 1224 1225 if (hubp3_construct(hubp2, ctx, inst, 1226 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1227 return &hubp2->base; 1228 1229 BREAK_TO_DEBUGGER(); 1230 kfree(hubp2); 1231 return NULL; 1232 } 1233 1234 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1235 { 1236 int i; 1237 uint32_t pipe_count = pool->res_cap->num_dwb; 1238 1239 for (i = 0; i < pipe_count; i++) { 1240 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1241 GFP_KERNEL); 1242 1243 if (!dwbc30) { 1244 dm_error("DC: failed to create dwbc30!\n"); 1245 return false; 1246 } 1247 1248 dcn30_dwbc_construct(dwbc30, ctx, 1249 &dwbc30_regs[i], 1250 &dwbc30_shift, 1251 &dwbc30_mask, 1252 i); 1253 1254 pool->dwbc[i] = &dwbc30->base; 1255 } 1256 return true; 1257 } 1258 1259 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1260 { 1261 int i; 1262 uint32_t pipe_count = pool->res_cap->num_dwb; 1263 1264 for (i = 0; i < pipe_count; i++) { 1265 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1266 GFP_KERNEL); 1267 1268 if (!mcif_wb30) { 1269 dm_error("DC: failed to create mcif_wb30!\n"); 1270 return false; 1271 } 1272 1273 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1274 &mcif_wb30_regs[i], 1275 &mcif_wb30_shift, 1276 &mcif_wb30_mask, 1277 i); 1278 1279 pool->mcif_wb[i] = &mcif_wb30->base; 1280 } 1281 return true; 1282 } 1283 1284 static struct display_stream_compressor *dcn30_dsc_create( 1285 struct dc_context *ctx, uint32_t inst) 1286 { 1287 struct dcn20_dsc *dsc = 1288 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1289 1290 if (!dsc) { 1291 BREAK_TO_DEBUGGER(); 1292 return NULL; 1293 } 1294 1295 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1296 return &dsc->base; 1297 } 1298 1299 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1300 { 1301 1302 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1303 } 1304 1305 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1306 { 1307 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1308 1309 dcn30_resource_destruct(dcn30_pool); 1310 kfree(dcn30_pool); 1311 *pool = NULL; 1312 } 1313 1314 static struct clock_source *dcn30_clock_source_create( 1315 struct dc_context *ctx, 1316 struct dc_bios *bios, 1317 enum clock_source_id id, 1318 const struct dce110_clk_src_regs *regs, 1319 bool dp_clk_src) 1320 { 1321 struct dce110_clk_src *clk_src = 1322 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1323 1324 if (!clk_src) 1325 return NULL; 1326 1327 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1328 regs, &cs_shift, &cs_mask)) { 1329 clk_src->base.dp_clk_src = dp_clk_src; 1330 return &clk_src->base; 1331 } 1332 1333 kfree(clk_src); 1334 BREAK_TO_DEBUGGER(); 1335 return NULL; 1336 } 1337 1338 int dcn30_populate_dml_pipes_from_context( 1339 struct dc *dc, struct dc_state *context, 1340 display_e2e_pipe_params_st *pipes, 1341 bool fast_validate) 1342 { 1343 int i, pipe_cnt; 1344 struct resource_context *res_ctx = &context->res_ctx; 1345 1346 DC_FP_START(); 1347 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1348 DC_FP_END(); 1349 1350 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1351 if (!res_ctx->pipe_ctx[i].stream) 1352 continue; 1353 1354 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1355 dm_lb_16; 1356 } 1357 1358 return pipe_cnt; 1359 } 1360 1361 void dcn30_populate_dml_writeback_from_context( 1362 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1363 { 1364 DC_FP_START(); 1365 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); 1366 DC_FP_END(); 1367 } 1368 1369 unsigned int dcn30_calc_max_scaled_time( 1370 unsigned int time_per_pixel, 1371 enum mmhubbub_wbif_mode mode, 1372 unsigned int urgent_watermark) 1373 { 1374 unsigned int time_per_byte = 0; 1375 unsigned int total_free_entry = 0xb40; 1376 unsigned int buf_lh_capability; 1377 unsigned int max_scaled_time; 1378 1379 if (mode == PACKED_444) /* packed mode 32 bpp */ 1380 time_per_byte = time_per_pixel/4; 1381 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1382 time_per_byte = time_per_pixel/8; 1383 1384 if (time_per_byte == 0) 1385 time_per_byte = 1; 1386 1387 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1388 max_scaled_time = buf_lh_capability - urgent_watermark; 1389 return max_scaled_time; 1390 } 1391 1392 void dcn30_set_mcif_arb_params( 1393 struct dc *dc, 1394 struct dc_state *context, 1395 display_e2e_pipe_params_st *pipes, 1396 int pipe_cnt) 1397 { 1398 enum mmhubbub_wbif_mode wbif_mode; 1399 struct display_mode_lib *dml = &context->bw_ctx.dml; 1400 struct mcif_arb_params *wb_arb_params; 1401 int i, j, dwb_pipe; 1402 1403 /* Writeback MCIF_WB arbitration parameters */ 1404 dwb_pipe = 0; 1405 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1406 1407 if (!context->res_ctx.pipe_ctx[i].stream) 1408 continue; 1409 1410 for (j = 0; j < MAX_DWB_PIPES; j++) { 1411 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1412 1413 if (writeback_info->wb_enabled == false) 1414 continue; 1415 1416 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1417 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1418 1419 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1420 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1421 wbif_mode = PACKED_444_FP16; 1422 else 1423 wbif_mode = PACKED_444; 1424 1425 DC_FP_START(); 1426 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); 1427 DC_FP_END(); 1428 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1429 wb_arb_params->slice_lines = 32; 1430 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1431 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1432 wbif_mode, 1433 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1434 1435 dwb_pipe++; 1436 1437 if (dwb_pipe >= MAX_DWB_PIPES) 1438 return; 1439 } 1440 if (dwb_pipe >= MAX_DWB_PIPES) 1441 return; 1442 } 1443 1444 } 1445 1446 static struct dc_cap_funcs cap_funcs = { 1447 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1448 }; 1449 1450 bool dcn30_acquire_post_bldn_3dlut( 1451 struct resource_context *res_ctx, 1452 const struct resource_pool *pool, 1453 int mpcc_id, 1454 struct dc_3dlut **lut, 1455 struct dc_transfer_func **shaper) 1456 { 1457 int i; 1458 bool ret = false; 1459 union dc_3dlut_state *state; 1460 1461 ASSERT(*lut == NULL && *shaper == NULL); 1462 *lut = NULL; 1463 *shaper = NULL; 1464 1465 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1466 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1467 *lut = pool->mpc_lut[i]; 1468 *shaper = pool->mpc_shaper[i]; 1469 state = &pool->mpc_lut[i]->state; 1470 res_ctx->is_mpc_3dlut_acquired[i] = true; 1471 state->bits.rmu_idx_valid = 1; 1472 state->bits.rmu_mux_num = i; 1473 if (state->bits.rmu_mux_num == 0) 1474 state->bits.mpc_rmu0_mux = mpcc_id; 1475 else if (state->bits.rmu_mux_num == 1) 1476 state->bits.mpc_rmu1_mux = mpcc_id; 1477 else if (state->bits.rmu_mux_num == 2) 1478 state->bits.mpc_rmu2_mux = mpcc_id; 1479 ret = true; 1480 break; 1481 } 1482 } 1483 return ret; 1484 } 1485 1486 bool dcn30_release_post_bldn_3dlut( 1487 struct resource_context *res_ctx, 1488 const struct resource_pool *pool, 1489 struct dc_3dlut **lut, 1490 struct dc_transfer_func **shaper) 1491 { 1492 int i; 1493 bool ret = false; 1494 1495 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1496 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1497 res_ctx->is_mpc_3dlut_acquired[i] = false; 1498 pool->mpc_lut[i]->state.raw = 0; 1499 *lut = NULL; 1500 *shaper = NULL; 1501 ret = true; 1502 break; 1503 } 1504 } 1505 return ret; 1506 } 1507 1508 static bool is_soc_bounding_box_valid(struct dc *dc) 1509 { 1510 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1511 1512 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1513 return true; 1514 1515 return false; 1516 } 1517 1518 static bool init_soc_bounding_box(struct dc *dc, 1519 struct dcn30_resource_pool *pool) 1520 { 1521 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1522 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1523 1524 DC_LOGGER_INIT(dc->ctx->logger); 1525 1526 if (!is_soc_bounding_box_valid(dc)) { 1527 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1528 return false; 1529 } 1530 1531 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1532 loaded_ip->max_num_dpp = pool->base.pipe_count; 1533 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1534 dcn20_patch_bounding_box(dc, loaded_bb); 1535 DC_FP_START(); 1536 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); 1537 DC_FP_END(); 1538 1539 return true; 1540 } 1541 1542 static bool dcn30_split_stream_for_mpc_or_odm( 1543 const struct dc *dc, 1544 struct resource_context *res_ctx, 1545 struct pipe_ctx *pri_pipe, 1546 struct pipe_ctx *sec_pipe, 1547 bool odm) 1548 { 1549 int pipe_idx = sec_pipe->pipe_idx; 1550 const struct resource_pool *pool = dc->res_pool; 1551 1552 *sec_pipe = *pri_pipe; 1553 1554 sec_pipe->pipe_idx = pipe_idx; 1555 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1556 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1557 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1558 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1559 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1560 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1561 sec_pipe->stream_res.dsc = NULL; 1562 if (odm) { 1563 if (pri_pipe->next_odm_pipe) { 1564 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1565 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1566 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1567 } 1568 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1569 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1570 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1571 } 1572 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1573 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1574 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1575 } 1576 pri_pipe->next_odm_pipe = sec_pipe; 1577 sec_pipe->prev_odm_pipe = pri_pipe; 1578 1579 if (!sec_pipe->top_pipe) 1580 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1581 else 1582 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1583 if (sec_pipe->stream->timing.flags.DSC == 1) { 1584 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1585 ASSERT(sec_pipe->stream_res.dsc); 1586 if (sec_pipe->stream_res.dsc == NULL) 1587 return false; 1588 } 1589 } else { 1590 if (pri_pipe->bottom_pipe) { 1591 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1592 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1593 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1594 } 1595 pri_pipe->bottom_pipe = sec_pipe; 1596 sec_pipe->top_pipe = pri_pipe; 1597 1598 ASSERT(pri_pipe->plane_state); 1599 } 1600 1601 return true; 1602 } 1603 1604 static struct pipe_ctx *dcn30_find_split_pipe( 1605 struct dc *dc, 1606 struct dc_state *context, 1607 int old_index) 1608 { 1609 struct pipe_ctx *pipe = NULL; 1610 int i; 1611 1612 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1613 pipe = &context->res_ctx.pipe_ctx[old_index]; 1614 pipe->pipe_idx = old_index; 1615 } 1616 1617 if (!pipe) 1618 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1619 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1620 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1621 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1622 pipe = &context->res_ctx.pipe_ctx[i]; 1623 pipe->pipe_idx = i; 1624 break; 1625 } 1626 } 1627 } 1628 1629 /* 1630 * May need to fix pipes getting tossed from 1 opp to another on flip 1631 * Add for debugging transient underflow during topology updates: 1632 * ASSERT(pipe); 1633 */ 1634 if (!pipe) 1635 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1636 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1637 pipe = &context->res_ctx.pipe_ctx[i]; 1638 pipe->pipe_idx = i; 1639 break; 1640 } 1641 } 1642 1643 return pipe; 1644 } 1645 1646 noinline bool dcn30_internal_validate_bw( 1647 struct dc *dc, 1648 struct dc_state *context, 1649 display_e2e_pipe_params_st *pipes, 1650 int *pipe_cnt_out, 1651 int *vlevel_out, 1652 bool fast_validate, 1653 bool allow_self_refresh_only) 1654 { 1655 bool out = false; 1656 bool repopulate_pipes = false; 1657 int split[MAX_PIPES] = { 0 }; 1658 bool merge[MAX_PIPES] = { false }; 1659 bool newly_split[MAX_PIPES] = { false }; 1660 int pipe_cnt, i, pipe_idx, vlevel; 1661 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1662 1663 ASSERT(pipes); 1664 if (!pipes) 1665 return false; 1666 1667 context->bw_ctx.dml.vba.maxMpcComb = 0; 1668 context->bw_ctx.dml.vba.VoltageLevel = 0; 1669 context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive; 1670 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1671 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1672 1673 if (!pipe_cnt) { 1674 out = true; 1675 goto validate_out; 1676 } 1677 1678 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1679 1680 if (!fast_validate || !allow_self_refresh_only) { 1681 /* 1682 * DML favors voltage over p-state, but we're more interested in 1683 * supporting p-state over voltage. We can't support p-state in 1684 * prefetch mode > 0 so try capping the prefetch mode to start. 1685 */ 1686 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1687 dm_allow_self_refresh_and_mclk_switch; 1688 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1689 /* This may adjust vlevel and maxMpcComb */ 1690 if (vlevel < context->bw_ctx.dml.soc.num_states) 1691 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1692 } 1693 if (allow_self_refresh_only && 1694 (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1695 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) { 1696 /* 1697 * If mode is unsupported or there's still no p-state support 1698 * then fall back to favoring voltage. 1699 * 1700 * We don't actually support prefetch mode 2, so require that we 1701 * at least support prefetch mode 1. 1702 */ 1703 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1704 dm_allow_self_refresh; 1705 1706 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1707 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1708 memset(split, 0, sizeof(split)); 1709 memset(merge, 0, sizeof(merge)); 1710 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1711 } 1712 } 1713 1714 dml_log_mode_support_params(&context->bw_ctx.dml); 1715 1716 if (vlevel == context->bw_ctx.dml.soc.num_states) 1717 goto validate_fail; 1718 1719 if (!dc->config.enable_windowed_mpo_odm) { 1720 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1721 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1722 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1723 1724 if (!pipe->stream) 1725 continue; 1726 1727 /* We only support full screen mpo with ODM */ 1728 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1729 && pipe->plane_state && mpo_pipe 1730 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1731 &pipe->plane_res.scl_data.recout, 1732 sizeof(struct rect)) != 0) { 1733 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1734 goto validate_fail; 1735 } 1736 pipe_idx++; 1737 } 1738 } 1739 1740 /* merge pipes if necessary */ 1741 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1742 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1743 1744 /*skip pipes that don't need merging*/ 1745 if (!merge[i]) 1746 continue; 1747 1748 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1749 if (pipe->prev_odm_pipe) { 1750 /*split off odm pipe*/ 1751 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1752 if (pipe->next_odm_pipe) 1753 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1754 1755 pipe->bottom_pipe = NULL; 1756 pipe->next_odm_pipe = NULL; 1757 pipe->plane_state = NULL; 1758 pipe->stream = NULL; 1759 pipe->top_pipe = NULL; 1760 pipe->prev_odm_pipe = NULL; 1761 if (pipe->stream_res.dsc) 1762 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1763 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1764 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1765 repopulate_pipes = true; 1766 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1767 struct pipe_ctx *top_pipe = pipe->top_pipe; 1768 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1769 1770 top_pipe->bottom_pipe = bottom_pipe; 1771 if (bottom_pipe) 1772 bottom_pipe->top_pipe = top_pipe; 1773 1774 pipe->top_pipe = NULL; 1775 pipe->bottom_pipe = NULL; 1776 pipe->plane_state = NULL; 1777 pipe->stream = NULL; 1778 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1779 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1780 repopulate_pipes = true; 1781 } else 1782 ASSERT(0); /* Should never try to merge master pipe */ 1783 1784 } 1785 1786 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1787 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1788 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1789 struct pipe_ctx *hsplit_pipe = NULL; 1790 bool odm; 1791 int old_index = -1; 1792 1793 if (!pipe->stream || newly_split[i]) 1794 continue; 1795 1796 pipe_idx++; 1797 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 1798 1799 if (!pipe->plane_state && !odm) 1800 continue; 1801 1802 if (split[i]) { 1803 if (odm) { 1804 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 1805 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1806 else if (old_pipe->next_odm_pipe) 1807 old_index = old_pipe->next_odm_pipe->pipe_idx; 1808 } else { 1809 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1810 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1811 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1812 else if (old_pipe->bottom_pipe && 1813 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1814 old_index = old_pipe->bottom_pipe->pipe_idx; 1815 } 1816 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 1817 ASSERT(hsplit_pipe); 1818 if (!hsplit_pipe) 1819 goto validate_fail; 1820 1821 if (!dcn30_split_stream_for_mpc_or_odm( 1822 dc, &context->res_ctx, 1823 pipe, hsplit_pipe, odm)) 1824 goto validate_fail; 1825 1826 newly_split[hsplit_pipe->pipe_idx] = true; 1827 repopulate_pipes = true; 1828 } 1829 if (split[i] == 4) { 1830 struct pipe_ctx *pipe_4to1; 1831 1832 if (odm && old_pipe->next_odm_pipe) 1833 old_index = old_pipe->next_odm_pipe->pipe_idx; 1834 else if (!odm && old_pipe->bottom_pipe && 1835 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1836 old_index = old_pipe->bottom_pipe->pipe_idx; 1837 else 1838 old_index = -1; 1839 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1840 ASSERT(pipe_4to1); 1841 if (!pipe_4to1) 1842 goto validate_fail; 1843 if (!dcn30_split_stream_for_mpc_or_odm( 1844 dc, &context->res_ctx, 1845 pipe, pipe_4to1, odm)) 1846 goto validate_fail; 1847 newly_split[pipe_4to1->pipe_idx] = true; 1848 1849 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 1850 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 1851 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1852 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1853 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 1854 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1855 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1856 else 1857 old_index = -1; 1858 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1859 ASSERT(pipe_4to1); 1860 if (!pipe_4to1) 1861 goto validate_fail; 1862 if (!dcn30_split_stream_for_mpc_or_odm( 1863 dc, &context->res_ctx, 1864 hsplit_pipe, pipe_4to1, odm)) 1865 goto validate_fail; 1866 newly_split[pipe_4to1->pipe_idx] = true; 1867 } 1868 if (odm) 1869 dcn20_build_mapped_resource(dc, context, pipe->stream); 1870 } 1871 1872 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1873 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1874 1875 if (pipe->plane_state) { 1876 if (!resource_build_scaling_params(pipe)) 1877 goto validate_fail; 1878 } 1879 } 1880 1881 /* Actual dsc count per stream dsc validation*/ 1882 if (!dcn20_validate_dsc(dc, context)) { 1883 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 1884 goto validate_fail; 1885 } 1886 1887 if (repopulate_pipes) 1888 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1889 context->bw_ctx.dml.vba.VoltageLevel = vlevel; 1890 *vlevel_out = vlevel; 1891 *pipe_cnt_out = pipe_cnt; 1892 1893 out = true; 1894 goto validate_out; 1895 1896 validate_fail: 1897 out = false; 1898 1899 validate_out: 1900 return out; 1901 } 1902 1903 static int get_refresh_rate(struct dc_state *context) 1904 { 1905 int refresh_rate = 0; 1906 int h_v_total = 0; 1907 struct dc_crtc_timing *timing = NULL; 1908 1909 if (context == NULL || context->streams[0] == NULL) 1910 return 0; 1911 1912 /* check if refresh rate at least 120hz */ 1913 timing = &context->streams[0]->timing; 1914 if (timing == NULL) 1915 return 0; 1916 1917 h_v_total = timing->h_total * timing->v_total; 1918 if (h_v_total == 0) 1919 return 0; 1920 1921 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; 1922 return refresh_rate; 1923 } 1924 1925 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds 1926 /* 1927 * Scaling factor for v_blank stretch calculations considering timing in 1928 * micro-seconds and pixel clock in 100hz. 1929 * Note: the parenthesis are necessary to ensure the correct order of 1930 * operation where V_SCALE is used. 1931 */ 1932 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) 1933 1934 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) 1935 { 1936 struct dc_crtc_timing *timing = NULL; 1937 uint32_t sec_per_100_lines; 1938 uint32_t max_v_blank; 1939 uint32_t curr_v_blank; 1940 uint32_t v_stretch_max; 1941 uint32_t stretched_frame_pix_cnt; 1942 uint32_t scaled_stretched_frame_pix_cnt; 1943 uint32_t scaled_refresh_rate; 1944 1945 if (context == NULL || context->streams[0] == NULL) 1946 return 0; 1947 1948 /* check if refresh rate at least 120hz */ 1949 timing = &context->streams[0]->timing; 1950 if (timing == NULL) 1951 return 0; 1952 1953 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; 1954 max_v_blank = sec_per_100_lines / V_SCALE + 1; 1955 curr_v_blank = timing->v_total - timing->v_addressable; 1956 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); 1957 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; 1958 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; 1959 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; 1960 1961 return scaled_refresh_rate; 1962 } 1963 1964 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) 1965 { 1966 int refresh_rate_max_stretch_100hz; 1967 int min_refresh_100hz; 1968 1969 if (context == NULL || context->streams[0] == NULL) 1970 return false; 1971 1972 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); 1973 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; 1974 1975 if (refresh_rate_max_stretch_100hz < min_refresh_100hz) 1976 return false; 1977 1978 return true; 1979 } 1980 1981 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 1982 { 1983 int refresh_rate = 0; 1984 const int minimum_refreshrate_supported = 120; 1985 1986 if (context == NULL || context->streams[0] == NULL) 1987 return false; 1988 1989 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) 1990 return false; 1991 1992 if (dc->debug.disable_fams) 1993 return false; 1994 1995 if (!dc->caps.dmub_caps.mclk_sw) 1996 return false; 1997 1998 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) 1999 return false; 2000 2001 /* more then 1 monitor connected */ 2002 if (context->stream_count != 1) 2003 return false; 2004 2005 refresh_rate = get_refresh_rate(context); 2006 if (refresh_rate < minimum_refreshrate_supported) 2007 return false; 2008 2009 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) 2010 return false; 2011 2012 // check if freesync enabled 2013 if (!context->streams[0]->allow_freesync) 2014 return false; 2015 2016 if (context->streams[0]->vrr_active_variable) 2017 return false; 2018 2019 context->streams[0]->fpo_in_use = true; 2020 2021 return true; 2022 } 2023 2024 /* 2025 * set up FPO watermarks, pstate, dram latency 2026 */ 2027 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 2028 { 2029 ASSERT(dc != NULL && context != NULL); 2030 if (dc == NULL || context == NULL) 2031 return; 2032 2033 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ 2034 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; 2035 } 2036 2037 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2038 { 2039 DC_FP_START(); 2040 dcn30_fpu_update_soc_for_wm_a(dc, context); 2041 DC_FP_END(); 2042 } 2043 2044 void dcn30_calculate_wm_and_dlg( 2045 struct dc *dc, struct dc_state *context, 2046 display_e2e_pipe_params_st *pipes, 2047 int pipe_cnt, 2048 int vlevel) 2049 { 2050 DC_FP_START(); 2051 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2052 DC_FP_END(); 2053 } 2054 2055 bool dcn30_validate_bandwidth(struct dc *dc, 2056 struct dc_state *context, 2057 bool fast_validate) 2058 { 2059 bool out = false; 2060 2061 BW_VAL_TRACE_SETUP(); 2062 2063 int vlevel = 0; 2064 int pipe_cnt = 0; 2065 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2066 DC_LOGGER_INIT(dc->ctx->logger); 2067 2068 BW_VAL_TRACE_COUNT(); 2069 2070 DC_FP_START(); 2071 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true); 2072 DC_FP_END(); 2073 2074 if (pipe_cnt == 0) 2075 goto validate_out; 2076 2077 if (!out) 2078 goto validate_fail; 2079 2080 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2081 2082 if (fast_validate) { 2083 BW_VAL_TRACE_SKIP(fast); 2084 goto validate_out; 2085 } 2086 2087 DC_FP_START(); 2088 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2089 DC_FP_END(); 2090 2091 BW_VAL_TRACE_END_WATERMARKS(); 2092 2093 goto validate_out; 2094 2095 validate_fail: 2096 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2097 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2098 2099 BW_VAL_TRACE_SKIP(fail); 2100 out = false; 2101 2102 validate_out: 2103 kfree(pipes); 2104 2105 BW_VAL_TRACE_FINISH(); 2106 2107 return out; 2108 } 2109 2110 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2111 { 2112 unsigned int i, j; 2113 unsigned int num_states = 0; 2114 2115 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2116 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2117 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2118 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2119 2120 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2121 unsigned int num_dcfclk_sta_targets = 4; 2122 unsigned int num_uclk_states; 2123 2124 struct dc_bounding_box_max_clk dcn30_bb_max_clk; 2125 2126 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); 2127 2128 if (dc->ctx->dc_bios->vram_info.num_chans) 2129 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2130 2131 DC_FP_START(); 2132 dcn30_fpu_update_dram_channel_width_bytes(dc); 2133 DC_FP_END(); 2134 2135 if (bw_params->clk_table.entries[0].memclk_mhz) { 2136 2137 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2138 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) 2139 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2140 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) 2141 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2142 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) 2143 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2144 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) 2145 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2146 } 2147 2148 DC_FP_START(); 2149 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); 2150 DC_FP_END(); 2151 2152 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2153 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2154 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; 2155 num_dcfclk_sta_targets++; 2156 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2157 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2158 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2159 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { 2160 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; 2161 break; 2162 } 2163 } 2164 // Update size of array since we "removed" duplicates 2165 num_dcfclk_sta_targets = i + 1; 2166 } 2167 2168 num_uclk_states = bw_params->clk_table.num_entries; 2169 2170 // Calculate optimal dcfclk for each uclk 2171 for (i = 0; i < num_uclk_states; i++) { 2172 DC_FP_START(); 2173 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2174 &optimal_dcfclk_for_uclk[i], NULL); 2175 DC_FP_END(); 2176 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2177 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2178 } 2179 } 2180 2181 // Calculate optimal uclk for each dcfclk sta target 2182 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2183 for (j = 0; j < num_uclk_states; j++) { 2184 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2185 optimal_uclk_for_dcfclk_sta_targets[i] = 2186 bw_params->clk_table.entries[j].memclk_mhz * 16; 2187 break; 2188 } 2189 } 2190 } 2191 2192 i = 0; 2193 j = 0; 2194 // create the final dcfclk and uclk table 2195 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2196 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2197 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2198 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2199 } else { 2200 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2201 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2202 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2203 } else { 2204 j = num_uclk_states; 2205 } 2206 } 2207 } 2208 2209 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2210 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2211 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2212 } 2213 2214 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2215 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2216 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2217 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2218 } 2219 2220 dcn3_0_soc.num_states = num_states; 2221 DC_FP_START(); 2222 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); 2223 DC_FP_END(); 2224 } 2225 } 2226 2227 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config) 2228 { 2229 *panel_config = panel_config_defaults; 2230 } 2231 2232 static const struct resource_funcs dcn30_res_pool_funcs = { 2233 .destroy = dcn30_destroy_resource_pool, 2234 .link_enc_create = dcn30_link_encoder_create, 2235 .panel_cntl_create = dcn30_panel_cntl_create, 2236 .validate_bandwidth = dcn30_validate_bandwidth, 2237 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2238 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2239 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2240 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2241 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2242 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2243 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2244 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2245 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2246 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2247 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2248 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2249 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2250 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2251 .get_panel_config_defaults = dcn30_get_panel_config_defaults, 2252 }; 2253 2254 #define CTX ctx 2255 2256 #define REG(reg_name) \ 2257 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2258 2259 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2260 { 2261 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2262 /* Support for max 6 pipes */ 2263 value = value & 0x3f; 2264 return value; 2265 } 2266 2267 static bool dcn30_resource_construct( 2268 uint8_t num_virtual_links, 2269 struct dc *dc, 2270 struct dcn30_resource_pool *pool) 2271 { 2272 int i; 2273 struct dc_context *ctx = dc->ctx; 2274 struct irq_service_init_data init_data; 2275 struct ddc_service_init_data ddc_init_data = {0}; 2276 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2277 uint32_t num_pipes = 0; 2278 2279 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2280 BREAK_TO_DEBUGGER(); 2281 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2282 /* fault to single pipe */ 2283 pipe_fuses = 0x3e; 2284 } 2285 2286 DC_FP_START(); 2287 2288 ctx->dc_bios->regs = &bios_regs; 2289 2290 pool->base.res_cap = &res_cap_dcn3; 2291 2292 pool->base.funcs = &dcn30_res_pool_funcs; 2293 2294 /************************************************* 2295 * Resource + asic cap harcoding * 2296 *************************************************/ 2297 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2298 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2299 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2300 dc->caps.max_downscale_ratio = 600; 2301 dc->caps.i2c_speed_in_khz = 100; 2302 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2303 dc->caps.max_cursor_size = 256; 2304 dc->caps.min_horizontal_blanking_period = 80; 2305 dc->caps.dmdata_alloc_size = 2048; 2306 dc->caps.mall_size_per_mem_channel = 8; 2307 /* total size = mall per channel * num channels * 1024 * 1024 */ 2308 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2309 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2310 2311 dc->caps.max_slave_planes = 2; 2312 dc->caps.max_slave_yuv_planes = 2; 2313 dc->caps.max_slave_rgb_planes = 2; 2314 dc->caps.post_blend_color_processing = true; 2315 dc->caps.force_dp_tps4_for_cp2520 = true; 2316 dc->caps.extended_aux_timeout_support = true; 2317 dc->caps.dmcub_support = true; 2318 2319 /* Color pipeline capabilities */ 2320 dc->caps.color.dpp.dcn_arch = 1; 2321 dc->caps.color.dpp.input_lut_shared = 0; 2322 dc->caps.color.dpp.icsc = 1; 2323 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2324 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2325 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2326 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2327 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2328 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2329 dc->caps.color.dpp.post_csc = 1; 2330 dc->caps.color.dpp.gamma_corr = 1; 2331 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2332 2333 dc->caps.color.dpp.hw_3d_lut = 1; 2334 dc->caps.color.dpp.ogam_ram = 1; 2335 // no OGAM ROM on DCN3 2336 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2337 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2338 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2339 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2340 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2341 dc->caps.color.dpp.ocsc = 0; 2342 2343 dc->caps.color.mpc.gamut_remap = 1; 2344 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2345 dc->caps.color.mpc.ogam_ram = 1; 2346 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2347 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2348 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2349 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2350 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2351 dc->caps.color.mpc.ocsc = 1; 2352 2353 dc->caps.dp_hdmi21_pcon_support = true; 2354 2355 /* read VBIOS LTTPR caps */ 2356 { 2357 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2358 enum bp_result bp_query_result; 2359 uint8_t is_vbios_lttpr_enable = 0; 2360 2361 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2362 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2363 } 2364 2365 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2366 enum bp_result bp_query_result; 2367 uint8_t is_vbios_interop_enabled = 0; 2368 2369 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2370 &is_vbios_interop_enabled); 2371 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2372 } 2373 } 2374 2375 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2376 dc->debug = debug_defaults_drv; 2377 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2378 dc->debug = debug_defaults_diags; 2379 } else 2380 dc->debug = debug_defaults_diags; 2381 // Init the vm_helper 2382 if (dc->vm_helper) 2383 vm_helper_init(dc->vm_helper, 16); 2384 2385 /************************************************* 2386 * Create resources * 2387 *************************************************/ 2388 2389 /* Clock Sources for Pixel Clock*/ 2390 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2391 dcn30_clock_source_create(ctx, ctx->dc_bios, 2392 CLOCK_SOURCE_COMBO_PHY_PLL0, 2393 &clk_src_regs[0], false); 2394 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2395 dcn30_clock_source_create(ctx, ctx->dc_bios, 2396 CLOCK_SOURCE_COMBO_PHY_PLL1, 2397 &clk_src_regs[1], false); 2398 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2399 dcn30_clock_source_create(ctx, ctx->dc_bios, 2400 CLOCK_SOURCE_COMBO_PHY_PLL2, 2401 &clk_src_regs[2], false); 2402 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2403 dcn30_clock_source_create(ctx, ctx->dc_bios, 2404 CLOCK_SOURCE_COMBO_PHY_PLL3, 2405 &clk_src_regs[3], false); 2406 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2407 dcn30_clock_source_create(ctx, ctx->dc_bios, 2408 CLOCK_SOURCE_COMBO_PHY_PLL4, 2409 &clk_src_regs[4], false); 2410 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2411 dcn30_clock_source_create(ctx, ctx->dc_bios, 2412 CLOCK_SOURCE_COMBO_PHY_PLL5, 2413 &clk_src_regs[5], false); 2414 2415 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2416 2417 /* todo: not reuse phy_pll registers */ 2418 pool->base.dp_clock_source = 2419 dcn30_clock_source_create(ctx, ctx->dc_bios, 2420 CLOCK_SOURCE_ID_DP_DTO, 2421 &clk_src_regs[0], true); 2422 2423 for (i = 0; i < pool->base.clk_src_count; i++) { 2424 if (pool->base.clock_sources[i] == NULL) { 2425 dm_error("DC: failed to create clock sources!\n"); 2426 BREAK_TO_DEBUGGER(); 2427 goto create_fail; 2428 } 2429 } 2430 2431 /* DCCG */ 2432 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2433 if (pool->base.dccg == NULL) { 2434 dm_error("DC: failed to create dccg!\n"); 2435 BREAK_TO_DEBUGGER(); 2436 goto create_fail; 2437 } 2438 2439 /* PP Lib and SMU interfaces */ 2440 init_soc_bounding_box(dc, pool); 2441 2442 num_pipes = dcn3_0_ip.max_num_dpp; 2443 2444 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2445 if (pipe_fuses & 1 << i) 2446 num_pipes--; 2447 2448 dcn3_0_ip.max_num_dpp = num_pipes; 2449 dcn3_0_ip.max_num_otg = num_pipes; 2450 2451 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2452 2453 /* IRQ */ 2454 init_data.ctx = dc->ctx; 2455 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2456 if (!pool->base.irqs) 2457 goto create_fail; 2458 2459 /* HUBBUB */ 2460 pool->base.hubbub = dcn30_hubbub_create(ctx); 2461 if (pool->base.hubbub == NULL) { 2462 BREAK_TO_DEBUGGER(); 2463 dm_error("DC: failed to create hubbub!\n"); 2464 goto create_fail; 2465 } 2466 2467 /* HUBPs, DPPs, OPPs and TGs */ 2468 for (i = 0; i < pool->base.pipe_count; i++) { 2469 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2470 if (pool->base.hubps[i] == NULL) { 2471 BREAK_TO_DEBUGGER(); 2472 dm_error( 2473 "DC: failed to create hubps!\n"); 2474 goto create_fail; 2475 } 2476 2477 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2478 if (pool->base.dpps[i] == NULL) { 2479 BREAK_TO_DEBUGGER(); 2480 dm_error( 2481 "DC: failed to create dpps!\n"); 2482 goto create_fail; 2483 } 2484 } 2485 2486 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2487 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2488 if (pool->base.opps[i] == NULL) { 2489 BREAK_TO_DEBUGGER(); 2490 dm_error( 2491 "DC: failed to create output pixel processor!\n"); 2492 goto create_fail; 2493 } 2494 } 2495 2496 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2497 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2498 ctx, i); 2499 if (pool->base.timing_generators[i] == NULL) { 2500 BREAK_TO_DEBUGGER(); 2501 dm_error("DC: failed to create tg!\n"); 2502 goto create_fail; 2503 } 2504 } 2505 pool->base.timing_generator_count = i; 2506 /* PSR */ 2507 pool->base.psr = dmub_psr_create(ctx); 2508 2509 if (pool->base.psr == NULL) { 2510 dm_error("DC: failed to create PSR obj!\n"); 2511 BREAK_TO_DEBUGGER(); 2512 goto create_fail; 2513 } 2514 2515 /* ABM */ 2516 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2517 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2518 &abm_regs[i], 2519 &abm_shift, 2520 &abm_mask); 2521 if (pool->base.multiple_abms[i] == NULL) { 2522 dm_error("DC: failed to create abm for pipe %d!\n", i); 2523 BREAK_TO_DEBUGGER(); 2524 goto create_fail; 2525 } 2526 } 2527 /* MPC and DSC */ 2528 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2529 if (pool->base.mpc == NULL) { 2530 BREAK_TO_DEBUGGER(); 2531 dm_error("DC: failed to create mpc!\n"); 2532 goto create_fail; 2533 } 2534 2535 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2536 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2537 if (pool->base.dscs[i] == NULL) { 2538 BREAK_TO_DEBUGGER(); 2539 dm_error("DC: failed to create display stream compressor %d!\n", i); 2540 goto create_fail; 2541 } 2542 } 2543 2544 /* DWB and MMHUBBUB */ 2545 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2546 BREAK_TO_DEBUGGER(); 2547 dm_error("DC: failed to create dwbc!\n"); 2548 goto create_fail; 2549 } 2550 2551 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2552 BREAK_TO_DEBUGGER(); 2553 dm_error("DC: failed to create mcif_wb!\n"); 2554 goto create_fail; 2555 } 2556 2557 /* AUX and I2C */ 2558 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2559 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2560 if (pool->base.engines[i] == NULL) { 2561 BREAK_TO_DEBUGGER(); 2562 dm_error( 2563 "DC:failed to create aux engine!!\n"); 2564 goto create_fail; 2565 } 2566 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2567 if (pool->base.hw_i2cs[i] == NULL) { 2568 BREAK_TO_DEBUGGER(); 2569 dm_error( 2570 "DC:failed to create hw i2c!!\n"); 2571 goto create_fail; 2572 } 2573 pool->base.sw_i2cs[i] = NULL; 2574 } 2575 2576 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2577 if (!resource_construct(num_virtual_links, dc, &pool->base, 2578 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2579 &res_create_funcs : &res_create_maximus_funcs))) 2580 goto create_fail; 2581 2582 /* HW Sequencer and Plane caps */ 2583 dcn30_hw_sequencer_construct(dc); 2584 2585 dc->caps.max_planes = pool->base.pipe_count; 2586 2587 for (i = 0; i < dc->caps.max_planes; ++i) 2588 dc->caps.planes[i] = plane_cap; 2589 2590 dc->cap_funcs = cap_funcs; 2591 2592 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2593 ddc_init_data.ctx = dc->ctx; 2594 ddc_init_data.link = NULL; 2595 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2596 ddc_init_data.id.enum_id = 0; 2597 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2598 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2599 } else { 2600 pool->base.oem_device = NULL; 2601 } 2602 2603 DC_FP_END(); 2604 2605 return true; 2606 2607 create_fail: 2608 2609 DC_FP_END(); 2610 dcn30_resource_destruct(pool); 2611 2612 return false; 2613 } 2614 2615 struct resource_pool *dcn30_create_resource_pool( 2616 const struct dc_init_data *init_data, 2617 struct dc *dc) 2618 { 2619 struct dcn30_resource_pool *pool = 2620 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2621 2622 if (!pool) 2623 return NULL; 2624 2625 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2626 return &pool->base; 2627 2628 BREAK_TO_DEBUGGER(); 2629 kfree(pool); 2630 return NULL; 2631 } 2632