1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "dc_link_ddc.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dcn/dpcs_3_0_0_offset.h" 76 #include "dcn/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/display_mode_vba_30.h" 88 #include "vm_helper.h" 89 #include "dcn20/dcn20_vmid.h" 90 #include "amdgpu_socbb.h" 91 92 #define DC_LOGGER_INIT(logger) 93 94 struct _vcs_dpi_ip_params_st dcn3_0_ip = { 95 .use_min_dcfclk = 0, 96 .clamp_min_dcfclk = 0, 97 .odm_capable = 1, 98 .gpuvm_enable = 0, 99 .hostvm_enable = 0, 100 .gpuvm_max_page_table_levels = 4, 101 .hostvm_max_page_table_levels = 4, 102 .hostvm_cached_page_table_levels = 0, 103 .pte_group_size_bytes = 2048, 104 .num_dsc = 6, 105 .rob_buffer_size_kbytes = 184, 106 .det_buffer_size_kbytes = 184, 107 .dpte_buffer_size_in_pte_reqs_luma = 84, 108 .pde_proc_buffer_size_64k_reqs = 48, 109 .dpp_output_buffer_pixels = 2560, 110 .opp_output_buffer_lines = 1, 111 .pixel_chunk_size_kbytes = 8, 112 .pte_enable = 1, 113 .max_page_table_levels = 2, 114 .pte_chunk_size_kbytes = 2, // ? 115 .meta_chunk_size_kbytes = 2, 116 .writeback_chunk_size_kbytes = 8, 117 .line_buffer_size_bits = 789504, 118 .is_line_buffer_bpp_fixed = 0, // ? 119 .line_buffer_fixed_bpp = 0, // ? 120 .dcc_supported = true, 121 .writeback_interface_buffer_size_kbytes = 90, 122 .writeback_line_buffer_buffer_size = 0, 123 .max_line_buffer_lines = 12, 124 .writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640 125 .writeback_chroma_buffer_size_kbytes = 8, 126 .writeback_chroma_line_buffer_width_pixels = 4, 127 .writeback_max_hscl_ratio = 1, 128 .writeback_max_vscl_ratio = 1, 129 .writeback_min_hscl_ratio = 1, 130 .writeback_min_vscl_ratio = 1, 131 .writeback_max_hscl_taps = 1, 132 .writeback_max_vscl_taps = 1, 133 .writeback_line_buffer_luma_buffer_size = 0, 134 .writeback_line_buffer_chroma_buffer_size = 14643, 135 .cursor_buffer_size = 8, 136 .cursor_chunk_size = 2, 137 .max_num_otg = 6, 138 .max_num_dpp = 6, 139 .max_num_wb = 1, 140 .max_dchub_pscl_bw_pix_per_clk = 4, 141 .max_pscl_lb_bw_pix_per_clk = 2, 142 .max_lb_vscl_bw_pix_per_clk = 4, 143 .max_vscl_hscl_bw_pix_per_clk = 4, 144 .max_hscl_ratio = 6, 145 .max_vscl_ratio = 6, 146 .hscl_mults = 4, 147 .vscl_mults = 4, 148 .max_hscl_taps = 8, 149 .max_vscl_taps = 8, 150 .dispclk_ramp_margin_percent = 1, 151 .underscan_factor = 1.11, 152 .min_vblank_lines = 32, 153 .dppclk_delay_subtotal = 46, 154 .dynamic_metadata_vm_enabled = true, 155 .dppclk_delay_scl_lb_only = 16, 156 .dppclk_delay_scl = 50, 157 .dppclk_delay_cnvc_formatter = 27, 158 .dppclk_delay_cnvc_cursor = 6, 159 .dispclk_delay_subtotal = 119, 160 .dcfclk_cstate_latency = 5.2, // SRExitTime 161 .max_inter_dcn_tile_repeaters = 8, 162 .odm_combine_4to1_supported = true, 163 164 .xfc_supported = false, 165 .xfc_fill_bw_overhead_percent = 10.0, 166 .xfc_fill_constant_bytes = 0, 167 .gfx7_compat_tiling_supported = 0, 168 .number_of_cursors = 1, 169 }; 170 171 struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = { 172 .clock_limits = { 173 { 174 .state = 0, 175 .dispclk_mhz = 562.0, 176 .dppclk_mhz = 300.0, 177 .phyclk_mhz = 300.0, 178 .phyclk_d18_mhz = 667.0, 179 .dscclk_mhz = 405.6, 180 }, 181 }, 182 .min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */ 183 .num_states = 1, 184 .sr_exit_time_us = 15.5, 185 .sr_enter_plus_exit_time_us = 20, 186 .urgent_latency_us = 4.0, 187 .urgent_latency_pixel_data_only_us = 4.0, 188 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 189 .urgent_latency_vm_data_only_us = 4.0, 190 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 191 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 192 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 193 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0, 194 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, 195 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, 196 .max_avg_sdp_bw_use_normal_percent = 60.0, 197 .max_avg_dram_bw_use_normal_percent = 40.0, 198 .writeback_latency_us = 12.0, 199 .max_request_size_bytes = 256, 200 .fabric_datapath_to_dcn_data_return_bytes = 64, 201 .dcn_downspread_percent = 0.5, 202 .downspread_percent = 0.38, 203 .dram_page_open_time_ns = 50.0, 204 .dram_rw_turnaround_time_ns = 17.5, 205 .dram_return_buffer_per_channel_bytes = 8192, 206 .round_trip_ping_latency_dcfclk_cycles = 191, 207 .urgent_out_of_order_return_per_channel_bytes = 4096, 208 .channel_interleave_bytes = 256, 209 .num_banks = 8, 210 .gpuvm_min_page_size_bytes = 4096, 211 .hostvm_min_page_size_bytes = 4096, 212 .dram_clock_change_latency_us = 404, 213 .dummy_pstate_latency_us = 5, 214 .writeback_dram_clock_change_latency_us = 23.0, 215 .return_bus_width_bytes = 64, 216 .dispclk_dppclk_vco_speed_mhz = 3650, 217 .xfc_bus_transport_time_us = 20, // ? 218 .xfc_xbuf_latency_tolerance_us = 4, // ? 219 .use_urgent_burst_bw = 1, // ? 220 .do_urgent_latency_adjustment = true, 221 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 222 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, 223 }; 224 225 enum dcn30_clk_src_array_id { 226 DCN30_CLK_SRC_PLL0, 227 DCN30_CLK_SRC_PLL1, 228 DCN30_CLK_SRC_PLL2, 229 DCN30_CLK_SRC_PLL3, 230 DCN30_CLK_SRC_PLL4, 231 DCN30_CLK_SRC_PLL5, 232 DCN30_CLK_SRC_TOTAL 233 }; 234 235 /* begin ********************* 236 * macros to expend register list macro defined in HW object header file 237 */ 238 239 /* DCN */ 240 /* TODO awful hack. fixup dcn20_dwb.h */ 241 #undef BASE_INNER 242 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 243 244 #define BASE(seg) BASE_INNER(seg) 245 246 #define SR(reg_name)\ 247 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 248 mm ## reg_name 249 250 #define SRI(reg_name, block, id)\ 251 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 252 mm ## block ## id ## _ ## reg_name 253 254 #define SRI2(reg_name, block, id)\ 255 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 256 mm ## reg_name 257 258 #define SRIR(var_name, reg_name, block, id)\ 259 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 260 mm ## block ## id ## _ ## reg_name 261 262 #define SRII(reg_name, block, id)\ 263 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 264 mm ## block ## id ## _ ## reg_name 265 266 #define SRII_MPC_RMU(reg_name, block, id)\ 267 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 268 mm ## block ## id ## _ ## reg_name 269 270 #define SRII_DWB(reg_name, temp_name, block, id)\ 271 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 272 mm ## block ## id ## _ ## temp_name 273 274 #define DCCG_SRII(reg_name, block, id)\ 275 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 276 mm ## block ## id ## _ ## reg_name 277 278 #define VUPDATE_SRII(reg_name, block, id)\ 279 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 280 mm ## reg_name ## _ ## block ## id 281 282 /* NBIO */ 283 #define NBIO_BASE_INNER(seg) \ 284 NBIO_BASE__INST0_SEG ## seg 285 286 #define NBIO_BASE(seg) \ 287 NBIO_BASE_INNER(seg) 288 289 #define NBIO_SR(reg_name)\ 290 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 291 mm ## reg_name 292 293 /* MMHUB */ 294 #define MMHUB_BASE_INNER(seg) \ 295 MMHUB_BASE__INST0_SEG ## seg 296 297 #define MMHUB_BASE(seg) \ 298 MMHUB_BASE_INNER(seg) 299 300 #define MMHUB_SR(reg_name)\ 301 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 302 mmMM ## reg_name 303 304 /* CLOCK */ 305 #define CLK_BASE_INNER(seg) \ 306 CLK_BASE__INST0_SEG ## seg 307 308 #define CLK_BASE(seg) \ 309 CLK_BASE_INNER(seg) 310 311 #define CLK_SRI(reg_name, block, inst)\ 312 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 313 mm ## block ## _ ## inst ## _ ## reg_name 314 315 316 static const struct bios_registers bios_regs = { 317 NBIO_SR(BIOS_SCRATCH_3), 318 NBIO_SR(BIOS_SCRATCH_6) 319 }; 320 321 #define clk_src_regs(index, pllid)\ 322 [index] = {\ 323 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 324 } 325 326 static const struct dce110_clk_src_regs clk_src_regs[] = { 327 clk_src_regs(0, A), 328 clk_src_regs(1, B), 329 clk_src_regs(2, C), 330 clk_src_regs(3, D), 331 clk_src_regs(4, E), 332 clk_src_regs(5, F) 333 }; 334 335 static const struct dce110_clk_src_shift cs_shift = { 336 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 337 }; 338 339 static const struct dce110_clk_src_mask cs_mask = { 340 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 341 }; 342 343 #define abm_regs(id)\ 344 [id] = {\ 345 ABM_DCN30_REG_LIST(id)\ 346 } 347 348 static const struct dce_abm_registers abm_regs[] = { 349 abm_regs(0), 350 abm_regs(1), 351 abm_regs(2), 352 abm_regs(3), 353 abm_regs(4), 354 abm_regs(5), 355 }; 356 357 static const struct dce_abm_shift abm_shift = { 358 ABM_MASK_SH_LIST_DCN30(__SHIFT) 359 }; 360 361 static const struct dce_abm_mask abm_mask = { 362 ABM_MASK_SH_LIST_DCN30(_MASK) 363 }; 364 365 366 367 #define audio_regs(id)\ 368 [id] = {\ 369 AUD_COMMON_REG_LIST(id)\ 370 } 371 372 static const struct dce_audio_registers audio_regs[] = { 373 audio_regs(0), 374 audio_regs(1), 375 audio_regs(2), 376 audio_regs(3), 377 audio_regs(4), 378 audio_regs(5), 379 audio_regs(6) 380 }; 381 382 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 383 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 384 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 385 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 386 387 static const struct dce_audio_shift audio_shift = { 388 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 389 }; 390 391 static const struct dce_audio_mask audio_mask = { 392 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 393 }; 394 395 #define vpg_regs(id)\ 396 [id] = {\ 397 VPG_DCN3_REG_LIST(id)\ 398 } 399 400 static const struct dcn30_vpg_registers vpg_regs[] = { 401 vpg_regs(0), 402 vpg_regs(1), 403 vpg_regs(2), 404 vpg_regs(3), 405 vpg_regs(4), 406 vpg_regs(5), 407 vpg_regs(6), 408 }; 409 410 static const struct dcn30_vpg_shift vpg_shift = { 411 DCN3_VPG_MASK_SH_LIST(__SHIFT) 412 }; 413 414 static const struct dcn30_vpg_mask vpg_mask = { 415 DCN3_VPG_MASK_SH_LIST(_MASK) 416 }; 417 418 #define afmt_regs(id)\ 419 [id] = {\ 420 AFMT_DCN3_REG_LIST(id)\ 421 } 422 423 static const struct dcn30_afmt_registers afmt_regs[] = { 424 afmt_regs(0), 425 afmt_regs(1), 426 afmt_regs(2), 427 afmt_regs(3), 428 afmt_regs(4), 429 afmt_regs(5), 430 afmt_regs(6), 431 }; 432 433 static const struct dcn30_afmt_shift afmt_shift = { 434 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 435 }; 436 437 static const struct dcn30_afmt_mask afmt_mask = { 438 DCN3_AFMT_MASK_SH_LIST(_MASK) 439 }; 440 441 #define stream_enc_regs(id)\ 442 [id] = {\ 443 SE_DCN3_REG_LIST(id)\ 444 } 445 446 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 447 stream_enc_regs(0), 448 stream_enc_regs(1), 449 stream_enc_regs(2), 450 stream_enc_regs(3), 451 stream_enc_regs(4), 452 stream_enc_regs(5) 453 }; 454 455 static const struct dcn10_stream_encoder_shift se_shift = { 456 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 457 }; 458 459 static const struct dcn10_stream_encoder_mask se_mask = { 460 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 461 }; 462 463 464 #define aux_regs(id)\ 465 [id] = {\ 466 DCN2_AUX_REG_LIST(id)\ 467 } 468 469 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 470 aux_regs(0), 471 aux_regs(1), 472 aux_regs(2), 473 aux_regs(3), 474 aux_regs(4), 475 aux_regs(5) 476 }; 477 478 #define hpd_regs(id)\ 479 [id] = {\ 480 HPD_REG_LIST(id)\ 481 } 482 483 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 484 hpd_regs(0), 485 hpd_regs(1), 486 hpd_regs(2), 487 hpd_regs(3), 488 hpd_regs(4), 489 hpd_regs(5) 490 }; 491 492 #define link_regs(id, phyid)\ 493 [id] = {\ 494 LE_DCN3_REG_LIST(id), \ 495 UNIPHY_DCN2_REG_LIST(phyid), \ 496 DPCS_DCN2_REG_LIST(id), \ 497 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 498 } 499 500 static const struct dce110_aux_registers_shift aux_shift = { 501 DCN_AUX_MASK_SH_LIST(__SHIFT) 502 }; 503 504 static const struct dce110_aux_registers_mask aux_mask = { 505 DCN_AUX_MASK_SH_LIST(_MASK) 506 }; 507 508 static const struct dcn10_link_enc_registers link_enc_regs[] = { 509 link_regs(0, A), 510 link_regs(1, B), 511 link_regs(2, C), 512 link_regs(3, D), 513 link_regs(4, E), 514 link_regs(5, F) 515 }; 516 517 static const struct dcn10_link_enc_shift le_shift = { 518 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 519 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 520 }; 521 522 static const struct dcn10_link_enc_mask le_mask = { 523 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 524 DPCS_DCN2_MASK_SH_LIST(_MASK) 525 }; 526 527 528 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 529 { DCN_PANEL_CNTL_REG_LIST() } 530 }; 531 532 static const struct dce_panel_cntl_shift panel_cntl_shift = { 533 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 534 }; 535 536 static const struct dce_panel_cntl_mask panel_cntl_mask = { 537 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 538 }; 539 540 #define dpp_regs(id)\ 541 [id] = {\ 542 DPP_REG_LIST_DCN30(id),\ 543 } 544 545 static const struct dcn3_dpp_registers dpp_regs[] = { 546 dpp_regs(0), 547 dpp_regs(1), 548 dpp_regs(2), 549 dpp_regs(3), 550 dpp_regs(4), 551 dpp_regs(5), 552 }; 553 554 static const struct dcn3_dpp_shift tf_shift = { 555 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 556 }; 557 558 static const struct dcn3_dpp_mask tf_mask = { 559 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 560 }; 561 562 #define opp_regs(id)\ 563 [id] = {\ 564 OPP_REG_LIST_DCN30(id),\ 565 } 566 567 static const struct dcn20_opp_registers opp_regs[] = { 568 opp_regs(0), 569 opp_regs(1), 570 opp_regs(2), 571 opp_regs(3), 572 opp_regs(4), 573 opp_regs(5) 574 }; 575 576 static const struct dcn20_opp_shift opp_shift = { 577 OPP_MASK_SH_LIST_DCN20(__SHIFT) 578 }; 579 580 static const struct dcn20_opp_mask opp_mask = { 581 OPP_MASK_SH_LIST_DCN20(_MASK) 582 }; 583 584 #define aux_engine_regs(id)\ 585 [id] = {\ 586 AUX_COMMON_REG_LIST0(id), \ 587 .AUXN_IMPCAL = 0, \ 588 .AUXP_IMPCAL = 0, \ 589 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 590 } 591 592 static const struct dce110_aux_registers aux_engine_regs[] = { 593 aux_engine_regs(0), 594 aux_engine_regs(1), 595 aux_engine_regs(2), 596 aux_engine_regs(3), 597 aux_engine_regs(4), 598 aux_engine_regs(5) 599 }; 600 601 #define dwbc_regs_dcn3(id)\ 602 [id] = {\ 603 DWBC_COMMON_REG_LIST_DCN30(id),\ 604 } 605 606 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 607 dwbc_regs_dcn3(0), 608 }; 609 610 static const struct dcn30_dwbc_shift dwbc30_shift = { 611 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 612 }; 613 614 static const struct dcn30_dwbc_mask dwbc30_mask = { 615 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 616 }; 617 618 #define mcif_wb_regs_dcn3(id)\ 619 [id] = {\ 620 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 621 } 622 623 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 624 mcif_wb_regs_dcn3(0) 625 }; 626 627 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 628 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 629 }; 630 631 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 632 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 633 }; 634 635 #define dsc_regsDCN20(id)\ 636 [id] = {\ 637 DSC_REG_LIST_DCN20(id)\ 638 } 639 640 static const struct dcn20_dsc_registers dsc_regs[] = { 641 dsc_regsDCN20(0), 642 dsc_regsDCN20(1), 643 dsc_regsDCN20(2), 644 dsc_regsDCN20(3), 645 dsc_regsDCN20(4), 646 dsc_regsDCN20(5) 647 }; 648 649 static const struct dcn20_dsc_shift dsc_shift = { 650 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 651 }; 652 653 static const struct dcn20_dsc_mask dsc_mask = { 654 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 655 }; 656 657 static const struct dcn30_mpc_registers mpc_regs = { 658 MPC_REG_LIST_DCN3_0(0), 659 MPC_REG_LIST_DCN3_0(1), 660 MPC_REG_LIST_DCN3_0(2), 661 MPC_REG_LIST_DCN3_0(3), 662 MPC_REG_LIST_DCN3_0(4), 663 MPC_REG_LIST_DCN3_0(5), 664 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 665 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 666 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 667 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 668 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 669 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 670 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 671 MPC_RMU_REG_LIST_DCN3AG(0), 672 MPC_RMU_REG_LIST_DCN3AG(1), 673 MPC_RMU_REG_LIST_DCN3AG(2), 674 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 675 }; 676 677 static const struct dcn30_mpc_shift mpc_shift = { 678 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 679 }; 680 681 static const struct dcn30_mpc_mask mpc_mask = { 682 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 683 }; 684 685 #define optc_regs(id)\ 686 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 687 688 689 static const struct dcn_optc_registers optc_regs[] = { 690 optc_regs(0), 691 optc_regs(1), 692 optc_regs(2), 693 optc_regs(3), 694 optc_regs(4), 695 optc_regs(5) 696 }; 697 698 static const struct dcn_optc_shift optc_shift = { 699 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 700 }; 701 702 static const struct dcn_optc_mask optc_mask = { 703 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 704 }; 705 706 #define hubp_regs(id)\ 707 [id] = {\ 708 HUBP_REG_LIST_DCN30(id)\ 709 } 710 711 static const struct dcn_hubp2_registers hubp_regs[] = { 712 hubp_regs(0), 713 hubp_regs(1), 714 hubp_regs(2), 715 hubp_regs(3), 716 hubp_regs(4), 717 hubp_regs(5) 718 }; 719 720 static const struct dcn_hubp2_shift hubp_shift = { 721 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 722 }; 723 724 static const struct dcn_hubp2_mask hubp_mask = { 725 HUBP_MASK_SH_LIST_DCN30(_MASK) 726 }; 727 728 static const struct dcn_hubbub_registers hubbub_reg = { 729 HUBBUB_REG_LIST_DCN30(0) 730 }; 731 732 static const struct dcn_hubbub_shift hubbub_shift = { 733 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 734 }; 735 736 static const struct dcn_hubbub_mask hubbub_mask = { 737 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 738 }; 739 740 static const struct dccg_registers dccg_regs = { 741 DCCG_REG_LIST_DCN30() 742 }; 743 744 static const struct dccg_shift dccg_shift = { 745 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 746 }; 747 748 static const struct dccg_mask dccg_mask = { 749 DCCG_MASK_SH_LIST_DCN3(_MASK) 750 }; 751 752 static const struct dce_hwseq_registers hwseq_reg = { 753 HWSEQ_DCN30_REG_LIST() 754 }; 755 756 static const struct dce_hwseq_shift hwseq_shift = { 757 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 758 }; 759 760 static const struct dce_hwseq_mask hwseq_mask = { 761 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 762 }; 763 #define vmid_regs(id)\ 764 [id] = {\ 765 DCN20_VMID_REG_LIST(id)\ 766 } 767 768 static const struct dcn_vmid_registers vmid_regs[] = { 769 vmid_regs(0), 770 vmid_regs(1), 771 vmid_regs(2), 772 vmid_regs(3), 773 vmid_regs(4), 774 vmid_regs(5), 775 vmid_regs(6), 776 vmid_regs(7), 777 vmid_regs(8), 778 vmid_regs(9), 779 vmid_regs(10), 780 vmid_regs(11), 781 vmid_regs(12), 782 vmid_regs(13), 783 vmid_regs(14), 784 vmid_regs(15) 785 }; 786 787 static const struct dcn20_vmid_shift vmid_shifts = { 788 DCN20_VMID_MASK_SH_LIST(__SHIFT) 789 }; 790 791 static const struct dcn20_vmid_mask vmid_masks = { 792 DCN20_VMID_MASK_SH_LIST(_MASK) 793 }; 794 795 static const struct resource_caps res_cap_dcn3 = { 796 .num_timing_generator = 6, 797 .num_opp = 6, 798 .num_video_plane = 6, 799 .num_audio = 6, 800 .num_stream_encoder = 6, 801 .num_pll = 6, 802 .num_dwb = 1, 803 .num_ddc = 6, 804 .num_vmid = 16, 805 .num_mpc_3dlut = 3, 806 .num_dsc = 6, 807 }; 808 809 static const struct dc_plane_cap plane_cap = { 810 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 811 .blends_with_above = true, 812 .blends_with_below = true, 813 .per_pixel_alpha = true, 814 815 .pixel_format_support = { 816 .argb8888 = true, 817 .nv12 = true, 818 .fp16 = true, 819 .p010 = false, 820 .ayuv = false, 821 }, 822 823 .max_upscale_factor = { 824 .argb8888 = 16000, 825 .nv12 = 16000, 826 .fp16 = 16000 827 }, 828 829 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 830 .max_downscale_factor = { 831 .argb8888 = 167, 832 .nv12 = 167, 833 .fp16 = 167 834 } 835 }; 836 837 static const struct dc_debug_options debug_defaults_drv = { 838 .disable_dmcu = true, //No DMCU on DCN30 839 .force_abm_enable = false, 840 .timing_trace = false, 841 .clock_trace = true, 842 .disable_pplib_clock_request = true, 843 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 844 .force_single_disp_pipe_split = false, 845 .disable_dcc = DCC_ENABLE, 846 .vsr_support = true, 847 .performance_trace = false, 848 .max_downscale_src_width = 7680,/*upto 8K*/ 849 .disable_pplib_wm_range = false, 850 .scl_reset_length10 = true, 851 .sanity_checks = false, 852 .underflow_assert_delay_us = 0xFFFFFFFF, 853 .dwb_fi_phase = -1, // -1 = disable, 854 .dmub_command_table = true, 855 .disable_psr = false, 856 .use_max_lb = true 857 }; 858 859 static const struct dc_debug_options debug_defaults_diags = { 860 .disable_dmcu = true, //No dmcu on DCN30 861 .force_abm_enable = false, 862 .timing_trace = true, 863 .clock_trace = true, 864 .disable_dpp_power_gate = true, 865 .disable_hubp_power_gate = true, 866 .disable_clock_gate = true, 867 .disable_pplib_clock_request = true, 868 .disable_pplib_wm_range = true, 869 .disable_stutter = false, 870 .scl_reset_length10 = true, 871 .dwb_fi_phase = -1, // -1 = disable 872 .dmub_command_table = true, 873 .disable_psr = true, 874 .enable_tri_buf = true, 875 .use_max_lb = true 876 }; 877 878 void dcn30_dpp_destroy(struct dpp **dpp) 879 { 880 kfree(TO_DCN20_DPP(*dpp)); 881 *dpp = NULL; 882 } 883 884 static struct dpp *dcn30_dpp_create( 885 struct dc_context *ctx, 886 uint32_t inst) 887 { 888 struct dcn3_dpp *dpp = 889 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 890 891 if (!dpp) 892 return NULL; 893 894 if (dpp3_construct(dpp, ctx, inst, 895 &dpp_regs[inst], &tf_shift, &tf_mask)) 896 return &dpp->base; 897 898 BREAK_TO_DEBUGGER(); 899 kfree(dpp); 900 return NULL; 901 } 902 903 static struct output_pixel_processor *dcn30_opp_create( 904 struct dc_context *ctx, uint32_t inst) 905 { 906 struct dcn20_opp *opp = 907 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 908 909 if (!opp) { 910 BREAK_TO_DEBUGGER(); 911 return NULL; 912 } 913 914 dcn20_opp_construct(opp, ctx, inst, 915 &opp_regs[inst], &opp_shift, &opp_mask); 916 return &opp->base; 917 } 918 919 static struct dce_aux *dcn30_aux_engine_create( 920 struct dc_context *ctx, 921 uint32_t inst) 922 { 923 struct aux_engine_dce110 *aux_engine = 924 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 925 926 if (!aux_engine) 927 return NULL; 928 929 dce110_aux_engine_construct(aux_engine, ctx, inst, 930 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 931 &aux_engine_regs[inst], 932 &aux_mask, 933 &aux_shift, 934 ctx->dc->caps.extended_aux_timeout_support); 935 936 return &aux_engine->base; 937 } 938 939 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 940 941 static const struct dce_i2c_registers i2c_hw_regs[] = { 942 i2c_inst_regs(1), 943 i2c_inst_regs(2), 944 i2c_inst_regs(3), 945 i2c_inst_regs(4), 946 i2c_inst_regs(5), 947 i2c_inst_regs(6), 948 }; 949 950 static const struct dce_i2c_shift i2c_shifts = { 951 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 952 }; 953 954 static const struct dce_i2c_mask i2c_masks = { 955 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 956 }; 957 958 static struct dce_i2c_hw *dcn30_i2c_hw_create( 959 struct dc_context *ctx, 960 uint32_t inst) 961 { 962 struct dce_i2c_hw *dce_i2c_hw = 963 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 964 965 if (!dce_i2c_hw) 966 return NULL; 967 968 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 969 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 970 971 return dce_i2c_hw; 972 } 973 974 static struct mpc *dcn30_mpc_create( 975 struct dc_context *ctx, 976 int num_mpcc, 977 int num_rmu) 978 { 979 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 980 GFP_KERNEL); 981 982 if (!mpc30) 983 return NULL; 984 985 dcn30_mpc_construct(mpc30, ctx, 986 &mpc_regs, 987 &mpc_shift, 988 &mpc_mask, 989 num_mpcc, 990 num_rmu); 991 992 return &mpc30->base; 993 } 994 995 struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 996 { 997 int i; 998 999 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 1000 GFP_KERNEL); 1001 1002 if (!hubbub3) 1003 return NULL; 1004 1005 hubbub3_construct(hubbub3, ctx, 1006 &hubbub_reg, 1007 &hubbub_shift, 1008 &hubbub_mask); 1009 1010 1011 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 1012 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 1013 1014 vmid->ctx = ctx; 1015 1016 vmid->regs = &vmid_regs[i]; 1017 vmid->shifts = &vmid_shifts; 1018 vmid->masks = &vmid_masks; 1019 } 1020 1021 return &hubbub3->base; 1022 } 1023 1024 static struct timing_generator *dcn30_timing_generator_create( 1025 struct dc_context *ctx, 1026 uint32_t instance) 1027 { 1028 struct optc *tgn10 = 1029 kzalloc(sizeof(struct optc), GFP_KERNEL); 1030 1031 if (!tgn10) 1032 return NULL; 1033 1034 tgn10->base.inst = instance; 1035 tgn10->base.ctx = ctx; 1036 1037 tgn10->tg_regs = &optc_regs[instance]; 1038 tgn10->tg_shift = &optc_shift; 1039 tgn10->tg_mask = &optc_mask; 1040 1041 dcn30_timing_generator_init(tgn10); 1042 1043 return &tgn10->base; 1044 } 1045 1046 static const struct encoder_feature_support link_enc_feature = { 1047 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1048 .max_hdmi_pixel_clock = 600000, 1049 .hdmi_ycbcr420_supported = true, 1050 .dp_ycbcr420_supported = true, 1051 .fec_supported = true, 1052 .flags.bits.IS_HBR2_CAPABLE = true, 1053 .flags.bits.IS_HBR3_CAPABLE = true, 1054 .flags.bits.IS_TPS3_CAPABLE = true, 1055 .flags.bits.IS_TPS4_CAPABLE = true 1056 }; 1057 1058 static struct link_encoder *dcn30_link_encoder_create( 1059 const struct encoder_init_data *enc_init_data) 1060 { 1061 struct dcn20_link_encoder *enc20 = 1062 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1063 1064 if (!enc20) 1065 return NULL; 1066 1067 dcn30_link_encoder_construct(enc20, 1068 enc_init_data, 1069 &link_enc_feature, 1070 &link_enc_regs[enc_init_data->transmitter], 1071 &link_enc_aux_regs[enc_init_data->channel - 1], 1072 &link_enc_hpd_regs[enc_init_data->hpd_source], 1073 &le_shift, 1074 &le_mask); 1075 1076 return &enc20->enc10.base; 1077 } 1078 1079 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1080 { 1081 struct dce_panel_cntl *panel_cntl = 1082 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 1083 1084 if (!panel_cntl) 1085 return NULL; 1086 1087 dce_panel_cntl_construct(panel_cntl, 1088 init_data, 1089 &panel_cntl_regs[init_data->inst], 1090 &panel_cntl_shift, 1091 &panel_cntl_mask); 1092 1093 return &panel_cntl->base; 1094 } 1095 1096 static void read_dce_straps( 1097 struct dc_context *ctx, 1098 struct resource_straps *straps) 1099 { 1100 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 1101 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1102 1103 } 1104 1105 static struct audio *dcn30_create_audio( 1106 struct dc_context *ctx, unsigned int inst) 1107 { 1108 return dce_audio_create(ctx, inst, 1109 &audio_regs[inst], &audio_shift, &audio_mask); 1110 } 1111 1112 static struct vpg *dcn30_vpg_create( 1113 struct dc_context *ctx, 1114 uint32_t inst) 1115 { 1116 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1117 1118 if (!vpg3) 1119 return NULL; 1120 1121 vpg3_construct(vpg3, ctx, inst, 1122 &vpg_regs[inst], 1123 &vpg_shift, 1124 &vpg_mask); 1125 1126 return &vpg3->base; 1127 } 1128 1129 static struct afmt *dcn30_afmt_create( 1130 struct dc_context *ctx, 1131 uint32_t inst) 1132 { 1133 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1134 1135 if (!afmt3) 1136 return NULL; 1137 1138 afmt3_construct(afmt3, ctx, inst, 1139 &afmt_regs[inst], 1140 &afmt_shift, 1141 &afmt_mask); 1142 1143 return &afmt3->base; 1144 } 1145 1146 struct stream_encoder *dcn30_stream_encoder_create( 1147 enum engine_id eng_id, 1148 struct dc_context *ctx) 1149 { 1150 struct dcn10_stream_encoder *enc1; 1151 struct vpg *vpg; 1152 struct afmt *afmt; 1153 int vpg_inst; 1154 int afmt_inst; 1155 1156 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1157 if (eng_id <= ENGINE_ID_DIGF) { 1158 vpg_inst = eng_id; 1159 afmt_inst = eng_id; 1160 } else 1161 return NULL; 1162 1163 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1164 vpg = dcn30_vpg_create(ctx, vpg_inst); 1165 afmt = dcn30_afmt_create(ctx, afmt_inst); 1166 1167 if (!enc1 || !vpg || !afmt) { 1168 kfree(enc1); 1169 kfree(vpg); 1170 kfree(afmt); 1171 return NULL; 1172 } 1173 1174 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1175 eng_id, vpg, afmt, 1176 &stream_enc_regs[eng_id], 1177 &se_shift, &se_mask); 1178 1179 return &enc1->base; 1180 } 1181 1182 struct dce_hwseq *dcn30_hwseq_create( 1183 struct dc_context *ctx) 1184 { 1185 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1186 1187 if (hws) { 1188 hws->ctx = ctx; 1189 hws->regs = &hwseq_reg; 1190 hws->shifts = &hwseq_shift; 1191 hws->masks = &hwseq_mask; 1192 } 1193 return hws; 1194 } 1195 static const struct resource_create_funcs res_create_funcs = { 1196 .read_dce_straps = read_dce_straps, 1197 .create_audio = dcn30_create_audio, 1198 .create_stream_encoder = dcn30_stream_encoder_create, 1199 .create_hwseq = dcn30_hwseq_create, 1200 }; 1201 1202 static const struct resource_create_funcs res_create_maximus_funcs = { 1203 .read_dce_straps = NULL, 1204 .create_audio = NULL, 1205 .create_stream_encoder = NULL, 1206 .create_hwseq = dcn30_hwseq_create, 1207 }; 1208 1209 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1210 { 1211 unsigned int i; 1212 1213 for (i = 0; i < pool->base.stream_enc_count; i++) { 1214 if (pool->base.stream_enc[i] != NULL) { 1215 if (pool->base.stream_enc[i]->vpg != NULL) { 1216 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1217 pool->base.stream_enc[i]->vpg = NULL; 1218 } 1219 if (pool->base.stream_enc[i]->afmt != NULL) { 1220 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1221 pool->base.stream_enc[i]->afmt = NULL; 1222 } 1223 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1224 pool->base.stream_enc[i] = NULL; 1225 } 1226 } 1227 1228 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1229 if (pool->base.dscs[i] != NULL) 1230 dcn20_dsc_destroy(&pool->base.dscs[i]); 1231 } 1232 1233 if (pool->base.mpc != NULL) { 1234 kfree(TO_DCN20_MPC(pool->base.mpc)); 1235 pool->base.mpc = NULL; 1236 } 1237 if (pool->base.hubbub != NULL) { 1238 kfree(pool->base.hubbub); 1239 pool->base.hubbub = NULL; 1240 } 1241 for (i = 0; i < pool->base.pipe_count; i++) { 1242 if (pool->base.dpps[i] != NULL) 1243 dcn30_dpp_destroy(&pool->base.dpps[i]); 1244 1245 if (pool->base.ipps[i] != NULL) 1246 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1247 1248 if (pool->base.hubps[i] != NULL) { 1249 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1250 pool->base.hubps[i] = NULL; 1251 } 1252 1253 if (pool->base.irqs != NULL) { 1254 dal_irq_service_destroy(&pool->base.irqs); 1255 } 1256 } 1257 1258 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1259 if (pool->base.engines[i] != NULL) 1260 dce110_engine_destroy(&pool->base.engines[i]); 1261 if (pool->base.hw_i2cs[i] != NULL) { 1262 kfree(pool->base.hw_i2cs[i]); 1263 pool->base.hw_i2cs[i] = NULL; 1264 } 1265 if (pool->base.sw_i2cs[i] != NULL) { 1266 kfree(pool->base.sw_i2cs[i]); 1267 pool->base.sw_i2cs[i] = NULL; 1268 } 1269 } 1270 1271 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1272 if (pool->base.opps[i] != NULL) 1273 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1274 } 1275 1276 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1277 if (pool->base.timing_generators[i] != NULL) { 1278 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1279 pool->base.timing_generators[i] = NULL; 1280 } 1281 } 1282 1283 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1284 if (pool->base.dwbc[i] != NULL) { 1285 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1286 pool->base.dwbc[i] = NULL; 1287 } 1288 if (pool->base.mcif_wb[i] != NULL) { 1289 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1290 pool->base.mcif_wb[i] = NULL; 1291 } 1292 } 1293 1294 for (i = 0; i < pool->base.audio_count; i++) { 1295 if (pool->base.audios[i]) 1296 dce_aud_destroy(&pool->base.audios[i]); 1297 } 1298 1299 for (i = 0; i < pool->base.clk_src_count; i++) { 1300 if (pool->base.clock_sources[i] != NULL) { 1301 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1302 pool->base.clock_sources[i] = NULL; 1303 } 1304 } 1305 1306 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1307 if (pool->base.mpc_lut[i] != NULL) { 1308 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1309 pool->base.mpc_lut[i] = NULL; 1310 } 1311 if (pool->base.mpc_shaper[i] != NULL) { 1312 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1313 pool->base.mpc_shaper[i] = NULL; 1314 } 1315 } 1316 1317 if (pool->base.dp_clock_source != NULL) { 1318 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1319 pool->base.dp_clock_source = NULL; 1320 } 1321 1322 for (i = 0; i < pool->base.pipe_count; i++) { 1323 if (pool->base.multiple_abms[i] != NULL) 1324 dce_abm_destroy(&pool->base.multiple_abms[i]); 1325 } 1326 1327 if (pool->base.psr != NULL) 1328 dmub_psr_destroy(&pool->base.psr); 1329 1330 if (pool->base.dccg != NULL) 1331 dcn_dccg_destroy(&pool->base.dccg); 1332 1333 if (pool->base.oem_device != NULL) 1334 dal_ddc_service_destroy(&pool->base.oem_device); 1335 } 1336 1337 static struct hubp *dcn30_hubp_create( 1338 struct dc_context *ctx, 1339 uint32_t inst) 1340 { 1341 struct dcn20_hubp *hubp2 = 1342 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1343 1344 if (!hubp2) 1345 return NULL; 1346 1347 if (hubp3_construct(hubp2, ctx, inst, 1348 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1349 return &hubp2->base; 1350 1351 BREAK_TO_DEBUGGER(); 1352 kfree(hubp2); 1353 return NULL; 1354 } 1355 1356 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1357 { 1358 int i; 1359 uint32_t pipe_count = pool->res_cap->num_dwb; 1360 1361 for (i = 0; i < pipe_count; i++) { 1362 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1363 GFP_KERNEL); 1364 1365 if (!dwbc30) { 1366 dm_error("DC: failed to create dwbc30!\n"); 1367 return false; 1368 } 1369 1370 dcn30_dwbc_construct(dwbc30, ctx, 1371 &dwbc30_regs[i], 1372 &dwbc30_shift, 1373 &dwbc30_mask, 1374 i); 1375 1376 pool->dwbc[i] = &dwbc30->base; 1377 } 1378 return true; 1379 } 1380 1381 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1382 { 1383 int i; 1384 uint32_t pipe_count = pool->res_cap->num_dwb; 1385 1386 for (i = 0; i < pipe_count; i++) { 1387 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1388 GFP_KERNEL); 1389 1390 if (!mcif_wb30) { 1391 dm_error("DC: failed to create mcif_wb30!\n"); 1392 return false; 1393 } 1394 1395 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1396 &mcif_wb30_regs[i], 1397 &mcif_wb30_shift, 1398 &mcif_wb30_mask, 1399 i); 1400 1401 pool->mcif_wb[i] = &mcif_wb30->base; 1402 } 1403 return true; 1404 } 1405 1406 static struct display_stream_compressor *dcn30_dsc_create( 1407 struct dc_context *ctx, uint32_t inst) 1408 { 1409 struct dcn20_dsc *dsc = 1410 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1411 1412 if (!dsc) { 1413 BREAK_TO_DEBUGGER(); 1414 return NULL; 1415 } 1416 1417 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1418 return &dsc->base; 1419 } 1420 1421 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1422 { 1423 1424 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1425 } 1426 1427 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1428 { 1429 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1430 1431 dcn30_resource_destruct(dcn30_pool); 1432 kfree(dcn30_pool); 1433 *pool = NULL; 1434 } 1435 1436 static struct clock_source *dcn30_clock_source_create( 1437 struct dc_context *ctx, 1438 struct dc_bios *bios, 1439 enum clock_source_id id, 1440 const struct dce110_clk_src_regs *regs, 1441 bool dp_clk_src) 1442 { 1443 struct dce110_clk_src *clk_src = 1444 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1445 1446 if (!clk_src) 1447 return NULL; 1448 1449 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1450 regs, &cs_shift, &cs_mask)) { 1451 clk_src->base.dp_clk_src = dp_clk_src; 1452 return &clk_src->base; 1453 } 1454 1455 BREAK_TO_DEBUGGER(); 1456 return NULL; 1457 } 1458 1459 int dcn30_populate_dml_pipes_from_context( 1460 struct dc *dc, struct dc_state *context, 1461 display_e2e_pipe_params_st *pipes, 1462 bool fast_validate) 1463 { 1464 int i, pipe_cnt; 1465 struct resource_context *res_ctx = &context->res_ctx; 1466 1467 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1468 1469 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1470 if (!res_ctx->pipe_ctx[i].stream) 1471 continue; 1472 1473 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1474 dm_lb_16; 1475 } 1476 1477 return pipe_cnt; 1478 } 1479 1480 void dcn30_populate_dml_writeback_from_context( 1481 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1482 { 1483 int pipe_cnt, i, j; 1484 double max_calc_writeback_dispclk; 1485 double writeback_dispclk; 1486 struct writeback_st dout_wb; 1487 1488 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1489 struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream; 1490 1491 if (!stream) 1492 continue; 1493 max_calc_writeback_dispclk = 0; 1494 1495 /* Set writeback information */ 1496 pipes[pipe_cnt].dout.wb_enable = 0; 1497 pipes[pipe_cnt].dout.num_active_wb = 0; 1498 for (j = 0; j < stream->num_wb_info; j++) { 1499 struct dc_writeback_info *wb_info = &stream->writeback_info[j]; 1500 1501 if (wb_info->wb_enabled && wb_info->writeback_source_plane && 1502 (wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) { 1503 pipes[pipe_cnt].dout.wb_enable = 1; 1504 pipes[pipe_cnt].dout.num_active_wb++; 1505 dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ? 1506 wb_info->dwb_params.cnv_params.crop_height : 1507 wb_info->dwb_params.cnv_params.src_height; 1508 dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ? 1509 wb_info->dwb_params.cnv_params.crop_width : 1510 wb_info->dwb_params.cnv_params.src_width; 1511 dout_wb.wb_dst_width = wb_info->dwb_params.dest_width; 1512 dout_wb.wb_dst_height = wb_info->dwb_params.dest_height; 1513 1514 /* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */ 1515 if (dc->dml.ip.writeback_max_hscl_taps > 1) { 1516 dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps; 1517 dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps; 1518 } else { 1519 dout_wb.wb_htaps_luma = 1; 1520 dout_wb.wb_vtaps_luma = 1; 1521 } 1522 dout_wb.wb_htaps_chroma = 0; 1523 dout_wb.wb_vtaps_chroma = 0; 1524 dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ? 1525 (double)wb_info->dwb_params.cnv_params.crop_width / 1526 (double)wb_info->dwb_params.dest_width : 1527 (double)wb_info->dwb_params.cnv_params.src_width / 1528 (double)wb_info->dwb_params.dest_width; 1529 dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ? 1530 (double)wb_info->dwb_params.cnv_params.crop_height / 1531 (double)wb_info->dwb_params.dest_height : 1532 (double)wb_info->dwb_params.cnv_params.src_height / 1533 (double)wb_info->dwb_params.dest_height; 1534 if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1535 wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1536 dout_wb.wb_pixel_format = dm_444_64; 1537 else 1538 dout_wb.wb_pixel_format = dm_444_32; 1539 1540 /* Workaround for cases where multiple writebacks are connected to same plane 1541 * In which case, need to compute worst case and set the associated writeback parameters 1542 * This workaround is necessary due to DML computation assuming only 1 set of writeback 1543 * parameters per pipe 1544 */ 1545 writeback_dispclk = dml30_CalculateWriteBackDISPCLK( 1546 dout_wb.wb_pixel_format, 1547 pipes[pipe_cnt].pipe.dest.pixel_rate_mhz, 1548 dout_wb.wb_hratio, 1549 dout_wb.wb_vratio, 1550 dout_wb.wb_htaps_luma, 1551 dout_wb.wb_vtaps_luma, 1552 dout_wb.wb_src_width, 1553 dout_wb.wb_dst_width, 1554 pipes[pipe_cnt].pipe.dest.htotal, 1555 dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size); 1556 1557 if (writeback_dispclk > max_calc_writeback_dispclk) { 1558 max_calc_writeback_dispclk = writeback_dispclk; 1559 pipes[pipe_cnt].dout.wb = dout_wb; 1560 } 1561 } 1562 } 1563 1564 pipe_cnt++; 1565 } 1566 1567 } 1568 1569 unsigned int dcn30_calc_max_scaled_time( 1570 unsigned int time_per_pixel, 1571 enum mmhubbub_wbif_mode mode, 1572 unsigned int urgent_watermark) 1573 { 1574 unsigned int time_per_byte = 0; 1575 unsigned int total_free_entry = 0xb40; 1576 unsigned int buf_lh_capability; 1577 unsigned int max_scaled_time; 1578 1579 if (mode == PACKED_444) /* packed mode 32 bpp */ 1580 time_per_byte = time_per_pixel/4; 1581 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1582 time_per_byte = time_per_pixel/8; 1583 1584 if (time_per_byte == 0) 1585 time_per_byte = 1; 1586 1587 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1588 max_scaled_time = buf_lh_capability - urgent_watermark; 1589 return max_scaled_time; 1590 } 1591 1592 void dcn30_set_mcif_arb_params( 1593 struct dc *dc, 1594 struct dc_state *context, 1595 display_e2e_pipe_params_st *pipes, 1596 int pipe_cnt) 1597 { 1598 enum mmhubbub_wbif_mode wbif_mode; 1599 struct display_mode_lib *dml = &context->bw_ctx.dml; 1600 struct mcif_arb_params *wb_arb_params; 1601 int i, j, k, dwb_pipe; 1602 1603 /* Writeback MCIF_WB arbitration parameters */ 1604 dwb_pipe = 0; 1605 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1606 1607 if (!context->res_ctx.pipe_ctx[i].stream) 1608 continue; 1609 1610 for (j = 0; j < MAX_DWB_PIPES; j++) { 1611 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1612 1613 if (writeback_info->wb_enabled == false) 1614 continue; 1615 1616 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1617 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1618 1619 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1620 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1621 wbif_mode = PACKED_444_FP16; 1622 else 1623 wbif_mode = PACKED_444; 1624 1625 for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) { 1626 wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000; 1627 wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000; 1628 } 1629 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1630 wb_arb_params->slice_lines = 32; 1631 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1632 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1633 wbif_mode, 1634 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1635 wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */ 1636 1637 dwb_pipe++; 1638 1639 if (dwb_pipe >= MAX_DWB_PIPES) 1640 return; 1641 } 1642 if (dwb_pipe >= MAX_DWB_PIPES) 1643 return; 1644 } 1645 1646 } 1647 1648 static struct dc_cap_funcs cap_funcs = { 1649 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1650 }; 1651 1652 bool dcn30_acquire_post_bldn_3dlut( 1653 struct resource_context *res_ctx, 1654 const struct resource_pool *pool, 1655 int mpcc_id, 1656 struct dc_3dlut **lut, 1657 struct dc_transfer_func **shaper) 1658 { 1659 int i; 1660 bool ret = false; 1661 union dc_3dlut_state *state; 1662 1663 ASSERT(*lut == NULL && *shaper == NULL); 1664 *lut = NULL; 1665 *shaper = NULL; 1666 1667 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1668 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1669 *lut = pool->mpc_lut[i]; 1670 *shaper = pool->mpc_shaper[i]; 1671 state = &pool->mpc_lut[i]->state; 1672 res_ctx->is_mpc_3dlut_acquired[i] = true; 1673 state->bits.rmu_idx_valid = 1; 1674 state->bits.rmu_mux_num = i; 1675 if (state->bits.rmu_mux_num == 0) 1676 state->bits.mpc_rmu0_mux = mpcc_id; 1677 else if (state->bits.rmu_mux_num == 1) 1678 state->bits.mpc_rmu1_mux = mpcc_id; 1679 else if (state->bits.rmu_mux_num == 2) 1680 state->bits.mpc_rmu2_mux = mpcc_id; 1681 ret = true; 1682 break; 1683 } 1684 } 1685 return ret; 1686 } 1687 1688 bool dcn30_release_post_bldn_3dlut( 1689 struct resource_context *res_ctx, 1690 const struct resource_pool *pool, 1691 struct dc_3dlut **lut, 1692 struct dc_transfer_func **shaper) 1693 { 1694 int i; 1695 bool ret = false; 1696 1697 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1698 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1699 res_ctx->is_mpc_3dlut_acquired[i] = false; 1700 pool->mpc_lut[i]->state.raw = 0; 1701 *lut = NULL; 1702 *shaper = NULL; 1703 ret = true; 1704 break; 1705 } 1706 } 1707 return ret; 1708 } 1709 1710 static bool is_soc_bounding_box_valid(struct dc *dc) 1711 { 1712 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1713 1714 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1715 return true; 1716 1717 return false; 1718 } 1719 1720 static bool init_soc_bounding_box(struct dc *dc, 1721 struct dcn30_resource_pool *pool) 1722 { 1723 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1724 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1725 1726 DC_LOGGER_INIT(dc->ctx->logger); 1727 1728 if (!is_soc_bounding_box_valid(dc)) { 1729 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1730 return false; 1731 } 1732 1733 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1734 loaded_ip->max_num_dpp = pool->base.pipe_count; 1735 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1736 dcn20_patch_bounding_box(dc, loaded_bb); 1737 1738 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 1739 struct bp_soc_bb_info bb_info = {0}; 1740 1741 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 1742 if (bb_info.dram_clock_change_latency_100ns > 0) 1743 dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; 1744 1745 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 1746 dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; 1747 1748 if (bb_info.dram_sr_exit_latency_100ns > 0) 1749 dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; 1750 } 1751 } 1752 1753 return true; 1754 } 1755 1756 static bool dcn30_split_stream_for_mpc_or_odm( 1757 const struct dc *dc, 1758 struct resource_context *res_ctx, 1759 struct pipe_ctx *pri_pipe, 1760 struct pipe_ctx *sec_pipe, 1761 bool odm) 1762 { 1763 int pipe_idx = sec_pipe->pipe_idx; 1764 const struct resource_pool *pool = dc->res_pool; 1765 1766 *sec_pipe = *pri_pipe; 1767 1768 sec_pipe->pipe_idx = pipe_idx; 1769 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1770 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1771 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1772 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1773 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1774 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1775 sec_pipe->stream_res.dsc = NULL; 1776 if (odm) { 1777 if (pri_pipe->next_odm_pipe) { 1778 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1779 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1780 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1781 } 1782 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1783 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1784 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1785 } 1786 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1787 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1788 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1789 } 1790 pri_pipe->next_odm_pipe = sec_pipe; 1791 sec_pipe->prev_odm_pipe = pri_pipe; 1792 1793 if (!sec_pipe->top_pipe) 1794 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1795 else 1796 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1797 if (sec_pipe->stream->timing.flags.DSC == 1) { 1798 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1799 ASSERT(sec_pipe->stream_res.dsc); 1800 if (sec_pipe->stream_res.dsc == NULL) 1801 return false; 1802 } 1803 } else { 1804 if (pri_pipe->bottom_pipe) { 1805 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1806 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1807 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1808 } 1809 pri_pipe->bottom_pipe = sec_pipe; 1810 sec_pipe->top_pipe = pri_pipe; 1811 1812 ASSERT(pri_pipe->plane_state); 1813 } 1814 1815 return true; 1816 } 1817 1818 static struct pipe_ctx *dcn30_find_split_pipe( 1819 struct dc *dc, 1820 struct dc_state *context, 1821 int old_index) 1822 { 1823 struct pipe_ctx *pipe = NULL; 1824 int i; 1825 1826 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1827 pipe = &context->res_ctx.pipe_ctx[old_index]; 1828 pipe->pipe_idx = old_index; 1829 } 1830 1831 if (!pipe) 1832 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1833 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1834 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1835 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1836 pipe = &context->res_ctx.pipe_ctx[i]; 1837 pipe->pipe_idx = i; 1838 break; 1839 } 1840 } 1841 } 1842 1843 /* 1844 * May need to fix pipes getting tossed from 1 opp to another on flip 1845 * Add for debugging transient underflow during topology updates: 1846 * ASSERT(pipe); 1847 */ 1848 if (!pipe) 1849 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1850 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1851 pipe = &context->res_ctx.pipe_ctx[i]; 1852 pipe->pipe_idx = i; 1853 break; 1854 } 1855 } 1856 1857 return pipe; 1858 } 1859 1860 noinline bool dcn30_internal_validate_bw( 1861 struct dc *dc, 1862 struct dc_state *context, 1863 display_e2e_pipe_params_st *pipes, 1864 int *pipe_cnt_out, 1865 int *vlevel_out, 1866 bool fast_validate) 1867 { 1868 bool out = false; 1869 bool repopulate_pipes = false; 1870 int split[MAX_PIPES] = { 0 }; 1871 bool merge[MAX_PIPES] = { false }; 1872 bool newly_split[MAX_PIPES] = { false }; 1873 int pipe_cnt, i, pipe_idx, vlevel; 1874 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1875 1876 ASSERT(pipes); 1877 if (!pipes) 1878 return false; 1879 1880 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1881 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1882 1883 DC_FP_START(); 1884 if (!pipe_cnt) { 1885 out = true; 1886 goto validate_out; 1887 } 1888 1889 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1890 1891 if (!fast_validate) { 1892 /* 1893 * DML favors voltage over p-state, but we're more interested in 1894 * supporting p-state over voltage. We can't support p-state in 1895 * prefetch mode > 0 so try capping the prefetch mode to start. 1896 */ 1897 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1898 dm_allow_self_refresh_and_mclk_switch; 1899 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1900 /* This may adjust vlevel and maxMpcComb */ 1901 if (vlevel < context->bw_ctx.dml.soc.num_states) 1902 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1903 } 1904 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1905 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 1906 /* 1907 * If mode is unsupported or there's still no p-state support then 1908 * fall back to favoring voltage. 1909 * 1910 * We don't actually support prefetch mode 2, so require that we 1911 * at least support prefetch mode 1. 1912 */ 1913 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1914 dm_allow_self_refresh; 1915 1916 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1917 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1918 memset(split, 0, sizeof(split)); 1919 memset(merge, 0, sizeof(merge)); 1920 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1921 } 1922 } 1923 1924 dml_log_mode_support_params(&context->bw_ctx.dml); 1925 1926 if (vlevel == context->bw_ctx.dml.soc.num_states) 1927 goto validate_fail; 1928 1929 if (!dc->config.enable_windowed_mpo_odm) { 1930 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1931 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1932 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1933 1934 if (!pipe->stream) 1935 continue; 1936 1937 /* We only support full screen mpo with ODM */ 1938 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1939 && pipe->plane_state && mpo_pipe 1940 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1941 &pipe->plane_res.scl_data.recout, 1942 sizeof(struct rect)) != 0) { 1943 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1944 goto validate_fail; 1945 } 1946 pipe_idx++; 1947 } 1948 } 1949 1950 /* merge pipes if necessary */ 1951 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1952 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1953 1954 /*skip pipes that don't need merging*/ 1955 if (!merge[i]) 1956 continue; 1957 1958 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1959 if (pipe->prev_odm_pipe) { 1960 /*split off odm pipe*/ 1961 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1962 if (pipe->next_odm_pipe) 1963 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1964 1965 pipe->bottom_pipe = NULL; 1966 pipe->next_odm_pipe = NULL; 1967 pipe->plane_state = NULL; 1968 pipe->stream = NULL; 1969 pipe->top_pipe = NULL; 1970 pipe->prev_odm_pipe = NULL; 1971 if (pipe->stream_res.dsc) 1972 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1973 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1974 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1975 repopulate_pipes = true; 1976 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1977 struct pipe_ctx *top_pipe = pipe->top_pipe; 1978 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1979 1980 top_pipe->bottom_pipe = bottom_pipe; 1981 if (bottom_pipe) 1982 bottom_pipe->top_pipe = top_pipe; 1983 1984 pipe->top_pipe = NULL; 1985 pipe->bottom_pipe = NULL; 1986 pipe->plane_state = NULL; 1987 pipe->stream = NULL; 1988 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1989 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1990 repopulate_pipes = true; 1991 } else 1992 ASSERT(0); /* Should never try to merge master pipe */ 1993 1994 } 1995 1996 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1997 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1998 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1999 struct pipe_ctx *hsplit_pipe = NULL; 2000 bool odm; 2001 int old_index = -1; 2002 2003 if (!pipe->stream || newly_split[i]) 2004 continue; 2005 2006 pipe_idx++; 2007 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2008 2009 if (!pipe->plane_state && !odm) 2010 continue; 2011 2012 if (split[i]) { 2013 if (odm) { 2014 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2015 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2016 else if (old_pipe->next_odm_pipe) 2017 old_index = old_pipe->next_odm_pipe->pipe_idx; 2018 } else { 2019 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2020 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2021 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2022 else if (old_pipe->bottom_pipe && 2023 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2024 old_index = old_pipe->bottom_pipe->pipe_idx; 2025 } 2026 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 2027 ASSERT(hsplit_pipe); 2028 if (!hsplit_pipe) 2029 goto validate_fail; 2030 2031 if (!dcn30_split_stream_for_mpc_or_odm( 2032 dc, &context->res_ctx, 2033 pipe, hsplit_pipe, odm)) 2034 goto validate_fail; 2035 2036 newly_split[hsplit_pipe->pipe_idx] = true; 2037 repopulate_pipes = true; 2038 } 2039 if (split[i] == 4) { 2040 struct pipe_ctx *pipe_4to1; 2041 2042 if (odm && old_pipe->next_odm_pipe) 2043 old_index = old_pipe->next_odm_pipe->pipe_idx; 2044 else if (!odm && old_pipe->bottom_pipe && 2045 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2046 old_index = old_pipe->bottom_pipe->pipe_idx; 2047 else 2048 old_index = -1; 2049 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 2050 ASSERT(pipe_4to1); 2051 if (!pipe_4to1) 2052 goto validate_fail; 2053 if (!dcn30_split_stream_for_mpc_or_odm( 2054 dc, &context->res_ctx, 2055 pipe, pipe_4to1, odm)) 2056 goto validate_fail; 2057 newly_split[pipe_4to1->pipe_idx] = true; 2058 2059 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2060 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2061 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2062 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2063 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2064 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2065 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2066 else 2067 old_index = -1; 2068 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 2069 ASSERT(pipe_4to1); 2070 if (!pipe_4to1) 2071 goto validate_fail; 2072 if (!dcn30_split_stream_for_mpc_or_odm( 2073 dc, &context->res_ctx, 2074 hsplit_pipe, pipe_4to1, odm)) 2075 goto validate_fail; 2076 newly_split[pipe_4to1->pipe_idx] = true; 2077 } 2078 if (odm) 2079 dcn20_build_mapped_resource(dc, context, pipe->stream); 2080 } 2081 2082 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2083 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2084 2085 if (pipe->plane_state) { 2086 if (!resource_build_scaling_params(pipe)) 2087 goto validate_fail; 2088 } 2089 } 2090 2091 /* Actual dsc count per stream dsc validation*/ 2092 if (!dcn20_validate_dsc(dc, context)) { 2093 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2094 goto validate_fail; 2095 } 2096 2097 if (repopulate_pipes) 2098 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2099 *vlevel_out = vlevel; 2100 *pipe_cnt_out = pipe_cnt; 2101 2102 out = true; 2103 goto validate_out; 2104 2105 validate_fail: 2106 out = false; 2107 2108 validate_out: 2109 DC_FP_END(); 2110 return out; 2111 } 2112 2113 /* 2114 * This must be noinline to ensure anything that deals with FP registers 2115 * is contained within this call; previously our compiling with hard-float 2116 * would result in fp instructions being emitted outside of the boundaries 2117 * of the DC_FP_START/END macros, which makes sense as the compiler has no 2118 * idea about what is wrapped and what is not 2119 * 2120 * This is largely just a workaround to avoid breakage introduced with 5.6, 2121 * ideally all fp-using code should be moved into its own file, only that 2122 * should be compiled with hard-float, and all code exported from there 2123 * should be strictly wrapped with DC_FP_START/END 2124 */ 2125 static noinline void dcn30_calculate_wm_and_dlg_fp( 2126 struct dc *dc, struct dc_state *context, 2127 display_e2e_pipe_params_st *pipes, 2128 int pipe_cnt, 2129 int vlevel) 2130 { 2131 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb; 2132 int i, pipe_idx; 2133 double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][maxMpcComb]; 2134 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] != dm_dram_clock_change_unsupported; 2135 2136 if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk) 2137 dcfclk = context->bw_ctx.dml.soc.min_dcfclk; 2138 2139 pipes[0].clks_cfg.voltage = vlevel; 2140 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2141 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 2142 2143 /* Set B: 2144 * DCFCLK: 1GHz or min required above 1GHz 2145 * FCLK/UCLK: Max 2146 */ 2147 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 2148 if (vlevel == 0) { 2149 pipes[0].clks_cfg.voltage = 1; 2150 pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz; 2151 } 2152 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 2153 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 2154 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 2155 } 2156 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2157 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2158 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2159 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2160 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2161 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2162 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2163 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2164 2165 pipes[0].clks_cfg.voltage = vlevel; 2166 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2167 2168 /* Set D: 2169 * DCFCLK: Min Required 2170 * FCLK(proportional to UCLK): 1GHz or Max 2171 * MALL stutter, sr_enter_exit = 4, sr_exit = 2us 2172 */ 2173 /* 2174 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 2175 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 2176 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 2177 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 2178 } 2179 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2180 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2181 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2182 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2183 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2184 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2185 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2186 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2187 */ 2188 2189 /* Set C: 2190 * DCFCLK: Min Required 2191 * FCLK(proportional to UCLK): 1GHz or Max 2192 * pstate latency overridden to 5us 2193 */ 2194 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 2195 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 2196 unsigned int min_dram_speed_mts_margin = 160; 2197 2198 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported) 2199 min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; 2200 2201 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */ 2202 for (i = 3; i > 0; i--) 2203 if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) 2204 break; 2205 2206 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 2207 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 2208 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 2209 } 2210 2211 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2212 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2213 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2214 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2215 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2216 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2217 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2218 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2219 2220 if (!pstate_en) { 2221 /* The only difference between A and C is p-state latency, if p-state is not supported we want to 2222 * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark 2223 */ 2224 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 2225 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 2226 } else { 2227 /* Set A: 2228 * DCFCLK: Min Required 2229 * FCLK(proportional to UCLK): 1GHz or Max 2230 * 2231 * Set A calculated last so that following calculations are based on Set A 2232 */ 2233 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 2234 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2235 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2236 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2237 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2238 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2239 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2240 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2241 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2242 } 2243 2244 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 2245 2246 /* Make set D = set A until set D is enabled */ 2247 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; 2248 2249 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2250 if (!context->res_ctx.pipe_ctx[i].stream) 2251 continue; 2252 2253 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 2254 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2255 2256 if (dc->config.forced_clocks) { 2257 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 2258 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 2259 } 2260 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 2261 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 2262 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 2263 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 2264 2265 pipe_idx++; 2266 } 2267 2268 dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 2269 2270 if (!pstate_en) 2271 /* Restore full p-state latency */ 2272 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2273 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2274 } 2275 2276 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2277 { 2278 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) { 2279 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2280 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; 2281 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; 2282 } 2283 } 2284 2285 void dcn30_calculate_wm_and_dlg( 2286 struct dc *dc, struct dc_state *context, 2287 display_e2e_pipe_params_st *pipes, 2288 int pipe_cnt, 2289 int vlevel) 2290 { 2291 DC_FP_START(); 2292 dcn30_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel); 2293 DC_FP_END(); 2294 } 2295 2296 bool dcn30_validate_bandwidth(struct dc *dc, 2297 struct dc_state *context, 2298 bool fast_validate) 2299 { 2300 bool out = false; 2301 2302 BW_VAL_TRACE_SETUP(); 2303 2304 int vlevel = 0; 2305 int pipe_cnt = 0; 2306 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2307 DC_LOGGER_INIT(dc->ctx->logger); 2308 2309 BW_VAL_TRACE_COUNT(); 2310 2311 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2312 2313 if (pipe_cnt == 0) 2314 goto validate_out; 2315 2316 if (!out) 2317 goto validate_fail; 2318 2319 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2320 2321 if (fast_validate) { 2322 BW_VAL_TRACE_SKIP(fast); 2323 goto validate_out; 2324 } 2325 2326 DC_FP_START(); 2327 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2328 DC_FP_END(); 2329 2330 BW_VAL_TRACE_END_WATERMARKS(); 2331 2332 goto validate_out; 2333 2334 validate_fail: 2335 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2336 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2337 2338 BW_VAL_TRACE_SKIP(fail); 2339 out = false; 2340 2341 validate_out: 2342 kfree(pipes); 2343 2344 BW_VAL_TRACE_FINISH(); 2345 2346 return out; 2347 } 2348 2349 /* 2350 * This must be noinline to ensure anything that deals with FP registers 2351 * is contained within this call; previously our compiling with hard-float 2352 * would result in fp instructions being emitted outside of the boundaries 2353 * of the DC_FP_START/END macros, which makes sense as the compiler has no 2354 * idea about what is wrapped and what is not 2355 * 2356 * This is largely just a workaround to avoid breakage introduced with 5.6, 2357 * ideally all fp-using code should be moved into its own file, only that 2358 * should be compiled with hard-float, and all code exported from there 2359 * should be strictly wrapped with DC_FP_START/END 2360 */ 2361 static noinline void dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 2362 unsigned int *optimal_dcfclk, 2363 unsigned int *optimal_fclk) 2364 { 2365 double bw_from_dram, bw_from_dram1, bw_from_dram2; 2366 2367 bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans * 2368 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100); 2369 bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans * 2370 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100); 2371 2372 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 2373 2374 if (optimal_fclk) 2375 *optimal_fclk = bw_from_dram / 2376 (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2377 2378 if (optimal_dcfclk) 2379 *optimal_dcfclk = bw_from_dram / 2380 (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2381 } 2382 2383 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2384 { 2385 unsigned int i, j; 2386 unsigned int num_states = 0; 2387 2388 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2389 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2390 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2391 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2392 2393 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2394 unsigned int num_dcfclk_sta_targets = 4; 2395 unsigned int num_uclk_states; 2396 2397 if (dc->ctx->dc_bios->vram_info.num_chans) 2398 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2399 2400 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 2401 dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 2402 2403 dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 2404 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 2405 2406 if (bw_params->clk_table.entries[0].memclk_mhz) { 2407 int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0; 2408 2409 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2410 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz) 2411 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2412 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz) 2413 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2414 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz) 2415 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2416 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz) 2417 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2418 } 2419 2420 if (!max_dcfclk_mhz) 2421 max_dcfclk_mhz = dcn3_0_soc.clock_limits[0].dcfclk_mhz; 2422 if (!max_dispclk_mhz) 2423 max_dispclk_mhz = dcn3_0_soc.clock_limits[0].dispclk_mhz; 2424 if (!max_dppclk_mhz) 2425 max_dppclk_mhz = dcn3_0_soc.clock_limits[0].dppclk_mhz; 2426 if (!max_phyclk_mhz) 2427 max_phyclk_mhz = dcn3_0_soc.clock_limits[0].phyclk_mhz; 2428 2429 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2430 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2431 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz; 2432 num_dcfclk_sta_targets++; 2433 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2434 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2435 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2436 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) { 2437 dcfclk_sta_targets[i] = max_dcfclk_mhz; 2438 break; 2439 } 2440 } 2441 // Update size of array since we "removed" duplicates 2442 num_dcfclk_sta_targets = i + 1; 2443 } 2444 2445 num_uclk_states = bw_params->clk_table.num_entries; 2446 2447 // Calculate optimal dcfclk for each uclk 2448 for (i = 0; i < num_uclk_states; i++) { 2449 DC_FP_START(); 2450 dcn30_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2451 &optimal_dcfclk_for_uclk[i], NULL); 2452 DC_FP_END(); 2453 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2454 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2455 } 2456 } 2457 2458 // Calculate optimal uclk for each dcfclk sta target 2459 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2460 for (j = 0; j < num_uclk_states; j++) { 2461 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2462 optimal_uclk_for_dcfclk_sta_targets[i] = 2463 bw_params->clk_table.entries[j].memclk_mhz * 16; 2464 break; 2465 } 2466 } 2467 } 2468 2469 i = 0; 2470 j = 0; 2471 // create the final dcfclk and uclk table 2472 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2473 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2474 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2475 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2476 } else { 2477 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 2478 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2479 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2480 } else { 2481 j = num_uclk_states; 2482 } 2483 } 2484 } 2485 2486 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2487 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2488 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2489 } 2490 2491 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2492 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) { 2493 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2494 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2495 } 2496 2497 dcn3_0_soc.num_states = num_states; 2498 for (i = 0; i < dcn3_0_soc.num_states; i++) { 2499 dcn3_0_soc.clock_limits[i].state = i; 2500 dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 2501 dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 2502 dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 2503 2504 /* Fill all states with max values of all other clocks */ 2505 dcn3_0_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz; 2506 dcn3_0_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz; 2507 dcn3_0_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz; 2508 dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz; 2509 /* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */ 2510 /* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */ 2511 dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz; 2512 dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz; 2513 dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz; 2514 } 2515 /* re-init DML with updated bb */ 2516 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2517 if (dc->current_state) 2518 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2519 } 2520 } 2521 2522 static const struct resource_funcs dcn30_res_pool_funcs = { 2523 .destroy = dcn30_destroy_resource_pool, 2524 .link_enc_create = dcn30_link_encoder_create, 2525 .panel_cntl_create = dcn30_panel_cntl_create, 2526 .validate_bandwidth = dcn30_validate_bandwidth, 2527 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2528 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2529 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2530 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2531 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2532 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2533 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2534 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2535 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2536 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2537 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2538 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2539 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2540 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2541 }; 2542 2543 #define CTX ctx 2544 2545 #define REG(reg_name) \ 2546 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2547 2548 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2549 { 2550 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2551 /* Support for max 6 pipes */ 2552 value = value & 0x3f; 2553 return value; 2554 } 2555 2556 static bool dcn30_resource_construct( 2557 uint8_t num_virtual_links, 2558 struct dc *dc, 2559 struct dcn30_resource_pool *pool) 2560 { 2561 int i; 2562 struct dc_context *ctx = dc->ctx; 2563 struct irq_service_init_data init_data; 2564 struct ddc_service_init_data ddc_init_data = {0}; 2565 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2566 uint32_t num_pipes = 0; 2567 2568 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2569 BREAK_TO_DEBUGGER(); 2570 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2571 /* fault to single pipe */ 2572 pipe_fuses = 0x3e; 2573 } 2574 2575 DC_FP_START(); 2576 2577 ctx->dc_bios->regs = &bios_regs; 2578 2579 pool->base.res_cap = &res_cap_dcn3; 2580 2581 pool->base.funcs = &dcn30_res_pool_funcs; 2582 2583 /************************************************* 2584 * Resource + asic cap harcoding * 2585 *************************************************/ 2586 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2587 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2588 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2589 dc->caps.max_downscale_ratio = 600; 2590 dc->caps.i2c_speed_in_khz = 100; 2591 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2592 dc->caps.max_cursor_size = 256; 2593 dc->caps.min_horizontal_blanking_period = 80; 2594 dc->caps.dmdata_alloc_size = 2048; 2595 dc->caps.mall_size_per_mem_channel = 8; 2596 /* total size = mall per channel * num channels * 1024 * 1024 */ 2597 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2598 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2599 2600 dc->caps.max_slave_planes = 1; 2601 dc->caps.max_slave_yuv_planes = 1; 2602 dc->caps.max_slave_rgb_planes = 1; 2603 dc->caps.post_blend_color_processing = true; 2604 dc->caps.force_dp_tps4_for_cp2520 = true; 2605 dc->caps.extended_aux_timeout_support = true; 2606 dc->caps.dmcub_support = true; 2607 2608 /* Color pipeline capabilities */ 2609 dc->caps.color.dpp.dcn_arch = 1; 2610 dc->caps.color.dpp.input_lut_shared = 0; 2611 dc->caps.color.dpp.icsc = 1; 2612 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2613 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2614 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2615 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2616 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2617 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2618 dc->caps.color.dpp.post_csc = 1; 2619 dc->caps.color.dpp.gamma_corr = 1; 2620 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2621 2622 dc->caps.color.dpp.hw_3d_lut = 1; 2623 dc->caps.color.dpp.ogam_ram = 1; 2624 // no OGAM ROM on DCN3 2625 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2626 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2627 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2628 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2629 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2630 dc->caps.color.dpp.ocsc = 0; 2631 2632 dc->caps.color.mpc.gamut_remap = 1; 2633 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2634 dc->caps.color.mpc.ogam_ram = 1; 2635 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2636 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2637 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2638 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2639 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2640 dc->caps.color.mpc.ocsc = 1; 2641 2642 /* read VBIOS LTTPR caps */ 2643 { 2644 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2645 enum bp_result bp_query_result; 2646 uint8_t is_vbios_lttpr_enable = 0; 2647 2648 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2649 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2650 } 2651 2652 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2653 enum bp_result bp_query_result; 2654 uint8_t is_vbios_interop_enabled = 0; 2655 2656 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2657 &is_vbios_interop_enabled); 2658 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2659 } 2660 } 2661 2662 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2663 dc->debug = debug_defaults_drv; 2664 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2665 dc->debug = debug_defaults_diags; 2666 } else 2667 dc->debug = debug_defaults_diags; 2668 // Init the vm_helper 2669 if (dc->vm_helper) 2670 vm_helper_init(dc->vm_helper, 16); 2671 2672 /************************************************* 2673 * Create resources * 2674 *************************************************/ 2675 2676 /* Clock Sources for Pixel Clock*/ 2677 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2678 dcn30_clock_source_create(ctx, ctx->dc_bios, 2679 CLOCK_SOURCE_COMBO_PHY_PLL0, 2680 &clk_src_regs[0], false); 2681 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2682 dcn30_clock_source_create(ctx, ctx->dc_bios, 2683 CLOCK_SOURCE_COMBO_PHY_PLL1, 2684 &clk_src_regs[1], false); 2685 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2686 dcn30_clock_source_create(ctx, ctx->dc_bios, 2687 CLOCK_SOURCE_COMBO_PHY_PLL2, 2688 &clk_src_regs[2], false); 2689 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2690 dcn30_clock_source_create(ctx, ctx->dc_bios, 2691 CLOCK_SOURCE_COMBO_PHY_PLL3, 2692 &clk_src_regs[3], false); 2693 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2694 dcn30_clock_source_create(ctx, ctx->dc_bios, 2695 CLOCK_SOURCE_COMBO_PHY_PLL4, 2696 &clk_src_regs[4], false); 2697 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2698 dcn30_clock_source_create(ctx, ctx->dc_bios, 2699 CLOCK_SOURCE_COMBO_PHY_PLL5, 2700 &clk_src_regs[5], false); 2701 2702 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2703 2704 /* todo: not reuse phy_pll registers */ 2705 pool->base.dp_clock_source = 2706 dcn30_clock_source_create(ctx, ctx->dc_bios, 2707 CLOCK_SOURCE_ID_DP_DTO, 2708 &clk_src_regs[0], true); 2709 2710 for (i = 0; i < pool->base.clk_src_count; i++) { 2711 if (pool->base.clock_sources[i] == NULL) { 2712 dm_error("DC: failed to create clock sources!\n"); 2713 BREAK_TO_DEBUGGER(); 2714 goto create_fail; 2715 } 2716 } 2717 2718 /* DCCG */ 2719 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2720 if (pool->base.dccg == NULL) { 2721 dm_error("DC: failed to create dccg!\n"); 2722 BREAK_TO_DEBUGGER(); 2723 goto create_fail; 2724 } 2725 2726 /* PP Lib and SMU interfaces */ 2727 init_soc_bounding_box(dc, pool); 2728 2729 num_pipes = dcn3_0_ip.max_num_dpp; 2730 2731 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2732 if (pipe_fuses & 1 << i) 2733 num_pipes--; 2734 2735 dcn3_0_ip.max_num_dpp = num_pipes; 2736 dcn3_0_ip.max_num_otg = num_pipes; 2737 2738 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2739 2740 /* IRQ */ 2741 init_data.ctx = dc->ctx; 2742 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2743 if (!pool->base.irqs) 2744 goto create_fail; 2745 2746 /* HUBBUB */ 2747 pool->base.hubbub = dcn30_hubbub_create(ctx); 2748 if (pool->base.hubbub == NULL) { 2749 BREAK_TO_DEBUGGER(); 2750 dm_error("DC: failed to create hubbub!\n"); 2751 goto create_fail; 2752 } 2753 2754 /* HUBPs, DPPs, OPPs and TGs */ 2755 for (i = 0; i < pool->base.pipe_count; i++) { 2756 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2757 if (pool->base.hubps[i] == NULL) { 2758 BREAK_TO_DEBUGGER(); 2759 dm_error( 2760 "DC: failed to create hubps!\n"); 2761 goto create_fail; 2762 } 2763 2764 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2765 if (pool->base.dpps[i] == NULL) { 2766 BREAK_TO_DEBUGGER(); 2767 dm_error( 2768 "DC: failed to create dpps!\n"); 2769 goto create_fail; 2770 } 2771 } 2772 2773 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2774 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2775 if (pool->base.opps[i] == NULL) { 2776 BREAK_TO_DEBUGGER(); 2777 dm_error( 2778 "DC: failed to create output pixel processor!\n"); 2779 goto create_fail; 2780 } 2781 } 2782 2783 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2784 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2785 ctx, i); 2786 if (pool->base.timing_generators[i] == NULL) { 2787 BREAK_TO_DEBUGGER(); 2788 dm_error("DC: failed to create tg!\n"); 2789 goto create_fail; 2790 } 2791 } 2792 pool->base.timing_generator_count = i; 2793 /* PSR */ 2794 pool->base.psr = dmub_psr_create(ctx); 2795 2796 if (pool->base.psr == NULL) { 2797 dm_error("DC: failed to create PSR obj!\n"); 2798 BREAK_TO_DEBUGGER(); 2799 goto create_fail; 2800 } 2801 2802 /* ABM */ 2803 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2804 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2805 &abm_regs[i], 2806 &abm_shift, 2807 &abm_mask); 2808 if (pool->base.multiple_abms[i] == NULL) { 2809 dm_error("DC: failed to create abm for pipe %d!\n", i); 2810 BREAK_TO_DEBUGGER(); 2811 goto create_fail; 2812 } 2813 } 2814 /* MPC and DSC */ 2815 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2816 if (pool->base.mpc == NULL) { 2817 BREAK_TO_DEBUGGER(); 2818 dm_error("DC: failed to create mpc!\n"); 2819 goto create_fail; 2820 } 2821 2822 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2823 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2824 if (pool->base.dscs[i] == NULL) { 2825 BREAK_TO_DEBUGGER(); 2826 dm_error("DC: failed to create display stream compressor %d!\n", i); 2827 goto create_fail; 2828 } 2829 } 2830 2831 /* DWB and MMHUBBUB */ 2832 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2833 BREAK_TO_DEBUGGER(); 2834 dm_error("DC: failed to create dwbc!\n"); 2835 goto create_fail; 2836 } 2837 2838 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2839 BREAK_TO_DEBUGGER(); 2840 dm_error("DC: failed to create mcif_wb!\n"); 2841 goto create_fail; 2842 } 2843 2844 /* AUX and I2C */ 2845 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2846 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2847 if (pool->base.engines[i] == NULL) { 2848 BREAK_TO_DEBUGGER(); 2849 dm_error( 2850 "DC:failed to create aux engine!!\n"); 2851 goto create_fail; 2852 } 2853 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2854 if (pool->base.hw_i2cs[i] == NULL) { 2855 BREAK_TO_DEBUGGER(); 2856 dm_error( 2857 "DC:failed to create hw i2c!!\n"); 2858 goto create_fail; 2859 } 2860 pool->base.sw_i2cs[i] = NULL; 2861 } 2862 2863 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2864 if (!resource_construct(num_virtual_links, dc, &pool->base, 2865 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2866 &res_create_funcs : &res_create_maximus_funcs))) 2867 goto create_fail; 2868 2869 /* HW Sequencer and Plane caps */ 2870 dcn30_hw_sequencer_construct(dc); 2871 2872 dc->caps.max_planes = pool->base.pipe_count; 2873 2874 for (i = 0; i < dc->caps.max_planes; ++i) 2875 dc->caps.planes[i] = plane_cap; 2876 2877 dc->cap_funcs = cap_funcs; 2878 2879 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2880 ddc_init_data.ctx = dc->ctx; 2881 ddc_init_data.link = NULL; 2882 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2883 ddc_init_data.id.enum_id = 0; 2884 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2885 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2886 } else { 2887 pool->base.oem_device = NULL; 2888 } 2889 2890 DC_FP_END(); 2891 2892 return true; 2893 2894 create_fail: 2895 2896 DC_FP_END(); 2897 dcn30_resource_destruct(pool); 2898 2899 return false; 2900 } 2901 2902 struct resource_pool *dcn30_create_resource_pool( 2903 const struct dc_init_data *init_data, 2904 struct dc *dc) 2905 { 2906 struct dcn30_resource_pool *pool = 2907 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2908 2909 if (!pool) 2910 return NULL; 2911 2912 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2913 return &pool->base; 2914 2915 BREAK_TO_DEBUGGER(); 2916 kfree(pool); 2917 return NULL; 2918 } 2919