1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "link.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dpcs/dpcs_3_0_0_offset.h"
76 #include "dpcs/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/dcn30_fpu.h"
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "amdgpu_socbb.h"
92 #include "dc_dmub_srv.h"
93 
94 #define DC_LOGGER_INIT(logger)
95 
96 enum dcn30_clk_src_array_id {
97 	DCN30_CLK_SRC_PLL0,
98 	DCN30_CLK_SRC_PLL1,
99 	DCN30_CLK_SRC_PLL2,
100 	DCN30_CLK_SRC_PLL3,
101 	DCN30_CLK_SRC_PLL4,
102 	DCN30_CLK_SRC_PLL5,
103 	DCN30_CLK_SRC_TOTAL
104 };
105 
106 /* begin *********************
107  * macros to expend register list macro defined in HW object header file
108  */
109 
110 /* DCN */
111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
112 
113 #define BASE(seg) BASE_INNER(seg)
114 
115 #define SR(reg_name)\
116 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
117 					mm ## reg_name
118 
119 #define SRI(reg_name, block, id)\
120 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
121 					mm ## block ## id ## _ ## reg_name
122 
123 #define SRI2(reg_name, block, id)\
124 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
125 					mm ## reg_name
126 
127 #define SRIR(var_name, reg_name, block, id)\
128 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
129 					mm ## block ## id ## _ ## reg_name
130 
131 #define SRII(reg_name, block, id)\
132 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
133 					mm ## block ## id ## _ ## reg_name
134 
135 #define SRII_MPC_RMU(reg_name, block, id)\
136 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
137 					mm ## block ## id ## _ ## reg_name
138 
139 #define SRII_DWB(reg_name, temp_name, block, id)\
140 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
141 					mm ## block ## id ## _ ## temp_name
142 
143 #define SF_DWB2(reg_name, block, id, field_name, post_fix)	\
144 	.field_name = reg_name ## __ ## field_name ## post_fix
145 
146 #define DCCG_SRII(reg_name, block, id)\
147 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
148 					mm ## block ## id ## _ ## reg_name
149 
150 #define VUPDATE_SRII(reg_name, block, id)\
151 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
152 					mm ## reg_name ## _ ## block ## id
153 
154 /* NBIO */
155 #define NBIO_BASE_INNER(seg) \
156 	NBIO_BASE__INST0_SEG ## seg
157 
158 #define NBIO_BASE(seg) \
159 	NBIO_BASE_INNER(seg)
160 
161 #define NBIO_SR(reg_name)\
162 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
163 					mm ## reg_name
164 
165 /* MMHUB */
166 #define MMHUB_BASE_INNER(seg) \
167 	MMHUB_BASE__INST0_SEG ## seg
168 
169 #define MMHUB_BASE(seg) \
170 	MMHUB_BASE_INNER(seg)
171 
172 #define MMHUB_SR(reg_name)\
173 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
174 					mmMM ## reg_name
175 
176 /* CLOCK */
177 #define CLK_BASE_INNER(seg) \
178 	CLK_BASE__INST0_SEG ## seg
179 
180 #define CLK_BASE(seg) \
181 	CLK_BASE_INNER(seg)
182 
183 #define CLK_SRI(reg_name, block, inst)\
184 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
185 					mm ## block ## _ ## inst ## _ ## reg_name
186 
187 
188 static const struct bios_registers bios_regs = {
189 		NBIO_SR(BIOS_SCRATCH_3),
190 		NBIO_SR(BIOS_SCRATCH_6)
191 };
192 
193 #define clk_src_regs(index, pllid)\
194 [index] = {\
195 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
196 }
197 
198 static const struct dce110_clk_src_regs clk_src_regs[] = {
199 	clk_src_regs(0, A),
200 	clk_src_regs(1, B),
201 	clk_src_regs(2, C),
202 	clk_src_regs(3, D),
203 	clk_src_regs(4, E),
204 	clk_src_regs(5, F)
205 };
206 
207 static const struct dce110_clk_src_shift cs_shift = {
208 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
209 };
210 
211 static const struct dce110_clk_src_mask cs_mask = {
212 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
213 };
214 
215 #define abm_regs(id)\
216 [id] = {\
217 		ABM_DCN30_REG_LIST(id)\
218 }
219 
220 static const struct dce_abm_registers abm_regs[] = {
221 		abm_regs(0),
222 		abm_regs(1),
223 		abm_regs(2),
224 		abm_regs(3),
225 		abm_regs(4),
226 		abm_regs(5),
227 };
228 
229 static const struct dce_abm_shift abm_shift = {
230 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
231 };
232 
233 static const struct dce_abm_mask abm_mask = {
234 		ABM_MASK_SH_LIST_DCN30(_MASK)
235 };
236 
237 
238 
239 #define audio_regs(id)\
240 [id] = {\
241 		AUD_COMMON_REG_LIST(id)\
242 }
243 
244 static const struct dce_audio_registers audio_regs[] = {
245 	audio_regs(0),
246 	audio_regs(1),
247 	audio_regs(2),
248 	audio_regs(3),
249 	audio_regs(4),
250 	audio_regs(5),
251 	audio_regs(6)
252 };
253 
254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
255 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
256 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
257 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
258 
259 static const struct dce_audio_shift audio_shift = {
260 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
261 };
262 
263 static const struct dce_audio_mask audio_mask = {
264 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
265 };
266 
267 #define vpg_regs(id)\
268 [id] = {\
269 	VPG_DCN3_REG_LIST(id)\
270 }
271 
272 static const struct dcn30_vpg_registers vpg_regs[] = {
273 	vpg_regs(0),
274 	vpg_regs(1),
275 	vpg_regs(2),
276 	vpg_regs(3),
277 	vpg_regs(4),
278 	vpg_regs(5),
279 	vpg_regs(6),
280 };
281 
282 static const struct dcn30_vpg_shift vpg_shift = {
283 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
284 };
285 
286 static const struct dcn30_vpg_mask vpg_mask = {
287 	DCN3_VPG_MASK_SH_LIST(_MASK)
288 };
289 
290 #define afmt_regs(id)\
291 [id] = {\
292 	AFMT_DCN3_REG_LIST(id)\
293 }
294 
295 static const struct dcn30_afmt_registers afmt_regs[] = {
296 	afmt_regs(0),
297 	afmt_regs(1),
298 	afmt_regs(2),
299 	afmt_regs(3),
300 	afmt_regs(4),
301 	afmt_regs(5),
302 	afmt_regs(6),
303 };
304 
305 static const struct dcn30_afmt_shift afmt_shift = {
306 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
307 };
308 
309 static const struct dcn30_afmt_mask afmt_mask = {
310 	DCN3_AFMT_MASK_SH_LIST(_MASK)
311 };
312 
313 #define stream_enc_regs(id)\
314 [id] = {\
315 	SE_DCN3_REG_LIST(id)\
316 }
317 
318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
319 	stream_enc_regs(0),
320 	stream_enc_regs(1),
321 	stream_enc_regs(2),
322 	stream_enc_regs(3),
323 	stream_enc_regs(4),
324 	stream_enc_regs(5)
325 };
326 
327 static const struct dcn10_stream_encoder_shift se_shift = {
328 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
329 };
330 
331 static const struct dcn10_stream_encoder_mask se_mask = {
332 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
333 };
334 
335 
336 #define aux_regs(id)\
337 [id] = {\
338 	DCN2_AUX_REG_LIST(id)\
339 }
340 
341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
342 		aux_regs(0),
343 		aux_regs(1),
344 		aux_regs(2),
345 		aux_regs(3),
346 		aux_regs(4),
347 		aux_regs(5)
348 };
349 
350 #define hpd_regs(id)\
351 [id] = {\
352 	HPD_REG_LIST(id)\
353 }
354 
355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
356 		hpd_regs(0),
357 		hpd_regs(1),
358 		hpd_regs(2),
359 		hpd_regs(3),
360 		hpd_regs(4),
361 		hpd_regs(5)
362 };
363 
364 #define link_regs(id, phyid)\
365 [id] = {\
366 	LE_DCN3_REG_LIST(id), \
367 	UNIPHY_DCN2_REG_LIST(phyid), \
368 	DPCS_DCN2_REG_LIST(id), \
369 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
370 }
371 
372 static const struct dce110_aux_registers_shift aux_shift = {
373 	DCN_AUX_MASK_SH_LIST(__SHIFT)
374 };
375 
376 static const struct dce110_aux_registers_mask aux_mask = {
377 	DCN_AUX_MASK_SH_LIST(_MASK)
378 };
379 
380 static const struct dcn10_link_enc_registers link_enc_regs[] = {
381 	link_regs(0, A),
382 	link_regs(1, B),
383 	link_regs(2, C),
384 	link_regs(3, D),
385 	link_regs(4, E),
386 	link_regs(5, F)
387 };
388 
389 static const struct dcn10_link_enc_shift le_shift = {
390 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
391 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
392 };
393 
394 static const struct dcn10_link_enc_mask le_mask = {
395 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
396 	DPCS_DCN2_MASK_SH_LIST(_MASK)
397 };
398 
399 
400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
401 	{ DCN_PANEL_CNTL_REG_LIST() }
402 };
403 
404 static const struct dce_panel_cntl_shift panel_cntl_shift = {
405 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
406 };
407 
408 static const struct dce_panel_cntl_mask panel_cntl_mask = {
409 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
410 };
411 
412 #define dpp_regs(id)\
413 [id] = {\
414 	DPP_REG_LIST_DCN30(id),\
415 }
416 
417 static const struct dcn3_dpp_registers dpp_regs[] = {
418 	dpp_regs(0),
419 	dpp_regs(1),
420 	dpp_regs(2),
421 	dpp_regs(3),
422 	dpp_regs(4),
423 	dpp_regs(5),
424 };
425 
426 static const struct dcn3_dpp_shift tf_shift = {
427 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
428 };
429 
430 static const struct dcn3_dpp_mask tf_mask = {
431 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
432 };
433 
434 #define opp_regs(id)\
435 [id] = {\
436 	OPP_REG_LIST_DCN30(id),\
437 }
438 
439 static const struct dcn20_opp_registers opp_regs[] = {
440 	opp_regs(0),
441 	opp_regs(1),
442 	opp_regs(2),
443 	opp_regs(3),
444 	opp_regs(4),
445 	opp_regs(5)
446 };
447 
448 static const struct dcn20_opp_shift opp_shift = {
449 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
450 };
451 
452 static const struct dcn20_opp_mask opp_mask = {
453 	OPP_MASK_SH_LIST_DCN20(_MASK)
454 };
455 
456 #define aux_engine_regs(id)\
457 [id] = {\
458 	AUX_COMMON_REG_LIST0(id), \
459 	.AUXN_IMPCAL = 0, \
460 	.AUXP_IMPCAL = 0, \
461 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
462 }
463 
464 static const struct dce110_aux_registers aux_engine_regs[] = {
465 		aux_engine_regs(0),
466 		aux_engine_regs(1),
467 		aux_engine_regs(2),
468 		aux_engine_regs(3),
469 		aux_engine_regs(4),
470 		aux_engine_regs(5)
471 };
472 
473 #define dwbc_regs_dcn3(id)\
474 [id] = {\
475 	DWBC_COMMON_REG_LIST_DCN30(id),\
476 }
477 
478 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
479 	dwbc_regs_dcn3(0),
480 };
481 
482 static const struct dcn30_dwbc_shift dwbc30_shift = {
483 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
484 };
485 
486 static const struct dcn30_dwbc_mask dwbc30_mask = {
487 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
488 };
489 
490 #define mcif_wb_regs_dcn3(id)\
491 [id] = {\
492 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
493 }
494 
495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
496 	mcif_wb_regs_dcn3(0)
497 };
498 
499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
500 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
501 };
502 
503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
504 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
505 };
506 
507 #define dsc_regsDCN20(id)\
508 [id] = {\
509 	DSC_REG_LIST_DCN20(id)\
510 }
511 
512 static const struct dcn20_dsc_registers dsc_regs[] = {
513 	dsc_regsDCN20(0),
514 	dsc_regsDCN20(1),
515 	dsc_regsDCN20(2),
516 	dsc_regsDCN20(3),
517 	dsc_regsDCN20(4),
518 	dsc_regsDCN20(5)
519 };
520 
521 static const struct dcn20_dsc_shift dsc_shift = {
522 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
523 };
524 
525 static const struct dcn20_dsc_mask dsc_mask = {
526 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
527 };
528 
529 static const struct dcn30_mpc_registers mpc_regs = {
530 		MPC_REG_LIST_DCN3_0(0),
531 		MPC_REG_LIST_DCN3_0(1),
532 		MPC_REG_LIST_DCN3_0(2),
533 		MPC_REG_LIST_DCN3_0(3),
534 		MPC_REG_LIST_DCN3_0(4),
535 		MPC_REG_LIST_DCN3_0(5),
536 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
537 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
538 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
539 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
540 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
541 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
542 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
543 		MPC_RMU_REG_LIST_DCN3AG(0),
544 		MPC_RMU_REG_LIST_DCN3AG(1),
545 		MPC_RMU_REG_LIST_DCN3AG(2),
546 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
547 };
548 
549 static const struct dcn30_mpc_shift mpc_shift = {
550 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
551 };
552 
553 static const struct dcn30_mpc_mask mpc_mask = {
554 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
555 };
556 
557 #define optc_regs(id)\
558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
559 
560 
561 static const struct dcn_optc_registers optc_regs[] = {
562 	optc_regs(0),
563 	optc_regs(1),
564 	optc_regs(2),
565 	optc_regs(3),
566 	optc_regs(4),
567 	optc_regs(5)
568 };
569 
570 static const struct dcn_optc_shift optc_shift = {
571 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
572 };
573 
574 static const struct dcn_optc_mask optc_mask = {
575 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
576 };
577 
578 #define hubp_regs(id)\
579 [id] = {\
580 	HUBP_REG_LIST_DCN30(id)\
581 }
582 
583 static const struct dcn_hubp2_registers hubp_regs[] = {
584 		hubp_regs(0),
585 		hubp_regs(1),
586 		hubp_regs(2),
587 		hubp_regs(3),
588 		hubp_regs(4),
589 		hubp_regs(5)
590 };
591 
592 static const struct dcn_hubp2_shift hubp_shift = {
593 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
594 };
595 
596 static const struct dcn_hubp2_mask hubp_mask = {
597 		HUBP_MASK_SH_LIST_DCN30(_MASK)
598 };
599 
600 static const struct dcn_hubbub_registers hubbub_reg = {
601 		HUBBUB_REG_LIST_DCN30(0)
602 };
603 
604 static const struct dcn_hubbub_shift hubbub_shift = {
605 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
606 };
607 
608 static const struct dcn_hubbub_mask hubbub_mask = {
609 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
610 };
611 
612 static const struct dccg_registers dccg_regs = {
613 		DCCG_REG_LIST_DCN30()
614 };
615 
616 static const struct dccg_shift dccg_shift = {
617 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
618 };
619 
620 static const struct dccg_mask dccg_mask = {
621 		DCCG_MASK_SH_LIST_DCN3(_MASK)
622 };
623 
624 static const struct dce_hwseq_registers hwseq_reg = {
625 		HWSEQ_DCN30_REG_LIST()
626 };
627 
628 static const struct dce_hwseq_shift hwseq_shift = {
629 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
630 };
631 
632 static const struct dce_hwseq_mask hwseq_mask = {
633 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
634 };
635 #define vmid_regs(id)\
636 [id] = {\
637 		DCN20_VMID_REG_LIST(id)\
638 }
639 
640 static const struct dcn_vmid_registers vmid_regs[] = {
641 	vmid_regs(0),
642 	vmid_regs(1),
643 	vmid_regs(2),
644 	vmid_regs(3),
645 	vmid_regs(4),
646 	vmid_regs(5),
647 	vmid_regs(6),
648 	vmid_regs(7),
649 	vmid_regs(8),
650 	vmid_regs(9),
651 	vmid_regs(10),
652 	vmid_regs(11),
653 	vmid_regs(12),
654 	vmid_regs(13),
655 	vmid_regs(14),
656 	vmid_regs(15)
657 };
658 
659 static const struct dcn20_vmid_shift vmid_shifts = {
660 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
661 };
662 
663 static const struct dcn20_vmid_mask vmid_masks = {
664 		DCN20_VMID_MASK_SH_LIST(_MASK)
665 };
666 
667 static const struct resource_caps res_cap_dcn3 = {
668 	.num_timing_generator = 6,
669 	.num_opp = 6,
670 	.num_video_plane = 6,
671 	.num_audio = 6,
672 	.num_stream_encoder = 6,
673 	.num_pll = 6,
674 	.num_dwb = 1,
675 	.num_ddc = 6,
676 	.num_vmid = 16,
677 	.num_mpc_3dlut = 3,
678 	.num_dsc = 6,
679 };
680 
681 static const struct dc_plane_cap plane_cap = {
682 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
683 	.per_pixel_alpha = true,
684 
685 	.pixel_format_support = {
686 			.argb8888 = true,
687 			.nv12 = true,
688 			.fp16 = true,
689 			.p010 = true,
690 			.ayuv = false,
691 	},
692 
693 	.max_upscale_factor = {
694 			.argb8888 = 16000,
695 			.nv12 = 16000,
696 			.fp16 = 16000
697 	},
698 
699 	/* 6:1 downscaling ratio: 1000/6 = 166.666 */
700 	.max_downscale_factor = {
701 			.argb8888 = 167,
702 			.nv12 = 167,
703 			.fp16 = 167
704 	},
705 	16,
706 	16
707 };
708 
709 static const struct dc_debug_options debug_defaults_drv = {
710 	.disable_dmcu = true, //No DMCU on DCN30
711 	.force_abm_enable = false,
712 	.timing_trace = false,
713 	.clock_trace = true,
714 	.disable_pplib_clock_request = true,
715 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
716 	.force_single_disp_pipe_split = false,
717 	.disable_dcc = DCC_ENABLE,
718 	.vsr_support = true,
719 	.performance_trace = false,
720 	.max_downscale_src_width = 7680,/*upto 8K*/
721 	.disable_pplib_wm_range = false,
722 	.scl_reset_length10 = true,
723 	.sanity_checks = false,
724 	.underflow_assert_delay_us = 0xFFFFFFFF,
725 	.dwb_fi_phase = -1, // -1 = disable,
726 	.dmub_command_table = true,
727 	.use_max_lb = true,
728 	.exit_idle_opt_for_cursor_updates = true
729 };
730 
731 static const struct dc_panel_config panel_config_defaults = {
732 	.psr = {
733 		.disable_psr = false,
734 		.disallow_psrsu = false,
735 	},
736 };
737 
738 static void dcn30_dpp_destroy(struct dpp **dpp)
739 {
740 	kfree(TO_DCN20_DPP(*dpp));
741 	*dpp = NULL;
742 }
743 
744 static struct dpp *dcn30_dpp_create(
745 	struct dc_context *ctx,
746 	uint32_t inst)
747 {
748 	struct dcn3_dpp *dpp =
749 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
750 
751 	if (!dpp)
752 		return NULL;
753 
754 	if (dpp3_construct(dpp, ctx, inst,
755 			&dpp_regs[inst], &tf_shift, &tf_mask))
756 		return &dpp->base;
757 
758 	BREAK_TO_DEBUGGER();
759 	kfree(dpp);
760 	return NULL;
761 }
762 
763 static struct output_pixel_processor *dcn30_opp_create(
764 	struct dc_context *ctx, uint32_t inst)
765 {
766 	struct dcn20_opp *opp =
767 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
768 
769 	if (!opp) {
770 		BREAK_TO_DEBUGGER();
771 		return NULL;
772 	}
773 
774 	dcn20_opp_construct(opp, ctx, inst,
775 			&opp_regs[inst], &opp_shift, &opp_mask);
776 	return &opp->base;
777 }
778 
779 static struct dce_aux *dcn30_aux_engine_create(
780 	struct dc_context *ctx,
781 	uint32_t inst)
782 {
783 	struct aux_engine_dce110 *aux_engine =
784 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
785 
786 	if (!aux_engine)
787 		return NULL;
788 
789 	dce110_aux_engine_construct(aux_engine, ctx, inst,
790 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
791 				    &aux_engine_regs[inst],
792 					&aux_mask,
793 					&aux_shift,
794 					ctx->dc->caps.extended_aux_timeout_support);
795 
796 	return &aux_engine->base;
797 }
798 
799 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
800 
801 static const struct dce_i2c_registers i2c_hw_regs[] = {
802 		i2c_inst_regs(1),
803 		i2c_inst_regs(2),
804 		i2c_inst_regs(3),
805 		i2c_inst_regs(4),
806 		i2c_inst_regs(5),
807 		i2c_inst_regs(6),
808 };
809 
810 static const struct dce_i2c_shift i2c_shifts = {
811 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
812 };
813 
814 static const struct dce_i2c_mask i2c_masks = {
815 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
816 };
817 
818 static struct dce_i2c_hw *dcn30_i2c_hw_create(
819 	struct dc_context *ctx,
820 	uint32_t inst)
821 {
822 	struct dce_i2c_hw *dce_i2c_hw =
823 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
824 
825 	if (!dce_i2c_hw)
826 		return NULL;
827 
828 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
829 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
830 
831 	return dce_i2c_hw;
832 }
833 
834 static struct mpc *dcn30_mpc_create(
835 		struct dc_context *ctx,
836 		int num_mpcc,
837 		int num_rmu)
838 {
839 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
840 					  GFP_KERNEL);
841 
842 	if (!mpc30)
843 		return NULL;
844 
845 	dcn30_mpc_construct(mpc30, ctx,
846 			&mpc_regs,
847 			&mpc_shift,
848 			&mpc_mask,
849 			num_mpcc,
850 			num_rmu);
851 
852 	return &mpc30->base;
853 }
854 
855 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
856 {
857 	int i;
858 
859 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
860 					  GFP_KERNEL);
861 
862 	if (!hubbub3)
863 		return NULL;
864 
865 	hubbub3_construct(hubbub3, ctx,
866 			&hubbub_reg,
867 			&hubbub_shift,
868 			&hubbub_mask);
869 
870 
871 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
872 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
873 
874 		vmid->ctx = ctx;
875 
876 		vmid->regs = &vmid_regs[i];
877 		vmid->shifts = &vmid_shifts;
878 		vmid->masks = &vmid_masks;
879 	}
880 
881 	return &hubbub3->base;
882 }
883 
884 static struct timing_generator *dcn30_timing_generator_create(
885 		struct dc_context *ctx,
886 		uint32_t instance)
887 {
888 	struct optc *tgn10 =
889 		kzalloc(sizeof(struct optc), GFP_KERNEL);
890 
891 	if (!tgn10)
892 		return NULL;
893 
894 	tgn10->base.inst = instance;
895 	tgn10->base.ctx = ctx;
896 
897 	tgn10->tg_regs = &optc_regs[instance];
898 	tgn10->tg_shift = &optc_shift;
899 	tgn10->tg_mask = &optc_mask;
900 
901 	dcn30_timing_generator_init(tgn10);
902 
903 	return &tgn10->base;
904 }
905 
906 static const struct encoder_feature_support link_enc_feature = {
907 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
908 		.max_hdmi_pixel_clock = 600000,
909 		.hdmi_ycbcr420_supported = true,
910 		.dp_ycbcr420_supported = true,
911 		.fec_supported = true,
912 		.flags.bits.IS_HBR2_CAPABLE = true,
913 		.flags.bits.IS_HBR3_CAPABLE = true,
914 		.flags.bits.IS_TPS3_CAPABLE = true,
915 		.flags.bits.IS_TPS4_CAPABLE = true
916 };
917 
918 static struct link_encoder *dcn30_link_encoder_create(
919 	struct dc_context *ctx,
920 	const struct encoder_init_data *enc_init_data)
921 {
922 	struct dcn20_link_encoder *enc20 =
923 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
924 
925 	if (!enc20)
926 		return NULL;
927 
928 	dcn30_link_encoder_construct(enc20,
929 			enc_init_data,
930 			&link_enc_feature,
931 			&link_enc_regs[enc_init_data->transmitter],
932 			&link_enc_aux_regs[enc_init_data->channel - 1],
933 			&link_enc_hpd_regs[enc_init_data->hpd_source],
934 			&le_shift,
935 			&le_mask);
936 
937 	return &enc20->enc10.base;
938 }
939 
940 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
941 {
942 	struct dce_panel_cntl *panel_cntl =
943 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
944 
945 	if (!panel_cntl)
946 		return NULL;
947 
948 	dce_panel_cntl_construct(panel_cntl,
949 			init_data,
950 			&panel_cntl_regs[init_data->inst],
951 			&panel_cntl_shift,
952 			&panel_cntl_mask);
953 
954 	return &panel_cntl->base;
955 }
956 
957 static void read_dce_straps(
958 	struct dc_context *ctx,
959 	struct resource_straps *straps)
960 {
961 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
962 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
963 
964 }
965 
966 static struct audio *dcn30_create_audio(
967 		struct dc_context *ctx, unsigned int inst)
968 {
969 	return dce_audio_create(ctx, inst,
970 			&audio_regs[inst], &audio_shift, &audio_mask);
971 }
972 
973 static struct vpg *dcn30_vpg_create(
974 	struct dc_context *ctx,
975 	uint32_t inst)
976 {
977 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
978 
979 	if (!vpg3)
980 		return NULL;
981 
982 	vpg3_construct(vpg3, ctx, inst,
983 			&vpg_regs[inst],
984 			&vpg_shift,
985 			&vpg_mask);
986 
987 	return &vpg3->base;
988 }
989 
990 static struct afmt *dcn30_afmt_create(
991 	struct dc_context *ctx,
992 	uint32_t inst)
993 {
994 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
995 
996 	if (!afmt3)
997 		return NULL;
998 
999 	afmt3_construct(afmt3, ctx, inst,
1000 			&afmt_regs[inst],
1001 			&afmt_shift,
1002 			&afmt_mask);
1003 
1004 	return &afmt3->base;
1005 }
1006 
1007 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id,
1008 							  struct dc_context *ctx)
1009 {
1010 	struct dcn10_stream_encoder *enc1;
1011 	struct vpg *vpg;
1012 	struct afmt *afmt;
1013 	int vpg_inst;
1014 	int afmt_inst;
1015 
1016 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1017 	if (eng_id <= ENGINE_ID_DIGF) {
1018 		vpg_inst = eng_id;
1019 		afmt_inst = eng_id;
1020 	} else
1021 		return NULL;
1022 
1023 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1024 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1025 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1026 
1027 	if (!enc1 || !vpg || !afmt) {
1028 		kfree(enc1);
1029 		kfree(vpg);
1030 		kfree(afmt);
1031 		return NULL;
1032 	}
1033 
1034 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1035 					eng_id, vpg, afmt,
1036 					&stream_enc_regs[eng_id],
1037 					&se_shift, &se_mask);
1038 
1039 	return &enc1->base;
1040 }
1041 
1042 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx)
1043 {
1044 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1045 
1046 	if (hws) {
1047 		hws->ctx = ctx;
1048 		hws->regs = &hwseq_reg;
1049 		hws->shifts = &hwseq_shift;
1050 		hws->masks = &hwseq_mask;
1051 	}
1052 	return hws;
1053 }
1054 static const struct resource_create_funcs res_create_funcs = {
1055 	.read_dce_straps = read_dce_straps,
1056 	.create_audio = dcn30_create_audio,
1057 	.create_stream_encoder = dcn30_stream_encoder_create,
1058 	.create_hwseq = dcn30_hwseq_create,
1059 };
1060 
1061 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1062 {
1063 	unsigned int i;
1064 
1065 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1066 		if (pool->base.stream_enc[i] != NULL) {
1067 			if (pool->base.stream_enc[i]->vpg != NULL) {
1068 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1069 				pool->base.stream_enc[i]->vpg = NULL;
1070 			}
1071 			if (pool->base.stream_enc[i]->afmt != NULL) {
1072 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1073 				pool->base.stream_enc[i]->afmt = NULL;
1074 			}
1075 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1076 			pool->base.stream_enc[i] = NULL;
1077 		}
1078 	}
1079 
1080 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1081 		if (pool->base.dscs[i] != NULL)
1082 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1083 	}
1084 
1085 	if (pool->base.mpc != NULL) {
1086 		kfree(TO_DCN20_MPC(pool->base.mpc));
1087 		pool->base.mpc = NULL;
1088 	}
1089 	if (pool->base.hubbub != NULL) {
1090 		kfree(pool->base.hubbub);
1091 		pool->base.hubbub = NULL;
1092 	}
1093 	for (i = 0; i < pool->base.pipe_count; i++) {
1094 		if (pool->base.dpps[i] != NULL)
1095 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1096 
1097 		if (pool->base.ipps[i] != NULL)
1098 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1099 
1100 		if (pool->base.hubps[i] != NULL) {
1101 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1102 			pool->base.hubps[i] = NULL;
1103 		}
1104 
1105 		if (pool->base.irqs != NULL) {
1106 			dal_irq_service_destroy(&pool->base.irqs);
1107 		}
1108 	}
1109 
1110 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1111 		if (pool->base.engines[i] != NULL)
1112 			dce110_engine_destroy(&pool->base.engines[i]);
1113 		if (pool->base.hw_i2cs[i] != NULL) {
1114 			kfree(pool->base.hw_i2cs[i]);
1115 			pool->base.hw_i2cs[i] = NULL;
1116 		}
1117 		if (pool->base.sw_i2cs[i] != NULL) {
1118 			kfree(pool->base.sw_i2cs[i]);
1119 			pool->base.sw_i2cs[i] = NULL;
1120 		}
1121 	}
1122 
1123 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1124 		if (pool->base.opps[i] != NULL)
1125 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1126 	}
1127 
1128 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1129 		if (pool->base.timing_generators[i] != NULL)	{
1130 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1131 			pool->base.timing_generators[i] = NULL;
1132 		}
1133 	}
1134 
1135 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1136 		if (pool->base.dwbc[i] != NULL) {
1137 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1138 			pool->base.dwbc[i] = NULL;
1139 		}
1140 		if (pool->base.mcif_wb[i] != NULL) {
1141 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1142 			pool->base.mcif_wb[i] = NULL;
1143 		}
1144 	}
1145 
1146 	for (i = 0; i < pool->base.audio_count; i++) {
1147 		if (pool->base.audios[i])
1148 			dce_aud_destroy(&pool->base.audios[i]);
1149 	}
1150 
1151 	for (i = 0; i < pool->base.clk_src_count; i++) {
1152 		if (pool->base.clock_sources[i] != NULL) {
1153 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1154 			pool->base.clock_sources[i] = NULL;
1155 		}
1156 	}
1157 
1158 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1159 		if (pool->base.mpc_lut[i] != NULL) {
1160 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1161 			pool->base.mpc_lut[i] = NULL;
1162 		}
1163 		if (pool->base.mpc_shaper[i] != NULL) {
1164 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1165 			pool->base.mpc_shaper[i] = NULL;
1166 		}
1167 	}
1168 
1169 	if (pool->base.dp_clock_source != NULL) {
1170 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1171 		pool->base.dp_clock_source = NULL;
1172 	}
1173 
1174 	for (i = 0; i < pool->base.pipe_count; i++) {
1175 		if (pool->base.multiple_abms[i] != NULL)
1176 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1177 	}
1178 
1179 	if (pool->base.psr != NULL)
1180 		dmub_psr_destroy(&pool->base.psr);
1181 
1182 	if (pool->base.dccg != NULL)
1183 		dcn_dccg_destroy(&pool->base.dccg);
1184 
1185 	if (pool->base.oem_device != NULL) {
1186 		struct dc *dc = pool->base.oem_device->ctx->dc;
1187 
1188 		dc->link_srv->destroy_ddc_service(&pool->base.oem_device);
1189 	}
1190 }
1191 
1192 static struct hubp *dcn30_hubp_create(
1193 	struct dc_context *ctx,
1194 	uint32_t inst)
1195 {
1196 	struct dcn20_hubp *hubp2 =
1197 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1198 
1199 	if (!hubp2)
1200 		return NULL;
1201 
1202 	if (hubp3_construct(hubp2, ctx, inst,
1203 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1204 		return &hubp2->base;
1205 
1206 	BREAK_TO_DEBUGGER();
1207 	kfree(hubp2);
1208 	return NULL;
1209 }
1210 
1211 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1212 {
1213 	int i;
1214 	uint32_t pipe_count = pool->res_cap->num_dwb;
1215 
1216 	for (i = 0; i < pipe_count; i++) {
1217 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1218 						    GFP_KERNEL);
1219 
1220 		if (!dwbc30) {
1221 			dm_error("DC: failed to create dwbc30!\n");
1222 			return false;
1223 		}
1224 
1225 		dcn30_dwbc_construct(dwbc30, ctx,
1226 				&dwbc30_regs[i],
1227 				&dwbc30_shift,
1228 				&dwbc30_mask,
1229 				i);
1230 
1231 		pool->dwbc[i] = &dwbc30->base;
1232 	}
1233 	return true;
1234 }
1235 
1236 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1237 {
1238 	int i;
1239 	uint32_t pipe_count = pool->res_cap->num_dwb;
1240 
1241 	for (i = 0; i < pipe_count; i++) {
1242 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1243 						    GFP_KERNEL);
1244 
1245 		if (!mcif_wb30) {
1246 			dm_error("DC: failed to create mcif_wb30!\n");
1247 			return false;
1248 		}
1249 
1250 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1251 				&mcif_wb30_regs[i],
1252 				&mcif_wb30_shift,
1253 				&mcif_wb30_mask,
1254 				i);
1255 
1256 		pool->mcif_wb[i] = &mcif_wb30->base;
1257 	}
1258 	return true;
1259 }
1260 
1261 static struct display_stream_compressor *dcn30_dsc_create(
1262 	struct dc_context *ctx, uint32_t inst)
1263 {
1264 	struct dcn20_dsc *dsc =
1265 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1266 
1267 	if (!dsc) {
1268 		BREAK_TO_DEBUGGER();
1269 		return NULL;
1270 	}
1271 
1272 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1273 	return &dsc->base;
1274 }
1275 
1276 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1277 {
1278 
1279 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1280 }
1281 
1282 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1283 {
1284 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1285 
1286 	dcn30_resource_destruct(dcn30_pool);
1287 	kfree(dcn30_pool);
1288 	*pool = NULL;
1289 }
1290 
1291 static struct clock_source *dcn30_clock_source_create(
1292 		struct dc_context *ctx,
1293 		struct dc_bios *bios,
1294 		enum clock_source_id id,
1295 		const struct dce110_clk_src_regs *regs,
1296 		bool dp_clk_src)
1297 {
1298 	struct dce110_clk_src *clk_src =
1299 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1300 
1301 	if (!clk_src)
1302 		return NULL;
1303 
1304 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1305 			regs, &cs_shift, &cs_mask)) {
1306 		clk_src->base.dp_clk_src = dp_clk_src;
1307 		return &clk_src->base;
1308 	}
1309 
1310 	kfree(clk_src);
1311 	BREAK_TO_DEBUGGER();
1312 	return NULL;
1313 }
1314 
1315 int dcn30_populate_dml_pipes_from_context(
1316 	struct dc *dc, struct dc_state *context,
1317 	display_e2e_pipe_params_st *pipes,
1318 	bool fast_validate)
1319 {
1320 	int i, pipe_cnt;
1321 	struct resource_context *res_ctx = &context->res_ctx;
1322 
1323 	DC_FP_START();
1324 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1325 	DC_FP_END();
1326 
1327 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1328 		if (!res_ctx->pipe_ctx[i].stream)
1329 			continue;
1330 
1331 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1332 			dm_lb_16;
1333 	}
1334 
1335 	return pipe_cnt;
1336 }
1337 
1338 void dcn30_populate_dml_writeback_from_context(
1339 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1340 {
1341 	DC_FP_START();
1342 	dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes);
1343 	DC_FP_END();
1344 }
1345 
1346 unsigned int dcn30_calc_max_scaled_time(
1347 		unsigned int time_per_pixel,
1348 		enum mmhubbub_wbif_mode mode,
1349 		unsigned int urgent_watermark)
1350 {
1351 	unsigned int time_per_byte = 0;
1352 	unsigned int total_free_entry = 0xb40;
1353 	unsigned int buf_lh_capability;
1354 	unsigned int max_scaled_time;
1355 
1356 	if (mode == PACKED_444) /* packed mode 32 bpp */
1357 		time_per_byte = time_per_pixel/4;
1358 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1359 		time_per_byte = time_per_pixel/8;
1360 
1361 	if (time_per_byte == 0)
1362 		time_per_byte = 1;
1363 
1364 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1365 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1366 	return max_scaled_time;
1367 }
1368 
1369 void dcn30_set_mcif_arb_params(
1370 		struct dc *dc,
1371 		struct dc_state *context,
1372 		display_e2e_pipe_params_st *pipes,
1373 		int pipe_cnt)
1374 {
1375 	enum mmhubbub_wbif_mode wbif_mode;
1376 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1377 	struct mcif_arb_params *wb_arb_params;
1378 	int i, j, dwb_pipe;
1379 
1380 	/* Writeback MCIF_WB arbitration parameters */
1381 	dwb_pipe = 0;
1382 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1383 
1384 		if (!context->res_ctx.pipe_ctx[i].stream)
1385 			continue;
1386 
1387 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1388 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1389 
1390 			if (writeback_info->wb_enabled == false)
1391 				continue;
1392 
1393 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1394 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1395 
1396 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1397 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1398 				wbif_mode = PACKED_444_FP16;
1399 			else
1400 				wbif_mode = PACKED_444;
1401 
1402 			DC_FP_START();
1403 			dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j);
1404 			DC_FP_END();
1405 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1406 			wb_arb_params->slice_lines = 32;
1407 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1408 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1409 					wbif_mode,
1410 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1411 
1412 			dwb_pipe++;
1413 
1414 			if (dwb_pipe >= MAX_DWB_PIPES)
1415 				return;
1416 		}
1417 		if (dwb_pipe >= MAX_DWB_PIPES)
1418 			return;
1419 	}
1420 
1421 }
1422 
1423 static struct dc_cap_funcs cap_funcs = {
1424 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1425 };
1426 
1427 bool dcn30_acquire_post_bldn_3dlut(
1428 		struct resource_context *res_ctx,
1429 		const struct resource_pool *pool,
1430 		int mpcc_id,
1431 		struct dc_3dlut **lut,
1432 		struct dc_transfer_func **shaper)
1433 {
1434 	int i;
1435 	bool ret = false;
1436 	union dc_3dlut_state *state;
1437 
1438 	ASSERT(*lut == NULL && *shaper == NULL);
1439 	*lut = NULL;
1440 	*shaper = NULL;
1441 
1442 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1443 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1444 			*lut = pool->mpc_lut[i];
1445 			*shaper = pool->mpc_shaper[i];
1446 			state = &pool->mpc_lut[i]->state;
1447 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1448 			state->bits.rmu_idx_valid = 1;
1449 			state->bits.rmu_mux_num = i;
1450 			if (state->bits.rmu_mux_num == 0)
1451 				state->bits.mpc_rmu0_mux = mpcc_id;
1452 			else if (state->bits.rmu_mux_num == 1)
1453 				state->bits.mpc_rmu1_mux = mpcc_id;
1454 			else if (state->bits.rmu_mux_num == 2)
1455 				state->bits.mpc_rmu2_mux = mpcc_id;
1456 			ret = true;
1457 			break;
1458 		}
1459 	}
1460 	return ret;
1461 }
1462 
1463 bool dcn30_release_post_bldn_3dlut(
1464 		struct resource_context *res_ctx,
1465 		const struct resource_pool *pool,
1466 		struct dc_3dlut **lut,
1467 		struct dc_transfer_func **shaper)
1468 {
1469 	int i;
1470 	bool ret = false;
1471 
1472 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1473 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1474 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1475 			pool->mpc_lut[i]->state.raw = 0;
1476 			*lut = NULL;
1477 			*shaper = NULL;
1478 			ret = true;
1479 			break;
1480 		}
1481 	}
1482 	return ret;
1483 }
1484 
1485 static bool is_soc_bounding_box_valid(struct dc *dc)
1486 {
1487 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1488 
1489 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1490 		return true;
1491 
1492 	return false;
1493 }
1494 
1495 static bool init_soc_bounding_box(struct dc *dc,
1496 				  struct dcn30_resource_pool *pool)
1497 {
1498 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1499 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1500 
1501 	DC_LOGGER_INIT(dc->ctx->logger);
1502 
1503 	if (!is_soc_bounding_box_valid(dc)) {
1504 		DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1505 		return false;
1506 	}
1507 
1508 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1509 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1510 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1511 	dcn20_patch_bounding_box(dc, loaded_bb);
1512 	DC_FP_START();
1513 	patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc);
1514 	DC_FP_END();
1515 
1516 	return true;
1517 }
1518 
1519 static bool dcn30_split_stream_for_mpc_or_odm(
1520 		const struct dc *dc,
1521 		struct resource_context *res_ctx,
1522 		struct pipe_ctx *pri_pipe,
1523 		struct pipe_ctx *sec_pipe,
1524 		bool odm)
1525 {
1526 	int pipe_idx = sec_pipe->pipe_idx;
1527 	const struct resource_pool *pool = dc->res_pool;
1528 
1529 	*sec_pipe = *pri_pipe;
1530 
1531 	sec_pipe->pipe_idx = pipe_idx;
1532 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1533 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1534 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1535 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1536 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1537 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1538 	sec_pipe->stream_res.dsc = NULL;
1539 	if (odm) {
1540 		if (pri_pipe->next_odm_pipe) {
1541 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1542 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1543 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1544 		}
1545 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1546 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1547 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1548 		}
1549 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1550 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1551 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1552 		}
1553 		pri_pipe->next_odm_pipe = sec_pipe;
1554 		sec_pipe->prev_odm_pipe = pri_pipe;
1555 
1556 		if (!sec_pipe->top_pipe)
1557 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1558 		else
1559 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1560 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1561 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1562 			ASSERT(sec_pipe->stream_res.dsc);
1563 			if (sec_pipe->stream_res.dsc == NULL)
1564 				return false;
1565 		}
1566 	} else {
1567 		if (pri_pipe->bottom_pipe) {
1568 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1569 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1570 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1571 		}
1572 		pri_pipe->bottom_pipe = sec_pipe;
1573 		sec_pipe->top_pipe = pri_pipe;
1574 
1575 		ASSERT(pri_pipe->plane_state);
1576 	}
1577 
1578 	return true;
1579 }
1580 
1581 static struct pipe_ctx *dcn30_find_split_pipe(
1582 		struct dc *dc,
1583 		struct dc_state *context,
1584 		int old_index)
1585 {
1586 	struct pipe_ctx *pipe = NULL;
1587 	int i;
1588 
1589 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1590 		pipe = &context->res_ctx.pipe_ctx[old_index];
1591 		pipe->pipe_idx = old_index;
1592 	}
1593 
1594 	if (!pipe)
1595 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1596 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1597 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1598 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1599 					pipe = &context->res_ctx.pipe_ctx[i];
1600 					pipe->pipe_idx = i;
1601 					break;
1602 				}
1603 			}
1604 		}
1605 
1606 	/*
1607 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1608 	 * Add for debugging transient underflow during topology updates:
1609 	 * ASSERT(pipe);
1610 	 */
1611 	if (!pipe)
1612 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1613 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1614 				pipe = &context->res_ctx.pipe_ctx[i];
1615 				pipe->pipe_idx = i;
1616 				break;
1617 			}
1618 		}
1619 
1620 	return pipe;
1621 }
1622 
1623 noinline bool dcn30_internal_validate_bw(
1624 		struct dc *dc,
1625 		struct dc_state *context,
1626 		display_e2e_pipe_params_st *pipes,
1627 		int *pipe_cnt_out,
1628 		int *vlevel_out,
1629 		bool fast_validate,
1630 		bool allow_self_refresh_only)
1631 {
1632 	bool out = false;
1633 	bool repopulate_pipes = false;
1634 	int split[MAX_PIPES] = { 0 };
1635 	bool merge[MAX_PIPES] = { false };
1636 	bool newly_split[MAX_PIPES] = { false };
1637 	int pipe_cnt, i, pipe_idx, vlevel;
1638 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1639 
1640 	ASSERT(pipes);
1641 	if (!pipes)
1642 		return false;
1643 
1644 	context->bw_ctx.dml.vba.maxMpcComb = 0;
1645 	context->bw_ctx.dml.vba.VoltageLevel = 0;
1646 	context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive;
1647 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1648 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1649 
1650 	if (!pipe_cnt) {
1651 		out = true;
1652 		goto validate_out;
1653 	}
1654 
1655 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1656 
1657 	if (!fast_validate || !allow_self_refresh_only) {
1658 		/*
1659 		 * DML favors voltage over p-state, but we're more interested in
1660 		 * supporting p-state over voltage. We can't support p-state in
1661 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1662 		 */
1663 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1664 			dm_allow_self_refresh_and_mclk_switch;
1665 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1666 		/* This may adjust vlevel and maxMpcComb */
1667 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1668 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1669 	}
1670 	if (allow_self_refresh_only &&
1671 	    (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1672 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) {
1673 		/*
1674 		 * If mode is unsupported or there's still no p-state support
1675 		 * then fall back to favoring voltage.
1676 		 *
1677 		 * We don't actually support prefetch mode 2, so require that we
1678 		 * at least support prefetch mode 1.
1679 		 */
1680 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1681 			dm_allow_self_refresh;
1682 
1683 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1684 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1685 			memset(split, 0, sizeof(split));
1686 			memset(merge, 0, sizeof(merge));
1687 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1688 		}
1689 	}
1690 
1691 	dml_log_mode_support_params(&context->bw_ctx.dml);
1692 
1693 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1694 		goto validate_fail;
1695 
1696 	if (!dc->config.enable_windowed_mpo_odm) {
1697 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1698 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1699 			struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1700 
1701 			if (!pipe->stream)
1702 				continue;
1703 
1704 			/* We only support full screen mpo with ODM */
1705 			if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1706 					&& pipe->plane_state && mpo_pipe
1707 					&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1708 							&pipe->plane_res.scl_data.recout,
1709 							sizeof(struct rect)) != 0) {
1710 				ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1711 				goto validate_fail;
1712 			}
1713 			pipe_idx++;
1714 		}
1715 	}
1716 
1717 	/* merge pipes if necessary */
1718 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1719 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1720 
1721 		/*skip pipes that don't need merging*/
1722 		if (!merge[i])
1723 			continue;
1724 
1725 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1726 		if (pipe->prev_odm_pipe) {
1727 			/*split off odm pipe*/
1728 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1729 			if (pipe->next_odm_pipe)
1730 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1731 
1732 			pipe->bottom_pipe = NULL;
1733 			pipe->next_odm_pipe = NULL;
1734 			pipe->plane_state = NULL;
1735 			pipe->stream = NULL;
1736 			pipe->top_pipe = NULL;
1737 			pipe->prev_odm_pipe = NULL;
1738 			if (pipe->stream_res.dsc)
1739 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1740 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1741 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1742 			repopulate_pipes = true;
1743 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1744 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1745 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1746 
1747 			top_pipe->bottom_pipe = bottom_pipe;
1748 			if (bottom_pipe)
1749 				bottom_pipe->top_pipe = top_pipe;
1750 
1751 			pipe->top_pipe = NULL;
1752 			pipe->bottom_pipe = NULL;
1753 			pipe->plane_state = NULL;
1754 			pipe->stream = NULL;
1755 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1756 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1757 			repopulate_pipes = true;
1758 		} else
1759 			ASSERT(0); /* Should never try to merge master pipe */
1760 
1761 	}
1762 
1763 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1764 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1765 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1766 		struct pipe_ctx *hsplit_pipe = NULL;
1767 		bool odm;
1768 		int old_index = -1;
1769 
1770 		if (!pipe->stream || newly_split[i])
1771 			continue;
1772 
1773 		pipe_idx++;
1774 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1775 
1776 		if (!pipe->plane_state && !odm)
1777 			continue;
1778 
1779 		if (split[i]) {
1780 			if (odm) {
1781 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1782 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1783 				else if (old_pipe->next_odm_pipe)
1784 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1785 			} else {
1786 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1787 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1788 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1789 				else if (old_pipe->bottom_pipe &&
1790 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1791 					old_index = old_pipe->bottom_pipe->pipe_idx;
1792 			}
1793 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
1794 			ASSERT(hsplit_pipe);
1795 			if (!hsplit_pipe)
1796 				goto validate_fail;
1797 
1798 			if (!dcn30_split_stream_for_mpc_or_odm(
1799 					dc, &context->res_ctx,
1800 					pipe, hsplit_pipe, odm))
1801 				goto validate_fail;
1802 
1803 			newly_split[hsplit_pipe->pipe_idx] = true;
1804 			repopulate_pipes = true;
1805 		}
1806 		if (split[i] == 4) {
1807 			struct pipe_ctx *pipe_4to1;
1808 
1809 			if (odm && old_pipe->next_odm_pipe)
1810 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1811 			else if (!odm && old_pipe->bottom_pipe &&
1812 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1813 				old_index = old_pipe->bottom_pipe->pipe_idx;
1814 			else
1815 				old_index = -1;
1816 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1817 			ASSERT(pipe_4to1);
1818 			if (!pipe_4to1)
1819 				goto validate_fail;
1820 			if (!dcn30_split_stream_for_mpc_or_odm(
1821 					dc, &context->res_ctx,
1822 					pipe, pipe_4to1, odm))
1823 				goto validate_fail;
1824 			newly_split[pipe_4to1->pipe_idx] = true;
1825 
1826 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1827 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1828 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1829 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1830 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1831 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1832 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1833 			else
1834 				old_index = -1;
1835 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1836 			ASSERT(pipe_4to1);
1837 			if (!pipe_4to1)
1838 				goto validate_fail;
1839 			if (!dcn30_split_stream_for_mpc_or_odm(
1840 					dc, &context->res_ctx,
1841 					hsplit_pipe, pipe_4to1, odm))
1842 				goto validate_fail;
1843 			newly_split[pipe_4to1->pipe_idx] = true;
1844 		}
1845 		if (odm)
1846 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1847 	}
1848 
1849 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1850 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1851 
1852 		if (pipe->plane_state) {
1853 			if (!resource_build_scaling_params(pipe))
1854 				goto validate_fail;
1855 		}
1856 	}
1857 
1858 	/* Actual dsc count per stream dsc validation*/
1859 	if (!dcn20_validate_dsc(dc, context)) {
1860 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1861 		goto validate_fail;
1862 	}
1863 
1864 	if (repopulate_pipes)
1865 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1866 	context->bw_ctx.dml.vba.VoltageLevel = vlevel;
1867 	*vlevel_out = vlevel;
1868 	*pipe_cnt_out = pipe_cnt;
1869 
1870 	out = true;
1871 	goto validate_out;
1872 
1873 validate_fail:
1874 	out = false;
1875 
1876 validate_out:
1877 	return out;
1878 }
1879 
1880 static int get_refresh_rate(struct dc_state *context)
1881 {
1882 	int refresh_rate = 0;
1883 	int h_v_total = 0;
1884 	struct dc_crtc_timing *timing = NULL;
1885 
1886 	if (context == NULL || context->streams[0] == NULL)
1887 		return 0;
1888 
1889 	/* check if refresh rate at least 120hz */
1890 	timing = &context->streams[0]->timing;
1891 	if (timing == NULL)
1892 		return 0;
1893 
1894 	h_v_total = timing->h_total * timing->v_total;
1895 	if (h_v_total == 0)
1896 		return 0;
1897 
1898 	refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
1899 	return refresh_rate;
1900 }
1901 
1902 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds
1903 /*
1904  * Scaling factor for v_blank stretch calculations considering timing in
1905  * micro-seconds and pixel clock in 100hz.
1906  * Note: the parenthesis are necessary to ensure the correct order of
1907  * operation where V_SCALE is used.
1908  */
1909 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
1910 
1911 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context)
1912 {
1913 	struct dc_crtc_timing *timing = NULL;
1914 	uint32_t sec_per_100_lines;
1915 	uint32_t max_v_blank;
1916 	uint32_t curr_v_blank;
1917 	uint32_t v_stretch_max;
1918 	uint32_t stretched_frame_pix_cnt;
1919 	uint32_t scaled_stretched_frame_pix_cnt;
1920 	uint32_t scaled_refresh_rate;
1921 
1922 	if (context == NULL || context->streams[0] == NULL)
1923 		return 0;
1924 
1925 	/* check if refresh rate at least 120hz */
1926 	timing = &context->streams[0]->timing;
1927 	if (timing == NULL)
1928 		return 0;
1929 
1930 	sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
1931 	max_v_blank = sec_per_100_lines / V_SCALE + 1;
1932 	curr_v_blank = timing->v_total - timing->v_addressable;
1933 	v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
1934 	stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
1935 	scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
1936 	scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
1937 
1938 	return scaled_refresh_rate;
1939 }
1940 
1941 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context)
1942 {
1943 	int refresh_rate_max_stretch_100hz;
1944 	int min_refresh_100hz;
1945 
1946 	if (context == NULL || context->streams[0] == NULL)
1947 		return false;
1948 
1949 	refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context);
1950 	min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000;
1951 
1952 	if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
1953 		return false;
1954 
1955 	return true;
1956 }
1957 
1958 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
1959 {
1960 	int refresh_rate = 0;
1961 	const int minimum_refreshrate_supported = 120;
1962 
1963 	if (context == NULL || context->streams[0] == NULL)
1964 		return false;
1965 
1966 	if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams)
1967 		return false;
1968 
1969 	if (dc->debug.disable_fams)
1970 		return false;
1971 
1972 	if (!dc->caps.dmub_caps.mclk_sw)
1973 		return false;
1974 
1975 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
1976 		return false;
1977 
1978 	/* more then 1 monitor connected */
1979 	if (context->stream_count != 1)
1980 		return false;
1981 
1982 	refresh_rate = get_refresh_rate(context);
1983 	if (refresh_rate < minimum_refreshrate_supported)
1984 		return false;
1985 
1986 	if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context))
1987 		return false;
1988 
1989 	// check if freesync enabled
1990 	if (!context->streams[0]->allow_freesync)
1991 		return false;
1992 
1993 	if (context->streams[0]->vrr_active_variable)
1994 		return false;
1995 
1996 	context->streams[0]->fpo_in_use = true;
1997 
1998 	return true;
1999 }
2000 
2001 /*
2002  * set up FPO watermarks, pstate, dram latency
2003  */
2004 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
2005 {
2006 	ASSERT(dc != NULL && context != NULL);
2007 	if (dc == NULL || context == NULL)
2008 		return;
2009 
2010 	/* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */
2011 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2012 }
2013 
2014 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2015 {
2016 	DC_FP_START();
2017 	dcn30_fpu_update_soc_for_wm_a(dc, context);
2018 	DC_FP_END();
2019 }
2020 
2021 void dcn30_calculate_wm_and_dlg(
2022 		struct dc *dc, struct dc_state *context,
2023 		display_e2e_pipe_params_st *pipes,
2024 		int pipe_cnt,
2025 		int vlevel)
2026 {
2027 	DC_FP_START();
2028 	dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2029 	DC_FP_END();
2030 }
2031 
2032 bool dcn30_validate_bandwidth(struct dc *dc,
2033 		struct dc_state *context,
2034 		bool fast_validate)
2035 {
2036 	bool out = false;
2037 
2038 	BW_VAL_TRACE_SETUP();
2039 
2040 	int vlevel = 0;
2041 	int pipe_cnt = 0;
2042 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2043 	DC_LOGGER_INIT(dc->ctx->logger);
2044 
2045 	BW_VAL_TRACE_COUNT();
2046 
2047 	DC_FP_START();
2048 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true);
2049 	DC_FP_END();
2050 
2051 	if (pipe_cnt == 0)
2052 		goto validate_out;
2053 
2054 	if (!out)
2055 		goto validate_fail;
2056 
2057 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2058 
2059 	if (fast_validate) {
2060 		BW_VAL_TRACE_SKIP(fast);
2061 		goto validate_out;
2062 	}
2063 
2064 	DC_FP_START();
2065 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2066 	DC_FP_END();
2067 
2068 	BW_VAL_TRACE_END_WATERMARKS();
2069 
2070 	goto validate_out;
2071 
2072 validate_fail:
2073 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2074 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2075 
2076 	BW_VAL_TRACE_SKIP(fail);
2077 	out = false;
2078 
2079 validate_out:
2080 	kfree(pipes);
2081 
2082 	BW_VAL_TRACE_FINISH();
2083 
2084 	return out;
2085 }
2086 
2087 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2088 {
2089 	unsigned int i, j;
2090 	unsigned int num_states = 0;
2091 
2092 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2093 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2094 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2095 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2096 
2097 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2098 	unsigned int num_dcfclk_sta_targets = 4;
2099 	unsigned int num_uclk_states;
2100 
2101 	struct dc_bounding_box_max_clk dcn30_bb_max_clk;
2102 
2103 	memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk));
2104 
2105 	if (dc->ctx->dc_bios->vram_info.num_chans)
2106 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2107 
2108 	DC_FP_START();
2109 	dcn30_fpu_update_dram_channel_width_bytes(dc);
2110 	DC_FP_END();
2111 
2112 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2113 
2114 		for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2115 			if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz)
2116 				dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2117 			if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz)
2118 				dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2119 			if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz)
2120 				dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2121 			if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz)
2122 				dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2123 		}
2124 
2125 		DC_FP_START();
2126 		dcn30_fpu_update_max_clk(&dcn30_bb_max_clk);
2127 		DC_FP_END();
2128 
2129 		if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2130 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2131 			dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz;
2132 			num_dcfclk_sta_targets++;
2133 		} else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2134 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2135 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2136 				if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) {
2137 					dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz;
2138 					break;
2139 				}
2140 			}
2141 			// Update size of array since we "removed" duplicates
2142 			num_dcfclk_sta_targets = i + 1;
2143 		}
2144 
2145 		num_uclk_states = bw_params->clk_table.num_entries;
2146 
2147 		// Calculate optimal dcfclk for each uclk
2148 		for (i = 0; i < num_uclk_states; i++) {
2149 			DC_FP_START();
2150 			dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2151 					&optimal_dcfclk_for_uclk[i], NULL);
2152 			DC_FP_END();
2153 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2154 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2155 			}
2156 		}
2157 
2158 		// Calculate optimal uclk for each dcfclk sta target
2159 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2160 			for (j = 0; j < num_uclk_states; j++) {
2161 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2162 					optimal_uclk_for_dcfclk_sta_targets[i] =
2163 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2164 					break;
2165 				}
2166 			}
2167 		}
2168 
2169 		i = 0;
2170 		j = 0;
2171 		// create the final dcfclk and uclk table
2172 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2173 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2174 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2175 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2176 			} else {
2177 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2178 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2179 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2180 				} else {
2181 					j = num_uclk_states;
2182 				}
2183 			}
2184 		}
2185 
2186 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2187 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2188 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2189 		}
2190 
2191 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2192 				optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2193 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2194 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2195 		}
2196 
2197 		dcn3_0_soc.num_states = num_states;
2198 		DC_FP_START();
2199 		dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts);
2200 		DC_FP_END();
2201 	}
2202 }
2203 
2204 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config)
2205 {
2206 	*panel_config = panel_config_defaults;
2207 }
2208 
2209 static const struct resource_funcs dcn30_res_pool_funcs = {
2210 	.destroy = dcn30_destroy_resource_pool,
2211 	.link_enc_create = dcn30_link_encoder_create,
2212 	.panel_cntl_create = dcn30_panel_cntl_create,
2213 	.validate_bandwidth = dcn30_validate_bandwidth,
2214 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2215 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2216 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2217 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2218 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2219 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2220 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2221 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2222 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2223 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2224 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2225 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2226 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2227 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2228 	.get_panel_config_defaults = dcn30_get_panel_config_defaults,
2229 };
2230 
2231 #define CTX ctx
2232 
2233 #define REG(reg_name) \
2234 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2235 
2236 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2237 {
2238 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2239 	/* Support for max 6 pipes */
2240 	value = value & 0x3f;
2241 	return value;
2242 }
2243 
2244 static bool dcn30_resource_construct(
2245 	uint8_t num_virtual_links,
2246 	struct dc *dc,
2247 	struct dcn30_resource_pool *pool)
2248 {
2249 	int i;
2250 	struct dc_context *ctx = dc->ctx;
2251 	struct irq_service_init_data init_data;
2252 	struct ddc_service_init_data ddc_init_data = {0};
2253 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2254 	uint32_t num_pipes = 0;
2255 
2256 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2257 		BREAK_TO_DEBUGGER();
2258 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2259 		/* fault to single pipe */
2260 		pipe_fuses = 0x3e;
2261 	}
2262 
2263 	DC_FP_START();
2264 
2265 	ctx->dc_bios->regs = &bios_regs;
2266 
2267 	pool->base.res_cap = &res_cap_dcn3;
2268 
2269 	pool->base.funcs = &dcn30_res_pool_funcs;
2270 
2271 	/*************************************************
2272 	 *  Resource + asic cap harcoding                *
2273 	 *************************************************/
2274 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2275 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2276 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2277 	dc->caps.max_downscale_ratio = 600;
2278 	dc->caps.i2c_speed_in_khz = 100;
2279 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2280 	dc->caps.max_cursor_size = 256;
2281 	dc->caps.min_horizontal_blanking_period = 80;
2282 	dc->caps.dmdata_alloc_size = 2048;
2283 	dc->caps.mall_size_per_mem_channel = 8;
2284 	/* total size = mall per channel * num channels * 1024 * 1024 */
2285 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2286 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2287 
2288 	dc->caps.max_slave_planes = 2;
2289 	dc->caps.max_slave_yuv_planes = 2;
2290 	dc->caps.max_slave_rgb_planes = 2;
2291 	dc->caps.post_blend_color_processing = true;
2292 	dc->caps.force_dp_tps4_for_cp2520 = true;
2293 	dc->caps.extended_aux_timeout_support = true;
2294 	dc->caps.dmcub_support = true;
2295 
2296 	/* Color pipeline capabilities */
2297 	dc->caps.color.dpp.dcn_arch = 1;
2298 	dc->caps.color.dpp.input_lut_shared = 0;
2299 	dc->caps.color.dpp.icsc = 1;
2300 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2301 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2302 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2303 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2304 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2305 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2306 	dc->caps.color.dpp.post_csc = 1;
2307 	dc->caps.color.dpp.gamma_corr = 1;
2308 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2309 
2310 	dc->caps.color.dpp.hw_3d_lut = 1;
2311 	dc->caps.color.dpp.ogam_ram = 1;
2312 	// no OGAM ROM on DCN3
2313 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2314 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2315 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2316 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2317 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2318 	dc->caps.color.dpp.ocsc = 0;
2319 
2320 	dc->caps.color.mpc.gamut_remap = 1;
2321 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2322 	dc->caps.color.mpc.ogam_ram = 1;
2323 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2324 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2325 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2326 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2327 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2328 	dc->caps.color.mpc.ocsc = 1;
2329 
2330 	dc->caps.dp_hdmi21_pcon_support = true;
2331 	dc->caps.max_v_total = (1 << 15) - 1;
2332 
2333 	/* read VBIOS LTTPR caps */
2334 	{
2335 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2336 			enum bp_result bp_query_result;
2337 			uint8_t is_vbios_lttpr_enable = 0;
2338 
2339 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2340 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2341 		}
2342 
2343 		if (ctx->dc_bios->funcs->get_lttpr_interop) {
2344 			enum bp_result bp_query_result;
2345 			uint8_t is_vbios_interop_enabled = 0;
2346 
2347 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2348 					&is_vbios_interop_enabled);
2349 			dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2350 		}
2351 	}
2352 
2353 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2354 		dc->debug = debug_defaults_drv;
2355 
2356 	// Init the vm_helper
2357 	if (dc->vm_helper)
2358 		vm_helper_init(dc->vm_helper, 16);
2359 
2360 	/*************************************************
2361 	 *  Create resources                             *
2362 	 *************************************************/
2363 
2364 	/* Clock Sources for Pixel Clock*/
2365 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2366 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2367 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2368 				&clk_src_regs[0], false);
2369 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2370 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2371 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2372 				&clk_src_regs[1], false);
2373 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2374 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2375 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2376 				&clk_src_regs[2], false);
2377 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2378 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2379 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2380 				&clk_src_regs[3], false);
2381 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2382 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2383 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2384 				&clk_src_regs[4], false);
2385 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2386 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2387 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2388 				&clk_src_regs[5], false);
2389 
2390 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2391 
2392 	/* todo: not reuse phy_pll registers */
2393 	pool->base.dp_clock_source =
2394 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2395 				CLOCK_SOURCE_ID_DP_DTO,
2396 				&clk_src_regs[0], true);
2397 
2398 	for (i = 0; i < pool->base.clk_src_count; i++) {
2399 		if (pool->base.clock_sources[i] == NULL) {
2400 			dm_error("DC: failed to create clock sources!\n");
2401 			BREAK_TO_DEBUGGER();
2402 			goto create_fail;
2403 		}
2404 	}
2405 
2406 	/* DCCG */
2407 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2408 	if (pool->base.dccg == NULL) {
2409 		dm_error("DC: failed to create dccg!\n");
2410 		BREAK_TO_DEBUGGER();
2411 		goto create_fail;
2412 	}
2413 
2414 	/* PP Lib and SMU interfaces */
2415 	init_soc_bounding_box(dc, pool);
2416 
2417 	num_pipes = dcn3_0_ip.max_num_dpp;
2418 
2419 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2420 		if (pipe_fuses & 1 << i)
2421 			num_pipes--;
2422 
2423 	dcn3_0_ip.max_num_dpp = num_pipes;
2424 	dcn3_0_ip.max_num_otg = num_pipes;
2425 
2426 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2427 
2428 	/* IRQ */
2429 	init_data.ctx = dc->ctx;
2430 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2431 	if (!pool->base.irqs)
2432 		goto create_fail;
2433 
2434 	/* HUBBUB */
2435 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2436 	if (pool->base.hubbub == NULL) {
2437 		BREAK_TO_DEBUGGER();
2438 		dm_error("DC: failed to create hubbub!\n");
2439 		goto create_fail;
2440 	}
2441 
2442 	/* HUBPs, DPPs, OPPs and TGs */
2443 	for (i = 0; i < pool->base.pipe_count; i++) {
2444 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2445 		if (pool->base.hubps[i] == NULL) {
2446 			BREAK_TO_DEBUGGER();
2447 			dm_error(
2448 				"DC: failed to create hubps!\n");
2449 			goto create_fail;
2450 		}
2451 
2452 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2453 		if (pool->base.dpps[i] == NULL) {
2454 			BREAK_TO_DEBUGGER();
2455 			dm_error(
2456 				"DC: failed to create dpps!\n");
2457 			goto create_fail;
2458 		}
2459 	}
2460 
2461 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2462 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2463 		if (pool->base.opps[i] == NULL) {
2464 			BREAK_TO_DEBUGGER();
2465 			dm_error(
2466 				"DC: failed to create output pixel processor!\n");
2467 			goto create_fail;
2468 		}
2469 	}
2470 
2471 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2472 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2473 				ctx, i);
2474 		if (pool->base.timing_generators[i] == NULL) {
2475 			BREAK_TO_DEBUGGER();
2476 			dm_error("DC: failed to create tg!\n");
2477 			goto create_fail;
2478 		}
2479 	}
2480 	pool->base.timing_generator_count = i;
2481 	/* PSR */
2482 	pool->base.psr = dmub_psr_create(ctx);
2483 
2484 	if (pool->base.psr == NULL) {
2485 		dm_error("DC: failed to create PSR obj!\n");
2486 		BREAK_TO_DEBUGGER();
2487 		goto create_fail;
2488 	}
2489 
2490 	/* ABM */
2491 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2492 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2493 				&abm_regs[i],
2494 				&abm_shift,
2495 				&abm_mask);
2496 		if (pool->base.multiple_abms[i] == NULL) {
2497 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2498 			BREAK_TO_DEBUGGER();
2499 			goto create_fail;
2500 		}
2501 	}
2502 	/* MPC and DSC */
2503 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2504 	if (pool->base.mpc == NULL) {
2505 		BREAK_TO_DEBUGGER();
2506 		dm_error("DC: failed to create mpc!\n");
2507 		goto create_fail;
2508 	}
2509 
2510 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2511 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2512 		if (pool->base.dscs[i] == NULL) {
2513 			BREAK_TO_DEBUGGER();
2514 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2515 			goto create_fail;
2516 		}
2517 	}
2518 
2519 	/* DWB and MMHUBBUB */
2520 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2521 		BREAK_TO_DEBUGGER();
2522 		dm_error("DC: failed to create dwbc!\n");
2523 		goto create_fail;
2524 	}
2525 
2526 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2527 		BREAK_TO_DEBUGGER();
2528 		dm_error("DC: failed to create mcif_wb!\n");
2529 		goto create_fail;
2530 	}
2531 
2532 	/* AUX and I2C */
2533 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2534 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2535 		if (pool->base.engines[i] == NULL) {
2536 			BREAK_TO_DEBUGGER();
2537 			dm_error(
2538 				"DC:failed to create aux engine!!\n");
2539 			goto create_fail;
2540 		}
2541 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2542 		if (pool->base.hw_i2cs[i] == NULL) {
2543 			BREAK_TO_DEBUGGER();
2544 			dm_error(
2545 				"DC:failed to create hw i2c!!\n");
2546 			goto create_fail;
2547 		}
2548 		pool->base.sw_i2cs[i] = NULL;
2549 	}
2550 
2551 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2552 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2553 			&res_create_funcs))
2554 		goto create_fail;
2555 
2556 	/* HW Sequencer and Plane caps */
2557 	dcn30_hw_sequencer_construct(dc);
2558 
2559 	dc->caps.max_planes =  pool->base.pipe_count;
2560 
2561 	for (i = 0; i < dc->caps.max_planes; ++i)
2562 		dc->caps.planes[i] = plane_cap;
2563 
2564 	dc->cap_funcs = cap_funcs;
2565 
2566 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2567 		ddc_init_data.ctx = dc->ctx;
2568 		ddc_init_data.link = NULL;
2569 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2570 		ddc_init_data.id.enum_id = 0;
2571 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2572 		pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data);
2573 	} else {
2574 		pool->base.oem_device = NULL;
2575 	}
2576 
2577 	DC_FP_END();
2578 
2579 	return true;
2580 
2581 create_fail:
2582 
2583 	DC_FP_END();
2584 	dcn30_resource_destruct(pool);
2585 
2586 	return false;
2587 }
2588 
2589 struct resource_pool *dcn30_create_resource_pool(
2590 		const struct dc_init_data *init_data,
2591 		struct dc *dc)
2592 {
2593 	struct dcn30_resource_pool *pool =
2594 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2595 
2596 	if (!pool)
2597 		return NULL;
2598 
2599 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2600 		return &pool->base;
2601 
2602 	BREAK_TO_DEBUGGER();
2603 	kfree(pool);
2604 	return NULL;
2605 }
2606