1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 
27 #include "dm_services.h"
28 #include "dc.h"
29 
30 #include "dcn30_init.h"
31 
32 #include "resource.h"
33 #include "include/irq_service_interface.h"
34 #include "dcn20/dcn20_resource.h"
35 
36 #include "dcn30_resource.h"
37 
38 #include "dcn10/dcn10_ipp.h"
39 #include "dcn30/dcn30_hubbub.h"
40 #include "dcn30/dcn30_mpc.h"
41 #include "dcn30/dcn30_hubp.h"
42 #include "irq/dcn30/irq_service_dcn30.h"
43 #include "dcn30/dcn30_dpp.h"
44 #include "dcn30/dcn30_optc.h"
45 #include "dcn20/dcn20_hwseq.h"
46 #include "dcn30/dcn30_hwseq.h"
47 #include "dce110/dce110_hw_sequencer.h"
48 #include "dcn30/dcn30_opp.h"
49 #include "dcn20/dcn20_dsc.h"
50 #include "dcn30/dcn30_vpg.h"
51 #include "dcn30/dcn30_afmt.h"
52 #include "dcn30/dcn30_dio_stream_encoder.h"
53 #include "dcn30/dcn30_dio_link_encoder.h"
54 #include "dce/dce_clock_source.h"
55 #include "dce/dce_audio.h"
56 #include "dce/dce_hwseq.h"
57 #include "clk_mgr.h"
58 #include "virtual/virtual_stream_encoder.h"
59 #include "dce110/dce110_resource.h"
60 #include "dml/display_mode_vba.h"
61 #include "dcn30/dcn30_dccg.h"
62 #include "dcn10/dcn10_resource.h"
63 #include "dc_link_ddc.h"
64 #include "dce/dce_panel_cntl.h"
65 
66 #include "dcn30/dcn30_dwb.h"
67 #include "dcn30/dcn30_mmhubbub.h"
68 
69 #include "sienna_cichlid_ip_offset.h"
70 #include "dcn/dcn_3_0_0_offset.h"
71 #include "dcn/dcn_3_0_0_sh_mask.h"
72 
73 #include "nbio/nbio_7_4_offset.h"
74 
75 #include "dpcs/dpcs_3_0_0_offset.h"
76 #include "dpcs/dpcs_3_0_0_sh_mask.h"
77 
78 #include "mmhub/mmhub_2_0_0_offset.h"
79 #include "mmhub/mmhub_2_0_0_sh_mask.h"
80 
81 #include "reg_helper.h"
82 #include "dce/dmub_abm.h"
83 #include "dce/dmub_psr.h"
84 #include "dce/dce_aux.h"
85 #include "dce/dce_i2c.h"
86 
87 #include "dml/dcn30/dcn30_fpu.h"
88 #include "dml/dcn30/display_mode_vba_30.h"
89 #include "vm_helper.h"
90 #include "dcn20/dcn20_vmid.h"
91 #include "amdgpu_socbb.h"
92 #include "dc_dmub_srv.h"
93 
94 #define DC_LOGGER_INIT(logger)
95 
96 enum dcn30_clk_src_array_id {
97 	DCN30_CLK_SRC_PLL0,
98 	DCN30_CLK_SRC_PLL1,
99 	DCN30_CLK_SRC_PLL2,
100 	DCN30_CLK_SRC_PLL3,
101 	DCN30_CLK_SRC_PLL4,
102 	DCN30_CLK_SRC_PLL5,
103 	DCN30_CLK_SRC_TOTAL
104 };
105 
106 /* begin *********************
107  * macros to expend register list macro defined in HW object header file
108  */
109 
110 /* DCN */
111 /* TODO awful hack. fixup dcn20_dwb.h */
112 #undef BASE_INNER
113 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
114 
115 #define BASE(seg) BASE_INNER(seg)
116 
117 #define SR(reg_name)\
118 		.reg_name = BASE(mm ## reg_name ## _BASE_IDX) +  \
119 					mm ## reg_name
120 
121 #define SRI(reg_name, block, id)\
122 	.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
123 					mm ## block ## id ## _ ## reg_name
124 
125 #define SRI2(reg_name, block, id)\
126 	.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
127 					mm ## reg_name
128 
129 #define SRIR(var_name, reg_name, block, id)\
130 	.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
131 					mm ## block ## id ## _ ## reg_name
132 
133 #define SRII(reg_name, block, id)\
134 	.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
135 					mm ## block ## id ## _ ## reg_name
136 
137 #define SRII_MPC_RMU(reg_name, block, id)\
138 	.RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
139 					mm ## block ## id ## _ ## reg_name
140 
141 #define SRII_DWB(reg_name, temp_name, block, id)\
142 	.reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \
143 					mm ## block ## id ## _ ## temp_name
144 
145 #define DCCG_SRII(reg_name, block, id)\
146 	.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
147 					mm ## block ## id ## _ ## reg_name
148 
149 #define VUPDATE_SRII(reg_name, block, id)\
150 	.reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \
151 					mm ## reg_name ## _ ## block ## id
152 
153 /* NBIO */
154 #define NBIO_BASE_INNER(seg) \
155 	NBIO_BASE__INST0_SEG ## seg
156 
157 #define NBIO_BASE(seg) \
158 	NBIO_BASE_INNER(seg)
159 
160 #define NBIO_SR(reg_name)\
161 		.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
162 					mm ## reg_name
163 
164 /* MMHUB */
165 #define MMHUB_BASE_INNER(seg) \
166 	MMHUB_BASE__INST0_SEG ## seg
167 
168 #define MMHUB_BASE(seg) \
169 	MMHUB_BASE_INNER(seg)
170 
171 #define MMHUB_SR(reg_name)\
172 		.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
173 					mmMM ## reg_name
174 
175 /* CLOCK */
176 #define CLK_BASE_INNER(seg) \
177 	CLK_BASE__INST0_SEG ## seg
178 
179 #define CLK_BASE(seg) \
180 	CLK_BASE_INNER(seg)
181 
182 #define CLK_SRI(reg_name, block, inst)\
183 	.reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \
184 					mm ## block ## _ ## inst ## _ ## reg_name
185 
186 
187 static const struct bios_registers bios_regs = {
188 		NBIO_SR(BIOS_SCRATCH_3),
189 		NBIO_SR(BIOS_SCRATCH_6)
190 };
191 
192 #define clk_src_regs(index, pllid)\
193 [index] = {\
194 	CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
195 }
196 
197 static const struct dce110_clk_src_regs clk_src_regs[] = {
198 	clk_src_regs(0, A),
199 	clk_src_regs(1, B),
200 	clk_src_regs(2, C),
201 	clk_src_regs(3, D),
202 	clk_src_regs(4, E),
203 	clk_src_regs(5, F)
204 };
205 
206 static const struct dce110_clk_src_shift cs_shift = {
207 		CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
208 };
209 
210 static const struct dce110_clk_src_mask cs_mask = {
211 		CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
212 };
213 
214 #define abm_regs(id)\
215 [id] = {\
216 		ABM_DCN30_REG_LIST(id)\
217 }
218 
219 static const struct dce_abm_registers abm_regs[] = {
220 		abm_regs(0),
221 		abm_regs(1),
222 		abm_regs(2),
223 		abm_regs(3),
224 		abm_regs(4),
225 		abm_regs(5),
226 };
227 
228 static const struct dce_abm_shift abm_shift = {
229 		ABM_MASK_SH_LIST_DCN30(__SHIFT)
230 };
231 
232 static const struct dce_abm_mask abm_mask = {
233 		ABM_MASK_SH_LIST_DCN30(_MASK)
234 };
235 
236 
237 
238 #define audio_regs(id)\
239 [id] = {\
240 		AUD_COMMON_REG_LIST(id)\
241 }
242 
243 static const struct dce_audio_registers audio_regs[] = {
244 	audio_regs(0),
245 	audio_regs(1),
246 	audio_regs(2),
247 	audio_regs(3),
248 	audio_regs(4),
249 	audio_regs(5),
250 	audio_regs(6)
251 };
252 
253 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
254 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
255 		SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
256 		AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
257 
258 static const struct dce_audio_shift audio_shift = {
259 		DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
260 };
261 
262 static const struct dce_audio_mask audio_mask = {
263 		DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
264 };
265 
266 #define vpg_regs(id)\
267 [id] = {\
268 	VPG_DCN3_REG_LIST(id)\
269 }
270 
271 static const struct dcn30_vpg_registers vpg_regs[] = {
272 	vpg_regs(0),
273 	vpg_regs(1),
274 	vpg_regs(2),
275 	vpg_regs(3),
276 	vpg_regs(4),
277 	vpg_regs(5),
278 	vpg_regs(6),
279 };
280 
281 static const struct dcn30_vpg_shift vpg_shift = {
282 	DCN3_VPG_MASK_SH_LIST(__SHIFT)
283 };
284 
285 static const struct dcn30_vpg_mask vpg_mask = {
286 	DCN3_VPG_MASK_SH_LIST(_MASK)
287 };
288 
289 #define afmt_regs(id)\
290 [id] = {\
291 	AFMT_DCN3_REG_LIST(id)\
292 }
293 
294 static const struct dcn30_afmt_registers afmt_regs[] = {
295 	afmt_regs(0),
296 	afmt_regs(1),
297 	afmt_regs(2),
298 	afmt_regs(3),
299 	afmt_regs(4),
300 	afmt_regs(5),
301 	afmt_regs(6),
302 };
303 
304 static const struct dcn30_afmt_shift afmt_shift = {
305 	DCN3_AFMT_MASK_SH_LIST(__SHIFT)
306 };
307 
308 static const struct dcn30_afmt_mask afmt_mask = {
309 	DCN3_AFMT_MASK_SH_LIST(_MASK)
310 };
311 
312 #define stream_enc_regs(id)\
313 [id] = {\
314 	SE_DCN3_REG_LIST(id)\
315 }
316 
317 static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
318 	stream_enc_regs(0),
319 	stream_enc_regs(1),
320 	stream_enc_regs(2),
321 	stream_enc_regs(3),
322 	stream_enc_regs(4),
323 	stream_enc_regs(5)
324 };
325 
326 static const struct dcn10_stream_encoder_shift se_shift = {
327 		SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
328 };
329 
330 static const struct dcn10_stream_encoder_mask se_mask = {
331 		SE_COMMON_MASK_SH_LIST_DCN30(_MASK)
332 };
333 
334 
335 #define aux_regs(id)\
336 [id] = {\
337 	DCN2_AUX_REG_LIST(id)\
338 }
339 
340 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
341 		aux_regs(0),
342 		aux_regs(1),
343 		aux_regs(2),
344 		aux_regs(3),
345 		aux_regs(4),
346 		aux_regs(5)
347 };
348 
349 #define hpd_regs(id)\
350 [id] = {\
351 	HPD_REG_LIST(id)\
352 }
353 
354 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
355 		hpd_regs(0),
356 		hpd_regs(1),
357 		hpd_regs(2),
358 		hpd_regs(3),
359 		hpd_regs(4),
360 		hpd_regs(5)
361 };
362 
363 #define link_regs(id, phyid)\
364 [id] = {\
365 	LE_DCN3_REG_LIST(id), \
366 	UNIPHY_DCN2_REG_LIST(phyid), \
367 	DPCS_DCN2_REG_LIST(id), \
368 	SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
369 }
370 
371 static const struct dce110_aux_registers_shift aux_shift = {
372 	DCN_AUX_MASK_SH_LIST(__SHIFT)
373 };
374 
375 static const struct dce110_aux_registers_mask aux_mask = {
376 	DCN_AUX_MASK_SH_LIST(_MASK)
377 };
378 
379 static const struct dcn10_link_enc_registers link_enc_regs[] = {
380 	link_regs(0, A),
381 	link_regs(1, B),
382 	link_regs(2, C),
383 	link_regs(3, D),
384 	link_regs(4, E),
385 	link_regs(5, F)
386 };
387 
388 static const struct dcn10_link_enc_shift le_shift = {
389 	LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\
390 	DPCS_DCN2_MASK_SH_LIST(__SHIFT)
391 };
392 
393 static const struct dcn10_link_enc_mask le_mask = {
394 	LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\
395 	DPCS_DCN2_MASK_SH_LIST(_MASK)
396 };
397 
398 
399 static const struct dce_panel_cntl_registers panel_cntl_regs[] = {
400 	{ DCN_PANEL_CNTL_REG_LIST() }
401 };
402 
403 static const struct dce_panel_cntl_shift panel_cntl_shift = {
404 	DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT)
405 };
406 
407 static const struct dce_panel_cntl_mask panel_cntl_mask = {
408 	DCE_PANEL_CNTL_MASK_SH_LIST(_MASK)
409 };
410 
411 #define dpp_regs(id)\
412 [id] = {\
413 	DPP_REG_LIST_DCN30(id),\
414 }
415 
416 static const struct dcn3_dpp_registers dpp_regs[] = {
417 	dpp_regs(0),
418 	dpp_regs(1),
419 	dpp_regs(2),
420 	dpp_regs(3),
421 	dpp_regs(4),
422 	dpp_regs(5),
423 };
424 
425 static const struct dcn3_dpp_shift tf_shift = {
426 		DPP_REG_LIST_SH_MASK_DCN30(__SHIFT)
427 };
428 
429 static const struct dcn3_dpp_mask tf_mask = {
430 		DPP_REG_LIST_SH_MASK_DCN30(_MASK)
431 };
432 
433 #define opp_regs(id)\
434 [id] = {\
435 	OPP_REG_LIST_DCN30(id),\
436 }
437 
438 static const struct dcn20_opp_registers opp_regs[] = {
439 	opp_regs(0),
440 	opp_regs(1),
441 	opp_regs(2),
442 	opp_regs(3),
443 	opp_regs(4),
444 	opp_regs(5)
445 };
446 
447 static const struct dcn20_opp_shift opp_shift = {
448 	OPP_MASK_SH_LIST_DCN20(__SHIFT)
449 };
450 
451 static const struct dcn20_opp_mask opp_mask = {
452 	OPP_MASK_SH_LIST_DCN20(_MASK)
453 };
454 
455 #define aux_engine_regs(id)\
456 [id] = {\
457 	AUX_COMMON_REG_LIST0(id), \
458 	.AUXN_IMPCAL = 0, \
459 	.AUXP_IMPCAL = 0, \
460 	.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
461 }
462 
463 static const struct dce110_aux_registers aux_engine_regs[] = {
464 		aux_engine_regs(0),
465 		aux_engine_regs(1),
466 		aux_engine_regs(2),
467 		aux_engine_regs(3),
468 		aux_engine_regs(4),
469 		aux_engine_regs(5)
470 };
471 
472 #define dwbc_regs_dcn3(id)\
473 [id] = {\
474 	DWBC_COMMON_REG_LIST_DCN30(id),\
475 }
476 
477 static const struct dcn30_dwbc_registers dwbc30_regs[] = {
478 	dwbc_regs_dcn3(0),
479 };
480 
481 static const struct dcn30_dwbc_shift dwbc30_shift = {
482 	DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
483 };
484 
485 static const struct dcn30_dwbc_mask dwbc30_mask = {
486 	DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK)
487 };
488 
489 #define mcif_wb_regs_dcn3(id)\
490 [id] = {\
491 	MCIF_WB_COMMON_REG_LIST_DCN30(id),\
492 }
493 
494 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = {
495 	mcif_wb_regs_dcn3(0)
496 };
497 
498 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = {
499 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
500 };
501 
502 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = {
503 	MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK)
504 };
505 
506 #define dsc_regsDCN20(id)\
507 [id] = {\
508 	DSC_REG_LIST_DCN20(id)\
509 }
510 
511 static const struct dcn20_dsc_registers dsc_regs[] = {
512 	dsc_regsDCN20(0),
513 	dsc_regsDCN20(1),
514 	dsc_regsDCN20(2),
515 	dsc_regsDCN20(3),
516 	dsc_regsDCN20(4),
517 	dsc_regsDCN20(5)
518 };
519 
520 static const struct dcn20_dsc_shift dsc_shift = {
521 	DSC_REG_LIST_SH_MASK_DCN20(__SHIFT)
522 };
523 
524 static const struct dcn20_dsc_mask dsc_mask = {
525 	DSC_REG_LIST_SH_MASK_DCN20(_MASK)
526 };
527 
528 static const struct dcn30_mpc_registers mpc_regs = {
529 		MPC_REG_LIST_DCN3_0(0),
530 		MPC_REG_LIST_DCN3_0(1),
531 		MPC_REG_LIST_DCN3_0(2),
532 		MPC_REG_LIST_DCN3_0(3),
533 		MPC_REG_LIST_DCN3_0(4),
534 		MPC_REG_LIST_DCN3_0(5),
535 		MPC_OUT_MUX_REG_LIST_DCN3_0(0),
536 		MPC_OUT_MUX_REG_LIST_DCN3_0(1),
537 		MPC_OUT_MUX_REG_LIST_DCN3_0(2),
538 		MPC_OUT_MUX_REG_LIST_DCN3_0(3),
539 		MPC_OUT_MUX_REG_LIST_DCN3_0(4),
540 		MPC_OUT_MUX_REG_LIST_DCN3_0(5),
541 		MPC_RMU_GLOBAL_REG_LIST_DCN3AG,
542 		MPC_RMU_REG_LIST_DCN3AG(0),
543 		MPC_RMU_REG_LIST_DCN3AG(1),
544 		MPC_RMU_REG_LIST_DCN3AG(2),
545 		MPC_DWB_MUX_REG_LIST_DCN3_0(0),
546 };
547 
548 static const struct dcn30_mpc_shift mpc_shift = {
549 	MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
550 };
551 
552 static const struct dcn30_mpc_mask mpc_mask = {
553 	MPC_COMMON_MASK_SH_LIST_DCN30(_MASK)
554 };
555 
556 #define optc_regs(id)\
557 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)}
558 
559 
560 static const struct dcn_optc_registers optc_regs[] = {
561 	optc_regs(0),
562 	optc_regs(1),
563 	optc_regs(2),
564 	optc_regs(3),
565 	optc_regs(4),
566 	optc_regs(5)
567 };
568 
569 static const struct dcn_optc_shift optc_shift = {
570 	OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
571 };
572 
573 static const struct dcn_optc_mask optc_mask = {
574 	OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK)
575 };
576 
577 #define hubp_regs(id)\
578 [id] = {\
579 	HUBP_REG_LIST_DCN30(id)\
580 }
581 
582 static const struct dcn_hubp2_registers hubp_regs[] = {
583 		hubp_regs(0),
584 		hubp_regs(1),
585 		hubp_regs(2),
586 		hubp_regs(3),
587 		hubp_regs(4),
588 		hubp_regs(5)
589 };
590 
591 static const struct dcn_hubp2_shift hubp_shift = {
592 		HUBP_MASK_SH_LIST_DCN30(__SHIFT)
593 };
594 
595 static const struct dcn_hubp2_mask hubp_mask = {
596 		HUBP_MASK_SH_LIST_DCN30(_MASK)
597 };
598 
599 static const struct dcn_hubbub_registers hubbub_reg = {
600 		HUBBUB_REG_LIST_DCN30(0)
601 };
602 
603 static const struct dcn_hubbub_shift hubbub_shift = {
604 		HUBBUB_MASK_SH_LIST_DCN30(__SHIFT)
605 };
606 
607 static const struct dcn_hubbub_mask hubbub_mask = {
608 		HUBBUB_MASK_SH_LIST_DCN30(_MASK)
609 };
610 
611 static const struct dccg_registers dccg_regs = {
612 		DCCG_REG_LIST_DCN30()
613 };
614 
615 static const struct dccg_shift dccg_shift = {
616 		DCCG_MASK_SH_LIST_DCN3(__SHIFT)
617 };
618 
619 static const struct dccg_mask dccg_mask = {
620 		DCCG_MASK_SH_LIST_DCN3(_MASK)
621 };
622 
623 static const struct dce_hwseq_registers hwseq_reg = {
624 		HWSEQ_DCN30_REG_LIST()
625 };
626 
627 static const struct dce_hwseq_shift hwseq_shift = {
628 		HWSEQ_DCN30_MASK_SH_LIST(__SHIFT)
629 };
630 
631 static const struct dce_hwseq_mask hwseq_mask = {
632 		HWSEQ_DCN30_MASK_SH_LIST(_MASK)
633 };
634 #define vmid_regs(id)\
635 [id] = {\
636 		DCN20_VMID_REG_LIST(id)\
637 }
638 
639 static const struct dcn_vmid_registers vmid_regs[] = {
640 	vmid_regs(0),
641 	vmid_regs(1),
642 	vmid_regs(2),
643 	vmid_regs(3),
644 	vmid_regs(4),
645 	vmid_regs(5),
646 	vmid_regs(6),
647 	vmid_regs(7),
648 	vmid_regs(8),
649 	vmid_regs(9),
650 	vmid_regs(10),
651 	vmid_regs(11),
652 	vmid_regs(12),
653 	vmid_regs(13),
654 	vmid_regs(14),
655 	vmid_regs(15)
656 };
657 
658 static const struct dcn20_vmid_shift vmid_shifts = {
659 		DCN20_VMID_MASK_SH_LIST(__SHIFT)
660 };
661 
662 static const struct dcn20_vmid_mask vmid_masks = {
663 		DCN20_VMID_MASK_SH_LIST(_MASK)
664 };
665 
666 static const struct resource_caps res_cap_dcn3 = {
667 	.num_timing_generator = 6,
668 	.num_opp = 6,
669 	.num_video_plane = 6,
670 	.num_audio = 6,
671 	.num_stream_encoder = 6,
672 	.num_pll = 6,
673 	.num_dwb = 1,
674 	.num_ddc = 6,
675 	.num_vmid = 16,
676 	.num_mpc_3dlut = 3,
677 	.num_dsc = 6,
678 };
679 
680 static const struct dc_plane_cap plane_cap = {
681 	.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
682 	.blends_with_above = true,
683 	.blends_with_below = true,
684 	.per_pixel_alpha = true,
685 
686 	.pixel_format_support = {
687 			.argb8888 = true,
688 			.nv12 = true,
689 			.fp16 = true,
690 			.p010 = true,
691 			.ayuv = false,
692 	},
693 
694 	.max_upscale_factor = {
695 			.argb8888 = 16000,
696 			.nv12 = 16000,
697 			.fp16 = 16000
698 	},
699 
700 	/* 6:1 downscaling ratio: 1000/6 = 166.666 */
701 	.max_downscale_factor = {
702 			.argb8888 = 167,
703 			.nv12 = 167,
704 			.fp16 = 167
705 	}
706 };
707 
708 static const struct dc_debug_options debug_defaults_drv = {
709 	.disable_dmcu = true, //No DMCU on DCN30
710 	.force_abm_enable = false,
711 	.timing_trace = false,
712 	.clock_trace = true,
713 	.disable_pplib_clock_request = true,
714 	.pipe_split_policy = MPC_SPLIT_DYNAMIC,
715 	.force_single_disp_pipe_split = false,
716 	.disable_dcc = DCC_ENABLE,
717 	.vsr_support = true,
718 	.performance_trace = false,
719 	.max_downscale_src_width = 7680,/*upto 8K*/
720 	.disable_pplib_wm_range = false,
721 	.scl_reset_length10 = true,
722 	.sanity_checks = false,
723 	.underflow_assert_delay_us = 0xFFFFFFFF,
724 	.dwb_fi_phase = -1, // -1 = disable,
725 	.dmub_command_table = true,
726 	.disable_psr = false,
727 	.use_max_lb = true
728 };
729 
730 static const struct dc_debug_options debug_defaults_diags = {
731 	.disable_dmcu = true, //No dmcu on DCN30
732 	.force_abm_enable = false,
733 	.timing_trace = true,
734 	.clock_trace = true,
735 	.disable_dpp_power_gate = true,
736 	.disable_hubp_power_gate = true,
737 	.disable_clock_gate = true,
738 	.disable_pplib_clock_request = true,
739 	.disable_pplib_wm_range = true,
740 	.disable_stutter = false,
741 	.scl_reset_length10 = true,
742 	.dwb_fi_phase = -1, // -1 = disable
743 	.dmub_command_table = true,
744 	.disable_psr = true,
745 	.enable_tri_buf = true,
746 	.use_max_lb = true
747 };
748 
749 static void dcn30_dpp_destroy(struct dpp **dpp)
750 {
751 	kfree(TO_DCN20_DPP(*dpp));
752 	*dpp = NULL;
753 }
754 
755 static struct dpp *dcn30_dpp_create(
756 	struct dc_context *ctx,
757 	uint32_t inst)
758 {
759 	struct dcn3_dpp *dpp =
760 		kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL);
761 
762 	if (!dpp)
763 		return NULL;
764 
765 	if (dpp3_construct(dpp, ctx, inst,
766 			&dpp_regs[inst], &tf_shift, &tf_mask))
767 		return &dpp->base;
768 
769 	BREAK_TO_DEBUGGER();
770 	kfree(dpp);
771 	return NULL;
772 }
773 
774 static struct output_pixel_processor *dcn30_opp_create(
775 	struct dc_context *ctx, uint32_t inst)
776 {
777 	struct dcn20_opp *opp =
778 		kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
779 
780 	if (!opp) {
781 		BREAK_TO_DEBUGGER();
782 		return NULL;
783 	}
784 
785 	dcn20_opp_construct(opp, ctx, inst,
786 			&opp_regs[inst], &opp_shift, &opp_mask);
787 	return &opp->base;
788 }
789 
790 static struct dce_aux *dcn30_aux_engine_create(
791 	struct dc_context *ctx,
792 	uint32_t inst)
793 {
794 	struct aux_engine_dce110 *aux_engine =
795 		kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
796 
797 	if (!aux_engine)
798 		return NULL;
799 
800 	dce110_aux_engine_construct(aux_engine, ctx, inst,
801 				    SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
802 				    &aux_engine_regs[inst],
803 					&aux_mask,
804 					&aux_shift,
805 					ctx->dc->caps.extended_aux_timeout_support);
806 
807 	return &aux_engine->base;
808 }
809 
810 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) }
811 
812 static const struct dce_i2c_registers i2c_hw_regs[] = {
813 		i2c_inst_regs(1),
814 		i2c_inst_regs(2),
815 		i2c_inst_regs(3),
816 		i2c_inst_regs(4),
817 		i2c_inst_regs(5),
818 		i2c_inst_regs(6),
819 };
820 
821 static const struct dce_i2c_shift i2c_shifts = {
822 		I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT)
823 };
824 
825 static const struct dce_i2c_mask i2c_masks = {
826 		I2C_COMMON_MASK_SH_LIST_DCN30(_MASK)
827 };
828 
829 static struct dce_i2c_hw *dcn30_i2c_hw_create(
830 	struct dc_context *ctx,
831 	uint32_t inst)
832 {
833 	struct dce_i2c_hw *dce_i2c_hw =
834 		kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
835 
836 	if (!dce_i2c_hw)
837 		return NULL;
838 
839 	dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
840 				    &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
841 
842 	return dce_i2c_hw;
843 }
844 
845 static struct mpc *dcn30_mpc_create(
846 		struct dc_context *ctx,
847 		int num_mpcc,
848 		int num_rmu)
849 {
850 	struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc),
851 					  GFP_KERNEL);
852 
853 	if (!mpc30)
854 		return NULL;
855 
856 	dcn30_mpc_construct(mpc30, ctx,
857 			&mpc_regs,
858 			&mpc_shift,
859 			&mpc_mask,
860 			num_mpcc,
861 			num_rmu);
862 
863 	return &mpc30->base;
864 }
865 
866 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx)
867 {
868 	int i;
869 
870 	struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub),
871 					  GFP_KERNEL);
872 
873 	if (!hubbub3)
874 		return NULL;
875 
876 	hubbub3_construct(hubbub3, ctx,
877 			&hubbub_reg,
878 			&hubbub_shift,
879 			&hubbub_mask);
880 
881 
882 	for (i = 0; i < res_cap_dcn3.num_vmid; i++) {
883 		struct dcn20_vmid *vmid = &hubbub3->vmid[i];
884 
885 		vmid->ctx = ctx;
886 
887 		vmid->regs = &vmid_regs[i];
888 		vmid->shifts = &vmid_shifts;
889 		vmid->masks = &vmid_masks;
890 	}
891 
892 	return &hubbub3->base;
893 }
894 
895 static struct timing_generator *dcn30_timing_generator_create(
896 		struct dc_context *ctx,
897 		uint32_t instance)
898 {
899 	struct optc *tgn10 =
900 		kzalloc(sizeof(struct optc), GFP_KERNEL);
901 
902 	if (!tgn10)
903 		return NULL;
904 
905 	tgn10->base.inst = instance;
906 	tgn10->base.ctx = ctx;
907 
908 	tgn10->tg_regs = &optc_regs[instance];
909 	tgn10->tg_shift = &optc_shift;
910 	tgn10->tg_mask = &optc_mask;
911 
912 	dcn30_timing_generator_init(tgn10);
913 
914 	return &tgn10->base;
915 }
916 
917 static const struct encoder_feature_support link_enc_feature = {
918 		.max_hdmi_deep_color = COLOR_DEPTH_121212,
919 		.max_hdmi_pixel_clock = 600000,
920 		.hdmi_ycbcr420_supported = true,
921 		.dp_ycbcr420_supported = true,
922 		.fec_supported = true,
923 		.flags.bits.IS_HBR2_CAPABLE = true,
924 		.flags.bits.IS_HBR3_CAPABLE = true,
925 		.flags.bits.IS_TPS3_CAPABLE = true,
926 		.flags.bits.IS_TPS4_CAPABLE = true
927 };
928 
929 static struct link_encoder *dcn30_link_encoder_create(
930 	struct dc_context *ctx,
931 	const struct encoder_init_data *enc_init_data)
932 {
933 	struct dcn20_link_encoder *enc20 =
934 		kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
935 
936 	if (!enc20)
937 		return NULL;
938 
939 	dcn30_link_encoder_construct(enc20,
940 			enc_init_data,
941 			&link_enc_feature,
942 			&link_enc_regs[enc_init_data->transmitter],
943 			&link_enc_aux_regs[enc_init_data->channel - 1],
944 			&link_enc_hpd_regs[enc_init_data->hpd_source],
945 			&le_shift,
946 			&le_mask);
947 
948 	return &enc20->enc10.base;
949 }
950 
951 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data)
952 {
953 	struct dce_panel_cntl *panel_cntl =
954 		kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL);
955 
956 	if (!panel_cntl)
957 		return NULL;
958 
959 	dce_panel_cntl_construct(panel_cntl,
960 			init_data,
961 			&panel_cntl_regs[init_data->inst],
962 			&panel_cntl_shift,
963 			&panel_cntl_mask);
964 
965 	return &panel_cntl->base;
966 }
967 
968 static void read_dce_straps(
969 	struct dc_context *ctx,
970 	struct resource_straps *straps)
971 {
972 	generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
973 		FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
974 
975 }
976 
977 static struct audio *dcn30_create_audio(
978 		struct dc_context *ctx, unsigned int inst)
979 {
980 	return dce_audio_create(ctx, inst,
981 			&audio_regs[inst], &audio_shift, &audio_mask);
982 }
983 
984 static struct vpg *dcn30_vpg_create(
985 	struct dc_context *ctx,
986 	uint32_t inst)
987 {
988 	struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL);
989 
990 	if (!vpg3)
991 		return NULL;
992 
993 	vpg3_construct(vpg3, ctx, inst,
994 			&vpg_regs[inst],
995 			&vpg_shift,
996 			&vpg_mask);
997 
998 	return &vpg3->base;
999 }
1000 
1001 static struct afmt *dcn30_afmt_create(
1002 	struct dc_context *ctx,
1003 	uint32_t inst)
1004 {
1005 	struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL);
1006 
1007 	if (!afmt3)
1008 		return NULL;
1009 
1010 	afmt3_construct(afmt3, ctx, inst,
1011 			&afmt_regs[inst],
1012 			&afmt_shift,
1013 			&afmt_mask);
1014 
1015 	return &afmt3->base;
1016 }
1017 
1018 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id,
1019 							  struct dc_context *ctx)
1020 {
1021 	struct dcn10_stream_encoder *enc1;
1022 	struct vpg *vpg;
1023 	struct afmt *afmt;
1024 	int vpg_inst;
1025 	int afmt_inst;
1026 
1027 	/* Mapping of VPG, AFMT, DME register blocks to DIO block instance */
1028 	if (eng_id <= ENGINE_ID_DIGF) {
1029 		vpg_inst = eng_id;
1030 		afmt_inst = eng_id;
1031 	} else
1032 		return NULL;
1033 
1034 	enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
1035 	vpg = dcn30_vpg_create(ctx, vpg_inst);
1036 	afmt = dcn30_afmt_create(ctx, afmt_inst);
1037 
1038 	if (!enc1 || !vpg || !afmt) {
1039 		kfree(enc1);
1040 		kfree(vpg);
1041 		kfree(afmt);
1042 		return NULL;
1043 	}
1044 
1045 	dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios,
1046 					eng_id, vpg, afmt,
1047 					&stream_enc_regs[eng_id],
1048 					&se_shift, &se_mask);
1049 
1050 	return &enc1->base;
1051 }
1052 
1053 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx)
1054 {
1055 	struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
1056 
1057 	if (hws) {
1058 		hws->ctx = ctx;
1059 		hws->regs = &hwseq_reg;
1060 		hws->shifts = &hwseq_shift;
1061 		hws->masks = &hwseq_mask;
1062 	}
1063 	return hws;
1064 }
1065 static const struct resource_create_funcs res_create_funcs = {
1066 	.read_dce_straps = read_dce_straps,
1067 	.create_audio = dcn30_create_audio,
1068 	.create_stream_encoder = dcn30_stream_encoder_create,
1069 	.create_hwseq = dcn30_hwseq_create,
1070 };
1071 
1072 static const struct resource_create_funcs res_create_maximus_funcs = {
1073 	.read_dce_straps = NULL,
1074 	.create_audio = NULL,
1075 	.create_stream_encoder = NULL,
1076 	.create_hwseq = dcn30_hwseq_create,
1077 };
1078 
1079 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool)
1080 {
1081 	unsigned int i;
1082 
1083 	for (i = 0; i < pool->base.stream_enc_count; i++) {
1084 		if (pool->base.stream_enc[i] != NULL) {
1085 			if (pool->base.stream_enc[i]->vpg != NULL) {
1086 				kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg));
1087 				pool->base.stream_enc[i]->vpg = NULL;
1088 			}
1089 			if (pool->base.stream_enc[i]->afmt != NULL) {
1090 				kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt));
1091 				pool->base.stream_enc[i]->afmt = NULL;
1092 			}
1093 			kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
1094 			pool->base.stream_enc[i] = NULL;
1095 		}
1096 	}
1097 
1098 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
1099 		if (pool->base.dscs[i] != NULL)
1100 			dcn20_dsc_destroy(&pool->base.dscs[i]);
1101 	}
1102 
1103 	if (pool->base.mpc != NULL) {
1104 		kfree(TO_DCN20_MPC(pool->base.mpc));
1105 		pool->base.mpc = NULL;
1106 	}
1107 	if (pool->base.hubbub != NULL) {
1108 		kfree(pool->base.hubbub);
1109 		pool->base.hubbub = NULL;
1110 	}
1111 	for (i = 0; i < pool->base.pipe_count; i++) {
1112 		if (pool->base.dpps[i] != NULL)
1113 			dcn30_dpp_destroy(&pool->base.dpps[i]);
1114 
1115 		if (pool->base.ipps[i] != NULL)
1116 			pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
1117 
1118 		if (pool->base.hubps[i] != NULL) {
1119 			kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
1120 			pool->base.hubps[i] = NULL;
1121 		}
1122 
1123 		if (pool->base.irqs != NULL) {
1124 			dal_irq_service_destroy(&pool->base.irqs);
1125 		}
1126 	}
1127 
1128 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
1129 		if (pool->base.engines[i] != NULL)
1130 			dce110_engine_destroy(&pool->base.engines[i]);
1131 		if (pool->base.hw_i2cs[i] != NULL) {
1132 			kfree(pool->base.hw_i2cs[i]);
1133 			pool->base.hw_i2cs[i] = NULL;
1134 		}
1135 		if (pool->base.sw_i2cs[i] != NULL) {
1136 			kfree(pool->base.sw_i2cs[i]);
1137 			pool->base.sw_i2cs[i] = NULL;
1138 		}
1139 	}
1140 
1141 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
1142 		if (pool->base.opps[i] != NULL)
1143 			pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
1144 	}
1145 
1146 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
1147 		if (pool->base.timing_generators[i] != NULL)	{
1148 			kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
1149 			pool->base.timing_generators[i] = NULL;
1150 		}
1151 	}
1152 
1153 	for (i = 0; i < pool->base.res_cap->num_dwb; i++) {
1154 		if (pool->base.dwbc[i] != NULL) {
1155 			kfree(TO_DCN30_DWBC(pool->base.dwbc[i]));
1156 			pool->base.dwbc[i] = NULL;
1157 		}
1158 		if (pool->base.mcif_wb[i] != NULL) {
1159 			kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i]));
1160 			pool->base.mcif_wb[i] = NULL;
1161 		}
1162 	}
1163 
1164 	for (i = 0; i < pool->base.audio_count; i++) {
1165 		if (pool->base.audios[i])
1166 			dce_aud_destroy(&pool->base.audios[i]);
1167 	}
1168 
1169 	for (i = 0; i < pool->base.clk_src_count; i++) {
1170 		if (pool->base.clock_sources[i] != NULL) {
1171 			dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
1172 			pool->base.clock_sources[i] = NULL;
1173 		}
1174 	}
1175 
1176 	for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) {
1177 		if (pool->base.mpc_lut[i] != NULL) {
1178 			dc_3dlut_func_release(pool->base.mpc_lut[i]);
1179 			pool->base.mpc_lut[i] = NULL;
1180 		}
1181 		if (pool->base.mpc_shaper[i] != NULL) {
1182 			dc_transfer_func_release(pool->base.mpc_shaper[i]);
1183 			pool->base.mpc_shaper[i] = NULL;
1184 		}
1185 	}
1186 
1187 	if (pool->base.dp_clock_source != NULL) {
1188 		dcn20_clock_source_destroy(&pool->base.dp_clock_source);
1189 		pool->base.dp_clock_source = NULL;
1190 	}
1191 
1192 	for (i = 0; i < pool->base.pipe_count; i++) {
1193 		if (pool->base.multiple_abms[i] != NULL)
1194 			dce_abm_destroy(&pool->base.multiple_abms[i]);
1195 	}
1196 
1197 	if (pool->base.psr != NULL)
1198 		dmub_psr_destroy(&pool->base.psr);
1199 
1200 	if (pool->base.dccg != NULL)
1201 		dcn_dccg_destroy(&pool->base.dccg);
1202 
1203 	if (pool->base.oem_device != NULL)
1204 		dal_ddc_service_destroy(&pool->base.oem_device);
1205 }
1206 
1207 static struct hubp *dcn30_hubp_create(
1208 	struct dc_context *ctx,
1209 	uint32_t inst)
1210 {
1211 	struct dcn20_hubp *hubp2 =
1212 		kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
1213 
1214 	if (!hubp2)
1215 		return NULL;
1216 
1217 	if (hubp3_construct(hubp2, ctx, inst,
1218 			&hubp_regs[inst], &hubp_shift, &hubp_mask))
1219 		return &hubp2->base;
1220 
1221 	BREAK_TO_DEBUGGER();
1222 	kfree(hubp2);
1223 	return NULL;
1224 }
1225 
1226 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool)
1227 {
1228 	int i;
1229 	uint32_t pipe_count = pool->res_cap->num_dwb;
1230 
1231 	for (i = 0; i < pipe_count; i++) {
1232 		struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc),
1233 						    GFP_KERNEL);
1234 
1235 		if (!dwbc30) {
1236 			dm_error("DC: failed to create dwbc30!\n");
1237 			return false;
1238 		}
1239 
1240 		dcn30_dwbc_construct(dwbc30, ctx,
1241 				&dwbc30_regs[i],
1242 				&dwbc30_shift,
1243 				&dwbc30_mask,
1244 				i);
1245 
1246 		pool->dwbc[i] = &dwbc30->base;
1247 	}
1248 	return true;
1249 }
1250 
1251 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool)
1252 {
1253 	int i;
1254 	uint32_t pipe_count = pool->res_cap->num_dwb;
1255 
1256 	for (i = 0; i < pipe_count; i++) {
1257 		struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub),
1258 						    GFP_KERNEL);
1259 
1260 		if (!mcif_wb30) {
1261 			dm_error("DC: failed to create mcif_wb30!\n");
1262 			return false;
1263 		}
1264 
1265 		dcn30_mmhubbub_construct(mcif_wb30, ctx,
1266 				&mcif_wb30_regs[i],
1267 				&mcif_wb30_shift,
1268 				&mcif_wb30_mask,
1269 				i);
1270 
1271 		pool->mcif_wb[i] = &mcif_wb30->base;
1272 	}
1273 	return true;
1274 }
1275 
1276 static struct display_stream_compressor *dcn30_dsc_create(
1277 	struct dc_context *ctx, uint32_t inst)
1278 {
1279 	struct dcn20_dsc *dsc =
1280 		kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL);
1281 
1282 	if (!dsc) {
1283 		BREAK_TO_DEBUGGER();
1284 		return NULL;
1285 	}
1286 
1287 	dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask);
1288 	return &dsc->base;
1289 }
1290 
1291 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
1292 {
1293 
1294 	return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream);
1295 }
1296 
1297 static void dcn30_destroy_resource_pool(struct resource_pool **pool)
1298 {
1299 	struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool);
1300 
1301 	dcn30_resource_destruct(dcn30_pool);
1302 	kfree(dcn30_pool);
1303 	*pool = NULL;
1304 }
1305 
1306 static struct clock_source *dcn30_clock_source_create(
1307 		struct dc_context *ctx,
1308 		struct dc_bios *bios,
1309 		enum clock_source_id id,
1310 		const struct dce110_clk_src_regs *regs,
1311 		bool dp_clk_src)
1312 {
1313 	struct dce110_clk_src *clk_src =
1314 		kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
1315 
1316 	if (!clk_src)
1317 		return NULL;
1318 
1319 	if (dcn3_clk_src_construct(clk_src, ctx, bios, id,
1320 			regs, &cs_shift, &cs_mask)) {
1321 		clk_src->base.dp_clk_src = dp_clk_src;
1322 		return &clk_src->base;
1323 	}
1324 
1325 	BREAK_TO_DEBUGGER();
1326 	return NULL;
1327 }
1328 
1329 int dcn30_populate_dml_pipes_from_context(
1330 	struct dc *dc, struct dc_state *context,
1331 	display_e2e_pipe_params_st *pipes,
1332 	bool fast_validate)
1333 {
1334 	int i, pipe_cnt;
1335 	struct resource_context *res_ctx = &context->res_ctx;
1336 
1337 	DC_FP_START();
1338 	dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate);
1339 	DC_FP_END();
1340 
1341 	for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
1342 		if (!res_ctx->pipe_ctx[i].stream)
1343 			continue;
1344 
1345 		pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth =
1346 			dm_lb_16;
1347 	}
1348 
1349 	return pipe_cnt;
1350 }
1351 
1352 void dcn30_populate_dml_writeback_from_context(
1353 	struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
1354 {
1355 	DC_FP_START();
1356 	dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes);
1357 	DC_FP_END();
1358 }
1359 
1360 unsigned int dcn30_calc_max_scaled_time(
1361 		unsigned int time_per_pixel,
1362 		enum mmhubbub_wbif_mode mode,
1363 		unsigned int urgent_watermark)
1364 {
1365 	unsigned int time_per_byte = 0;
1366 	unsigned int total_free_entry = 0xb40;
1367 	unsigned int buf_lh_capability;
1368 	unsigned int max_scaled_time;
1369 
1370 	if (mode == PACKED_444) /* packed mode 32 bpp */
1371 		time_per_byte = time_per_pixel/4;
1372 	else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */
1373 		time_per_byte = time_per_pixel/8;
1374 
1375 	if (time_per_byte == 0)
1376 		time_per_byte = 1;
1377 
1378 	buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/
1379 	max_scaled_time   = buf_lh_capability - urgent_watermark;
1380 	return max_scaled_time;
1381 }
1382 
1383 void dcn30_set_mcif_arb_params(
1384 		struct dc *dc,
1385 		struct dc_state *context,
1386 		display_e2e_pipe_params_st *pipes,
1387 		int pipe_cnt)
1388 {
1389 	enum mmhubbub_wbif_mode wbif_mode;
1390 	struct display_mode_lib *dml = &context->bw_ctx.dml;
1391 	struct mcif_arb_params *wb_arb_params;
1392 	int i, j, dwb_pipe;
1393 
1394 	/* Writeback MCIF_WB arbitration parameters */
1395 	dwb_pipe = 0;
1396 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1397 
1398 		if (!context->res_ctx.pipe_ctx[i].stream)
1399 			continue;
1400 
1401 		for (j = 0; j < MAX_DWB_PIPES; j++) {
1402 			struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j];
1403 
1404 			if (writeback_info->wb_enabled == false)
1405 				continue;
1406 
1407 			//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
1408 			wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
1409 
1410 			if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB ||
1411 				writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA)
1412 				wbif_mode = PACKED_444_FP16;
1413 			else
1414 				wbif_mode = PACKED_444;
1415 
1416 			DC_FP_START();
1417 			dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j);
1418 			DC_FP_END();
1419 			wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */
1420 			wb_arb_params->slice_lines = 32;
1421 			wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */
1422 			wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel,
1423 					wbif_mode,
1424 					wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
1425 
1426 			dwb_pipe++;
1427 
1428 			if (dwb_pipe >= MAX_DWB_PIPES)
1429 				return;
1430 		}
1431 		if (dwb_pipe >= MAX_DWB_PIPES)
1432 			return;
1433 	}
1434 
1435 }
1436 
1437 static struct dc_cap_funcs cap_funcs = {
1438 	.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
1439 };
1440 
1441 bool dcn30_acquire_post_bldn_3dlut(
1442 		struct resource_context *res_ctx,
1443 		const struct resource_pool *pool,
1444 		int mpcc_id,
1445 		struct dc_3dlut **lut,
1446 		struct dc_transfer_func **shaper)
1447 {
1448 	int i;
1449 	bool ret = false;
1450 	union dc_3dlut_state *state;
1451 
1452 	ASSERT(*lut == NULL && *shaper == NULL);
1453 	*lut = NULL;
1454 	*shaper = NULL;
1455 
1456 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1457 		if (!res_ctx->is_mpc_3dlut_acquired[i]) {
1458 			*lut = pool->mpc_lut[i];
1459 			*shaper = pool->mpc_shaper[i];
1460 			state = &pool->mpc_lut[i]->state;
1461 			res_ctx->is_mpc_3dlut_acquired[i] = true;
1462 			state->bits.rmu_idx_valid = 1;
1463 			state->bits.rmu_mux_num = i;
1464 			if (state->bits.rmu_mux_num == 0)
1465 				state->bits.mpc_rmu0_mux = mpcc_id;
1466 			else if (state->bits.rmu_mux_num == 1)
1467 				state->bits.mpc_rmu1_mux = mpcc_id;
1468 			else if (state->bits.rmu_mux_num == 2)
1469 				state->bits.mpc_rmu2_mux = mpcc_id;
1470 			ret = true;
1471 			break;
1472 			}
1473 		}
1474 	return ret;
1475 }
1476 
1477 bool dcn30_release_post_bldn_3dlut(
1478 		struct resource_context *res_ctx,
1479 		const struct resource_pool *pool,
1480 		struct dc_3dlut **lut,
1481 		struct dc_transfer_func **shaper)
1482 {
1483 	int i;
1484 	bool ret = false;
1485 
1486 	for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) {
1487 		if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) {
1488 			res_ctx->is_mpc_3dlut_acquired[i] = false;
1489 			pool->mpc_lut[i]->state.raw = 0;
1490 			*lut = NULL;
1491 			*shaper = NULL;
1492 			ret = true;
1493 			break;
1494 		}
1495 	}
1496 	return ret;
1497 }
1498 
1499 static bool is_soc_bounding_box_valid(struct dc *dc)
1500 {
1501 	uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
1502 
1503 	if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev))
1504 		return true;
1505 
1506 	return false;
1507 }
1508 
1509 static bool init_soc_bounding_box(struct dc *dc,
1510 				  struct dcn30_resource_pool *pool)
1511 {
1512 	struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc;
1513 	struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip;
1514 
1515 	DC_LOGGER_INIT(dc->ctx->logger);
1516 
1517 	if (!is_soc_bounding_box_valid(dc)) {
1518 		DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__);
1519 		return false;
1520 	}
1521 
1522 	loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator;
1523 	loaded_ip->max_num_dpp = pool->base.pipe_count;
1524 	loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
1525 	dcn20_patch_bounding_box(dc, loaded_bb);
1526 	DC_FP_START();
1527 	patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc);
1528 	DC_FP_END();
1529 
1530 	return true;
1531 }
1532 
1533 static bool dcn30_split_stream_for_mpc_or_odm(
1534 		const struct dc *dc,
1535 		struct resource_context *res_ctx,
1536 		struct pipe_ctx *pri_pipe,
1537 		struct pipe_ctx *sec_pipe,
1538 		bool odm)
1539 {
1540 	int pipe_idx = sec_pipe->pipe_idx;
1541 	const struct resource_pool *pool = dc->res_pool;
1542 
1543 	*sec_pipe = *pri_pipe;
1544 
1545 	sec_pipe->pipe_idx = pipe_idx;
1546 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1547 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1548 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1549 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1550 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1551 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1552 	sec_pipe->stream_res.dsc = NULL;
1553 	if (odm) {
1554 		if (pri_pipe->next_odm_pipe) {
1555 			ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1556 			sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1557 			sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1558 		}
1559 		if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1560 			pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1561 			sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1562 		}
1563 		if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1564 			pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1565 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1566 		}
1567 		pri_pipe->next_odm_pipe = sec_pipe;
1568 		sec_pipe->prev_odm_pipe = pri_pipe;
1569 
1570 		if (!sec_pipe->top_pipe)
1571 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1572 		else
1573 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1574 		if (sec_pipe->stream->timing.flags.DSC == 1) {
1575 			dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1576 			ASSERT(sec_pipe->stream_res.dsc);
1577 			if (sec_pipe->stream_res.dsc == NULL)
1578 				return false;
1579 		}
1580 	} else {
1581 		if (pri_pipe->bottom_pipe) {
1582 			ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1583 			sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1584 			sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1585 		}
1586 		pri_pipe->bottom_pipe = sec_pipe;
1587 		sec_pipe->top_pipe = pri_pipe;
1588 
1589 		ASSERT(pri_pipe->plane_state);
1590 	}
1591 
1592 	return true;
1593 }
1594 
1595 static struct pipe_ctx *dcn30_find_split_pipe(
1596 		struct dc *dc,
1597 		struct dc_state *context,
1598 		int old_index)
1599 {
1600 	struct pipe_ctx *pipe = NULL;
1601 	int i;
1602 
1603 	if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1604 		pipe = &context->res_ctx.pipe_ctx[old_index];
1605 		pipe->pipe_idx = old_index;
1606 	}
1607 
1608 	if (!pipe)
1609 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1610 			if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1611 					&& dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1612 				if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1613 					pipe = &context->res_ctx.pipe_ctx[i];
1614 					pipe->pipe_idx = i;
1615 					break;
1616 				}
1617 			}
1618 		}
1619 
1620 	/*
1621 	 * May need to fix pipes getting tossed from 1 opp to another on flip
1622 	 * Add for debugging transient underflow during topology updates:
1623 	 * ASSERT(pipe);
1624 	 */
1625 	if (!pipe)
1626 		for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1627 			if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1628 				pipe = &context->res_ctx.pipe_ctx[i];
1629 				pipe->pipe_idx = i;
1630 				break;
1631 			}
1632 		}
1633 
1634 	return pipe;
1635 }
1636 
1637 noinline bool dcn30_internal_validate_bw(
1638 		struct dc *dc,
1639 		struct dc_state *context,
1640 		display_e2e_pipe_params_st *pipes,
1641 		int *pipe_cnt_out,
1642 		int *vlevel_out,
1643 		bool fast_validate)
1644 {
1645 	bool out = false;
1646 	bool repopulate_pipes = false;
1647 	int split[MAX_PIPES] = { 0 };
1648 	bool merge[MAX_PIPES] = { false };
1649 	bool newly_split[MAX_PIPES] = { false };
1650 	int pipe_cnt, i, pipe_idx, vlevel;
1651 	struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1652 
1653 	ASSERT(pipes);
1654 	if (!pipes)
1655 		return false;
1656 
1657 	dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1658 	pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1659 
1660 	if (!pipe_cnt) {
1661 		out = true;
1662 		goto validate_out;
1663 	}
1664 
1665 	dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1666 
1667 	if (!fast_validate) {
1668 		/*
1669 		 * DML favors voltage over p-state, but we're more interested in
1670 		 * supporting p-state over voltage. We can't support p-state in
1671 		 * prefetch mode > 0 so try capping the prefetch mode to start.
1672 		 */
1673 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1674 			dm_allow_self_refresh_and_mclk_switch;
1675 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1676 		/* This may adjust vlevel and maxMpcComb */
1677 		if (vlevel < context->bw_ctx.dml.soc.num_states)
1678 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1679 	}
1680 	if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states ||
1681 			vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) {
1682 		/*
1683 		 * If mode is unsupported or there's still no p-state support then
1684 		 * fall back to favoring voltage.
1685 		 *
1686 		 * We don't actually support prefetch mode 2, so require that we
1687 		 * at least support prefetch mode 1.
1688 		 */
1689 		context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank =
1690 			dm_allow_self_refresh;
1691 
1692 		vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1693 		if (vlevel < context->bw_ctx.dml.soc.num_states) {
1694 			memset(split, 0, sizeof(split));
1695 			memset(merge, 0, sizeof(merge));
1696 			vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1697 		}
1698 	}
1699 
1700 	dml_log_mode_support_params(&context->bw_ctx.dml);
1701 
1702 	if (vlevel == context->bw_ctx.dml.soc.num_states)
1703 		goto validate_fail;
1704 
1705 	if (!dc->config.enable_windowed_mpo_odm) {
1706 		for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1707 			struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1708 			struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
1709 
1710 			if (!pipe->stream)
1711 				continue;
1712 
1713 			/* We only support full screen mpo with ODM */
1714 			if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
1715 					&& pipe->plane_state && mpo_pipe
1716 					&& memcmp(&mpo_pipe->plane_res.scl_data.recout,
1717 							&pipe->plane_res.scl_data.recout,
1718 							sizeof(struct rect)) != 0) {
1719 				ASSERT(mpo_pipe->plane_state != pipe->plane_state);
1720 				goto validate_fail;
1721 			}
1722 			pipe_idx++;
1723 		}
1724 	}
1725 
1726 	/* merge pipes if necessary */
1727 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1728 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1729 
1730 		/*skip pipes that don't need merging*/
1731 		if (!merge[i])
1732 			continue;
1733 
1734 		/* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
1735 		if (pipe->prev_odm_pipe) {
1736 			/*split off odm pipe*/
1737 			pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
1738 			if (pipe->next_odm_pipe)
1739 				pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
1740 
1741 			pipe->bottom_pipe = NULL;
1742 			pipe->next_odm_pipe = NULL;
1743 			pipe->plane_state = NULL;
1744 			pipe->stream = NULL;
1745 			pipe->top_pipe = NULL;
1746 			pipe->prev_odm_pipe = NULL;
1747 			if (pipe->stream_res.dsc)
1748 				dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
1749 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1750 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1751 			repopulate_pipes = true;
1752 		} else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
1753 			struct pipe_ctx *top_pipe = pipe->top_pipe;
1754 			struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
1755 
1756 			top_pipe->bottom_pipe = bottom_pipe;
1757 			if (bottom_pipe)
1758 				bottom_pipe->top_pipe = top_pipe;
1759 
1760 			pipe->top_pipe = NULL;
1761 			pipe->bottom_pipe = NULL;
1762 			pipe->plane_state = NULL;
1763 			pipe->stream = NULL;
1764 			memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
1765 			memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
1766 			repopulate_pipes = true;
1767 		} else
1768 			ASSERT(0); /* Should never try to merge master pipe */
1769 
1770 	}
1771 
1772 	for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
1773 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1774 		struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1775 		struct pipe_ctx *hsplit_pipe = NULL;
1776 		bool odm;
1777 		int old_index = -1;
1778 
1779 		if (!pipe->stream || newly_split[i])
1780 			continue;
1781 
1782 		pipe_idx++;
1783 		odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
1784 
1785 		if (!pipe->plane_state && !odm)
1786 			continue;
1787 
1788 		if (split[i]) {
1789 			if (odm) {
1790 				if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
1791 					old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1792 				else if (old_pipe->next_odm_pipe)
1793 					old_index = old_pipe->next_odm_pipe->pipe_idx;
1794 			} else {
1795 				if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1796 						old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1797 					old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1798 				else if (old_pipe->bottom_pipe &&
1799 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1800 					old_index = old_pipe->bottom_pipe->pipe_idx;
1801 			}
1802 			hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index);
1803 			ASSERT(hsplit_pipe);
1804 			if (!hsplit_pipe)
1805 				goto validate_fail;
1806 
1807 			if (!dcn30_split_stream_for_mpc_or_odm(
1808 					dc, &context->res_ctx,
1809 					pipe, hsplit_pipe, odm))
1810 				goto validate_fail;
1811 
1812 			newly_split[hsplit_pipe->pipe_idx] = true;
1813 			repopulate_pipes = true;
1814 		}
1815 		if (split[i] == 4) {
1816 			struct pipe_ctx *pipe_4to1;
1817 
1818 			if (odm && old_pipe->next_odm_pipe)
1819 				old_index = old_pipe->next_odm_pipe->pipe_idx;
1820 			else if (!odm && old_pipe->bottom_pipe &&
1821 						old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1822 				old_index = old_pipe->bottom_pipe->pipe_idx;
1823 			else
1824 				old_index = -1;
1825 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1826 			ASSERT(pipe_4to1);
1827 			if (!pipe_4to1)
1828 				goto validate_fail;
1829 			if (!dcn30_split_stream_for_mpc_or_odm(
1830 					dc, &context->res_ctx,
1831 					pipe, pipe_4to1, odm))
1832 				goto validate_fail;
1833 			newly_split[pipe_4to1->pipe_idx] = true;
1834 
1835 			if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
1836 					&& old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
1837 				old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
1838 			else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
1839 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
1840 					old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
1841 				old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
1842 			else
1843 				old_index = -1;
1844 			pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index);
1845 			ASSERT(pipe_4to1);
1846 			if (!pipe_4to1)
1847 				goto validate_fail;
1848 			if (!dcn30_split_stream_for_mpc_or_odm(
1849 					dc, &context->res_ctx,
1850 					hsplit_pipe, pipe_4to1, odm))
1851 				goto validate_fail;
1852 			newly_split[pipe_4to1->pipe_idx] = true;
1853 		}
1854 		if (odm)
1855 			dcn20_build_mapped_resource(dc, context, pipe->stream);
1856 	}
1857 
1858 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
1859 		struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1860 
1861 		if (pipe->plane_state) {
1862 			if (!resource_build_scaling_params(pipe))
1863 				goto validate_fail;
1864 		}
1865 	}
1866 
1867 	/* Actual dsc count per stream dsc validation*/
1868 	if (!dcn20_validate_dsc(dc, context)) {
1869 		vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
1870 		goto validate_fail;
1871 	}
1872 
1873 	if (repopulate_pipes)
1874 		pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1875 	*vlevel_out = vlevel;
1876 	*pipe_cnt_out = pipe_cnt;
1877 
1878 	out = true;
1879 	goto validate_out;
1880 
1881 validate_fail:
1882 	out = false;
1883 
1884 validate_out:
1885 	return out;
1886 }
1887 
1888 static int get_refresh_rate(struct dc_state *context)
1889 {
1890 	int refresh_rate = 0;
1891 	int h_v_total = 0;
1892 	struct dc_crtc_timing *timing = NULL;
1893 
1894 	if (context == NULL || context->streams[0] == NULL)
1895 		return 0;
1896 
1897 	/* check if refresh rate at least 120hz */
1898 	timing = &context->streams[0]->timing;
1899 	if (timing == NULL)
1900 		return 0;
1901 
1902 	h_v_total = timing->h_total * timing->v_total;
1903 	if (h_v_total == 0)
1904 		return 0;
1905 
1906 	refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1;
1907 	return refresh_rate;
1908 }
1909 
1910 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds
1911 /*
1912  * Scaling factor for v_blank stretch calculations considering timing in
1913  * micro-seconds and pixel clock in 100hz.
1914  * Note: the parenthesis are necessary to ensure the correct order of
1915  * operation where V_SCALE is used.
1916  */
1917 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK)
1918 
1919 int get_frame_rate_at_max_stretch_100hz(struct dc_state *context)
1920 {
1921 	struct dc_crtc_timing *timing = NULL;
1922 	uint32_t sec_per_100_lines;
1923 	uint32_t max_v_blank;
1924 	uint32_t curr_v_blank;
1925 	uint32_t v_stretch_max;
1926 	uint32_t stretched_frame_pix_cnt;
1927 	uint32_t scaled_stretched_frame_pix_cnt;
1928 	uint32_t scaled_refresh_rate;
1929 
1930 	if (context == NULL || context->streams[0] == NULL)
1931 		return 0;
1932 
1933 	/* check if refresh rate at least 120hz */
1934 	timing = &context->streams[0]->timing;
1935 	if (timing == NULL)
1936 		return 0;
1937 
1938 	sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1;
1939 	max_v_blank = sec_per_100_lines / V_SCALE + 1;
1940 	curr_v_blank = timing->v_total - timing->v_addressable;
1941 	v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0);
1942 	stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total;
1943 	scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000;
1944 	scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1;
1945 
1946 	return scaled_refresh_rate;
1947 }
1948 
1949 bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context)
1950 {
1951 	int refresh_rate_max_stretch_100hz;
1952 	int min_refresh_100hz;
1953 
1954 	if (context == NULL || context->streams[0] == NULL)
1955 		return false;
1956 
1957 	refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context);
1958 	min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000;
1959 
1960 	if (refresh_rate_max_stretch_100hz < min_refresh_100hz)
1961 		return false;
1962 
1963 	return true;
1964 }
1965 
1966 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
1967 {
1968 	int refresh_rate = 0;
1969 	const int minimum_refreshrate_supported = 120;
1970 
1971 	if (context == NULL || context->streams[0] == NULL)
1972 		return false;
1973 
1974 	if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams)
1975 		return false;
1976 
1977 	if (dc->debug.disable_fams)
1978 		return false;
1979 
1980 	if (!dc->caps.dmub_caps.mclk_sw)
1981 		return false;
1982 
1983 	if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down)
1984 		return false;
1985 
1986 	/* more then 1 monitor connected */
1987 	if (context->stream_count != 1)
1988 		return false;
1989 
1990 	refresh_rate = get_refresh_rate(context);
1991 	if (refresh_rate < minimum_refreshrate_supported)
1992 		return false;
1993 
1994 	if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context))
1995 		return false;
1996 
1997 	// check if freesync enabled
1998 	if (!context->streams[0]->allow_freesync)
1999 		return false;
2000 
2001 	if (context->streams[0]->vrr_active_variable)
2002 		return false;
2003 
2004 	return true;
2005 }
2006 
2007 /*
2008  * set up FPO watermarks, pstate, dram latency
2009  */
2010 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context)
2011 {
2012 	ASSERT(dc != NULL && context != NULL);
2013 	if (dc == NULL || context == NULL)
2014 		return;
2015 
2016 	/* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */
2017 	context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U;
2018 }
2019 
2020 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context)
2021 {
2022 	DC_FP_START();
2023 	dcn30_fpu_update_soc_for_wm_a(dc, context);
2024 	DC_FP_END();
2025 }
2026 
2027 void dcn30_calculate_wm_and_dlg(
2028 		struct dc *dc, struct dc_state *context,
2029 		display_e2e_pipe_params_st *pipes,
2030 		int pipe_cnt,
2031 		int vlevel)
2032 {
2033 	DC_FP_START();
2034 	dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2035 	DC_FP_END();
2036 }
2037 
2038 bool dcn30_validate_bandwidth(struct dc *dc,
2039 		struct dc_state *context,
2040 		bool fast_validate)
2041 {
2042 	bool out = false;
2043 
2044 	BW_VAL_TRACE_SETUP();
2045 
2046 	int vlevel = 0;
2047 	int pipe_cnt = 0;
2048 	display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
2049 	DC_LOGGER_INIT(dc->ctx->logger);
2050 
2051 	BW_VAL_TRACE_COUNT();
2052 
2053 	DC_FP_START();
2054 	out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate);
2055 	DC_FP_END();
2056 
2057 	if (pipe_cnt == 0)
2058 		goto validate_out;
2059 
2060 	if (!out)
2061 		goto validate_fail;
2062 
2063 	BW_VAL_TRACE_END_VOLTAGE_LEVEL();
2064 
2065 	if (fast_validate) {
2066 		BW_VAL_TRACE_SKIP(fast);
2067 		goto validate_out;
2068 	}
2069 
2070 	DC_FP_START();
2071 	dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel);
2072 	DC_FP_END();
2073 
2074 	BW_VAL_TRACE_END_WATERMARKS();
2075 
2076 	goto validate_out;
2077 
2078 validate_fail:
2079 	DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n",
2080 		dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states]));
2081 
2082 	BW_VAL_TRACE_SKIP(fail);
2083 	out = false;
2084 
2085 validate_out:
2086 	kfree(pipes);
2087 
2088 	BW_VAL_TRACE_FINISH();
2089 
2090 	return out;
2091 }
2092 
2093 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params)
2094 {
2095 	unsigned int i, j;
2096 	unsigned int num_states = 0;
2097 
2098 	unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
2099 	unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
2100 	unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
2101 	unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
2102 
2103 	unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200};
2104 	unsigned int num_dcfclk_sta_targets = 4;
2105 	unsigned int num_uclk_states;
2106 
2107 	struct dc_bounding_box_max_clk dcn30_bb_max_clk;
2108 
2109 	memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk));
2110 
2111 	if (dc->ctx->dc_bios->vram_info.num_chans)
2112 		dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
2113 
2114 	DC_FP_START();
2115 	dcn30_fpu_update_dram_channel_width_bytes(dc);
2116 	DC_FP_END();
2117 
2118 	if (bw_params->clk_table.entries[0].memclk_mhz) {
2119 
2120 		for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2121 			if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz)
2122 				dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2123 			if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz)
2124 				dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2125 			if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz)
2126 				dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2127 			if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz)
2128 				dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2129 		}
2130 
2131 		DC_FP_START();
2132 		dcn30_fpu_update_max_clk(&dcn30_bb_max_clk);
2133 		DC_FP_END();
2134 
2135 		if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2136 			// If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
2137 			dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz;
2138 			num_dcfclk_sta_targets++;
2139 		} else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
2140 			// If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
2141 			for (i = 0; i < num_dcfclk_sta_targets; i++) {
2142 				if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) {
2143 					dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz;
2144 					break;
2145 				}
2146 			}
2147 			// Update size of array since we "removed" duplicates
2148 			num_dcfclk_sta_targets = i + 1;
2149 		}
2150 
2151 		num_uclk_states = bw_params->clk_table.num_entries;
2152 
2153 		// Calculate optimal dcfclk for each uclk
2154 		for (i = 0; i < num_uclk_states; i++) {
2155 			DC_FP_START();
2156 			dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
2157 					&optimal_dcfclk_for_uclk[i], NULL);
2158 			DC_FP_END();
2159 			if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
2160 				optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
2161 			}
2162 		}
2163 
2164 		// Calculate optimal uclk for each dcfclk sta target
2165 		for (i = 0; i < num_dcfclk_sta_targets; i++) {
2166 			for (j = 0; j < num_uclk_states; j++) {
2167 				if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
2168 					optimal_uclk_for_dcfclk_sta_targets[i] =
2169 							bw_params->clk_table.entries[j].memclk_mhz * 16;
2170 					break;
2171 				}
2172 			}
2173 		}
2174 
2175 		i = 0;
2176 		j = 0;
2177 		// create the final dcfclk and uclk table
2178 		while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
2179 			if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
2180 				dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2181 				dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2182 			} else {
2183 				if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2184 					dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2185 					dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2186 				} else {
2187 					j = num_uclk_states;
2188 				}
2189 			}
2190 		}
2191 
2192 		while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
2193 			dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
2194 			dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
2195 		}
2196 
2197 		while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
2198 				optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) {
2199 			dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
2200 			dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
2201 		}
2202 
2203 		dcn3_0_soc.num_states = num_states;
2204 		DC_FP_START();
2205 		dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts);
2206 		DC_FP_END();
2207 	}
2208 }
2209 
2210 static const struct resource_funcs dcn30_res_pool_funcs = {
2211 	.destroy = dcn30_destroy_resource_pool,
2212 	.link_enc_create = dcn30_link_encoder_create,
2213 	.panel_cntl_create = dcn30_panel_cntl_create,
2214 	.validate_bandwidth = dcn30_validate_bandwidth,
2215 	.calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg,
2216 	.update_soc_for_wm_a = dcn30_update_soc_for_wm_a,
2217 	.populate_dml_pipes = dcn30_populate_dml_pipes_from_context,
2218 	.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
2219 	.add_stream_to_ctx = dcn30_add_stream_to_ctx,
2220 	.add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource,
2221 	.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
2222 	.populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context,
2223 	.set_mcif_arb_params = dcn30_set_mcif_arb_params,
2224 	.find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link,
2225 	.acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut,
2226 	.release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut,
2227 	.update_bw_bounding_box = dcn30_update_bw_bounding_box,
2228 	.patch_unknown_plane_state = dcn20_patch_unknown_plane_state,
2229 };
2230 
2231 #define CTX ctx
2232 
2233 #define REG(reg_name) \
2234 	(DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
2235 
2236 static uint32_t read_pipe_fuses(struct dc_context *ctx)
2237 {
2238 	uint32_t value = REG_READ(CC_DC_PIPE_DIS);
2239 	/* Support for max 6 pipes */
2240 	value = value & 0x3f;
2241 	return value;
2242 }
2243 
2244 static bool dcn30_resource_construct(
2245 	uint8_t num_virtual_links,
2246 	struct dc *dc,
2247 	struct dcn30_resource_pool *pool)
2248 {
2249 	int i;
2250 	struct dc_context *ctx = dc->ctx;
2251 	struct irq_service_init_data init_data;
2252 	struct ddc_service_init_data ddc_init_data = {0};
2253 	uint32_t pipe_fuses = read_pipe_fuses(ctx);
2254 	uint32_t num_pipes = 0;
2255 
2256 	if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) {
2257 		BREAK_TO_DEBUGGER();
2258 		dm_error("DC: Unexpected fuse recipe for navi2x !\n");
2259 		/* fault to single pipe */
2260 		pipe_fuses = 0x3e;
2261 	}
2262 
2263 	DC_FP_START();
2264 
2265 	ctx->dc_bios->regs = &bios_regs;
2266 
2267 	pool->base.res_cap = &res_cap_dcn3;
2268 
2269 	pool->base.funcs = &dcn30_res_pool_funcs;
2270 
2271 	/*************************************************
2272 	 *  Resource + asic cap harcoding                *
2273 	 *************************************************/
2274 	pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
2275 	pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
2276 	pool->base.mpcc_count = pool->base.res_cap->num_timing_generator;
2277 	dc->caps.max_downscale_ratio = 600;
2278 	dc->caps.i2c_speed_in_khz = 100;
2279 	dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/
2280 	dc->caps.max_cursor_size = 256;
2281 	dc->caps.min_horizontal_blanking_period = 80;
2282 	dc->caps.dmdata_alloc_size = 2048;
2283 	dc->caps.mall_size_per_mem_channel = 8;
2284 	/* total size = mall per channel * num channels * 1024 * 1024 */
2285 	dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576;
2286 	dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8;
2287 
2288 	dc->caps.max_slave_planes = 2;
2289 	dc->caps.max_slave_yuv_planes = 2;
2290 	dc->caps.max_slave_rgb_planes = 2;
2291 	dc->caps.post_blend_color_processing = true;
2292 	dc->caps.force_dp_tps4_for_cp2520 = true;
2293 	dc->caps.extended_aux_timeout_support = true;
2294 	dc->caps.dmcub_support = true;
2295 
2296 	/* Color pipeline capabilities */
2297 	dc->caps.color.dpp.dcn_arch = 1;
2298 	dc->caps.color.dpp.input_lut_shared = 0;
2299 	dc->caps.color.dpp.icsc = 1;
2300 	dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr
2301 	dc->caps.color.dpp.dgam_rom_caps.srgb = 1;
2302 	dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1;
2303 	dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1;
2304 	dc->caps.color.dpp.dgam_rom_caps.pq = 1;
2305 	dc->caps.color.dpp.dgam_rom_caps.hlg = 1;
2306 	dc->caps.color.dpp.post_csc = 1;
2307 	dc->caps.color.dpp.gamma_corr = 1;
2308 	dc->caps.color.dpp.dgam_rom_for_yuv = 0;
2309 
2310 	dc->caps.color.dpp.hw_3d_lut = 1;
2311 	dc->caps.color.dpp.ogam_ram = 1;
2312 	// no OGAM ROM on DCN3
2313 	dc->caps.color.dpp.ogam_rom_caps.srgb = 0;
2314 	dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0;
2315 	dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0;
2316 	dc->caps.color.dpp.ogam_rom_caps.pq = 0;
2317 	dc->caps.color.dpp.ogam_rom_caps.hlg = 0;
2318 	dc->caps.color.dpp.ocsc = 0;
2319 
2320 	dc->caps.color.mpc.gamut_remap = 1;
2321 	dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3
2322 	dc->caps.color.mpc.ogam_ram = 1;
2323 	dc->caps.color.mpc.ogam_rom_caps.srgb = 0;
2324 	dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0;
2325 	dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0;
2326 	dc->caps.color.mpc.ogam_rom_caps.pq = 0;
2327 	dc->caps.color.mpc.ogam_rom_caps.hlg = 0;
2328 	dc->caps.color.mpc.ocsc = 1;
2329 
2330 	dc->caps.dp_hdmi21_pcon_support = true;
2331 
2332 	/* read VBIOS LTTPR caps */
2333 	{
2334 		if (ctx->dc_bios->funcs->get_lttpr_caps) {
2335 			enum bp_result bp_query_result;
2336 			uint8_t is_vbios_lttpr_enable = 0;
2337 
2338 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable);
2339 			dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable;
2340 		}
2341 
2342 		if (ctx->dc_bios->funcs->get_lttpr_interop) {
2343 			enum bp_result bp_query_result;
2344 			uint8_t is_vbios_interop_enabled = 0;
2345 
2346 			bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios,
2347 					&is_vbios_interop_enabled);
2348 			dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled;
2349 		}
2350 	}
2351 
2352 	if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
2353 		dc->debug = debug_defaults_drv;
2354 	else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
2355 		dc->debug = debug_defaults_diags;
2356 	} else
2357 		dc->debug = debug_defaults_diags;
2358 	// Init the vm_helper
2359 	if (dc->vm_helper)
2360 		vm_helper_init(dc->vm_helper, 16);
2361 
2362 	/*************************************************
2363 	 *  Create resources                             *
2364 	 *************************************************/
2365 
2366 	/* Clock Sources for Pixel Clock*/
2367 	pool->base.clock_sources[DCN30_CLK_SRC_PLL0] =
2368 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2369 				CLOCK_SOURCE_COMBO_PHY_PLL0,
2370 				&clk_src_regs[0], false);
2371 	pool->base.clock_sources[DCN30_CLK_SRC_PLL1] =
2372 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2373 				CLOCK_SOURCE_COMBO_PHY_PLL1,
2374 				&clk_src_regs[1], false);
2375 	pool->base.clock_sources[DCN30_CLK_SRC_PLL2] =
2376 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2377 				CLOCK_SOURCE_COMBO_PHY_PLL2,
2378 				&clk_src_regs[2], false);
2379 	pool->base.clock_sources[DCN30_CLK_SRC_PLL3] =
2380 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2381 				CLOCK_SOURCE_COMBO_PHY_PLL3,
2382 				&clk_src_regs[3], false);
2383 	pool->base.clock_sources[DCN30_CLK_SRC_PLL4] =
2384 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2385 				CLOCK_SOURCE_COMBO_PHY_PLL4,
2386 				&clk_src_regs[4], false);
2387 	pool->base.clock_sources[DCN30_CLK_SRC_PLL5] =
2388 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2389 				CLOCK_SOURCE_COMBO_PHY_PLL5,
2390 				&clk_src_regs[5], false);
2391 
2392 	pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL;
2393 
2394 	/* todo: not reuse phy_pll registers */
2395 	pool->base.dp_clock_source =
2396 			dcn30_clock_source_create(ctx, ctx->dc_bios,
2397 				CLOCK_SOURCE_ID_DP_DTO,
2398 				&clk_src_regs[0], true);
2399 
2400 	for (i = 0; i < pool->base.clk_src_count; i++) {
2401 		if (pool->base.clock_sources[i] == NULL) {
2402 			dm_error("DC: failed to create clock sources!\n");
2403 			BREAK_TO_DEBUGGER();
2404 			goto create_fail;
2405 		}
2406 	}
2407 
2408 	/* DCCG */
2409 	pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
2410 	if (pool->base.dccg == NULL) {
2411 		dm_error("DC: failed to create dccg!\n");
2412 		BREAK_TO_DEBUGGER();
2413 		goto create_fail;
2414 	}
2415 
2416 	/* PP Lib and SMU interfaces */
2417 	init_soc_bounding_box(dc, pool);
2418 
2419 	num_pipes = dcn3_0_ip.max_num_dpp;
2420 
2421 	for (i = 0; i < dcn3_0_ip.max_num_dpp; i++)
2422 		if (pipe_fuses & 1 << i)
2423 			num_pipes--;
2424 
2425 	dcn3_0_ip.max_num_dpp = num_pipes;
2426 	dcn3_0_ip.max_num_otg = num_pipes;
2427 
2428 	dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30);
2429 
2430 	/* IRQ */
2431 	init_data.ctx = dc->ctx;
2432 	pool->base.irqs = dal_irq_service_dcn30_create(&init_data);
2433 	if (!pool->base.irqs)
2434 		goto create_fail;
2435 
2436 	/* HUBBUB */
2437 	pool->base.hubbub = dcn30_hubbub_create(ctx);
2438 	if (pool->base.hubbub == NULL) {
2439 		BREAK_TO_DEBUGGER();
2440 		dm_error("DC: failed to create hubbub!\n");
2441 		goto create_fail;
2442 	}
2443 
2444 	/* HUBPs, DPPs, OPPs and TGs */
2445 	for (i = 0; i < pool->base.pipe_count; i++) {
2446 		pool->base.hubps[i] = dcn30_hubp_create(ctx, i);
2447 		if (pool->base.hubps[i] == NULL) {
2448 			BREAK_TO_DEBUGGER();
2449 			dm_error(
2450 				"DC: failed to create hubps!\n");
2451 			goto create_fail;
2452 		}
2453 
2454 		pool->base.dpps[i] = dcn30_dpp_create(ctx, i);
2455 		if (pool->base.dpps[i] == NULL) {
2456 			BREAK_TO_DEBUGGER();
2457 			dm_error(
2458 				"DC: failed to create dpps!\n");
2459 			goto create_fail;
2460 		}
2461 	}
2462 
2463 	for (i = 0; i < pool->base.res_cap->num_opp; i++) {
2464 		pool->base.opps[i] = dcn30_opp_create(ctx, i);
2465 		if (pool->base.opps[i] == NULL) {
2466 			BREAK_TO_DEBUGGER();
2467 			dm_error(
2468 				"DC: failed to create output pixel processor!\n");
2469 			goto create_fail;
2470 		}
2471 	}
2472 
2473 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2474 		pool->base.timing_generators[i] = dcn30_timing_generator_create(
2475 				ctx, i);
2476 		if (pool->base.timing_generators[i] == NULL) {
2477 			BREAK_TO_DEBUGGER();
2478 			dm_error("DC: failed to create tg!\n");
2479 			goto create_fail;
2480 		}
2481 	}
2482 	pool->base.timing_generator_count = i;
2483 	/* PSR */
2484 	pool->base.psr = dmub_psr_create(ctx);
2485 
2486 	if (pool->base.psr == NULL) {
2487 		dm_error("DC: failed to create PSR obj!\n");
2488 		BREAK_TO_DEBUGGER();
2489 		goto create_fail;
2490 	}
2491 
2492 	/* ABM */
2493 	for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
2494 		pool->base.multiple_abms[i] = dmub_abm_create(ctx,
2495 				&abm_regs[i],
2496 				&abm_shift,
2497 				&abm_mask);
2498 		if (pool->base.multiple_abms[i] == NULL) {
2499 			dm_error("DC: failed to create abm for pipe %d!\n", i);
2500 			BREAK_TO_DEBUGGER();
2501 			goto create_fail;
2502 		}
2503 	}
2504 	/* MPC and DSC */
2505 	pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut);
2506 	if (pool->base.mpc == NULL) {
2507 		BREAK_TO_DEBUGGER();
2508 		dm_error("DC: failed to create mpc!\n");
2509 		goto create_fail;
2510 	}
2511 
2512 	for (i = 0; i < pool->base.res_cap->num_dsc; i++) {
2513 		pool->base.dscs[i] = dcn30_dsc_create(ctx, i);
2514 		if (pool->base.dscs[i] == NULL) {
2515 			BREAK_TO_DEBUGGER();
2516 			dm_error("DC: failed to create display stream compressor %d!\n", i);
2517 			goto create_fail;
2518 		}
2519 	}
2520 
2521 	/* DWB and MMHUBBUB */
2522 	if (!dcn30_dwbc_create(ctx, &pool->base)) {
2523 		BREAK_TO_DEBUGGER();
2524 		dm_error("DC: failed to create dwbc!\n");
2525 		goto create_fail;
2526 	}
2527 
2528 	if (!dcn30_mmhubbub_create(ctx, &pool->base)) {
2529 		BREAK_TO_DEBUGGER();
2530 		dm_error("DC: failed to create mcif_wb!\n");
2531 		goto create_fail;
2532 	}
2533 
2534 	/* AUX and I2C */
2535 	for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
2536 		pool->base.engines[i] = dcn30_aux_engine_create(ctx, i);
2537 		if (pool->base.engines[i] == NULL) {
2538 			BREAK_TO_DEBUGGER();
2539 			dm_error(
2540 				"DC:failed to create aux engine!!\n");
2541 			goto create_fail;
2542 		}
2543 		pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i);
2544 		if (pool->base.hw_i2cs[i] == NULL) {
2545 			BREAK_TO_DEBUGGER();
2546 			dm_error(
2547 				"DC:failed to create hw i2c!!\n");
2548 			goto create_fail;
2549 		}
2550 		pool->base.sw_i2cs[i] = NULL;
2551 	}
2552 
2553 	/* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */
2554 	if (!resource_construct(num_virtual_links, dc, &pool->base,
2555 			(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
2556 			&res_create_funcs : &res_create_maximus_funcs)))
2557 		goto create_fail;
2558 
2559 	/* HW Sequencer and Plane caps */
2560 	dcn30_hw_sequencer_construct(dc);
2561 
2562 	dc->caps.max_planes =  pool->base.pipe_count;
2563 
2564 	for (i = 0; i < dc->caps.max_planes; ++i)
2565 		dc->caps.planes[i] = plane_cap;
2566 
2567 	dc->cap_funcs = cap_funcs;
2568 
2569 	if (dc->ctx->dc_bios->fw_info.oem_i2c_present) {
2570 		ddc_init_data.ctx = dc->ctx;
2571 		ddc_init_data.link = NULL;
2572 		ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id;
2573 		ddc_init_data.id.enum_id = 0;
2574 		ddc_init_data.id.type = OBJECT_TYPE_GENERIC;
2575 		pool->base.oem_device = dal_ddc_service_create(&ddc_init_data);
2576 	} else {
2577 		pool->base.oem_device = NULL;
2578 	}
2579 
2580 	DC_FP_END();
2581 
2582 	return true;
2583 
2584 create_fail:
2585 
2586 	DC_FP_END();
2587 	dcn30_resource_destruct(pool);
2588 
2589 	return false;
2590 }
2591 
2592 struct resource_pool *dcn30_create_resource_pool(
2593 		const struct dc_init_data *init_data,
2594 		struct dc *dc)
2595 {
2596 	struct dcn30_resource_pool *pool =
2597 		kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL);
2598 
2599 	if (!pool)
2600 		return NULL;
2601 
2602 	if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool))
2603 		return &pool->base;
2604 
2605 	BREAK_TO_DEBUGGER();
2606 	kfree(pool);
2607 	return NULL;
2608 }
2609