1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "link.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dpcs/dpcs_3_0_0_offset.h" 76 #include "dpcs/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/dcn30_fpu.h" 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 #include "amdgpu_socbb.h" 92 #include "dc_dmub_srv.h" 93 94 #define DC_LOGGER_INIT(logger) 95 96 enum dcn30_clk_src_array_id { 97 DCN30_CLK_SRC_PLL0, 98 DCN30_CLK_SRC_PLL1, 99 DCN30_CLK_SRC_PLL2, 100 DCN30_CLK_SRC_PLL3, 101 DCN30_CLK_SRC_PLL4, 102 DCN30_CLK_SRC_PLL5, 103 DCN30_CLK_SRC_TOTAL 104 }; 105 106 /* begin ********************* 107 * macros to expend register list macro defined in HW object header file 108 */ 109 110 /* DCN */ 111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 112 113 #define BASE(seg) BASE_INNER(seg) 114 115 #define SR(reg_name)\ 116 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 117 mm ## reg_name 118 119 #define SRI(reg_name, block, id)\ 120 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 121 mm ## block ## id ## _ ## reg_name 122 123 #define SRI2(reg_name, block, id)\ 124 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 125 mm ## reg_name 126 127 #define SRIR(var_name, reg_name, block, id)\ 128 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 129 mm ## block ## id ## _ ## reg_name 130 131 #define SRII(reg_name, block, id)\ 132 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 133 mm ## block ## id ## _ ## reg_name 134 135 #define SRII_MPC_RMU(reg_name, block, id)\ 136 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRII_DWB(reg_name, temp_name, block, id)\ 140 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 141 mm ## block ## id ## _ ## temp_name 142 143 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 144 .field_name = reg_name ## __ ## field_name ## post_fix 145 146 #define DCCG_SRII(reg_name, block, id)\ 147 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 148 mm ## block ## id ## _ ## reg_name 149 150 #define VUPDATE_SRII(reg_name, block, id)\ 151 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 152 mm ## reg_name ## _ ## block ## id 153 154 /* NBIO */ 155 #define NBIO_BASE_INNER(seg) \ 156 NBIO_BASE__INST0_SEG ## seg 157 158 #define NBIO_BASE(seg) \ 159 NBIO_BASE_INNER(seg) 160 161 #define NBIO_SR(reg_name)\ 162 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 163 mm ## reg_name 164 165 /* MMHUB */ 166 #define MMHUB_BASE_INNER(seg) \ 167 MMHUB_BASE__INST0_SEG ## seg 168 169 #define MMHUB_BASE(seg) \ 170 MMHUB_BASE_INNER(seg) 171 172 #define MMHUB_SR(reg_name)\ 173 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 174 mmMM ## reg_name 175 176 /* CLOCK */ 177 #define CLK_BASE_INNER(seg) \ 178 CLK_BASE__INST0_SEG ## seg 179 180 #define CLK_BASE(seg) \ 181 CLK_BASE_INNER(seg) 182 183 #define CLK_SRI(reg_name, block, inst)\ 184 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 185 mm ## block ## _ ## inst ## _ ## reg_name 186 187 188 static const struct bios_registers bios_regs = { 189 NBIO_SR(BIOS_SCRATCH_3), 190 NBIO_SR(BIOS_SCRATCH_6) 191 }; 192 193 #define clk_src_regs(index, pllid)\ 194 [index] = {\ 195 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 196 } 197 198 static const struct dce110_clk_src_regs clk_src_regs[] = { 199 clk_src_regs(0, A), 200 clk_src_regs(1, B), 201 clk_src_regs(2, C), 202 clk_src_regs(3, D), 203 clk_src_regs(4, E), 204 clk_src_regs(5, F) 205 }; 206 207 static const struct dce110_clk_src_shift cs_shift = { 208 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 209 }; 210 211 static const struct dce110_clk_src_mask cs_mask = { 212 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 213 }; 214 215 #define abm_regs(id)\ 216 [id] = {\ 217 ABM_DCN30_REG_LIST(id)\ 218 } 219 220 static const struct dce_abm_registers abm_regs[] = { 221 abm_regs(0), 222 abm_regs(1), 223 abm_regs(2), 224 abm_regs(3), 225 abm_regs(4), 226 abm_regs(5), 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN30(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN30(_MASK) 235 }; 236 237 238 239 #define audio_regs(id)\ 240 [id] = {\ 241 AUD_COMMON_REG_LIST(id)\ 242 } 243 244 static const struct dce_audio_registers audio_regs[] = { 245 audio_regs(0), 246 audio_regs(1), 247 audio_regs(2), 248 audio_regs(3), 249 audio_regs(4), 250 audio_regs(5), 251 audio_regs(6) 252 }; 253 254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 256 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 257 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 258 259 static const struct dce_audio_shift audio_shift = { 260 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 261 }; 262 263 static const struct dce_audio_mask audio_mask = { 264 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 265 }; 266 267 #define vpg_regs(id)\ 268 [id] = {\ 269 VPG_DCN3_REG_LIST(id)\ 270 } 271 272 static const struct dcn30_vpg_registers vpg_regs[] = { 273 vpg_regs(0), 274 vpg_regs(1), 275 vpg_regs(2), 276 vpg_regs(3), 277 vpg_regs(4), 278 vpg_regs(5), 279 vpg_regs(6), 280 }; 281 282 static const struct dcn30_vpg_shift vpg_shift = { 283 DCN3_VPG_MASK_SH_LIST(__SHIFT) 284 }; 285 286 static const struct dcn30_vpg_mask vpg_mask = { 287 DCN3_VPG_MASK_SH_LIST(_MASK) 288 }; 289 290 #define afmt_regs(id)\ 291 [id] = {\ 292 AFMT_DCN3_REG_LIST(id)\ 293 } 294 295 static const struct dcn30_afmt_registers afmt_regs[] = { 296 afmt_regs(0), 297 afmt_regs(1), 298 afmt_regs(2), 299 afmt_regs(3), 300 afmt_regs(4), 301 afmt_regs(5), 302 afmt_regs(6), 303 }; 304 305 static const struct dcn30_afmt_shift afmt_shift = { 306 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 307 }; 308 309 static const struct dcn30_afmt_mask afmt_mask = { 310 DCN3_AFMT_MASK_SH_LIST(_MASK) 311 }; 312 313 #define stream_enc_regs(id)\ 314 [id] = {\ 315 SE_DCN3_REG_LIST(id)\ 316 } 317 318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 319 stream_enc_regs(0), 320 stream_enc_regs(1), 321 stream_enc_regs(2), 322 stream_enc_regs(3), 323 stream_enc_regs(4), 324 stream_enc_regs(5) 325 }; 326 327 static const struct dcn10_stream_encoder_shift se_shift = { 328 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 329 }; 330 331 static const struct dcn10_stream_encoder_mask se_mask = { 332 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 333 }; 334 335 336 #define aux_regs(id)\ 337 [id] = {\ 338 DCN2_AUX_REG_LIST(id)\ 339 } 340 341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 342 aux_regs(0), 343 aux_regs(1), 344 aux_regs(2), 345 aux_regs(3), 346 aux_regs(4), 347 aux_regs(5) 348 }; 349 350 #define hpd_regs(id)\ 351 [id] = {\ 352 HPD_REG_LIST(id)\ 353 } 354 355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 356 hpd_regs(0), 357 hpd_regs(1), 358 hpd_regs(2), 359 hpd_regs(3), 360 hpd_regs(4), 361 hpd_regs(5) 362 }; 363 364 #define link_regs(id, phyid)\ 365 [id] = {\ 366 LE_DCN3_REG_LIST(id), \ 367 UNIPHY_DCN2_REG_LIST(phyid), \ 368 DPCS_DCN2_REG_LIST(id), \ 369 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 370 } 371 372 static const struct dce110_aux_registers_shift aux_shift = { 373 DCN_AUX_MASK_SH_LIST(__SHIFT) 374 }; 375 376 static const struct dce110_aux_registers_mask aux_mask = { 377 DCN_AUX_MASK_SH_LIST(_MASK) 378 }; 379 380 static const struct dcn10_link_enc_registers link_enc_regs[] = { 381 link_regs(0, A), 382 link_regs(1, B), 383 link_regs(2, C), 384 link_regs(3, D), 385 link_regs(4, E), 386 link_regs(5, F) 387 }; 388 389 static const struct dcn10_link_enc_shift le_shift = { 390 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 391 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 392 }; 393 394 static const struct dcn10_link_enc_mask le_mask = { 395 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 396 DPCS_DCN2_MASK_SH_LIST(_MASK) 397 }; 398 399 400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 401 { DCN_PANEL_CNTL_REG_LIST() } 402 }; 403 404 static const struct dce_panel_cntl_shift panel_cntl_shift = { 405 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 406 }; 407 408 static const struct dce_panel_cntl_mask panel_cntl_mask = { 409 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 410 }; 411 412 #define dpp_regs(id)\ 413 [id] = {\ 414 DPP_REG_LIST_DCN30(id),\ 415 } 416 417 static const struct dcn3_dpp_registers dpp_regs[] = { 418 dpp_regs(0), 419 dpp_regs(1), 420 dpp_regs(2), 421 dpp_regs(3), 422 dpp_regs(4), 423 dpp_regs(5), 424 }; 425 426 static const struct dcn3_dpp_shift tf_shift = { 427 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 428 }; 429 430 static const struct dcn3_dpp_mask tf_mask = { 431 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 432 }; 433 434 #define opp_regs(id)\ 435 [id] = {\ 436 OPP_REG_LIST_DCN30(id),\ 437 } 438 439 static const struct dcn20_opp_registers opp_regs[] = { 440 opp_regs(0), 441 opp_regs(1), 442 opp_regs(2), 443 opp_regs(3), 444 opp_regs(4), 445 opp_regs(5) 446 }; 447 448 static const struct dcn20_opp_shift opp_shift = { 449 OPP_MASK_SH_LIST_DCN20(__SHIFT) 450 }; 451 452 static const struct dcn20_opp_mask opp_mask = { 453 OPP_MASK_SH_LIST_DCN20(_MASK) 454 }; 455 456 #define aux_engine_regs(id)\ 457 [id] = {\ 458 AUX_COMMON_REG_LIST0(id), \ 459 .AUXN_IMPCAL = 0, \ 460 .AUXP_IMPCAL = 0, \ 461 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 462 } 463 464 static const struct dce110_aux_registers aux_engine_regs[] = { 465 aux_engine_regs(0), 466 aux_engine_regs(1), 467 aux_engine_regs(2), 468 aux_engine_regs(3), 469 aux_engine_regs(4), 470 aux_engine_regs(5) 471 }; 472 473 #define dwbc_regs_dcn3(id)\ 474 [id] = {\ 475 DWBC_COMMON_REG_LIST_DCN30(id),\ 476 } 477 478 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 479 dwbc_regs_dcn3(0), 480 }; 481 482 static const struct dcn30_dwbc_shift dwbc30_shift = { 483 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 484 }; 485 486 static const struct dcn30_dwbc_mask dwbc30_mask = { 487 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 488 }; 489 490 #define mcif_wb_regs_dcn3(id)\ 491 [id] = {\ 492 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 493 } 494 495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 496 mcif_wb_regs_dcn3(0) 497 }; 498 499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 500 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 501 }; 502 503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 504 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 505 }; 506 507 #define dsc_regsDCN20(id)\ 508 [id] = {\ 509 DSC_REG_LIST_DCN20(id)\ 510 } 511 512 static const struct dcn20_dsc_registers dsc_regs[] = { 513 dsc_regsDCN20(0), 514 dsc_regsDCN20(1), 515 dsc_regsDCN20(2), 516 dsc_regsDCN20(3), 517 dsc_regsDCN20(4), 518 dsc_regsDCN20(5) 519 }; 520 521 static const struct dcn20_dsc_shift dsc_shift = { 522 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 523 }; 524 525 static const struct dcn20_dsc_mask dsc_mask = { 526 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 527 }; 528 529 static const struct dcn30_mpc_registers mpc_regs = { 530 MPC_REG_LIST_DCN3_0(0), 531 MPC_REG_LIST_DCN3_0(1), 532 MPC_REG_LIST_DCN3_0(2), 533 MPC_REG_LIST_DCN3_0(3), 534 MPC_REG_LIST_DCN3_0(4), 535 MPC_REG_LIST_DCN3_0(5), 536 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 537 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 538 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 539 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 540 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 541 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 542 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 543 MPC_RMU_REG_LIST_DCN3AG(0), 544 MPC_RMU_REG_LIST_DCN3AG(1), 545 MPC_RMU_REG_LIST_DCN3AG(2), 546 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 547 }; 548 549 static const struct dcn30_mpc_shift mpc_shift = { 550 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 551 }; 552 553 static const struct dcn30_mpc_mask mpc_mask = { 554 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 555 }; 556 557 #define optc_regs(id)\ 558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 559 560 561 static const struct dcn_optc_registers optc_regs[] = { 562 optc_regs(0), 563 optc_regs(1), 564 optc_regs(2), 565 optc_regs(3), 566 optc_regs(4), 567 optc_regs(5) 568 }; 569 570 static const struct dcn_optc_shift optc_shift = { 571 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 572 }; 573 574 static const struct dcn_optc_mask optc_mask = { 575 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 576 }; 577 578 #define hubp_regs(id)\ 579 [id] = {\ 580 HUBP_REG_LIST_DCN30(id)\ 581 } 582 583 static const struct dcn_hubp2_registers hubp_regs[] = { 584 hubp_regs(0), 585 hubp_regs(1), 586 hubp_regs(2), 587 hubp_regs(3), 588 hubp_regs(4), 589 hubp_regs(5) 590 }; 591 592 static const struct dcn_hubp2_shift hubp_shift = { 593 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 594 }; 595 596 static const struct dcn_hubp2_mask hubp_mask = { 597 HUBP_MASK_SH_LIST_DCN30(_MASK) 598 }; 599 600 static const struct dcn_hubbub_registers hubbub_reg = { 601 HUBBUB_REG_LIST_DCN30(0) 602 }; 603 604 static const struct dcn_hubbub_shift hubbub_shift = { 605 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 606 }; 607 608 static const struct dcn_hubbub_mask hubbub_mask = { 609 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 610 }; 611 612 static const struct dccg_registers dccg_regs = { 613 DCCG_REG_LIST_DCN30() 614 }; 615 616 static const struct dccg_shift dccg_shift = { 617 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 618 }; 619 620 static const struct dccg_mask dccg_mask = { 621 DCCG_MASK_SH_LIST_DCN3(_MASK) 622 }; 623 624 static const struct dce_hwseq_registers hwseq_reg = { 625 HWSEQ_DCN30_REG_LIST() 626 }; 627 628 static const struct dce_hwseq_shift hwseq_shift = { 629 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 630 }; 631 632 static const struct dce_hwseq_mask hwseq_mask = { 633 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 634 }; 635 #define vmid_regs(id)\ 636 [id] = {\ 637 DCN20_VMID_REG_LIST(id)\ 638 } 639 640 static const struct dcn_vmid_registers vmid_regs[] = { 641 vmid_regs(0), 642 vmid_regs(1), 643 vmid_regs(2), 644 vmid_regs(3), 645 vmid_regs(4), 646 vmid_regs(5), 647 vmid_regs(6), 648 vmid_regs(7), 649 vmid_regs(8), 650 vmid_regs(9), 651 vmid_regs(10), 652 vmid_regs(11), 653 vmid_regs(12), 654 vmid_regs(13), 655 vmid_regs(14), 656 vmid_regs(15) 657 }; 658 659 static const struct dcn20_vmid_shift vmid_shifts = { 660 DCN20_VMID_MASK_SH_LIST(__SHIFT) 661 }; 662 663 static const struct dcn20_vmid_mask vmid_masks = { 664 DCN20_VMID_MASK_SH_LIST(_MASK) 665 }; 666 667 static const struct resource_caps res_cap_dcn3 = { 668 .num_timing_generator = 6, 669 .num_opp = 6, 670 .num_video_plane = 6, 671 .num_audio = 6, 672 .num_stream_encoder = 6, 673 .num_pll = 6, 674 .num_dwb = 1, 675 .num_ddc = 6, 676 .num_vmid = 16, 677 .num_mpc_3dlut = 3, 678 .num_dsc = 6, 679 }; 680 681 static const struct dc_plane_cap plane_cap = { 682 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 683 .per_pixel_alpha = true, 684 685 .pixel_format_support = { 686 .argb8888 = true, 687 .nv12 = true, 688 .fp16 = true, 689 .p010 = true, 690 .ayuv = false, 691 }, 692 693 .max_upscale_factor = { 694 .argb8888 = 16000, 695 .nv12 = 16000, 696 .fp16 = 16000 697 }, 698 699 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 700 .max_downscale_factor = { 701 .argb8888 = 167, 702 .nv12 = 167, 703 .fp16 = 167 704 }, 705 16, 706 16 707 }; 708 709 static const struct dc_debug_options debug_defaults_drv = { 710 .disable_dmcu = true, //No DMCU on DCN30 711 .force_abm_enable = false, 712 .timing_trace = false, 713 .clock_trace = true, 714 .disable_pplib_clock_request = true, 715 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 716 .force_single_disp_pipe_split = false, 717 .disable_dcc = DCC_ENABLE, 718 .vsr_support = true, 719 .performance_trace = false, 720 .max_downscale_src_width = 7680,/*upto 8K*/ 721 .disable_pplib_wm_range = false, 722 .scl_reset_length10 = true, 723 .sanity_checks = false, 724 .underflow_assert_delay_us = 0xFFFFFFFF, 725 .dwb_fi_phase = -1, // -1 = disable, 726 .dmub_command_table = true, 727 .use_max_lb = true, 728 .exit_idle_opt_for_cursor_updates = true, 729 .enable_legacy_fast_update = false, 730 }; 731 732 static const struct dc_panel_config panel_config_defaults = { 733 .psr = { 734 .disable_psr = false, 735 .disallow_psrsu = false, 736 .disallow_replay = false, 737 }, 738 }; 739 740 static void dcn30_dpp_destroy(struct dpp **dpp) 741 { 742 kfree(TO_DCN20_DPP(*dpp)); 743 *dpp = NULL; 744 } 745 746 static struct dpp *dcn30_dpp_create( 747 struct dc_context *ctx, 748 uint32_t inst) 749 { 750 struct dcn3_dpp *dpp = 751 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 752 753 if (!dpp) 754 return NULL; 755 756 if (dpp3_construct(dpp, ctx, inst, 757 &dpp_regs[inst], &tf_shift, &tf_mask)) 758 return &dpp->base; 759 760 BREAK_TO_DEBUGGER(); 761 kfree(dpp); 762 return NULL; 763 } 764 765 static struct output_pixel_processor *dcn30_opp_create( 766 struct dc_context *ctx, uint32_t inst) 767 { 768 struct dcn20_opp *opp = 769 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 770 771 if (!opp) { 772 BREAK_TO_DEBUGGER(); 773 return NULL; 774 } 775 776 dcn20_opp_construct(opp, ctx, inst, 777 &opp_regs[inst], &opp_shift, &opp_mask); 778 return &opp->base; 779 } 780 781 static struct dce_aux *dcn30_aux_engine_create( 782 struct dc_context *ctx, 783 uint32_t inst) 784 { 785 struct aux_engine_dce110 *aux_engine = 786 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 787 788 if (!aux_engine) 789 return NULL; 790 791 dce110_aux_engine_construct(aux_engine, ctx, inst, 792 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 793 &aux_engine_regs[inst], 794 &aux_mask, 795 &aux_shift, 796 ctx->dc->caps.extended_aux_timeout_support); 797 798 return &aux_engine->base; 799 } 800 801 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 802 803 static const struct dce_i2c_registers i2c_hw_regs[] = { 804 i2c_inst_regs(1), 805 i2c_inst_regs(2), 806 i2c_inst_regs(3), 807 i2c_inst_regs(4), 808 i2c_inst_regs(5), 809 i2c_inst_regs(6), 810 }; 811 812 static const struct dce_i2c_shift i2c_shifts = { 813 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 814 }; 815 816 static const struct dce_i2c_mask i2c_masks = { 817 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 818 }; 819 820 static struct dce_i2c_hw *dcn30_i2c_hw_create( 821 struct dc_context *ctx, 822 uint32_t inst) 823 { 824 struct dce_i2c_hw *dce_i2c_hw = 825 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 826 827 if (!dce_i2c_hw) 828 return NULL; 829 830 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 831 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 832 833 return dce_i2c_hw; 834 } 835 836 static struct mpc *dcn30_mpc_create( 837 struct dc_context *ctx, 838 int num_mpcc, 839 int num_rmu) 840 { 841 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 842 GFP_KERNEL); 843 844 if (!mpc30) 845 return NULL; 846 847 dcn30_mpc_construct(mpc30, ctx, 848 &mpc_regs, 849 &mpc_shift, 850 &mpc_mask, 851 num_mpcc, 852 num_rmu); 853 854 return &mpc30->base; 855 } 856 857 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 858 { 859 int i; 860 861 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 862 GFP_KERNEL); 863 864 if (!hubbub3) 865 return NULL; 866 867 hubbub3_construct(hubbub3, ctx, 868 &hubbub_reg, 869 &hubbub_shift, 870 &hubbub_mask); 871 872 873 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 874 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 875 876 vmid->ctx = ctx; 877 878 vmid->regs = &vmid_regs[i]; 879 vmid->shifts = &vmid_shifts; 880 vmid->masks = &vmid_masks; 881 } 882 883 return &hubbub3->base; 884 } 885 886 static struct timing_generator *dcn30_timing_generator_create( 887 struct dc_context *ctx, 888 uint32_t instance) 889 { 890 struct optc *tgn10 = 891 kzalloc(sizeof(struct optc), GFP_KERNEL); 892 893 if (!tgn10) 894 return NULL; 895 896 tgn10->base.inst = instance; 897 tgn10->base.ctx = ctx; 898 899 tgn10->tg_regs = &optc_regs[instance]; 900 tgn10->tg_shift = &optc_shift; 901 tgn10->tg_mask = &optc_mask; 902 903 dcn30_timing_generator_init(tgn10); 904 905 return &tgn10->base; 906 } 907 908 static const struct encoder_feature_support link_enc_feature = { 909 .max_hdmi_deep_color = COLOR_DEPTH_121212, 910 .max_hdmi_pixel_clock = 600000, 911 .hdmi_ycbcr420_supported = true, 912 .dp_ycbcr420_supported = true, 913 .fec_supported = true, 914 .flags.bits.IS_HBR2_CAPABLE = true, 915 .flags.bits.IS_HBR3_CAPABLE = true, 916 .flags.bits.IS_TPS3_CAPABLE = true, 917 .flags.bits.IS_TPS4_CAPABLE = true 918 }; 919 920 static struct link_encoder *dcn30_link_encoder_create( 921 struct dc_context *ctx, 922 const struct encoder_init_data *enc_init_data) 923 { 924 struct dcn20_link_encoder *enc20 = 925 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 926 927 if (!enc20) 928 return NULL; 929 930 dcn30_link_encoder_construct(enc20, 931 enc_init_data, 932 &link_enc_feature, 933 &link_enc_regs[enc_init_data->transmitter], 934 &link_enc_aux_regs[enc_init_data->channel - 1], 935 &link_enc_hpd_regs[enc_init_data->hpd_source], 936 &le_shift, 937 &le_mask); 938 939 return &enc20->enc10.base; 940 } 941 942 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 943 { 944 struct dce_panel_cntl *panel_cntl = 945 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 946 947 if (!panel_cntl) 948 return NULL; 949 950 dce_panel_cntl_construct(panel_cntl, 951 init_data, 952 &panel_cntl_regs[init_data->inst], 953 &panel_cntl_shift, 954 &panel_cntl_mask); 955 956 return &panel_cntl->base; 957 } 958 959 static void read_dce_straps( 960 struct dc_context *ctx, 961 struct resource_straps *straps) 962 { 963 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 964 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 965 966 } 967 968 static struct audio *dcn30_create_audio( 969 struct dc_context *ctx, unsigned int inst) 970 { 971 return dce_audio_create(ctx, inst, 972 &audio_regs[inst], &audio_shift, &audio_mask); 973 } 974 975 static struct vpg *dcn30_vpg_create( 976 struct dc_context *ctx, 977 uint32_t inst) 978 { 979 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 980 981 if (!vpg3) 982 return NULL; 983 984 vpg3_construct(vpg3, ctx, inst, 985 &vpg_regs[inst], 986 &vpg_shift, 987 &vpg_mask); 988 989 return &vpg3->base; 990 } 991 992 static struct afmt *dcn30_afmt_create( 993 struct dc_context *ctx, 994 uint32_t inst) 995 { 996 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 997 998 if (!afmt3) 999 return NULL; 1000 1001 afmt3_construct(afmt3, ctx, inst, 1002 &afmt_regs[inst], 1003 &afmt_shift, 1004 &afmt_mask); 1005 1006 return &afmt3->base; 1007 } 1008 1009 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, 1010 struct dc_context *ctx) 1011 { 1012 struct dcn10_stream_encoder *enc1; 1013 struct vpg *vpg; 1014 struct afmt *afmt; 1015 int vpg_inst; 1016 int afmt_inst; 1017 1018 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1019 if (eng_id <= ENGINE_ID_DIGF) { 1020 vpg_inst = eng_id; 1021 afmt_inst = eng_id; 1022 } else 1023 return NULL; 1024 1025 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1026 vpg = dcn30_vpg_create(ctx, vpg_inst); 1027 afmt = dcn30_afmt_create(ctx, afmt_inst); 1028 1029 if (!enc1 || !vpg || !afmt) { 1030 kfree(enc1); 1031 kfree(vpg); 1032 kfree(afmt); 1033 return NULL; 1034 } 1035 1036 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1037 eng_id, vpg, afmt, 1038 &stream_enc_regs[eng_id], 1039 &se_shift, &se_mask); 1040 1041 return &enc1->base; 1042 } 1043 1044 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) 1045 { 1046 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1047 1048 if (hws) { 1049 hws->ctx = ctx; 1050 hws->regs = &hwseq_reg; 1051 hws->shifts = &hwseq_shift; 1052 hws->masks = &hwseq_mask; 1053 } 1054 return hws; 1055 } 1056 static const struct resource_create_funcs res_create_funcs = { 1057 .read_dce_straps = read_dce_straps, 1058 .create_audio = dcn30_create_audio, 1059 .create_stream_encoder = dcn30_stream_encoder_create, 1060 .create_hwseq = dcn30_hwseq_create, 1061 }; 1062 1063 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1064 { 1065 unsigned int i; 1066 1067 for (i = 0; i < pool->base.stream_enc_count; i++) { 1068 if (pool->base.stream_enc[i] != NULL) { 1069 if (pool->base.stream_enc[i]->vpg != NULL) { 1070 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1071 pool->base.stream_enc[i]->vpg = NULL; 1072 } 1073 if (pool->base.stream_enc[i]->afmt != NULL) { 1074 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1075 pool->base.stream_enc[i]->afmt = NULL; 1076 } 1077 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1078 pool->base.stream_enc[i] = NULL; 1079 } 1080 } 1081 1082 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1083 if (pool->base.dscs[i] != NULL) 1084 dcn20_dsc_destroy(&pool->base.dscs[i]); 1085 } 1086 1087 if (pool->base.mpc != NULL) { 1088 kfree(TO_DCN20_MPC(pool->base.mpc)); 1089 pool->base.mpc = NULL; 1090 } 1091 if (pool->base.hubbub != NULL) { 1092 kfree(pool->base.hubbub); 1093 pool->base.hubbub = NULL; 1094 } 1095 for (i = 0; i < pool->base.pipe_count; i++) { 1096 if (pool->base.dpps[i] != NULL) 1097 dcn30_dpp_destroy(&pool->base.dpps[i]); 1098 1099 if (pool->base.ipps[i] != NULL) 1100 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1101 1102 if (pool->base.hubps[i] != NULL) { 1103 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1104 pool->base.hubps[i] = NULL; 1105 } 1106 1107 if (pool->base.irqs != NULL) { 1108 dal_irq_service_destroy(&pool->base.irqs); 1109 } 1110 } 1111 1112 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1113 if (pool->base.engines[i] != NULL) 1114 dce110_engine_destroy(&pool->base.engines[i]); 1115 if (pool->base.hw_i2cs[i] != NULL) { 1116 kfree(pool->base.hw_i2cs[i]); 1117 pool->base.hw_i2cs[i] = NULL; 1118 } 1119 if (pool->base.sw_i2cs[i] != NULL) { 1120 kfree(pool->base.sw_i2cs[i]); 1121 pool->base.sw_i2cs[i] = NULL; 1122 } 1123 } 1124 1125 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1126 if (pool->base.opps[i] != NULL) 1127 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1128 } 1129 1130 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1131 if (pool->base.timing_generators[i] != NULL) { 1132 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1133 pool->base.timing_generators[i] = NULL; 1134 } 1135 } 1136 1137 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1138 if (pool->base.dwbc[i] != NULL) { 1139 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1140 pool->base.dwbc[i] = NULL; 1141 } 1142 if (pool->base.mcif_wb[i] != NULL) { 1143 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1144 pool->base.mcif_wb[i] = NULL; 1145 } 1146 } 1147 1148 for (i = 0; i < pool->base.audio_count; i++) { 1149 if (pool->base.audios[i]) 1150 dce_aud_destroy(&pool->base.audios[i]); 1151 } 1152 1153 for (i = 0; i < pool->base.clk_src_count; i++) { 1154 if (pool->base.clock_sources[i] != NULL) { 1155 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1156 pool->base.clock_sources[i] = NULL; 1157 } 1158 } 1159 1160 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1161 if (pool->base.mpc_lut[i] != NULL) { 1162 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1163 pool->base.mpc_lut[i] = NULL; 1164 } 1165 if (pool->base.mpc_shaper[i] != NULL) { 1166 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1167 pool->base.mpc_shaper[i] = NULL; 1168 } 1169 } 1170 1171 if (pool->base.dp_clock_source != NULL) { 1172 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1173 pool->base.dp_clock_source = NULL; 1174 } 1175 1176 for (i = 0; i < pool->base.pipe_count; i++) { 1177 if (pool->base.multiple_abms[i] != NULL) 1178 dce_abm_destroy(&pool->base.multiple_abms[i]); 1179 } 1180 1181 if (pool->base.psr != NULL) 1182 dmub_psr_destroy(&pool->base.psr); 1183 1184 if (pool->base.dccg != NULL) 1185 dcn_dccg_destroy(&pool->base.dccg); 1186 1187 if (pool->base.oem_device != NULL) { 1188 struct dc *dc = pool->base.oem_device->ctx->dc; 1189 1190 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1191 } 1192 } 1193 1194 static struct hubp *dcn30_hubp_create( 1195 struct dc_context *ctx, 1196 uint32_t inst) 1197 { 1198 struct dcn20_hubp *hubp2 = 1199 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1200 1201 if (!hubp2) 1202 return NULL; 1203 1204 if (hubp3_construct(hubp2, ctx, inst, 1205 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1206 return &hubp2->base; 1207 1208 BREAK_TO_DEBUGGER(); 1209 kfree(hubp2); 1210 return NULL; 1211 } 1212 1213 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1214 { 1215 int i; 1216 uint32_t pipe_count = pool->res_cap->num_dwb; 1217 1218 for (i = 0; i < pipe_count; i++) { 1219 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1220 GFP_KERNEL); 1221 1222 if (!dwbc30) { 1223 dm_error("DC: failed to create dwbc30!\n"); 1224 return false; 1225 } 1226 1227 dcn30_dwbc_construct(dwbc30, ctx, 1228 &dwbc30_regs[i], 1229 &dwbc30_shift, 1230 &dwbc30_mask, 1231 i); 1232 1233 pool->dwbc[i] = &dwbc30->base; 1234 } 1235 return true; 1236 } 1237 1238 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1239 { 1240 int i; 1241 uint32_t pipe_count = pool->res_cap->num_dwb; 1242 1243 for (i = 0; i < pipe_count; i++) { 1244 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1245 GFP_KERNEL); 1246 1247 if (!mcif_wb30) { 1248 dm_error("DC: failed to create mcif_wb30!\n"); 1249 return false; 1250 } 1251 1252 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1253 &mcif_wb30_regs[i], 1254 &mcif_wb30_shift, 1255 &mcif_wb30_mask, 1256 i); 1257 1258 pool->mcif_wb[i] = &mcif_wb30->base; 1259 } 1260 return true; 1261 } 1262 1263 static struct display_stream_compressor *dcn30_dsc_create( 1264 struct dc_context *ctx, uint32_t inst) 1265 { 1266 struct dcn20_dsc *dsc = 1267 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1268 1269 if (!dsc) { 1270 BREAK_TO_DEBUGGER(); 1271 return NULL; 1272 } 1273 1274 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1275 return &dsc->base; 1276 } 1277 1278 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1279 { 1280 1281 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1282 } 1283 1284 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1285 { 1286 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1287 1288 dcn30_resource_destruct(dcn30_pool); 1289 kfree(dcn30_pool); 1290 *pool = NULL; 1291 } 1292 1293 static struct clock_source *dcn30_clock_source_create( 1294 struct dc_context *ctx, 1295 struct dc_bios *bios, 1296 enum clock_source_id id, 1297 const struct dce110_clk_src_regs *regs, 1298 bool dp_clk_src) 1299 { 1300 struct dce110_clk_src *clk_src = 1301 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1302 1303 if (!clk_src) 1304 return NULL; 1305 1306 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1307 regs, &cs_shift, &cs_mask)) { 1308 clk_src->base.dp_clk_src = dp_clk_src; 1309 return &clk_src->base; 1310 } 1311 1312 kfree(clk_src); 1313 BREAK_TO_DEBUGGER(); 1314 return NULL; 1315 } 1316 1317 int dcn30_populate_dml_pipes_from_context( 1318 struct dc *dc, struct dc_state *context, 1319 display_e2e_pipe_params_st *pipes, 1320 bool fast_validate) 1321 { 1322 int i, pipe_cnt; 1323 struct resource_context *res_ctx = &context->res_ctx; 1324 1325 DC_FP_START(); 1326 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1327 DC_FP_END(); 1328 1329 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1330 if (!res_ctx->pipe_ctx[i].stream) 1331 continue; 1332 1333 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1334 dm_lb_16; 1335 } 1336 1337 return pipe_cnt; 1338 } 1339 1340 void dcn30_populate_dml_writeback_from_context( 1341 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1342 { 1343 DC_FP_START(); 1344 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); 1345 DC_FP_END(); 1346 } 1347 1348 unsigned int dcn30_calc_max_scaled_time( 1349 unsigned int time_per_pixel, 1350 enum mmhubbub_wbif_mode mode, 1351 unsigned int urgent_watermark) 1352 { 1353 unsigned int time_per_byte = 0; 1354 unsigned int total_free_entry = 0xb40; 1355 unsigned int buf_lh_capability; 1356 unsigned int max_scaled_time; 1357 1358 if (mode == PACKED_444) /* packed mode 32 bpp */ 1359 time_per_byte = time_per_pixel/4; 1360 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1361 time_per_byte = time_per_pixel/8; 1362 1363 if (time_per_byte == 0) 1364 time_per_byte = 1; 1365 1366 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1367 max_scaled_time = buf_lh_capability - urgent_watermark; 1368 return max_scaled_time; 1369 } 1370 1371 void dcn30_set_mcif_arb_params( 1372 struct dc *dc, 1373 struct dc_state *context, 1374 display_e2e_pipe_params_st *pipes, 1375 int pipe_cnt) 1376 { 1377 enum mmhubbub_wbif_mode wbif_mode; 1378 struct display_mode_lib *dml = &context->bw_ctx.dml; 1379 struct mcif_arb_params *wb_arb_params; 1380 int i, j, dwb_pipe; 1381 1382 /* Writeback MCIF_WB arbitration parameters */ 1383 dwb_pipe = 0; 1384 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1385 1386 if (!context->res_ctx.pipe_ctx[i].stream) 1387 continue; 1388 1389 for (j = 0; j < MAX_DWB_PIPES; j++) { 1390 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1391 1392 if (writeback_info->wb_enabled == false) 1393 continue; 1394 1395 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1396 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1397 1398 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1399 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1400 wbif_mode = PACKED_444_FP16; 1401 else 1402 wbif_mode = PACKED_444; 1403 1404 DC_FP_START(); 1405 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); 1406 DC_FP_END(); 1407 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1408 wb_arb_params->slice_lines = 32; 1409 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1410 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1411 wbif_mode, 1412 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1413 1414 dwb_pipe++; 1415 1416 if (dwb_pipe >= MAX_DWB_PIPES) 1417 return; 1418 } 1419 if (dwb_pipe >= MAX_DWB_PIPES) 1420 return; 1421 } 1422 1423 } 1424 1425 static struct dc_cap_funcs cap_funcs = { 1426 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1427 }; 1428 1429 bool dcn30_acquire_post_bldn_3dlut( 1430 struct resource_context *res_ctx, 1431 const struct resource_pool *pool, 1432 int mpcc_id, 1433 struct dc_3dlut **lut, 1434 struct dc_transfer_func **shaper) 1435 { 1436 int i; 1437 bool ret = false; 1438 union dc_3dlut_state *state; 1439 1440 ASSERT(*lut == NULL && *shaper == NULL); 1441 *lut = NULL; 1442 *shaper = NULL; 1443 1444 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1445 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1446 *lut = pool->mpc_lut[i]; 1447 *shaper = pool->mpc_shaper[i]; 1448 state = &pool->mpc_lut[i]->state; 1449 res_ctx->is_mpc_3dlut_acquired[i] = true; 1450 state->bits.rmu_idx_valid = 1; 1451 state->bits.rmu_mux_num = i; 1452 if (state->bits.rmu_mux_num == 0) 1453 state->bits.mpc_rmu0_mux = mpcc_id; 1454 else if (state->bits.rmu_mux_num == 1) 1455 state->bits.mpc_rmu1_mux = mpcc_id; 1456 else if (state->bits.rmu_mux_num == 2) 1457 state->bits.mpc_rmu2_mux = mpcc_id; 1458 ret = true; 1459 break; 1460 } 1461 } 1462 return ret; 1463 } 1464 1465 bool dcn30_release_post_bldn_3dlut( 1466 struct resource_context *res_ctx, 1467 const struct resource_pool *pool, 1468 struct dc_3dlut **lut, 1469 struct dc_transfer_func **shaper) 1470 { 1471 int i; 1472 bool ret = false; 1473 1474 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1475 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1476 res_ctx->is_mpc_3dlut_acquired[i] = false; 1477 pool->mpc_lut[i]->state.raw = 0; 1478 *lut = NULL; 1479 *shaper = NULL; 1480 ret = true; 1481 break; 1482 } 1483 } 1484 return ret; 1485 } 1486 1487 static bool is_soc_bounding_box_valid(struct dc *dc) 1488 { 1489 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1490 1491 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1492 return true; 1493 1494 return false; 1495 } 1496 1497 static bool init_soc_bounding_box(struct dc *dc, 1498 struct dcn30_resource_pool *pool) 1499 { 1500 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1501 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1502 1503 DC_LOGGER_INIT(dc->ctx->logger); 1504 1505 if (!is_soc_bounding_box_valid(dc)) { 1506 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1507 return false; 1508 } 1509 1510 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1511 loaded_ip->max_num_dpp = pool->base.pipe_count; 1512 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1513 dcn20_patch_bounding_box(dc, loaded_bb); 1514 DC_FP_START(); 1515 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); 1516 DC_FP_END(); 1517 1518 return true; 1519 } 1520 1521 static bool dcn30_split_stream_for_mpc_or_odm( 1522 const struct dc *dc, 1523 struct resource_context *res_ctx, 1524 struct pipe_ctx *pri_pipe, 1525 struct pipe_ctx *sec_pipe, 1526 bool odm) 1527 { 1528 int pipe_idx = sec_pipe->pipe_idx; 1529 const struct resource_pool *pool = dc->res_pool; 1530 1531 *sec_pipe = *pri_pipe; 1532 1533 sec_pipe->pipe_idx = pipe_idx; 1534 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1535 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1536 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1537 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1538 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1539 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1540 sec_pipe->stream_res.dsc = NULL; 1541 if (odm) { 1542 if (pri_pipe->next_odm_pipe) { 1543 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1544 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1545 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1546 } 1547 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1548 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1549 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1550 } 1551 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1552 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1553 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1554 } 1555 pri_pipe->next_odm_pipe = sec_pipe; 1556 sec_pipe->prev_odm_pipe = pri_pipe; 1557 1558 if (!sec_pipe->top_pipe) 1559 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1560 else 1561 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1562 if (sec_pipe->stream->timing.flags.DSC == 1) { 1563 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1564 ASSERT(sec_pipe->stream_res.dsc); 1565 if (sec_pipe->stream_res.dsc == NULL) 1566 return false; 1567 } 1568 } else { 1569 if (pri_pipe->bottom_pipe) { 1570 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1571 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1572 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1573 } 1574 pri_pipe->bottom_pipe = sec_pipe; 1575 sec_pipe->top_pipe = pri_pipe; 1576 1577 ASSERT(pri_pipe->plane_state); 1578 } 1579 1580 return true; 1581 } 1582 1583 static struct pipe_ctx *dcn30_find_split_pipe( 1584 struct dc *dc, 1585 struct dc_state *context, 1586 int old_index) 1587 { 1588 struct pipe_ctx *pipe = NULL; 1589 int i; 1590 1591 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1592 pipe = &context->res_ctx.pipe_ctx[old_index]; 1593 pipe->pipe_idx = old_index; 1594 } 1595 1596 if (!pipe) 1597 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1598 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1599 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1600 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1601 pipe = &context->res_ctx.pipe_ctx[i]; 1602 pipe->pipe_idx = i; 1603 break; 1604 } 1605 } 1606 } 1607 1608 /* 1609 * May need to fix pipes getting tossed from 1 opp to another on flip 1610 * Add for debugging transient underflow during topology updates: 1611 * ASSERT(pipe); 1612 */ 1613 if (!pipe) 1614 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1615 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1616 pipe = &context->res_ctx.pipe_ctx[i]; 1617 pipe->pipe_idx = i; 1618 break; 1619 } 1620 } 1621 1622 return pipe; 1623 } 1624 1625 noinline bool dcn30_internal_validate_bw( 1626 struct dc *dc, 1627 struct dc_state *context, 1628 display_e2e_pipe_params_st *pipes, 1629 int *pipe_cnt_out, 1630 int *vlevel_out, 1631 bool fast_validate, 1632 bool allow_self_refresh_only) 1633 { 1634 bool out = false; 1635 bool repopulate_pipes = false; 1636 int split[MAX_PIPES] = { 0 }; 1637 bool merge[MAX_PIPES] = { false }; 1638 bool newly_split[MAX_PIPES] = { false }; 1639 int pipe_cnt, i, pipe_idx, vlevel; 1640 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1641 1642 ASSERT(pipes); 1643 if (!pipes) 1644 return false; 1645 1646 context->bw_ctx.dml.vba.maxMpcComb = 0; 1647 context->bw_ctx.dml.vba.VoltageLevel = 0; 1648 context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive; 1649 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1650 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1651 1652 if (!pipe_cnt) { 1653 out = true; 1654 goto validate_out; 1655 } 1656 1657 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1658 1659 if (!fast_validate || !allow_self_refresh_only) { 1660 /* 1661 * DML favors voltage over p-state, but we're more interested in 1662 * supporting p-state over voltage. We can't support p-state in 1663 * prefetch mode > 0 so try capping the prefetch mode to start. 1664 */ 1665 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1666 dm_allow_self_refresh_and_mclk_switch; 1667 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1668 /* This may adjust vlevel and maxMpcComb */ 1669 if (vlevel < context->bw_ctx.dml.soc.num_states) 1670 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1671 } 1672 if (allow_self_refresh_only && 1673 (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1674 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) { 1675 /* 1676 * If mode is unsupported or there's still no p-state support 1677 * then fall back to favoring voltage. 1678 * 1679 * We don't actually support prefetch mode 2, so require that we 1680 * at least support prefetch mode 1. 1681 */ 1682 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1683 dm_allow_self_refresh; 1684 1685 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1686 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1687 memset(split, 0, sizeof(split)); 1688 memset(merge, 0, sizeof(merge)); 1689 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1690 } 1691 } 1692 1693 dml_log_mode_support_params(&context->bw_ctx.dml); 1694 1695 if (vlevel == context->bw_ctx.dml.soc.num_states) 1696 goto validate_fail; 1697 1698 if (!dc->config.enable_windowed_mpo_odm) { 1699 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1700 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1701 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1702 1703 if (!pipe->stream) 1704 continue; 1705 1706 /* We only support full screen mpo with ODM */ 1707 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1708 && pipe->plane_state && mpo_pipe 1709 && memcmp(&mpo_pipe->plane_state->clip_rect, 1710 &pipe->stream->src, 1711 sizeof(struct rect)) != 0) { 1712 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1713 goto validate_fail; 1714 } 1715 pipe_idx++; 1716 } 1717 } 1718 1719 /* merge pipes if necessary */ 1720 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1721 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1722 1723 /*skip pipes that don't need merging*/ 1724 if (!merge[i]) 1725 continue; 1726 1727 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1728 if (pipe->prev_odm_pipe) { 1729 /*split off odm pipe*/ 1730 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1731 if (pipe->next_odm_pipe) 1732 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1733 1734 pipe->bottom_pipe = NULL; 1735 pipe->next_odm_pipe = NULL; 1736 pipe->plane_state = NULL; 1737 pipe->stream = NULL; 1738 pipe->top_pipe = NULL; 1739 pipe->prev_odm_pipe = NULL; 1740 if (pipe->stream_res.dsc) 1741 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1742 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1743 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1744 repopulate_pipes = true; 1745 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1746 struct pipe_ctx *top_pipe = pipe->top_pipe; 1747 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1748 1749 top_pipe->bottom_pipe = bottom_pipe; 1750 if (bottom_pipe) 1751 bottom_pipe->top_pipe = top_pipe; 1752 1753 pipe->top_pipe = NULL; 1754 pipe->bottom_pipe = NULL; 1755 pipe->plane_state = NULL; 1756 pipe->stream = NULL; 1757 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1758 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1759 repopulate_pipes = true; 1760 } else 1761 ASSERT(0); /* Should never try to merge master pipe */ 1762 1763 } 1764 1765 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1766 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1767 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1768 struct pipe_ctx *hsplit_pipe = NULL; 1769 bool odm; 1770 int old_index = -1; 1771 1772 if (!pipe->stream || newly_split[i]) 1773 continue; 1774 1775 pipe_idx++; 1776 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 1777 1778 if (!pipe->plane_state && !odm) 1779 continue; 1780 1781 if (split[i]) { 1782 if (odm) { 1783 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 1784 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1785 else if (old_pipe->next_odm_pipe) 1786 old_index = old_pipe->next_odm_pipe->pipe_idx; 1787 } else { 1788 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1789 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1790 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1791 else if (old_pipe->bottom_pipe && 1792 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1793 old_index = old_pipe->bottom_pipe->pipe_idx; 1794 } 1795 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 1796 ASSERT(hsplit_pipe); 1797 if (!hsplit_pipe) 1798 goto validate_fail; 1799 1800 if (!dcn30_split_stream_for_mpc_or_odm( 1801 dc, &context->res_ctx, 1802 pipe, hsplit_pipe, odm)) 1803 goto validate_fail; 1804 1805 newly_split[hsplit_pipe->pipe_idx] = true; 1806 repopulate_pipes = true; 1807 } 1808 if (split[i] == 4) { 1809 struct pipe_ctx *pipe_4to1; 1810 1811 if (odm && old_pipe->next_odm_pipe) 1812 old_index = old_pipe->next_odm_pipe->pipe_idx; 1813 else if (!odm && old_pipe->bottom_pipe && 1814 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1815 old_index = old_pipe->bottom_pipe->pipe_idx; 1816 else 1817 old_index = -1; 1818 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1819 ASSERT(pipe_4to1); 1820 if (!pipe_4to1) 1821 goto validate_fail; 1822 if (!dcn30_split_stream_for_mpc_or_odm( 1823 dc, &context->res_ctx, 1824 pipe, pipe_4to1, odm)) 1825 goto validate_fail; 1826 newly_split[pipe_4to1->pipe_idx] = true; 1827 1828 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 1829 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 1830 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1831 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1832 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 1833 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1834 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1835 else 1836 old_index = -1; 1837 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1838 ASSERT(pipe_4to1); 1839 if (!pipe_4to1) 1840 goto validate_fail; 1841 if (!dcn30_split_stream_for_mpc_or_odm( 1842 dc, &context->res_ctx, 1843 hsplit_pipe, pipe_4to1, odm)) 1844 goto validate_fail; 1845 newly_split[pipe_4to1->pipe_idx] = true; 1846 } 1847 if (odm) 1848 dcn20_build_mapped_resource(dc, context, pipe->stream); 1849 } 1850 1851 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1852 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1853 1854 if (pipe->plane_state) { 1855 if (!resource_build_scaling_params(pipe)) 1856 goto validate_fail; 1857 } 1858 } 1859 1860 /* Actual dsc count per stream dsc validation*/ 1861 if (!dcn20_validate_dsc(dc, context)) { 1862 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 1863 goto validate_fail; 1864 } 1865 1866 if (repopulate_pipes) 1867 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1868 context->bw_ctx.dml.vba.VoltageLevel = vlevel; 1869 *vlevel_out = vlevel; 1870 *pipe_cnt_out = pipe_cnt; 1871 1872 out = true; 1873 goto validate_out; 1874 1875 validate_fail: 1876 out = false; 1877 1878 validate_out: 1879 return out; 1880 } 1881 1882 static int get_refresh_rate(struct dc_state *context) 1883 { 1884 int refresh_rate = 0; 1885 int h_v_total = 0; 1886 struct dc_crtc_timing *timing = NULL; 1887 1888 if (context == NULL || context->streams[0] == NULL) 1889 return 0; 1890 1891 /* check if refresh rate at least 120hz */ 1892 timing = &context->streams[0]->timing; 1893 if (timing == NULL) 1894 return 0; 1895 1896 h_v_total = timing->h_total * timing->v_total; 1897 if (h_v_total == 0) 1898 return 0; 1899 1900 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; 1901 return refresh_rate; 1902 } 1903 1904 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds 1905 /* 1906 * Scaling factor for v_blank stretch calculations considering timing in 1907 * micro-seconds and pixel clock in 100hz. 1908 * Note: the parenthesis are necessary to ensure the correct order of 1909 * operation where V_SCALE is used. 1910 */ 1911 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) 1912 1913 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) 1914 { 1915 struct dc_crtc_timing *timing = NULL; 1916 uint32_t sec_per_100_lines; 1917 uint32_t max_v_blank; 1918 uint32_t curr_v_blank; 1919 uint32_t v_stretch_max; 1920 uint32_t stretched_frame_pix_cnt; 1921 uint32_t scaled_stretched_frame_pix_cnt; 1922 uint32_t scaled_refresh_rate; 1923 1924 if (context == NULL || context->streams[0] == NULL) 1925 return 0; 1926 1927 /* check if refresh rate at least 120hz */ 1928 timing = &context->streams[0]->timing; 1929 if (timing == NULL) 1930 return 0; 1931 1932 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; 1933 max_v_blank = sec_per_100_lines / V_SCALE + 1; 1934 curr_v_blank = timing->v_total - timing->v_addressable; 1935 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); 1936 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; 1937 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; 1938 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; 1939 1940 return scaled_refresh_rate; 1941 } 1942 1943 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) 1944 { 1945 int refresh_rate_max_stretch_100hz; 1946 int min_refresh_100hz; 1947 1948 if (context == NULL || context->streams[0] == NULL) 1949 return false; 1950 1951 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); 1952 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; 1953 1954 if (refresh_rate_max_stretch_100hz < min_refresh_100hz) 1955 return false; 1956 1957 return true; 1958 } 1959 1960 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 1961 { 1962 int refresh_rate = 0; 1963 const int minimum_refreshrate_supported = 120; 1964 1965 if (context == NULL || context->streams[0] == NULL) 1966 return false; 1967 1968 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) 1969 return false; 1970 1971 if (dc->debug.disable_fams) 1972 return false; 1973 1974 if (!dc->caps.dmub_caps.mclk_sw) 1975 return false; 1976 1977 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) 1978 return false; 1979 1980 /* more then 1 monitor connected */ 1981 if (context->stream_count != 1) 1982 return false; 1983 1984 refresh_rate = get_refresh_rate(context); 1985 if (refresh_rate < minimum_refreshrate_supported) 1986 return false; 1987 1988 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) 1989 return false; 1990 1991 if (!context->streams[0]->allow_freesync) 1992 return false; 1993 1994 if (context->streams[0]->vrr_active_variable && dc->debug.disable_fams_gaming) 1995 return false; 1996 1997 context->streams[0]->fpo_in_use = true; 1998 1999 return true; 2000 } 2001 2002 /* 2003 * set up FPO watermarks, pstate, dram latency 2004 */ 2005 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 2006 { 2007 ASSERT(dc != NULL && context != NULL); 2008 if (dc == NULL || context == NULL) 2009 return; 2010 2011 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ 2012 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; 2013 } 2014 2015 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2016 { 2017 DC_FP_START(); 2018 dcn30_fpu_update_soc_for_wm_a(dc, context); 2019 DC_FP_END(); 2020 } 2021 2022 void dcn30_calculate_wm_and_dlg( 2023 struct dc *dc, struct dc_state *context, 2024 display_e2e_pipe_params_st *pipes, 2025 int pipe_cnt, 2026 int vlevel) 2027 { 2028 DC_FP_START(); 2029 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2030 DC_FP_END(); 2031 } 2032 2033 bool dcn30_validate_bandwidth(struct dc *dc, 2034 struct dc_state *context, 2035 bool fast_validate) 2036 { 2037 bool out = false; 2038 2039 BW_VAL_TRACE_SETUP(); 2040 2041 int vlevel = 0; 2042 int pipe_cnt = 0; 2043 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2044 DC_LOGGER_INIT(dc->ctx->logger); 2045 2046 BW_VAL_TRACE_COUNT(); 2047 2048 if (!pipes) 2049 goto validate_fail; 2050 2051 DC_FP_START(); 2052 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true); 2053 DC_FP_END(); 2054 2055 if (pipe_cnt == 0) 2056 goto validate_out; 2057 2058 if (!out) 2059 goto validate_fail; 2060 2061 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2062 2063 if (fast_validate) { 2064 BW_VAL_TRACE_SKIP(fast); 2065 goto validate_out; 2066 } 2067 2068 DC_FP_START(); 2069 if (dc->res_pool->funcs->calculate_wm_and_dlg) 2070 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2071 DC_FP_END(); 2072 2073 BW_VAL_TRACE_END_WATERMARKS(); 2074 2075 goto validate_out; 2076 2077 validate_fail: 2078 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2079 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2080 2081 BW_VAL_TRACE_SKIP(fail); 2082 out = false; 2083 2084 validate_out: 2085 kfree(pipes); 2086 2087 BW_VAL_TRACE_FINISH(); 2088 2089 return out; 2090 } 2091 2092 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2093 { 2094 unsigned int i, j; 2095 unsigned int num_states = 0; 2096 2097 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2098 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2099 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2100 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2101 2102 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2103 unsigned int num_dcfclk_sta_targets = 4; 2104 unsigned int num_uclk_states; 2105 2106 struct dc_bounding_box_max_clk dcn30_bb_max_clk; 2107 2108 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); 2109 2110 if (dc->ctx->dc_bios->vram_info.num_chans) 2111 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2112 2113 DC_FP_START(); 2114 dcn30_fpu_update_dram_channel_width_bytes(dc); 2115 DC_FP_END(); 2116 2117 if (bw_params->clk_table.entries[0].memclk_mhz) { 2118 2119 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2120 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) 2121 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2122 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) 2123 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2124 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) 2125 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2126 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) 2127 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2128 } 2129 2130 DC_FP_START(); 2131 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); 2132 DC_FP_END(); 2133 2134 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2135 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2136 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; 2137 num_dcfclk_sta_targets++; 2138 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2139 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2140 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2141 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { 2142 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; 2143 break; 2144 } 2145 } 2146 // Update size of array since we "removed" duplicates 2147 num_dcfclk_sta_targets = i + 1; 2148 } 2149 2150 num_uclk_states = bw_params->clk_table.num_entries; 2151 2152 // Calculate optimal dcfclk for each uclk 2153 for (i = 0; i < num_uclk_states; i++) { 2154 DC_FP_START(); 2155 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2156 &optimal_dcfclk_for_uclk[i], NULL); 2157 DC_FP_END(); 2158 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2159 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2160 } 2161 } 2162 2163 // Calculate optimal uclk for each dcfclk sta target 2164 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2165 for (j = 0; j < num_uclk_states; j++) { 2166 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2167 optimal_uclk_for_dcfclk_sta_targets[i] = 2168 bw_params->clk_table.entries[j].memclk_mhz * 16; 2169 break; 2170 } 2171 } 2172 } 2173 2174 i = 0; 2175 j = 0; 2176 // create the final dcfclk and uclk table 2177 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2178 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2179 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2180 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2181 } else { 2182 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2183 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2184 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2185 } else { 2186 j = num_uclk_states; 2187 } 2188 } 2189 } 2190 2191 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2192 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2193 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2194 } 2195 2196 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2197 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2198 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2199 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2200 } 2201 2202 dcn3_0_soc.num_states = num_states; 2203 DC_FP_START(); 2204 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); 2205 DC_FP_END(); 2206 } 2207 } 2208 2209 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config) 2210 { 2211 *panel_config = panel_config_defaults; 2212 } 2213 2214 static const struct resource_funcs dcn30_res_pool_funcs = { 2215 .destroy = dcn30_destroy_resource_pool, 2216 .link_enc_create = dcn30_link_encoder_create, 2217 .panel_cntl_create = dcn30_panel_cntl_create, 2218 .validate_bandwidth = dcn30_validate_bandwidth, 2219 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2220 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2221 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2222 .acquire_free_pipe_as_secondary_dpp_pipe = dcn20_acquire_free_pipe_for_layer, 2223 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2224 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2225 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2226 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2227 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2228 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2229 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2230 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2231 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2232 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2233 .get_panel_config_defaults = dcn30_get_panel_config_defaults, 2234 }; 2235 2236 #define CTX ctx 2237 2238 #define REG(reg_name) \ 2239 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2240 2241 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2242 { 2243 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2244 /* Support for max 6 pipes */ 2245 value = value & 0x3f; 2246 return value; 2247 } 2248 2249 static bool dcn30_resource_construct( 2250 uint8_t num_virtual_links, 2251 struct dc *dc, 2252 struct dcn30_resource_pool *pool) 2253 { 2254 int i; 2255 struct dc_context *ctx = dc->ctx; 2256 struct irq_service_init_data init_data; 2257 struct ddc_service_init_data ddc_init_data = {0}; 2258 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2259 uint32_t num_pipes = 0; 2260 2261 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2262 BREAK_TO_DEBUGGER(); 2263 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2264 /* fault to single pipe */ 2265 pipe_fuses = 0x3e; 2266 } 2267 2268 DC_FP_START(); 2269 2270 ctx->dc_bios->regs = &bios_regs; 2271 2272 pool->base.res_cap = &res_cap_dcn3; 2273 2274 pool->base.funcs = &dcn30_res_pool_funcs; 2275 2276 /************************************************* 2277 * Resource + asic cap harcoding * 2278 *************************************************/ 2279 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2280 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2281 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2282 dc->caps.max_downscale_ratio = 600; 2283 dc->caps.i2c_speed_in_khz = 100; 2284 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2285 dc->caps.max_cursor_size = 256; 2286 dc->caps.min_horizontal_blanking_period = 80; 2287 dc->caps.dmdata_alloc_size = 2048; 2288 dc->caps.mall_size_per_mem_channel = 8; 2289 /* total size = mall per channel * num channels * 1024 * 1024 */ 2290 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2291 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2292 2293 dc->caps.max_slave_planes = 2; 2294 dc->caps.max_slave_yuv_planes = 2; 2295 dc->caps.max_slave_rgb_planes = 2; 2296 dc->caps.post_blend_color_processing = true; 2297 dc->caps.force_dp_tps4_for_cp2520 = true; 2298 dc->caps.extended_aux_timeout_support = true; 2299 dc->caps.dmcub_support = true; 2300 2301 /* Color pipeline capabilities */ 2302 dc->caps.color.dpp.dcn_arch = 1; 2303 dc->caps.color.dpp.input_lut_shared = 0; 2304 dc->caps.color.dpp.icsc = 1; 2305 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2306 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2307 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2308 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2309 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2310 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2311 dc->caps.color.dpp.post_csc = 1; 2312 dc->caps.color.dpp.gamma_corr = 1; 2313 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2314 2315 dc->caps.color.dpp.hw_3d_lut = 1; 2316 dc->caps.color.dpp.ogam_ram = 1; 2317 // no OGAM ROM on DCN3 2318 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2319 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2320 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2321 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2322 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2323 dc->caps.color.dpp.ocsc = 0; 2324 2325 dc->caps.color.mpc.gamut_remap = 1; 2326 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2327 dc->caps.color.mpc.ogam_ram = 1; 2328 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2329 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2330 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2331 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2332 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2333 dc->caps.color.mpc.ocsc = 1; 2334 2335 dc->caps.dp_hdmi21_pcon_support = true; 2336 dc->caps.max_v_total = (1 << 15) - 1; 2337 2338 /* read VBIOS LTTPR caps */ 2339 { 2340 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2341 enum bp_result bp_query_result; 2342 uint8_t is_vbios_lttpr_enable = 0; 2343 2344 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2345 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2346 } 2347 2348 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2349 enum bp_result bp_query_result; 2350 uint8_t is_vbios_interop_enabled = 0; 2351 2352 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2353 &is_vbios_interop_enabled); 2354 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2355 } 2356 } 2357 2358 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2359 dc->debug = debug_defaults_drv; 2360 2361 // Init the vm_helper 2362 if (dc->vm_helper) 2363 vm_helper_init(dc->vm_helper, 16); 2364 2365 /************************************************* 2366 * Create resources * 2367 *************************************************/ 2368 2369 /* Clock Sources for Pixel Clock*/ 2370 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2371 dcn30_clock_source_create(ctx, ctx->dc_bios, 2372 CLOCK_SOURCE_COMBO_PHY_PLL0, 2373 &clk_src_regs[0], false); 2374 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2375 dcn30_clock_source_create(ctx, ctx->dc_bios, 2376 CLOCK_SOURCE_COMBO_PHY_PLL1, 2377 &clk_src_regs[1], false); 2378 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2379 dcn30_clock_source_create(ctx, ctx->dc_bios, 2380 CLOCK_SOURCE_COMBO_PHY_PLL2, 2381 &clk_src_regs[2], false); 2382 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2383 dcn30_clock_source_create(ctx, ctx->dc_bios, 2384 CLOCK_SOURCE_COMBO_PHY_PLL3, 2385 &clk_src_regs[3], false); 2386 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2387 dcn30_clock_source_create(ctx, ctx->dc_bios, 2388 CLOCK_SOURCE_COMBO_PHY_PLL4, 2389 &clk_src_regs[4], false); 2390 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2391 dcn30_clock_source_create(ctx, ctx->dc_bios, 2392 CLOCK_SOURCE_COMBO_PHY_PLL5, 2393 &clk_src_regs[5], false); 2394 2395 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2396 2397 /* todo: not reuse phy_pll registers */ 2398 pool->base.dp_clock_source = 2399 dcn30_clock_source_create(ctx, ctx->dc_bios, 2400 CLOCK_SOURCE_ID_DP_DTO, 2401 &clk_src_regs[0], true); 2402 2403 for (i = 0; i < pool->base.clk_src_count; i++) { 2404 if (pool->base.clock_sources[i] == NULL) { 2405 dm_error("DC: failed to create clock sources!\n"); 2406 BREAK_TO_DEBUGGER(); 2407 goto create_fail; 2408 } 2409 } 2410 2411 /* DCCG */ 2412 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2413 if (pool->base.dccg == NULL) { 2414 dm_error("DC: failed to create dccg!\n"); 2415 BREAK_TO_DEBUGGER(); 2416 goto create_fail; 2417 } 2418 2419 /* PP Lib and SMU interfaces */ 2420 init_soc_bounding_box(dc, pool); 2421 2422 num_pipes = dcn3_0_ip.max_num_dpp; 2423 2424 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2425 if (pipe_fuses & 1 << i) 2426 num_pipes--; 2427 2428 dcn3_0_ip.max_num_dpp = num_pipes; 2429 dcn3_0_ip.max_num_otg = num_pipes; 2430 2431 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2432 2433 /* IRQ */ 2434 init_data.ctx = dc->ctx; 2435 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2436 if (!pool->base.irqs) 2437 goto create_fail; 2438 2439 /* HUBBUB */ 2440 pool->base.hubbub = dcn30_hubbub_create(ctx); 2441 if (pool->base.hubbub == NULL) { 2442 BREAK_TO_DEBUGGER(); 2443 dm_error("DC: failed to create hubbub!\n"); 2444 goto create_fail; 2445 } 2446 2447 /* HUBPs, DPPs, OPPs and TGs */ 2448 for (i = 0; i < pool->base.pipe_count; i++) { 2449 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2450 if (pool->base.hubps[i] == NULL) { 2451 BREAK_TO_DEBUGGER(); 2452 dm_error( 2453 "DC: failed to create hubps!\n"); 2454 goto create_fail; 2455 } 2456 2457 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2458 if (pool->base.dpps[i] == NULL) { 2459 BREAK_TO_DEBUGGER(); 2460 dm_error( 2461 "DC: failed to create dpps!\n"); 2462 goto create_fail; 2463 } 2464 } 2465 2466 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2467 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2468 if (pool->base.opps[i] == NULL) { 2469 BREAK_TO_DEBUGGER(); 2470 dm_error( 2471 "DC: failed to create output pixel processor!\n"); 2472 goto create_fail; 2473 } 2474 } 2475 2476 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2477 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2478 ctx, i); 2479 if (pool->base.timing_generators[i] == NULL) { 2480 BREAK_TO_DEBUGGER(); 2481 dm_error("DC: failed to create tg!\n"); 2482 goto create_fail; 2483 } 2484 } 2485 pool->base.timing_generator_count = i; 2486 /* PSR */ 2487 pool->base.psr = dmub_psr_create(ctx); 2488 2489 if (pool->base.psr == NULL) { 2490 dm_error("DC: failed to create PSR obj!\n"); 2491 BREAK_TO_DEBUGGER(); 2492 goto create_fail; 2493 } 2494 2495 /* ABM */ 2496 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2497 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2498 &abm_regs[i], 2499 &abm_shift, 2500 &abm_mask); 2501 if (pool->base.multiple_abms[i] == NULL) { 2502 dm_error("DC: failed to create abm for pipe %d!\n", i); 2503 BREAK_TO_DEBUGGER(); 2504 goto create_fail; 2505 } 2506 } 2507 /* MPC and DSC */ 2508 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2509 if (pool->base.mpc == NULL) { 2510 BREAK_TO_DEBUGGER(); 2511 dm_error("DC: failed to create mpc!\n"); 2512 goto create_fail; 2513 } 2514 2515 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2516 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2517 if (pool->base.dscs[i] == NULL) { 2518 BREAK_TO_DEBUGGER(); 2519 dm_error("DC: failed to create display stream compressor %d!\n", i); 2520 goto create_fail; 2521 } 2522 } 2523 2524 /* DWB and MMHUBBUB */ 2525 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2526 BREAK_TO_DEBUGGER(); 2527 dm_error("DC: failed to create dwbc!\n"); 2528 goto create_fail; 2529 } 2530 2531 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2532 BREAK_TO_DEBUGGER(); 2533 dm_error("DC: failed to create mcif_wb!\n"); 2534 goto create_fail; 2535 } 2536 2537 /* AUX and I2C */ 2538 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2539 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2540 if (pool->base.engines[i] == NULL) { 2541 BREAK_TO_DEBUGGER(); 2542 dm_error( 2543 "DC:failed to create aux engine!!\n"); 2544 goto create_fail; 2545 } 2546 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2547 if (pool->base.hw_i2cs[i] == NULL) { 2548 BREAK_TO_DEBUGGER(); 2549 dm_error( 2550 "DC:failed to create hw i2c!!\n"); 2551 goto create_fail; 2552 } 2553 pool->base.sw_i2cs[i] = NULL; 2554 } 2555 2556 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2557 if (!resource_construct(num_virtual_links, dc, &pool->base, 2558 &res_create_funcs)) 2559 goto create_fail; 2560 2561 /* HW Sequencer and Plane caps */ 2562 dcn30_hw_sequencer_construct(dc); 2563 2564 dc->caps.max_planes = pool->base.pipe_count; 2565 2566 for (i = 0; i < dc->caps.max_planes; ++i) 2567 dc->caps.planes[i] = plane_cap; 2568 2569 dc->cap_funcs = cap_funcs; 2570 2571 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2572 ddc_init_data.ctx = dc->ctx; 2573 ddc_init_data.link = NULL; 2574 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2575 ddc_init_data.id.enum_id = 0; 2576 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2577 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2578 } else { 2579 pool->base.oem_device = NULL; 2580 } 2581 2582 DC_FP_END(); 2583 2584 return true; 2585 2586 create_fail: 2587 2588 DC_FP_END(); 2589 dcn30_resource_destruct(pool); 2590 2591 return false; 2592 } 2593 2594 struct resource_pool *dcn30_create_resource_pool( 2595 const struct dc_init_data *init_data, 2596 struct dc *dc) 2597 { 2598 struct dcn30_resource_pool *pool = 2599 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2600 2601 if (!pool) 2602 return NULL; 2603 2604 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2605 return &pool->base; 2606 2607 BREAK_TO_DEBUGGER(); 2608 kfree(pool); 2609 return NULL; 2610 } 2611