1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "dc_link_ddc.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dpcs/dpcs_3_0_0_offset.h" 76 #include "dpcs/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/dcn30_fpu.h" 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 #include "amdgpu_socbb.h" 92 #include "dc_dmub_srv.h" 93 94 #define DC_LOGGER_INIT(logger) 95 96 enum dcn30_clk_src_array_id { 97 DCN30_CLK_SRC_PLL0, 98 DCN30_CLK_SRC_PLL1, 99 DCN30_CLK_SRC_PLL2, 100 DCN30_CLK_SRC_PLL3, 101 DCN30_CLK_SRC_PLL4, 102 DCN30_CLK_SRC_PLL5, 103 DCN30_CLK_SRC_TOTAL 104 }; 105 106 /* begin ********************* 107 * macros to expend register list macro defined in HW object header file 108 */ 109 110 /* DCN */ 111 /* TODO awful hack. fixup dcn20_dwb.h */ 112 #undef BASE_INNER 113 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 114 115 #define BASE(seg) BASE_INNER(seg) 116 117 #define SR(reg_name)\ 118 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 119 mm ## reg_name 120 121 #define SRI(reg_name, block, id)\ 122 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 123 mm ## block ## id ## _ ## reg_name 124 125 #define SRI2(reg_name, block, id)\ 126 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 127 mm ## reg_name 128 129 #define SRIR(var_name, reg_name, block, id)\ 130 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 131 mm ## block ## id ## _ ## reg_name 132 133 #define SRII(reg_name, block, id)\ 134 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 135 mm ## block ## id ## _ ## reg_name 136 137 #define SRII_MPC_RMU(reg_name, block, id)\ 138 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 139 mm ## block ## id ## _ ## reg_name 140 141 #define SRII_DWB(reg_name, temp_name, block, id)\ 142 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 143 mm ## block ## id ## _ ## temp_name 144 145 #define DCCG_SRII(reg_name, block, id)\ 146 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 147 mm ## block ## id ## _ ## reg_name 148 149 #define VUPDATE_SRII(reg_name, block, id)\ 150 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 151 mm ## reg_name ## _ ## block ## id 152 153 /* NBIO */ 154 #define NBIO_BASE_INNER(seg) \ 155 NBIO_BASE__INST0_SEG ## seg 156 157 #define NBIO_BASE(seg) \ 158 NBIO_BASE_INNER(seg) 159 160 #define NBIO_SR(reg_name)\ 161 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 162 mm ## reg_name 163 164 /* MMHUB */ 165 #define MMHUB_BASE_INNER(seg) \ 166 MMHUB_BASE__INST0_SEG ## seg 167 168 #define MMHUB_BASE(seg) \ 169 MMHUB_BASE_INNER(seg) 170 171 #define MMHUB_SR(reg_name)\ 172 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 173 mmMM ## reg_name 174 175 /* CLOCK */ 176 #define CLK_BASE_INNER(seg) \ 177 CLK_BASE__INST0_SEG ## seg 178 179 #define CLK_BASE(seg) \ 180 CLK_BASE_INNER(seg) 181 182 #define CLK_SRI(reg_name, block, inst)\ 183 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 184 mm ## block ## _ ## inst ## _ ## reg_name 185 186 187 static const struct bios_registers bios_regs = { 188 NBIO_SR(BIOS_SCRATCH_3), 189 NBIO_SR(BIOS_SCRATCH_6) 190 }; 191 192 #define clk_src_regs(index, pllid)\ 193 [index] = {\ 194 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 195 } 196 197 static const struct dce110_clk_src_regs clk_src_regs[] = { 198 clk_src_regs(0, A), 199 clk_src_regs(1, B), 200 clk_src_regs(2, C), 201 clk_src_regs(3, D), 202 clk_src_regs(4, E), 203 clk_src_regs(5, F) 204 }; 205 206 static const struct dce110_clk_src_shift cs_shift = { 207 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 208 }; 209 210 static const struct dce110_clk_src_mask cs_mask = { 211 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 212 }; 213 214 #define abm_regs(id)\ 215 [id] = {\ 216 ABM_DCN30_REG_LIST(id)\ 217 } 218 219 static const struct dce_abm_registers abm_regs[] = { 220 abm_regs(0), 221 abm_regs(1), 222 abm_regs(2), 223 abm_regs(3), 224 abm_regs(4), 225 abm_regs(5), 226 }; 227 228 static const struct dce_abm_shift abm_shift = { 229 ABM_MASK_SH_LIST_DCN30(__SHIFT) 230 }; 231 232 static const struct dce_abm_mask abm_mask = { 233 ABM_MASK_SH_LIST_DCN30(_MASK) 234 }; 235 236 237 238 #define audio_regs(id)\ 239 [id] = {\ 240 AUD_COMMON_REG_LIST(id)\ 241 } 242 243 static const struct dce_audio_registers audio_regs[] = { 244 audio_regs(0), 245 audio_regs(1), 246 audio_regs(2), 247 audio_regs(3), 248 audio_regs(4), 249 audio_regs(5), 250 audio_regs(6) 251 }; 252 253 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 254 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 256 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 257 258 static const struct dce_audio_shift audio_shift = { 259 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 260 }; 261 262 static const struct dce_audio_mask audio_mask = { 263 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 264 }; 265 266 #define vpg_regs(id)\ 267 [id] = {\ 268 VPG_DCN3_REG_LIST(id)\ 269 } 270 271 static const struct dcn30_vpg_registers vpg_regs[] = { 272 vpg_regs(0), 273 vpg_regs(1), 274 vpg_regs(2), 275 vpg_regs(3), 276 vpg_regs(4), 277 vpg_regs(5), 278 vpg_regs(6), 279 }; 280 281 static const struct dcn30_vpg_shift vpg_shift = { 282 DCN3_VPG_MASK_SH_LIST(__SHIFT) 283 }; 284 285 static const struct dcn30_vpg_mask vpg_mask = { 286 DCN3_VPG_MASK_SH_LIST(_MASK) 287 }; 288 289 #define afmt_regs(id)\ 290 [id] = {\ 291 AFMT_DCN3_REG_LIST(id)\ 292 } 293 294 static const struct dcn30_afmt_registers afmt_regs[] = { 295 afmt_regs(0), 296 afmt_regs(1), 297 afmt_regs(2), 298 afmt_regs(3), 299 afmt_regs(4), 300 afmt_regs(5), 301 afmt_regs(6), 302 }; 303 304 static const struct dcn30_afmt_shift afmt_shift = { 305 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 306 }; 307 308 static const struct dcn30_afmt_mask afmt_mask = { 309 DCN3_AFMT_MASK_SH_LIST(_MASK) 310 }; 311 312 #define stream_enc_regs(id)\ 313 [id] = {\ 314 SE_DCN3_REG_LIST(id)\ 315 } 316 317 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 318 stream_enc_regs(0), 319 stream_enc_regs(1), 320 stream_enc_regs(2), 321 stream_enc_regs(3), 322 stream_enc_regs(4), 323 stream_enc_regs(5) 324 }; 325 326 static const struct dcn10_stream_encoder_shift se_shift = { 327 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 328 }; 329 330 static const struct dcn10_stream_encoder_mask se_mask = { 331 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 332 }; 333 334 335 #define aux_regs(id)\ 336 [id] = {\ 337 DCN2_AUX_REG_LIST(id)\ 338 } 339 340 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 341 aux_regs(0), 342 aux_regs(1), 343 aux_regs(2), 344 aux_regs(3), 345 aux_regs(4), 346 aux_regs(5) 347 }; 348 349 #define hpd_regs(id)\ 350 [id] = {\ 351 HPD_REG_LIST(id)\ 352 } 353 354 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 355 hpd_regs(0), 356 hpd_regs(1), 357 hpd_regs(2), 358 hpd_regs(3), 359 hpd_regs(4), 360 hpd_regs(5) 361 }; 362 363 #define link_regs(id, phyid)\ 364 [id] = {\ 365 LE_DCN3_REG_LIST(id), \ 366 UNIPHY_DCN2_REG_LIST(phyid), \ 367 DPCS_DCN2_REG_LIST(id), \ 368 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 369 } 370 371 static const struct dce110_aux_registers_shift aux_shift = { 372 DCN_AUX_MASK_SH_LIST(__SHIFT) 373 }; 374 375 static const struct dce110_aux_registers_mask aux_mask = { 376 DCN_AUX_MASK_SH_LIST(_MASK) 377 }; 378 379 static const struct dcn10_link_enc_registers link_enc_regs[] = { 380 link_regs(0, A), 381 link_regs(1, B), 382 link_regs(2, C), 383 link_regs(3, D), 384 link_regs(4, E), 385 link_regs(5, F) 386 }; 387 388 static const struct dcn10_link_enc_shift le_shift = { 389 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 390 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 391 }; 392 393 static const struct dcn10_link_enc_mask le_mask = { 394 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 395 DPCS_DCN2_MASK_SH_LIST(_MASK) 396 }; 397 398 399 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 400 { DCN_PANEL_CNTL_REG_LIST() } 401 }; 402 403 static const struct dce_panel_cntl_shift panel_cntl_shift = { 404 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 405 }; 406 407 static const struct dce_panel_cntl_mask panel_cntl_mask = { 408 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 409 }; 410 411 #define dpp_regs(id)\ 412 [id] = {\ 413 DPP_REG_LIST_DCN30(id),\ 414 } 415 416 static const struct dcn3_dpp_registers dpp_regs[] = { 417 dpp_regs(0), 418 dpp_regs(1), 419 dpp_regs(2), 420 dpp_regs(3), 421 dpp_regs(4), 422 dpp_regs(5), 423 }; 424 425 static const struct dcn3_dpp_shift tf_shift = { 426 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 427 }; 428 429 static const struct dcn3_dpp_mask tf_mask = { 430 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 431 }; 432 433 #define opp_regs(id)\ 434 [id] = {\ 435 OPP_REG_LIST_DCN30(id),\ 436 } 437 438 static const struct dcn20_opp_registers opp_regs[] = { 439 opp_regs(0), 440 opp_regs(1), 441 opp_regs(2), 442 opp_regs(3), 443 opp_regs(4), 444 opp_regs(5) 445 }; 446 447 static const struct dcn20_opp_shift opp_shift = { 448 OPP_MASK_SH_LIST_DCN20(__SHIFT) 449 }; 450 451 static const struct dcn20_opp_mask opp_mask = { 452 OPP_MASK_SH_LIST_DCN20(_MASK) 453 }; 454 455 #define aux_engine_regs(id)\ 456 [id] = {\ 457 AUX_COMMON_REG_LIST0(id), \ 458 .AUXN_IMPCAL = 0, \ 459 .AUXP_IMPCAL = 0, \ 460 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 461 } 462 463 static const struct dce110_aux_registers aux_engine_regs[] = { 464 aux_engine_regs(0), 465 aux_engine_regs(1), 466 aux_engine_regs(2), 467 aux_engine_regs(3), 468 aux_engine_regs(4), 469 aux_engine_regs(5) 470 }; 471 472 #define dwbc_regs_dcn3(id)\ 473 [id] = {\ 474 DWBC_COMMON_REG_LIST_DCN30(id),\ 475 } 476 477 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 478 dwbc_regs_dcn3(0), 479 }; 480 481 static const struct dcn30_dwbc_shift dwbc30_shift = { 482 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 483 }; 484 485 static const struct dcn30_dwbc_mask dwbc30_mask = { 486 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 487 }; 488 489 #define mcif_wb_regs_dcn3(id)\ 490 [id] = {\ 491 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 492 } 493 494 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 495 mcif_wb_regs_dcn3(0) 496 }; 497 498 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 499 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 500 }; 501 502 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 503 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 504 }; 505 506 #define dsc_regsDCN20(id)\ 507 [id] = {\ 508 DSC_REG_LIST_DCN20(id)\ 509 } 510 511 static const struct dcn20_dsc_registers dsc_regs[] = { 512 dsc_regsDCN20(0), 513 dsc_regsDCN20(1), 514 dsc_regsDCN20(2), 515 dsc_regsDCN20(3), 516 dsc_regsDCN20(4), 517 dsc_regsDCN20(5) 518 }; 519 520 static const struct dcn20_dsc_shift dsc_shift = { 521 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 522 }; 523 524 static const struct dcn20_dsc_mask dsc_mask = { 525 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 526 }; 527 528 static const struct dcn30_mpc_registers mpc_regs = { 529 MPC_REG_LIST_DCN3_0(0), 530 MPC_REG_LIST_DCN3_0(1), 531 MPC_REG_LIST_DCN3_0(2), 532 MPC_REG_LIST_DCN3_0(3), 533 MPC_REG_LIST_DCN3_0(4), 534 MPC_REG_LIST_DCN3_0(5), 535 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 536 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 537 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 538 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 539 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 540 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 541 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 542 MPC_RMU_REG_LIST_DCN3AG(0), 543 MPC_RMU_REG_LIST_DCN3AG(1), 544 MPC_RMU_REG_LIST_DCN3AG(2), 545 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 546 }; 547 548 static const struct dcn30_mpc_shift mpc_shift = { 549 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 550 }; 551 552 static const struct dcn30_mpc_mask mpc_mask = { 553 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 554 }; 555 556 #define optc_regs(id)\ 557 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 558 559 560 static const struct dcn_optc_registers optc_regs[] = { 561 optc_regs(0), 562 optc_regs(1), 563 optc_regs(2), 564 optc_regs(3), 565 optc_regs(4), 566 optc_regs(5) 567 }; 568 569 static const struct dcn_optc_shift optc_shift = { 570 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 571 }; 572 573 static const struct dcn_optc_mask optc_mask = { 574 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 575 }; 576 577 #define hubp_regs(id)\ 578 [id] = {\ 579 HUBP_REG_LIST_DCN30(id)\ 580 } 581 582 static const struct dcn_hubp2_registers hubp_regs[] = { 583 hubp_regs(0), 584 hubp_regs(1), 585 hubp_regs(2), 586 hubp_regs(3), 587 hubp_regs(4), 588 hubp_regs(5) 589 }; 590 591 static const struct dcn_hubp2_shift hubp_shift = { 592 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 593 }; 594 595 static const struct dcn_hubp2_mask hubp_mask = { 596 HUBP_MASK_SH_LIST_DCN30(_MASK) 597 }; 598 599 static const struct dcn_hubbub_registers hubbub_reg = { 600 HUBBUB_REG_LIST_DCN30(0) 601 }; 602 603 static const struct dcn_hubbub_shift hubbub_shift = { 604 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 605 }; 606 607 static const struct dcn_hubbub_mask hubbub_mask = { 608 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 609 }; 610 611 static const struct dccg_registers dccg_regs = { 612 DCCG_REG_LIST_DCN30() 613 }; 614 615 static const struct dccg_shift dccg_shift = { 616 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 617 }; 618 619 static const struct dccg_mask dccg_mask = { 620 DCCG_MASK_SH_LIST_DCN3(_MASK) 621 }; 622 623 static const struct dce_hwseq_registers hwseq_reg = { 624 HWSEQ_DCN30_REG_LIST() 625 }; 626 627 static const struct dce_hwseq_shift hwseq_shift = { 628 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 629 }; 630 631 static const struct dce_hwseq_mask hwseq_mask = { 632 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 633 }; 634 #define vmid_regs(id)\ 635 [id] = {\ 636 DCN20_VMID_REG_LIST(id)\ 637 } 638 639 static const struct dcn_vmid_registers vmid_regs[] = { 640 vmid_regs(0), 641 vmid_regs(1), 642 vmid_regs(2), 643 vmid_regs(3), 644 vmid_regs(4), 645 vmid_regs(5), 646 vmid_regs(6), 647 vmid_regs(7), 648 vmid_regs(8), 649 vmid_regs(9), 650 vmid_regs(10), 651 vmid_regs(11), 652 vmid_regs(12), 653 vmid_regs(13), 654 vmid_regs(14), 655 vmid_regs(15) 656 }; 657 658 static const struct dcn20_vmid_shift vmid_shifts = { 659 DCN20_VMID_MASK_SH_LIST(__SHIFT) 660 }; 661 662 static const struct dcn20_vmid_mask vmid_masks = { 663 DCN20_VMID_MASK_SH_LIST(_MASK) 664 }; 665 666 static const struct resource_caps res_cap_dcn3 = { 667 .num_timing_generator = 6, 668 .num_opp = 6, 669 .num_video_plane = 6, 670 .num_audio = 6, 671 .num_stream_encoder = 6, 672 .num_pll = 6, 673 .num_dwb = 1, 674 .num_ddc = 6, 675 .num_vmid = 16, 676 .num_mpc_3dlut = 3, 677 .num_dsc = 6, 678 }; 679 680 static const struct dc_plane_cap plane_cap = { 681 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 682 .blends_with_above = true, 683 .blends_with_below = true, 684 .per_pixel_alpha = true, 685 686 .pixel_format_support = { 687 .argb8888 = true, 688 .nv12 = true, 689 .fp16 = true, 690 .p010 = true, 691 .ayuv = false, 692 }, 693 694 .max_upscale_factor = { 695 .argb8888 = 16000, 696 .nv12 = 16000, 697 .fp16 = 16000 698 }, 699 700 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 701 .max_downscale_factor = { 702 .argb8888 = 167, 703 .nv12 = 167, 704 .fp16 = 167 705 } 706 }; 707 708 static const struct dc_debug_options debug_defaults_drv = { 709 .disable_dmcu = true, //No DMCU on DCN30 710 .force_abm_enable = false, 711 .timing_trace = false, 712 .clock_trace = true, 713 .disable_pplib_clock_request = true, 714 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 715 .force_single_disp_pipe_split = false, 716 .disable_dcc = DCC_ENABLE, 717 .vsr_support = true, 718 .performance_trace = false, 719 .max_downscale_src_width = 7680,/*upto 8K*/ 720 .disable_pplib_wm_range = false, 721 .scl_reset_length10 = true, 722 .sanity_checks = false, 723 .underflow_assert_delay_us = 0xFFFFFFFF, 724 .dwb_fi_phase = -1, // -1 = disable, 725 .dmub_command_table = true, 726 .disable_psr = false, 727 .use_max_lb = true, 728 .exit_idle_opt_for_cursor_updates = true 729 }; 730 731 static const struct dc_debug_options debug_defaults_diags = { 732 .disable_dmcu = true, //No dmcu on DCN30 733 .force_abm_enable = false, 734 .timing_trace = true, 735 .clock_trace = true, 736 .disable_dpp_power_gate = true, 737 .disable_hubp_power_gate = true, 738 .disable_clock_gate = true, 739 .disable_pplib_clock_request = true, 740 .disable_pplib_wm_range = true, 741 .disable_stutter = false, 742 .scl_reset_length10 = true, 743 .dwb_fi_phase = -1, // -1 = disable 744 .dmub_command_table = true, 745 .disable_psr = true, 746 .enable_tri_buf = true, 747 .use_max_lb = true 748 }; 749 750 static void dcn30_dpp_destroy(struct dpp **dpp) 751 { 752 kfree(TO_DCN20_DPP(*dpp)); 753 *dpp = NULL; 754 } 755 756 static struct dpp *dcn30_dpp_create( 757 struct dc_context *ctx, 758 uint32_t inst) 759 { 760 struct dcn3_dpp *dpp = 761 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 762 763 if (!dpp) 764 return NULL; 765 766 if (dpp3_construct(dpp, ctx, inst, 767 &dpp_regs[inst], &tf_shift, &tf_mask)) 768 return &dpp->base; 769 770 BREAK_TO_DEBUGGER(); 771 kfree(dpp); 772 return NULL; 773 } 774 775 static struct output_pixel_processor *dcn30_opp_create( 776 struct dc_context *ctx, uint32_t inst) 777 { 778 struct dcn20_opp *opp = 779 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 780 781 if (!opp) { 782 BREAK_TO_DEBUGGER(); 783 return NULL; 784 } 785 786 dcn20_opp_construct(opp, ctx, inst, 787 &opp_regs[inst], &opp_shift, &opp_mask); 788 return &opp->base; 789 } 790 791 static struct dce_aux *dcn30_aux_engine_create( 792 struct dc_context *ctx, 793 uint32_t inst) 794 { 795 struct aux_engine_dce110 *aux_engine = 796 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 797 798 if (!aux_engine) 799 return NULL; 800 801 dce110_aux_engine_construct(aux_engine, ctx, inst, 802 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 803 &aux_engine_regs[inst], 804 &aux_mask, 805 &aux_shift, 806 ctx->dc->caps.extended_aux_timeout_support); 807 808 return &aux_engine->base; 809 } 810 811 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 812 813 static const struct dce_i2c_registers i2c_hw_regs[] = { 814 i2c_inst_regs(1), 815 i2c_inst_regs(2), 816 i2c_inst_regs(3), 817 i2c_inst_regs(4), 818 i2c_inst_regs(5), 819 i2c_inst_regs(6), 820 }; 821 822 static const struct dce_i2c_shift i2c_shifts = { 823 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 824 }; 825 826 static const struct dce_i2c_mask i2c_masks = { 827 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 828 }; 829 830 static struct dce_i2c_hw *dcn30_i2c_hw_create( 831 struct dc_context *ctx, 832 uint32_t inst) 833 { 834 struct dce_i2c_hw *dce_i2c_hw = 835 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 836 837 if (!dce_i2c_hw) 838 return NULL; 839 840 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 841 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 842 843 return dce_i2c_hw; 844 } 845 846 static struct mpc *dcn30_mpc_create( 847 struct dc_context *ctx, 848 int num_mpcc, 849 int num_rmu) 850 { 851 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 852 GFP_KERNEL); 853 854 if (!mpc30) 855 return NULL; 856 857 dcn30_mpc_construct(mpc30, ctx, 858 &mpc_regs, 859 &mpc_shift, 860 &mpc_mask, 861 num_mpcc, 862 num_rmu); 863 864 return &mpc30->base; 865 } 866 867 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 868 { 869 int i; 870 871 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 872 GFP_KERNEL); 873 874 if (!hubbub3) 875 return NULL; 876 877 hubbub3_construct(hubbub3, ctx, 878 &hubbub_reg, 879 &hubbub_shift, 880 &hubbub_mask); 881 882 883 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 884 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 885 886 vmid->ctx = ctx; 887 888 vmid->regs = &vmid_regs[i]; 889 vmid->shifts = &vmid_shifts; 890 vmid->masks = &vmid_masks; 891 } 892 893 return &hubbub3->base; 894 } 895 896 static struct timing_generator *dcn30_timing_generator_create( 897 struct dc_context *ctx, 898 uint32_t instance) 899 { 900 struct optc *tgn10 = 901 kzalloc(sizeof(struct optc), GFP_KERNEL); 902 903 if (!tgn10) 904 return NULL; 905 906 tgn10->base.inst = instance; 907 tgn10->base.ctx = ctx; 908 909 tgn10->tg_regs = &optc_regs[instance]; 910 tgn10->tg_shift = &optc_shift; 911 tgn10->tg_mask = &optc_mask; 912 913 dcn30_timing_generator_init(tgn10); 914 915 return &tgn10->base; 916 } 917 918 static const struct encoder_feature_support link_enc_feature = { 919 .max_hdmi_deep_color = COLOR_DEPTH_121212, 920 .max_hdmi_pixel_clock = 600000, 921 .hdmi_ycbcr420_supported = true, 922 .dp_ycbcr420_supported = true, 923 .fec_supported = true, 924 .flags.bits.IS_HBR2_CAPABLE = true, 925 .flags.bits.IS_HBR3_CAPABLE = true, 926 .flags.bits.IS_TPS3_CAPABLE = true, 927 .flags.bits.IS_TPS4_CAPABLE = true 928 }; 929 930 static struct link_encoder *dcn30_link_encoder_create( 931 struct dc_context *ctx, 932 const struct encoder_init_data *enc_init_data) 933 { 934 struct dcn20_link_encoder *enc20 = 935 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 936 937 if (!enc20) 938 return NULL; 939 940 dcn30_link_encoder_construct(enc20, 941 enc_init_data, 942 &link_enc_feature, 943 &link_enc_regs[enc_init_data->transmitter], 944 &link_enc_aux_regs[enc_init_data->channel - 1], 945 &link_enc_hpd_regs[enc_init_data->hpd_source], 946 &le_shift, 947 &le_mask); 948 949 return &enc20->enc10.base; 950 } 951 952 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 953 { 954 struct dce_panel_cntl *panel_cntl = 955 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 956 957 if (!panel_cntl) 958 return NULL; 959 960 dce_panel_cntl_construct(panel_cntl, 961 init_data, 962 &panel_cntl_regs[init_data->inst], 963 &panel_cntl_shift, 964 &panel_cntl_mask); 965 966 return &panel_cntl->base; 967 } 968 969 static void read_dce_straps( 970 struct dc_context *ctx, 971 struct resource_straps *straps) 972 { 973 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 974 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 975 976 } 977 978 static struct audio *dcn30_create_audio( 979 struct dc_context *ctx, unsigned int inst) 980 { 981 return dce_audio_create(ctx, inst, 982 &audio_regs[inst], &audio_shift, &audio_mask); 983 } 984 985 static struct vpg *dcn30_vpg_create( 986 struct dc_context *ctx, 987 uint32_t inst) 988 { 989 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 990 991 if (!vpg3) 992 return NULL; 993 994 vpg3_construct(vpg3, ctx, inst, 995 &vpg_regs[inst], 996 &vpg_shift, 997 &vpg_mask); 998 999 return &vpg3->base; 1000 } 1001 1002 static struct afmt *dcn30_afmt_create( 1003 struct dc_context *ctx, 1004 uint32_t inst) 1005 { 1006 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1007 1008 if (!afmt3) 1009 return NULL; 1010 1011 afmt3_construct(afmt3, ctx, inst, 1012 &afmt_regs[inst], 1013 &afmt_shift, 1014 &afmt_mask); 1015 1016 return &afmt3->base; 1017 } 1018 1019 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, 1020 struct dc_context *ctx) 1021 { 1022 struct dcn10_stream_encoder *enc1; 1023 struct vpg *vpg; 1024 struct afmt *afmt; 1025 int vpg_inst; 1026 int afmt_inst; 1027 1028 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1029 if (eng_id <= ENGINE_ID_DIGF) { 1030 vpg_inst = eng_id; 1031 afmt_inst = eng_id; 1032 } else 1033 return NULL; 1034 1035 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1036 vpg = dcn30_vpg_create(ctx, vpg_inst); 1037 afmt = dcn30_afmt_create(ctx, afmt_inst); 1038 1039 if (!enc1 || !vpg || !afmt) { 1040 kfree(enc1); 1041 kfree(vpg); 1042 kfree(afmt); 1043 return NULL; 1044 } 1045 1046 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1047 eng_id, vpg, afmt, 1048 &stream_enc_regs[eng_id], 1049 &se_shift, &se_mask); 1050 1051 return &enc1->base; 1052 } 1053 1054 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) 1055 { 1056 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1057 1058 if (hws) { 1059 hws->ctx = ctx; 1060 hws->regs = &hwseq_reg; 1061 hws->shifts = &hwseq_shift; 1062 hws->masks = &hwseq_mask; 1063 } 1064 return hws; 1065 } 1066 static const struct resource_create_funcs res_create_funcs = { 1067 .read_dce_straps = read_dce_straps, 1068 .create_audio = dcn30_create_audio, 1069 .create_stream_encoder = dcn30_stream_encoder_create, 1070 .create_hwseq = dcn30_hwseq_create, 1071 }; 1072 1073 static const struct resource_create_funcs res_create_maximus_funcs = { 1074 .read_dce_straps = NULL, 1075 .create_audio = NULL, 1076 .create_stream_encoder = NULL, 1077 .create_hwseq = dcn30_hwseq_create, 1078 }; 1079 1080 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1081 { 1082 unsigned int i; 1083 1084 for (i = 0; i < pool->base.stream_enc_count; i++) { 1085 if (pool->base.stream_enc[i] != NULL) { 1086 if (pool->base.stream_enc[i]->vpg != NULL) { 1087 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1088 pool->base.stream_enc[i]->vpg = NULL; 1089 } 1090 if (pool->base.stream_enc[i]->afmt != NULL) { 1091 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1092 pool->base.stream_enc[i]->afmt = NULL; 1093 } 1094 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1095 pool->base.stream_enc[i] = NULL; 1096 } 1097 } 1098 1099 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1100 if (pool->base.dscs[i] != NULL) 1101 dcn20_dsc_destroy(&pool->base.dscs[i]); 1102 } 1103 1104 if (pool->base.mpc != NULL) { 1105 kfree(TO_DCN20_MPC(pool->base.mpc)); 1106 pool->base.mpc = NULL; 1107 } 1108 if (pool->base.hubbub != NULL) { 1109 kfree(pool->base.hubbub); 1110 pool->base.hubbub = NULL; 1111 } 1112 for (i = 0; i < pool->base.pipe_count; i++) { 1113 if (pool->base.dpps[i] != NULL) 1114 dcn30_dpp_destroy(&pool->base.dpps[i]); 1115 1116 if (pool->base.ipps[i] != NULL) 1117 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1118 1119 if (pool->base.hubps[i] != NULL) { 1120 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1121 pool->base.hubps[i] = NULL; 1122 } 1123 1124 if (pool->base.irqs != NULL) { 1125 dal_irq_service_destroy(&pool->base.irqs); 1126 } 1127 } 1128 1129 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1130 if (pool->base.engines[i] != NULL) 1131 dce110_engine_destroy(&pool->base.engines[i]); 1132 if (pool->base.hw_i2cs[i] != NULL) { 1133 kfree(pool->base.hw_i2cs[i]); 1134 pool->base.hw_i2cs[i] = NULL; 1135 } 1136 if (pool->base.sw_i2cs[i] != NULL) { 1137 kfree(pool->base.sw_i2cs[i]); 1138 pool->base.sw_i2cs[i] = NULL; 1139 } 1140 } 1141 1142 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1143 if (pool->base.opps[i] != NULL) 1144 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1145 } 1146 1147 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1148 if (pool->base.timing_generators[i] != NULL) { 1149 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1150 pool->base.timing_generators[i] = NULL; 1151 } 1152 } 1153 1154 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1155 if (pool->base.dwbc[i] != NULL) { 1156 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1157 pool->base.dwbc[i] = NULL; 1158 } 1159 if (pool->base.mcif_wb[i] != NULL) { 1160 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1161 pool->base.mcif_wb[i] = NULL; 1162 } 1163 } 1164 1165 for (i = 0; i < pool->base.audio_count; i++) { 1166 if (pool->base.audios[i]) 1167 dce_aud_destroy(&pool->base.audios[i]); 1168 } 1169 1170 for (i = 0; i < pool->base.clk_src_count; i++) { 1171 if (pool->base.clock_sources[i] != NULL) { 1172 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1173 pool->base.clock_sources[i] = NULL; 1174 } 1175 } 1176 1177 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1178 if (pool->base.mpc_lut[i] != NULL) { 1179 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1180 pool->base.mpc_lut[i] = NULL; 1181 } 1182 if (pool->base.mpc_shaper[i] != NULL) { 1183 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1184 pool->base.mpc_shaper[i] = NULL; 1185 } 1186 } 1187 1188 if (pool->base.dp_clock_source != NULL) { 1189 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1190 pool->base.dp_clock_source = NULL; 1191 } 1192 1193 for (i = 0; i < pool->base.pipe_count; i++) { 1194 if (pool->base.multiple_abms[i] != NULL) 1195 dce_abm_destroy(&pool->base.multiple_abms[i]); 1196 } 1197 1198 if (pool->base.psr != NULL) 1199 dmub_psr_destroy(&pool->base.psr); 1200 1201 if (pool->base.dccg != NULL) 1202 dcn_dccg_destroy(&pool->base.dccg); 1203 1204 if (pool->base.oem_device != NULL) 1205 dal_ddc_service_destroy(&pool->base.oem_device); 1206 } 1207 1208 static struct hubp *dcn30_hubp_create( 1209 struct dc_context *ctx, 1210 uint32_t inst) 1211 { 1212 struct dcn20_hubp *hubp2 = 1213 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1214 1215 if (!hubp2) 1216 return NULL; 1217 1218 if (hubp3_construct(hubp2, ctx, inst, 1219 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1220 return &hubp2->base; 1221 1222 BREAK_TO_DEBUGGER(); 1223 kfree(hubp2); 1224 return NULL; 1225 } 1226 1227 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1228 { 1229 int i; 1230 uint32_t pipe_count = pool->res_cap->num_dwb; 1231 1232 for (i = 0; i < pipe_count; i++) { 1233 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1234 GFP_KERNEL); 1235 1236 if (!dwbc30) { 1237 dm_error("DC: failed to create dwbc30!\n"); 1238 return false; 1239 } 1240 1241 dcn30_dwbc_construct(dwbc30, ctx, 1242 &dwbc30_regs[i], 1243 &dwbc30_shift, 1244 &dwbc30_mask, 1245 i); 1246 1247 pool->dwbc[i] = &dwbc30->base; 1248 } 1249 return true; 1250 } 1251 1252 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1253 { 1254 int i; 1255 uint32_t pipe_count = pool->res_cap->num_dwb; 1256 1257 for (i = 0; i < pipe_count; i++) { 1258 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1259 GFP_KERNEL); 1260 1261 if (!mcif_wb30) { 1262 dm_error("DC: failed to create mcif_wb30!\n"); 1263 return false; 1264 } 1265 1266 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1267 &mcif_wb30_regs[i], 1268 &mcif_wb30_shift, 1269 &mcif_wb30_mask, 1270 i); 1271 1272 pool->mcif_wb[i] = &mcif_wb30->base; 1273 } 1274 return true; 1275 } 1276 1277 static struct display_stream_compressor *dcn30_dsc_create( 1278 struct dc_context *ctx, uint32_t inst) 1279 { 1280 struct dcn20_dsc *dsc = 1281 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1282 1283 if (!dsc) { 1284 BREAK_TO_DEBUGGER(); 1285 return NULL; 1286 } 1287 1288 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1289 return &dsc->base; 1290 } 1291 1292 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1293 { 1294 1295 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1296 } 1297 1298 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1299 { 1300 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1301 1302 dcn30_resource_destruct(dcn30_pool); 1303 kfree(dcn30_pool); 1304 *pool = NULL; 1305 } 1306 1307 static struct clock_source *dcn30_clock_source_create( 1308 struct dc_context *ctx, 1309 struct dc_bios *bios, 1310 enum clock_source_id id, 1311 const struct dce110_clk_src_regs *regs, 1312 bool dp_clk_src) 1313 { 1314 struct dce110_clk_src *clk_src = 1315 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1316 1317 if (!clk_src) 1318 return NULL; 1319 1320 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1321 regs, &cs_shift, &cs_mask)) { 1322 clk_src->base.dp_clk_src = dp_clk_src; 1323 return &clk_src->base; 1324 } 1325 1326 BREAK_TO_DEBUGGER(); 1327 return NULL; 1328 } 1329 1330 int dcn30_populate_dml_pipes_from_context( 1331 struct dc *dc, struct dc_state *context, 1332 display_e2e_pipe_params_st *pipes, 1333 bool fast_validate) 1334 { 1335 int i, pipe_cnt; 1336 struct resource_context *res_ctx = &context->res_ctx; 1337 1338 DC_FP_START(); 1339 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1340 DC_FP_END(); 1341 1342 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1343 if (!res_ctx->pipe_ctx[i].stream) 1344 continue; 1345 1346 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1347 dm_lb_16; 1348 } 1349 1350 return pipe_cnt; 1351 } 1352 1353 void dcn30_populate_dml_writeback_from_context( 1354 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1355 { 1356 DC_FP_START(); 1357 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); 1358 DC_FP_END(); 1359 } 1360 1361 unsigned int dcn30_calc_max_scaled_time( 1362 unsigned int time_per_pixel, 1363 enum mmhubbub_wbif_mode mode, 1364 unsigned int urgent_watermark) 1365 { 1366 unsigned int time_per_byte = 0; 1367 unsigned int total_free_entry = 0xb40; 1368 unsigned int buf_lh_capability; 1369 unsigned int max_scaled_time; 1370 1371 if (mode == PACKED_444) /* packed mode 32 bpp */ 1372 time_per_byte = time_per_pixel/4; 1373 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1374 time_per_byte = time_per_pixel/8; 1375 1376 if (time_per_byte == 0) 1377 time_per_byte = 1; 1378 1379 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1380 max_scaled_time = buf_lh_capability - urgent_watermark; 1381 return max_scaled_time; 1382 } 1383 1384 void dcn30_set_mcif_arb_params( 1385 struct dc *dc, 1386 struct dc_state *context, 1387 display_e2e_pipe_params_st *pipes, 1388 int pipe_cnt) 1389 { 1390 enum mmhubbub_wbif_mode wbif_mode; 1391 struct display_mode_lib *dml = &context->bw_ctx.dml; 1392 struct mcif_arb_params *wb_arb_params; 1393 int i, j, dwb_pipe; 1394 1395 /* Writeback MCIF_WB arbitration parameters */ 1396 dwb_pipe = 0; 1397 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1398 1399 if (!context->res_ctx.pipe_ctx[i].stream) 1400 continue; 1401 1402 for (j = 0; j < MAX_DWB_PIPES; j++) { 1403 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1404 1405 if (writeback_info->wb_enabled == false) 1406 continue; 1407 1408 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1409 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1410 1411 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1412 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1413 wbif_mode = PACKED_444_FP16; 1414 else 1415 wbif_mode = PACKED_444; 1416 1417 DC_FP_START(); 1418 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); 1419 DC_FP_END(); 1420 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1421 wb_arb_params->slice_lines = 32; 1422 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1423 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1424 wbif_mode, 1425 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1426 1427 dwb_pipe++; 1428 1429 if (dwb_pipe >= MAX_DWB_PIPES) 1430 return; 1431 } 1432 if (dwb_pipe >= MAX_DWB_PIPES) 1433 return; 1434 } 1435 1436 } 1437 1438 static struct dc_cap_funcs cap_funcs = { 1439 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1440 }; 1441 1442 bool dcn30_acquire_post_bldn_3dlut( 1443 struct resource_context *res_ctx, 1444 const struct resource_pool *pool, 1445 int mpcc_id, 1446 struct dc_3dlut **lut, 1447 struct dc_transfer_func **shaper) 1448 { 1449 int i; 1450 bool ret = false; 1451 union dc_3dlut_state *state; 1452 1453 ASSERT(*lut == NULL && *shaper == NULL); 1454 *lut = NULL; 1455 *shaper = NULL; 1456 1457 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1458 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1459 *lut = pool->mpc_lut[i]; 1460 *shaper = pool->mpc_shaper[i]; 1461 state = &pool->mpc_lut[i]->state; 1462 res_ctx->is_mpc_3dlut_acquired[i] = true; 1463 state->bits.rmu_idx_valid = 1; 1464 state->bits.rmu_mux_num = i; 1465 if (state->bits.rmu_mux_num == 0) 1466 state->bits.mpc_rmu0_mux = mpcc_id; 1467 else if (state->bits.rmu_mux_num == 1) 1468 state->bits.mpc_rmu1_mux = mpcc_id; 1469 else if (state->bits.rmu_mux_num == 2) 1470 state->bits.mpc_rmu2_mux = mpcc_id; 1471 ret = true; 1472 break; 1473 } 1474 } 1475 return ret; 1476 } 1477 1478 bool dcn30_release_post_bldn_3dlut( 1479 struct resource_context *res_ctx, 1480 const struct resource_pool *pool, 1481 struct dc_3dlut **lut, 1482 struct dc_transfer_func **shaper) 1483 { 1484 int i; 1485 bool ret = false; 1486 1487 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1488 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1489 res_ctx->is_mpc_3dlut_acquired[i] = false; 1490 pool->mpc_lut[i]->state.raw = 0; 1491 *lut = NULL; 1492 *shaper = NULL; 1493 ret = true; 1494 break; 1495 } 1496 } 1497 return ret; 1498 } 1499 1500 static bool is_soc_bounding_box_valid(struct dc *dc) 1501 { 1502 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1503 1504 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1505 return true; 1506 1507 return false; 1508 } 1509 1510 static bool init_soc_bounding_box(struct dc *dc, 1511 struct dcn30_resource_pool *pool) 1512 { 1513 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1514 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1515 1516 DC_LOGGER_INIT(dc->ctx->logger); 1517 1518 if (!is_soc_bounding_box_valid(dc)) { 1519 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1520 return false; 1521 } 1522 1523 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1524 loaded_ip->max_num_dpp = pool->base.pipe_count; 1525 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1526 dcn20_patch_bounding_box(dc, loaded_bb); 1527 DC_FP_START(); 1528 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); 1529 DC_FP_END(); 1530 1531 return true; 1532 } 1533 1534 static bool dcn30_split_stream_for_mpc_or_odm( 1535 const struct dc *dc, 1536 struct resource_context *res_ctx, 1537 struct pipe_ctx *pri_pipe, 1538 struct pipe_ctx *sec_pipe, 1539 bool odm) 1540 { 1541 int pipe_idx = sec_pipe->pipe_idx; 1542 const struct resource_pool *pool = dc->res_pool; 1543 1544 *sec_pipe = *pri_pipe; 1545 1546 sec_pipe->pipe_idx = pipe_idx; 1547 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1548 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1549 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1550 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1551 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1552 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1553 sec_pipe->stream_res.dsc = NULL; 1554 if (odm) { 1555 if (pri_pipe->next_odm_pipe) { 1556 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1557 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1558 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1559 } 1560 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1561 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1562 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1563 } 1564 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1565 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1566 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1567 } 1568 pri_pipe->next_odm_pipe = sec_pipe; 1569 sec_pipe->prev_odm_pipe = pri_pipe; 1570 1571 if (!sec_pipe->top_pipe) 1572 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1573 else 1574 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1575 if (sec_pipe->stream->timing.flags.DSC == 1) { 1576 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1577 ASSERT(sec_pipe->stream_res.dsc); 1578 if (sec_pipe->stream_res.dsc == NULL) 1579 return false; 1580 } 1581 } else { 1582 if (pri_pipe->bottom_pipe) { 1583 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1584 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1585 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1586 } 1587 pri_pipe->bottom_pipe = sec_pipe; 1588 sec_pipe->top_pipe = pri_pipe; 1589 1590 ASSERT(pri_pipe->plane_state); 1591 } 1592 1593 return true; 1594 } 1595 1596 static struct pipe_ctx *dcn30_find_split_pipe( 1597 struct dc *dc, 1598 struct dc_state *context, 1599 int old_index) 1600 { 1601 struct pipe_ctx *pipe = NULL; 1602 int i; 1603 1604 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1605 pipe = &context->res_ctx.pipe_ctx[old_index]; 1606 pipe->pipe_idx = old_index; 1607 } 1608 1609 if (!pipe) 1610 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1611 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1612 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1613 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1614 pipe = &context->res_ctx.pipe_ctx[i]; 1615 pipe->pipe_idx = i; 1616 break; 1617 } 1618 } 1619 } 1620 1621 /* 1622 * May need to fix pipes getting tossed from 1 opp to another on flip 1623 * Add for debugging transient underflow during topology updates: 1624 * ASSERT(pipe); 1625 */ 1626 if (!pipe) 1627 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1628 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1629 pipe = &context->res_ctx.pipe_ctx[i]; 1630 pipe->pipe_idx = i; 1631 break; 1632 } 1633 } 1634 1635 return pipe; 1636 } 1637 1638 noinline bool dcn30_internal_validate_bw( 1639 struct dc *dc, 1640 struct dc_state *context, 1641 display_e2e_pipe_params_st *pipes, 1642 int *pipe_cnt_out, 1643 int *vlevel_out, 1644 bool fast_validate) 1645 { 1646 bool out = false; 1647 bool repopulate_pipes = false; 1648 int split[MAX_PIPES] = { 0 }; 1649 bool merge[MAX_PIPES] = { false }; 1650 bool newly_split[MAX_PIPES] = { false }; 1651 int pipe_cnt, i, pipe_idx, vlevel; 1652 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1653 1654 ASSERT(pipes); 1655 if (!pipes) 1656 return false; 1657 1658 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1659 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1660 1661 if (!pipe_cnt) { 1662 out = true; 1663 goto validate_out; 1664 } 1665 1666 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1667 1668 if (!fast_validate) { 1669 /* 1670 * DML favors voltage over p-state, but we're more interested in 1671 * supporting p-state over voltage. We can't support p-state in 1672 * prefetch mode > 0 so try capping the prefetch mode to start. 1673 */ 1674 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1675 dm_allow_self_refresh_and_mclk_switch; 1676 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1677 /* This may adjust vlevel and maxMpcComb */ 1678 if (vlevel < context->bw_ctx.dml.soc.num_states) 1679 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1680 } 1681 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1682 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 1683 /* 1684 * If mode is unsupported or there's still no p-state support then 1685 * fall back to favoring voltage. 1686 * 1687 * We don't actually support prefetch mode 2, so require that we 1688 * at least support prefetch mode 1. 1689 */ 1690 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1691 dm_allow_self_refresh; 1692 1693 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1694 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1695 memset(split, 0, sizeof(split)); 1696 memset(merge, 0, sizeof(merge)); 1697 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1698 } 1699 } 1700 1701 dml_log_mode_support_params(&context->bw_ctx.dml); 1702 1703 if (vlevel == context->bw_ctx.dml.soc.num_states) 1704 goto validate_fail; 1705 1706 if (!dc->config.enable_windowed_mpo_odm) { 1707 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1708 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1709 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1710 1711 if (!pipe->stream) 1712 continue; 1713 1714 /* We only support full screen mpo with ODM */ 1715 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1716 && pipe->plane_state && mpo_pipe 1717 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1718 &pipe->plane_res.scl_data.recout, 1719 sizeof(struct rect)) != 0) { 1720 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1721 goto validate_fail; 1722 } 1723 pipe_idx++; 1724 } 1725 } 1726 1727 /* merge pipes if necessary */ 1728 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1729 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1730 1731 /*skip pipes that don't need merging*/ 1732 if (!merge[i]) 1733 continue; 1734 1735 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1736 if (pipe->prev_odm_pipe) { 1737 /*split off odm pipe*/ 1738 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1739 if (pipe->next_odm_pipe) 1740 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1741 1742 pipe->bottom_pipe = NULL; 1743 pipe->next_odm_pipe = NULL; 1744 pipe->plane_state = NULL; 1745 pipe->stream = NULL; 1746 pipe->top_pipe = NULL; 1747 pipe->prev_odm_pipe = NULL; 1748 if (pipe->stream_res.dsc) 1749 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1750 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1751 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1752 repopulate_pipes = true; 1753 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1754 struct pipe_ctx *top_pipe = pipe->top_pipe; 1755 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1756 1757 top_pipe->bottom_pipe = bottom_pipe; 1758 if (bottom_pipe) 1759 bottom_pipe->top_pipe = top_pipe; 1760 1761 pipe->top_pipe = NULL; 1762 pipe->bottom_pipe = NULL; 1763 pipe->plane_state = NULL; 1764 pipe->stream = NULL; 1765 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1766 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1767 repopulate_pipes = true; 1768 } else 1769 ASSERT(0); /* Should never try to merge master pipe */ 1770 1771 } 1772 1773 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1774 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1775 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1776 struct pipe_ctx *hsplit_pipe = NULL; 1777 bool odm; 1778 int old_index = -1; 1779 1780 if (!pipe->stream || newly_split[i]) 1781 continue; 1782 1783 pipe_idx++; 1784 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 1785 1786 if (!pipe->plane_state && !odm) 1787 continue; 1788 1789 if (split[i]) { 1790 if (odm) { 1791 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 1792 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1793 else if (old_pipe->next_odm_pipe) 1794 old_index = old_pipe->next_odm_pipe->pipe_idx; 1795 } else { 1796 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1797 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1798 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1799 else if (old_pipe->bottom_pipe && 1800 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1801 old_index = old_pipe->bottom_pipe->pipe_idx; 1802 } 1803 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 1804 ASSERT(hsplit_pipe); 1805 if (!hsplit_pipe) 1806 goto validate_fail; 1807 1808 if (!dcn30_split_stream_for_mpc_or_odm( 1809 dc, &context->res_ctx, 1810 pipe, hsplit_pipe, odm)) 1811 goto validate_fail; 1812 1813 newly_split[hsplit_pipe->pipe_idx] = true; 1814 repopulate_pipes = true; 1815 } 1816 if (split[i] == 4) { 1817 struct pipe_ctx *pipe_4to1; 1818 1819 if (odm && old_pipe->next_odm_pipe) 1820 old_index = old_pipe->next_odm_pipe->pipe_idx; 1821 else if (!odm && old_pipe->bottom_pipe && 1822 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1823 old_index = old_pipe->bottom_pipe->pipe_idx; 1824 else 1825 old_index = -1; 1826 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1827 ASSERT(pipe_4to1); 1828 if (!pipe_4to1) 1829 goto validate_fail; 1830 if (!dcn30_split_stream_for_mpc_or_odm( 1831 dc, &context->res_ctx, 1832 pipe, pipe_4to1, odm)) 1833 goto validate_fail; 1834 newly_split[pipe_4to1->pipe_idx] = true; 1835 1836 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 1837 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 1838 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1839 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1840 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 1841 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1842 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1843 else 1844 old_index = -1; 1845 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1846 ASSERT(pipe_4to1); 1847 if (!pipe_4to1) 1848 goto validate_fail; 1849 if (!dcn30_split_stream_for_mpc_or_odm( 1850 dc, &context->res_ctx, 1851 hsplit_pipe, pipe_4to1, odm)) 1852 goto validate_fail; 1853 newly_split[pipe_4to1->pipe_idx] = true; 1854 } 1855 if (odm) 1856 dcn20_build_mapped_resource(dc, context, pipe->stream); 1857 } 1858 1859 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1860 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1861 1862 if (pipe->plane_state) { 1863 if (!resource_build_scaling_params(pipe)) 1864 goto validate_fail; 1865 } 1866 } 1867 1868 /* Actual dsc count per stream dsc validation*/ 1869 if (!dcn20_validate_dsc(dc, context)) { 1870 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 1871 goto validate_fail; 1872 } 1873 1874 if (repopulate_pipes) 1875 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1876 *vlevel_out = vlevel; 1877 *pipe_cnt_out = pipe_cnt; 1878 1879 out = true; 1880 goto validate_out; 1881 1882 validate_fail: 1883 out = false; 1884 1885 validate_out: 1886 return out; 1887 } 1888 1889 static int get_refresh_rate(struct dc_state *context) 1890 { 1891 int refresh_rate = 0; 1892 int h_v_total = 0; 1893 struct dc_crtc_timing *timing = NULL; 1894 1895 if (context == NULL || context->streams[0] == NULL) 1896 return 0; 1897 1898 /* check if refresh rate at least 120hz */ 1899 timing = &context->streams[0]->timing; 1900 if (timing == NULL) 1901 return 0; 1902 1903 h_v_total = timing->h_total * timing->v_total; 1904 if (h_v_total == 0) 1905 return 0; 1906 1907 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; 1908 return refresh_rate; 1909 } 1910 1911 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds 1912 /* 1913 * Scaling factor for v_blank stretch calculations considering timing in 1914 * micro-seconds and pixel clock in 100hz. 1915 * Note: the parenthesis are necessary to ensure the correct order of 1916 * operation where V_SCALE is used. 1917 */ 1918 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) 1919 1920 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) 1921 { 1922 struct dc_crtc_timing *timing = NULL; 1923 uint32_t sec_per_100_lines; 1924 uint32_t max_v_blank; 1925 uint32_t curr_v_blank; 1926 uint32_t v_stretch_max; 1927 uint32_t stretched_frame_pix_cnt; 1928 uint32_t scaled_stretched_frame_pix_cnt; 1929 uint32_t scaled_refresh_rate; 1930 1931 if (context == NULL || context->streams[0] == NULL) 1932 return 0; 1933 1934 /* check if refresh rate at least 120hz */ 1935 timing = &context->streams[0]->timing; 1936 if (timing == NULL) 1937 return 0; 1938 1939 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; 1940 max_v_blank = sec_per_100_lines / V_SCALE + 1; 1941 curr_v_blank = timing->v_total - timing->v_addressable; 1942 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); 1943 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; 1944 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; 1945 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; 1946 1947 return scaled_refresh_rate; 1948 } 1949 1950 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) 1951 { 1952 int refresh_rate_max_stretch_100hz; 1953 int min_refresh_100hz; 1954 1955 if (context == NULL || context->streams[0] == NULL) 1956 return false; 1957 1958 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); 1959 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; 1960 1961 if (refresh_rate_max_stretch_100hz < min_refresh_100hz) 1962 return false; 1963 1964 return true; 1965 } 1966 1967 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 1968 { 1969 int refresh_rate = 0; 1970 const int minimum_refreshrate_supported = 120; 1971 1972 if (context == NULL || context->streams[0] == NULL) 1973 return false; 1974 1975 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) 1976 return false; 1977 1978 if (dc->debug.disable_fams) 1979 return false; 1980 1981 if (!dc->caps.dmub_caps.mclk_sw) 1982 return false; 1983 1984 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) 1985 return false; 1986 1987 /* more then 1 monitor connected */ 1988 if (context->stream_count != 1) 1989 return false; 1990 1991 refresh_rate = get_refresh_rate(context); 1992 if (refresh_rate < minimum_refreshrate_supported) 1993 return false; 1994 1995 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) 1996 return false; 1997 1998 // check if freesync enabled 1999 if (!context->streams[0]->allow_freesync) 2000 return false; 2001 2002 if (context->streams[0]->vrr_active_variable) 2003 return false; 2004 2005 return true; 2006 } 2007 2008 /* 2009 * set up FPO watermarks, pstate, dram latency 2010 */ 2011 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 2012 { 2013 ASSERT(dc != NULL && context != NULL); 2014 if (dc == NULL || context == NULL) 2015 return; 2016 2017 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ 2018 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; 2019 } 2020 2021 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2022 { 2023 DC_FP_START(); 2024 dcn30_fpu_update_soc_for_wm_a(dc, context); 2025 DC_FP_END(); 2026 } 2027 2028 void dcn30_calculate_wm_and_dlg( 2029 struct dc *dc, struct dc_state *context, 2030 display_e2e_pipe_params_st *pipes, 2031 int pipe_cnt, 2032 int vlevel) 2033 { 2034 DC_FP_START(); 2035 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2036 DC_FP_END(); 2037 } 2038 2039 bool dcn30_validate_bandwidth(struct dc *dc, 2040 struct dc_state *context, 2041 bool fast_validate) 2042 { 2043 bool out = false; 2044 2045 BW_VAL_TRACE_SETUP(); 2046 2047 int vlevel = 0; 2048 int pipe_cnt = 0; 2049 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2050 DC_LOGGER_INIT(dc->ctx->logger); 2051 2052 BW_VAL_TRACE_COUNT(); 2053 2054 DC_FP_START(); 2055 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2056 DC_FP_END(); 2057 2058 if (pipe_cnt == 0) 2059 goto validate_out; 2060 2061 if (!out) 2062 goto validate_fail; 2063 2064 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2065 2066 if (fast_validate) { 2067 BW_VAL_TRACE_SKIP(fast); 2068 goto validate_out; 2069 } 2070 2071 DC_FP_START(); 2072 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2073 DC_FP_END(); 2074 2075 BW_VAL_TRACE_END_WATERMARKS(); 2076 2077 goto validate_out; 2078 2079 validate_fail: 2080 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2081 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2082 2083 BW_VAL_TRACE_SKIP(fail); 2084 out = false; 2085 2086 validate_out: 2087 kfree(pipes); 2088 2089 BW_VAL_TRACE_FINISH(); 2090 2091 return out; 2092 } 2093 2094 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2095 { 2096 unsigned int i, j; 2097 unsigned int num_states = 0; 2098 2099 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2100 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2101 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2102 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2103 2104 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2105 unsigned int num_dcfclk_sta_targets = 4; 2106 unsigned int num_uclk_states; 2107 2108 struct dc_bounding_box_max_clk dcn30_bb_max_clk; 2109 2110 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); 2111 2112 if (dc->ctx->dc_bios->vram_info.num_chans) 2113 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2114 2115 DC_FP_START(); 2116 dcn30_fpu_update_dram_channel_width_bytes(dc); 2117 DC_FP_END(); 2118 2119 if (bw_params->clk_table.entries[0].memclk_mhz) { 2120 2121 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2122 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) 2123 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2124 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) 2125 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2126 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) 2127 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2128 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) 2129 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2130 } 2131 2132 DC_FP_START(); 2133 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); 2134 DC_FP_END(); 2135 2136 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2137 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2138 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; 2139 num_dcfclk_sta_targets++; 2140 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2141 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2142 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2143 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { 2144 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; 2145 break; 2146 } 2147 } 2148 // Update size of array since we "removed" duplicates 2149 num_dcfclk_sta_targets = i + 1; 2150 } 2151 2152 num_uclk_states = bw_params->clk_table.num_entries; 2153 2154 // Calculate optimal dcfclk for each uclk 2155 for (i = 0; i < num_uclk_states; i++) { 2156 DC_FP_START(); 2157 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2158 &optimal_dcfclk_for_uclk[i], NULL); 2159 DC_FP_END(); 2160 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2161 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2162 } 2163 } 2164 2165 // Calculate optimal uclk for each dcfclk sta target 2166 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2167 for (j = 0; j < num_uclk_states; j++) { 2168 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2169 optimal_uclk_for_dcfclk_sta_targets[i] = 2170 bw_params->clk_table.entries[j].memclk_mhz * 16; 2171 break; 2172 } 2173 } 2174 } 2175 2176 i = 0; 2177 j = 0; 2178 // create the final dcfclk and uclk table 2179 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2180 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2181 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2182 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2183 } else { 2184 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2185 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2186 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2187 } else { 2188 j = num_uclk_states; 2189 } 2190 } 2191 } 2192 2193 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2194 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2195 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2196 } 2197 2198 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2199 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2200 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2201 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2202 } 2203 2204 dcn3_0_soc.num_states = num_states; 2205 DC_FP_START(); 2206 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); 2207 DC_FP_END(); 2208 } 2209 } 2210 2211 static const struct resource_funcs dcn30_res_pool_funcs = { 2212 .destroy = dcn30_destroy_resource_pool, 2213 .link_enc_create = dcn30_link_encoder_create, 2214 .panel_cntl_create = dcn30_panel_cntl_create, 2215 .validate_bandwidth = dcn30_validate_bandwidth, 2216 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2217 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2218 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2219 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2220 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2221 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2222 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2223 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2224 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2225 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2226 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2227 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2228 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2229 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2230 }; 2231 2232 #define CTX ctx 2233 2234 #define REG(reg_name) \ 2235 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2236 2237 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2238 { 2239 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2240 /* Support for max 6 pipes */ 2241 value = value & 0x3f; 2242 return value; 2243 } 2244 2245 static bool dcn30_resource_construct( 2246 uint8_t num_virtual_links, 2247 struct dc *dc, 2248 struct dcn30_resource_pool *pool) 2249 { 2250 int i; 2251 struct dc_context *ctx = dc->ctx; 2252 struct irq_service_init_data init_data; 2253 struct ddc_service_init_data ddc_init_data = {0}; 2254 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2255 uint32_t num_pipes = 0; 2256 2257 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2258 BREAK_TO_DEBUGGER(); 2259 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2260 /* fault to single pipe */ 2261 pipe_fuses = 0x3e; 2262 } 2263 2264 DC_FP_START(); 2265 2266 ctx->dc_bios->regs = &bios_regs; 2267 2268 pool->base.res_cap = &res_cap_dcn3; 2269 2270 pool->base.funcs = &dcn30_res_pool_funcs; 2271 2272 /************************************************* 2273 * Resource + asic cap harcoding * 2274 *************************************************/ 2275 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2276 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2277 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2278 dc->caps.max_downscale_ratio = 600; 2279 dc->caps.i2c_speed_in_khz = 100; 2280 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2281 dc->caps.max_cursor_size = 256; 2282 dc->caps.min_horizontal_blanking_period = 80; 2283 dc->caps.dmdata_alloc_size = 2048; 2284 dc->caps.mall_size_per_mem_channel = 8; 2285 /* total size = mall per channel * num channels * 1024 * 1024 */ 2286 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2287 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2288 2289 dc->caps.max_slave_planes = 2; 2290 dc->caps.max_slave_yuv_planes = 2; 2291 dc->caps.max_slave_rgb_planes = 2; 2292 dc->caps.post_blend_color_processing = true; 2293 dc->caps.force_dp_tps4_for_cp2520 = true; 2294 dc->caps.extended_aux_timeout_support = true; 2295 dc->caps.dmcub_support = true; 2296 2297 /* Color pipeline capabilities */ 2298 dc->caps.color.dpp.dcn_arch = 1; 2299 dc->caps.color.dpp.input_lut_shared = 0; 2300 dc->caps.color.dpp.icsc = 1; 2301 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2302 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2303 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2304 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2305 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2306 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2307 dc->caps.color.dpp.post_csc = 1; 2308 dc->caps.color.dpp.gamma_corr = 1; 2309 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2310 2311 dc->caps.color.dpp.hw_3d_lut = 1; 2312 dc->caps.color.dpp.ogam_ram = 1; 2313 // no OGAM ROM on DCN3 2314 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2315 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2316 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2317 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2318 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2319 dc->caps.color.dpp.ocsc = 0; 2320 2321 dc->caps.color.mpc.gamut_remap = 1; 2322 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2323 dc->caps.color.mpc.ogam_ram = 1; 2324 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2325 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2326 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2327 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2328 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2329 dc->caps.color.mpc.ocsc = 1; 2330 2331 dc->caps.dp_hdmi21_pcon_support = true; 2332 2333 /* read VBIOS LTTPR caps */ 2334 { 2335 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2336 enum bp_result bp_query_result; 2337 uint8_t is_vbios_lttpr_enable = 0; 2338 2339 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2340 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2341 } 2342 2343 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2344 enum bp_result bp_query_result; 2345 uint8_t is_vbios_interop_enabled = 0; 2346 2347 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2348 &is_vbios_interop_enabled); 2349 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2350 } 2351 } 2352 2353 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2354 dc->debug = debug_defaults_drv; 2355 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2356 dc->debug = debug_defaults_diags; 2357 } else 2358 dc->debug = debug_defaults_diags; 2359 // Init the vm_helper 2360 if (dc->vm_helper) 2361 vm_helper_init(dc->vm_helper, 16); 2362 2363 /************************************************* 2364 * Create resources * 2365 *************************************************/ 2366 2367 /* Clock Sources for Pixel Clock*/ 2368 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2369 dcn30_clock_source_create(ctx, ctx->dc_bios, 2370 CLOCK_SOURCE_COMBO_PHY_PLL0, 2371 &clk_src_regs[0], false); 2372 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2373 dcn30_clock_source_create(ctx, ctx->dc_bios, 2374 CLOCK_SOURCE_COMBO_PHY_PLL1, 2375 &clk_src_regs[1], false); 2376 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2377 dcn30_clock_source_create(ctx, ctx->dc_bios, 2378 CLOCK_SOURCE_COMBO_PHY_PLL2, 2379 &clk_src_regs[2], false); 2380 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2381 dcn30_clock_source_create(ctx, ctx->dc_bios, 2382 CLOCK_SOURCE_COMBO_PHY_PLL3, 2383 &clk_src_regs[3], false); 2384 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2385 dcn30_clock_source_create(ctx, ctx->dc_bios, 2386 CLOCK_SOURCE_COMBO_PHY_PLL4, 2387 &clk_src_regs[4], false); 2388 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2389 dcn30_clock_source_create(ctx, ctx->dc_bios, 2390 CLOCK_SOURCE_COMBO_PHY_PLL5, 2391 &clk_src_regs[5], false); 2392 2393 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2394 2395 /* todo: not reuse phy_pll registers */ 2396 pool->base.dp_clock_source = 2397 dcn30_clock_source_create(ctx, ctx->dc_bios, 2398 CLOCK_SOURCE_ID_DP_DTO, 2399 &clk_src_regs[0], true); 2400 2401 for (i = 0; i < pool->base.clk_src_count; i++) { 2402 if (pool->base.clock_sources[i] == NULL) { 2403 dm_error("DC: failed to create clock sources!\n"); 2404 BREAK_TO_DEBUGGER(); 2405 goto create_fail; 2406 } 2407 } 2408 2409 /* DCCG */ 2410 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2411 if (pool->base.dccg == NULL) { 2412 dm_error("DC: failed to create dccg!\n"); 2413 BREAK_TO_DEBUGGER(); 2414 goto create_fail; 2415 } 2416 2417 /* PP Lib and SMU interfaces */ 2418 init_soc_bounding_box(dc, pool); 2419 2420 num_pipes = dcn3_0_ip.max_num_dpp; 2421 2422 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2423 if (pipe_fuses & 1 << i) 2424 num_pipes--; 2425 2426 dcn3_0_ip.max_num_dpp = num_pipes; 2427 dcn3_0_ip.max_num_otg = num_pipes; 2428 2429 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2430 2431 /* IRQ */ 2432 init_data.ctx = dc->ctx; 2433 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2434 if (!pool->base.irqs) 2435 goto create_fail; 2436 2437 /* HUBBUB */ 2438 pool->base.hubbub = dcn30_hubbub_create(ctx); 2439 if (pool->base.hubbub == NULL) { 2440 BREAK_TO_DEBUGGER(); 2441 dm_error("DC: failed to create hubbub!\n"); 2442 goto create_fail; 2443 } 2444 2445 /* HUBPs, DPPs, OPPs and TGs */ 2446 for (i = 0; i < pool->base.pipe_count; i++) { 2447 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2448 if (pool->base.hubps[i] == NULL) { 2449 BREAK_TO_DEBUGGER(); 2450 dm_error( 2451 "DC: failed to create hubps!\n"); 2452 goto create_fail; 2453 } 2454 2455 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2456 if (pool->base.dpps[i] == NULL) { 2457 BREAK_TO_DEBUGGER(); 2458 dm_error( 2459 "DC: failed to create dpps!\n"); 2460 goto create_fail; 2461 } 2462 } 2463 2464 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2465 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2466 if (pool->base.opps[i] == NULL) { 2467 BREAK_TO_DEBUGGER(); 2468 dm_error( 2469 "DC: failed to create output pixel processor!\n"); 2470 goto create_fail; 2471 } 2472 } 2473 2474 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2475 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2476 ctx, i); 2477 if (pool->base.timing_generators[i] == NULL) { 2478 BREAK_TO_DEBUGGER(); 2479 dm_error("DC: failed to create tg!\n"); 2480 goto create_fail; 2481 } 2482 } 2483 pool->base.timing_generator_count = i; 2484 /* PSR */ 2485 pool->base.psr = dmub_psr_create(ctx); 2486 2487 if (pool->base.psr == NULL) { 2488 dm_error("DC: failed to create PSR obj!\n"); 2489 BREAK_TO_DEBUGGER(); 2490 goto create_fail; 2491 } 2492 2493 /* ABM */ 2494 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2495 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2496 &abm_regs[i], 2497 &abm_shift, 2498 &abm_mask); 2499 if (pool->base.multiple_abms[i] == NULL) { 2500 dm_error("DC: failed to create abm for pipe %d!\n", i); 2501 BREAK_TO_DEBUGGER(); 2502 goto create_fail; 2503 } 2504 } 2505 /* MPC and DSC */ 2506 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2507 if (pool->base.mpc == NULL) { 2508 BREAK_TO_DEBUGGER(); 2509 dm_error("DC: failed to create mpc!\n"); 2510 goto create_fail; 2511 } 2512 2513 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2514 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2515 if (pool->base.dscs[i] == NULL) { 2516 BREAK_TO_DEBUGGER(); 2517 dm_error("DC: failed to create display stream compressor %d!\n", i); 2518 goto create_fail; 2519 } 2520 } 2521 2522 /* DWB and MMHUBBUB */ 2523 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2524 BREAK_TO_DEBUGGER(); 2525 dm_error("DC: failed to create dwbc!\n"); 2526 goto create_fail; 2527 } 2528 2529 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2530 BREAK_TO_DEBUGGER(); 2531 dm_error("DC: failed to create mcif_wb!\n"); 2532 goto create_fail; 2533 } 2534 2535 /* AUX and I2C */ 2536 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2537 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2538 if (pool->base.engines[i] == NULL) { 2539 BREAK_TO_DEBUGGER(); 2540 dm_error( 2541 "DC:failed to create aux engine!!\n"); 2542 goto create_fail; 2543 } 2544 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2545 if (pool->base.hw_i2cs[i] == NULL) { 2546 BREAK_TO_DEBUGGER(); 2547 dm_error( 2548 "DC:failed to create hw i2c!!\n"); 2549 goto create_fail; 2550 } 2551 pool->base.sw_i2cs[i] = NULL; 2552 } 2553 2554 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2555 if (!resource_construct(num_virtual_links, dc, &pool->base, 2556 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2557 &res_create_funcs : &res_create_maximus_funcs))) 2558 goto create_fail; 2559 2560 /* HW Sequencer and Plane caps */ 2561 dcn30_hw_sequencer_construct(dc); 2562 2563 dc->caps.max_planes = pool->base.pipe_count; 2564 2565 for (i = 0; i < dc->caps.max_planes; ++i) 2566 dc->caps.planes[i] = plane_cap; 2567 2568 dc->cap_funcs = cap_funcs; 2569 2570 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2571 ddc_init_data.ctx = dc->ctx; 2572 ddc_init_data.link = NULL; 2573 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2574 ddc_init_data.id.enum_id = 0; 2575 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2576 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2577 } else { 2578 pool->base.oem_device = NULL; 2579 } 2580 2581 DC_FP_END(); 2582 2583 return true; 2584 2585 create_fail: 2586 2587 DC_FP_END(); 2588 dcn30_resource_destruct(pool); 2589 2590 return false; 2591 } 2592 2593 struct resource_pool *dcn30_create_resource_pool( 2594 const struct dc_init_data *init_data, 2595 struct dc *dc) 2596 { 2597 struct dcn30_resource_pool *pool = 2598 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2599 2600 if (!pool) 2601 return NULL; 2602 2603 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2604 return &pool->base; 2605 2606 BREAK_TO_DEBUGGER(); 2607 kfree(pool); 2608 return NULL; 2609 } 2610