1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "dc_link_ddc.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dcn/dpcs_3_0_0_offset.h" 76 #include "dcn/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/display_mode_vba_30.h" 88 #include "vm_helper.h" 89 #include "dcn20/dcn20_vmid.h" 90 #include "amdgpu_socbb.h" 91 92 #define DC_LOGGER_INIT(logger) 93 94 struct _vcs_dpi_ip_params_st dcn3_0_ip = { 95 .use_min_dcfclk = 1, 96 .clamp_min_dcfclk = 0, 97 .odm_capable = 1, 98 .gpuvm_enable = 0, 99 .hostvm_enable = 0, 100 .gpuvm_max_page_table_levels = 4, 101 .hostvm_max_page_table_levels = 4, 102 .hostvm_cached_page_table_levels = 0, 103 .pte_group_size_bytes = 2048, 104 .num_dsc = 6, 105 .rob_buffer_size_kbytes = 184, 106 .det_buffer_size_kbytes = 184, 107 .dpte_buffer_size_in_pte_reqs_luma = 84, 108 .pde_proc_buffer_size_64k_reqs = 48, 109 .dpp_output_buffer_pixels = 2560, 110 .opp_output_buffer_lines = 1, 111 .pixel_chunk_size_kbytes = 8, 112 .pte_enable = 1, 113 .max_page_table_levels = 2, 114 .pte_chunk_size_kbytes = 2, // ? 115 .meta_chunk_size_kbytes = 2, 116 .writeback_chunk_size_kbytes = 8, 117 .line_buffer_size_bits = 789504, 118 .is_line_buffer_bpp_fixed = 0, // ? 119 .line_buffer_fixed_bpp = 0, // ? 120 .dcc_supported = true, 121 .writeback_interface_buffer_size_kbytes = 90, 122 .writeback_line_buffer_buffer_size = 0, 123 .max_line_buffer_lines = 12, 124 .writeback_luma_buffer_size_kbytes = 12, // writeback_line_buffer_buffer_size = 656640 125 .writeback_chroma_buffer_size_kbytes = 8, 126 .writeback_chroma_line_buffer_width_pixels = 4, 127 .writeback_max_hscl_ratio = 1, 128 .writeback_max_vscl_ratio = 1, 129 .writeback_min_hscl_ratio = 1, 130 .writeback_min_vscl_ratio = 1, 131 .writeback_max_hscl_taps = 1, 132 .writeback_max_vscl_taps = 1, 133 .writeback_line_buffer_luma_buffer_size = 0, 134 .writeback_line_buffer_chroma_buffer_size = 14643, 135 .cursor_buffer_size = 8, 136 .cursor_chunk_size = 2, 137 .max_num_otg = 6, 138 .max_num_dpp = 6, 139 .max_num_wb = 1, 140 .max_dchub_pscl_bw_pix_per_clk = 4, 141 .max_pscl_lb_bw_pix_per_clk = 2, 142 .max_lb_vscl_bw_pix_per_clk = 4, 143 .max_vscl_hscl_bw_pix_per_clk = 4, 144 .max_hscl_ratio = 6, 145 .max_vscl_ratio = 6, 146 .hscl_mults = 4, 147 .vscl_mults = 4, 148 .max_hscl_taps = 8, 149 .max_vscl_taps = 8, 150 .dispclk_ramp_margin_percent = 1, 151 .underscan_factor = 1.11, 152 .min_vblank_lines = 32, 153 .dppclk_delay_subtotal = 46, 154 .dynamic_metadata_vm_enabled = true, 155 .dppclk_delay_scl_lb_only = 16, 156 .dppclk_delay_scl = 50, 157 .dppclk_delay_cnvc_formatter = 27, 158 .dppclk_delay_cnvc_cursor = 6, 159 .dispclk_delay_subtotal = 119, 160 .dcfclk_cstate_latency = 5.2, // SRExitTime 161 .max_inter_dcn_tile_repeaters = 8, 162 .odm_combine_4to1_supported = true, 163 164 .xfc_supported = false, 165 .xfc_fill_bw_overhead_percent = 10.0, 166 .xfc_fill_constant_bytes = 0, 167 .gfx7_compat_tiling_supported = 0, 168 .number_of_cursors = 1, 169 }; 170 171 struct _vcs_dpi_soc_bounding_box_st dcn3_0_soc = { 172 .clock_limits = { 173 { 174 .state = 0, 175 .dispclk_mhz = 562.0, 176 .dppclk_mhz = 300.0, 177 .phyclk_mhz = 300.0, 178 .phyclk_d18_mhz = 667.0, 179 .dscclk_mhz = 405.6, 180 }, 181 }, 182 .min_dcfclk = 500.0, /* TODO: set this to actual min DCFCLK */ 183 .num_states = 1, 184 .sr_exit_time_us = 12, 185 .sr_enter_plus_exit_time_us = 20, 186 .urgent_latency_us = 4.0, 187 .urgent_latency_pixel_data_only_us = 4.0, 188 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0, 189 .urgent_latency_vm_data_only_us = 4.0, 190 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096, 191 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096, 192 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096, 193 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 80.0, 194 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, 195 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 40.0, 196 .max_avg_sdp_bw_use_normal_percent = 60.0, 197 .max_avg_dram_bw_use_normal_percent = 40.0, 198 .writeback_latency_us = 12.0, 199 .max_request_size_bytes = 256, 200 .fabric_datapath_to_dcn_data_return_bytes = 64, 201 .dcn_downspread_percent = 0.5, 202 .downspread_percent = 0.38, 203 .dram_page_open_time_ns = 50.0, 204 .dram_rw_turnaround_time_ns = 17.5, 205 .dram_return_buffer_per_channel_bytes = 8192, 206 .round_trip_ping_latency_dcfclk_cycles = 191, 207 .urgent_out_of_order_return_per_channel_bytes = 4096, 208 .channel_interleave_bytes = 256, 209 .num_banks = 8, 210 .gpuvm_min_page_size_bytes = 4096, 211 .hostvm_min_page_size_bytes = 4096, 212 .dram_clock_change_latency_us = 404, 213 .dummy_pstate_latency_us = 5, 214 .writeback_dram_clock_change_latency_us = 23.0, 215 .return_bus_width_bytes = 64, 216 .dispclk_dppclk_vco_speed_mhz = 3650, 217 .xfc_bus_transport_time_us = 20, // ? 218 .xfc_xbuf_latency_tolerance_us = 4, // ? 219 .use_urgent_burst_bw = 1, // ? 220 .do_urgent_latency_adjustment = true, 221 .urgent_latency_adjustment_fabric_clock_component_us = 1.0, 222 .urgent_latency_adjustment_fabric_clock_reference_mhz = 1000, 223 }; 224 225 enum dcn30_clk_src_array_id { 226 DCN30_CLK_SRC_PLL0, 227 DCN30_CLK_SRC_PLL1, 228 DCN30_CLK_SRC_PLL2, 229 DCN30_CLK_SRC_PLL3, 230 DCN30_CLK_SRC_PLL4, 231 DCN30_CLK_SRC_PLL5, 232 DCN30_CLK_SRC_TOTAL 233 }; 234 235 /* begin ********************* 236 * macros to expend register list macro defined in HW object header file 237 */ 238 239 /* DCN */ 240 /* TODO awful hack. fixup dcn20_dwb.h */ 241 #undef BASE_INNER 242 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 243 244 #define BASE(seg) BASE_INNER(seg) 245 246 #define SR(reg_name)\ 247 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 248 mm ## reg_name 249 250 #define SRI(reg_name, block, id)\ 251 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 252 mm ## block ## id ## _ ## reg_name 253 254 #define SRI2(reg_name, block, id)\ 255 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 256 mm ## reg_name 257 258 #define SRIR(var_name, reg_name, block, id)\ 259 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 260 mm ## block ## id ## _ ## reg_name 261 262 #define SRII(reg_name, block, id)\ 263 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 264 mm ## block ## id ## _ ## reg_name 265 266 #define SRII_MPC_RMU(reg_name, block, id)\ 267 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 268 mm ## block ## id ## _ ## reg_name 269 270 #define SRII_DWB(reg_name, temp_name, block, id)\ 271 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 272 mm ## block ## id ## _ ## temp_name 273 274 #define DCCG_SRII(reg_name, block, id)\ 275 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 276 mm ## block ## id ## _ ## reg_name 277 278 #define VUPDATE_SRII(reg_name, block, id)\ 279 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 280 mm ## reg_name ## _ ## block ## id 281 282 /* NBIO */ 283 #define NBIO_BASE_INNER(seg) \ 284 NBIO_BASE__INST0_SEG ## seg 285 286 #define NBIO_BASE(seg) \ 287 NBIO_BASE_INNER(seg) 288 289 #define NBIO_SR(reg_name)\ 290 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 291 mm ## reg_name 292 293 /* MMHUB */ 294 #define MMHUB_BASE_INNER(seg) \ 295 MMHUB_BASE__INST0_SEG ## seg 296 297 #define MMHUB_BASE(seg) \ 298 MMHUB_BASE_INNER(seg) 299 300 #define MMHUB_SR(reg_name)\ 301 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 302 mmMM ## reg_name 303 304 /* CLOCK */ 305 #define CLK_BASE_INNER(seg) \ 306 CLK_BASE__INST0_SEG ## seg 307 308 #define CLK_BASE(seg) \ 309 CLK_BASE_INNER(seg) 310 311 #define CLK_SRI(reg_name, block, inst)\ 312 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 313 mm ## block ## _ ## inst ## _ ## reg_name 314 315 316 static const struct bios_registers bios_regs = { 317 NBIO_SR(BIOS_SCRATCH_3), 318 NBIO_SR(BIOS_SCRATCH_6) 319 }; 320 321 #define clk_src_regs(index, pllid)\ 322 [index] = {\ 323 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 324 } 325 326 static const struct dce110_clk_src_regs clk_src_regs[] = { 327 clk_src_regs(0, A), 328 clk_src_regs(1, B), 329 clk_src_regs(2, C), 330 clk_src_regs(3, D), 331 clk_src_regs(4, E), 332 clk_src_regs(5, F) 333 }; 334 335 static const struct dce110_clk_src_shift cs_shift = { 336 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 337 }; 338 339 static const struct dce110_clk_src_mask cs_mask = { 340 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 341 }; 342 343 #define abm_regs(id)\ 344 [id] = {\ 345 ABM_DCN30_REG_LIST(id)\ 346 } 347 348 static const struct dce_abm_registers abm_regs[] = { 349 abm_regs(0), 350 abm_regs(1), 351 abm_regs(2), 352 abm_regs(3), 353 abm_regs(4), 354 abm_regs(5), 355 }; 356 357 static const struct dce_abm_shift abm_shift = { 358 ABM_MASK_SH_LIST_DCN30(__SHIFT) 359 }; 360 361 static const struct dce_abm_mask abm_mask = { 362 ABM_MASK_SH_LIST_DCN30(_MASK) 363 }; 364 365 366 367 #define audio_regs(id)\ 368 [id] = {\ 369 AUD_COMMON_REG_LIST(id)\ 370 } 371 372 static const struct dce_audio_registers audio_regs[] = { 373 audio_regs(0), 374 audio_regs(1), 375 audio_regs(2), 376 audio_regs(3), 377 audio_regs(4), 378 audio_regs(5), 379 audio_regs(6) 380 }; 381 382 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 383 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 384 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 385 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 386 387 static const struct dce_audio_shift audio_shift = { 388 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 389 }; 390 391 static const struct dce_audio_mask audio_mask = { 392 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 393 }; 394 395 #define vpg_regs(id)\ 396 [id] = {\ 397 VPG_DCN3_REG_LIST(id)\ 398 } 399 400 static const struct dcn30_vpg_registers vpg_regs[] = { 401 vpg_regs(0), 402 vpg_regs(1), 403 vpg_regs(2), 404 vpg_regs(3), 405 vpg_regs(4), 406 vpg_regs(5), 407 vpg_regs(6), 408 }; 409 410 static const struct dcn30_vpg_shift vpg_shift = { 411 DCN3_VPG_MASK_SH_LIST(__SHIFT) 412 }; 413 414 static const struct dcn30_vpg_mask vpg_mask = { 415 DCN3_VPG_MASK_SH_LIST(_MASK) 416 }; 417 418 #define afmt_regs(id)\ 419 [id] = {\ 420 AFMT_DCN3_REG_LIST(id)\ 421 } 422 423 static const struct dcn30_afmt_registers afmt_regs[] = { 424 afmt_regs(0), 425 afmt_regs(1), 426 afmt_regs(2), 427 afmt_regs(3), 428 afmt_regs(4), 429 afmt_regs(5), 430 afmt_regs(6), 431 }; 432 433 static const struct dcn30_afmt_shift afmt_shift = { 434 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 435 }; 436 437 static const struct dcn30_afmt_mask afmt_mask = { 438 DCN3_AFMT_MASK_SH_LIST(_MASK) 439 }; 440 441 #define stream_enc_regs(id)\ 442 [id] = {\ 443 SE_DCN3_REG_LIST(id)\ 444 } 445 446 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 447 stream_enc_regs(0), 448 stream_enc_regs(1), 449 stream_enc_regs(2), 450 stream_enc_regs(3), 451 stream_enc_regs(4), 452 stream_enc_regs(5) 453 }; 454 455 static const struct dcn10_stream_encoder_shift se_shift = { 456 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 457 }; 458 459 static const struct dcn10_stream_encoder_mask se_mask = { 460 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 461 }; 462 463 464 #define aux_regs(id)\ 465 [id] = {\ 466 DCN2_AUX_REG_LIST(id)\ 467 } 468 469 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 470 aux_regs(0), 471 aux_regs(1), 472 aux_regs(2), 473 aux_regs(3), 474 aux_regs(4), 475 aux_regs(5) 476 }; 477 478 #define hpd_regs(id)\ 479 [id] = {\ 480 HPD_REG_LIST(id)\ 481 } 482 483 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 484 hpd_regs(0), 485 hpd_regs(1), 486 hpd_regs(2), 487 hpd_regs(3), 488 hpd_regs(4), 489 hpd_regs(5) 490 }; 491 492 #define link_regs(id, phyid)\ 493 [id] = {\ 494 LE_DCN3_REG_LIST(id), \ 495 UNIPHY_DCN2_REG_LIST(phyid), \ 496 DPCS_DCN2_REG_LIST(id), \ 497 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 498 } 499 500 static const struct dce110_aux_registers_shift aux_shift = { 501 DCN_AUX_MASK_SH_LIST(__SHIFT) 502 }; 503 504 static const struct dce110_aux_registers_mask aux_mask = { 505 DCN_AUX_MASK_SH_LIST(_MASK) 506 }; 507 508 static const struct dcn10_link_enc_registers link_enc_regs[] = { 509 link_regs(0, A), 510 link_regs(1, B), 511 link_regs(2, C), 512 link_regs(3, D), 513 link_regs(4, E), 514 link_regs(5, F) 515 }; 516 517 static const struct dcn10_link_enc_shift le_shift = { 518 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 519 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 520 }; 521 522 static const struct dcn10_link_enc_mask le_mask = { 523 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 524 DPCS_DCN2_MASK_SH_LIST(_MASK) 525 }; 526 527 528 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 529 { DCN_PANEL_CNTL_REG_LIST() } 530 }; 531 532 static const struct dce_panel_cntl_shift panel_cntl_shift = { 533 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 534 }; 535 536 static const struct dce_panel_cntl_mask panel_cntl_mask = { 537 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 538 }; 539 540 #define dpp_regs(id)\ 541 [id] = {\ 542 DPP_REG_LIST_DCN30(id),\ 543 } 544 545 static const struct dcn3_dpp_registers dpp_regs[] = { 546 dpp_regs(0), 547 dpp_regs(1), 548 dpp_regs(2), 549 dpp_regs(3), 550 dpp_regs(4), 551 dpp_regs(5), 552 }; 553 554 static const struct dcn3_dpp_shift tf_shift = { 555 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 556 }; 557 558 static const struct dcn3_dpp_mask tf_mask = { 559 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 560 }; 561 562 #define opp_regs(id)\ 563 [id] = {\ 564 OPP_REG_LIST_DCN30(id),\ 565 } 566 567 static const struct dcn20_opp_registers opp_regs[] = { 568 opp_regs(0), 569 opp_regs(1), 570 opp_regs(2), 571 opp_regs(3), 572 opp_regs(4), 573 opp_regs(5) 574 }; 575 576 static const struct dcn20_opp_shift opp_shift = { 577 OPP_MASK_SH_LIST_DCN20(__SHIFT) 578 }; 579 580 static const struct dcn20_opp_mask opp_mask = { 581 OPP_MASK_SH_LIST_DCN20(_MASK) 582 }; 583 584 #define aux_engine_regs(id)\ 585 [id] = {\ 586 AUX_COMMON_REG_LIST0(id), \ 587 .AUXN_IMPCAL = 0, \ 588 .AUXP_IMPCAL = 0, \ 589 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 590 } 591 592 static const struct dce110_aux_registers aux_engine_regs[] = { 593 aux_engine_regs(0), 594 aux_engine_regs(1), 595 aux_engine_regs(2), 596 aux_engine_regs(3), 597 aux_engine_regs(4), 598 aux_engine_regs(5) 599 }; 600 601 #define dwbc_regs_dcn3(id)\ 602 [id] = {\ 603 DWBC_COMMON_REG_LIST_DCN30(id),\ 604 } 605 606 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 607 dwbc_regs_dcn3(0), 608 }; 609 610 static const struct dcn30_dwbc_shift dwbc30_shift = { 611 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 612 }; 613 614 static const struct dcn30_dwbc_mask dwbc30_mask = { 615 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 616 }; 617 618 #define mcif_wb_regs_dcn3(id)\ 619 [id] = {\ 620 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 621 } 622 623 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 624 mcif_wb_regs_dcn3(0) 625 }; 626 627 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 628 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 629 }; 630 631 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 632 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 633 }; 634 635 #define dsc_regsDCN20(id)\ 636 [id] = {\ 637 DSC_REG_LIST_DCN20(id)\ 638 } 639 640 static const struct dcn20_dsc_registers dsc_regs[] = { 641 dsc_regsDCN20(0), 642 dsc_regsDCN20(1), 643 dsc_regsDCN20(2), 644 dsc_regsDCN20(3), 645 dsc_regsDCN20(4), 646 dsc_regsDCN20(5) 647 }; 648 649 static const struct dcn20_dsc_shift dsc_shift = { 650 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 651 }; 652 653 static const struct dcn20_dsc_mask dsc_mask = { 654 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 655 }; 656 657 static const struct dcn30_mpc_registers mpc_regs = { 658 MPC_REG_LIST_DCN3_0(0), 659 MPC_REG_LIST_DCN3_0(1), 660 MPC_REG_LIST_DCN3_0(2), 661 MPC_REG_LIST_DCN3_0(3), 662 MPC_REG_LIST_DCN3_0(4), 663 MPC_REG_LIST_DCN3_0(5), 664 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 665 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 666 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 667 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 668 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 669 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 670 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 671 MPC_RMU_REG_LIST_DCN3AG(0), 672 MPC_RMU_REG_LIST_DCN3AG(1), 673 MPC_RMU_REG_LIST_DCN3AG(2), 674 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 675 }; 676 677 static const struct dcn30_mpc_shift mpc_shift = { 678 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 679 }; 680 681 static const struct dcn30_mpc_mask mpc_mask = { 682 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 683 }; 684 685 #define optc_regs(id)\ 686 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 687 688 689 static const struct dcn_optc_registers optc_regs[] = { 690 optc_regs(0), 691 optc_regs(1), 692 optc_regs(2), 693 optc_regs(3), 694 optc_regs(4), 695 optc_regs(5) 696 }; 697 698 static const struct dcn_optc_shift optc_shift = { 699 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 700 }; 701 702 static const struct dcn_optc_mask optc_mask = { 703 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 704 }; 705 706 #define hubp_regs(id)\ 707 [id] = {\ 708 HUBP_REG_LIST_DCN30(id)\ 709 } 710 711 static const struct dcn_hubp2_registers hubp_regs[] = { 712 hubp_regs(0), 713 hubp_regs(1), 714 hubp_regs(2), 715 hubp_regs(3), 716 hubp_regs(4), 717 hubp_regs(5) 718 }; 719 720 static const struct dcn_hubp2_shift hubp_shift = { 721 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 722 }; 723 724 static const struct dcn_hubp2_mask hubp_mask = { 725 HUBP_MASK_SH_LIST_DCN30(_MASK) 726 }; 727 728 static const struct dcn_hubbub_registers hubbub_reg = { 729 HUBBUB_REG_LIST_DCN30(0) 730 }; 731 732 static const struct dcn_hubbub_shift hubbub_shift = { 733 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 734 }; 735 736 static const struct dcn_hubbub_mask hubbub_mask = { 737 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 738 }; 739 740 static const struct dccg_registers dccg_regs = { 741 DCCG_REG_LIST_DCN30() 742 }; 743 744 static const struct dccg_shift dccg_shift = { 745 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 746 }; 747 748 static const struct dccg_mask dccg_mask = { 749 DCCG_MASK_SH_LIST_DCN3(_MASK) 750 }; 751 752 static const struct dce_hwseq_registers hwseq_reg = { 753 HWSEQ_DCN30_REG_LIST() 754 }; 755 756 static const struct dce_hwseq_shift hwseq_shift = { 757 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 758 }; 759 760 static const struct dce_hwseq_mask hwseq_mask = { 761 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 762 }; 763 #define vmid_regs(id)\ 764 [id] = {\ 765 DCN20_VMID_REG_LIST(id)\ 766 } 767 768 static const struct dcn_vmid_registers vmid_regs[] = { 769 vmid_regs(0), 770 vmid_regs(1), 771 vmid_regs(2), 772 vmid_regs(3), 773 vmid_regs(4), 774 vmid_regs(5), 775 vmid_regs(6), 776 vmid_regs(7), 777 vmid_regs(8), 778 vmid_regs(9), 779 vmid_regs(10), 780 vmid_regs(11), 781 vmid_regs(12), 782 vmid_regs(13), 783 vmid_regs(14), 784 vmid_regs(15) 785 }; 786 787 static const struct dcn20_vmid_shift vmid_shifts = { 788 DCN20_VMID_MASK_SH_LIST(__SHIFT) 789 }; 790 791 static const struct dcn20_vmid_mask vmid_masks = { 792 DCN20_VMID_MASK_SH_LIST(_MASK) 793 }; 794 795 static const struct resource_caps res_cap_dcn3 = { 796 .num_timing_generator = 6, 797 .num_opp = 6, 798 .num_video_plane = 6, 799 .num_audio = 6, 800 .num_stream_encoder = 6, 801 .num_pll = 6, 802 .num_dwb = 1, 803 .num_ddc = 6, 804 .num_vmid = 16, 805 .num_mpc_3dlut = 3, 806 .num_dsc = 6, 807 }; 808 809 static const struct dc_plane_cap plane_cap = { 810 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 811 .blends_with_above = true, 812 .blends_with_below = true, 813 .per_pixel_alpha = true, 814 815 .pixel_format_support = { 816 .argb8888 = true, 817 .nv12 = true, 818 .fp16 = true, 819 .p010 = false, 820 .ayuv = false, 821 }, 822 823 .max_upscale_factor = { 824 .argb8888 = 16000, 825 .nv12 = 16000, 826 .fp16 = 16000 827 }, 828 829 .max_downscale_factor = { 830 .argb8888 = 600, 831 .nv12 = 600, 832 .fp16 = 600 833 } 834 }; 835 836 static const struct dc_debug_options debug_defaults_drv = { 837 .disable_dmcu = true, //No DMCU on DCN30 838 .force_abm_enable = false, 839 .timing_trace = false, 840 .clock_trace = true, 841 .disable_pplib_clock_request = true, 842 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 843 .force_single_disp_pipe_split = false, 844 .disable_dcc = DCC_ENABLE, 845 .vsr_support = true, 846 .performance_trace = false, 847 .max_downscale_src_width = 7680,/*upto 8K*/ 848 .disable_pplib_wm_range = false, 849 .scl_reset_length10 = true, 850 .sanity_checks = false, 851 .underflow_assert_delay_us = 0xFFFFFFFF, 852 .dwb_fi_phase = -1, // -1 = disable, 853 .dmub_command_table = true, 854 .disable_psr = false, 855 }; 856 857 static const struct dc_debug_options debug_defaults_diags = { 858 .disable_dmcu = true, //No dmcu on DCN30 859 .force_abm_enable = false, 860 .timing_trace = true, 861 .clock_trace = true, 862 .disable_dpp_power_gate = true, 863 .disable_hubp_power_gate = true, 864 .disable_clock_gate = true, 865 .disable_pplib_clock_request = true, 866 .disable_pplib_wm_range = true, 867 .disable_stutter = false, 868 .scl_reset_length10 = true, 869 .dwb_fi_phase = -1, // -1 = disable 870 .dmub_command_table = true, 871 .disable_psr = true, 872 .enable_tri_buf = true, 873 }; 874 875 void dcn30_dpp_destroy(struct dpp **dpp) 876 { 877 kfree(TO_DCN20_DPP(*dpp)); 878 *dpp = NULL; 879 } 880 881 static struct dpp *dcn30_dpp_create( 882 struct dc_context *ctx, 883 uint32_t inst) 884 { 885 struct dcn3_dpp *dpp = 886 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 887 888 if (!dpp) 889 return NULL; 890 891 if (dpp3_construct(dpp, ctx, inst, 892 &dpp_regs[inst], &tf_shift, &tf_mask)) 893 return &dpp->base; 894 895 BREAK_TO_DEBUGGER(); 896 kfree(dpp); 897 return NULL; 898 } 899 900 static struct output_pixel_processor *dcn30_opp_create( 901 struct dc_context *ctx, uint32_t inst) 902 { 903 struct dcn20_opp *opp = 904 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 905 906 if (!opp) { 907 BREAK_TO_DEBUGGER(); 908 return NULL; 909 } 910 911 dcn20_opp_construct(opp, ctx, inst, 912 &opp_regs[inst], &opp_shift, &opp_mask); 913 return &opp->base; 914 } 915 916 static struct dce_aux *dcn30_aux_engine_create( 917 struct dc_context *ctx, 918 uint32_t inst) 919 { 920 struct aux_engine_dce110 *aux_engine = 921 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 922 923 if (!aux_engine) 924 return NULL; 925 926 dce110_aux_engine_construct(aux_engine, ctx, inst, 927 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 928 &aux_engine_regs[inst], 929 &aux_mask, 930 &aux_shift, 931 ctx->dc->caps.extended_aux_timeout_support); 932 933 return &aux_engine->base; 934 } 935 936 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 937 938 static const struct dce_i2c_registers i2c_hw_regs[] = { 939 i2c_inst_regs(1), 940 i2c_inst_regs(2), 941 i2c_inst_regs(3), 942 i2c_inst_regs(4), 943 i2c_inst_regs(5), 944 i2c_inst_regs(6), 945 }; 946 947 static const struct dce_i2c_shift i2c_shifts = { 948 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 949 }; 950 951 static const struct dce_i2c_mask i2c_masks = { 952 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 953 }; 954 955 static struct dce_i2c_hw *dcn30_i2c_hw_create( 956 struct dc_context *ctx, 957 uint32_t inst) 958 { 959 struct dce_i2c_hw *dce_i2c_hw = 960 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 961 962 if (!dce_i2c_hw) 963 return NULL; 964 965 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 966 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 967 968 return dce_i2c_hw; 969 } 970 971 static struct mpc *dcn30_mpc_create( 972 struct dc_context *ctx, 973 int num_mpcc, 974 int num_rmu) 975 { 976 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 977 GFP_KERNEL); 978 979 if (!mpc30) 980 return NULL; 981 982 dcn30_mpc_construct(mpc30, ctx, 983 &mpc_regs, 984 &mpc_shift, 985 &mpc_mask, 986 num_mpcc, 987 num_rmu); 988 989 return &mpc30->base; 990 } 991 992 struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 993 { 994 int i; 995 996 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 997 GFP_KERNEL); 998 999 if (!hubbub3) 1000 return NULL; 1001 1002 hubbub3_construct(hubbub3, ctx, 1003 &hubbub_reg, 1004 &hubbub_shift, 1005 &hubbub_mask); 1006 1007 1008 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 1009 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 1010 1011 vmid->ctx = ctx; 1012 1013 vmid->regs = &vmid_regs[i]; 1014 vmid->shifts = &vmid_shifts; 1015 vmid->masks = &vmid_masks; 1016 } 1017 1018 return &hubbub3->base; 1019 } 1020 1021 static struct timing_generator *dcn30_timing_generator_create( 1022 struct dc_context *ctx, 1023 uint32_t instance) 1024 { 1025 struct optc *tgn10 = 1026 kzalloc(sizeof(struct optc), GFP_KERNEL); 1027 1028 if (!tgn10) 1029 return NULL; 1030 1031 tgn10->base.inst = instance; 1032 tgn10->base.ctx = ctx; 1033 1034 tgn10->tg_regs = &optc_regs[instance]; 1035 tgn10->tg_shift = &optc_shift; 1036 tgn10->tg_mask = &optc_mask; 1037 1038 dcn30_timing_generator_init(tgn10); 1039 1040 return &tgn10->base; 1041 } 1042 1043 static const struct encoder_feature_support link_enc_feature = { 1044 .max_hdmi_deep_color = COLOR_DEPTH_121212, 1045 .max_hdmi_pixel_clock = 600000, 1046 .hdmi_ycbcr420_supported = true, 1047 .dp_ycbcr420_supported = true, 1048 .fec_supported = true, 1049 .flags.bits.IS_HBR2_CAPABLE = true, 1050 .flags.bits.IS_HBR3_CAPABLE = true, 1051 .flags.bits.IS_TPS3_CAPABLE = true, 1052 .flags.bits.IS_TPS4_CAPABLE = true 1053 }; 1054 1055 static struct link_encoder *dcn30_link_encoder_create( 1056 const struct encoder_init_data *enc_init_data) 1057 { 1058 struct dcn20_link_encoder *enc20 = 1059 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 1060 1061 if (!enc20) 1062 return NULL; 1063 1064 dcn30_link_encoder_construct(enc20, 1065 enc_init_data, 1066 &link_enc_feature, 1067 &link_enc_regs[enc_init_data->transmitter], 1068 &link_enc_aux_regs[enc_init_data->channel - 1], 1069 &link_enc_hpd_regs[enc_init_data->hpd_source], 1070 &le_shift, 1071 &le_mask); 1072 1073 return &enc20->enc10.base; 1074 } 1075 1076 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 1077 { 1078 struct dce_panel_cntl *panel_cntl = 1079 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 1080 1081 if (!panel_cntl) 1082 return NULL; 1083 1084 dce_panel_cntl_construct(panel_cntl, 1085 init_data, 1086 &panel_cntl_regs[init_data->inst], 1087 &panel_cntl_shift, 1088 &panel_cntl_mask); 1089 1090 return &panel_cntl->base; 1091 } 1092 1093 static void read_dce_straps( 1094 struct dc_context *ctx, 1095 struct resource_straps *straps) 1096 { 1097 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 1098 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 1099 1100 } 1101 1102 static struct audio *dcn30_create_audio( 1103 struct dc_context *ctx, unsigned int inst) 1104 { 1105 return dce_audio_create(ctx, inst, 1106 &audio_regs[inst], &audio_shift, &audio_mask); 1107 } 1108 1109 static struct vpg *dcn30_vpg_create( 1110 struct dc_context *ctx, 1111 uint32_t inst) 1112 { 1113 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 1114 1115 if (!vpg3) 1116 return NULL; 1117 1118 vpg3_construct(vpg3, ctx, inst, 1119 &vpg_regs[inst], 1120 &vpg_shift, 1121 &vpg_mask); 1122 1123 return &vpg3->base; 1124 } 1125 1126 static struct afmt *dcn30_afmt_create( 1127 struct dc_context *ctx, 1128 uint32_t inst) 1129 { 1130 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 1131 1132 if (!afmt3) 1133 return NULL; 1134 1135 afmt3_construct(afmt3, ctx, inst, 1136 &afmt_regs[inst], 1137 &afmt_shift, 1138 &afmt_mask); 1139 1140 return &afmt3->base; 1141 } 1142 1143 struct stream_encoder *dcn30_stream_encoder_create( 1144 enum engine_id eng_id, 1145 struct dc_context *ctx) 1146 { 1147 struct dcn10_stream_encoder *enc1; 1148 struct vpg *vpg; 1149 struct afmt *afmt; 1150 int vpg_inst; 1151 int afmt_inst; 1152 1153 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1154 if (eng_id <= ENGINE_ID_DIGF) { 1155 vpg_inst = eng_id; 1156 afmt_inst = eng_id; 1157 } else 1158 return NULL; 1159 1160 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1161 vpg = dcn30_vpg_create(ctx, vpg_inst); 1162 afmt = dcn30_afmt_create(ctx, afmt_inst); 1163 1164 if (!enc1 || !vpg || !afmt) 1165 return NULL; 1166 1167 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1168 eng_id, vpg, afmt, 1169 &stream_enc_regs[eng_id], 1170 &se_shift, &se_mask); 1171 1172 return &enc1->base; 1173 } 1174 1175 struct dce_hwseq *dcn30_hwseq_create( 1176 struct dc_context *ctx) 1177 { 1178 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1179 1180 if (hws) { 1181 hws->ctx = ctx; 1182 hws->regs = &hwseq_reg; 1183 hws->shifts = &hwseq_shift; 1184 hws->masks = &hwseq_mask; 1185 } 1186 return hws; 1187 } 1188 static const struct resource_create_funcs res_create_funcs = { 1189 .read_dce_straps = read_dce_straps, 1190 .create_audio = dcn30_create_audio, 1191 .create_stream_encoder = dcn30_stream_encoder_create, 1192 .create_hwseq = dcn30_hwseq_create, 1193 }; 1194 1195 static const struct resource_create_funcs res_create_maximus_funcs = { 1196 .read_dce_straps = NULL, 1197 .create_audio = NULL, 1198 .create_stream_encoder = NULL, 1199 .create_hwseq = dcn30_hwseq_create, 1200 }; 1201 1202 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1203 { 1204 unsigned int i; 1205 1206 for (i = 0; i < pool->base.stream_enc_count; i++) { 1207 if (pool->base.stream_enc[i] != NULL) { 1208 if (pool->base.stream_enc[i]->vpg != NULL) { 1209 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1210 pool->base.stream_enc[i]->vpg = NULL; 1211 } 1212 if (pool->base.stream_enc[i]->afmt != NULL) { 1213 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1214 pool->base.stream_enc[i]->afmt = NULL; 1215 } 1216 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1217 pool->base.stream_enc[i] = NULL; 1218 } 1219 } 1220 1221 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1222 if (pool->base.dscs[i] != NULL) 1223 dcn20_dsc_destroy(&pool->base.dscs[i]); 1224 } 1225 1226 if (pool->base.mpc != NULL) { 1227 kfree(TO_DCN20_MPC(pool->base.mpc)); 1228 pool->base.mpc = NULL; 1229 } 1230 if (pool->base.hubbub != NULL) { 1231 kfree(pool->base.hubbub); 1232 pool->base.hubbub = NULL; 1233 } 1234 for (i = 0; i < pool->base.pipe_count; i++) { 1235 if (pool->base.dpps[i] != NULL) 1236 dcn30_dpp_destroy(&pool->base.dpps[i]); 1237 1238 if (pool->base.ipps[i] != NULL) 1239 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1240 1241 if (pool->base.hubps[i] != NULL) { 1242 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1243 pool->base.hubps[i] = NULL; 1244 } 1245 1246 if (pool->base.irqs != NULL) { 1247 dal_irq_service_destroy(&pool->base.irqs); 1248 } 1249 } 1250 1251 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1252 if (pool->base.engines[i] != NULL) 1253 dce110_engine_destroy(&pool->base.engines[i]); 1254 if (pool->base.hw_i2cs[i] != NULL) { 1255 kfree(pool->base.hw_i2cs[i]); 1256 pool->base.hw_i2cs[i] = NULL; 1257 } 1258 if (pool->base.sw_i2cs[i] != NULL) { 1259 kfree(pool->base.sw_i2cs[i]); 1260 pool->base.sw_i2cs[i] = NULL; 1261 } 1262 } 1263 1264 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1265 if (pool->base.opps[i] != NULL) 1266 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1267 } 1268 1269 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1270 if (pool->base.timing_generators[i] != NULL) { 1271 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1272 pool->base.timing_generators[i] = NULL; 1273 } 1274 } 1275 1276 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1277 if (pool->base.dwbc[i] != NULL) { 1278 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1279 pool->base.dwbc[i] = NULL; 1280 } 1281 if (pool->base.mcif_wb[i] != NULL) { 1282 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1283 pool->base.mcif_wb[i] = NULL; 1284 } 1285 } 1286 1287 for (i = 0; i < pool->base.audio_count; i++) { 1288 if (pool->base.audios[i]) 1289 dce_aud_destroy(&pool->base.audios[i]); 1290 } 1291 1292 for (i = 0; i < pool->base.clk_src_count; i++) { 1293 if (pool->base.clock_sources[i] != NULL) { 1294 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1295 pool->base.clock_sources[i] = NULL; 1296 } 1297 } 1298 1299 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1300 if (pool->base.mpc_lut[i] != NULL) { 1301 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1302 pool->base.mpc_lut[i] = NULL; 1303 } 1304 if (pool->base.mpc_shaper[i] != NULL) { 1305 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1306 pool->base.mpc_shaper[i] = NULL; 1307 } 1308 } 1309 1310 if (pool->base.dp_clock_source != NULL) { 1311 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1312 pool->base.dp_clock_source = NULL; 1313 } 1314 1315 for (i = 0; i < pool->base.pipe_count; i++) { 1316 if (pool->base.multiple_abms[i] != NULL) 1317 dce_abm_destroy(&pool->base.multiple_abms[i]); 1318 } 1319 1320 if (pool->base.psr != NULL) 1321 dmub_psr_destroy(&pool->base.psr); 1322 1323 if (pool->base.dccg != NULL) 1324 dcn_dccg_destroy(&pool->base.dccg); 1325 1326 if (pool->base.oem_device != NULL) 1327 dal_ddc_service_destroy(&pool->base.oem_device); 1328 } 1329 1330 static struct hubp *dcn30_hubp_create( 1331 struct dc_context *ctx, 1332 uint32_t inst) 1333 { 1334 struct dcn20_hubp *hubp2 = 1335 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1336 1337 if (!hubp2) 1338 return NULL; 1339 1340 if (hubp3_construct(hubp2, ctx, inst, 1341 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1342 return &hubp2->base; 1343 1344 BREAK_TO_DEBUGGER(); 1345 kfree(hubp2); 1346 return NULL; 1347 } 1348 1349 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1350 { 1351 int i; 1352 uint32_t pipe_count = pool->res_cap->num_dwb; 1353 1354 for (i = 0; i < pipe_count; i++) { 1355 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1356 GFP_KERNEL); 1357 1358 if (!dwbc30) { 1359 dm_error("DC: failed to create dwbc30!\n"); 1360 return false; 1361 } 1362 1363 dcn30_dwbc_construct(dwbc30, ctx, 1364 &dwbc30_regs[i], 1365 &dwbc30_shift, 1366 &dwbc30_mask, 1367 i); 1368 1369 pool->dwbc[i] = &dwbc30->base; 1370 } 1371 return true; 1372 } 1373 1374 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1375 { 1376 int i; 1377 uint32_t pipe_count = pool->res_cap->num_dwb; 1378 1379 for (i = 0; i < pipe_count; i++) { 1380 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1381 GFP_KERNEL); 1382 1383 if (!mcif_wb30) { 1384 dm_error("DC: failed to create mcif_wb30!\n"); 1385 return false; 1386 } 1387 1388 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1389 &mcif_wb30_regs[i], 1390 &mcif_wb30_shift, 1391 &mcif_wb30_mask, 1392 i); 1393 1394 pool->mcif_wb[i] = &mcif_wb30->base; 1395 } 1396 return true; 1397 } 1398 1399 static struct display_stream_compressor *dcn30_dsc_create( 1400 struct dc_context *ctx, uint32_t inst) 1401 { 1402 struct dcn20_dsc *dsc = 1403 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1404 1405 if (!dsc) { 1406 BREAK_TO_DEBUGGER(); 1407 return NULL; 1408 } 1409 1410 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1411 return &dsc->base; 1412 } 1413 1414 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1415 { 1416 1417 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1418 } 1419 1420 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1421 { 1422 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1423 1424 dcn30_resource_destruct(dcn30_pool); 1425 kfree(dcn30_pool); 1426 *pool = NULL; 1427 } 1428 1429 static struct clock_source *dcn30_clock_source_create( 1430 struct dc_context *ctx, 1431 struct dc_bios *bios, 1432 enum clock_source_id id, 1433 const struct dce110_clk_src_regs *regs, 1434 bool dp_clk_src) 1435 { 1436 struct dce110_clk_src *clk_src = 1437 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1438 1439 if (!clk_src) 1440 return NULL; 1441 1442 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1443 regs, &cs_shift, &cs_mask)) { 1444 clk_src->base.dp_clk_src = dp_clk_src; 1445 return &clk_src->base; 1446 } 1447 1448 BREAK_TO_DEBUGGER(); 1449 return NULL; 1450 } 1451 1452 int dcn30_populate_dml_pipes_from_context( 1453 struct dc *dc, struct dc_state *context, 1454 display_e2e_pipe_params_st *pipes, 1455 bool fast_validate) 1456 { 1457 int i, pipe_cnt; 1458 struct resource_context *res_ctx = &context->res_ctx; 1459 1460 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1461 1462 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1463 if (!res_ctx->pipe_ctx[i].stream) 1464 continue; 1465 1466 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1467 dm_lb_16; 1468 } 1469 1470 return pipe_cnt; 1471 } 1472 1473 void dcn30_populate_dml_writeback_from_context( 1474 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1475 { 1476 int pipe_cnt, i, j; 1477 double max_calc_writeback_dispclk; 1478 double writeback_dispclk; 1479 struct writeback_st dout_wb; 1480 1481 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1482 struct dc_stream_state *stream = res_ctx->pipe_ctx[i].stream; 1483 1484 if (!stream) 1485 continue; 1486 max_calc_writeback_dispclk = 0; 1487 1488 /* Set writeback information */ 1489 pipes[pipe_cnt].dout.wb_enable = 0; 1490 pipes[pipe_cnt].dout.num_active_wb = 0; 1491 for (j = 0; j < stream->num_wb_info; j++) { 1492 struct dc_writeback_info *wb_info = &stream->writeback_info[j]; 1493 1494 if (wb_info->wb_enabled && wb_info->writeback_source_plane && 1495 (wb_info->writeback_source_plane == res_ctx->pipe_ctx[i].plane_state)) { 1496 pipes[pipe_cnt].dout.wb_enable = 1; 1497 pipes[pipe_cnt].dout.num_active_wb++; 1498 dout_wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_en ? 1499 wb_info->dwb_params.cnv_params.crop_height : 1500 wb_info->dwb_params.cnv_params.src_height; 1501 dout_wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_en ? 1502 wb_info->dwb_params.cnv_params.crop_width : 1503 wb_info->dwb_params.cnv_params.src_width; 1504 dout_wb.wb_dst_width = wb_info->dwb_params.dest_width; 1505 dout_wb.wb_dst_height = wb_info->dwb_params.dest_height; 1506 1507 /* For IP that doesn't support WB scaling, set h/v taps to 1 to avoid DML validation failure */ 1508 if (dc->dml.ip.writeback_max_hscl_taps > 1) { 1509 dout_wb.wb_htaps_luma = wb_info->dwb_params.scaler_taps.h_taps; 1510 dout_wb.wb_vtaps_luma = wb_info->dwb_params.scaler_taps.v_taps; 1511 } else { 1512 dout_wb.wb_htaps_luma = 1; 1513 dout_wb.wb_vtaps_luma = 1; 1514 } 1515 dout_wb.wb_htaps_chroma = 0; 1516 dout_wb.wb_vtaps_chroma = 0; 1517 dout_wb.wb_hratio = wb_info->dwb_params.cnv_params.crop_en ? 1518 (double)wb_info->dwb_params.cnv_params.crop_width / 1519 (double)wb_info->dwb_params.dest_width : 1520 (double)wb_info->dwb_params.cnv_params.src_width / 1521 (double)wb_info->dwb_params.dest_width; 1522 dout_wb.wb_vratio = wb_info->dwb_params.cnv_params.crop_en ? 1523 (double)wb_info->dwb_params.cnv_params.crop_height / 1524 (double)wb_info->dwb_params.dest_height : 1525 (double)wb_info->dwb_params.cnv_params.src_height / 1526 (double)wb_info->dwb_params.dest_height; 1527 if (wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1528 wb_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1529 dout_wb.wb_pixel_format = dm_444_64; 1530 else 1531 dout_wb.wb_pixel_format = dm_444_32; 1532 1533 /* Workaround for cases where multiple writebacks are connected to same plane 1534 * In which case, need to compute worst case and set the associated writeback parameters 1535 * This workaround is necessary due to DML computation assuming only 1 set of writeback 1536 * parameters per pipe 1537 */ 1538 writeback_dispclk = dml30_CalculateWriteBackDISPCLK( 1539 dout_wb.wb_pixel_format, 1540 pipes[pipe_cnt].pipe.dest.pixel_rate_mhz, 1541 dout_wb.wb_hratio, 1542 dout_wb.wb_vratio, 1543 dout_wb.wb_htaps_luma, 1544 dout_wb.wb_vtaps_luma, 1545 dout_wb.wb_src_width, 1546 dout_wb.wb_dst_width, 1547 pipes[pipe_cnt].pipe.dest.htotal, 1548 dc->current_state->bw_ctx.dml.ip.writeback_line_buffer_buffer_size); 1549 1550 if (writeback_dispclk > max_calc_writeback_dispclk) { 1551 max_calc_writeback_dispclk = writeback_dispclk; 1552 pipes[pipe_cnt].dout.wb = dout_wb; 1553 } 1554 } 1555 } 1556 1557 pipe_cnt++; 1558 } 1559 1560 } 1561 1562 unsigned int dcn30_calc_max_scaled_time( 1563 unsigned int time_per_pixel, 1564 enum mmhubbub_wbif_mode mode, 1565 unsigned int urgent_watermark) 1566 { 1567 unsigned int time_per_byte = 0; 1568 unsigned int total_free_entry = 0xb40; 1569 unsigned int buf_lh_capability; 1570 unsigned int max_scaled_time; 1571 1572 if (mode == PACKED_444) /* packed mode 32 bpp */ 1573 time_per_byte = time_per_pixel/4; 1574 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1575 time_per_byte = time_per_pixel/8; 1576 1577 if (time_per_byte == 0) 1578 time_per_byte = 1; 1579 1580 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1581 max_scaled_time = buf_lh_capability - urgent_watermark; 1582 return max_scaled_time; 1583 } 1584 1585 void dcn30_set_mcif_arb_params( 1586 struct dc *dc, 1587 struct dc_state *context, 1588 display_e2e_pipe_params_st *pipes, 1589 int pipe_cnt) 1590 { 1591 enum mmhubbub_wbif_mode wbif_mode; 1592 struct display_mode_lib *dml = &context->bw_ctx.dml; 1593 struct mcif_arb_params *wb_arb_params; 1594 int i, j, k, dwb_pipe; 1595 1596 /* Writeback MCIF_WB arbitration parameters */ 1597 dwb_pipe = 0; 1598 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1599 1600 if (!context->res_ctx.pipe_ctx[i].stream) 1601 continue; 1602 1603 for (j = 0; j < MAX_DWB_PIPES; j++) { 1604 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1605 1606 if (writeback_info->wb_enabled == false) 1607 continue; 1608 1609 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1610 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1611 1612 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1613 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1614 wbif_mode = PACKED_444_FP16; 1615 else 1616 wbif_mode = PACKED_444; 1617 1618 for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) { 1619 wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(dml, pipes, pipe_cnt) * 1000; 1620 wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(dml, pipes, pipe_cnt) * 1000; 1621 } 1622 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1623 wb_arb_params->slice_lines = 32; 1624 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1625 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1626 wbif_mode, 1627 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1628 wb_arb_params->dram_speed_change_duration = dml->vba.WritebackAllowDRAMClockChangeEndPosition[j] * pipes[0].clks_cfg.refclk_mhz; /* num_clock_cycles = us * MHz */ 1629 1630 dwb_pipe++; 1631 1632 if (dwb_pipe >= MAX_DWB_PIPES) 1633 return; 1634 } 1635 if (dwb_pipe >= MAX_DWB_PIPES) 1636 return; 1637 } 1638 1639 } 1640 1641 static struct dc_cap_funcs cap_funcs = { 1642 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1643 }; 1644 1645 bool dcn30_acquire_post_bldn_3dlut( 1646 struct resource_context *res_ctx, 1647 const struct resource_pool *pool, 1648 int mpcc_id, 1649 struct dc_3dlut **lut, 1650 struct dc_transfer_func **shaper) 1651 { 1652 int i; 1653 bool ret = false; 1654 union dc_3dlut_state *state; 1655 1656 ASSERT(*lut == NULL && *shaper == NULL); 1657 *lut = NULL; 1658 *shaper = NULL; 1659 1660 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1661 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1662 *lut = pool->mpc_lut[i]; 1663 *shaper = pool->mpc_shaper[i]; 1664 state = &pool->mpc_lut[i]->state; 1665 res_ctx->is_mpc_3dlut_acquired[i] = true; 1666 state->bits.rmu_idx_valid = 1; 1667 state->bits.rmu_mux_num = i; 1668 if (state->bits.rmu_mux_num == 0) 1669 state->bits.mpc_rmu0_mux = mpcc_id; 1670 else if (state->bits.rmu_mux_num == 1) 1671 state->bits.mpc_rmu1_mux = mpcc_id; 1672 else if (state->bits.rmu_mux_num == 2) 1673 state->bits.mpc_rmu2_mux = mpcc_id; 1674 ret = true; 1675 break; 1676 } 1677 } 1678 return ret; 1679 } 1680 1681 bool dcn30_release_post_bldn_3dlut( 1682 struct resource_context *res_ctx, 1683 const struct resource_pool *pool, 1684 struct dc_3dlut **lut, 1685 struct dc_transfer_func **shaper) 1686 { 1687 int i; 1688 bool ret = false; 1689 1690 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1691 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1692 res_ctx->is_mpc_3dlut_acquired[i] = false; 1693 pool->mpc_lut[i]->state.raw = 0; 1694 *lut = NULL; 1695 *shaper = NULL; 1696 ret = true; 1697 break; 1698 } 1699 } 1700 return ret; 1701 } 1702 1703 #define fixed16_to_double(x) (((double) x) / ((double) (1 << 16))) 1704 #define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x)) 1705 1706 static bool is_soc_bounding_box_valid(struct dc *dc) 1707 { 1708 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1709 1710 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1711 return true; 1712 1713 return false; 1714 } 1715 1716 static bool init_soc_bounding_box(struct dc *dc, 1717 struct dcn30_resource_pool *pool) 1718 { 1719 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1720 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1721 1722 DC_LOGGER_INIT(dc->ctx->logger); 1723 1724 if (!is_soc_bounding_box_valid(dc)) { 1725 DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__); 1726 return false; 1727 } 1728 1729 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1730 loaded_ip->max_num_dpp = pool->base.pipe_count; 1731 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1732 dcn20_patch_bounding_box(dc, loaded_bb); 1733 1734 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) { 1735 struct bp_soc_bb_info bb_info = {0}; 1736 1737 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) { 1738 if (bb_info.dram_clock_change_latency_100ns > 0) 1739 dcn3_0_soc.dram_clock_change_latency_us = bb_info.dram_clock_change_latency_100ns * 10; 1740 1741 if (bb_info.dram_sr_enter_exit_latency_100ns > 0) 1742 dcn3_0_soc.sr_enter_plus_exit_time_us = bb_info.dram_sr_enter_exit_latency_100ns * 10; 1743 1744 if (bb_info.dram_sr_exit_latency_100ns > 0) 1745 dcn3_0_soc.sr_exit_time_us = bb_info.dram_sr_exit_latency_100ns * 10; 1746 } 1747 } 1748 1749 return true; 1750 } 1751 1752 static bool dcn30_split_stream_for_mpc_or_odm( 1753 const struct dc *dc, 1754 struct resource_context *res_ctx, 1755 struct pipe_ctx *pri_pipe, 1756 struct pipe_ctx *sec_pipe, 1757 bool odm) 1758 { 1759 int pipe_idx = sec_pipe->pipe_idx; 1760 const struct resource_pool *pool = dc->res_pool; 1761 1762 *sec_pipe = *pri_pipe; 1763 1764 sec_pipe->pipe_idx = pipe_idx; 1765 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1766 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1767 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1768 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1769 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1770 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1771 sec_pipe->stream_res.dsc = NULL; 1772 if (odm) { 1773 if (pri_pipe->next_odm_pipe) { 1774 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1775 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1776 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1777 } 1778 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1779 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1780 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1781 } 1782 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1783 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1784 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1785 } 1786 pri_pipe->next_odm_pipe = sec_pipe; 1787 sec_pipe->prev_odm_pipe = pri_pipe; 1788 ASSERT(sec_pipe->top_pipe == NULL); 1789 1790 if (!sec_pipe->top_pipe) 1791 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1792 else 1793 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1794 if (sec_pipe->stream->timing.flags.DSC == 1) { 1795 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1796 ASSERT(sec_pipe->stream_res.dsc); 1797 if (sec_pipe->stream_res.dsc == NULL) 1798 return false; 1799 } 1800 } else { 1801 if (pri_pipe->bottom_pipe) { 1802 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1803 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1804 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1805 } 1806 pri_pipe->bottom_pipe = sec_pipe; 1807 sec_pipe->top_pipe = pri_pipe; 1808 1809 ASSERT(pri_pipe->plane_state); 1810 } 1811 1812 return true; 1813 } 1814 1815 static struct pipe_ctx *dcn30_find_split_pipe( 1816 struct dc *dc, 1817 struct dc_state *context, 1818 int old_index) 1819 { 1820 struct pipe_ctx *pipe = NULL; 1821 int i; 1822 1823 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1824 pipe = &context->res_ctx.pipe_ctx[old_index]; 1825 pipe->pipe_idx = old_index; 1826 } 1827 1828 if (!pipe) 1829 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1830 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1831 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1832 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1833 pipe = &context->res_ctx.pipe_ctx[i]; 1834 pipe->pipe_idx = i; 1835 break; 1836 } 1837 } 1838 } 1839 1840 /* 1841 * May need to fix pipes getting tossed from 1 opp to another on flip 1842 * Add for debugging transient underflow during topology updates: 1843 * ASSERT(pipe); 1844 */ 1845 if (!pipe) 1846 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1847 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1848 pipe = &context->res_ctx.pipe_ctx[i]; 1849 pipe->pipe_idx = i; 1850 break; 1851 } 1852 } 1853 1854 return pipe; 1855 } 1856 1857 static noinline bool dcn30_internal_validate_bw( 1858 struct dc *dc, 1859 struct dc_state *context, 1860 display_e2e_pipe_params_st *pipes, 1861 int *pipe_cnt_out, 1862 int *vlevel_out, 1863 bool fast_validate) 1864 { 1865 bool out = false; 1866 bool repopulate_pipes = false; 1867 int split[MAX_PIPES] = { 0 }; 1868 bool merge[MAX_PIPES] = { false }; 1869 bool newly_split[MAX_PIPES] = { false }; 1870 int pipe_cnt, i, pipe_idx, vlevel; 1871 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1872 1873 ASSERT(pipes); 1874 if (!pipes) 1875 return false; 1876 1877 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1878 1879 DC_FP_START(); 1880 if (!pipe_cnt) { 1881 out = true; 1882 goto validate_out; 1883 } 1884 1885 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1886 1887 if (!fast_validate) { 1888 /* 1889 * DML favors voltage over p-state, but we're more interested in 1890 * supporting p-state over voltage. We can't support p-state in 1891 * prefetch mode > 0 so try capping the prefetch mode to start. 1892 */ 1893 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1894 dm_allow_self_refresh_and_mclk_switch; 1895 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1896 /* This may adjust vlevel and maxMpcComb */ 1897 if (vlevel < context->bw_ctx.dml.soc.num_states) 1898 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1899 } 1900 if (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1901 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported) { 1902 /* 1903 * If mode is unsupported or there's still no p-state support then 1904 * fall back to favoring voltage. 1905 * 1906 * We don't actually support prefetch mode 2, so require that we 1907 * at least support prefetch mode 1. 1908 */ 1909 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1910 dm_allow_self_refresh; 1911 1912 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1913 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1914 memset(split, 0, sizeof(split)); 1915 memset(merge, 0, sizeof(merge)); 1916 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1917 } 1918 } 1919 1920 dml_log_mode_support_params(&context->bw_ctx.dml); 1921 1922 if (vlevel == context->bw_ctx.dml.soc.num_states) 1923 goto validate_fail; 1924 1925 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1926 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1927 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1928 1929 if (!pipe->stream) 1930 continue; 1931 1932 /* We only support full screen mpo with ODM */ 1933 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1934 && pipe->plane_state && mpo_pipe 1935 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1936 &pipe->plane_res.scl_data.recout, 1937 sizeof(struct rect)) != 0) { 1938 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1939 goto validate_fail; 1940 } 1941 pipe_idx++; 1942 } 1943 1944 /* merge pipes if necessary */ 1945 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1946 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1947 1948 /*skip pipes that don't need merging*/ 1949 if (!merge[i]) 1950 continue; 1951 1952 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1953 if (pipe->prev_odm_pipe) { 1954 /*split off odm pipe*/ 1955 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1956 if (pipe->next_odm_pipe) 1957 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1958 1959 pipe->bottom_pipe = NULL; 1960 pipe->next_odm_pipe = NULL; 1961 pipe->plane_state = NULL; 1962 pipe->stream = NULL; 1963 pipe->top_pipe = NULL; 1964 pipe->prev_odm_pipe = NULL; 1965 if (pipe->stream_res.dsc) 1966 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1967 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1968 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1969 repopulate_pipes = true; 1970 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1971 struct pipe_ctx *top_pipe = pipe->top_pipe; 1972 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1973 1974 top_pipe->bottom_pipe = bottom_pipe; 1975 if (bottom_pipe) 1976 bottom_pipe->top_pipe = top_pipe; 1977 1978 pipe->top_pipe = NULL; 1979 pipe->bottom_pipe = NULL; 1980 pipe->plane_state = NULL; 1981 pipe->stream = NULL; 1982 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1983 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1984 repopulate_pipes = true; 1985 } else 1986 ASSERT(0); /* Should never try to merge master pipe */ 1987 1988 } 1989 1990 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1991 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1992 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1993 struct pipe_ctx *hsplit_pipe = NULL; 1994 bool odm; 1995 int old_index = -1; 1996 1997 if (!pipe->stream || newly_split[i]) 1998 continue; 1999 2000 pipe_idx++; 2001 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 2002 2003 if (!pipe->plane_state && !odm) 2004 continue; 2005 2006 if (split[i]) { 2007 if (odm) { 2008 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 2009 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2010 else if (old_pipe->next_odm_pipe) 2011 old_index = old_pipe->next_odm_pipe->pipe_idx; 2012 } else { 2013 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2014 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2015 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2016 else if (old_pipe->bottom_pipe && 2017 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2018 old_index = old_pipe->bottom_pipe->pipe_idx; 2019 } 2020 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 2021 ASSERT(hsplit_pipe); 2022 if (!hsplit_pipe) 2023 goto validate_fail; 2024 2025 if (!dcn30_split_stream_for_mpc_or_odm( 2026 dc, &context->res_ctx, 2027 pipe, hsplit_pipe, odm)) 2028 goto validate_fail; 2029 2030 newly_split[hsplit_pipe->pipe_idx] = true; 2031 repopulate_pipes = true; 2032 } 2033 if (split[i] == 4) { 2034 struct pipe_ctx *pipe_4to1; 2035 2036 if (odm && old_pipe->next_odm_pipe) 2037 old_index = old_pipe->next_odm_pipe->pipe_idx; 2038 else if (!odm && old_pipe->bottom_pipe && 2039 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2040 old_index = old_pipe->bottom_pipe->pipe_idx; 2041 else 2042 old_index = -1; 2043 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 2044 ASSERT(pipe_4to1); 2045 if (!pipe_4to1) 2046 goto validate_fail; 2047 if (!dcn30_split_stream_for_mpc_or_odm( 2048 dc, &context->res_ctx, 2049 pipe, pipe_4to1, odm)) 2050 goto validate_fail; 2051 newly_split[pipe_4to1->pipe_idx] = true; 2052 2053 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 2054 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 2055 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 2056 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 2057 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 2058 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 2059 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 2060 else 2061 old_index = -1; 2062 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 2063 ASSERT(pipe_4to1); 2064 if (!pipe_4to1) 2065 goto validate_fail; 2066 if (!dcn30_split_stream_for_mpc_or_odm( 2067 dc, &context->res_ctx, 2068 hsplit_pipe, pipe_4to1, odm)) 2069 goto validate_fail; 2070 newly_split[pipe_4to1->pipe_idx] = true; 2071 } 2072 if (odm) 2073 dcn20_build_mapped_resource(dc, context, pipe->stream); 2074 } 2075 2076 for (i = 0; i < dc->res_pool->pipe_count; i++) { 2077 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 2078 2079 if (pipe->plane_state) { 2080 if (!resource_build_scaling_params(pipe)) 2081 goto validate_fail; 2082 } 2083 } 2084 2085 /* Actual dsc count per stream dsc validation*/ 2086 if (!dcn20_validate_dsc(dc, context)) { 2087 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 2088 goto validate_fail; 2089 } 2090 2091 if (repopulate_pipes) 2092 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 2093 *vlevel_out = vlevel; 2094 *pipe_cnt_out = pipe_cnt; 2095 2096 out = true; 2097 goto validate_out; 2098 2099 validate_fail: 2100 out = false; 2101 2102 validate_out: 2103 DC_FP_END(); 2104 return out; 2105 } 2106 2107 /* 2108 * This must be noinline to ensure anything that deals with FP registers 2109 * is contained within this call; previously our compiling with hard-float 2110 * would result in fp instructions being emitted outside of the boundaries 2111 * of the DC_FP_START/END macros, which makes sense as the compiler has no 2112 * idea about what is wrapped and what is not 2113 * 2114 * This is largely just a workaround to avoid breakage introduced with 5.6, 2115 * ideally all fp-using code should be moved into its own file, only that 2116 * should be compiled with hard-float, and all code exported from there 2117 * should be strictly wrapped with DC_FP_START/END 2118 */ 2119 static noinline void dcn30_calculate_wm_and_dlg_fp( 2120 struct dc *dc, struct dc_state *context, 2121 display_e2e_pipe_params_st *pipes, 2122 int pipe_cnt, 2123 int vlevel) 2124 { 2125 int i, pipe_idx; 2126 double dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb]; 2127 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 2128 dm_dram_clock_change_unsupported; 2129 2130 if (context->bw_ctx.dml.soc.min_dcfclk > dcfclk) 2131 dcfclk = context->bw_ctx.dml.soc.min_dcfclk; 2132 2133 pipes[0].clks_cfg.voltage = vlevel; 2134 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2135 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz; 2136 2137 /* Set B: 2138 * DCFCLK: 1GHz or min required above 1GHz 2139 * FCLK/UCLK: Max 2140 */ 2141 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) { 2142 if (vlevel == 0) { 2143 pipes[0].clks_cfg.voltage = 1; 2144 pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dcfclk_mhz; 2145 } 2146 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us; 2147 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us; 2148 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us; 2149 } 2150 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2151 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2152 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2153 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2154 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2155 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2156 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2157 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2158 2159 pipes[0].clks_cfg.voltage = vlevel; 2160 pipes[0].clks_cfg.dcfclk_mhz = dcfclk; 2161 2162 /* Set D: 2163 * DCFCLK: Min Required 2164 * FCLK(proportional to UCLK): 1GHz or Max 2165 * MALL stutter, sr_enter_exit = 4, sr_exit = 2us 2166 */ 2167 /* 2168 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) { 2169 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us; 2170 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us; 2171 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us; 2172 } 2173 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2174 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2175 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2176 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2177 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2178 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2179 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2180 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2181 */ 2182 2183 /* Set C: 2184 * DCFCLK: Min Required 2185 * FCLK(proportional to UCLK): 1GHz or Max 2186 * pstate latency overridden to 5us 2187 */ 2188 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) { 2189 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed; 2190 unsigned int min_dram_speed_mts_margin = 160; 2191 2192 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_dram_clock_change_unsupported) 2193 min_dram_speed_mts = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz * 16; 2194 2195 /* find largest table entry that is lower than dram speed, but lower than DPM0 still uses DPM0 */ 2196 for (i = 3; i > 0; i--) 2197 if (min_dram_speed_mts + min_dram_speed_mts_margin > dc->clk_mgr->bw_params->dummy_pstate_table[i].dram_speed_mts) 2198 break; 2199 2200 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->dummy_pstate_table[i].dummy_pstate_latency_us; 2201 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us; 2202 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us; 2203 } 2204 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2205 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2206 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2207 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2208 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2209 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2210 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2211 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2212 2213 if (!pstate_en) { 2214 /* The only difference between A and C is p-state latency, if p-state is not supported we want to 2215 * calculate DLG based on dummy p-state latency, and max out the set A p-state watermark 2216 */ 2217 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c; 2218 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0; 2219 } else { 2220 /* Set A: 2221 * DCFCLK: Min Required 2222 * FCLK(proportional to UCLK): 1GHz or Max 2223 * 2224 * Set A calculated last so that following calculations are based on Set A 2225 */ 2226 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].valid) { 2227 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2228 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us; 2229 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us; 2230 } 2231 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2232 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2233 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2234 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2235 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2236 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2237 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2238 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000; 2239 } 2240 2241 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod; 2242 2243 /* Make set D = set A until set D is enabled */ 2244 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a; 2245 2246 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 2247 if (!context->res_ctx.pipe_ctx[i].stream) 2248 continue; 2249 2250 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt); 2251 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx); 2252 2253 if (dc->config.forced_clocks) { 2254 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz; 2255 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz; 2256 } 2257 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000) 2258 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0; 2259 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000) 2260 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0; 2261 2262 pipe_idx++; 2263 } 2264 2265 dcn20_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel); 2266 2267 if (!pstate_en) 2268 /* Restore full p-state latency */ 2269 context->bw_ctx.dml.soc.dram_clock_change_latency_us = 2270 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us; 2271 } 2272 2273 void dcn30_calculate_wm_and_dlg( 2274 struct dc *dc, struct dc_state *context, 2275 display_e2e_pipe_params_st *pipes, 2276 int pipe_cnt, 2277 int vlevel) 2278 { 2279 DC_FP_START(); 2280 dcn30_calculate_wm_and_dlg_fp(dc, context, pipes, pipe_cnt, vlevel); 2281 DC_FP_END(); 2282 } 2283 2284 bool dcn30_validate_bandwidth(struct dc *dc, 2285 struct dc_state *context, 2286 bool fast_validate) 2287 { 2288 bool out = false; 2289 2290 BW_VAL_TRACE_SETUP(); 2291 2292 int vlevel = 0; 2293 int pipe_cnt = 0; 2294 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2295 DC_LOGGER_INIT(dc->ctx->logger); 2296 2297 BW_VAL_TRACE_COUNT(); 2298 2299 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate); 2300 2301 if (pipe_cnt == 0) 2302 goto validate_out; 2303 2304 if (!out) 2305 goto validate_fail; 2306 2307 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2308 2309 if (fast_validate) { 2310 BW_VAL_TRACE_SKIP(fast); 2311 goto validate_out; 2312 } 2313 2314 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2315 2316 BW_VAL_TRACE_END_WATERMARKS(); 2317 2318 goto validate_out; 2319 2320 validate_fail: 2321 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2322 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2323 2324 BW_VAL_TRACE_SKIP(fail); 2325 out = false; 2326 2327 validate_out: 2328 kfree(pipes); 2329 2330 BW_VAL_TRACE_FINISH(); 2331 2332 return out; 2333 } 2334 2335 /* 2336 * This must be noinline to ensure anything that deals with FP registers 2337 * is contained within this call; previously our compiling with hard-float 2338 * would result in fp instructions being emitted outside of the boundaries 2339 * of the DC_FP_START/END macros, which makes sense as the compiler has no 2340 * idea about what is wrapped and what is not 2341 * 2342 * This is largely just a workaround to avoid breakage introduced with 5.6, 2343 * ideally all fp-using code should be moved into its own file, only that 2344 * should be compiled with hard-float, and all code exported from there 2345 * should be strictly wrapped with DC_FP_START/END 2346 */ 2347 static noinline void dcn30_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts, 2348 unsigned int *optimal_dcfclk, 2349 unsigned int *optimal_fclk) 2350 { 2351 double bw_from_dram, bw_from_dram1, bw_from_dram2; 2352 2353 bw_from_dram1 = uclk_mts * dcn3_0_soc.num_chans * 2354 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_dram_bw_use_normal_percent / 100); 2355 bw_from_dram2 = uclk_mts * dcn3_0_soc.num_chans * 2356 dcn3_0_soc.dram_channel_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100); 2357 2358 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2; 2359 2360 if (optimal_fclk) 2361 *optimal_fclk = bw_from_dram / 2362 (dcn3_0_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2363 2364 if (optimal_dcfclk) 2365 *optimal_dcfclk = bw_from_dram / 2366 (dcn3_0_soc.return_bus_width_bytes * (dcn3_0_soc.max_avg_sdp_bw_use_normal_percent / 100)); 2367 } 2368 2369 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2370 { 2371 unsigned int i, j; 2372 unsigned int num_states = 0; 2373 2374 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2375 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2376 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2377 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2378 2379 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2380 unsigned int num_dcfclk_sta_targets = 4; 2381 unsigned int num_uclk_states; 2382 2383 if (dc->ctx->dc_bios->vram_info.num_chans) 2384 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2385 2386 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes) 2387 dcn3_0_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes; 2388 2389 dcn3_0_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 2390 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0; 2391 2392 if (bw_params->clk_table.entries[0].memclk_mhz) { 2393 2394 if (bw_params->clk_table.entries[1].dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2395 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2396 dcfclk_sta_targets[num_dcfclk_sta_targets] = bw_params->clk_table.entries[1].dcfclk_mhz; 2397 num_dcfclk_sta_targets++; 2398 } else if (bw_params->clk_table.entries[1].dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2399 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2400 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2401 if (dcfclk_sta_targets[i] > bw_params->clk_table.entries[1].dcfclk_mhz) { 2402 dcfclk_sta_targets[i] = bw_params->clk_table.entries[1].dcfclk_mhz; 2403 break; 2404 } 2405 } 2406 // Update size of array since we "removed" duplicates 2407 num_dcfclk_sta_targets = i + 1; 2408 } 2409 2410 num_uclk_states = bw_params->clk_table.num_entries; 2411 2412 // Calculate optimal dcfclk for each uclk 2413 for (i = 0; i < num_uclk_states; i++) { 2414 DC_FP_START(); 2415 dcn30_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2416 &optimal_dcfclk_for_uclk[i], NULL); 2417 DC_FP_END(); 2418 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2419 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2420 } 2421 } 2422 2423 // Calculate optimal uclk for each dcfclk sta target 2424 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2425 for (j = 0; j < num_uclk_states; j++) { 2426 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2427 optimal_uclk_for_dcfclk_sta_targets[i] = 2428 bw_params->clk_table.entries[j].memclk_mhz * 16; 2429 break; 2430 } 2431 } 2432 } 2433 2434 i = 0; 2435 j = 0; 2436 // create the final dcfclk and uclk table 2437 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2438 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2439 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2440 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2441 } else { 2442 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) { 2443 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2444 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2445 } else { 2446 j = num_uclk_states; 2447 } 2448 } 2449 } 2450 2451 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2452 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2453 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2454 } 2455 2456 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2457 optimal_dcfclk_for_uclk[j] <= bw_params->clk_table.entries[1].dcfclk_mhz) { 2458 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2459 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2460 } 2461 2462 for (i = 0; i < dcn3_0_soc.num_states; i++) { 2463 dcn3_0_soc.clock_limits[i].state = i; 2464 dcn3_0_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i]; 2465 dcn3_0_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i]; 2466 dcn3_0_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i]; 2467 2468 /* Fill all states with max values of all other clocks */ 2469 dcn3_0_soc.clock_limits[i].dispclk_mhz = bw_params->clk_table.entries[1].dispclk_mhz; 2470 dcn3_0_soc.clock_limits[i].dppclk_mhz = bw_params->clk_table.entries[1].dppclk_mhz; 2471 dcn3_0_soc.clock_limits[i].phyclk_mhz = bw_params->clk_table.entries[1].phyclk_mhz; 2472 dcn3_0_soc.clock_limits[i].dtbclk_mhz = dcn3_0_soc.clock_limits[0].dtbclk_mhz; 2473 /* These clocks cannot come from bw_params, always fill from dcn3_0_soc[1] */ 2474 /* FCLK, PHYCLK_D18, SOCCLK, DSCCLK */ 2475 dcn3_0_soc.clock_limits[i].phyclk_d18_mhz = dcn3_0_soc.clock_limits[0].phyclk_d18_mhz; 2476 dcn3_0_soc.clock_limits[i].socclk_mhz = dcn3_0_soc.clock_limits[0].socclk_mhz; 2477 dcn3_0_soc.clock_limits[i].dscclk_mhz = dcn3_0_soc.clock_limits[0].dscclk_mhz; 2478 } 2479 /* re-init DML with updated bb */ 2480 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2481 if (dc->current_state) 2482 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2483 } 2484 2485 /* re-init DML with updated bb */ 2486 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2487 if (dc->current_state) 2488 dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2489 } 2490 2491 static const struct resource_funcs dcn30_res_pool_funcs = { 2492 .destroy = dcn30_destroy_resource_pool, 2493 .link_enc_create = dcn30_link_encoder_create, 2494 .panel_cntl_create = dcn30_panel_cntl_create, 2495 .validate_bandwidth = dcn30_validate_bandwidth, 2496 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2497 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2498 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2499 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2500 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2501 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2502 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2503 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2504 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2505 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2506 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2507 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2508 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2509 }; 2510 2511 static bool dcn30_resource_construct( 2512 uint8_t num_virtual_links, 2513 struct dc *dc, 2514 struct dcn30_resource_pool *pool) 2515 { 2516 int i; 2517 struct dc_context *ctx = dc->ctx; 2518 struct irq_service_init_data init_data; 2519 struct ddc_service_init_data ddc_init_data; 2520 2521 DC_FP_START(); 2522 2523 ctx->dc_bios->regs = &bios_regs; 2524 2525 pool->base.res_cap = &res_cap_dcn3; 2526 2527 pool->base.funcs = &dcn30_res_pool_funcs; 2528 2529 /************************************************* 2530 * Resource + asic cap harcoding * 2531 *************************************************/ 2532 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2533 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2534 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2535 dc->caps.max_downscale_ratio = 600; 2536 dc->caps.i2c_speed_in_khz = 100; 2537 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2538 dc->caps.max_cursor_size = 256; 2539 dc->caps.min_horizontal_blanking_period = 80; 2540 dc->caps.dmdata_alloc_size = 2048; 2541 dc->caps.mall_size_per_mem_channel = 8; 2542 /* total size = mall per channel * num channels * 1024 * 1024 */ 2543 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2544 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2545 2546 dc->caps.max_slave_planes = 1; 2547 dc->caps.post_blend_color_processing = true; 2548 dc->caps.force_dp_tps4_for_cp2520 = true; 2549 dc->caps.extended_aux_timeout_support = true; 2550 dc->caps.dmcub_support = true; 2551 2552 /* Color pipeline capabilities */ 2553 dc->caps.color.dpp.dcn_arch = 1; 2554 dc->caps.color.dpp.input_lut_shared = 0; 2555 dc->caps.color.dpp.icsc = 1; 2556 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2557 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2558 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2559 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2560 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2561 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2562 dc->caps.color.dpp.post_csc = 1; 2563 dc->caps.color.dpp.gamma_corr = 1; 2564 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2565 2566 dc->caps.color.dpp.hw_3d_lut = 1; 2567 dc->caps.color.dpp.ogam_ram = 1; 2568 // no OGAM ROM on DCN3 2569 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2570 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2571 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2572 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2573 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2574 dc->caps.color.dpp.ocsc = 0; 2575 2576 dc->caps.color.mpc.gamut_remap = 1; 2577 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2578 dc->caps.color.mpc.ogam_ram = 1; 2579 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2580 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2581 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2582 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2583 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2584 dc->caps.color.mpc.ocsc = 1; 2585 2586 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2587 dc->debug = debug_defaults_drv; 2588 else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) { 2589 dc->debug = debug_defaults_diags; 2590 } else 2591 dc->debug = debug_defaults_diags; 2592 // Init the vm_helper 2593 if (dc->vm_helper) 2594 vm_helper_init(dc->vm_helper, 16); 2595 2596 /************************************************* 2597 * Create resources * 2598 *************************************************/ 2599 2600 /* Clock Sources for Pixel Clock*/ 2601 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2602 dcn30_clock_source_create(ctx, ctx->dc_bios, 2603 CLOCK_SOURCE_COMBO_PHY_PLL0, 2604 &clk_src_regs[0], false); 2605 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2606 dcn30_clock_source_create(ctx, ctx->dc_bios, 2607 CLOCK_SOURCE_COMBO_PHY_PLL1, 2608 &clk_src_regs[1], false); 2609 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2610 dcn30_clock_source_create(ctx, ctx->dc_bios, 2611 CLOCK_SOURCE_COMBO_PHY_PLL2, 2612 &clk_src_regs[2], false); 2613 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2614 dcn30_clock_source_create(ctx, ctx->dc_bios, 2615 CLOCK_SOURCE_COMBO_PHY_PLL3, 2616 &clk_src_regs[3], false); 2617 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2618 dcn30_clock_source_create(ctx, ctx->dc_bios, 2619 CLOCK_SOURCE_COMBO_PHY_PLL4, 2620 &clk_src_regs[4], false); 2621 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2622 dcn30_clock_source_create(ctx, ctx->dc_bios, 2623 CLOCK_SOURCE_COMBO_PHY_PLL5, 2624 &clk_src_regs[5], false); 2625 2626 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2627 2628 /* todo: not reuse phy_pll registers */ 2629 pool->base.dp_clock_source = 2630 dcn30_clock_source_create(ctx, ctx->dc_bios, 2631 CLOCK_SOURCE_ID_DP_DTO, 2632 &clk_src_regs[0], true); 2633 2634 for (i = 0; i < pool->base.clk_src_count; i++) { 2635 if (pool->base.clock_sources[i] == NULL) { 2636 dm_error("DC: failed to create clock sources!\n"); 2637 BREAK_TO_DEBUGGER(); 2638 goto create_fail; 2639 } 2640 } 2641 2642 /* DCCG */ 2643 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2644 if (pool->base.dccg == NULL) { 2645 dm_error("DC: failed to create dccg!\n"); 2646 BREAK_TO_DEBUGGER(); 2647 goto create_fail; 2648 } 2649 2650 /* PP Lib and SMU interfaces */ 2651 init_soc_bounding_box(dc, pool); 2652 2653 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2654 2655 /* IRQ */ 2656 init_data.ctx = dc->ctx; 2657 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2658 if (!pool->base.irqs) 2659 goto create_fail; 2660 2661 /* HUBBUB */ 2662 pool->base.hubbub = dcn30_hubbub_create(ctx); 2663 if (pool->base.hubbub == NULL) { 2664 BREAK_TO_DEBUGGER(); 2665 dm_error("DC: failed to create hubbub!\n"); 2666 goto create_fail; 2667 } 2668 2669 /* HUBPs, DPPs, OPPs and TGs */ 2670 for (i = 0; i < pool->base.pipe_count; i++) { 2671 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2672 if (pool->base.hubps[i] == NULL) { 2673 BREAK_TO_DEBUGGER(); 2674 dm_error( 2675 "DC: failed to create hubps!\n"); 2676 goto create_fail; 2677 } 2678 2679 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2680 if (pool->base.dpps[i] == NULL) { 2681 BREAK_TO_DEBUGGER(); 2682 dm_error( 2683 "DC: failed to create dpps!\n"); 2684 goto create_fail; 2685 } 2686 } 2687 2688 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2689 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2690 if (pool->base.opps[i] == NULL) { 2691 BREAK_TO_DEBUGGER(); 2692 dm_error( 2693 "DC: failed to create output pixel processor!\n"); 2694 goto create_fail; 2695 } 2696 } 2697 2698 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2699 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2700 ctx, i); 2701 if (pool->base.timing_generators[i] == NULL) { 2702 BREAK_TO_DEBUGGER(); 2703 dm_error("DC: failed to create tg!\n"); 2704 goto create_fail; 2705 } 2706 } 2707 pool->base.timing_generator_count = i; 2708 /* PSR */ 2709 pool->base.psr = dmub_psr_create(ctx); 2710 2711 if (pool->base.psr == NULL) { 2712 dm_error("DC: failed to create PSR obj!\n"); 2713 BREAK_TO_DEBUGGER(); 2714 goto create_fail; 2715 } 2716 2717 /* ABM */ 2718 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2719 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2720 &abm_regs[i], 2721 &abm_shift, 2722 &abm_mask); 2723 if (pool->base.multiple_abms[i] == NULL) { 2724 dm_error("DC: failed to create abm for pipe %d!\n", i); 2725 BREAK_TO_DEBUGGER(); 2726 goto create_fail; 2727 } 2728 } 2729 /* MPC and DSC */ 2730 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2731 if (pool->base.mpc == NULL) { 2732 BREAK_TO_DEBUGGER(); 2733 dm_error("DC: failed to create mpc!\n"); 2734 goto create_fail; 2735 } 2736 2737 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2738 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2739 if (pool->base.dscs[i] == NULL) { 2740 BREAK_TO_DEBUGGER(); 2741 dm_error("DC: failed to create display stream compressor %d!\n", i); 2742 goto create_fail; 2743 } 2744 } 2745 2746 /* DWB and MMHUBBUB */ 2747 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2748 BREAK_TO_DEBUGGER(); 2749 dm_error("DC: failed to create dwbc!\n"); 2750 goto create_fail; 2751 } 2752 2753 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2754 BREAK_TO_DEBUGGER(); 2755 dm_error("DC: failed to create mcif_wb!\n"); 2756 goto create_fail; 2757 } 2758 2759 /* AUX and I2C */ 2760 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2761 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2762 if (pool->base.engines[i] == NULL) { 2763 BREAK_TO_DEBUGGER(); 2764 dm_error( 2765 "DC:failed to create aux engine!!\n"); 2766 goto create_fail; 2767 } 2768 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2769 if (pool->base.hw_i2cs[i] == NULL) { 2770 BREAK_TO_DEBUGGER(); 2771 dm_error( 2772 "DC:failed to create hw i2c!!\n"); 2773 goto create_fail; 2774 } 2775 pool->base.sw_i2cs[i] = NULL; 2776 } 2777 2778 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2779 if (!resource_construct(num_virtual_links, dc, &pool->base, 2780 (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ? 2781 &res_create_funcs : &res_create_maximus_funcs))) 2782 goto create_fail; 2783 2784 /* HW Sequencer and Plane caps */ 2785 dcn30_hw_sequencer_construct(dc); 2786 2787 dc->caps.max_planes = pool->base.pipe_count; 2788 2789 for (i = 0; i < dc->caps.max_planes; ++i) 2790 dc->caps.planes[i] = plane_cap; 2791 2792 dc->cap_funcs = cap_funcs; 2793 2794 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2795 ddc_init_data.ctx = dc->ctx; 2796 ddc_init_data.link = NULL; 2797 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2798 ddc_init_data.id.enum_id = 0; 2799 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2800 pool->base.oem_device = dal_ddc_service_create(&ddc_init_data); 2801 } else { 2802 pool->base.oem_device = NULL; 2803 } 2804 2805 DC_FP_END(); 2806 2807 return true; 2808 2809 create_fail: 2810 2811 DC_FP_END(); 2812 dcn30_resource_destruct(pool); 2813 2814 return false; 2815 } 2816 2817 struct resource_pool *dcn30_create_resource_pool( 2818 const struct dc_init_data *init_data, 2819 struct dc *dc) 2820 { 2821 struct dcn30_resource_pool *pool = 2822 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2823 2824 if (!pool) 2825 return NULL; 2826 2827 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2828 return &pool->base; 2829 2830 BREAK_TO_DEBUGGER(); 2831 kfree(pool); 2832 return NULL; 2833 } 2834