1 /* 2 * Copyright 2020 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 26 27 #include "dm_services.h" 28 #include "dc.h" 29 30 #include "dcn30_init.h" 31 32 #include "resource.h" 33 #include "include/irq_service_interface.h" 34 #include "dcn20/dcn20_resource.h" 35 36 #include "dcn30_resource.h" 37 38 #include "dcn10/dcn10_ipp.h" 39 #include "dcn30/dcn30_hubbub.h" 40 #include "dcn30/dcn30_mpc.h" 41 #include "dcn30/dcn30_hubp.h" 42 #include "irq/dcn30/irq_service_dcn30.h" 43 #include "dcn30/dcn30_dpp.h" 44 #include "dcn30/dcn30_optc.h" 45 #include "dcn20/dcn20_hwseq.h" 46 #include "dcn30/dcn30_hwseq.h" 47 #include "dce110/dce110_hw_sequencer.h" 48 #include "dcn30/dcn30_opp.h" 49 #include "dcn20/dcn20_dsc.h" 50 #include "dcn30/dcn30_vpg.h" 51 #include "dcn30/dcn30_afmt.h" 52 #include "dcn30/dcn30_dio_stream_encoder.h" 53 #include "dcn30/dcn30_dio_link_encoder.h" 54 #include "dce/dce_clock_source.h" 55 #include "dce/dce_audio.h" 56 #include "dce/dce_hwseq.h" 57 #include "clk_mgr.h" 58 #include "virtual/virtual_stream_encoder.h" 59 #include "dce110/dce110_resource.h" 60 #include "dml/display_mode_vba.h" 61 #include "dcn30/dcn30_dccg.h" 62 #include "dcn10/dcn10_resource.h" 63 #include "link.h" 64 #include "dce/dce_panel_cntl.h" 65 66 #include "dcn30/dcn30_dwb.h" 67 #include "dcn30/dcn30_mmhubbub.h" 68 69 #include "sienna_cichlid_ip_offset.h" 70 #include "dcn/dcn_3_0_0_offset.h" 71 #include "dcn/dcn_3_0_0_sh_mask.h" 72 73 #include "nbio/nbio_7_4_offset.h" 74 75 #include "dpcs/dpcs_3_0_0_offset.h" 76 #include "dpcs/dpcs_3_0_0_sh_mask.h" 77 78 #include "mmhub/mmhub_2_0_0_offset.h" 79 #include "mmhub/mmhub_2_0_0_sh_mask.h" 80 81 #include "reg_helper.h" 82 #include "dce/dmub_abm.h" 83 #include "dce/dmub_psr.h" 84 #include "dce/dce_aux.h" 85 #include "dce/dce_i2c.h" 86 87 #include "dml/dcn30/dcn30_fpu.h" 88 #include "dml/dcn30/display_mode_vba_30.h" 89 #include "vm_helper.h" 90 #include "dcn20/dcn20_vmid.h" 91 #include "amdgpu_socbb.h" 92 #include "dc_dmub_srv.h" 93 94 #define DC_LOGGER_INIT(logger) 95 96 enum dcn30_clk_src_array_id { 97 DCN30_CLK_SRC_PLL0, 98 DCN30_CLK_SRC_PLL1, 99 DCN30_CLK_SRC_PLL2, 100 DCN30_CLK_SRC_PLL3, 101 DCN30_CLK_SRC_PLL4, 102 DCN30_CLK_SRC_PLL5, 103 DCN30_CLK_SRC_TOTAL 104 }; 105 106 /* begin ********************* 107 * macros to expend register list macro defined in HW object header file 108 */ 109 110 /* DCN */ 111 #define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg 112 113 #define BASE(seg) BASE_INNER(seg) 114 115 #define SR(reg_name)\ 116 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 117 mm ## reg_name 118 119 #define SRI(reg_name, block, id)\ 120 .reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 121 mm ## block ## id ## _ ## reg_name 122 123 #define SRI2(reg_name, block, id)\ 124 .reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \ 125 mm ## reg_name 126 127 #define SRIR(var_name, reg_name, block, id)\ 128 .var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 129 mm ## block ## id ## _ ## reg_name 130 131 #define SRII(reg_name, block, id)\ 132 .reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 133 mm ## block ## id ## _ ## reg_name 134 135 #define SRII_MPC_RMU(reg_name, block, id)\ 136 .RMU##_##reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 137 mm ## block ## id ## _ ## reg_name 138 139 #define SRII_DWB(reg_name, temp_name, block, id)\ 140 .reg_name[id] = BASE(mm ## block ## id ## _ ## temp_name ## _BASE_IDX) + \ 141 mm ## block ## id ## _ ## temp_name 142 143 #define SF_DWB2(reg_name, block, id, field_name, post_fix) \ 144 .field_name = reg_name ## __ ## field_name ## post_fix 145 146 #define DCCG_SRII(reg_name, block, id)\ 147 .block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \ 148 mm ## block ## id ## _ ## reg_name 149 150 #define VUPDATE_SRII(reg_name, block, id)\ 151 .reg_name[id] = BASE(mm ## reg_name ## _ ## block ## id ## _BASE_IDX) + \ 152 mm ## reg_name ## _ ## block ## id 153 154 /* NBIO */ 155 #define NBIO_BASE_INNER(seg) \ 156 NBIO_BASE__INST0_SEG ## seg 157 158 #define NBIO_BASE(seg) \ 159 NBIO_BASE_INNER(seg) 160 161 #define NBIO_SR(reg_name)\ 162 .reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \ 163 mm ## reg_name 164 165 /* MMHUB */ 166 #define MMHUB_BASE_INNER(seg) \ 167 MMHUB_BASE__INST0_SEG ## seg 168 169 #define MMHUB_BASE(seg) \ 170 MMHUB_BASE_INNER(seg) 171 172 #define MMHUB_SR(reg_name)\ 173 .reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \ 174 mmMM ## reg_name 175 176 /* CLOCK */ 177 #define CLK_BASE_INNER(seg) \ 178 CLK_BASE__INST0_SEG ## seg 179 180 #define CLK_BASE(seg) \ 181 CLK_BASE_INNER(seg) 182 183 #define CLK_SRI(reg_name, block, inst)\ 184 .reg_name = CLK_BASE(mm ## block ## _ ## inst ## _ ## reg_name ## _BASE_IDX) + \ 185 mm ## block ## _ ## inst ## _ ## reg_name 186 187 188 static const struct bios_registers bios_regs = { 189 NBIO_SR(BIOS_SCRATCH_3), 190 NBIO_SR(BIOS_SCRATCH_6) 191 }; 192 193 #define clk_src_regs(index, pllid)\ 194 [index] = {\ 195 CS_COMMON_REG_LIST_DCN2_0(index, pllid),\ 196 } 197 198 static const struct dce110_clk_src_regs clk_src_regs[] = { 199 clk_src_regs(0, A), 200 clk_src_regs(1, B), 201 clk_src_regs(2, C), 202 clk_src_regs(3, D), 203 clk_src_regs(4, E), 204 clk_src_regs(5, F) 205 }; 206 207 static const struct dce110_clk_src_shift cs_shift = { 208 CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT) 209 }; 210 211 static const struct dce110_clk_src_mask cs_mask = { 212 CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK) 213 }; 214 215 #define abm_regs(id)\ 216 [id] = {\ 217 ABM_DCN30_REG_LIST(id)\ 218 } 219 220 static const struct dce_abm_registers abm_regs[] = { 221 abm_regs(0), 222 abm_regs(1), 223 abm_regs(2), 224 abm_regs(3), 225 abm_regs(4), 226 abm_regs(5), 227 }; 228 229 static const struct dce_abm_shift abm_shift = { 230 ABM_MASK_SH_LIST_DCN30(__SHIFT) 231 }; 232 233 static const struct dce_abm_mask abm_mask = { 234 ABM_MASK_SH_LIST_DCN30(_MASK) 235 }; 236 237 238 239 #define audio_regs(id)\ 240 [id] = {\ 241 AUD_COMMON_REG_LIST(id)\ 242 } 243 244 static const struct dce_audio_registers audio_regs[] = { 245 audio_regs(0), 246 audio_regs(1), 247 audio_regs(2), 248 audio_regs(3), 249 audio_regs(4), 250 audio_regs(5), 251 audio_regs(6) 252 }; 253 254 #define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\ 255 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\ 256 SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\ 257 AUD_COMMON_MASK_SH_LIST_BASE(mask_sh) 258 259 static const struct dce_audio_shift audio_shift = { 260 DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT) 261 }; 262 263 static const struct dce_audio_mask audio_mask = { 264 DCE120_AUD_COMMON_MASK_SH_LIST(_MASK) 265 }; 266 267 #define vpg_regs(id)\ 268 [id] = {\ 269 VPG_DCN3_REG_LIST(id)\ 270 } 271 272 static const struct dcn30_vpg_registers vpg_regs[] = { 273 vpg_regs(0), 274 vpg_regs(1), 275 vpg_regs(2), 276 vpg_regs(3), 277 vpg_regs(4), 278 vpg_regs(5), 279 vpg_regs(6), 280 }; 281 282 static const struct dcn30_vpg_shift vpg_shift = { 283 DCN3_VPG_MASK_SH_LIST(__SHIFT) 284 }; 285 286 static const struct dcn30_vpg_mask vpg_mask = { 287 DCN3_VPG_MASK_SH_LIST(_MASK) 288 }; 289 290 #define afmt_regs(id)\ 291 [id] = {\ 292 AFMT_DCN3_REG_LIST(id)\ 293 } 294 295 static const struct dcn30_afmt_registers afmt_regs[] = { 296 afmt_regs(0), 297 afmt_regs(1), 298 afmt_regs(2), 299 afmt_regs(3), 300 afmt_regs(4), 301 afmt_regs(5), 302 afmt_regs(6), 303 }; 304 305 static const struct dcn30_afmt_shift afmt_shift = { 306 DCN3_AFMT_MASK_SH_LIST(__SHIFT) 307 }; 308 309 static const struct dcn30_afmt_mask afmt_mask = { 310 DCN3_AFMT_MASK_SH_LIST(_MASK) 311 }; 312 313 #define stream_enc_regs(id)\ 314 [id] = {\ 315 SE_DCN3_REG_LIST(id)\ 316 } 317 318 static const struct dcn10_stream_enc_registers stream_enc_regs[] = { 319 stream_enc_regs(0), 320 stream_enc_regs(1), 321 stream_enc_regs(2), 322 stream_enc_regs(3), 323 stream_enc_regs(4), 324 stream_enc_regs(5) 325 }; 326 327 static const struct dcn10_stream_encoder_shift se_shift = { 328 SE_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 329 }; 330 331 static const struct dcn10_stream_encoder_mask se_mask = { 332 SE_COMMON_MASK_SH_LIST_DCN30(_MASK) 333 }; 334 335 336 #define aux_regs(id)\ 337 [id] = {\ 338 DCN2_AUX_REG_LIST(id)\ 339 } 340 341 static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = { 342 aux_regs(0), 343 aux_regs(1), 344 aux_regs(2), 345 aux_regs(3), 346 aux_regs(4), 347 aux_regs(5) 348 }; 349 350 #define hpd_regs(id)\ 351 [id] = {\ 352 HPD_REG_LIST(id)\ 353 } 354 355 static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = { 356 hpd_regs(0), 357 hpd_regs(1), 358 hpd_regs(2), 359 hpd_regs(3), 360 hpd_regs(4), 361 hpd_regs(5) 362 }; 363 364 #define link_regs(id, phyid)\ 365 [id] = {\ 366 LE_DCN3_REG_LIST(id), \ 367 UNIPHY_DCN2_REG_LIST(phyid), \ 368 DPCS_DCN2_REG_LIST(id), \ 369 SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \ 370 } 371 372 static const struct dce110_aux_registers_shift aux_shift = { 373 DCN_AUX_MASK_SH_LIST(__SHIFT) 374 }; 375 376 static const struct dce110_aux_registers_mask aux_mask = { 377 DCN_AUX_MASK_SH_LIST(_MASK) 378 }; 379 380 static const struct dcn10_link_enc_registers link_enc_regs[] = { 381 link_regs(0, A), 382 link_regs(1, B), 383 link_regs(2, C), 384 link_regs(3, D), 385 link_regs(4, E), 386 link_regs(5, F) 387 }; 388 389 static const struct dcn10_link_enc_shift le_shift = { 390 LINK_ENCODER_MASK_SH_LIST_DCN30(__SHIFT),\ 391 DPCS_DCN2_MASK_SH_LIST(__SHIFT) 392 }; 393 394 static const struct dcn10_link_enc_mask le_mask = { 395 LINK_ENCODER_MASK_SH_LIST_DCN30(_MASK),\ 396 DPCS_DCN2_MASK_SH_LIST(_MASK) 397 }; 398 399 400 static const struct dce_panel_cntl_registers panel_cntl_regs[] = { 401 { DCN_PANEL_CNTL_REG_LIST() } 402 }; 403 404 static const struct dce_panel_cntl_shift panel_cntl_shift = { 405 DCE_PANEL_CNTL_MASK_SH_LIST(__SHIFT) 406 }; 407 408 static const struct dce_panel_cntl_mask panel_cntl_mask = { 409 DCE_PANEL_CNTL_MASK_SH_LIST(_MASK) 410 }; 411 412 #define dpp_regs(id)\ 413 [id] = {\ 414 DPP_REG_LIST_DCN30(id),\ 415 } 416 417 static const struct dcn3_dpp_registers dpp_regs[] = { 418 dpp_regs(0), 419 dpp_regs(1), 420 dpp_regs(2), 421 dpp_regs(3), 422 dpp_regs(4), 423 dpp_regs(5), 424 }; 425 426 static const struct dcn3_dpp_shift tf_shift = { 427 DPP_REG_LIST_SH_MASK_DCN30(__SHIFT) 428 }; 429 430 static const struct dcn3_dpp_mask tf_mask = { 431 DPP_REG_LIST_SH_MASK_DCN30(_MASK) 432 }; 433 434 #define opp_regs(id)\ 435 [id] = {\ 436 OPP_REG_LIST_DCN30(id),\ 437 } 438 439 static const struct dcn20_opp_registers opp_regs[] = { 440 opp_regs(0), 441 opp_regs(1), 442 opp_regs(2), 443 opp_regs(3), 444 opp_regs(4), 445 opp_regs(5) 446 }; 447 448 static const struct dcn20_opp_shift opp_shift = { 449 OPP_MASK_SH_LIST_DCN20(__SHIFT) 450 }; 451 452 static const struct dcn20_opp_mask opp_mask = { 453 OPP_MASK_SH_LIST_DCN20(_MASK) 454 }; 455 456 #define aux_engine_regs(id)\ 457 [id] = {\ 458 AUX_COMMON_REG_LIST0(id), \ 459 .AUXN_IMPCAL = 0, \ 460 .AUXP_IMPCAL = 0, \ 461 .AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \ 462 } 463 464 static const struct dce110_aux_registers aux_engine_regs[] = { 465 aux_engine_regs(0), 466 aux_engine_regs(1), 467 aux_engine_regs(2), 468 aux_engine_regs(3), 469 aux_engine_regs(4), 470 aux_engine_regs(5) 471 }; 472 473 #define dwbc_regs_dcn3(id)\ 474 [id] = {\ 475 DWBC_COMMON_REG_LIST_DCN30(id),\ 476 } 477 478 static const struct dcn30_dwbc_registers dwbc30_regs[] = { 479 dwbc_regs_dcn3(0), 480 }; 481 482 static const struct dcn30_dwbc_shift dwbc30_shift = { 483 DWBC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 484 }; 485 486 static const struct dcn30_dwbc_mask dwbc30_mask = { 487 DWBC_COMMON_MASK_SH_LIST_DCN30(_MASK) 488 }; 489 490 #define mcif_wb_regs_dcn3(id)\ 491 [id] = {\ 492 MCIF_WB_COMMON_REG_LIST_DCN30(id),\ 493 } 494 495 static const struct dcn30_mmhubbub_registers mcif_wb30_regs[] = { 496 mcif_wb_regs_dcn3(0) 497 }; 498 499 static const struct dcn30_mmhubbub_shift mcif_wb30_shift = { 500 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 501 }; 502 503 static const struct dcn30_mmhubbub_mask mcif_wb30_mask = { 504 MCIF_WB_COMMON_MASK_SH_LIST_DCN30(_MASK) 505 }; 506 507 #define dsc_regsDCN20(id)\ 508 [id] = {\ 509 DSC_REG_LIST_DCN20(id)\ 510 } 511 512 static const struct dcn20_dsc_registers dsc_regs[] = { 513 dsc_regsDCN20(0), 514 dsc_regsDCN20(1), 515 dsc_regsDCN20(2), 516 dsc_regsDCN20(3), 517 dsc_regsDCN20(4), 518 dsc_regsDCN20(5) 519 }; 520 521 static const struct dcn20_dsc_shift dsc_shift = { 522 DSC_REG_LIST_SH_MASK_DCN20(__SHIFT) 523 }; 524 525 static const struct dcn20_dsc_mask dsc_mask = { 526 DSC_REG_LIST_SH_MASK_DCN20(_MASK) 527 }; 528 529 static const struct dcn30_mpc_registers mpc_regs = { 530 MPC_REG_LIST_DCN3_0(0), 531 MPC_REG_LIST_DCN3_0(1), 532 MPC_REG_LIST_DCN3_0(2), 533 MPC_REG_LIST_DCN3_0(3), 534 MPC_REG_LIST_DCN3_0(4), 535 MPC_REG_LIST_DCN3_0(5), 536 MPC_OUT_MUX_REG_LIST_DCN3_0(0), 537 MPC_OUT_MUX_REG_LIST_DCN3_0(1), 538 MPC_OUT_MUX_REG_LIST_DCN3_0(2), 539 MPC_OUT_MUX_REG_LIST_DCN3_0(3), 540 MPC_OUT_MUX_REG_LIST_DCN3_0(4), 541 MPC_OUT_MUX_REG_LIST_DCN3_0(5), 542 MPC_RMU_GLOBAL_REG_LIST_DCN3AG, 543 MPC_RMU_REG_LIST_DCN3AG(0), 544 MPC_RMU_REG_LIST_DCN3AG(1), 545 MPC_RMU_REG_LIST_DCN3AG(2), 546 MPC_DWB_MUX_REG_LIST_DCN3_0(0), 547 }; 548 549 static const struct dcn30_mpc_shift mpc_shift = { 550 MPC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 551 }; 552 553 static const struct dcn30_mpc_mask mpc_mask = { 554 MPC_COMMON_MASK_SH_LIST_DCN30(_MASK) 555 }; 556 557 #define optc_regs(id)\ 558 [id] = {OPTC_COMMON_REG_LIST_DCN3_0(id)} 559 560 561 static const struct dcn_optc_registers optc_regs[] = { 562 optc_regs(0), 563 optc_regs(1), 564 optc_regs(2), 565 optc_regs(3), 566 optc_regs(4), 567 optc_regs(5) 568 }; 569 570 static const struct dcn_optc_shift optc_shift = { 571 OPTC_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 572 }; 573 574 static const struct dcn_optc_mask optc_mask = { 575 OPTC_COMMON_MASK_SH_LIST_DCN30(_MASK) 576 }; 577 578 #define hubp_regs(id)\ 579 [id] = {\ 580 HUBP_REG_LIST_DCN30(id)\ 581 } 582 583 static const struct dcn_hubp2_registers hubp_regs[] = { 584 hubp_regs(0), 585 hubp_regs(1), 586 hubp_regs(2), 587 hubp_regs(3), 588 hubp_regs(4), 589 hubp_regs(5) 590 }; 591 592 static const struct dcn_hubp2_shift hubp_shift = { 593 HUBP_MASK_SH_LIST_DCN30(__SHIFT) 594 }; 595 596 static const struct dcn_hubp2_mask hubp_mask = { 597 HUBP_MASK_SH_LIST_DCN30(_MASK) 598 }; 599 600 static const struct dcn_hubbub_registers hubbub_reg = { 601 HUBBUB_REG_LIST_DCN30(0) 602 }; 603 604 static const struct dcn_hubbub_shift hubbub_shift = { 605 HUBBUB_MASK_SH_LIST_DCN30(__SHIFT) 606 }; 607 608 static const struct dcn_hubbub_mask hubbub_mask = { 609 HUBBUB_MASK_SH_LIST_DCN30(_MASK) 610 }; 611 612 static const struct dccg_registers dccg_regs = { 613 DCCG_REG_LIST_DCN30() 614 }; 615 616 static const struct dccg_shift dccg_shift = { 617 DCCG_MASK_SH_LIST_DCN3(__SHIFT) 618 }; 619 620 static const struct dccg_mask dccg_mask = { 621 DCCG_MASK_SH_LIST_DCN3(_MASK) 622 }; 623 624 static const struct dce_hwseq_registers hwseq_reg = { 625 HWSEQ_DCN30_REG_LIST() 626 }; 627 628 static const struct dce_hwseq_shift hwseq_shift = { 629 HWSEQ_DCN30_MASK_SH_LIST(__SHIFT) 630 }; 631 632 static const struct dce_hwseq_mask hwseq_mask = { 633 HWSEQ_DCN30_MASK_SH_LIST(_MASK) 634 }; 635 #define vmid_regs(id)\ 636 [id] = {\ 637 DCN20_VMID_REG_LIST(id)\ 638 } 639 640 static const struct dcn_vmid_registers vmid_regs[] = { 641 vmid_regs(0), 642 vmid_regs(1), 643 vmid_regs(2), 644 vmid_regs(3), 645 vmid_regs(4), 646 vmid_regs(5), 647 vmid_regs(6), 648 vmid_regs(7), 649 vmid_regs(8), 650 vmid_regs(9), 651 vmid_regs(10), 652 vmid_regs(11), 653 vmid_regs(12), 654 vmid_regs(13), 655 vmid_regs(14), 656 vmid_regs(15) 657 }; 658 659 static const struct dcn20_vmid_shift vmid_shifts = { 660 DCN20_VMID_MASK_SH_LIST(__SHIFT) 661 }; 662 663 static const struct dcn20_vmid_mask vmid_masks = { 664 DCN20_VMID_MASK_SH_LIST(_MASK) 665 }; 666 667 static const struct resource_caps res_cap_dcn3 = { 668 .num_timing_generator = 6, 669 .num_opp = 6, 670 .num_video_plane = 6, 671 .num_audio = 6, 672 .num_stream_encoder = 6, 673 .num_pll = 6, 674 .num_dwb = 1, 675 .num_ddc = 6, 676 .num_vmid = 16, 677 .num_mpc_3dlut = 3, 678 .num_dsc = 6, 679 }; 680 681 static const struct dc_plane_cap plane_cap = { 682 .type = DC_PLANE_TYPE_DCN_UNIVERSAL, 683 .per_pixel_alpha = true, 684 685 .pixel_format_support = { 686 .argb8888 = true, 687 .nv12 = true, 688 .fp16 = true, 689 .p010 = true, 690 .ayuv = false, 691 }, 692 693 .max_upscale_factor = { 694 .argb8888 = 16000, 695 .nv12 = 16000, 696 .fp16 = 16000 697 }, 698 699 /* 6:1 downscaling ratio: 1000/6 = 166.666 */ 700 .max_downscale_factor = { 701 .argb8888 = 167, 702 .nv12 = 167, 703 .fp16 = 167 704 }, 705 16, 706 16 707 }; 708 709 static const struct dc_debug_options debug_defaults_drv = { 710 .disable_dmcu = true, //No DMCU on DCN30 711 .force_abm_enable = false, 712 .timing_trace = false, 713 .clock_trace = true, 714 .disable_pplib_clock_request = true, 715 .pipe_split_policy = MPC_SPLIT_DYNAMIC, 716 .force_single_disp_pipe_split = false, 717 .disable_dcc = DCC_ENABLE, 718 .vsr_support = true, 719 .performance_trace = false, 720 .max_downscale_src_width = 7680,/*upto 8K*/ 721 .disable_pplib_wm_range = false, 722 .scl_reset_length10 = true, 723 .sanity_checks = false, 724 .underflow_assert_delay_us = 0xFFFFFFFF, 725 .dwb_fi_phase = -1, // -1 = disable, 726 .dmub_command_table = true, 727 .use_max_lb = true, 728 .exit_idle_opt_for_cursor_updates = true, 729 .enable_legacy_fast_update = false, 730 }; 731 732 static const struct dc_panel_config panel_config_defaults = { 733 .psr = { 734 .disable_psr = false, 735 .disallow_psrsu = false, 736 }, 737 }; 738 739 static void dcn30_dpp_destroy(struct dpp **dpp) 740 { 741 kfree(TO_DCN20_DPP(*dpp)); 742 *dpp = NULL; 743 } 744 745 static struct dpp *dcn30_dpp_create( 746 struct dc_context *ctx, 747 uint32_t inst) 748 { 749 struct dcn3_dpp *dpp = 750 kzalloc(sizeof(struct dcn3_dpp), GFP_KERNEL); 751 752 if (!dpp) 753 return NULL; 754 755 if (dpp3_construct(dpp, ctx, inst, 756 &dpp_regs[inst], &tf_shift, &tf_mask)) 757 return &dpp->base; 758 759 BREAK_TO_DEBUGGER(); 760 kfree(dpp); 761 return NULL; 762 } 763 764 static struct output_pixel_processor *dcn30_opp_create( 765 struct dc_context *ctx, uint32_t inst) 766 { 767 struct dcn20_opp *opp = 768 kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL); 769 770 if (!opp) { 771 BREAK_TO_DEBUGGER(); 772 return NULL; 773 } 774 775 dcn20_opp_construct(opp, ctx, inst, 776 &opp_regs[inst], &opp_shift, &opp_mask); 777 return &opp->base; 778 } 779 780 static struct dce_aux *dcn30_aux_engine_create( 781 struct dc_context *ctx, 782 uint32_t inst) 783 { 784 struct aux_engine_dce110 *aux_engine = 785 kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL); 786 787 if (!aux_engine) 788 return NULL; 789 790 dce110_aux_engine_construct(aux_engine, ctx, inst, 791 SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD, 792 &aux_engine_regs[inst], 793 &aux_mask, 794 &aux_shift, 795 ctx->dc->caps.extended_aux_timeout_support); 796 797 return &aux_engine->base; 798 } 799 800 #define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST_DCN30(id) } 801 802 static const struct dce_i2c_registers i2c_hw_regs[] = { 803 i2c_inst_regs(1), 804 i2c_inst_regs(2), 805 i2c_inst_regs(3), 806 i2c_inst_regs(4), 807 i2c_inst_regs(5), 808 i2c_inst_regs(6), 809 }; 810 811 static const struct dce_i2c_shift i2c_shifts = { 812 I2C_COMMON_MASK_SH_LIST_DCN30(__SHIFT) 813 }; 814 815 static const struct dce_i2c_mask i2c_masks = { 816 I2C_COMMON_MASK_SH_LIST_DCN30(_MASK) 817 }; 818 819 static struct dce_i2c_hw *dcn30_i2c_hw_create( 820 struct dc_context *ctx, 821 uint32_t inst) 822 { 823 struct dce_i2c_hw *dce_i2c_hw = 824 kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL); 825 826 if (!dce_i2c_hw) 827 return NULL; 828 829 dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst, 830 &i2c_hw_regs[inst], &i2c_shifts, &i2c_masks); 831 832 return dce_i2c_hw; 833 } 834 835 static struct mpc *dcn30_mpc_create( 836 struct dc_context *ctx, 837 int num_mpcc, 838 int num_rmu) 839 { 840 struct dcn30_mpc *mpc30 = kzalloc(sizeof(struct dcn30_mpc), 841 GFP_KERNEL); 842 843 if (!mpc30) 844 return NULL; 845 846 dcn30_mpc_construct(mpc30, ctx, 847 &mpc_regs, 848 &mpc_shift, 849 &mpc_mask, 850 num_mpcc, 851 num_rmu); 852 853 return &mpc30->base; 854 } 855 856 static struct hubbub *dcn30_hubbub_create(struct dc_context *ctx) 857 { 858 int i; 859 860 struct dcn20_hubbub *hubbub3 = kzalloc(sizeof(struct dcn20_hubbub), 861 GFP_KERNEL); 862 863 if (!hubbub3) 864 return NULL; 865 866 hubbub3_construct(hubbub3, ctx, 867 &hubbub_reg, 868 &hubbub_shift, 869 &hubbub_mask); 870 871 872 for (i = 0; i < res_cap_dcn3.num_vmid; i++) { 873 struct dcn20_vmid *vmid = &hubbub3->vmid[i]; 874 875 vmid->ctx = ctx; 876 877 vmid->regs = &vmid_regs[i]; 878 vmid->shifts = &vmid_shifts; 879 vmid->masks = &vmid_masks; 880 } 881 882 return &hubbub3->base; 883 } 884 885 static struct timing_generator *dcn30_timing_generator_create( 886 struct dc_context *ctx, 887 uint32_t instance) 888 { 889 struct optc *tgn10 = 890 kzalloc(sizeof(struct optc), GFP_KERNEL); 891 892 if (!tgn10) 893 return NULL; 894 895 tgn10->base.inst = instance; 896 tgn10->base.ctx = ctx; 897 898 tgn10->tg_regs = &optc_regs[instance]; 899 tgn10->tg_shift = &optc_shift; 900 tgn10->tg_mask = &optc_mask; 901 902 dcn30_timing_generator_init(tgn10); 903 904 return &tgn10->base; 905 } 906 907 static const struct encoder_feature_support link_enc_feature = { 908 .max_hdmi_deep_color = COLOR_DEPTH_121212, 909 .max_hdmi_pixel_clock = 600000, 910 .hdmi_ycbcr420_supported = true, 911 .dp_ycbcr420_supported = true, 912 .fec_supported = true, 913 .flags.bits.IS_HBR2_CAPABLE = true, 914 .flags.bits.IS_HBR3_CAPABLE = true, 915 .flags.bits.IS_TPS3_CAPABLE = true, 916 .flags.bits.IS_TPS4_CAPABLE = true 917 }; 918 919 static struct link_encoder *dcn30_link_encoder_create( 920 struct dc_context *ctx, 921 const struct encoder_init_data *enc_init_data) 922 { 923 struct dcn20_link_encoder *enc20 = 924 kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL); 925 926 if (!enc20) 927 return NULL; 928 929 dcn30_link_encoder_construct(enc20, 930 enc_init_data, 931 &link_enc_feature, 932 &link_enc_regs[enc_init_data->transmitter], 933 &link_enc_aux_regs[enc_init_data->channel - 1], 934 &link_enc_hpd_regs[enc_init_data->hpd_source], 935 &le_shift, 936 &le_mask); 937 938 return &enc20->enc10.base; 939 } 940 941 static struct panel_cntl *dcn30_panel_cntl_create(const struct panel_cntl_init_data *init_data) 942 { 943 struct dce_panel_cntl *panel_cntl = 944 kzalloc(sizeof(struct dce_panel_cntl), GFP_KERNEL); 945 946 if (!panel_cntl) 947 return NULL; 948 949 dce_panel_cntl_construct(panel_cntl, 950 init_data, 951 &panel_cntl_regs[init_data->inst], 952 &panel_cntl_shift, 953 &panel_cntl_mask); 954 955 return &panel_cntl->base; 956 } 957 958 static void read_dce_straps( 959 struct dc_context *ctx, 960 struct resource_straps *straps) 961 { 962 generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX), 963 FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio); 964 965 } 966 967 static struct audio *dcn30_create_audio( 968 struct dc_context *ctx, unsigned int inst) 969 { 970 return dce_audio_create(ctx, inst, 971 &audio_regs[inst], &audio_shift, &audio_mask); 972 } 973 974 static struct vpg *dcn30_vpg_create( 975 struct dc_context *ctx, 976 uint32_t inst) 977 { 978 struct dcn30_vpg *vpg3 = kzalloc(sizeof(struct dcn30_vpg), GFP_KERNEL); 979 980 if (!vpg3) 981 return NULL; 982 983 vpg3_construct(vpg3, ctx, inst, 984 &vpg_regs[inst], 985 &vpg_shift, 986 &vpg_mask); 987 988 return &vpg3->base; 989 } 990 991 static struct afmt *dcn30_afmt_create( 992 struct dc_context *ctx, 993 uint32_t inst) 994 { 995 struct dcn30_afmt *afmt3 = kzalloc(sizeof(struct dcn30_afmt), GFP_KERNEL); 996 997 if (!afmt3) 998 return NULL; 999 1000 afmt3_construct(afmt3, ctx, inst, 1001 &afmt_regs[inst], 1002 &afmt_shift, 1003 &afmt_mask); 1004 1005 return &afmt3->base; 1006 } 1007 1008 static struct stream_encoder *dcn30_stream_encoder_create(enum engine_id eng_id, 1009 struct dc_context *ctx) 1010 { 1011 struct dcn10_stream_encoder *enc1; 1012 struct vpg *vpg; 1013 struct afmt *afmt; 1014 int vpg_inst; 1015 int afmt_inst; 1016 1017 /* Mapping of VPG, AFMT, DME register blocks to DIO block instance */ 1018 if (eng_id <= ENGINE_ID_DIGF) { 1019 vpg_inst = eng_id; 1020 afmt_inst = eng_id; 1021 } else 1022 return NULL; 1023 1024 enc1 = kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL); 1025 vpg = dcn30_vpg_create(ctx, vpg_inst); 1026 afmt = dcn30_afmt_create(ctx, afmt_inst); 1027 1028 if (!enc1 || !vpg || !afmt) { 1029 kfree(enc1); 1030 kfree(vpg); 1031 kfree(afmt); 1032 return NULL; 1033 } 1034 1035 dcn30_dio_stream_encoder_construct(enc1, ctx, ctx->dc_bios, 1036 eng_id, vpg, afmt, 1037 &stream_enc_regs[eng_id], 1038 &se_shift, &se_mask); 1039 1040 return &enc1->base; 1041 } 1042 1043 static struct dce_hwseq *dcn30_hwseq_create(struct dc_context *ctx) 1044 { 1045 struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL); 1046 1047 if (hws) { 1048 hws->ctx = ctx; 1049 hws->regs = &hwseq_reg; 1050 hws->shifts = &hwseq_shift; 1051 hws->masks = &hwseq_mask; 1052 } 1053 return hws; 1054 } 1055 static const struct resource_create_funcs res_create_funcs = { 1056 .read_dce_straps = read_dce_straps, 1057 .create_audio = dcn30_create_audio, 1058 .create_stream_encoder = dcn30_stream_encoder_create, 1059 .create_hwseq = dcn30_hwseq_create, 1060 }; 1061 1062 static void dcn30_resource_destruct(struct dcn30_resource_pool *pool) 1063 { 1064 unsigned int i; 1065 1066 for (i = 0; i < pool->base.stream_enc_count; i++) { 1067 if (pool->base.stream_enc[i] != NULL) { 1068 if (pool->base.stream_enc[i]->vpg != NULL) { 1069 kfree(DCN30_VPG_FROM_VPG(pool->base.stream_enc[i]->vpg)); 1070 pool->base.stream_enc[i]->vpg = NULL; 1071 } 1072 if (pool->base.stream_enc[i]->afmt != NULL) { 1073 kfree(DCN30_AFMT_FROM_AFMT(pool->base.stream_enc[i]->afmt)); 1074 pool->base.stream_enc[i]->afmt = NULL; 1075 } 1076 kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i])); 1077 pool->base.stream_enc[i] = NULL; 1078 } 1079 } 1080 1081 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 1082 if (pool->base.dscs[i] != NULL) 1083 dcn20_dsc_destroy(&pool->base.dscs[i]); 1084 } 1085 1086 if (pool->base.mpc != NULL) { 1087 kfree(TO_DCN20_MPC(pool->base.mpc)); 1088 pool->base.mpc = NULL; 1089 } 1090 if (pool->base.hubbub != NULL) { 1091 kfree(pool->base.hubbub); 1092 pool->base.hubbub = NULL; 1093 } 1094 for (i = 0; i < pool->base.pipe_count; i++) { 1095 if (pool->base.dpps[i] != NULL) 1096 dcn30_dpp_destroy(&pool->base.dpps[i]); 1097 1098 if (pool->base.ipps[i] != NULL) 1099 pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]); 1100 1101 if (pool->base.hubps[i] != NULL) { 1102 kfree(TO_DCN20_HUBP(pool->base.hubps[i])); 1103 pool->base.hubps[i] = NULL; 1104 } 1105 1106 if (pool->base.irqs != NULL) { 1107 dal_irq_service_destroy(&pool->base.irqs); 1108 } 1109 } 1110 1111 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 1112 if (pool->base.engines[i] != NULL) 1113 dce110_engine_destroy(&pool->base.engines[i]); 1114 if (pool->base.hw_i2cs[i] != NULL) { 1115 kfree(pool->base.hw_i2cs[i]); 1116 pool->base.hw_i2cs[i] = NULL; 1117 } 1118 if (pool->base.sw_i2cs[i] != NULL) { 1119 kfree(pool->base.sw_i2cs[i]); 1120 pool->base.sw_i2cs[i] = NULL; 1121 } 1122 } 1123 1124 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 1125 if (pool->base.opps[i] != NULL) 1126 pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]); 1127 } 1128 1129 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 1130 if (pool->base.timing_generators[i] != NULL) { 1131 kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i])); 1132 pool->base.timing_generators[i] = NULL; 1133 } 1134 } 1135 1136 for (i = 0; i < pool->base.res_cap->num_dwb; i++) { 1137 if (pool->base.dwbc[i] != NULL) { 1138 kfree(TO_DCN30_DWBC(pool->base.dwbc[i])); 1139 pool->base.dwbc[i] = NULL; 1140 } 1141 if (pool->base.mcif_wb[i] != NULL) { 1142 kfree(TO_DCN30_MMHUBBUB(pool->base.mcif_wb[i])); 1143 pool->base.mcif_wb[i] = NULL; 1144 } 1145 } 1146 1147 for (i = 0; i < pool->base.audio_count; i++) { 1148 if (pool->base.audios[i]) 1149 dce_aud_destroy(&pool->base.audios[i]); 1150 } 1151 1152 for (i = 0; i < pool->base.clk_src_count; i++) { 1153 if (pool->base.clock_sources[i] != NULL) { 1154 dcn20_clock_source_destroy(&pool->base.clock_sources[i]); 1155 pool->base.clock_sources[i] = NULL; 1156 } 1157 } 1158 1159 for (i = 0; i < pool->base.res_cap->num_mpc_3dlut; i++) { 1160 if (pool->base.mpc_lut[i] != NULL) { 1161 dc_3dlut_func_release(pool->base.mpc_lut[i]); 1162 pool->base.mpc_lut[i] = NULL; 1163 } 1164 if (pool->base.mpc_shaper[i] != NULL) { 1165 dc_transfer_func_release(pool->base.mpc_shaper[i]); 1166 pool->base.mpc_shaper[i] = NULL; 1167 } 1168 } 1169 1170 if (pool->base.dp_clock_source != NULL) { 1171 dcn20_clock_source_destroy(&pool->base.dp_clock_source); 1172 pool->base.dp_clock_source = NULL; 1173 } 1174 1175 for (i = 0; i < pool->base.pipe_count; i++) { 1176 if (pool->base.multiple_abms[i] != NULL) 1177 dce_abm_destroy(&pool->base.multiple_abms[i]); 1178 } 1179 1180 if (pool->base.psr != NULL) 1181 dmub_psr_destroy(&pool->base.psr); 1182 1183 if (pool->base.dccg != NULL) 1184 dcn_dccg_destroy(&pool->base.dccg); 1185 1186 if (pool->base.oem_device != NULL) { 1187 struct dc *dc = pool->base.oem_device->ctx->dc; 1188 1189 dc->link_srv->destroy_ddc_service(&pool->base.oem_device); 1190 } 1191 } 1192 1193 static struct hubp *dcn30_hubp_create( 1194 struct dc_context *ctx, 1195 uint32_t inst) 1196 { 1197 struct dcn20_hubp *hubp2 = 1198 kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL); 1199 1200 if (!hubp2) 1201 return NULL; 1202 1203 if (hubp3_construct(hubp2, ctx, inst, 1204 &hubp_regs[inst], &hubp_shift, &hubp_mask)) 1205 return &hubp2->base; 1206 1207 BREAK_TO_DEBUGGER(); 1208 kfree(hubp2); 1209 return NULL; 1210 } 1211 1212 static bool dcn30_dwbc_create(struct dc_context *ctx, struct resource_pool *pool) 1213 { 1214 int i; 1215 uint32_t pipe_count = pool->res_cap->num_dwb; 1216 1217 for (i = 0; i < pipe_count; i++) { 1218 struct dcn30_dwbc *dwbc30 = kzalloc(sizeof(struct dcn30_dwbc), 1219 GFP_KERNEL); 1220 1221 if (!dwbc30) { 1222 dm_error("DC: failed to create dwbc30!\n"); 1223 return false; 1224 } 1225 1226 dcn30_dwbc_construct(dwbc30, ctx, 1227 &dwbc30_regs[i], 1228 &dwbc30_shift, 1229 &dwbc30_mask, 1230 i); 1231 1232 pool->dwbc[i] = &dwbc30->base; 1233 } 1234 return true; 1235 } 1236 1237 static bool dcn30_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool) 1238 { 1239 int i; 1240 uint32_t pipe_count = pool->res_cap->num_dwb; 1241 1242 for (i = 0; i < pipe_count; i++) { 1243 struct dcn30_mmhubbub *mcif_wb30 = kzalloc(sizeof(struct dcn30_mmhubbub), 1244 GFP_KERNEL); 1245 1246 if (!mcif_wb30) { 1247 dm_error("DC: failed to create mcif_wb30!\n"); 1248 return false; 1249 } 1250 1251 dcn30_mmhubbub_construct(mcif_wb30, ctx, 1252 &mcif_wb30_regs[i], 1253 &mcif_wb30_shift, 1254 &mcif_wb30_mask, 1255 i); 1256 1257 pool->mcif_wb[i] = &mcif_wb30->base; 1258 } 1259 return true; 1260 } 1261 1262 static struct display_stream_compressor *dcn30_dsc_create( 1263 struct dc_context *ctx, uint32_t inst) 1264 { 1265 struct dcn20_dsc *dsc = 1266 kzalloc(sizeof(struct dcn20_dsc), GFP_KERNEL); 1267 1268 if (!dsc) { 1269 BREAK_TO_DEBUGGER(); 1270 return NULL; 1271 } 1272 1273 dsc2_construct(dsc, ctx, inst, &dsc_regs[inst], &dsc_shift, &dsc_mask); 1274 return &dsc->base; 1275 } 1276 1277 enum dc_status dcn30_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream) 1278 { 1279 1280 return dcn20_add_stream_to_ctx(dc, new_ctx, dc_stream); 1281 } 1282 1283 static void dcn30_destroy_resource_pool(struct resource_pool **pool) 1284 { 1285 struct dcn30_resource_pool *dcn30_pool = TO_DCN30_RES_POOL(*pool); 1286 1287 dcn30_resource_destruct(dcn30_pool); 1288 kfree(dcn30_pool); 1289 *pool = NULL; 1290 } 1291 1292 static struct clock_source *dcn30_clock_source_create( 1293 struct dc_context *ctx, 1294 struct dc_bios *bios, 1295 enum clock_source_id id, 1296 const struct dce110_clk_src_regs *regs, 1297 bool dp_clk_src) 1298 { 1299 struct dce110_clk_src *clk_src = 1300 kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL); 1301 1302 if (!clk_src) 1303 return NULL; 1304 1305 if (dcn3_clk_src_construct(clk_src, ctx, bios, id, 1306 regs, &cs_shift, &cs_mask)) { 1307 clk_src->base.dp_clk_src = dp_clk_src; 1308 return &clk_src->base; 1309 } 1310 1311 kfree(clk_src); 1312 BREAK_TO_DEBUGGER(); 1313 return NULL; 1314 } 1315 1316 int dcn30_populate_dml_pipes_from_context( 1317 struct dc *dc, struct dc_state *context, 1318 display_e2e_pipe_params_st *pipes, 1319 bool fast_validate) 1320 { 1321 int i, pipe_cnt; 1322 struct resource_context *res_ctx = &context->res_ctx; 1323 1324 DC_FP_START(); 1325 dcn20_populate_dml_pipes_from_context(dc, context, pipes, fast_validate); 1326 DC_FP_END(); 1327 1328 for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) { 1329 if (!res_ctx->pipe_ctx[i].stream) 1330 continue; 1331 1332 pipes[pipe_cnt++].pipe.scale_ratio_depth.lb_depth = 1333 dm_lb_16; 1334 } 1335 1336 return pipe_cnt; 1337 } 1338 1339 void dcn30_populate_dml_writeback_from_context( 1340 struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes) 1341 { 1342 DC_FP_START(); 1343 dcn30_fpu_populate_dml_writeback_from_context(dc, res_ctx, pipes); 1344 DC_FP_END(); 1345 } 1346 1347 unsigned int dcn30_calc_max_scaled_time( 1348 unsigned int time_per_pixel, 1349 enum mmhubbub_wbif_mode mode, 1350 unsigned int urgent_watermark) 1351 { 1352 unsigned int time_per_byte = 0; 1353 unsigned int total_free_entry = 0xb40; 1354 unsigned int buf_lh_capability; 1355 unsigned int max_scaled_time; 1356 1357 if (mode == PACKED_444) /* packed mode 32 bpp */ 1358 time_per_byte = time_per_pixel/4; 1359 else if (mode == PACKED_444_FP16) /* packed mode 64 bpp */ 1360 time_per_byte = time_per_pixel/8; 1361 1362 if (time_per_byte == 0) 1363 time_per_byte = 1; 1364 1365 buf_lh_capability = (total_free_entry*time_per_byte*32) >> 6; /* time_per_byte is in u6.6*/ 1366 max_scaled_time = buf_lh_capability - urgent_watermark; 1367 return max_scaled_time; 1368 } 1369 1370 void dcn30_set_mcif_arb_params( 1371 struct dc *dc, 1372 struct dc_state *context, 1373 display_e2e_pipe_params_st *pipes, 1374 int pipe_cnt) 1375 { 1376 enum mmhubbub_wbif_mode wbif_mode; 1377 struct display_mode_lib *dml = &context->bw_ctx.dml; 1378 struct mcif_arb_params *wb_arb_params; 1379 int i, j, dwb_pipe; 1380 1381 /* Writeback MCIF_WB arbitration parameters */ 1382 dwb_pipe = 0; 1383 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1384 1385 if (!context->res_ctx.pipe_ctx[i].stream) 1386 continue; 1387 1388 for (j = 0; j < MAX_DWB_PIPES; j++) { 1389 struct dc_writeback_info *writeback_info = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j]; 1390 1391 if (writeback_info->wb_enabled == false) 1392 continue; 1393 1394 //wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params; 1395 wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe]; 1396 1397 if (writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_ARGB || 1398 writeback_info->dwb_params.cnv_params.fc_out_format == DWB_OUT_FORMAT_64BPP_RGBA) 1399 wbif_mode = PACKED_444_FP16; 1400 else 1401 wbif_mode = PACKED_444; 1402 1403 DC_FP_START(); 1404 dcn30_fpu_set_mcif_arb_params(wb_arb_params, dml, pipes, pipe_cnt, j); 1405 DC_FP_END(); 1406 wb_arb_params->time_per_pixel = (1000000 << 6) / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* time_per_pixel should be in u6.6 format */ 1407 wb_arb_params->slice_lines = 32; 1408 wb_arb_params->arbitration_slice = 2; /* irrelevant since there is no YUV output */ 1409 wb_arb_params->max_scaled_time = dcn30_calc_max_scaled_time(wb_arb_params->time_per_pixel, 1410 wbif_mode, 1411 wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */ 1412 1413 dwb_pipe++; 1414 1415 if (dwb_pipe >= MAX_DWB_PIPES) 1416 return; 1417 } 1418 if (dwb_pipe >= MAX_DWB_PIPES) 1419 return; 1420 } 1421 1422 } 1423 1424 static struct dc_cap_funcs cap_funcs = { 1425 .get_dcc_compression_cap = dcn20_get_dcc_compression_cap 1426 }; 1427 1428 bool dcn30_acquire_post_bldn_3dlut( 1429 struct resource_context *res_ctx, 1430 const struct resource_pool *pool, 1431 int mpcc_id, 1432 struct dc_3dlut **lut, 1433 struct dc_transfer_func **shaper) 1434 { 1435 int i; 1436 bool ret = false; 1437 union dc_3dlut_state *state; 1438 1439 ASSERT(*lut == NULL && *shaper == NULL); 1440 *lut = NULL; 1441 *shaper = NULL; 1442 1443 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1444 if (!res_ctx->is_mpc_3dlut_acquired[i]) { 1445 *lut = pool->mpc_lut[i]; 1446 *shaper = pool->mpc_shaper[i]; 1447 state = &pool->mpc_lut[i]->state; 1448 res_ctx->is_mpc_3dlut_acquired[i] = true; 1449 state->bits.rmu_idx_valid = 1; 1450 state->bits.rmu_mux_num = i; 1451 if (state->bits.rmu_mux_num == 0) 1452 state->bits.mpc_rmu0_mux = mpcc_id; 1453 else if (state->bits.rmu_mux_num == 1) 1454 state->bits.mpc_rmu1_mux = mpcc_id; 1455 else if (state->bits.rmu_mux_num == 2) 1456 state->bits.mpc_rmu2_mux = mpcc_id; 1457 ret = true; 1458 break; 1459 } 1460 } 1461 return ret; 1462 } 1463 1464 bool dcn30_release_post_bldn_3dlut( 1465 struct resource_context *res_ctx, 1466 const struct resource_pool *pool, 1467 struct dc_3dlut **lut, 1468 struct dc_transfer_func **shaper) 1469 { 1470 int i; 1471 bool ret = false; 1472 1473 for (i = 0; i < pool->res_cap->num_mpc_3dlut; i++) { 1474 if (pool->mpc_lut[i] == *lut && pool->mpc_shaper[i] == *shaper) { 1475 res_ctx->is_mpc_3dlut_acquired[i] = false; 1476 pool->mpc_lut[i]->state.raw = 0; 1477 *lut = NULL; 1478 *shaper = NULL; 1479 ret = true; 1480 break; 1481 } 1482 } 1483 return ret; 1484 } 1485 1486 static bool is_soc_bounding_box_valid(struct dc *dc) 1487 { 1488 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev; 1489 1490 if (ASICREV_IS_SIENNA_CICHLID_P(hw_internal_rev)) 1491 return true; 1492 1493 return false; 1494 } 1495 1496 static bool init_soc_bounding_box(struct dc *dc, 1497 struct dcn30_resource_pool *pool) 1498 { 1499 struct _vcs_dpi_soc_bounding_box_st *loaded_bb = &dcn3_0_soc; 1500 struct _vcs_dpi_ip_params_st *loaded_ip = &dcn3_0_ip; 1501 1502 DC_LOGGER_INIT(dc->ctx->logger); 1503 1504 if (!is_soc_bounding_box_valid(dc)) { 1505 DC_LOG_ERROR("%s: not valid soc bounding box\n", __func__); 1506 return false; 1507 } 1508 1509 loaded_ip->max_num_otg = pool->base.res_cap->num_timing_generator; 1510 loaded_ip->max_num_dpp = pool->base.pipe_count; 1511 loaded_ip->clamp_min_dcfclk = dc->config.clamp_min_dcfclk; 1512 dcn20_patch_bounding_box(dc, loaded_bb); 1513 DC_FP_START(); 1514 patch_dcn30_soc_bounding_box(dc, &dcn3_0_soc); 1515 DC_FP_END(); 1516 1517 return true; 1518 } 1519 1520 static bool dcn30_split_stream_for_mpc_or_odm( 1521 const struct dc *dc, 1522 struct resource_context *res_ctx, 1523 struct pipe_ctx *pri_pipe, 1524 struct pipe_ctx *sec_pipe, 1525 bool odm) 1526 { 1527 int pipe_idx = sec_pipe->pipe_idx; 1528 const struct resource_pool *pool = dc->res_pool; 1529 1530 *sec_pipe = *pri_pipe; 1531 1532 sec_pipe->pipe_idx = pipe_idx; 1533 sec_pipe->plane_res.mi = pool->mis[pipe_idx]; 1534 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx]; 1535 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx]; 1536 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx]; 1537 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx]; 1538 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst; 1539 sec_pipe->stream_res.dsc = NULL; 1540 if (odm) { 1541 if (pri_pipe->next_odm_pipe) { 1542 ASSERT(pri_pipe->next_odm_pipe != sec_pipe); 1543 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe; 1544 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe; 1545 } 1546 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) { 1547 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe; 1548 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe; 1549 } 1550 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) { 1551 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe; 1552 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe; 1553 } 1554 pri_pipe->next_odm_pipe = sec_pipe; 1555 sec_pipe->prev_odm_pipe = pri_pipe; 1556 1557 if (!sec_pipe->top_pipe) 1558 sec_pipe->stream_res.opp = pool->opps[pipe_idx]; 1559 else 1560 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp; 1561 if (sec_pipe->stream->timing.flags.DSC == 1) { 1562 dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx); 1563 ASSERT(sec_pipe->stream_res.dsc); 1564 if (sec_pipe->stream_res.dsc == NULL) 1565 return false; 1566 } 1567 } else { 1568 if (pri_pipe->bottom_pipe) { 1569 ASSERT(pri_pipe->bottom_pipe != sec_pipe); 1570 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe; 1571 sec_pipe->bottom_pipe->top_pipe = sec_pipe; 1572 } 1573 pri_pipe->bottom_pipe = sec_pipe; 1574 sec_pipe->top_pipe = pri_pipe; 1575 1576 ASSERT(pri_pipe->plane_state); 1577 } 1578 1579 return true; 1580 } 1581 1582 static struct pipe_ctx *dcn30_find_split_pipe( 1583 struct dc *dc, 1584 struct dc_state *context, 1585 int old_index) 1586 { 1587 struct pipe_ctx *pipe = NULL; 1588 int i; 1589 1590 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) { 1591 pipe = &context->res_ctx.pipe_ctx[old_index]; 1592 pipe->pipe_idx = old_index; 1593 } 1594 1595 if (!pipe) 1596 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1597 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL 1598 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) { 1599 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1600 pipe = &context->res_ctx.pipe_ctx[i]; 1601 pipe->pipe_idx = i; 1602 break; 1603 } 1604 } 1605 } 1606 1607 /* 1608 * May need to fix pipes getting tossed from 1 opp to another on flip 1609 * Add for debugging transient underflow during topology updates: 1610 * ASSERT(pipe); 1611 */ 1612 if (!pipe) 1613 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) { 1614 if (context->res_ctx.pipe_ctx[i].stream == NULL) { 1615 pipe = &context->res_ctx.pipe_ctx[i]; 1616 pipe->pipe_idx = i; 1617 break; 1618 } 1619 } 1620 1621 return pipe; 1622 } 1623 1624 noinline bool dcn30_internal_validate_bw( 1625 struct dc *dc, 1626 struct dc_state *context, 1627 display_e2e_pipe_params_st *pipes, 1628 int *pipe_cnt_out, 1629 int *vlevel_out, 1630 bool fast_validate, 1631 bool allow_self_refresh_only) 1632 { 1633 bool out = false; 1634 bool repopulate_pipes = false; 1635 int split[MAX_PIPES] = { 0 }; 1636 bool merge[MAX_PIPES] = { false }; 1637 bool newly_split[MAX_PIPES] = { false }; 1638 int pipe_cnt, i, pipe_idx, vlevel; 1639 struct vba_vars_st *vba = &context->bw_ctx.dml.vba; 1640 1641 ASSERT(pipes); 1642 if (!pipes) 1643 return false; 1644 1645 context->bw_ctx.dml.vba.maxMpcComb = 0; 1646 context->bw_ctx.dml.vba.VoltageLevel = 0; 1647 context->bw_ctx.dml.vba.DRAMClockChangeSupport[0][0] = dm_dram_clock_change_vactive; 1648 dc->res_pool->funcs->update_soc_for_wm_a(dc, context); 1649 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1650 1651 if (!pipe_cnt) { 1652 out = true; 1653 goto validate_out; 1654 } 1655 1656 dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt); 1657 1658 if (!fast_validate || !allow_self_refresh_only) { 1659 /* 1660 * DML favors voltage over p-state, but we're more interested in 1661 * supporting p-state over voltage. We can't support p-state in 1662 * prefetch mode > 0 so try capping the prefetch mode to start. 1663 */ 1664 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1665 dm_allow_self_refresh_and_mclk_switch; 1666 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1667 /* This may adjust vlevel and maxMpcComb */ 1668 if (vlevel < context->bw_ctx.dml.soc.num_states) 1669 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1670 } 1671 if (allow_self_refresh_only && 1672 (fast_validate || vlevel == context->bw_ctx.dml.soc.num_states || 1673 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported)) { 1674 /* 1675 * If mode is unsupported or there's still no p-state support 1676 * then fall back to favoring voltage. 1677 * 1678 * We don't actually support prefetch mode 2, so require that we 1679 * at least support prefetch mode 1. 1680 */ 1681 context->bw_ctx.dml.soc.allow_dram_self_refresh_or_dram_clock_change_in_vblank = 1682 dm_allow_self_refresh; 1683 1684 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt); 1685 if (vlevel < context->bw_ctx.dml.soc.num_states) { 1686 memset(split, 0, sizeof(split)); 1687 memset(merge, 0, sizeof(merge)); 1688 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge); 1689 } 1690 } 1691 1692 dml_log_mode_support_params(&context->bw_ctx.dml); 1693 1694 if (vlevel == context->bw_ctx.dml.soc.num_states) 1695 goto validate_fail; 1696 1697 if (!dc->config.enable_windowed_mpo_odm) { 1698 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) { 1699 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1700 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe; 1701 1702 if (!pipe->stream) 1703 continue; 1704 1705 /* We only support full screen mpo with ODM */ 1706 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled 1707 && pipe->plane_state && mpo_pipe 1708 && memcmp(&mpo_pipe->plane_res.scl_data.recout, 1709 &pipe->plane_res.scl_data.recout, 1710 sizeof(struct rect)) != 0) { 1711 ASSERT(mpo_pipe->plane_state != pipe->plane_state); 1712 goto validate_fail; 1713 } 1714 pipe_idx++; 1715 } 1716 } 1717 1718 /* merge pipes if necessary */ 1719 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1720 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1721 1722 /*skip pipes that don't need merging*/ 1723 if (!merge[i]) 1724 continue; 1725 1726 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */ 1727 if (pipe->prev_odm_pipe) { 1728 /*split off odm pipe*/ 1729 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe; 1730 if (pipe->next_odm_pipe) 1731 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe; 1732 1733 pipe->bottom_pipe = NULL; 1734 pipe->next_odm_pipe = NULL; 1735 pipe->plane_state = NULL; 1736 pipe->stream = NULL; 1737 pipe->top_pipe = NULL; 1738 pipe->prev_odm_pipe = NULL; 1739 if (pipe->stream_res.dsc) 1740 dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc); 1741 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1742 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1743 repopulate_pipes = true; 1744 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) { 1745 struct pipe_ctx *top_pipe = pipe->top_pipe; 1746 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe; 1747 1748 top_pipe->bottom_pipe = bottom_pipe; 1749 if (bottom_pipe) 1750 bottom_pipe->top_pipe = top_pipe; 1751 1752 pipe->top_pipe = NULL; 1753 pipe->bottom_pipe = NULL; 1754 pipe->plane_state = NULL; 1755 pipe->stream = NULL; 1756 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res)); 1757 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res)); 1758 repopulate_pipes = true; 1759 } else 1760 ASSERT(0); /* Should never try to merge master pipe */ 1761 1762 } 1763 1764 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) { 1765 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1766 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; 1767 struct pipe_ctx *hsplit_pipe = NULL; 1768 bool odm; 1769 int old_index = -1; 1770 1771 if (!pipe->stream || newly_split[i]) 1772 continue; 1773 1774 pipe_idx++; 1775 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled; 1776 1777 if (!pipe->plane_state && !odm) 1778 continue; 1779 1780 if (split[i]) { 1781 if (odm) { 1782 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe) 1783 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1784 else if (old_pipe->next_odm_pipe) 1785 old_index = old_pipe->next_odm_pipe->pipe_idx; 1786 } else { 1787 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1788 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1789 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1790 else if (old_pipe->bottom_pipe && 1791 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1792 old_index = old_pipe->bottom_pipe->pipe_idx; 1793 } 1794 hsplit_pipe = dcn30_find_split_pipe(dc, context, old_index); 1795 ASSERT(hsplit_pipe); 1796 if (!hsplit_pipe) 1797 goto validate_fail; 1798 1799 if (!dcn30_split_stream_for_mpc_or_odm( 1800 dc, &context->res_ctx, 1801 pipe, hsplit_pipe, odm)) 1802 goto validate_fail; 1803 1804 newly_split[hsplit_pipe->pipe_idx] = true; 1805 repopulate_pipes = true; 1806 } 1807 if (split[i] == 4) { 1808 struct pipe_ctx *pipe_4to1; 1809 1810 if (odm && old_pipe->next_odm_pipe) 1811 old_index = old_pipe->next_odm_pipe->pipe_idx; 1812 else if (!odm && old_pipe->bottom_pipe && 1813 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1814 old_index = old_pipe->bottom_pipe->pipe_idx; 1815 else 1816 old_index = -1; 1817 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1818 ASSERT(pipe_4to1); 1819 if (!pipe_4to1) 1820 goto validate_fail; 1821 if (!dcn30_split_stream_for_mpc_or_odm( 1822 dc, &context->res_ctx, 1823 pipe, pipe_4to1, odm)) 1824 goto validate_fail; 1825 newly_split[pipe_4to1->pipe_idx] = true; 1826 1827 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe 1828 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe) 1829 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx; 1830 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe && 1831 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe && 1832 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state) 1833 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx; 1834 else 1835 old_index = -1; 1836 pipe_4to1 = dcn30_find_split_pipe(dc, context, old_index); 1837 ASSERT(pipe_4to1); 1838 if (!pipe_4to1) 1839 goto validate_fail; 1840 if (!dcn30_split_stream_for_mpc_or_odm( 1841 dc, &context->res_ctx, 1842 hsplit_pipe, pipe_4to1, odm)) 1843 goto validate_fail; 1844 newly_split[pipe_4to1->pipe_idx] = true; 1845 } 1846 if (odm) 1847 dcn20_build_mapped_resource(dc, context, pipe->stream); 1848 } 1849 1850 for (i = 0; i < dc->res_pool->pipe_count; i++) { 1851 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; 1852 1853 if (pipe->plane_state) { 1854 if (!resource_build_scaling_params(pipe)) 1855 goto validate_fail; 1856 } 1857 } 1858 1859 /* Actual dsc count per stream dsc validation*/ 1860 if (!dcn20_validate_dsc(dc, context)) { 1861 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE; 1862 goto validate_fail; 1863 } 1864 1865 if (repopulate_pipes) 1866 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate); 1867 context->bw_ctx.dml.vba.VoltageLevel = vlevel; 1868 *vlevel_out = vlevel; 1869 *pipe_cnt_out = pipe_cnt; 1870 1871 out = true; 1872 goto validate_out; 1873 1874 validate_fail: 1875 out = false; 1876 1877 validate_out: 1878 return out; 1879 } 1880 1881 static int get_refresh_rate(struct dc_state *context) 1882 { 1883 int refresh_rate = 0; 1884 int h_v_total = 0; 1885 struct dc_crtc_timing *timing = NULL; 1886 1887 if (context == NULL || context->streams[0] == NULL) 1888 return 0; 1889 1890 /* check if refresh rate at least 120hz */ 1891 timing = &context->streams[0]->timing; 1892 if (timing == NULL) 1893 return 0; 1894 1895 h_v_total = timing->h_total * timing->v_total; 1896 if (h_v_total == 0) 1897 return 0; 1898 1899 refresh_rate = ((timing->pix_clk_100hz * 100) / (h_v_total)) + 1; 1900 return refresh_rate; 1901 } 1902 1903 #define MAX_STRETCHED_V_BLANK 500 // in micro-seconds 1904 /* 1905 * Scaling factor for v_blank stretch calculations considering timing in 1906 * micro-seconds and pixel clock in 100hz. 1907 * Note: the parenthesis are necessary to ensure the correct order of 1908 * operation where V_SCALE is used. 1909 */ 1910 #define V_SCALE (10000 / MAX_STRETCHED_V_BLANK) 1911 1912 static int get_frame_rate_at_max_stretch_100hz(struct dc_state *context) 1913 { 1914 struct dc_crtc_timing *timing = NULL; 1915 uint32_t sec_per_100_lines; 1916 uint32_t max_v_blank; 1917 uint32_t curr_v_blank; 1918 uint32_t v_stretch_max; 1919 uint32_t stretched_frame_pix_cnt; 1920 uint32_t scaled_stretched_frame_pix_cnt; 1921 uint32_t scaled_refresh_rate; 1922 1923 if (context == NULL || context->streams[0] == NULL) 1924 return 0; 1925 1926 /* check if refresh rate at least 120hz */ 1927 timing = &context->streams[0]->timing; 1928 if (timing == NULL) 1929 return 0; 1930 1931 sec_per_100_lines = timing->pix_clk_100hz / timing->h_total + 1; 1932 max_v_blank = sec_per_100_lines / V_SCALE + 1; 1933 curr_v_blank = timing->v_total - timing->v_addressable; 1934 v_stretch_max = (max_v_blank > curr_v_blank) ? (max_v_blank - curr_v_blank) : (0); 1935 stretched_frame_pix_cnt = (v_stretch_max + timing->v_total) * timing->h_total; 1936 scaled_stretched_frame_pix_cnt = stretched_frame_pix_cnt / 10000; 1937 scaled_refresh_rate = (timing->pix_clk_100hz) / scaled_stretched_frame_pix_cnt + 1; 1938 1939 return scaled_refresh_rate; 1940 } 1941 1942 static bool is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(struct dc_state *context) 1943 { 1944 int refresh_rate_max_stretch_100hz; 1945 int min_refresh_100hz; 1946 1947 if (context == NULL || context->streams[0] == NULL) 1948 return false; 1949 1950 refresh_rate_max_stretch_100hz = get_frame_rate_at_max_stretch_100hz(context); 1951 min_refresh_100hz = context->streams[0]->timing.min_refresh_in_uhz / 10000; 1952 1953 if (refresh_rate_max_stretch_100hz < min_refresh_100hz) 1954 return false; 1955 1956 return true; 1957 } 1958 1959 bool dcn30_can_support_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 1960 { 1961 int refresh_rate = 0; 1962 const int minimum_refreshrate_supported = 120; 1963 1964 if (context == NULL || context->streams[0] == NULL) 1965 return false; 1966 1967 if (context->streams[0]->sink->edid_caps.panel_patch.disable_fams) 1968 return false; 1969 1970 if (dc->debug.disable_fams) 1971 return false; 1972 1973 if (!dc->caps.dmub_caps.mclk_sw) 1974 return false; 1975 1976 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down) 1977 return false; 1978 1979 /* more then 1 monitor connected */ 1980 if (context->stream_count != 1) 1981 return false; 1982 1983 refresh_rate = get_refresh_rate(context); 1984 if (refresh_rate < minimum_refreshrate_supported) 1985 return false; 1986 1987 if (!is_refresh_rate_support_mclk_switch_using_fw_based_vblank_stretch(context)) 1988 return false; 1989 1990 if (!context->streams[0]->allow_freesync) 1991 return false; 1992 1993 if (context->streams[0]->vrr_active_variable && dc->debug.disable_fams_gaming) 1994 return false; 1995 1996 context->streams[0]->fpo_in_use = true; 1997 1998 return true; 1999 } 2000 2001 /* 2002 * set up FPO watermarks, pstate, dram latency 2003 */ 2004 void dcn30_setup_mclk_switch_using_fw_based_vblank_stretch(struct dc *dc, struct dc_state *context) 2005 { 2006 ASSERT(dc != NULL && context != NULL); 2007 if (dc == NULL || context == NULL) 2008 return; 2009 2010 /* Set wm_a.pstate so high natural MCLK switches are impossible: 4 seconds */ 2011 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 4U * 1000U * 1000U * 1000U; 2012 } 2013 2014 void dcn30_update_soc_for_wm_a(struct dc *dc, struct dc_state *context) 2015 { 2016 DC_FP_START(); 2017 dcn30_fpu_update_soc_for_wm_a(dc, context); 2018 DC_FP_END(); 2019 } 2020 2021 void dcn30_calculate_wm_and_dlg( 2022 struct dc *dc, struct dc_state *context, 2023 display_e2e_pipe_params_st *pipes, 2024 int pipe_cnt, 2025 int vlevel) 2026 { 2027 DC_FP_START(); 2028 dcn30_fpu_calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2029 DC_FP_END(); 2030 } 2031 2032 bool dcn30_validate_bandwidth(struct dc *dc, 2033 struct dc_state *context, 2034 bool fast_validate) 2035 { 2036 bool out = false; 2037 2038 BW_VAL_TRACE_SETUP(); 2039 2040 int vlevel = 0; 2041 int pipe_cnt = 0; 2042 display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL); 2043 DC_LOGGER_INIT(dc->ctx->logger); 2044 2045 BW_VAL_TRACE_COUNT(); 2046 2047 DC_FP_START(); 2048 out = dcn30_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, fast_validate, true); 2049 DC_FP_END(); 2050 2051 if (pipe_cnt == 0) 2052 goto validate_out; 2053 2054 if (!out) 2055 goto validate_fail; 2056 2057 BW_VAL_TRACE_END_VOLTAGE_LEVEL(); 2058 2059 if (fast_validate) { 2060 BW_VAL_TRACE_SKIP(fast); 2061 goto validate_out; 2062 } 2063 2064 DC_FP_START(); 2065 dc->res_pool->funcs->calculate_wm_and_dlg(dc, context, pipes, pipe_cnt, vlevel); 2066 DC_FP_END(); 2067 2068 BW_VAL_TRACE_END_WATERMARKS(); 2069 2070 goto validate_out; 2071 2072 validate_fail: 2073 DC_LOG_WARNING("Mode Validation Warning: %s failed validation.\n", 2074 dml_get_status_message(context->bw_ctx.dml.vba.ValidationStatus[context->bw_ctx.dml.vba.soc.num_states])); 2075 2076 BW_VAL_TRACE_SKIP(fail); 2077 out = false; 2078 2079 validate_out: 2080 kfree(pipes); 2081 2082 BW_VAL_TRACE_FINISH(); 2083 2084 return out; 2085 } 2086 2087 void dcn30_update_bw_bounding_box(struct dc *dc, struct clk_bw_params *bw_params) 2088 { 2089 unsigned int i, j; 2090 unsigned int num_states = 0; 2091 2092 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0}; 2093 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0}; 2094 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0}; 2095 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0}; 2096 2097 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {694, 875, 1000, 1200}; 2098 unsigned int num_dcfclk_sta_targets = 4; 2099 unsigned int num_uclk_states; 2100 2101 struct dc_bounding_box_max_clk dcn30_bb_max_clk; 2102 2103 memset(&dcn30_bb_max_clk, 0, sizeof(dcn30_bb_max_clk)); 2104 2105 if (dc->ctx->dc_bios->vram_info.num_chans) 2106 dcn3_0_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans; 2107 2108 DC_FP_START(); 2109 dcn30_fpu_update_dram_channel_width_bytes(dc); 2110 DC_FP_END(); 2111 2112 if (bw_params->clk_table.entries[0].memclk_mhz) { 2113 2114 for (i = 0; i < MAX_NUM_DPM_LVL; i++) { 2115 if (bw_params->clk_table.entries[i].dcfclk_mhz > dcn30_bb_max_clk.max_dcfclk_mhz) 2116 dcn30_bb_max_clk.max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz; 2117 if (bw_params->clk_table.entries[i].dispclk_mhz > dcn30_bb_max_clk.max_dispclk_mhz) 2118 dcn30_bb_max_clk.max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz; 2119 if (bw_params->clk_table.entries[i].dppclk_mhz > dcn30_bb_max_clk.max_dppclk_mhz) 2120 dcn30_bb_max_clk.max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz; 2121 if (bw_params->clk_table.entries[i].phyclk_mhz > dcn30_bb_max_clk.max_phyclk_mhz) 2122 dcn30_bb_max_clk.max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz; 2123 } 2124 2125 DC_FP_START(); 2126 dcn30_fpu_update_max_clk(&dcn30_bb_max_clk); 2127 DC_FP_END(); 2128 2129 if (dcn30_bb_max_clk.max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2130 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array 2131 dcfclk_sta_targets[num_dcfclk_sta_targets] = dcn30_bb_max_clk.max_dcfclk_mhz; 2132 num_dcfclk_sta_targets++; 2133 } else if (dcn30_bb_max_clk.max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) { 2134 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates 2135 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2136 if (dcfclk_sta_targets[i] > dcn30_bb_max_clk.max_dcfclk_mhz) { 2137 dcfclk_sta_targets[i] = dcn30_bb_max_clk.max_dcfclk_mhz; 2138 break; 2139 } 2140 } 2141 // Update size of array since we "removed" duplicates 2142 num_dcfclk_sta_targets = i + 1; 2143 } 2144 2145 num_uclk_states = bw_params->clk_table.num_entries; 2146 2147 // Calculate optimal dcfclk for each uclk 2148 for (i = 0; i < num_uclk_states; i++) { 2149 DC_FP_START(); 2150 dcn30_fpu_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16, 2151 &optimal_dcfclk_for_uclk[i], NULL); 2152 DC_FP_END(); 2153 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) { 2154 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz; 2155 } 2156 } 2157 2158 // Calculate optimal uclk for each dcfclk sta target 2159 for (i = 0; i < num_dcfclk_sta_targets; i++) { 2160 for (j = 0; j < num_uclk_states; j++) { 2161 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) { 2162 optimal_uclk_for_dcfclk_sta_targets[i] = 2163 bw_params->clk_table.entries[j].memclk_mhz * 16; 2164 break; 2165 } 2166 } 2167 } 2168 2169 i = 0; 2170 j = 0; 2171 // create the final dcfclk and uclk table 2172 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) { 2173 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) { 2174 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2175 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2176 } else { 2177 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2178 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2179 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2180 } else { 2181 j = num_uclk_states; 2182 } 2183 } 2184 } 2185 2186 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) { 2187 dcfclk_mhz[num_states] = dcfclk_sta_targets[i]; 2188 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++]; 2189 } 2190 2191 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES && 2192 optimal_dcfclk_for_uclk[j] <= dcn30_bb_max_clk.max_dcfclk_mhz) { 2193 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j]; 2194 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16; 2195 } 2196 2197 dcn3_0_soc.num_states = num_states; 2198 DC_FP_START(); 2199 dcn30_fpu_update_bw_bounding_box(dc, bw_params, &dcn30_bb_max_clk, dcfclk_mhz, dram_speed_mts); 2200 DC_FP_END(); 2201 } 2202 } 2203 2204 static void dcn30_get_panel_config_defaults(struct dc_panel_config *panel_config) 2205 { 2206 *panel_config = panel_config_defaults; 2207 } 2208 2209 static const struct resource_funcs dcn30_res_pool_funcs = { 2210 .destroy = dcn30_destroy_resource_pool, 2211 .link_enc_create = dcn30_link_encoder_create, 2212 .panel_cntl_create = dcn30_panel_cntl_create, 2213 .validate_bandwidth = dcn30_validate_bandwidth, 2214 .calculate_wm_and_dlg = dcn30_calculate_wm_and_dlg, 2215 .update_soc_for_wm_a = dcn30_update_soc_for_wm_a, 2216 .populate_dml_pipes = dcn30_populate_dml_pipes_from_context, 2217 .acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer, 2218 .add_stream_to_ctx = dcn30_add_stream_to_ctx, 2219 .add_dsc_to_stream_resource = dcn20_add_dsc_to_stream_resource, 2220 .remove_stream_from_ctx = dcn20_remove_stream_from_ctx, 2221 .populate_dml_writeback_from_context = dcn30_populate_dml_writeback_from_context, 2222 .set_mcif_arb_params = dcn30_set_mcif_arb_params, 2223 .find_first_free_match_stream_enc_for_link = dcn10_find_first_free_match_stream_enc_for_link, 2224 .acquire_post_bldn_3dlut = dcn30_acquire_post_bldn_3dlut, 2225 .release_post_bldn_3dlut = dcn30_release_post_bldn_3dlut, 2226 .update_bw_bounding_box = dcn30_update_bw_bounding_box, 2227 .patch_unknown_plane_state = dcn20_patch_unknown_plane_state, 2228 .get_panel_config_defaults = dcn30_get_panel_config_defaults, 2229 }; 2230 2231 #define CTX ctx 2232 2233 #define REG(reg_name) \ 2234 (DCN_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name) 2235 2236 static uint32_t read_pipe_fuses(struct dc_context *ctx) 2237 { 2238 uint32_t value = REG_READ(CC_DC_PIPE_DIS); 2239 /* Support for max 6 pipes */ 2240 value = value & 0x3f; 2241 return value; 2242 } 2243 2244 static bool dcn30_resource_construct( 2245 uint8_t num_virtual_links, 2246 struct dc *dc, 2247 struct dcn30_resource_pool *pool) 2248 { 2249 int i; 2250 struct dc_context *ctx = dc->ctx; 2251 struct irq_service_init_data init_data; 2252 struct ddc_service_init_data ddc_init_data = {0}; 2253 uint32_t pipe_fuses = read_pipe_fuses(ctx); 2254 uint32_t num_pipes = 0; 2255 2256 if (!(pipe_fuses == 0 || pipe_fuses == 0x3e)) { 2257 BREAK_TO_DEBUGGER(); 2258 dm_error("DC: Unexpected fuse recipe for navi2x !\n"); 2259 /* fault to single pipe */ 2260 pipe_fuses = 0x3e; 2261 } 2262 2263 DC_FP_START(); 2264 2265 ctx->dc_bios->regs = &bios_regs; 2266 2267 pool->base.res_cap = &res_cap_dcn3; 2268 2269 pool->base.funcs = &dcn30_res_pool_funcs; 2270 2271 /************************************************* 2272 * Resource + asic cap harcoding * 2273 *************************************************/ 2274 pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE; 2275 pool->base.pipe_count = pool->base.res_cap->num_timing_generator; 2276 pool->base.mpcc_count = pool->base.res_cap->num_timing_generator; 2277 dc->caps.max_downscale_ratio = 600; 2278 dc->caps.i2c_speed_in_khz = 100; 2279 dc->caps.i2c_speed_in_khz_hdcp = 100; /*1.4 w/a not applied by default*/ 2280 dc->caps.max_cursor_size = 256; 2281 dc->caps.min_horizontal_blanking_period = 80; 2282 dc->caps.dmdata_alloc_size = 2048; 2283 dc->caps.mall_size_per_mem_channel = 8; 2284 /* total size = mall per channel * num channels * 1024 * 1024 */ 2285 dc->caps.mall_size_total = dc->caps.mall_size_per_mem_channel * dc->ctx->dc_bios->vram_info.num_chans * 1048576; 2286 dc->caps.cursor_cache_size = dc->caps.max_cursor_size * dc->caps.max_cursor_size * 8; 2287 2288 dc->caps.max_slave_planes = 2; 2289 dc->caps.max_slave_yuv_planes = 2; 2290 dc->caps.max_slave_rgb_planes = 2; 2291 dc->caps.post_blend_color_processing = true; 2292 dc->caps.force_dp_tps4_for_cp2520 = true; 2293 dc->caps.extended_aux_timeout_support = true; 2294 dc->caps.dmcub_support = true; 2295 2296 /* Color pipeline capabilities */ 2297 dc->caps.color.dpp.dcn_arch = 1; 2298 dc->caps.color.dpp.input_lut_shared = 0; 2299 dc->caps.color.dpp.icsc = 1; 2300 dc->caps.color.dpp.dgam_ram = 0; // must use gamma_corr 2301 dc->caps.color.dpp.dgam_rom_caps.srgb = 1; 2302 dc->caps.color.dpp.dgam_rom_caps.bt2020 = 1; 2303 dc->caps.color.dpp.dgam_rom_caps.gamma2_2 = 1; 2304 dc->caps.color.dpp.dgam_rom_caps.pq = 1; 2305 dc->caps.color.dpp.dgam_rom_caps.hlg = 1; 2306 dc->caps.color.dpp.post_csc = 1; 2307 dc->caps.color.dpp.gamma_corr = 1; 2308 dc->caps.color.dpp.dgam_rom_for_yuv = 0; 2309 2310 dc->caps.color.dpp.hw_3d_lut = 1; 2311 dc->caps.color.dpp.ogam_ram = 1; 2312 // no OGAM ROM on DCN3 2313 dc->caps.color.dpp.ogam_rom_caps.srgb = 0; 2314 dc->caps.color.dpp.ogam_rom_caps.bt2020 = 0; 2315 dc->caps.color.dpp.ogam_rom_caps.gamma2_2 = 0; 2316 dc->caps.color.dpp.ogam_rom_caps.pq = 0; 2317 dc->caps.color.dpp.ogam_rom_caps.hlg = 0; 2318 dc->caps.color.dpp.ocsc = 0; 2319 2320 dc->caps.color.mpc.gamut_remap = 1; 2321 dc->caps.color.mpc.num_3dluts = pool->base.res_cap->num_mpc_3dlut; //3 2322 dc->caps.color.mpc.ogam_ram = 1; 2323 dc->caps.color.mpc.ogam_rom_caps.srgb = 0; 2324 dc->caps.color.mpc.ogam_rom_caps.bt2020 = 0; 2325 dc->caps.color.mpc.ogam_rom_caps.gamma2_2 = 0; 2326 dc->caps.color.mpc.ogam_rom_caps.pq = 0; 2327 dc->caps.color.mpc.ogam_rom_caps.hlg = 0; 2328 dc->caps.color.mpc.ocsc = 1; 2329 2330 dc->caps.dp_hdmi21_pcon_support = true; 2331 dc->caps.max_v_total = (1 << 15) - 1; 2332 2333 /* read VBIOS LTTPR caps */ 2334 { 2335 if (ctx->dc_bios->funcs->get_lttpr_caps) { 2336 enum bp_result bp_query_result; 2337 uint8_t is_vbios_lttpr_enable = 0; 2338 2339 bp_query_result = ctx->dc_bios->funcs->get_lttpr_caps(ctx->dc_bios, &is_vbios_lttpr_enable); 2340 dc->caps.vbios_lttpr_enable = (bp_query_result == BP_RESULT_OK) && !!is_vbios_lttpr_enable; 2341 } 2342 2343 if (ctx->dc_bios->funcs->get_lttpr_interop) { 2344 enum bp_result bp_query_result; 2345 uint8_t is_vbios_interop_enabled = 0; 2346 2347 bp_query_result = ctx->dc_bios->funcs->get_lttpr_interop(ctx->dc_bios, 2348 &is_vbios_interop_enabled); 2349 dc->caps.vbios_lttpr_aware = (bp_query_result == BP_RESULT_OK) && !!is_vbios_interop_enabled; 2350 } 2351 } 2352 2353 if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV) 2354 dc->debug = debug_defaults_drv; 2355 2356 // Init the vm_helper 2357 if (dc->vm_helper) 2358 vm_helper_init(dc->vm_helper, 16); 2359 2360 /************************************************* 2361 * Create resources * 2362 *************************************************/ 2363 2364 /* Clock Sources for Pixel Clock*/ 2365 pool->base.clock_sources[DCN30_CLK_SRC_PLL0] = 2366 dcn30_clock_source_create(ctx, ctx->dc_bios, 2367 CLOCK_SOURCE_COMBO_PHY_PLL0, 2368 &clk_src_regs[0], false); 2369 pool->base.clock_sources[DCN30_CLK_SRC_PLL1] = 2370 dcn30_clock_source_create(ctx, ctx->dc_bios, 2371 CLOCK_SOURCE_COMBO_PHY_PLL1, 2372 &clk_src_regs[1], false); 2373 pool->base.clock_sources[DCN30_CLK_SRC_PLL2] = 2374 dcn30_clock_source_create(ctx, ctx->dc_bios, 2375 CLOCK_SOURCE_COMBO_PHY_PLL2, 2376 &clk_src_regs[2], false); 2377 pool->base.clock_sources[DCN30_CLK_SRC_PLL3] = 2378 dcn30_clock_source_create(ctx, ctx->dc_bios, 2379 CLOCK_SOURCE_COMBO_PHY_PLL3, 2380 &clk_src_regs[3], false); 2381 pool->base.clock_sources[DCN30_CLK_SRC_PLL4] = 2382 dcn30_clock_source_create(ctx, ctx->dc_bios, 2383 CLOCK_SOURCE_COMBO_PHY_PLL4, 2384 &clk_src_regs[4], false); 2385 pool->base.clock_sources[DCN30_CLK_SRC_PLL5] = 2386 dcn30_clock_source_create(ctx, ctx->dc_bios, 2387 CLOCK_SOURCE_COMBO_PHY_PLL5, 2388 &clk_src_regs[5], false); 2389 2390 pool->base.clk_src_count = DCN30_CLK_SRC_TOTAL; 2391 2392 /* todo: not reuse phy_pll registers */ 2393 pool->base.dp_clock_source = 2394 dcn30_clock_source_create(ctx, ctx->dc_bios, 2395 CLOCK_SOURCE_ID_DP_DTO, 2396 &clk_src_regs[0], true); 2397 2398 for (i = 0; i < pool->base.clk_src_count; i++) { 2399 if (pool->base.clock_sources[i] == NULL) { 2400 dm_error("DC: failed to create clock sources!\n"); 2401 BREAK_TO_DEBUGGER(); 2402 goto create_fail; 2403 } 2404 } 2405 2406 /* DCCG */ 2407 pool->base.dccg = dccg30_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask); 2408 if (pool->base.dccg == NULL) { 2409 dm_error("DC: failed to create dccg!\n"); 2410 BREAK_TO_DEBUGGER(); 2411 goto create_fail; 2412 } 2413 2414 /* PP Lib and SMU interfaces */ 2415 init_soc_bounding_box(dc, pool); 2416 2417 num_pipes = dcn3_0_ip.max_num_dpp; 2418 2419 for (i = 0; i < dcn3_0_ip.max_num_dpp; i++) 2420 if (pipe_fuses & 1 << i) 2421 num_pipes--; 2422 2423 dcn3_0_ip.max_num_dpp = num_pipes; 2424 dcn3_0_ip.max_num_otg = num_pipes; 2425 2426 dml_init_instance(&dc->dml, &dcn3_0_soc, &dcn3_0_ip, DML_PROJECT_DCN30); 2427 2428 /* IRQ */ 2429 init_data.ctx = dc->ctx; 2430 pool->base.irqs = dal_irq_service_dcn30_create(&init_data); 2431 if (!pool->base.irqs) 2432 goto create_fail; 2433 2434 /* HUBBUB */ 2435 pool->base.hubbub = dcn30_hubbub_create(ctx); 2436 if (pool->base.hubbub == NULL) { 2437 BREAK_TO_DEBUGGER(); 2438 dm_error("DC: failed to create hubbub!\n"); 2439 goto create_fail; 2440 } 2441 2442 /* HUBPs, DPPs, OPPs and TGs */ 2443 for (i = 0; i < pool->base.pipe_count; i++) { 2444 pool->base.hubps[i] = dcn30_hubp_create(ctx, i); 2445 if (pool->base.hubps[i] == NULL) { 2446 BREAK_TO_DEBUGGER(); 2447 dm_error( 2448 "DC: failed to create hubps!\n"); 2449 goto create_fail; 2450 } 2451 2452 pool->base.dpps[i] = dcn30_dpp_create(ctx, i); 2453 if (pool->base.dpps[i] == NULL) { 2454 BREAK_TO_DEBUGGER(); 2455 dm_error( 2456 "DC: failed to create dpps!\n"); 2457 goto create_fail; 2458 } 2459 } 2460 2461 for (i = 0; i < pool->base.res_cap->num_opp; i++) { 2462 pool->base.opps[i] = dcn30_opp_create(ctx, i); 2463 if (pool->base.opps[i] == NULL) { 2464 BREAK_TO_DEBUGGER(); 2465 dm_error( 2466 "DC: failed to create output pixel processor!\n"); 2467 goto create_fail; 2468 } 2469 } 2470 2471 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2472 pool->base.timing_generators[i] = dcn30_timing_generator_create( 2473 ctx, i); 2474 if (pool->base.timing_generators[i] == NULL) { 2475 BREAK_TO_DEBUGGER(); 2476 dm_error("DC: failed to create tg!\n"); 2477 goto create_fail; 2478 } 2479 } 2480 pool->base.timing_generator_count = i; 2481 /* PSR */ 2482 pool->base.psr = dmub_psr_create(ctx); 2483 2484 if (pool->base.psr == NULL) { 2485 dm_error("DC: failed to create PSR obj!\n"); 2486 BREAK_TO_DEBUGGER(); 2487 goto create_fail; 2488 } 2489 2490 /* ABM */ 2491 for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) { 2492 pool->base.multiple_abms[i] = dmub_abm_create(ctx, 2493 &abm_regs[i], 2494 &abm_shift, 2495 &abm_mask); 2496 if (pool->base.multiple_abms[i] == NULL) { 2497 dm_error("DC: failed to create abm for pipe %d!\n", i); 2498 BREAK_TO_DEBUGGER(); 2499 goto create_fail; 2500 } 2501 } 2502 /* MPC and DSC */ 2503 pool->base.mpc = dcn30_mpc_create(ctx, pool->base.mpcc_count, pool->base.res_cap->num_mpc_3dlut); 2504 if (pool->base.mpc == NULL) { 2505 BREAK_TO_DEBUGGER(); 2506 dm_error("DC: failed to create mpc!\n"); 2507 goto create_fail; 2508 } 2509 2510 for (i = 0; i < pool->base.res_cap->num_dsc; i++) { 2511 pool->base.dscs[i] = dcn30_dsc_create(ctx, i); 2512 if (pool->base.dscs[i] == NULL) { 2513 BREAK_TO_DEBUGGER(); 2514 dm_error("DC: failed to create display stream compressor %d!\n", i); 2515 goto create_fail; 2516 } 2517 } 2518 2519 /* DWB and MMHUBBUB */ 2520 if (!dcn30_dwbc_create(ctx, &pool->base)) { 2521 BREAK_TO_DEBUGGER(); 2522 dm_error("DC: failed to create dwbc!\n"); 2523 goto create_fail; 2524 } 2525 2526 if (!dcn30_mmhubbub_create(ctx, &pool->base)) { 2527 BREAK_TO_DEBUGGER(); 2528 dm_error("DC: failed to create mcif_wb!\n"); 2529 goto create_fail; 2530 } 2531 2532 /* AUX and I2C */ 2533 for (i = 0; i < pool->base.res_cap->num_ddc; i++) { 2534 pool->base.engines[i] = dcn30_aux_engine_create(ctx, i); 2535 if (pool->base.engines[i] == NULL) { 2536 BREAK_TO_DEBUGGER(); 2537 dm_error( 2538 "DC:failed to create aux engine!!\n"); 2539 goto create_fail; 2540 } 2541 pool->base.hw_i2cs[i] = dcn30_i2c_hw_create(ctx, i); 2542 if (pool->base.hw_i2cs[i] == NULL) { 2543 BREAK_TO_DEBUGGER(); 2544 dm_error( 2545 "DC:failed to create hw i2c!!\n"); 2546 goto create_fail; 2547 } 2548 pool->base.sw_i2cs[i] = NULL; 2549 } 2550 2551 /* Audio, Stream Encoders including DIG and virtual, MPC 3D LUTs */ 2552 if (!resource_construct(num_virtual_links, dc, &pool->base, 2553 &res_create_funcs)) 2554 goto create_fail; 2555 2556 /* HW Sequencer and Plane caps */ 2557 dcn30_hw_sequencer_construct(dc); 2558 2559 dc->caps.max_planes = pool->base.pipe_count; 2560 2561 for (i = 0; i < dc->caps.max_planes; ++i) 2562 dc->caps.planes[i] = plane_cap; 2563 2564 dc->cap_funcs = cap_funcs; 2565 2566 if (dc->ctx->dc_bios->fw_info.oem_i2c_present) { 2567 ddc_init_data.ctx = dc->ctx; 2568 ddc_init_data.link = NULL; 2569 ddc_init_data.id.id = dc->ctx->dc_bios->fw_info.oem_i2c_obj_id; 2570 ddc_init_data.id.enum_id = 0; 2571 ddc_init_data.id.type = OBJECT_TYPE_GENERIC; 2572 pool->base.oem_device = dc->link_srv->create_ddc_service(&ddc_init_data); 2573 } else { 2574 pool->base.oem_device = NULL; 2575 } 2576 2577 DC_FP_END(); 2578 2579 return true; 2580 2581 create_fail: 2582 2583 DC_FP_END(); 2584 dcn30_resource_destruct(pool); 2585 2586 return false; 2587 } 2588 2589 struct resource_pool *dcn30_create_resource_pool( 2590 const struct dc_init_data *init_data, 2591 struct dc *dc) 2592 { 2593 struct dcn30_resource_pool *pool = 2594 kzalloc(sizeof(struct dcn30_resource_pool), GFP_KERNEL); 2595 2596 if (!pool) 2597 return NULL; 2598 2599 if (dcn30_resource_construct(init_data->num_virtual_links, dc, pool)) 2600 return &pool->base; 2601 2602 BREAK_TO_DEBUGGER(); 2603 kfree(pool); 2604 return NULL; 2605 } 2606