1 /* 2 * Copyright 2018 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 * Authors: AMD 23 * 24 */ 25 #include <linux/delay.h> 26 #include "dm_services.h" 27 #include "dcn20/dcn20_hubbub.h" 28 #include "dcn21_hubbub.h" 29 #include "reg_helper.h" 30 31 #define REG(reg)\ 32 hubbub1->regs->reg 33 #define DC_LOGGER \ 34 hubbub1->base.ctx->logger 35 #define CTX \ 36 hubbub1->base.ctx 37 38 #undef FN 39 #define FN(reg_name, field_name) \ 40 hubbub1->shifts->field_name, hubbub1->masks->field_name 41 42 #define REG(reg)\ 43 hubbub1->regs->reg 44 45 #define CTX \ 46 hubbub1->base.ctx 47 48 #undef FN 49 #define FN(reg_name, field_name) \ 50 hubbub1->shifts->field_name, hubbub1->masks->field_name 51 52 static uint32_t convert_and_clamp( 53 uint32_t wm_ns, 54 uint32_t refclk_mhz, 55 uint32_t clamp_value) 56 { 57 uint32_t ret_val = 0; 58 ret_val = wm_ns * refclk_mhz; 59 ret_val /= 1000; 60 61 if (ret_val > clamp_value) 62 ret_val = clamp_value; 63 64 return ret_val; 65 } 66 67 void dcn21_dchvm_init(struct hubbub *hubbub) 68 { 69 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 70 uint32_t riommu_active; 71 int i; 72 73 //Init DCHVM block 74 REG_UPDATE(DCHVM_CTRL0, HOSTVM_INIT_REQ, 1); 75 76 //Poll until RIOMMU_ACTIVE = 1 77 for (i = 0; i < 100; i++) { 78 REG_GET(DCHVM_RIOMMU_STAT0, RIOMMU_ACTIVE, &riommu_active); 79 80 if (riommu_active) 81 break; 82 else 83 udelay(5); 84 } 85 86 if (riommu_active) { 87 //Reflect the power status of DCHUBBUB 88 REG_UPDATE(DCHVM_RIOMMU_CTRL0, HOSTVM_POWERSTATUS, 1); 89 90 //Start rIOMMU prefetching 91 REG_UPDATE(DCHVM_RIOMMU_CTRL0, HOSTVM_PREFETCH_REQ, 1); 92 93 // Enable dynamic clock gating 94 REG_UPDATE_4(DCHVM_CLK_CTRL, 95 HVM_DISPCLK_R_GATE_DIS, 0, 96 HVM_DISPCLK_G_GATE_DIS, 0, 97 HVM_DCFCLK_R_GATE_DIS, 0, 98 HVM_DCFCLK_G_GATE_DIS, 0); 99 100 //Poll until HOSTVM_PREFETCH_DONE = 1 101 REG_WAIT(DCHVM_RIOMMU_STAT0, HOSTVM_PREFETCH_DONE, 1, 5, 100); 102 103 hubbub->riommu_active = true; 104 } 105 } 106 107 int hubbub21_init_dchub(struct hubbub *hubbub, 108 struct dcn_hubbub_phys_addr_config *pa_config) 109 { 110 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 111 struct dcn_vmid_page_table_config phys_config; 112 113 REG_SET(DCN_VM_FB_LOCATION_BASE, 0, 114 FB_BASE, pa_config->system_aperture.fb_base >> 24); 115 REG_SET(DCN_VM_FB_LOCATION_TOP, 0, 116 FB_TOP, pa_config->system_aperture.fb_top >> 24); 117 REG_SET(DCN_VM_FB_OFFSET, 0, 118 FB_OFFSET, pa_config->system_aperture.fb_offset >> 24); 119 REG_SET(DCN_VM_AGP_BOT, 0, 120 AGP_BOT, pa_config->system_aperture.agp_bot >> 24); 121 REG_SET(DCN_VM_AGP_TOP, 0, 122 AGP_TOP, pa_config->system_aperture.agp_top >> 24); 123 REG_SET(DCN_VM_AGP_BASE, 0, 124 AGP_BASE, pa_config->system_aperture.agp_base >> 24); 125 126 if (pa_config->gart_config.page_table_start_addr != pa_config->gart_config.page_table_end_addr) { 127 phys_config.page_table_start_addr = pa_config->gart_config.page_table_start_addr >> 12; 128 phys_config.page_table_end_addr = pa_config->gart_config.page_table_end_addr >> 12; 129 phys_config.page_table_base_addr = pa_config->gart_config.page_table_base_addr | 1; //Note: hack 130 phys_config.depth = 0; 131 phys_config.block_size = 0; 132 // Init VMID 0 based on PA config 133 dcn20_vmid_setup(&hubbub1->vmid[0], &phys_config); 134 } 135 136 dcn21_dchvm_init(hubbub); 137 138 return hubbub1->num_vmid; 139 } 140 141 bool hubbub21_program_urgent_watermarks( 142 struct hubbub *hubbub, 143 struct dcn_watermark_set *watermarks, 144 unsigned int refclk_mhz, 145 bool safe_to_lower) 146 { 147 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 148 uint32_t prog_wm_value; 149 bool wm_pending = false; 150 151 /* Repeat for water mark set A, B, C and D. */ 152 /* clock state A */ 153 if (safe_to_lower || watermarks->a.urgent_ns > hubbub1->watermarks.a.urgent_ns) { 154 hubbub1->watermarks.a.urgent_ns = watermarks->a.urgent_ns; 155 prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns, 156 refclk_mhz, 0x1fffff); 157 REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 0, 158 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value, 159 DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_A, prog_wm_value); 160 161 DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_A calculated =%d\n" 162 "HW register value = 0x%x\n", 163 watermarks->a.urgent_ns, prog_wm_value); 164 } else if (watermarks->a.urgent_ns < hubbub1->watermarks.a.urgent_ns) 165 wm_pending = true; 166 167 /* determine the transfer time for a quantity of data for a particular requestor.*/ 168 if (safe_to_lower || watermarks->a.frac_urg_bw_flip 169 > hubbub1->watermarks.a.frac_urg_bw_flip) { 170 hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; 171 172 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, 0, 173 DCHUBBUB_ARB_FRAC_URG_BW_FLIP_A, watermarks->a.frac_urg_bw_flip); 174 } else if (watermarks->a.frac_urg_bw_flip 175 < hubbub1->watermarks.a.frac_urg_bw_flip) 176 wm_pending = true; 177 178 if (safe_to_lower || watermarks->a.frac_urg_bw_nom 179 > hubbub1->watermarks.a.frac_urg_bw_nom) { 180 hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; 181 182 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, 0, 183 DCHUBBUB_ARB_FRAC_URG_BW_NOM_A, watermarks->a.frac_urg_bw_nom); 184 } else if (watermarks->a.frac_urg_bw_nom 185 < hubbub1->watermarks.a.frac_urg_bw_nom) 186 wm_pending = true; 187 188 if (safe_to_lower || watermarks->a.urgent_latency_ns > hubbub1->watermarks.a.urgent_latency_ns) { 189 hubbub1->watermarks.a.urgent_latency_ns = watermarks->a.urgent_latency_ns; 190 prog_wm_value = convert_and_clamp(watermarks->a.urgent_latency_ns, 191 refclk_mhz, 0x1fffff); 192 REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, 0, 193 DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_A, prog_wm_value); 194 } else if (watermarks->a.urgent_latency_ns < hubbub1->watermarks.a.urgent_latency_ns) 195 wm_pending = true; 196 197 /* clock state B */ 198 if (safe_to_lower || watermarks->b.urgent_ns > hubbub1->watermarks.b.urgent_ns) { 199 hubbub1->watermarks.b.urgent_ns = watermarks->b.urgent_ns; 200 prog_wm_value = convert_and_clamp(watermarks->b.urgent_ns, 201 refclk_mhz, 0x1fffff); 202 REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 0, 203 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value, 204 DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_B, prog_wm_value); 205 206 DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_B calculated =%d\n" 207 "HW register value = 0x%x\n", 208 watermarks->b.urgent_ns, prog_wm_value); 209 } else if (watermarks->b.urgent_ns < hubbub1->watermarks.b.urgent_ns) 210 wm_pending = true; 211 212 /* determine the transfer time for a quantity of data for a particular requestor.*/ 213 if (safe_to_lower || watermarks->a.frac_urg_bw_flip 214 > hubbub1->watermarks.a.frac_urg_bw_flip) { 215 hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; 216 217 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, 0, 218 DCHUBBUB_ARB_FRAC_URG_BW_FLIP_B, watermarks->a.frac_urg_bw_flip); 219 } else if (watermarks->a.frac_urg_bw_flip 220 < hubbub1->watermarks.a.frac_urg_bw_flip) 221 wm_pending = true; 222 223 if (safe_to_lower || watermarks->a.frac_urg_bw_nom 224 > hubbub1->watermarks.a.frac_urg_bw_nom) { 225 hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; 226 227 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, 0, 228 DCHUBBUB_ARB_FRAC_URG_BW_NOM_B, watermarks->a.frac_urg_bw_nom); 229 } else if (watermarks->a.frac_urg_bw_nom 230 < hubbub1->watermarks.a.frac_urg_bw_nom) 231 wm_pending = true; 232 233 if (safe_to_lower || watermarks->b.urgent_latency_ns > hubbub1->watermarks.b.urgent_latency_ns) { 234 hubbub1->watermarks.b.urgent_latency_ns = watermarks->b.urgent_latency_ns; 235 prog_wm_value = convert_and_clamp(watermarks->b.urgent_latency_ns, 236 refclk_mhz, 0x1fffff); 237 REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, 0, 238 DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_B, prog_wm_value); 239 } else if (watermarks->b.urgent_latency_ns < hubbub1->watermarks.b.urgent_latency_ns) 240 wm_pending = true; 241 242 /* clock state C */ 243 if (safe_to_lower || watermarks->c.urgent_ns > hubbub1->watermarks.c.urgent_ns) { 244 hubbub1->watermarks.c.urgent_ns = watermarks->c.urgent_ns; 245 prog_wm_value = convert_and_clamp(watermarks->c.urgent_ns, 246 refclk_mhz, 0x1fffff); 247 REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 0, 248 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value, 249 DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_C, prog_wm_value); 250 251 DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_C calculated =%d\n" 252 "HW register value = 0x%x\n", 253 watermarks->c.urgent_ns, prog_wm_value); 254 } else if (watermarks->c.urgent_ns < hubbub1->watermarks.c.urgent_ns) 255 wm_pending = true; 256 257 /* determine the transfer time for a quantity of data for a particular requestor.*/ 258 if (safe_to_lower || watermarks->a.frac_urg_bw_flip 259 > hubbub1->watermarks.a.frac_urg_bw_flip) { 260 hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; 261 262 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, 0, 263 DCHUBBUB_ARB_FRAC_URG_BW_FLIP_C, watermarks->a.frac_urg_bw_flip); 264 } else if (watermarks->a.frac_urg_bw_flip 265 < hubbub1->watermarks.a.frac_urg_bw_flip) 266 wm_pending = true; 267 268 if (safe_to_lower || watermarks->a.frac_urg_bw_nom 269 > hubbub1->watermarks.a.frac_urg_bw_nom) { 270 hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; 271 272 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, 0, 273 DCHUBBUB_ARB_FRAC_URG_BW_NOM_C, watermarks->a.frac_urg_bw_nom); 274 } else if (watermarks->a.frac_urg_bw_nom 275 < hubbub1->watermarks.a.frac_urg_bw_nom) 276 wm_pending = true; 277 278 if (safe_to_lower || watermarks->c.urgent_latency_ns > hubbub1->watermarks.c.urgent_latency_ns) { 279 hubbub1->watermarks.c.urgent_latency_ns = watermarks->c.urgent_latency_ns; 280 prog_wm_value = convert_and_clamp(watermarks->c.urgent_latency_ns, 281 refclk_mhz, 0x1fffff); 282 REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, 0, 283 DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_C, prog_wm_value); 284 } else if (watermarks->c.urgent_latency_ns < hubbub1->watermarks.c.urgent_latency_ns) 285 wm_pending = true; 286 287 /* clock state D */ 288 if (safe_to_lower || watermarks->d.urgent_ns > hubbub1->watermarks.d.urgent_ns) { 289 hubbub1->watermarks.d.urgent_ns = watermarks->d.urgent_ns; 290 prog_wm_value = convert_and_clamp(watermarks->d.urgent_ns, 291 refclk_mhz, 0x1fffff); 292 REG_SET_2(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 0, 293 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value, 294 DCHUBBUB_ARB_VM_ROW_URGENCY_WATERMARK_D, prog_wm_value); 295 296 DC_LOG_BANDWIDTH_CALCS("URGENCY_WATERMARK_D calculated =%d\n" 297 "HW register value = 0x%x\n", 298 watermarks->d.urgent_ns, prog_wm_value); 299 } else if (watermarks->d.urgent_ns < hubbub1->watermarks.d.urgent_ns) 300 wm_pending = true; 301 302 /* determine the transfer time for a quantity of data for a particular requestor.*/ 303 if (safe_to_lower || watermarks->a.frac_urg_bw_flip 304 > hubbub1->watermarks.a.frac_urg_bw_flip) { 305 hubbub1->watermarks.a.frac_urg_bw_flip = watermarks->a.frac_urg_bw_flip; 306 307 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, 0, 308 DCHUBBUB_ARB_FRAC_URG_BW_FLIP_D, watermarks->a.frac_urg_bw_flip); 309 } else if (watermarks->a.frac_urg_bw_flip 310 < hubbub1->watermarks.a.frac_urg_bw_flip) 311 wm_pending = true; 312 313 if (safe_to_lower || watermarks->a.frac_urg_bw_nom 314 > hubbub1->watermarks.a.frac_urg_bw_nom) { 315 hubbub1->watermarks.a.frac_urg_bw_nom = watermarks->a.frac_urg_bw_nom; 316 317 REG_SET(DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, 0, 318 DCHUBBUB_ARB_FRAC_URG_BW_NOM_D, watermarks->a.frac_urg_bw_nom); 319 } else if (watermarks->a.frac_urg_bw_nom 320 < hubbub1->watermarks.a.frac_urg_bw_nom) 321 wm_pending = true; 322 323 if (safe_to_lower || watermarks->d.urgent_latency_ns > hubbub1->watermarks.d.urgent_latency_ns) { 324 hubbub1->watermarks.d.urgent_latency_ns = watermarks->d.urgent_latency_ns; 325 prog_wm_value = convert_and_clamp(watermarks->d.urgent_latency_ns, 326 refclk_mhz, 0x1fffff); 327 REG_SET(DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, 0, 328 DCHUBBUB_ARB_REFCYC_PER_TRIP_TO_MEMORY_D, prog_wm_value); 329 } else if (watermarks->d.urgent_latency_ns < hubbub1->watermarks.d.urgent_latency_ns) 330 wm_pending = true; 331 332 return wm_pending; 333 } 334 335 bool hubbub21_program_stutter_watermarks( 336 struct hubbub *hubbub, 337 struct dcn_watermark_set *watermarks, 338 unsigned int refclk_mhz, 339 bool safe_to_lower) 340 { 341 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 342 uint32_t prog_wm_value; 343 bool wm_pending = false; 344 345 /* clock state A */ 346 if (safe_to_lower || watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns 347 > hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) { 348 hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = 349 watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns; 350 prog_wm_value = convert_and_clamp( 351 watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, 352 refclk_mhz, 0x1fffff); 353 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 0, 354 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value, 355 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value); 356 DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_A calculated =%d\n" 357 "HW register value = 0x%x\n", 358 watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); 359 } else if (watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns 360 < hubbub1->watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns) 361 wm_pending = true; 362 363 if (safe_to_lower || watermarks->a.cstate_pstate.cstate_exit_ns 364 > hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns) { 365 hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns = 366 watermarks->a.cstate_pstate.cstate_exit_ns; 367 prog_wm_value = convert_and_clamp( 368 watermarks->a.cstate_pstate.cstate_exit_ns, 369 refclk_mhz, 0x1fffff); 370 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 0, 371 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value, 372 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); 373 DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_A calculated =%d\n" 374 "HW register value = 0x%x\n", 375 watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value); 376 } else if (watermarks->a.cstate_pstate.cstate_exit_ns 377 < hubbub1->watermarks.a.cstate_pstate.cstate_exit_ns) 378 wm_pending = true; 379 380 /* clock state B */ 381 if (safe_to_lower || watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns 382 > hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) { 383 hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = 384 watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns; 385 prog_wm_value = convert_and_clamp( 386 watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, 387 refclk_mhz, 0x1fffff); 388 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 0, 389 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value, 390 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value); 391 DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_B calculated =%d\n" 392 "HW register value = 0x%x\n", 393 watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); 394 } else if (watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns 395 < hubbub1->watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns) 396 wm_pending = true; 397 398 if (safe_to_lower || watermarks->b.cstate_pstate.cstate_exit_ns 399 > hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns) { 400 hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns = 401 watermarks->b.cstate_pstate.cstate_exit_ns; 402 prog_wm_value = convert_and_clamp( 403 watermarks->b.cstate_pstate.cstate_exit_ns, 404 refclk_mhz, 0x1fffff); 405 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 0, 406 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value, 407 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); 408 DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_B calculated =%d\n" 409 "HW register value = 0x%x\n", 410 watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value); 411 } else if (watermarks->b.cstate_pstate.cstate_exit_ns 412 < hubbub1->watermarks.b.cstate_pstate.cstate_exit_ns) 413 wm_pending = true; 414 415 /* clock state C */ 416 if (safe_to_lower || watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns 417 > hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) { 418 hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = 419 watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns; 420 prog_wm_value = convert_and_clamp( 421 watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, 422 refclk_mhz, 0x1fffff); 423 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 0, 424 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value, 425 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value); 426 DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_C calculated =%d\n" 427 "HW register value = 0x%x\n", 428 watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); 429 } else if (watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns 430 < hubbub1->watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns) 431 wm_pending = true; 432 433 if (safe_to_lower || watermarks->c.cstate_pstate.cstate_exit_ns 434 > hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns) { 435 hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns = 436 watermarks->c.cstate_pstate.cstate_exit_ns; 437 prog_wm_value = convert_and_clamp( 438 watermarks->c.cstate_pstate.cstate_exit_ns, 439 refclk_mhz, 0x1fffff); 440 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 0, 441 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value, 442 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); 443 DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_C calculated =%d\n" 444 "HW register value = 0x%x\n", 445 watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value); 446 } else if (watermarks->c.cstate_pstate.cstate_exit_ns 447 < hubbub1->watermarks.c.cstate_pstate.cstate_exit_ns) 448 wm_pending = true; 449 450 /* clock state D */ 451 if (safe_to_lower || watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns 452 > hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) { 453 hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = 454 watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns; 455 prog_wm_value = convert_and_clamp( 456 watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, 457 refclk_mhz, 0x1fffff); 458 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 0, 459 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value, 460 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value); 461 DC_LOG_BANDWIDTH_CALCS("SR_ENTER_EXIT_WATERMARK_D calculated =%d\n" 462 "HW register value = 0x%x\n", 463 watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value); 464 } else if (watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns 465 < hubbub1->watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns) 466 wm_pending = true; 467 468 if (safe_to_lower || watermarks->d.cstate_pstate.cstate_exit_ns 469 > hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns) { 470 hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns = 471 watermarks->d.cstate_pstate.cstate_exit_ns; 472 prog_wm_value = convert_and_clamp( 473 watermarks->d.cstate_pstate.cstate_exit_ns, 474 refclk_mhz, 0x1fffff); 475 REG_SET_2(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 0, 476 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value, 477 DCHUBBUB_ARB_VM_ROW_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value); 478 DC_LOG_BANDWIDTH_CALCS("SR_EXIT_WATERMARK_D calculated =%d\n" 479 "HW register value = 0x%x\n", 480 watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value); 481 } else if (watermarks->d.cstate_pstate.cstate_exit_ns 482 < hubbub1->watermarks.d.cstate_pstate.cstate_exit_ns) 483 wm_pending = true; 484 485 return wm_pending; 486 } 487 488 bool hubbub21_program_pstate_watermarks( 489 struct hubbub *hubbub, 490 struct dcn_watermark_set *watermarks, 491 unsigned int refclk_mhz, 492 bool safe_to_lower) 493 { 494 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 495 uint32_t prog_wm_value; 496 497 bool wm_pending = false; 498 499 /* clock state A */ 500 if (safe_to_lower || watermarks->a.cstate_pstate.pstate_change_ns 501 > hubbub1->watermarks.a.cstate_pstate.pstate_change_ns) { 502 hubbub1->watermarks.a.cstate_pstate.pstate_change_ns = 503 watermarks->a.cstate_pstate.pstate_change_ns; 504 prog_wm_value = convert_and_clamp( 505 watermarks->a.cstate_pstate.pstate_change_ns, 506 refclk_mhz, 0x1fffff); 507 REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, 0, 508 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value, 509 DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value); 510 DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n" 511 "HW register value = 0x%x\n\n", 512 watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value); 513 } else if (watermarks->a.cstate_pstate.pstate_change_ns 514 < hubbub1->watermarks.a.cstate_pstate.pstate_change_ns) 515 wm_pending = true; 516 517 /* clock state B */ 518 if (safe_to_lower || watermarks->b.cstate_pstate.pstate_change_ns 519 > hubbub1->watermarks.b.cstate_pstate.pstate_change_ns) { 520 hubbub1->watermarks.b.cstate_pstate.pstate_change_ns = 521 watermarks->b.cstate_pstate.pstate_change_ns; 522 prog_wm_value = convert_and_clamp( 523 watermarks->b.cstate_pstate.pstate_change_ns, 524 refclk_mhz, 0x1fffff); 525 REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, 0, 526 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value, 527 DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value); 528 DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n" 529 "HW register value = 0x%x\n\n", 530 watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value); 531 } else if (watermarks->b.cstate_pstate.pstate_change_ns 532 < hubbub1->watermarks.b.cstate_pstate.pstate_change_ns) 533 wm_pending = false; 534 535 /* clock state C */ 536 if (safe_to_lower || watermarks->c.cstate_pstate.pstate_change_ns 537 > hubbub1->watermarks.c.cstate_pstate.pstate_change_ns) { 538 hubbub1->watermarks.c.cstate_pstate.pstate_change_ns = 539 watermarks->c.cstate_pstate.pstate_change_ns; 540 prog_wm_value = convert_and_clamp( 541 watermarks->c.cstate_pstate.pstate_change_ns, 542 refclk_mhz, 0x1fffff); 543 REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, 0, 544 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value, 545 DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value); 546 DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n" 547 "HW register value = 0x%x\n\n", 548 watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value); 549 } else if (watermarks->c.cstate_pstate.pstate_change_ns 550 < hubbub1->watermarks.c.cstate_pstate.pstate_change_ns) 551 wm_pending = true; 552 553 /* clock state D */ 554 if (safe_to_lower || watermarks->d.cstate_pstate.pstate_change_ns 555 > hubbub1->watermarks.d.cstate_pstate.pstate_change_ns) { 556 hubbub1->watermarks.d.cstate_pstate.pstate_change_ns = 557 watermarks->d.cstate_pstate.pstate_change_ns; 558 prog_wm_value = convert_and_clamp( 559 watermarks->d.cstate_pstate.pstate_change_ns, 560 refclk_mhz, 0x1fffff); 561 REG_SET_2(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, 0, 562 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value, 563 DCHUBBUB_ARB_VM_ROW_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value); 564 DC_LOG_BANDWIDTH_CALCS("DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n" 565 "HW register value = 0x%x\n\n", 566 watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value); 567 } else if (watermarks->d.cstate_pstate.pstate_change_ns 568 < hubbub1->watermarks.d.cstate_pstate.pstate_change_ns) 569 wm_pending = true; 570 571 return wm_pending; 572 } 573 574 bool hubbub21_program_watermarks( 575 struct hubbub *hubbub, 576 struct dcn_watermark_set *watermarks, 577 unsigned int refclk_mhz, 578 bool safe_to_lower) 579 { 580 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 581 bool wm_pending = false; 582 583 if (hubbub21_program_urgent_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) 584 wm_pending = true; 585 586 if (hubbub21_program_stutter_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) 587 wm_pending = true; 588 589 if (hubbub21_program_pstate_watermarks(hubbub, watermarks, refclk_mhz, safe_to_lower)) 590 wm_pending = true; 591 592 /* 593 * The DCHub arbiter has a mechanism to dynamically rate limit the DCHub request stream to the fabric. 594 * If the memory controller is fully utilized and the DCHub requestors are 595 * well ahead of their amortized schedule, then it is safe to prevent the next winner 596 * from being committed and sent to the fabric. 597 * The utilization of the memory controller is approximated by ensuring that 598 * the number of outstanding requests is greater than a threshold specified 599 * by the ARB_MIN_REQ_OUTSTANDING. To determine that the DCHub requestors are well ahead of the amortized schedule, 600 * the slack of the next winner is compared with the ARB_SAT_LEVEL in DLG RefClk cycles. 601 * 602 * TODO: Revisit request limit after figure out right number. request limit for Renoir isn't decided yet, set maximum value (0x1FF) 603 * to turn off it for now. 604 */ 605 REG_SET(DCHUBBUB_ARB_SAT_LEVEL, 0, 606 DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz); 607 REG_UPDATE_2(DCHUBBUB_ARB_DF_REQ_OUTSTAND, 608 DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 0x1FF, 609 DCHUBBUB_ARB_MIN_REQ_OUTSTAND_COMMIT_THRESHOLD, 0xA); 610 REG_UPDATE(DCHUBBUB_ARB_HOSTVM_CNTL, 611 DCHUBBUB_ARB_MAX_QOS_COMMIT_THRESHOLD, 0xF); 612 613 hubbub1_allow_self_refresh_control(hubbub, !hubbub->ctx->dc->debug.disable_stutter); 614 615 return wm_pending; 616 } 617 618 void hubbub21_wm_read_state(struct hubbub *hubbub, 619 struct dcn_hubbub_wm *wm) 620 { 621 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 622 struct dcn_hubbub_wm_set *s; 623 624 memset(wm, 0, sizeof(struct dcn_hubbub_wm)); 625 626 s = &wm->sets[0]; 627 s->wm_set = 0; 628 REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, 629 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, &s->data_urgent); 630 631 REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, 632 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, &s->sr_enter); 633 634 REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, 635 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, &s->sr_exit); 636 637 REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, 638 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, &s->dram_clk_chanage); 639 640 s = &wm->sets[1]; 641 s->wm_set = 1; 642 REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, 643 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, &s->data_urgent); 644 645 REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, 646 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, &s->sr_enter); 647 648 REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, 649 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, &s->sr_exit); 650 651 REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, 652 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, &s->dram_clk_chanage); 653 654 s = &wm->sets[2]; 655 s->wm_set = 2; 656 REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, 657 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, &s->data_urgent); 658 659 REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, 660 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, &s->sr_enter); 661 662 REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, 663 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, &s->sr_exit); 664 665 REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, 666 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, &s->dram_clk_chanage); 667 668 s = &wm->sets[3]; 669 s->wm_set = 3; 670 REG_GET(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, 671 DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, &s->data_urgent); 672 673 REG_GET(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, 674 DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, &s->sr_enter); 675 676 REG_GET(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, 677 DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, &s->sr_exit); 678 679 REG_GET(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, 680 DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, &s->dram_clk_chanage); 681 } 682 683 void hubbub21_apply_DEDCN21_147_wa(struct hubbub *hubbub) 684 { 685 struct dcn20_hubbub *hubbub1 = TO_DCN20_HUBBUB(hubbub); 686 uint32_t prog_wm_value; 687 688 prog_wm_value = REG_READ(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A); 689 REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value); 690 } 691 692 static const struct hubbub_funcs hubbub21_funcs = { 693 .update_dchub = hubbub2_update_dchub, 694 .init_dchub_sys_ctx = hubbub21_init_dchub, 695 .init_vm_ctx = hubbub2_init_vm_ctx, 696 .dcc_support_swizzle = hubbub2_dcc_support_swizzle, 697 .dcc_support_pixel_format = hubbub2_dcc_support_pixel_format, 698 .get_dcc_compression_cap = hubbub2_get_dcc_compression_cap, 699 .wm_read_state = hubbub21_wm_read_state, 700 .get_dchub_ref_freq = hubbub2_get_dchub_ref_freq, 701 .program_watermarks = hubbub21_program_watermarks, 702 .allow_self_refresh_control = hubbub1_allow_self_refresh_control, 703 .apply_DEDCN21_147_wa = hubbub21_apply_DEDCN21_147_wa, 704 .hubbub_read_state = hubbub2_read_state, 705 }; 706 707 void hubbub21_construct(struct dcn20_hubbub *hubbub, 708 struct dc_context *ctx, 709 const struct dcn_hubbub_registers *hubbub_regs, 710 const struct dcn_hubbub_shift *hubbub_shift, 711 const struct dcn_hubbub_mask *hubbub_mask) 712 { 713 hubbub->base.ctx = ctx; 714 715 hubbub->base.funcs = &hubbub21_funcs; 716 717 hubbub->regs = hubbub_regs; 718 hubbub->shifts = hubbub_shift; 719 hubbub->masks = hubbub_mask; 720 721 hubbub->debug_test_index_pstate = 0xB; 722 hubbub->detile_buf_size = 164 * 1024; /* 164KB for DCN2.0 */ 723 } 724